

UNDER THE CLIFFS.
was not the first one. Seven years ago many thousand dollars were sunk in a futile attempt. The plan was to gain the summit by a light grade and smooth rails, which necessitated a much longer route.
Several miles of the grading were completed, when the plan was abandoned.
The roadbed, crossing as it did so many waterways, was contiuually threatened with washouts. But the failures of the first company have only aided to pilot the present projectors to a wiser course.
Major John Hulbert, the president of the road, was the first to conceive the proper mode of construction, and he succeeded in interesting a number of railroad officials, whose roads, either by direct or indirect connection, would profit by a line to the summit of the peak. A stock company was soon formed, surveys made, and the contract for the work let.
Mr. T. F. Richardson is the chief engineer of the work, and superintended the entire construction from the time of the first surveys until its completion.
Mr. Z. G. Simmons, of Kenosha, Wis., was the general contractor, with B. Lantry \& Sous, of Topeka, Kan., subcontractors for the grading.

The work of construction began September (Coritinued on page 55.)

THE MANITOU AND PIKE'S PEAK RAILWAY.

 by fred. r. hastings.When Zebulon Pike, with his small band of followers, pierced the trackless waste in 1806 and gazed upon the mountain which bears his name, he little dreamed that in future years the ingenuity and enterprise of man would surmount the obstacles of nature, and the same century would see the steel bands of a railway laid up the ascent and a ponderous locomotive hauling its preciousload of human freight frow the base to the summit. The Manitou and Pike's Peak Railway is now a reThe Manitou and Pike's Peak Railway is now a re-
ality. The trial trip over the entire line was made ality. The trial trip over the entire line was made trains over a large portion of the road has proved the full success of the undertaking. The attempt so successfully carried out to construct a railway up the peak

NEARING THE SUMMIT OF PIKE'S PEAK.

THE PIRE'S PEAK RAILROAD LOCOMOTIVE.
INCLINED RAILROAD TO THE SUMMIT OF PIKE'S PEAK,

รximitific Ammitan.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN.

 One copy, one year, for the U. S., Canada or Mexico...One copy, six months, for the U. S., Canada or Mexico
 One copy, one year, to any foreign country belonking to Postal Union, 4
Remit by postal or express money order, or by bank draft or check. MUNN \& CO.. 361 Broadway, corner of 4 ranklin Street, New York.

 Building Edition.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 786
For the week Ending January 24, 1891.

| THE CONSTITUTION OF THE KOCH LYMPH DISCLOSED
The scientific and medical world has been much in terested in the announcement by Dr. Koch of the com position of his famous lymph. Conservative as everin as a reagent of its worth, he claims for it distinct valu ease. As a remedy for disease of this nature he attributes to it a proved efficacy, particularly in earlier stages of the disease. He announces also that he pro poses to see if his discovery cannot be followed up, s as to lead to analogous treatment for other diseases.
The discovery was based on observation of the effects animals affected with tubercles as well as upon ani mals in good health. A healthy guinea pig thus inoculated dies. The wound-caused by the inoculation closes with a sticky matter, shows signs of healing, but which develops or two weeks a hard nodule appears which develops into an ulcerating sore, and death en sues. But if the animal inoculated already has tuber culosis, no nodule forms in the injection wound. It hardens, turns dark, and eventually a piece falls off, leaving a flat ulceration that soon heals. The sam result follows the injection of the bacilli cultivation whether the bacilli are alive or dead. It is the effec probably of a decomposition product or extract of the dead bacilli, but not the life action of the bacilli them selves. A prolonged application of a low heat, the temperature of boiling water, and certain chemicals are alike fatal to the bacilli in the cultivation.
The next point ascertained referred to the action of the dilute cultivation with killed bacilli. This was found to be practically without action on healthy animals, but of very powerful action on those already affected. The tubercular reaction, which has been ob served and described so often, was next discovered The injected tuberculosed animal was killed by a dos that a healthy animal was indifferent to. By great dilution of the fluid before injection, death was avoid ed and only extended necrosis of the tissue near the place of inoculation was obtained. By extreme dilu tion the wound produced at the point of injection after a few days' suppuration became covered, and the lymphatic glands became reduced from their swollen condition, and a generally better condition followed. Dr. Koch, from his studies, became convinced tha the action was due to matter extracted from the dead bacilli. He, therefore, sought for a solvent, and processes for preparing a solution. As solvent he adopted a fifty per cent solution of glycerine. The processes he eventually chose he does not divulge.
The essential constituent he thinks is a derivative of the albuminous bodies. He thinks that it acts by unfitting the bodily tissue from sustaining the life of bacilli. The bacilli are killed in the patient by a product of the dead bodies of their own species, as a man might be killed by a cadaveric alkaloid, and as sur geons are killed by blood poisoning from wounds in flicted while dissecting corpses. The death of a patient is due to necrosis of the tissue. This necrotized tissue soon becomes unfit for propagation of the bacillus. By injection with lymph the same condition of unfitness is imparted to the whole body without ac companying necrosis, unless the dose is too large.
The effective constituent of the lymph can be precipi tated by alcohol, and obtained mixed with other matter as a white or colored powder. In the glycerine extract it is estimated to be present in fractions of one per cent. As diluted, the quantity injected is almost inapprecidble. Its potency upon affected organisms is far beyond that of the most powerful known drugs, when the infinitesimal amounts added, and the intense reaction produced in the system, is considered. As yet no large doses have been tried. The experiments on guinea pigs have proved them to be fatal.

JARRAH WOOD

Considerable interest in the utilization of woods grown in the English colonies was awakened by the Colonial and Indian Exhibition of 1886, and this interest seems to have been steadily increasing since that date. The authorities of the Royal Gardens at Kew have recently issued a report on the jarrah timber (Eucalyptus marginata), of which the following are the salient features
Various species of encalyptus have been recommend ed for use in England for outdoor work where strength and durability are specially desired. The freight charges from Australia, where all the species are native, are heavy, and this is one reason why the wood has not been generally introduced. Another reason is that its intense hardness makes it well nigh impossible to
work in with English tools. The species of eucalyptus to which most attention was drawn at the Colonial and Indian Exhibition as structural woods was jarrah, Eucalyptus marginata, Smith, and the karri, Eucalyptus diversicolor, F. Muell. Much more attention has since been given to the developwent of the jarrah than the
karri. The tree which produces it grows generally to karri. The tree which produces it grows generally to found only in Western Australia, extending over the greater portion of the country from the Moore River to King George's Sound, advancing to Cape Leeuwin,
forming mainly the forests of these tracts. Baron Mueller, in referring to these woods in his "Report on the Forest Resources of W estern A ustralia," says
"The wood has attained a world-wide celebrity When especially selected from hilly localities, cut while the sap is least active, and carefully dried, it proves impervious to the borings of the chelura, teredo, and termites. It is extensively in demand for jetties, piles railway sleepers, fence posts, and all kind of under ground structures, and it is equally important as one o the most durable for the planking and frames of ships t is also much used locally for flooring, rafters, spars, and furniture. It is one of the least inflammable fo building structures, and one of the best in Western Australia for charcoal."
Vessels constructed of jarrah wood have, after 25 ears constant service remained perfectly sound although not coppered. The wood has been tried at three places in the Suez Canal, at Suez, Port Said, and Ismailia, and after having been down seven years the trial samples were taken up in order that a repor might be forwarded to Paris, and the certificate of the resident engineer pronounced the timber to be practi cably indestructible. Jarrah wood has been used for reet pavements in Melbourne, Australia, and in the King's Road and Westminster Road in London.
The eucalyptus is of very rapid growth, and the timber, when green, is very easily felled, split, or sawn up but when dry it becomes very hard. The bark of many of the species abounds in tannin, and has become to some extent an article of commerce. Some of it is said to be twice as strong as oak bark. The bark of some species is remarkable for its hardness; while some throw off their outer bark in longitudinal strips or ribbons, which, hanging down from their stems or branches, present a very singular appearance.

CELEBRATION OF THE BEGINNING OF THE SECOND

 CENTURY OF THE AMERICAN PATENT SYSTEM.The first century of existence of the American paten system has now been completed. In the history of the country there are to be found few more importan epochs or more worthy of being adequately signalized. The inauguration of the patent laws marks the begin ning 'of a career of unprecedented prosperity among nations. It indicates the fostering by the federa power of the most distinctive feature of the national character. The many inventions, now nearly half a willion in number, set forth in the records of the United States Patent Office are a history of mechanical genius and progress of which our country and the world at large should be proud.
It is hard to believe that those who composed and accepted the constitution of the United States, and those who subsequently amended it, could have foreseen the influence which each paragraph would have on the fortunes of so many millions of people. It is definitely certain that the clauses relating to patents could neve have been supposed to embody the foundations of the edifice that has been based upon them. In the first days of the republic there was but little interest in the subject of invention. The people were largely agri cultural in their pursuits, and carried on their work with primitive appliances. Gradually a few patent were taken out, but up to the year 1825, including the first thirty-five years of operation, only 4,183 patent had been issued. The annual number of patents grant ed gradually increased from ten or twenty per annum to 299 in the year 1825. In 1854 the first great increase is observed, when the number rose from 846 for 1853 to 1,759 for 1854. Since that period they have increased until now over 20,000 are issued annually
It is not in the mere granting of letters patent that the fostering arm of the government appears most prominent. Entitled by statute to federal protection by the judiciary, the rights of patentees have formed one of the great subjects of defense by the highest courts of the land. The district and circuit judges are the first appealed to, but from them case after case is brought before the United States Supreme Court at Washington. No subject of personal or even inter national right can find a higher tribunal for adjudica tion of its claims than is afforded to the right of the in ventor.
The highest judges in the land, and those who have obtained the highest reputation as expounders of the law and as interpreters of the intentions of the legislative bodies, have pronounced strongly and unhesitat ingly in favor of the inventor. No class of citizens has been the subject of higher encomium from the bench. Those judges who have been most outspoken in their appreciation of the poorly rewarded efforts of mechanical genius have been those who have attained the highest reputation. Numerous attacks have been made upon the system in Congress, but all have met with the same fate, and have failed at an early stage. To-day the nation at large may be thankful in seeing the statutes undisturbed and intact. It is a guarantee of the future progress of the country. The maintenance of laws so fruitful in good in the past promises well for the future, and is the best insurance of the continuance of inventors' efforts. The more enlightened of our legislators have uniformly opposed on the floor of the

houses of Congress any impairing of the force and

 cope of these statutes.Fortunately we can be said to be entering on this second century under good auspices. The rights of inventors are sustained in the courts and by the houses of Congress. A century of unprecedented work by the inventor now begins. To fittingly celebrate the present epoch, the beginning of the second century of the American patent system, a central executive and advisory committees have been organized at Washington. The personnel of the committees includes a ong list of names prominent in business and official circles. The Patent Office, United States Senate and House of Representatives, the Smithsonian Institution, the National Museum, United States Geological Survey, the United States Coast and Geodetic Survey, and many other federal bureaus and institutions are represented by their chiefs or other officials.
The centennial of the patent system has passed, because the first patent was granted in 1790. The idea of holding the proposed convention has come a year beyond the proper date for a centennial. It is therefore termed a celebration of the beginning of the second century of the American patent system. The inventor and manufacturer of inventions are appealed to by the committee to hold a fitting celebration in the national capital, to commemorate the entry into the second century of mechanical and scientific progress. They are invited to assist in putting on record the nation's appreciation of the labors of those whose work in the realm of invention has done so much to elevate their country.
It is also suggested that the occasion is a fitting one for organizing a National Association of Inventors, a society for mutual benefit, which it is obvious might accrue in many ways to the members. The committee invite all interested to communicate with their secretary, Mr. J. Elfreth Watkins, U. S. National Museum, Washington, D. C.

THE BOOK PATENT BILL

The objectionable copyright bill, of which mention was made in our issue of the 10 th inst., still lingers in the Senate, and the friends of fair and reasonable legislation hope that it may be either further postponed until next session, or amended so as better to meet the wishes of the public.
A copyright law that shall secure to authors, whether native or foreign, a reasonable reward for their labors, without detriment to the public interests, will be generally welcomed. But a law like that contained in the Senate bill is extremely objectionable, and ought never to be enacted. Among the adverse reasons are the following
The bill authorizes the assigns of foreign authors to obtain book patents which may be prolonged for the term of 42 years, thus directly encouraging the formation of great book trusts, of the most odious descrip tion, whereby the prices of almost any class of books may be greatly advanced, and high prices maintained, without the possibility of competition. This is unfair and disastrous to the public interests.

Bills are now before Congress intended to prevent or discourage the formation of corners and trusts in food products; and similar legislation, with equal reason, should be applied to prevent trusts in intellectual products.
The object of our statesmen should be to encourage and promote the printing of books as much as possible, secure reasonable rewards to authors, and protect them from the grasp of greedy publishers. This might be accomplished by securing the benefits of the copyright to the author and his family. Some such provision as the following might answer this purpose :

Sec -. No assignment of a copyright by the author shall be valid, but the copyright shall remain vested solely in the author, or in his wife or children if he be dead; and any persons desiring to publish a copyrighted work may do so on payment to the author of a royalty not exceeding ten per cent on the lowest price at which said work is sold by said publisher."
An amendment of this kind would be likely to prove beneticial to the public. It would not seriously interfere with free printing. It would promote rivalry between publishers in their endeavors to supply the peo ple with the best editions at the lowest prices; this everybody wants; it would also secure to authors, native or foreign, a reasonable reward for their labors; and this also would give general satisfaction.
Another objection to the Senate bill is the provision which prolongs the copyright for 42 years-an unreasonable and unnecessary term. It is a relic of the older days when few books were issued, the price high, and it required years to sell a small édition. In these times of rapid movements in trade and commerce a book term of five years is the equivalent of forty in the old times. Another objection to the Senate bill is the feature which makes it the duty of the Secretary of the Treasury and the Postmaster of the country, to act as the pimps and spies of the assigns of foreign authors. It is made the duty of the above officials to spy out and seize all books going
through the mails that infringe the copyrights of foreigners; if an American citizen coming home from abroad brings with him a purchased book on which he has already paid royalty to the author, it is to be seized on landing, unless he can produce the written consent of the man who owns the copyright for this country, signed by two witnesses. Who the said owner may be, in what part of the world he lives, the inno cent citizen must find out as best he can, or be despoiled of his property.

Tests for New Repeating Guns.
The government proposes to adopt for army use the best improved magazine guns that can be procured. Inventors will be interested in knowing what are the tests to which they must submit. We give the principal points below. The prize to the successful man will be a great one, being nothing less than the entire supply of the war department with this class of weapons. The board, of which Col. A. V. Kautz, Eighth Infan try, is president, has drawn up and distributed its programme of tests for the coming competition be tween the repeating rifles of different makers who may enter the contest.
There are two sets of tests, the first being the pre liminary or trial heats, so to say, for the purpose of sifting out those weapons that fail in important par ticulars, while the finals are for those whose breech action and magazines work effectively in the seven points of excellence required under the initial series of tests.

The first of these seven points is rapidity and ac curacy of firing combined. In this there will be three tests in firing from the shoulder at a target six feet by two, placed a hundred yards away. The first has re gard to the time of firing and number of hits for twenty shots, the second to the number of shots and hits within the space of two minutes, using the gun as a single loader, the third to the number of shots and hits, using it as a single loader.

The second test is that of rapidity at will, and re peats the conditions of the first test, firing, however without aim, and from the hip, at short range and hits or misses do not count, while the two time tests as a single loader and as a magazine gun are only one minute each.
The third is the endurance test, shown by firing 500 continuous rounds with the magazine, examining the breech wechanism at the end of each fifty, and this is to be followed with 100 continuous rounds as a single loader, in both cases, of course, without cleaning.
Then follows the dust test, which is effected in thi way:
With the mechanism closed, the piece to be exposed in the box prepared for that purpose to a blast of fin sand dust for two minutes, removed, surplus sand re moved by blowing thereon and wiping iwith the bare hand, and then fired twenty rounds under the follow ing conditions: a. Magazine empty when exposed Before firing load magazine, fire balance of cartridge as a single loader, then those in the magazine. b Magazine loaded when exposed. Remove and wipe artridges, reload and fire as above.
The fifth test is that of firing with defective car tridges. Three sorts are to be tried. One is to be cross-filed on the head, the second cut at intervals around the rim, and the third cut longitudinally from the rim all the way up. Precautions will be taken to detect any escape of gas in these cases.
Then comes the excessive charge test, in which the un is fired five times as a single loader with a powder charge producing one-third more chamber pressure than that of 1 the Frankfort cartridge. Finally come the test of ease of manipulation.
The rifles that pass these tests will then be subject to four others. The first of these is with defective cartridges and dust combined, " the piece to be dusted five minutes, the mechanism being in the mouth of the blowpipe, and closed, but at full cock, then to be fired five shots, the last two defective, then without clean ing to be dusted with the breech open and fired five shots. The piece to be freed from dust only by pound ing or wiping with the bare hand." Then the rifle is ready to show what it can do under the exposures o campaign, and for this purpose the rust test is de vised. The breech mechanism, receiver, and magazine are cleansed of grease, and the chamber of the barre greased and plugged, and the breech action closed. Then the butt is inserted to the height of the cham ber for ten minutes in a solution of sal ammoniac ex posed fs
But there is still another cause of accidents which must be considered, that of explosions in tubular magazines by jarring. This is to be investigated by giving the rifle a perpendicular jolting for two minutes, first with the magazine charged and then with it half
loaded. Finally comes the test of ease and time of loaded. Finally comes the test of ease and time of
taking apart and putting together the breech and magazine systems.
When all this is done, regular firing tests by three men, at 100 yards, will be made; and by that time surely ought to be possible to tell whether a rifl
which has passed through this series of performances good for anything.
The tests will be made at the Springfield armory with Frankfort arsenal experimental cartridges of Wetteren smokeless powder imported from Europe The rifles competing must all be of $0 \cdot 30$ caliber, which is about the minimum of the most successful European magazine arms, that of the new model Lee being 0.303 . The board includes three infantry officers, Col. A. V The board includes three infantry officers, Col. A. V.
Kantz, Lieut. Col. R. H. Hall, and Capt. H. B. Free Kantz, Lieut. Col. R. H. Hall, and Capt. H. B. Free man; a cavalry officer, Capt. G. S. Anderson ; and two
ordnance officers, Maj. G. W. McKee and Capt. S. E. Blunt.

Inspector-General Breckenridge in his annual report says that "it is so injurious to an army to know that its arms are obsolete and inferior that the demand for something better than we have now is very earnest Our citizens, especially the militia, are not satisfied, knowing they must pay with their lives for any lack of preparation when the next war comes." The British have their Lee repeating rifles, the French their Lebel, the Austrians their Mannlicher, in short nearly all the European nations, great and small, have adopted mag azine guns, and many of them have smokeless powder giving a high initial velocity and a very long range Probably no harm has thus far resulted from the failure to supply our army with a weapon of this character, but this is due to the fortunate continua tion of peace. No one can question that it is now high time to furnish at least the regular army and por tions of the militia with these modern weapons. Pro bably practical trials by the present board will sub stantially show what sort of rifle is to be issued to our troops.

Tunnels and Rapid Transit for New York.
The Hudson River tunnel, to January 1, shows a total progress of 2,720 lineal feet out of 5,500 feet unde the Hudson River. The progress for some months past has been about 7 feet per day of 24 hours. The shield is reported as working well, and the engineers expec an advance of 10 feet per day under a new system o car loading now being putinto operation. By remov ing the intermediate accumulating pump, and bring ing the power of the pump direct to the hydraulic jacks, the pneumatic shield is advanced the width of one of the rings in a few minutes, which before'required from two to four hours. A system of chutes is soon to be tried, one under each opening in the shield front, down which the silt will slide direct into the waiting cars, instead of shoveling it by hand as heretofore.
The rapid transit tunnel proposed by Mr. Greathead the English engineer, for New York, Mr. Simon Stern ells the Engineering News, would cost $\$ 1,000,000$ pe mile for two tunnels with a track in each, or $\$ 2,000,000$ per mile for four tracks in four parallel tunnels. The first estimate covers stations, rolling stock and a gen ral equipment ready for service. An estimate for a our-track road, 10 wiles long, would be $\$ 20,000,000$ as a maximum ; $\$ 40,000,000$ would build two four-track roads, says Mr. Sterne, which would do infinitely more business than the present elevated roads, which are capitalized at $\$ 60,000,000$. The time for construction estimated is $21 / 2$ years from the Battery to the upper nd of Central Park.
A rapid transit scheme for New York, suggested by Mr. David H. King, has colossal proportions, as far a the money required is concerned. Mr. King, however thinks nothing is expensive that will pay 5 per cen n its honded indebtedness. He proposes an arched wasonry viaduct, 50 feet or wore high and 100 feet wide, inside the house line of streets bounding the en tire water front of Manhattan Island. For the centra line he would acquire a strip 75 feet wide through blocks, and on this build a depressed four or six track oad. He would expect to rent the arches for ware houses, and line the depressed road with shops and arcades.

Bronze Casting.-According to R. H. Park, of Florence, a sculptor, the art of casting large statues in ne piece, as practiced by Benvenuto Cellini in castin the Perseus, which has been a lost art, has been redis covered. The process is called cerra perdue; it is a wax process. The clay model is made, and the plaste reproduction is taken from it. From this the matrix is made, and the matrix is furnished with a core. The matrix is coated with wax the thickness of the bronze. The mould is then heated, and the wax runs out of a hole in the bottom, then the bronze is poured in. The results are superior, but the cost is increased by about $\$ 1,000$ per statue.

Necktie Camera.

In the first number of the present volume of this paper we described a photographic necktie, by means of which photographs can be taken without the know ledge of the subject. Since the publication of the arti cle we have learned that Mr. L. Manasse, of 88 Madison Street, Chicago, Ill., has obtained the agency of the invention and is prepared to receive orders for the instrument.

ELECTRICAL SPORTING BULLETINS. A simple method for the automatic bulletining of electrically transwitted intelligence is a problem long sought for by inventors. Instruments have been proposed, and efforts made to apply them commercially, which, in practice, have been found too complicated for practical purposes, too expensive for general

Fig. 1.-ELECTRICAL BASE BALL BULLETIN.
adoption, or, from their fine adjustments and other deficiencies, liable to derange them and error in working. The ideal bulletin or indicator system must be reduced to the simplest electrical and mechanical organization. The electrical formula, so to speak, must be reduced to the lowest terms, approaching, as far as possible, the Morse telegraph. It should be free from complications and delicate adjustments, capable of being relayed and repeated over any length of line within a single circuit. We illustrate a system having these qualities to a marked degree. It is the invention of Mr. S. D. Mott, of Passaic, N. J., who has reduced it to practice in an interesting and popular way by the construction of instruments for the indication of races and national games.
The annexed illustrations show a double bulletin for the popular game of base ball, together with a diagrammatic view of its electrical parts. On the instrument, or in proximity thereto, is a programme of the day's game ; the contestants-in this case Chicago and New York-are printed in columns, say red and blue, here indicated in hatched lines, with corresponding colors indicated upon the dial and through the openings in the dial face.
All the details of the game from beginning to end may be indicated, and every feature of play marked upon the board, so that the progress of the game can be watched by any one miles away from the base ball grounds. The plays in base ball follow one another so rapidly that the movable parts of the diagram will be constantly changing, and the interest will be maintained throughout the entire course of the game.
Upon examination, it will be observed that the following points or main features of the game of base ball are as clearly indicated as the clock indicates the time of day : The contestants, time, place, and date of the game, umpire, battery, position of men on field, the inning being played, the side which has the inning, the num ber of outs in the inning, the man at the bat, the number of strikes called on him, also number of balls called. It shows how the last man went out, whether by fly, fowl, assist, strike, or sacrifice hit, the base run, home run, base on balls, stolen base, or base on error; the table score or the score by innings. A bell taps when any of these changes take place upon the face of the instrument.
The face of the bulletin, as illustrated, shows a game
being played at the Polo Grounds, New York, June 2, 1890, at 3 p. m., between Chicago and New York, to stand 7 to 5 in favor of New York. The first half of the 9 th inning is being played by Chicago. Ryan and Comisky are out; the latter went out on strikes. Second baseman Pfeffer is to the bat, one strike has been called and one ball; O'Neill is on third base, which he has stolen. The numbers or letters showing through the openings in face of dial are printed on the Bristol board disks held by aluminum spiders fast on shafts bearing a specially devised ratchet, which is actuated by a local electro-magnet energized by a local battery. The disks are shown at $a a^{\prime}$, Fig. 2, and the battery. The disks are shown at $a a$, Fig. 2 , and the
actuating battery at B, in the same figure. The transmitting battery, B, gives the impulse by sending re versed through the medium of the transmitting keys, $k_{i} k^{\prime}$, the local battery, B^{\prime}, doing the work in each instrument, or it may actuate several instruments. The transmitter consists of reversing keys, battery, and operator's guide. The receiver consists of the instru ment, A, which controls two separate circuits; one circuit actuates the selector, which selects the local magnet, and the other circuit from the same local bat tery operates the selected local magnet. The key, k ', sends the current ever the line, and k through the ground. The latter circuit includes the magnet, m, which actuates the operator's guide, which indicates to him the magnet selected in the instruments under his control.
Fig. 2 shows the contact arms of the selector in cir cuit with a synchronizing magnet, which, together with all corresponding magnets through the system, is released and progresses one step by a single positive impulse sent over the line
The diagram is deemed sufficiently clear to need no detailed description.
The problem, simply stated, is to enable the operato to select any one magnet out of any reasonable num ber by a positive or negativeimpulse sent over the line and when so selected to cause that magnet to operate by a single reversal.
An important feature of this invention is the nove form of relay or repeater, Fig. 3, devised by Mr. Mott, for this class of work. The method of synchronizing the instruments one with another, as well as the local magnets throughout the system, brings them, at will of the operator, back to the zero or neutral point. The instrument shown in Fig. 3 will operate two separate and independent locals or repeating or relay reversals of polarity.

THE SCIENCE OF SMUGGLING.

With what skill adulterators sometimes utilize the resources of chemistry or physics in order to imitate natural substances or to sophisticate manufactured products is well known. The genius of smugglers knows no less limit. We have recently been apprised of a fact which appears to us to cap the climax. We regret it for the sake of our neighbors across the Rhine, but it is a question of a German fraud.

The foilowing is the fact- as communicated to us by Mr. E. Demenge, engineer at Longwy, along with photograph taken upon the spot as a proof.

A DRESSED STONE SEIZED AND BROKEN AT THE LONGWY CUSTOM HOUSE AND FOUND TO CONTAIN A CAN OF ALCOHOL

On the 27th of last September the Longwy custom house seized a German car that had started from the Luxemburg station, carrying so-called dressed stone. From one of the blocks there was oozing a liquid that was recognized by the inspector as 96 degree alcohol. The car was put on the wharf and the stone was taken off and broken, when it was observed that the interior,
which was hollow, held a zinc box of 1 m . by 0.7 m . by 0.4 m ., containing 297 liters of alcohol. The other blocks were found in the same condition. The screw cap was carefully concealed under a layer of cement uniformly marked with the letter D. The numbers suc ceeded each other, and, upon each stone. there was found another mark indicating the contents in liters.

Fig. 2.-DIAGRAM OF MECHANISM AND ELECTRICAL CON. NECTIONS OF THE BASE BALL BULLETIN.

Fig. 3.-PLAN VIEW OF DOUBLE RELAY.
The quantity of alcohol carried by this single car was ,465 liters. If we reflect that 100 liters of alcohol pay 0 francs customs duty and 156% francs excise tax, we find the sum of the taxes that were sought to be evaded o be 4,600 francs for a single shipment. Moreover these blocks were not making their first trip, but had been used many times before.
The photograph that we reproduce herewith represents one of these stones. Here we see the box with its screw cap in the upper corner to the right, and the ieces of the stone which surrounded the box and which was admirably dressed. The controller of ustoms is leaning upon the box, while the officer who captured the prize seems to be very proud, and justly so, of the victory gained. The efforts made to cheat the custom house are incessant. The high import duty upon alcohol especially exercises the sagacity of smugglers. According to Mr. Maxime Ducamp, who has studied these questions in his book on Paris, "Cheating is done by means of painted tin plate cabs which are merely large tanks and cheating is done by ship ping to Paris plates in piles of four dozen: The two dozen of the center conceal a can filled with alcohol; cheating is done with everything and for everything." - La Nature.

Action of Fog on Plants.
At a recent meeting of ths Royal Botanic Society, the secretary said the action of fogs on plants was most felt by those tropical plants in the society's houses of which the natural habitat was one exposed to sunshine Plants posed to sunshine. Plants growing in forests or under tree shade did not so directly
feel the want of light ; but feel the want of light ; but
then, again, a London or town fognot onlyshaded the plants, but contained smoke, sulphur, and other deleterious agents, which were, perhaps, as deadly to vegetable vitality as absence of light. Soft, tenderleaved plants, and aquatics, such as the Victoria regia, suffered more from fog than any class of plants he knew.

To TAR Iron Pipes.-Coat the outside with coal tar and build a light fire of shavings in the inside. This makes the coating solid. Too much beat melts the tar. so that it runs off the pipe.

SIMPLE LAMP SOCKET AND RHEOSTAT.

 by geo. m. hopinins.In the annexed engravings, Fig. 1 represents a simple and efficient electric lamp socket, designed for use in experimental work and in places where an ornamental socket is not required. It consists simply of a small wooden cylinder in.which is inserted the end of a brass wire, the projecting portion of which is bent to form a helical coil which fits the thread of the base of an Edison incandescent lamp. In the wooden cylinder is inserted another brass wire of the same size, which is annealed, flattened, and bent over the end of the block as shown, to form the second connection of the lawp.
To the ends of the wires pro jecting below the wooden cylinder are soldered the ends of the flexible cord which conveys the current to the lamp. By screwing the lamp down in the socket the button at the bottom is brought into contact with the flattened wire and the circuit is completed. By unscrewing the lamp, the circuit is broken.
A convenient rheostat for experimental purposes is shown in Fig. 2. A number of coiled wire sockets are attached to a boar and connected with a wire lead ing to one of the binding post at the end of the board. A cor- Fig. 1 -Simple lamp responding number of flat cop-
 per strips are secured to the board and soldered to a wire leading to the other binding post. Any one or all of the lamps may be screwed down in their sockets so as to throw them into the circuit. Lamps of any resistance may be used, so that the rheostat can be adapted to the current to be controlled.
With one lamp in the circuit, the resistance thrown
riveter, using a pressure of $1,500 \mathrm{lb}$. per square inch on the flange, which gives a stress of about 90 tons on the rivet. The stay tubes are screwed into both tube plates and expanded, the ends in the combustion chamber being beaded over.

Warning to Dog Owners.

Possessors of canine pets will do well to take warn ing from certain recently reported observations of Pro fessor Nothnagel. These go to prove that the develop ment of cysticerci in the human subject is in sowe case to be attributed to contact with the saliva of lapdogs which have been allowed to lick the faces and mouths of their owners. The explanation is a feasible one and adds a noteworthy contribution to our knowledge of morbid etiology. The tænia echinococcus, as is wel known, inhabits the small intestine of the dog, and it is highly probable that the ova occasionally find their way into the animal's mouth ; for example, in vomiting There are various æsthetic reasons why the kiss of even the most cleanly and most friendly pug or terrier should be dispensed with. We have now, thanks to the Viennese observer, a still stronger argument to urge against this practice. It may, indeed, like the others, fail to daunt the too-devoted master or mistress, but we cannot do less than avail ourselves of this op portunity to forestall if possible, by a timely warning, the sharper teaching of experience.-Lancet.

THE STEAMSHIP NORTH WIND-THE BUSINESS BOAT OF THE LAKES
The North Wind is one of a fleet of six steel steam ships, owned by the Northern Steamship Company the lake line of the Great Northern Railway Company between the head of Lake Superior and seaboard con nections at Buffalo. As this fleet carried between the opening and close of navigation 500,000 tons of freight including $1,300,000$ barrels of floor, they may well be classed among the money makers, and the immens tonnage credited to them shows the extent of the lak trade outside of the millions of tons in the coal and or business. But they are unable to meet requirement with the railway, and preparation are being made for increasing the fleet in the near future by an addition of four steamers, two of which will, in all probability, be passenger steamers, elegantly equipped and so arranged that they can be used for freight traffic when the passenger season is over, carrying 3,500 tons of freight through the Sault canal.
The North Wind, alike to the other boats of this fleet-they ar duplicates in every respect and were built by the Globe Iron W orks Company-cost her owners \$223,000 She is 292 feet keel, 312 feet over all 40 feet beam and $241 / 2$ feet moulded depth. Her triple expansion engines are 24,38 and 61 by 42 , and she has two boilers $14 \times 121 / 2$ feet. She has four gangways on either side and six hatches for the handling of freight A line shaft with two drums to each hatch enables the boat to handle ninety-six barrels of flour at one time, as each of the drums handles eight barrels. Th

LONG DISTANCE TELEPHONY.

The difference between the ordinary and the long distance telephone systems lies not so much in the instruments used for transmitting and receiving speech as in the lines. The fundamental thing in the long distance telephone is a metallic circuit, i. e., a line in which the current returns through a wire instead of the ground. Another important difference is that the wire used in the construction of the line is of very high conductivity. By the employment of the metallic cir uit the effects of induction are nil; the induction in both wires being equal and in opposite directions in the receiving instrument, exactly neutralize each other Where the long dis tance line is in a cable containing other lines, the two wire are usually twisted o subject them both to exactly the same inductive influence These are import ant points, and it is of course necessary toemploy an efficient transmitter. The one commonly used on ong distance tele phone circuits is known as the "Hun ning transmitter,' hown in section in nnexed engraving, for which we are indebted t Prescott's "Electric Telephone." The diaphragm cell is made of insulating material, and arranged to clamp diaphragin, D, of thin platinum foil or ferrotype plate, the diaphragin being held in place in the cell by a ring, A. In the cell is arranged a back plate, B, of brass, the space intervening between the back plate, B and the diaphragm, D, being filled with a body, G, of oose, finely divided conducting material, preferably inely granulated coke, sifted so as to remove all fine dust. Oven-made engine coke is recommended for this purpose. The binding screws, C, C, are placed in con nection with the diaphragm, D, and back plate, B.
This transmitter may be used in a circuit with a bat tery and Bell receiver, or the transmitter and battery may be arranged in circuit with the primary wire of an induction coil, the secondary wire being connected with the line wires extending to a distant point, and there provided with a Bell receiver. This transmitte has been tested by Prof. Cross along with the Edison and Blake transmitters, with the following results The average strength of the current flowing with the Edison transmitter was 0.100 milliampere; with the Blake transwitter, 0.138 milliampere; and with the Hunning transmitter, 0.560 milliampere.

Fat in Milk.

The Dairy Association of Kiel offers a prize of $£ 150$ (3000 marks), for an improved method for determining the fatty matter in new milk, skimmed milk, and butter milk, without the use of a chemical balance as ac curately as by the gravimetric process. It must be free from danger, cheap, and so simple in execution as to
in will of course be that of the lamp; with two lamps of the same resistance, half that amount; with three lamps, one-third, and so on, i. e., each lamp thrown in in parallel will increase the conductivity and diminish the resistance of the rheostat.
It is not essential that all of the lamps should be of the same resistance. When lamps of different resist ances are used, their joint conductivity is ascertained by adding the reciprocals of their resistances together. The reciprocal of this equals the joint resistance in ohms For example take three lamps or combinations of lamp having resistances of 50,150 , and 200 ohms respectively. The reciprocals of these numbers are 1-50, 1-150, and $1-200$, the sum of which is $19-600$. The reciprocal of this is $600-19$; joint resistance of the three lamps in parallel will therefore be 31.6 ohms. Where resistance greater than that of one lamp is required, two or more lamps may be connected in series.

Boiler Plates.

The methods employed by Messrs. Cramp in the building of large modern boilers, with thick plates for high pressures, are thus described
The plates are, in the first place, pickled in a wooden bath containing a 5 per cent solution of sulphuric or hydrochloric acid. After remaining in the bath for about six hours, they are removed and thoroughly scrubbed with hickory brooms, while a strong stream of fresh water is played upon them. They are then mmersed in a bath of lime water to neutralize any emaining acid, and again washed with clean water All holes are drilled, and the edges of the plates are planed and beveled for calking. The shell plating is bent cold to the proper curvature in the rolls. The flanging is done by a Tweddle hydraulic flanger, the plate being heated to a bright cherry-red. A length of about 8 ft . can be flanged at each heat. Furnace mouth plates are flanged in cast iron dies at a single heat.
After the flanging of tube plates, etc., is completed, they are reheated, and the plates are straightened on cast iron surface plate, and finally they are annealed by cooling in the open air from a cherry-red heat
The riveting is performed by a Tweddle hydraul

NEW LAKE STEAMSHIP THE NORTH WIND.
boats are capable of carrying about 2,500 net tons on 15 feet of water through the Sault canal. The boats are thoroughly equipped in every way, the Northern Wave being fitted with an Edison electric light plant, nd the entire fleet have Providence windlasses. Electric plants will be placed on all of the other boats of the line during the winter.-Marine Review.
allow of comparative determinations of the fat in the milk of individual cows; and it must be distinctly preferable to all the methods now in use. Applications marked with a motto and accompanied with a sealed envelope containing the name and address of the sender, and with the apparatus required, may be addressed to Herr C. Boysen, Kiel, up to October 1, 1891.

New York Tunnel Schemes.
For over twenty years New York City has been the center of tunnel schemes. The first attempt of any importance and upon which any real work was done was the underground road starting at the corner of Broadway and Warren Street, and intended to run under Broadway. This was initiated by and all the work done was after plans designed by A. E. Beach, editor of the Scientific American. It was in this work that the Scientific American. It was in this work that
the first use of a shield propelled by hydraulic jacks the first use of a shield propelled by hydraulic jacks
was practically tested. The shields which have since was practically tested. The shields which have since
been used, notably the one employed under the St. Clair River in the tunnel recently completed, and in the Hudson River tunnel, work on which is now progressing favorably, are modifications of this idea, the principle of construction and the method of operation remaining unchanged. It is fair to assume that in this project Mr. Beach was in advance of the times, since although in the construction of 200 or 300 feet of tunnel he demonstrated the feasibility of his plans, the nel he demonstrated the feasibility of his plans, the
city was not then in such a condition as regarded the city was not then in such a condition as regarded the
uptown distribution of its inhabitants to look favorably upon a scheme of this character. Afterward the completion of the elevated roads was thought to fully solve the problem of transportation of passengers up and down tuwn. Following this therehave been many plans for underground railroads in New York, particularly one which proposed to use the entire surface of Broadway, providing for quick and siow traffic by means of four tracks. Numerous other plans have been brought forward, but none has as yet advanced further than paper.

THE HUDSON RIVER TUNNEL.

The next undertaking which advanced further than the drawings was brought foward by Col. D. C. Haskin to tunnel the Hudson River. Work was begun some thirteen years ago, and since then has been carried forward more or less erratically, according to the financial condition of the company. Some months since, English engineers and capitalists, at whose head were Sir Benjamin Baker and Sir John Fowler, took hold of the undertaking, and since their advent the work has been progressing most satisfactorily. The first work here done was of the utmost importance, since it introduced and proved the practicability of running a subaqueous horizontal tunnel through soft material by means of compressed air. The most important fact demonstrated was that the sof tilt forming the bed of the Hudson River had sufficient tenacity in itself to act as a wall dividing the air from the
water. The
The first work done has been so frequently described that it is unnecessary to enter into details. A shaft was first sunk on the New Jersey shore to the depth of about 56 feet below high tide, and from the center of the river wall of this shaft an opening was made, and a temporary tunnel started. The temporary tunnel at the shaft terminated in an air lock similar to those now employed in the bulkheads, and gradually flared in steps so that its longitudinal section was cone shaped until its outer diameter was 22 feet. From the end of the cone or temporary tunnel the two main brick tunnels were begun. Afterward this work was removed and two tunnels continued to the shaft.
In carrying forward the work the heading was
formed into steps or terraces in which the men stood, formed into steps or terraces in which the men stood,
and the excavation was carried on at all points of the face. As fast as the heading advanced, iron plates, onefourth inch thick and bent to correspond with the curve of the tunnel and flanged upon the four edges, were inserted to form rings, and as soon as a section of 8 or 10 feet had been lined, it was bricked. In this work no attempt whatever was made to protect the work no attempt whatever was made to protect the
silt heading by means of bracing. It was found, as silt heading by means of bracing. It was found, as
stated above, to be sufficiently tenacious and homogeneous to prevent the escape of air or the entrance of water. The air pressure was kept about equal to the hydrostatic head, and of course was increased as the tunnel advanced under the river. It was a most difficult matter to keep the tunnel to grade, owing to the fact that it was impossible to exactly calculate the amount of settlement that would take place in a section after the masonry work had been completed, slight
changes in the density of the silt influencing the changes in the density of the silt influencing the
amount of settlement, and as this could not be calcuamount of settlement, and as this could not be calcu-
lated with any degree of certainty, it was impossible to provide for it.
In order, therefore, to keep the tunnel to grade, and as a secondary consideration to ascertain the character of the material in advance of the heading, the so-called pilot tunnel was introduced by John F. Anderson. This pilot tunnel was 6 feet in diameter, and made up of interchangeable plates, flanged so that they could be bolted together, and formed a central hub which extended a few feet into the silt in advance of the face,
and also a few feet into the completed masonry of the and also a few feet into the completed masonry of the
tunnel. Being supported rigidly at both ends, the centunnel. Being supported rigidly at both ends, the cen
tral portion of this pilot acted as a foundation upon which struts to support the plates could be placed. It was found that this pilot answered every purpose, and that its use permitted the keeping of the tunnel to the proper line.

the air locks.

Placed at intervals along the tunnel, as the work was
completed, were brick bulkheads in which completed, were brick bulkheads, in which about a third from the top were inserted air locks 15 feet long, 6 feet in diameter, and provided at each end with a 3 by 4 foot door, of course opening toward the heading. The use of these air locks has been continued until the present time. They are placed about 300 feet apart, present time. They are placed about advanced as the
the rear one being taken away and adver work advanced. There are now in use three locks, the further one being over 2,000 feet from shore. Any one entering the tunnel passes into the air lock, when the rear door is closed. Air is then admitted, and after the pressure in the lock has become equal to that on the heading side of the lock, the inside door is opened and the visitor passes into the first section of the tunnel, being then under a pressure of about 15 pounds to the square inch. The next lock, at about 1,800 feet from the shaft, is then entered and a slightly increased pressure found in the second section of the work. The third lock is then passed through, and the visitor finds himself in the heading section under a pressure of
about 35 pounds to the inch. about 35 pounds to the inch.

the shield.

If a tube, say 4 inches in diameter and 1 foot long, be wade of pasteboard and one end closed with a paste board cap and the other end closed with a sheet of tissue paper, it is evident that this cylinder can be submerged in water to any depth, provided a pressure be maintained in the interior equal to the hydrostatic head. In other wordz, the tissue paper diaphragm, as head. In other worde, the tissue paper diaphragm, as
long as an equilibrium is maintained between the air and water pressure, will serve every purpose of a dividing or separating wall equally as well as the stronger pasteboard diaphragm at the other end. It was this principle which was utilized in the first work of the tunnel. If, now, in place of the tissue paper diaphragm a cap be substituted which is free to move longitudinally over the outside end of the cylinder, and which is about 2 inches in length, a good representation is obtained of the steel shield which is now used in advancing the head. Presuming the joint between this pasteboard cap and the pasteboard cylinder to be airtight, it is evident that the cap can be moved forward or away from the cylinder a short distance without inter fering with its duties as a cap.
The steel shield in the tunnel is 20 feet in diameter, 10 provided divided in the center by a steel diaphragm, shield corrith nine openings about 2 feet square. This der. It is pushed forward by sixteen 20 -ton hydraulic jacks, the cylinders of which are secured in the rim of the shield and the plungers of which find a bearing against the completed work of the tunnel. As the shield is forced forward by the jacks the silt squeezes through each of the nine openings, falls to the bottom of the excavation, is loaded upon a car, run back a short distance, ele vated about 12 feet by means of a hydraulic elevator, and then run on tracks up the tunnel, through the locks to the shaft, when it is raised by a ing ground.

inserting the plates.

After a shield has advanced a space sufficient to permit of the erection of a ring of plates it is stopped and a ring inserted. The ring consists of heavy cast iron flanged plates, 20 inches wide, and varying in weight from 1,100 to 75 pounds, the key plate being the smallest. These plates are handled by means of an erector carried upon a bridge beam traveling upon tracks secured to brackets at each side of the tunnel, so that the beam and its erector arm can be moved forward and back as the occasion may demand. The erector
arm is mounted upon a shaft placed at the center of arm is mounted upon a shaft placed at the center of
the bridge, and also has, by means of hydraulic cylinders, a motion at right angles to the shaft. It is, there fore, evident that the grasping end of the erector arm
can be brought down and made to take hold of the plate lying on the bottom ; can then be raised, turned on its shaft so as to bring the plate in position, and to hold it until it has been securely bolted to the ring of plates already in place. It will be seen that this method varies materially from that formerly proposed. In the fi.st place, thin plates were used, which were afterward lined with masonry. In this caseheavy cast iron flanged plates are used, which, it is expected, will
not be lined except at the bottom, and for a certain distance, probably half way up the sides, the strength of the cast iron plates being calculated to be sufficient to stand the pressure which will come upon them when satisfactorily, and the heading of the north tunnel is now about 2,400 feet from the shaft on the New Jersey side, or nearly half way across, the whole distance be ing 5,600 feet. The south tunnel, which of course runs parallel with the northern tunnel, and a few feet from it is finished for a distance of about 600 feet. At the New York end, instead of sinking a shaft a caisson was sunk, and from the river side of this the two tunnels started No work has as yet been done on the New York side since the new managewent took hold, although a shield is now ready to be put in place, and the work is in such
condition that it can be resumed at any time. The south tunnel here has been extended about 20 feet and the north tunnel about 180 feet.

projected east river tunnel.

Another tunnel scheme which, it seems probable, will be carried through is that by the New York and Long Island Railroad Company, who intend building a tunnel under the East River from Long Island City to New York. All legal difficulties have been over come and nothing now remains to interfere with the project. The terminus of the tunnel on this side is to be at West Forty-second Street and Tenth Avenue, and at Thompson Avenue, near Dutch Kills, in Long Island City. At the first named point there will be a Island City. At the first named point there will be a
connection with the freight tracks of the New York Central, and at the other point with the Long Island Railroad. Other branches will probably extend to other points in the city. It is believed, because of the results of borings made along the line of the tunnel, that all the work can be prosecuted in solid rock, and that at all points sufficient head room can be found, so as to do away with the requirement of any masonry work. The length of the tunnel under any masonry work. The length of the tunnel under
the river will be nearly half a mile. It is expected the river will be nearly half a mile. It is expected
that this tunnel, when completed, will do away with the trouble now experienced in crossing the Eas River, and that other advantages may be looked for ward to if the shipping interest at Montauk, the upper end of Long Island, ever develops.-Iron Age.

Death of Dr. Henry Schliemann

Dr. Schliemann was the son of a Lutheran minister. He was born in Aukershagen, Mecklenburg, in 1822. His father was a great student of Greek, and his son early received a strong bent toward the same line of study, and it is said that when a mere boy he deter mined to discover Troy. After five years of exhausting and distasteful employment with a grocer, which he was forced to engage in from poverty, he got a position as correspondent and bookkeeper with an Amsterdam mercantile house. In 1846 the firm sent him to St. Petersburg as their agent. His business prospered, and he eventually acquired a fortune. He traveled a great deal in the next few years, and learned wany modern languages. His knowledge of ancient and modern Greek was thorough.
His archæological work now began. He was the possessor of a fortune. He devoted the rest of his life to investigations among the ruins of Greece and Asia Minor. His first important work on archæology was published in 1869 in French, and was entitled "Ithaque, le Péloponnéss, Troie; Recherche Archæologique.' Five years later, in 1874, appeared his "Troy and its Remains," giving the results of his excavations on the site of aucient Troy and the Trojan Plain. He ob tained permission in this year from the Greek author ities to prosecute his researches at Mycenæ. Here he made the singularly interesting discovery of five ancient tombs, which he identified as the ones pointed out to Pausanias, the ancient historian of Greece, as those of Agamemnon and his companions, buried by Ægisthus. When it is remembered that these tombs were subjects of local tradition in the days of Pausanias, an idea can be acquired of the insight into the past given by Dr. Schliemann's researches. His discoveries of objects of art in the precious metals were very umerous. A collection of them was exhibited in London in 1877 at the South Kensington museum. He has sold many collections to the different art museums of the world.
His home life was influenced by his classic tastes. Greek was a Grecian, the daughter of an Athenian. servants receiving Greek names. His two children were named respectively Agamemnon and Andromache. In the course of his wanderings he found himself in California when that State was admitted to the Union. He became himself a United States citizen.
Only last year he was commencing new explorations in Asia Minor, under a firman of the Turkish govern-
ment. His published works were extensive and numerous. His income enabled him to prosecute a work that gave him avorld-wide fame.
His relations with America were many. It was in the early days of California that he there laid the foundations of his fortune, which he increased during the Crimean war while established in St. Petersburg His death was announced on December 27. It occurred at Naples, Italy. Few lives have been more fruitful of usefulness.

A crack in a piece of metal is prevented from extending further by the well known means of drilling a hole where the rent ends; but when the hole is not bored on just that spot, the crack is apt to continue beyond the hole. To facilitate the search for the exact point, Revue Industrielle recommends moistening the cracked surface with petroleum, then wiping it, and immediately rubbing it with chalk. The oil that has penetrated into the crack exudes and thus indicates with precision where the crack stops.

Sorrespondence.

Findlay Natural Gas.
 To the Editor of the Scientific American

In your paper of January 3 you quote from Prof. Orton's geological report that the gas in the northwestern Ohio gas fields is "rapidly and surely being exhausted."
I am a citizen of Findlay, which is about central in the field, and know that the population of the city is constantly increasing every year, and that the gas service was never' 'etter or more satisfactory. It is just now shut off frow several factories, not for a lack of gas, but because chese factories would not pay an increase in the gas rates which the gas trustees have put upon them. It is not true that the gas is lavishly wasted ; but, on the other hand, it is economically and carefully used.
F. M. Case.

Findlay, January 5, 1891.

Bacillus Tuberculosis.

To the Editor of the Scientific American
I notice in the Scientific Anerican of January 3 , 1891, an error which cannot fail to be misleading. In 1891, an error which cannot fail to be misleading. In
the illustration, on page 7 , of bacillus of tuberculosis the first picture is given as " magnified 900 times," and the second as "magnified 2,000 times." The fact is the first illustration shows the microbe as magnified 900 diameters, and the second 2,000 diameters; the first being enlarged 810,000 times, and the second $4,000,000$ times. The only way to demonstrate and identify these microbes is by certain processes of staining, by which the microbe will take a different stain from the surrounding tissue. These stains are produced by preparations of aniline colors, of which several methods are known to bacteriologists. It is need less to remark that these bacteria require the highest powers of the microscope for their exhibition. L. A. Willson. Cleveland, o.

Flow of Sap.

To the Editor of the Scientific American:
I have just noticed in your issue of November 1, 1890 in an article headed "Naturai History Notes," a theory that the ascent of the sap in trees is produced by the " vacuum made by the transpiration of the leaves." It occurs to me that one fact has not been taken into consideration in putting forth this theory. If a tree has been cut during the winter, the next spring the sap will flow from the top of the stump as freely as though the tree was still standing. In logs, too, if they have not lain too much in the sun, there will be quite a flowage at the regular time in the spring. This is not a leakage, because the flowage occurs the same, even when the log lies with the small end elevated. There are several other illustrations of the movement of the sap when there are no leaves to operate

Geo. W. Perry, State Geologist.
Rutland, Vt., Jan. 3, 1891.

Engines of the Steamship Mackinaw.

To the Editor of the Scientific American:
In the Scientific American of December 27, I notice a description of the steamship Mackinaw, built by F. W. Wheeler \& Co., of West Bay City, Mich. West Bay City is about three miles above the mouth of the Saginaw River, and is, therefore, on Lake Huron, not Lake Michigan, as your article states.
My purpose, however, is to give you some further information concerning the engimes, which are of my own design. 'The cylinders are $\frac{21^{\prime \prime}, 34^{\prime \prime} \text {, and } 56^{\prime \prime}}{42^{\prime \prime}} \mathbf{H}$
of the piston type, actuated by a Joy gear ; I. P. and L. P. valves being flat and driven by Stephenson double bar link gear. The condenser shell is of cast iron, and supports the rear frames which carry the crosshead slides. Over 2,000 square feet of cooling surface is af forded by $988 \frac{3}{4}$ inch brass tubes, 11 feet 3 inches in length. The circulating water is supplied by a No. 10 Bald winsville centrifugal pump driven by an independ ent engine. The condensed steam is delivered by the air pump to a heater and filter, from which it is taken by the feed pumps and returned to the boilers.

Wm. L. Mahon, m.E.
Duluth, Minn., Dec. 29, 1890.

Ingrowing Nails.

To the Editor of the Scientific American
It is a very remarkable fact that in all the communi cations that I have read in relation to ingrowing nails, no one has explained why they do grow in.
Some years ago I was much troubled with the big toe nail growing down into the flesh on the side, and had it "lifted" and "stuffed or packed," all to no purpose. At last I came to ask myself, " What makes this nail grow down at this side?" and give the matter what might be called scientific consideration and observation, and I found that the top surface of the nail was thick and hard. I withdrew the packing and went to work scraping, reducing the thickness of the nail so much that, when pressed on, it would indicate that it was quite thin.

Relief was instantaneous, the pressure on the cutting dge of the nail being relieved. In about a week it came up flat or nearly so.
The fact is this-with ingrowing nail, the surface becomes horny, dry, dead-like, and has no grit in it.
A member of my family had a very bad ingrowing toe nail, unable to wear a shoe. The remedy I described was tried, and in ten days was well and wearing her shoe.
The nail must be scraped thin with a sharp knife from the root to the end, and relief will follow sure. Philadelphia, Pa.
A. Roeloss.

Soldering Aluminum.

A late issue of Neueste Erfindungen und Erfahrungen says: The soldering of aluminum is a matter of so great importance that it cannot fail to be of interest
to many to know that the Aluminum Company, of to many to know that the Aluminum Company, of
Neuhausen, Switzerland, is now offering to the trade a specially prepared aluminum, in sheets, which can readily be soldered with an ordinary soldering iron and tin solder. The line of juncture is prepared by apand tying a mixture of resin, tallow, and neutral chloride
ply plying a mixture of resin, tallow, and neutral chloride
of zinc. Scraping or otherwise cleaning the place to of zinc. Scraping or otherwise cleaning the place to
be soldered is to be avoided, although alcohol or turpentine may be used when cleaning is absolutely necessary.
Sheet aluminum may readily be soldered if pre viously given a light plating with copper. If alumi num so prepared is suddenly heated, there is considerable of the copper stripping off and rendering the joint unreliable. Nevertheless in wany cases the process is very satisfactory, and particularly so when the copper plated edges are allowed to lap over each other.
Aluminum bronze containing as much as 5 per cent of aluminum may be readily soft-soldered with ordinary tin solder. Increasing percentages of aluminum render the soldering more and more difficult, until with 10 per cent of aluminum it becomes impossible. The method above referred to, of slightly plating with copper, will be found a help in such cases. When no tank is convenient for dipping the edges into the plattank solution, very fair results may be obtained by using ing solution, very fair results may be obtained by using
a number of pieces of blotting paper well soaked with a number of pieces of blotting paper well soaked with
solution of cupric sulphate. The paper is placed in contact with the article to be plated and with a piece of copper. The battery is then attached by wires with the positive pole to the copper and the negative pole to
the casting or other object to be plated. A very short the casting or other object to be plated. A very shor soldering purposes. If for any reason a battery is not attainable for plating, the bronze may be prepared with a mixture of resin, tallow, neutral chloride of with a mixture of resin, ta
zinc and corrosive sublimate
Hard-soldering offers no difficulties. A good solder for this purpose is made by smelting together 52 parts copper, 46 parts zinc and 2 parts tin. Borax is used as the flux, and the process is the usual one. Tests of joints made with this solder were made at Neuhau sen, and showed that aluminum bronze plates but ted together gave a resistance to pulling strain of 26 to 28 kg . per square millimeter; lapped joints (5 mm . lap) required 39 kg . per square willimeter to part them.
Tubes made from sheets with this solder can be drawn down on a mandrel.
Aluminum bronze castings can be united by the pro ess known to foundrymen as sweating or burning The parts to be joined are placed in a sand mould and an excess of hot metal flowed over the joint. When
carefully done the joint cannot be seen, and shows as great strength as the body of the casting. Thin cylinders may be made in this way by bending sheets and sweating their edges together.

Jastrow on a Writing Test.

In a paper entitled "A Study in Mental Statistics," Prof. Jastrow describes the results of a mental test in which fifty students of a class in psychology, at the
University of Wisconsin (twenty-five men and twentyUniversity of Wisconsin (twenty-five men and twentyfive wowen), took part. The task consisted in writthus collected was utilized to shed light upon (1) the similarity of our ideas and habits of thought, (2) the links that bind our ideas together, and (3) the time re quired for these processes.

1. The general tendency to regard one's mental habits and products as singular and original, and conse quently to look upon every evidence of similarity of thought as a strange coincidence, receives a set-back from the result of the present and similar studies, for it is found that these fifty persons, independently writing one hundred words from the many thousand with which they are acquainted. all in all, select from th are different. Again, 1,266 words occur but once in the aggregate lists, and omitting these we find that about 3,000 of the words are formed by the repetition of only
58 words. Passing to an analysis of this "mental 58 words. Passing to an analysis of this "mental community," it becomes clear that it is greatest at the beginning of the list, and becomes less toward the end;
i. e., the habit is to write first the most common, and i.e., the habit is to write first the most common, an
when these are exhausted, the more unusual words. A very interesting point is the comparison of men and
women in their tendency to repeat one another's thoughts. The evidence is unwistakable that the lists of words drawn up by the women are much more like one another than are those written by the men. The women use only 1,123 different words, the men 1,376 . The women write but 520 words that occur but once in the lists, the men write 746 such words.
2. A study of the processes involved in these lists bases itself upon a careful analysis of the ideas therein represented. The relative sizes of such classes, in a measure, indicate the prominence of different classes of objects in the minds of the writers. It may be interesting to mention that the five best represented classes (of the twenty-five adopted in the paper) are "Names of Animals," "Articles of Dress," "Proper Names," "Actions," " Implements and Utensils." The sexes present characteristic preferences for the various classes. The women contribute most largely to "Articles of Dress," writing 224 such words, while the men write but 129. They show an equal favoritism for "Articles of Food," writing 179 such words to but 53 for the men. The men, on the other hand, show fond ness for "Implements and Utensils," " Names of Animals," " Professions," "Abstract Terms," etc.
Of the various links by which the one word suggests its successor, it may suffice to indicate as prominent types, (a) association by sound, in which words ar rhymed, or begin with the same letter; (b) by belonging to the same class, as when a series of animals or articles of dress is formed ; and (c) by more general but not briefly describable relations. One may combine the two inquiries (1) and (2) to ask how often the same word is associated with the same word in different lists. If we take the twenty words wost frequently occurring, we find over 500 mentions; and if we examine in each case the word preceding the given word, we find it to be the same in 111 cases, and the succeeding word the same in 145 cases-certainly a remarkable result. Here again, the women ar^found to repeat one another wore than the men.
3. Regarding the tone occupied in the process, the result reached is ilat (roughly speaking) it takes, on the average, 308 seconds to write such a list of 100 words : that 210 seconds are consumed in the mere act of writing, 114 seconds in thinking of what to write and 16 seconds in which both may be done.
These results are offered, in addition to whatever value they may possess, as an illustration of how, by simple experimental methods, we may become mor intimate with the processes that we constantly but unconsciously perform.-American Naturalist.

Experiments with Explosives.

Lieutenant Willoughby Wialke, instructor in charge of the United States Artillery School laboratory, has recutly made a series of experiments with the object of determining the strength of various explosives. The Quinan pressure gauge used consisted of a heavy block of wood, upon which was bolted a cast irou block. In this block four wrought iron guides were twisted around the circumference of a circle 4 inches in diame ter and were connected by a ring at their outer ends; a steel plate was let into the block and was flush with its upper surface. The piston, which rested on a plug of lead, was of tempered steel 4 inches in diameter and inches long, and moved freely between the guides. It weighed $121 / 2$ pounds. On the top of this piston was a parabolic cavity to hold the charge of explosive. The shot, made of tempered steel, was 4 inches in diameter and 10 inches long, weighing $41 / 2$ pounds. It was bored down its center to receive a capped fuse. To operate the instrument a plug or cylinder of lead was placed on the steel plate and the piston lowered gently down on it. The charge of explosive being placed in the cavity, the shot was gently lowered upon the piston On firing the charge the shot is thrown out and the piston forced down on the lead plug, which it compresses, the amount of compression being a measure o the strength of the explosive. Twenty-seven explosives in all being tried, the results were compared with those obtained with a sample of nitro-gly cerine, the strength of which was reckoned as 100 . The results placed ex plosive gelatine and hellhoffite first with a strength of 106.17. Gun cotton and dynamite had each a strength of over 80 ; emmensite, a new American explosive, one of nearly 78; bellite, one of 65.70 ; and melenite, the famous French explosive, which is not nearly so safe to handie as bellite, had a strength of only 50.82 .

Electrical Copies of the Dead.

According to La Nature, Dr. Variot paints the skin with a concentrated solution of nitrate of silver, and reduces this with vapors of white phosphorus dissolved in sulphide of carbon, the skin being thus rendered dark and shiny. The body is then ready for the elec tric bath, which is served by a thermo-electric battery giving a regular adherent deposit of copper if the cur rent is properly regulated. With a layer of one-half to three-fourths mm. the envelope is solid enough to re sist pressure or shock. Dr. Variot further incinerate the metallic mummy, leaving holes for the escape of gases. The corpse disappears, and a faithful image or statue remains.

A REVERSING DRIVING GEAR FOR PLANERS A driving gear for planers, by means of which the motion of the bed may be quickly reversed without shifting the belts, is shown in the illustration, and has been patented by Mr. George F. Welivar, of Milton, Pa . Fig. 1 shows the improvement applied to a planer Fig. 2 being an inverted plan view representing the details of the mechanism. On the main driving shaft is the usual cone pulley, and near the other end of the shaft a gear wheel is mounted to turn loosely and to mesh with a gear wheel on a transverse shaft A pinion centrally secured on the latter shaft meshes into a large gear wheel on another transverse shaft, the latter wheel also meshing in a rack on the under side of the bed. Near the cone pulley end of the driving shaft is another loosely turning gear wheel, which meshes into an intermediate gear wheel, the latter meshing into a wheel on the transverse shaft carrying the cen tral pinion. On the inner face of each of the loosely turning gear wheels is a conical flange, these flanges being adapted for alternate engagement with the conical ends on a clutch which turns and slides on the driving shaft, the clutch having an annular groove engaged by a shifting fork fulcrumed to the bed frame. The fork has an arm pivotally connected by a link with a vertical lever fulcrumed on the side of the bed frame. Adjustable dogs on the bed engage this lèver at the end of each stroke, thus shifting the fork to bring the clutch into engagement with the opposite gear wheel, whereby the motion of the bed is reversed at the end of each forward and backward stroke without shifting the belt, which is run continuously on a single pulley. The planer may also be run at different speeds by simply changing the belt on the cone pulley, without any change of pulleys on the line shaft or cutting of belts, while it is designed that the planer shall make a positive stroke capable of planing to a scratch line.
Friction collars on the loose gear wheels are connected by chains with the shifting fork in such manner as to form flexible connections adapted to hold the clutch in engagement with either flange, preventing accidental displacement by the jarring of the machin ery or otherwise, and constituting practically automatic tighteners, adapting the clutch for heavy or light work.

THE LITTLE ANT-EATER IN THE ZOOLOGICAL GARDEN AT BERLIN.

The tamandua, or little ant-eater, is one of those animals which, according to the reports of travelers are ivery numerous in their native land, but seldom reach Europe alive. This is easily accounted for when we consider the peculiar nature of the food required by the ant-eaters. Many unsuccessful attempts have been made to accustom the larger, plume-tailed mem bers of this family to different food, for it is one of the most attractive creatures in the animal trade, and would bring a high price. But, as the colonist or sea man cannot expect a reward for his trouble, who can blame him for not burdening himself with such an uncertain and unprofitable charge? That may be the reason why this tamandua, which was received here last spring, was the first that I had ever seen alive, and, apparently, the first that had ever lived in a German zoological garden. To be sure, it did not live long, but long enough to give our artist many opportunities for careful studies from life, which resulted in the excellent drawing published in connection herewith.
The little ant-eater, or tamandua (Myrmecophaga tetradactyla, L.) is really the medium sized one, for, besides the large ant-bear already mentioned-which is nearly as high as a large dog-there is still another, quite a dwarf, wnich is little known except by name, even the stuffed specimens being very rarely seen in our museums. The tamandua is about the size of a cat, and differs from the large ant-bear in many respects, a very noticeable difference being the shape of its tail, which is naked at the tip and has the prehensile qualities possessed by many South American apes. The prehensile tail is specially noteworthy, as it indicates a difference in the mode of life within the narrow limits which confine the habits of
ant-eaters, the great ant-bear destroying ants and termites-those pests of the tropics-on the ground, while the two smaller species carry on their work in the trees. Let it be mentioned here that the ant-eater, when free, lives less on ants than on termites, which are very different creatures, belonging to a different order of insects. This, perhaps, explains why the ant eaters in captivity care little for our dry ants and their eggs, preferring gruel and chopped meat with egg. The

WELIVAR'S DRIVING GEAR FOR PLANERS.

tamandua is further characterized by the number of its toes, of which there are five on the fore feet and cour on the hind feet, being just the reverse of the arrangement of the toes of its larger relative. These large claws serve to destroy the termite nests, and also as powerful weapons in defending themselves against the attacks of dogs and other animals. Many a dog has paid with, his life for an indiscreet attack on a large ant-bear, and Hensel states that he has seen one of the smaller ones hold its own against two. The tube-like head and worm-like tongue complete the equipinent of the ant-eater. Its color is black and white, but the coloring of the individuals varies considerably, some being almost of a solid color. It has not yet been as certained whether this has any geographical signifi cance, which does not seem improbable in view of thei wide distribution throughout the forests of South America.

The ant-eaters are edentates, and with the scalecovered animals form the family of Vermilinguia. The similarity of their tongues would seem to indicate a common origin, but this is not possible, as they belong different lands: the ant-eaters being natives of South America, and the others of Africa and India They were placed in the same class because they ate the same food, the construction of their tongues mak
 the world.-Illustrirte Zeitung. News calculates it as follows sphere. out of the room
the scanty and reduced descendants of a widespread and much larger race of animals of past ages, the his tory of which will remain in darkness until scientific investigations can be undertaken in distant parts o

Steam Pipe Required for Heating.

The question often arises, How much pipe is required heat a building of a certain cubic capacity? Of course, this varies with the temperature of the steam used, the degree of heat required to be kep up, the frequency with which the doors are open ed, the temperature of the outside air, the inten sity of the wind, the area of window surface, etc. There are no two places in which the conditions are exactly alike, and it would be hard to lay down an absolute rule for any fixed set of coudi tions. But there are some good data which will do to start from, and a writer in the Mechanical

We may start out with the fact that one unit of heat will raise $551 / 2$ cubic feet of air from 62 deg to 63 deg . F., and can use these figures, no matter what the temperature and the steam are of the building to be warmed, or what outside atmo-

For low pressure steam-say about 5 pounds above atmosphere or by the gauge-the length of 4 inch pipe required for heating the air is found by multiplying the volume of air in cubic feet per minute, to be warmed, by the difference of the temperatures in the room and outside, and divid ing by 336. The answer will be the length of 4 inch pipe in feet, and will be also about the num ber of square feet of pipe, as a 4 inch pipe has $12 \cdot 5$ nches circumference, hence but a very trifle over 144 quare inches of surface per foot of length. (For ch pipes the divisor required is 84 instead of 336.) It will take one square foot of direct boiler surface or its equivalent of floor surface, to keep a temperature 60 deg . F. in a room with steam at 5 pounds by the gauge, and the ordinary range of temperatures in an

The set of Steel Wire.

Mr. G. Leverich, of the Brooklyn Bridge staff of engineers, was associated with the late Colonel Paine for over twenty years, and relates some interesting reminiscences of his connection with the big structure When the big sustaining cables for the bridge were being constructed, considerable difficulty was experinced with the coils of steel wire, which, being pretty hard, had a strong tendency to spring back into coil orm after being straightened out. This wire in the manufacturing process is reduced to proper size by being drawn through holes in a steel plate. Colone Paine found that the coiled wire was not so strong by 10 or 15 per cent as if it had been kept straight, and he tried to get the manufacturers and Colonel Roebling to have the defect remedied. One day Colonel Paine drove up to his house in Jersey, and taking a box of coiled wire out of the vehicle stretched it out straight and lo! it remained as it was, without any tendency to coil up again. The col onel had discovered an ex tremely simple method of accomplishing the desired result, which was, instead of coiling up the wire close to the perforated steel plate after it had been drawn through, and thus make it set, to draw it out some considerable distance before coiling.

Florida Camphor.

According to a paper read by Professor Maisch at the October meeting of the Philadelphia College of Pharmacy, the camphor tree is being cultivated successfully in Florida (Am. Journ. Pharm , Nov., p. 565). It seems to flourish in almost any soil, and the tree grows rapidly. It is believed the in time there will be more time there will be more camphor trees than orange
trees in Florida, and that trees in Florida, and that
the camphor industry will the camphor industry will
prove to be more profitable
accepted. On the other hand, the animals with the worm-like tongue show here and there, in the con to the Australian monotremes, which, by the old sys em, were classed with the edentates, but this classif ation is not upheld by the discoveries of paleontology and, therefore, the edentates now living seem to be
than that of sugar. The camphor obtained from the Florida trees approaches more nearly to that of Japan than to Chinese camphor, since the odor of safrol is distinctly recognizable

The work of connecting Paris with London by means of a telephone line is now in progress.

THE MANITOU AND PIKE'S PEAK RAILWAY.

 (Continued from first page.)25,1889 , the grading was cowpleted August 4, 1890, and the track laying October 20, 1890
When the construction of the roadbed began, eight hundred men and one hundred and fifty horses and mules were put in service.
All provisions, tools, and camping outfits were transported by trail to the various camps along the line on the backs of mules and burros. Only those familiar with the Rocky Mountain region can form an adequate conception of the difficulty of the undertaking. The precipitous cliff of solid granite, the deep canons and ravines, the vast, deep fields of snow, seem obstacles set by Nature never to be surmounted by man.
The road is operated by the Abt cogwheel system. The maximum degree of curvature is 16 , or a curve with a radius of 359 feet. The length of the road is a few feet less than nine miles, of which two and threequarters miles are above timber line. The elevation of the station at Manitou is $6,563 \cdot 3$ feet, the summit of Pike's Peak $14,115 \cdot 3$ feet, the elevation overcome between the points being 7,252 feet. The roadbed is 15 feet wide, increased to 20 and 22 feat through cuts, thus giving protection, in case of derailment, from more serious accident.
No trestle work is used on the entire line. All bridges are built of iron, and were constructed by the Edgemoor Bridge Works, of Wilmington, Del.
The culverts are built of solid masonry and placed wherever necessary to guard against washouts
The road is standard gauge. The T-rails weigh 40 pounds per yard, and are laid on red spruce ties, 9 feet long. The rack-rail is laid in the center between the T-rails, and consists of two continuous rails made up of parallel bars, each 80 inches long, of soft Bessemer steel, held in position by means of die-forged steel chairs, which are secured to the ties by wood screws. The parallel bars are set $15 / 8$ inches apart, each containing seventeen teeth or cogs in their length, in which the pinions of the engines interlock $11 / 4$ inches Fig. 1).
The bars vary in thickness from $7 / 8$ inch to $1 \frac{1}{4}$ inches, or from 21 to $31 \frac{1}{2}$ pounds per foot, the heavier bars being used on the steeper grades. The chairs are set 40 inches apart, each bar being doubly bolted to three chairs, in the middle and at either end. The bolt holes in the middle of the bars are of the same size as the bolts, while those at either end are drilled threeeightieths inch larger, to allow for expansion of the bars.
On account of the steepness of the grade and consequent tendency of the track to slide, both by its own constant weight as well as that of passing trains, also frow expansion and contraction due to varying temperature, a very thorough system of anchorage has been carried out.
In the entire length of the road 146 anchors are used, varying in distance one from another from 200 to 600 feet, according to the steepness of the grade, and are of two kinds.
In some instances (Fig. 1) a pair of steel straps are secured to one of the chairs, brought forward as a clevis, and attached by mean of a coupling adjustable in length to a turned pin, $21 / 2$ inches in dia meter and 2 feet long, which is leaded into the solid rock.
In the absence of a ledge of rock, a steel bar (Fig.3) is set at the lower side of a tie, and from this an oak timber of cross section 10 inches by 10 inches, and from 10 to 14 feet long, i carried downward at a steeper angle than the grade of the road, and thrusts either against a heavy oak timber ew bedded in the ballast a right angles to the first timber or against rock The arrangement of the cogs is shown in Fig. 2.
The engines, three in number, were built by the Baldwin Locomo tive Works, of Philadelphia, and present a very different appearanc from the ordinary loce
motive. Each engine weighs 26 tons, and is capable of carrying two coaches. There is no tender, the wate being carried in two saddle tanks of a capacity of 600 gallons on either side of the engine, while a box at the rear carries $11 / 4$ tons of coal, sufficient for one round trip. There are three water stations on the route, besides the one at the lower station.
The cylinders of the engine are 17 inches by 20
inches. The boiler has a 42 inch shell, and the flues re 7 feet long.
The engines have 200 horse power, and are built to stand level on a 16 per cent grade. There are three sets of double pinion brakes on each engine.
The power is transmitted by a wain drum, which has teeth similar to the pinions, and works on the two back sets or pinions, the forward set of pinions being driven by rod connection with the widdle set. The two back

METHOD OF ANCHORING THE TRACK.
sets, which are connected with the main drum, furnish most of the power for ascending, the forward set of pinions being principally to apply brake power.
In descending, the cylinders of the engine are used as air compressors, a stream of water being kept running into them continually to keep them from heating. By controlling this compressed air, the speed of the train is regulated.
In addition, the two front sets of pinions have a peculiar steam brake connection which locks them instantly. The back pinion has a hand brake connection which is capable of stopping the whole train in a few seconds time on heaviest grade. Each car has two axles, each of which carries a pinion brake worked by hand from either end of the car, either one of which is capable of holding the whole train.
A brakeman is stationed at each brake during the operation.
The cars, built by the Mason Manufacturing Works, of Springfield, Mass., are 43 feet long, $81 / 2$ feet wide, and have a seating capacity of fifty people.
The floors of the cars are 24 inches above the top the rails. The sides and ends of the cars are of glass as

PIKE'S PEAK RAILWAY-THE RUN DOWN FROM WINDY POINT. miles. bout half a million of dollars. nished by Mr. Geo. E. Mellin.

Was It a Telephone?

 the Turks.The trip from Manitou to the summit occupies an hour and forty-five minutes. The trip down will take half an hour less time. The minimum speed of the train is three miles per hour, and the maximum eight

The expense of constructing the entire road was
The company have ceased to operate regular trains for the winter. During the few weeks of the fall when regular trains were run as far as the Half Way House, many people were carried over the line. The road will be open for the summer season about June 1 this year. Our illustrations are from photographs kindly fur-

In Porter's "Knights of Malta," vol. i., chap. xiv., we read: "Shafts were sunk in various directions and galleries driven forward beneath the principal wootions. Martinigo had, however, foreseen the probability of this mode of approach, and the counter mines which he had prepared before the commencement of the siege materially assisted him in opposing them. By the simple aid of the distended parchment of a drum head he was enabled to detect the vicinity of the enemy's miners when at work, through the vibrations of the earth, and his measures were taken accordingly to destroy their advance." Two galleries, however, which had been driven beneath the bastion of England eluded his vigilance, and two fearful explosions ensued. This event was in 1522, at Rhodes, when besieged by
B. V. F.-The principle of the acoustic telephone is no doubt very old. It was one of the peculiar traits of our beloved aborigines to listen with their ears to the ground to the movements of their enemies or of animals. They could hear the tread of a horse at a great distance. This was one of the surprises to the early settlers of this country. It is in common practice in mines, and many practice it by telling the approach of trains at many miles by placing the ear upon a rail.
The possibilities of telephonic information, as em bodied in the acoustic telephone of the present day, were only an outcome of the application of the ear to were only an outcome of the application of the ear to
the wall, and were probably intensified by the use of a stick of lance wood thrust into the ground in the counter mine and a drum head laid against the end of the stick, with the ear behind the drum head.-ED.

Sibley College of Mechanical Engineering

The number of students registered this year in Sibley College of Mechanical Engineering, Cornell University, is something like 450 , including a considerable number of graduates from other colleges taking, in most cases, advanced work in research and higher engineering and of the whole list, nearly one-half are selecting the electrical work in specialization, the others dividing between general engineering, steam and naval engi neering, and other special lines of work. The uppe classmen, to the number of about 200 , are all taking work in the mechanical laboratory, which is being considerably extended to meet this large demand. At the of the year it will have its 200 men assigned to work in strength of ma terials, and other work of research in that gen eral direction, to engine and boiler testing, and to a great variety of spe cial investigations. The outfit will include an experimental engine of 200 horse power, to be constructed from Mr Reynolds' designs by the E. P. Allis Co., o Milwaukee; a number of swaller and specially constructed engines and boilers, including the 500 horse power heating plant of the university collections of steau pumps and injectors; plant illustrating Hirn' analysis; several air and gas engines, including all the usual types; tur bines and rotary pumps several testing machine of 15,000 to 20,000 pound capacity, others of 40,00 and 50,000 , one of 100 , 000 , one of 200,000 , and one of 300,000 pound far as possible, so as to give free observation without. \{limit; with special machines for transverse and tor The woodwork within is handsomely finished, and the upholstering of old gold plush. The seats are designed to set level on the average grade of 16 per cent. The cars are pushed, not drawn, by the engines, and are not coupled to the engine, but have simply buffers to keep them apart. The car platforms have gates, which are locked while the train is in motion.
limit; with special machines for transverse and tor-
sional testing ; some of each kind having autographic registry of very ingenious designs

A GOOD paste for labels for specimens: Starch, 2 dr .; white sugar, 1 oz.; gum arabic, 2 dr.; water, q. s. Dissolve the gum, add the sugar, and boil until the starch is cooked.

How Crucibles Are Made

 ву н. с. нобет

 ву н. с. нобет}The manufacture of fireproof pottery in the United States is a comparatively limited business. There are large regions, and possibly entire States, where not a single crucible is used. There are probably not more than $\$ 1,500,000$ at present invested in this line of mazufacture in America. There are three factories in Philadelphia, two in Pittsburg, two in Jersey City, two in delphia, two in Pittsburg, two in Jersey City, two in
Taunton, Mass., one each in St. Louis, Mo., MascouTaunton, Mass., one each in St. Louis, Mo., Mascou-
tah, Ill., and Bridgeport, Conn. Some of the largest firms carry on numerous branches of business besides, while others, as, for instance, the Bridgeport company, make nothing but crucibles. Limited as this business is, it has features of special interest. For one thing, it is believed that all the large plumbago crucibles used in this country are home-made, the only imported ones being the small "sand crucibles" used by manufacturing jewelers, chemists, and assayers. This is but partly attributable to protection, although there is a duty of 20 per cent (not affected by the McKinley law); for even if admitted free, the foreign goods could not come into competition with those of home manufacture, since the labor item is so much less than the cost of materials, and the latter can be had as cheap here as in Europe.
The ingredients going to make fireproof pottery are as follows: Plumbago, 50 per cent; blue clay, 30 per cent; kaolin, 12 per cent; fire-sand, 8 per cent. These proportions vary with the quality of the materials used, so that the above formula undergoes continual modification, according to the judgment of the mixer.
True economy requires that none but the very best materials should be employed in making a vessel that has to be subjected to the most intense heat. Hence a few words are here in place as to the sources of supply. Only the richest and purest plumbago is serviceable, as any impurities in it would either melt or burn out, and thus spoil the crucible. Probably a chemical analysis would show that hundreds of tons of the plumbago used is from 99 to $991 / 2$ per cent pure carbon. In other words, the main ingredient of the plain, homely crucible is identical with the finest diamond in substance, differing from it merely in form. None has yet been found in this country that can stand the prescribed test. Hence what is used is imported directly from Ceylon, where it is mined, excelling in purity and fiber any other known deposit. The principal earth combined with the plumbago is the German blue or pipe clay, from Gross Almerode, in Hesse, where it is found in an elevated plateau, being Hesse, where it is found in an elevated plateau, being
apparently a lacustrine deposit. Its peculiarity is that vessels made from it can be heated without fusing to from 4,000 to 6,000 degrees Fahr., and can also be plunged cold into the furnace or thrown hot from it without cracking-a treatment that French and American clays will not stand.
Clays found in Missouri were thought, at one time, to meet the requirements, but on trial it was found that they would not answer. Both the clay and the plumbago are brought in sailing vessels at a low rate and free of duty. A curious fact about the clay is that it is cut in blocks, each of which bears the stamp of the municipality owning the deposit. Once a year they have a public meeting and fix the price for the coming year, after which the trade is free to all the world. The kaolin used in crucible making resembles the china clay used in fine pottery, and is found in various parts of our country, there beinglargedeposits of it in New York, New Jersey, Maryland, South Carolina, Indiana, and elsewhere. That found on Staten Island is preferred. The fire-sand used is nearly pure silica, and in any event must be free from iron. Excellent sand for the purpose is to be had at Gayhead, Martha` Vineyard, and on Long Island, near Glen Cove

The process of manufacture is seemingly quite simple, as explained to me at the Bridgeport Crucible Works, by the courtesy of the manager, Mr. W. T. Macfarlane. The ingredients named are mechanically combined, the mass is kneaded and spun up into shape, properly annealed-and the crucible is done. But short as this process is, it involves its perplexities. Re sults are governed by obscure and of ten elusive causes, and any consequent disappointment may involve serious loss. The continually shifting proportions
tax the best trained judgment. For instance, the plumbagoes, while constant chemically, vary exceedingly physically, and the successful manufacturer must vary his combinations accordingly. The clays too
must fit the changing character of the plumbago, and must fit the changing character of the plumbago, and under which it is to be used. Admirable results may be had in melting one sort of metal in a vessel that would really be worthless for another. A combination containing a tough fibrous plumbago will give a far different result from that to be had with the same mixture where the plumbago, though chemically identical, is crumbly and brittle. The crucible maker of modern times can readily understand the superstition of the old alchemists that originated the very name of his goods, in conformity to which the sign of the crux (the cross) was stamped on the moulded ves sel before it was put into the furnace, in order to pre
vent its being bewitched by the demons of the fire ! Following a cask of plumbago from the wharf where it is landed to the grinding room where it is dumped, we see that its contents are made up of bits of mineral they are crushed, and afterward ground to a proper degree of fineness by French buhr stones. The pulverization deterwines the porosity, on which the ability of the crucible to stand heating and cooling largely depends. If the flour is too fine, the contraction is depends. If the flour is too fine, the contraction is
not taken up in itself as it should be, and the vessel will crack after being used only once or twice. If on the other hand it is too coarse (as occasionally happens), the melted metal leaks out as if run through a sieve. The German clay likewise is crushed and pulverized, after having gone through a preliminary process of drying in dry closets, each holding 20 tons. The differ ent flours and grades are stored in separate bins. Then follows the extremely delicate and-important task of mixing the ingredients, which is seen to by the manager himself, who is so very careful in this as to weigh down to a quarter of a pound in a ton and a half of material. The wass next goes to a mixing tub, where it is kneaded by rotating blades till it is homogeneous, after which it is stored in moist blocks in the blank room ready for the wheel
There is no need of my digressing here to describe the simple mysteries of the potter's art-the most ancient and least modified of all arts. The wheel on which the smaller crucibles are spun is almost the exact counterpart of that known to have been used by the prehistoric Neolithic man. But for larger vessels, intended to hold from 400 to 600 pounds of melted metal, special contrivances have been invented to assist the potter in giving shape to the mass of clay at his disposal. He first kneads it over and cuts it through and through with wires to detect the presence of bits of iron, gravel, or other foreign substances. Having patted the mass into an oblong lump, he next drops it into a prepared mould. This used to be made of plaster of Paris, in which the pot would have to stand for some time before being removed. Of course in a large establishment the number of plaster moulds needed would be great, and would occupy much space for stor age. Driscoll's patent wooden mould is now used, lined with loose cloth, so clamped as to be able to be taken away as soon as the pot is shaped, leaving it intact. One mould may thus be kept constantly in service, and far more rapid and satisfactory work is done, because the dough does not need to be so wet as in the old pro cess. After partly drying, the crucibles are pared to a proper finish and placed on shelves in large drying rooms to season for from ten to twenty days. Then they go to the annealing ovens, which are at first very gently heated, but afterward to an intense degree. It occasionally happens that a " green" pot gets by mis-
take into the oven, and as the moisture is changed into steam, it is rent to fragments with a report like the discharge of a cannon. The sound crucibles, after cool ing and due inspection, are suitably packed for shipment. Even after they get into the hands of the bras founders, or others who intend to subject them to a fierce heat, the pots are stacked for supplemental sea soning above muffles in which other work is being done. The best crucibles are expected to stand sixty or seventy rounds for melting purposes. The fragments of those used up in the brass foundries are treated as worthless; but those used in making steel are not injured to such a degree as to prevent their being cleaned from slag and ground over again for use in making a cheaper grade of firepots.

In view of the rapidly increasing demand for all conceivable compounds of zinc, copper, silicon, aluminum, etc., it is evident that the manufacture of first class crucibles will become an industry of constantly growing importance. It is essential to the finest results
that the materials of which the crucible is made should that the materials of which thecrucible is made should
not attack nor affect in any disastrous way the metals that are to be melted in it. It is also desirable that the metals should not undergo any degree of chemical absorption by the ingredients of the pot. To some exent this is unavoidable; as in the manufacture of teel, which does absorb a certain amount of carbon rom the plumbago. For this reason superiority is laimed for the Sheffield steel, because it is not melted in plumbago vessels. But on the other hand it is as serted that makers of crucible steel make due allowaddition to its other qualities the crucible should be a ree melter, readily absorbing and transmitting heat or otherwise heats are delayed, furnaces rapidly burned out, and too much fuel consumed in proportion to the results gained.
In conclusion we may sum up the qualities of a per ect crucible in the words of Mr. Macfarlane: "It must combine the highest refractibility with the abiliy to pass through enormous gradations of heat with out warping or cracking; it must be firm enough to stand a high melting heat; it must not injure the metal made in it, nor subject it to loss by leakage through the pores; and it must absorb and transmit heat readily." The only true test is actual use. And as failure in actual use may involve serious and costly
consequences, too high an estimate can hardly be put upon the need of skill, experience, and sound judgment in crucible making.

Astronomical Phenomena during the Year 1891.
The principal phenomena predicted ior the year 1891 are four eclipses, two of the sun and two of the moon, a transit of Mercury over the sun's disk, and the disappearance and reappearance of Saturn's rings. Of these the last two will excite the most interest.

A total eclipse of the moon, May 23, will be invisible in the United States, but visible generally throughout the western part of the Pacific Ocean, Australia, Asia, Africa, and Europe.
An annular eclipse of the sun, June 6, will be visible in the northern part of Siberia. It will be visible as a partial eclipse in the western part of the United States, in British America, Europe, and Siberia.
A total eclipse of the moon, November 15, will be visi ble throughout North and South America, Asia, Africa, Europe, and the Atlantic Ocean. It will begin at 3 h . 36 m . and end at 9 h .3 m. P. M. central time. We ex pect later to give a chart of the moon's path among the stars during this eclipse, and a list of the stars which will be occulted.
A partial eclipse of the sun, December 1, will be visible only in the southern part of South America and the south polar region.
The transit of Mercury across the sun's disk will take place on May 9 , beginning at 5 h .55 m . and ending at $10: 53$ P. M. central time. It will be partly visible in the United States and throughout the western part of North and South America and Asia. The whole tran sit will be visible in Japan, China, Eastern Siberia Australia, and the Malaysian Islands. It is not likely that any expedition will be sent out for the purpose of obtaining observations of this transit under favorable circumstances, for such observations would be of value only in determining the place of the planet. The solar parallax, for which such great pains have been taken in observing transits of Venus, has, by other means, been determined with much greater accuracy than could be attained from transits of Mercury. There are, however nteresting questions as to the planet's appearance during transit, its atmosphere and motion. No one who has the opportunity to observe this transit should neglect to make all the use possible of it.
Professor G. W. Coakley, of the University of New York, has computed the times of the contacts for several of the observatories of the United States, data which will be found very useful to those wishing to observe the transit.
On September 22 the earth will pass through the plane of Saturn's rings. The rings then, in telescopes of sufficient power to show them, will appear as a fine straight thread of light. From September 22 to October 30 the earth will be above the plane of the rings, while the sun will be below that plane, shining upon the south side of the rings. The rings then should entirely disappear, except the very fine thread of light which comes from the outer edges of rings A and B. After October 30 the sun will be on the north side of the plane of the rings, so that its light will illuminate the same side of the rings at which we look. Many interesting observations were made at the time of the dis appearance of Saturn's rings in 1878, and, although the position of the planet will be very unfavorable, it is to be hoped that many of them will be repeated this year and accurate data obtained for the solution of the problems connected with the rings. Saturn will be in conjunction with the sun on September 12, so that at the time of the disappearance of the rings it will be ery close to the sun and can be observed only ver near the horizon.-Sidereal Messenger.

Kola.

The kola seeds can be procured in Venezuela. Kar ten, in his "Flore de Colombie," describes the plan as growing wild in the moist, hot woods near the south ern coast of Venezuela, but different authors suppose it was introduced by African negroes at the same time that it was taken to Martinique. The French have recently introduced the kola to Guadaloupe and Ca yenne, where it flourishes in moist lands at or a little bove sea level. It begins to yield a crop of fruit in uch situations about its fifth year, and later will vield over 100 lb . of seeds annually. I should doubt the germination of seeds procured here, as they have I presume, been brought from England, and it is im possible to say how long they have been there from Africa. The tree is the Sterculia acuminata, or true kola nut. Even in Africa-at Gambia-the greatest difficulty is experienced in keeping the pods from moulding ; but if properly packed they would, I should think, be easily propagated by soaking the nuts for a day and night in warm water, or in a weak solution of ammonia.

Nicolas Pike.
The work on the Brooklyn aqueduct described in the Scientific American of January 3 is being exe cuted by Messrs. Crawford \& Valentine, not Mapes, read by our printers.

Miscellaneous Notes

Forest Park, St. Louis, is one of the finest parks in the world. It contains two square miles, or 1,280 acres, of forest, glade, lake, and river, with twenty miles of roads and walks.
The Bell telephone patent monopoly in England has expired. The patent there was granted tor 14 years. Cheap telephones will now prevail in England the same as in Germany, where Bell failed to obtain a patent. In this country, the Bell patent will expire March 7, 1893, having been originally granted March 7, 1876, for a term of 17 years.
The new U. S. protected cruiser Newark on her recent trial, December 22, 1890, developed a speed of $19 \cdot 6$ knots, under forced draught, during four hours' run. This is one of our latest and best cruisers. She is 327 ft .7 in . extreme length, 49 ft . beam, displacement 4,090 tons, 8,500 to 9,000 h. p. The new English built Argentine protected cruiser 25 de Mayo on her recent trial trip attained a speed of 20.75 knots with natural draught, and 22.43 knots with forced draught. This ship is 325 ft . extreme length, 43 ft . beam, 3,200 tons displacement, $8,500 \mathrm{~h}$. p. natural draught and $13,800 \mathrm{~h}$. p. forced draught. It will be seen from the foregoing that the English built ship is far superior to the Newark in power and steaming qualities. Somehow or other the latest U. S. vessels are always prone to be behind the latest European vessels in those essential qualities, power and speed. Can anybody explain the real reason?
What is the best position for the bridge aboard a war ship? Our naval architects are of opinion that it should be well forward, in some cases, as on the Yorktown and Concord, setting it up over the topgallant forecastle, and on the Baltimore and Philadelphia jamming it still further up into the bows. The British, on the other hand, think the waist or 'midship section the best place for it; holding that a commanding officer should be able to con his ship without facing about. This is a recommendation, surely, but the advantages of having a clear horizon, an unobstructed view ahead, will appeal to the nautical mind. A bridge forward of the mizzen or even between fore and main masts never affords an unbroken view; in maneuvering, or, worst of all, in meeting other craft or working in a narrow channelway, interposing objects, such as masts, yards and stays, seriously incommode and at times obscure the view. In practicing a crew at working ship or guns, a bridge well aft, as in the British method, affords a better opportunity for critical study, and perhaps, as the British designers allege, in the thick of battle gives the commander a better control of his batteries, but for general service, whether in combat, maneuvering or cruising, the forward position would seem to promise the best results.

The Projected Balloon

The two daring aeronauts who propose to make journey to the North Pole, as described and illustrated in the Scientific American of December 20, 1890, are meeting with many discouragements. The French Society of Aerial Navigation has pronounced unanimously against it. At a recent meeting of the society in Paris, the president, Mr. Mage, editor of Cosmos, made an address which was quite disheartening to the projectors of the enterprise. He advised them to make better use of their energy and devotion to science than to attempt to reach the North Pole by balloon. Mr. Mage said it was impossible to believe the gentlemen would succeed. All our information about the prevailing winds in the polar regions indicates that each extremity of the earth's axis is a region of circular wind currents. There is little prospect that the wind would carry balloon travelers to their destination. Then, even in summer, a very low temperature prevails, heavy falls of snow are frequent, and it is difficult to believe a balloon could remain in midair while heavily weighted with snow. Frost upon the ropes and other parts of the rigging would make the management of the balloon extremely difficult, if not impossible. The land or water surface would for days at a time be obscured by heavy mists. The compass would be useless, and the voyagers would have to try to direct their movements by the stars, an art in which balloon travelers are not proficient. Mr. Mage's re marks were endorsed by the entire society.
Mr. Hermite, who, with Mr. Besancon, projected this daring voyage, said in reply that he and his cowrade intended next summer to go to Spitzbergen and launch pilot balloons for the purpose of learning all they could at that point of the direction of the prevailing winds. If the result of these experiments is favor able, they will return to France and prepare to make their polar voyage in 1892. If the results are unfavor able, they will renounce the expedition. He did not believe that the difficulties in the way of balloon traveling were so great as the president believed.
Another speaker said that during the summer, at a mean altitude not exceeding 3,500 feet, and the mean temperature during his journey was not less than 40° below the freezing point, and yet his voyage was across the southern part of the island. It was the sheerest folly to suppose a balloon, which has as much rigging
as a ship, could successfully be carried across the North Pole.

A COTTON CHOPPER AND CULTIVATOR.

The illustration represents a machine provided with hoes for chopping cotton or other plants, cultivators for working the plants, scrapers to clear the earth in advance of the hoes, and harrow teeth for use when desired. It has been patented by Mr. Thomas E Anderson, of Jackson, Tenn. Upon the bottom of the main frame are two diagonal side beams, near the forward end of each of which a scraper is adjustably secured. Farther back on each beam are harrow teeth, bifurcated at their lower ends, with the members flaring in opposite directions, these teeth being preferably so attached to the beams as to be vertically adjustable." In the rear end bar of the main frame, at each side of the center, a series of cultivator blades is secured, these blades preferably being of what is known as the "elk's foot" pattern. The rear axle is journaled in vertically adjustable boxes sliding in hangers attached to the main frame, and a bevel gear on this axle meshes with a similar gear on a longitudinal shaft, the bear ings of which are capable of vertical movement, and upon this shaft is the chopper. The hub of the chopper has radial arms with longitudinal grooves in which the shanks of the hoe blades are adjustably arranged one hoe to each radial arm. Lorated longitudinally over the main frame is a lifting frame having near its rear end downwardly extending hangers which receive the rear axle, and by manipulating an adjusting screw the rear end of the frame is elevated, with the axle and longitudinal shaft, thus regulating the depth of cut of

ANDERSON'S COMBINATION COTTON AND CORN HOE and CULTIVATOR.
the scrapers and rear cultivators. The depth to which the hoes. shall cut is regulated by the adjustment of the hoes upon the arms of their carrying hub. As the machine is drawn forward, the scrapers clear the earth in advance of the hoes, which revolve rapidly to remove the surplus plants, while the cultivators at the rear pass between the remaining plants and throw up earth over their roots. When the hoes are in operation the harrow teeth are preferably adjusted so as not to touch the plants or the ground, these teeth being more especially adapted for use in connection with the rear cultivator teeth only, the longitudinal hoe shaft being then thrown out of gear with the rear driving axle.

New Experiments in Magnetism.

by a. e. dolbear.
It has long been known that a common sewing needle will float if carefully placed upon a surface of water; also, that if the needle be magnetized it will assume a position in the magnetic meridian. Iron and steel filings will also float, and they can be sprinkled upon the liquid surface nearly as well as upon a solid. If the pole of a magnet be brought near to the floating particles, they will respond to the solicitations of the magnetic field in a very free and easy manner.
Let a strong U-magnet have its poles brought nea to the iron filings, and they will at once arrange them selves in the well known forms, the lines being plainly seen. The induction, of course, causes adjacent particles to assume opposite polarities and consequently touch each other when free to move. If, now, the field magnet be removed, the filings will retain their arrangement, and if it be in a vessel large enough to permit the rotation of the whole body, it will swing into the magnetic meridian if it did not happen to be in it a first, thus showing that the arrangemeni constitutes the magnet, and that as a whole it possesses a mag netic field upon which the earth's field can act.
Now bring gently near the floating magnet one pole of a bar magnet. If this be presented to one of the poles of the particles it will be attracted toward it, and the whole body will rotate more or less; but this must be done slowly, else the arrangement of filings will be broken up. The opposite pole will, of course, under
similar conditions, exhibit repulsive action, and the whole will swing about
If, now, the magnetic pole be brought near to th
middle of the arranged filings, some of the groups will be more or less disintegrated from the rest, and will rotate upon a vertical axis and quite turn round. The opposite pole presented will cause them to rotate back again. Great numbers of these can be seen to turn thus whenever a pole is thus presented.

This phenomenon is evidently precisely the same in character as that illustrated at length by Ewing in his late investigations into the constitution of magnets wherein he used small magnetic needles mounted upon pivots. The above experiments can be tried in a sauce of water, but the whole is capable of being projected with the vertical attached to a lantern, and the move ments of all sorts seen upon a screen with ease and very little painstaking.-Electrical Engineer.

The Sturtevant Rotating Battery for Harbor
For the defense of harbors where the ground admits of the formation of an artificial island, Thos. L. Sturtevant, of South Framingham, Mass., proposes the follow ing plan:

An island of generally circular form is established which incloses a circular reservoir of water. Protection is afforded the reservoir by inclined armor plates buried under the earth and surrounding it by a protective subterranean cave. Within the reservoir a circular floating battery is established, pivoted or anchored by a central pin driven into the bottom of the reservoir The battery has a roof like an inverted saucer, and is perforated for heavy guns. The armor plate may be of the heaviest kind, as the displacement may be in creased to any desired extent. The roof is extended beyond the sides of the tunnel, so as to cover nearly the entire area of the reservoir. A sluiceway is carried out under the surface of the island to admit water if desired. A valve or gate is provided to prevent its es cape. In use the entire battery is rotated by hand or by power, so as to bring its guns to bear on any desired point.

Trial Trip of the Gunboat Concord

This new steel vessel made a successful trial trip on Long Island Sound, January 13. She is a sister ship to Long Island Sound, January 13 . She is a sister ship to
the Yorktown, described in the Scientific American the Yorktown, described in the Scientific American
Supplement, No. 687. The trial lasted four hours, during which the engines were required by the con tract to develop an average of 3,400 horse power, with a bonus of $\$ 100$ for each horse power above this num ber and a corresponding penalty below. The machin ery easily fulfilled the requirements, in the opinion o the engineers, and the vessel is thought to have earned a prewium of some $\$ 16,000$.
The engines worked beautifully with no water on the bearings and the throttle wide open all the time. The steam pressure averaged 160 pounds for the four hours The average number of revolutions of the engines wa slightly over 150 . The boilers worked well also, keep ing a steady pressure of steam all the time, with about two inches of air pressure in the blower ducts The average speed made was 15.8 knots per hour by \log, but allowing for current running against the vessel, the actual speed was computed to be $16 \cdot 8$ knots.
The Concord has the closed ash-pit system of forcel draught. She is a twin-screw, coal-protected steel gur boat, with poop and forecastle decks and an opel gun deck between; length, 226 feet; mean draught, 1 feet; displacement, 1,700 tons. There are two horizon tal triple expansion engines in separate water-tight compartments, one forward of the other. The cylin ders have a thirty-inch stroke. The engines are fitted with the Marshall valve gear and piston valves. There are four steel boilers, diameter 9 feet 9 inches, and length 17 feet 9 inches. Each has three corrugated steel furnaces. Grate surface total, 220 square feet. Total weight of machinery, with boilers filled, 331 tons. The propellers are of manganese bronze, three-bladed, and of the modified Griffith type. Diameter, $101 / 2$ feet mean pitch, $121 / 2$ feet.
The contract for this ship was made November 15 1887, with the Quintard Iron Works, ind she was to have been completed in eighteen months, but the contractors were subject to delay on account of difficulty in getting material.
When put in commission she will have a battery of six 6 -inch breech-loading rifles and eight rapid fire guns and revolving cannon. She has, besides, eight torpedo-launching tubes. She is rigged as a three-masted schooner, spreading 6,300 square feet o sail, and will have a crew of 150 men.
M. Ludovic Jammes, in the Revue d'Hygiene, reports that commercial travelers are offering imita tion coffee berries which can be sold so low to dealer as to yield a profit of 100 per cent. These berries are made artificially from vegetable glands and the flou of some cereal. This mixture is placed in a mould and dried. The slit in the false berry is neither so long or deep as in the real berry. The color is well imitated, but the false berry is much harder and cannot be broken with the teeth. These berries are mixed with a small proportion of the true berries before selling.

RECENTLY PATENTED INVENTIONS．

 Rallway Appliances．Car Coupling．－John La Burt，New York City．With this device the cars will couple auto－ matically，so that it will not be necessary for the brake－ man to go between them，while they may be easily un－ arm，and a rearwardly curved arm with a slot engaged y a pin moving vertically in the drawhead，a leve p，aud sides of the car．

Mechanical．

Nut Tapping Machine．－Clarence L Chapman，Erie，Pa．This invention covers an auto matic device for removing the nut blanks singly from he hopper and delivering them regularly in proper lifted，and removed from the spindle to dump the hreaded nuts，the machine cutting the thread in punched blanks without an
fill ing the hopper with blanks．
Carving Machine．－Josepn Rohl mann，St．Joseph，Mo．This is a machine adapted t pattern，there being combined，with the frame carryin he cutters and tracing tool he ends of the frame，pivoted brackets suppcrting th joints，aud a counterbalanced lever connected with the haft on which the lever is pivoted with other nove fetures．
Spring Motor．－Daniel B．Merry and Whism M．Shelman，East Las Vegas，New Mexico his is a device for running sewng actraced that a series of springs，all havin onnection with one drive shaft，may be
so arranged that when one pring is unwound it will release the next for unwind ing，the idle
drive shaft．

Miscellaneous．

Lamp Black Manufacture．－Rober Deyer，Halle－on－the－Sale Prussia，Germany．This is closed reservoirs communicating with ench other are supplied with a cooling liquid，while a hollow rotar haft carries burvers and scrapers below the reservoi o produce lamp black，carbon black，etc．，from ca ireted hydron tances，at the same
Rotary Gas Scrubber．－Williain Mooney，North Plainfield，N．J．The scrubbin ated plates，and rods or spindles，are carried by whee revolving in a tank supplied with water，whereby the rames will be kept wet，and will mechanically remove rom the gas passed through them any tarry matters， ammonia and carbonic acid remaining in the gas bein

Water Gauge．－Ira A．Fuller，Pepin ．This is a device designed to give notice of the rise of water in the hold of a barge or ship，and is made which appears at a window，there being also an electric bell and battery whose circuit is closed by the rising of
foat．
Drawing Instrument．－George A． Brown，Park City，Utah．This instrument has a fixe ovement，a protractor being detachably connected to he blade and having a longitudinal movement on it with other novel features，making a convenient drawin ustrument which can be readily adapted for architec

Wire Reel．－George E．Dix o n Wha，ha．This is a combined reel and stretcher， ight and durable，and so made that the reel will be解 ble device for the construction and repair of wire ，
Self－Closing Can．－Stephen O． Myers，Mount Vernon，N．Y．By this invention a he can from the inside，the construction being simple and durable，and the can being designed to hold ether hloroform and other liquids，which will thus be pre vented from spilling，no matter in what condition the

Piano Pedal and Guard．－Walthe ．Stirnenberg，New York City．This pedal is made
with laterally projecting shoulders，practically conceal g the slot through which the pedal passes，while t uard plate combined therewith protects the polishe face of the case and is designed to give a more tha
ordinarily attractive appearance to the front of the in strument．
Venetian Blind．－Charles Niss，Jr or tausec，The supporting frame or receptac ovel devices for supporting and adjusting the slat sither to elevate or depress them，or to rock each slat

Fire Escape．－Samuel M．Stevenson This escape is made with a double walled fireproof car，a transverse shaft in which has a riction drum and flanged pulleys，in combination wit保保 ropes and a brake mechanism，etc．，whereb structure，and its occupants safely and speedily lowered the ground when other avenues of escape have bee ofr．
Clothes Pin．－Charles A．Ostrom， City，South Dakota．This is a spring wire clamp，the
sides inclined toward each other，a slide engaging the
sides to open and close the sides to open and close the jaws，and a spring catc
locking the slide in place，the device being exceedingly lon
Waste Pipe．－Thomas Keely，Mem his，Tenn．This is an improved attachment for re rigerators in which a drip pipe projects downward into with it，there being combined with the outer pipe nner drip pipe having an inwardly curved point ter minating in the center line of the pipe
Water Closet Cistern．－Charles G． Zeilman，Albany，N．Y．This invention provides a
cistern designed to be very sensitive and positive in cistern designed to be very sensitive and positive in sliding on a stationary overflow mpe to form an exten ion thereof，while a float is supported on the pipe an siphon held on the float to charge and empty the
Back Band．－Willie L．Johnson，Lake City，Miss．This is an improvement in back bands for plow harness，and provides a combination of buckles height of the traces may be quickly adjusted and the draught so regulated as to increase or diminish the Stirnup．－George A．Kerns，Victoria， texas．This stirrup consists of a struck－up metalh ody portion with outwardly projecting flanges，leathe designed to afford a stirrup of great strength and pensive to manufacture．
Note．－Copies of any of the above patents will be surnished by Munn \＆Co．，for 25 cents each．Please
send name of the patentee，title of invention，and date

SCIENTIFIC AMERICAN

BUILDING EDITION

JaNUARY NUMBER．－（No．63．）

table of contents． Handsome colored plate of an elegant residence on
Riverside Avenue，New York City，Cost $\$ 60,000$ complete．Floor pians，two perspective eleva
tions，etc．Mr．Frank Freeman，New York architect
2．Plate in colors showing an attractive cottage Maplewood，Chicago．Estimated
A cottage at Rutherford，N．J．，erected at $\$ 6.000$ complete．Perspective elevation，floo plans，etc．
n elegant residencc at Chestnut，Hill， Pa ．，recently erected for Mr．Alfred C．Rex．Cost $\$ 30,000$ con plete．Floor plans，perspective elevation，etc． Cal．Estimated cost $\$ 10,000$ ．
and floor plans．Cost $\$ 4,200$ ．
Residence on Powelton Avenue，Philadelphia，Pa Cost $\$ 30,000$ complete．Architect Thos．P．Lons dale，Philadelphia．Floor plans，perspective ele
vation，etc．
8．A cottage at Jackson Park，Chicago．Estimated cost $\$ 4,100$ ．Floor plans，perspective elevation，
etc．
Cottage on Munroe Avenue，Cbicago．Two floo plans and perspective view．Cost $\$ 900$
10．Residence at Wayne，Pa．，from plans prepared by ．L．Price，architect，Philadelphia，Cost $\$ 7,000$ complete．Floor plans，perspective view，etc． recently erected at Glen Ridge，N．J．Estimated cost about $\$ 15,000$ ．Perspective view and foor
12． $\begin{gathered}\text { plan．} \\ \text { Cotag }\end{gathered}$ erspective vieview，Chicago．Floor plans and 13．A stable combining both beauty and convenience rected for Mr．A．C．Rex，at Chestnut Hill，P Cost $\$ 1,800$ ．Plans and perspeculive． Two floor plans and photographic view．
15．Sketches of park entrance lodges．
15．Engraving of the Woman＇s Temperance Temple Chicago，Ill．，as it will appear when finished．Es timated cost of the Temple \＄1，100，000．
17．View of Whitworth Memorial Hospital
18．Miscellaneous contents：The marble industry．
Lighting streets of London．－－Mahogany ties Lightıng streets of London．－－Mahogany ties and
marble bridges．－Staining floors．－The Peruvian emple of Pachacamac．－How to catch contracts． your property．－The Scientific Am Erican a hel to builders．－An improved article for plastering tiling，and cement work，illustrated．－The Sin－
clair double rocker，illustrated．－An improved clair double rocker，illustrated．－An improved veneer press，illustrated．－Our hast year＇s volume nence for hospitals，families，etc．，illustrat －The education of customers．－The Buffa ＂Willer＂sliding blinds，illustrated．－Mueller＇s water pressure regulator．－Artistic wall decora－

The Scientific American Architects and Builders Edition is issued monthly．$\$ 2.50$ a year．Single copie cents．Forty large quarto pages，equal to abo two handred ond a pract TURE，richly adorned with elegant plates in colors and with fine engravinge，illnstrating the most interesting examples of Modern Architectural Constraction and allied subjects．
The Fullness，
The Fullness，Richness，Cheapness，and Convenience fhis work have won for it the Largest Circolatio Il newsdealers．

MUNN \＆CO．．PUblishers，

Dusiness and Personal．

The charge for Insertion under thes head is one Dollar Hinejor each insertion：about eight words to a ine cs early us Thursdaut uorving to uppeur innext oftice

For Sale－New and second band iron－working ma cme envine d toeivery．W．P．Davis，Rochester，
cme engine， 1 os H．P．See adv．next issue．
 Best Ice and Refrigerating Machines made by David Steam Hame Implat Steam Hammers，Improved Hydraulic Jacke，and Tub Power presses and dies．Also contractors for special Screw machin，milling machne and drill prese The Garvin Mach．Co．，Laight and Canal Sts．，New York． C．E．Billings＇Patent Surface Gauge．Drop Forgings． ， Guild \＆Garrieon，Brooklyn，N．Y．，manufactur
steam pumps，vacuum pumps，vacuum apparatus，ai pumps，acid blowers，fllter press pumps，e
For the original Bogardus Universal Eccentric Mil Foot and Power Presses，Drills，Shears，etc．，address The best book for electricians and beginners in elec ricity is＂Experimental Science，＂by Gieo．M．Hopkin． Magic Lanterns and Stereopticons of all price Views illustrating every subject for public exhibition etc．：A wroftable husiness for a man with small cani
tal．Also lanterns for home amusement． 205 page cata－
logue free．Mcallister，Optician， 49 Nassau St．．N． \mathbf{Y} ． Send for new and complete catalogue of Scienticic and other Books for sale by Mun
New York．Free on application．

HINTS To CORRESPONDENTS．
Names and Address must accompany all letters，
or no attention will be paid thereto．This is for our information and not for publication．
Rerences to former articles or answers should
give date of paper and page or number of questial In give date of paper and page or number of question．
some answers require not a little research，and，
though we endeavor to reply to all either by letter
or in this departent
or in this department．each must take his turn．
Special Wirten Information on matters of
personal rather than general interest cannot be
expected without remuneration．
Scientific American ${ }^{\text {and }}$ ．
to may be had at the office．Price 10 cents reacerred
Minerals sent for examination should be distinctly
marked or labeled．
（2728）J．F．W．asks：If there is a substance，as elastic and equally as good otherwise，as
India rubber．A．No．The substitutes treated of in our Supplement，Bolas＇lectures on India rubber，et
（2729）T．A．M．asks ：Could a hollow airtight float for a steam trap be practically made thereby doing away with the hollow spindle，opening t condensation of the inclosed air reduce the buoyancy of he float，or necessitate a much heavier metal to with stand the steam pressure？Would it be practical to fill he float with some buoyant gas，under pressure enough to equalize that of the steam：What would be a good battery for electroplating small articles，such as keys， tc．？A．Hollow ball floats are now used for steam traps．You require no gas or other substance in them The difficulty in making them tight is the reason that they are not generally used．Any of the batteries de－ scribed and illustrated in Scientific American Sup plement，Nos．157，158，159，will answer for electro plating， 10 cents each mailed．
（2730）R．T．B．asks ：Will you please ive me a recipe for making moulds to work plaster tions in bulk，weight or measure．A．Good yts propor nd swelled．Pour off excess of water．Mix，glycerine six times the weight of the dry glue used．Heat and proper consistence
（2731）R．says ：I cannot wear flanne drawers without esperiencing the most intolerable itch－ ing，chiefly along the front of the leg between the ankle
nd the knee，but more or less over the whole leg commences at about the end of the first ten days after putting on the flannel，and continues for a month after
it is taken off，even though left off at the end of the ts taken off，even though left off at the end of the
firet two weeks of wear．The skin shows no sign of irritation，save what follows from scratching．The in－ ense itching makes it absolutely impossible to abstain from scratching．This is caused by the best quality of Dr．Jaeger＇s natural wool．as well as by ordinary flan－
nel and cotton，half of each．As to red tannel，it is nel and cotton，half of each．As to red tannel，it is
worse，if anything could be more disagreeable．I could worse，if anything could be more disagreeable．I cound
as well wear the shirt of Nessus．The flannel ehirt is not so bad，though it does cause an itching of the fore rm．Be kind enough to answer through your
and $Q u e r i e s: 1$ ．What causes this effect？A．The flan－ nel，and it is a personal idiosyncrasy．2．What will prevent it，the flannel still being worn？A．Nothing； perhaps by silk or lineu underwear interposed between wool and skin．3．What will allay the itching within any reasonable time？A．Leaving off flannel or wool，
or according to suggestion in No．2．4．If it cannot be or according to suggestion in No．2．4．If it cannot be
prevented，flannel being worn，what substitute，not sub－ ject to the same objection，for the flannel can be worn in cold weather？A．Silk，or following No．2．
（2732）P．C．asks ： 1 ．Which is the most
should the glasses of its window be coated，and which is the most expeditious way to do so？A．Insert be－
tween two plain glass windows fine sheets of oiled post office paper．This makes a safe light．3．Would you give the receipt for a good gold paint to be applied with a brush to iron or wood？A．Use bronze powder，ap－
plied with copal varnish．As a permanent mixed paint use linseed oil and japan as vehicle
（2733）G．N．asks ：1．Can a boiler ex－ plode with plenty of water，and what would cause it to
explode？A．A boiler may explode by over－pressure or by becoming too weak at some point for the pressure． ．Which explosion would have the greater force－－a boiler with high water and high pressure tean or a A．Undue pressure，by the sticking of the safety valve，has often been fatal．A full boiler 18 more dis－ awing than one with low water，when it explodes， owng to the steam liberated from the larger body of water．3．How much coal does the City of Paris con－
sume on a trip across the Atlantic？A．The great （2734）S．F．S．asks：1．Is it not possi le to telephone as far as to telegraph？Why not？A On accomt of the escape along the lie of the secondary current used in telephony．Also on account of induc－ charge and discharge of line．2．If copper wires iustead of platinum were used in incandescent lamps，would the expansion of the wire be too great or not great enough to correspond with the expansion of the glass bulb？ A．For 1° in a length of 100 feet glass expands $0 \cdot 0005 \pi^{4}$ inch，platinum 0.000571 ，and copper between 0° and 212°
（2735）F．G．asks ：1．Is there any dan－ ger of an explosion when nitric and sulphuric acids are
mixed torether in equal parts without being reduced to the temperature that they usually are when used for nitroglyceriue？A．No．2．If the glycerine was added uddenly， sion？A．Probably not，as misture would be required．
3．If it would cause an instantaneous explosion，would he effect be as great as if it had been manufactured into nitroglyceriue？A．No．4．Why is there more silver in a standard dollar than there is in two half dollars？A．
The subsidiary coin is only a legal tender for amounts up to and less than $\$ 10$ ．Its value is statutory for
upese these cases．The dollar is legat tender for unlimited
（2736）E．asks：1．What is the differ－ ence，if any，between ordinary coal gas and that pro－
duced from gasoline，and what are the elements and signs of each？A．Gasoline gas is of far higher spe－ ciflc gravity（ $0 \cdot 800$ or more）than coal gas（ $0 \cdot 450$ to $0: 500$ ）． It contains more carbon and differs in odor．2．How coal gas，separately，and then combine them to produce a gas equal or like coal gas？A．This is hardly practica－ ble on the large scale．The chemical manuals tell how to prepare hydrogen marsh gas，olefiant gas，and car－
bonic oxide．These can be mixed so as to closely ap－ bonic oxide．These can be mixed so as to closely ap－
proximate to coal gas． 3 ．Would the act or operation of manufacturing them separately and combining be attended with more danger than the handling of coal
gas？A．Yes；it would multiply operations，and there
（2737）A Subscriber asks：Would you have the kindness to publish the recipe for the painless extraction of teeth？A．The best known method is the use of nitrous oxide or＂laughing gaso＂It has been
used in hundreds of thousands of cases，and no deaths
（2738）J．H．asks for a good cement to asten square gold and silver wire inlaid in wood．
Try marine glue or bicycle tire cement．Do not ．
（2739）S．E．L．writes：I have a meer－ chaum pipe，the ston is broken off；please write me What I can use to mend it．A．Dissolve caseine in meerschaum or even carbonate of magnesium．Prepare he caseine by curding skimmed milk and filtering out
（2740）H．C．C．asks：1．What is the （2740）H．C．C．asks：1．What is the
best cement（or how to make it）for mending and re－ airing broken glass，porcelain，crockery ware，etc．， that will be（near）water and fire proof，or that will hold ogether strong and lasting？A．One－third of a pint taken and the white of addegry is stirred into it．Fincly divided quicklime is added and the mass is thoroughly mixed with a knife or spatula and appled to the sur－ faces．After drying in air it is heatedover a stove or in tube such as the stem or mouth piece of a smoking or obacco pipe．A．Slight heating softens amber，but it is dangerous to attempt to bend it unless you have had experience．3．How best to clean a meerschaum and brier root pipe．A．For cleaning a meerschaum pipe see queries No． 2364 and 2474 ．For a wooden pipe simply crape，buff，and saudpaper it．4．What is the best or ng and repairing household articles，etc．？A．The
＂Techno－Chemical Receipt Book，＂\＄2；＂Workshop Receipts，＂ 4 vols．，$\$ 8$ ；＂Dick＇s Encyclopedia，＂$\$ 5$. （2741）W．L．G．asks：How can plaster Paris casts be cleaned，without being affected as rubbing with ground pumice or very fine sand paper． Various methods of rendering them impervious are given in the receipt books，a polish being imparted that enables hem to be satisfactorily cleaned．Otherwise the best plan is to keep dust of
（2742）N．A．asks how much wire is re－ quired to wind sewing machine motor as described in double C C，and for armature No． 20 double C C mag－ set wire？A．About $311 / 2$ pounds of No． 16 wire for the （2743）G．B J asks one or more of （2743）G．B．J．asks one or more of the
best formulas or processes of waterprooing compressed
paper so that it will not be affected by either hot or col
water．A．Parchmentizing by treatment in a relativel large quantity of a misture of 2 volumes sulphuric aci with 1 volume water is the best．This may be applied After immeersion in acid it must be washed off with water and dilute ammonia．The requirement of resist eraliy from the list of substances which might answe your requirements．
（2744）S．P．asks：What will put a gloss finish on oil cloth that won＇t crack when rolled up？A．We can oniy suggest the best quality of varnish
applied in successive thin coats．Possibly celluioid var nish would answer．Japanning wouid be excellent the goods wouid stand the heat．
（2745）O．A．R．writes ：I have a meer chaum pipe which when warm I have been rubbing with white wax to make it color．I have rubbed in to much；can you tell me how to draw the was out？A exudes from the pores．The trouble will thus be re ified
（2746）C．W．C．－The best information we have places the annual consumption of borax
（2747）W．J．R．asks：Will you kindly tell me how to make a good sticking paste for sticking deal of trouble in cold weather by stamps blowing oft A colorless paste would be preferred．A．If rye flou paste will not answer，try freshly made solution of gum tragacanth，or try one of the pastes given in the Scien－ TIFIC AMERICAN，No
ber 11， 1890 ．page 227.
（2748）I．T．E．asks how to make heap fiour paste，stich as is used by paper bas man facturers on machinery．A．Rye flour paste，made by pastes，and is used by bag makers．For other formula ee Scientific American，as in preceding query
（2749）C．W．H．asks（1）for a recipe for making a chemical ink eraser．A．Mix equal parts of oxalic and tartaric or citric actids in powder．When to recipe for making mucilage in stick form．A．Mouth lue is what you refer to．Soak good glue in water fo day or more until softened．Pour off excess of wate and melt the glue．For each part of glue used add one
（2750）W．H．E．：How can I make hin skin that I have，tough and strong？A．Massa or rub the skin thoroughly with flesh brush．Bathe frequently with cold water．Once or twice daily sp
（2751）W．E．B．aske ：What is the bes material to make the covering of a balloon that will or sheet is the only tissue that can be recommended，an it is too heavy and expensive．The gas is almost im posisparation，etc．，we refer you to onr SuPPLEMENT No． 726.
（2752）G．H．W．asks for dimensions of duction coil for telephone transmitter，viz．，size an The Bell Telephone Company＇s coils are wound thus： Primary， $1 / 2$ ohm，No． 18 to 24 wire；secondary， 80 ohms，No． 36 wire．This gives for No． 18 wire a length lengths can be found in electric resistance tables，
（2753）C．L．S．asks for the best polish to use on planos and organs，etc．，something easily ap－
plied，that will give a good gloss．A．Apply olive oil nd water mixed on the palm of the hand．No everer treatment than the se miled with a piece of loth in very bad cases，to be followed by the hand rubbing described
（2754）J．M．F．asks for a good receip or making a cement to put paper on iron pulleys
（2755）W．M．C．asks ：Wishing to freez ice for my own family use，I write to ask how I can et it out of them？A．Water can be frozen by freez－ ing mistures，such as 1 part nitrate of ammonium and 2 to 3 parts water，but on a small scale it is expen sive and unsatisfactory．Most of the salt can be recov ered by evaporation．The freezing mixture can be ap－ pled in an ice cream freezer．The ice can be removed
from thie boxes by pouring hot water over them while rom thie boxes by pouring hot water over them while
verted．Use tin boxes．The freezing misture must estirred vigorously．
（2756）J．I．C．asks：Of what is the red on the edge of tablets composed？A．Glue 50 with aniline or cochineal．Souk glue in water alone hen dissolve，and finally add glycern．
（2757）A．C．W．writes ：To settle a dis－ pute，and one which is liable to bankrupt somebody un ess nipped in the bud，I would ask，as I agreed to foo it，if ice forms underneath or on top，i ．e．，after say nches is formed，does it continue to form underneat or does it form on the top？A．It forms underneath， ing on its surface after becoming solidified by rain ing on its
（2758）W．H．M．writes ：I am troubled with an－over production of fatty matter from the sebaceous glands，and my nose keeps shiny and
greasy all the time．Can you kindly suggest something to dry these glands up？A．It would not be advisable to dry the glands up，but the eecretion may be dimin－ ished and the unpleasantness removed by the use of Cas－ tile or ivory（toilet）soap applied thoroughly with nail
brush about three times a week，or of tener．Sponge the nose gently with ether on the alternate days．Or you may use a saturated solution of boric acid and alcohol applied with soft linen rag three or four times a day，
（2759）C．O．D．asks：Will you be kind ough，to tell me，if you can，how to reduce parafine
ous on that it can be worked with the hands ？ I wis make plaster of Pewnin in ery uses．I have used glycerine，also lard，but have
had no success yet．I know it can be reduced and workean her，but don＇t know how to do it． （2760）J．R．H．asks：1．What is the pressure per square inch at a depth of 1,000 feet belo ing the same \＆Also is it true that a weight that will ink a man to a depth of 50 feet will sink him to any depth．If the pressure on the inside of a cannon at the me it is fired is 60,000 pounds per square inch，what s the pressure at the time the ball leaves the cannon or sun，say it is 60 feet long，as，for instance，a pneu natic gun now in use？Could you please give me the rule for findingthe pressure of powder or dynamite
when it i exploded ？A．Multiply the feet in depth by 0.433 for the pressure，which at 1,000 feet is 43 ounds per sguare inch．Any body that will sink 50跂 gun is relieved at the instant that the ball pasee he mouth．It is the relief that makes the report．The
ressure in a pneumatic gun varies from 100 to 700 ressure in a pneumatic gun varies from 100 to 700
ounds per square inch as the charge moves along． he pressure in the best ordnance is from 40,000 to he power of the powder or dynamite，of which the ex ansive test is the principal factor．See article＂Pro
jecties，＂in Chambers＂Mathematics，si．5）mailed．
（2761）H．T．B．asks ：Will yon please on the stage？
Chlorate of potash．
Perchlorate of notash
（2762）W．S．F．asks how to make a sho dressing for ladies＇shoes．A．We can supply you with
＂Workshop Receipts，＂ 4 th series，$\$ 2$ ，which contains umerous receipts for blackings．Also consult quer
（2763）G．V．A．asks：1．Does heat ap lied to a casting with a hole in it increase or diminis he size of the hole？For instance．I saw an engine ndertake to remove a crank pin from a alarge cast crank off the iron about the pin before undertaking to re move it．His philosophy was that the cooling contracted he iron away from the pin，thus loosening it．A．The expansion or contraction of a hole in a mass of iron de－ pends very much upon the relative thickness of the iron
in proportion to the size of the hole．If uniformly in proportion to the size of the hole．If uniformly
heated，the hole and metal expand together by heat， heated，the hole and metal expand together by heat， hile in a large mass of metal heated，the hole whe he by the metal is somewhat elastic and yields to the expan－ on strain of the heated outer mass．In the case that you state it was of course necessary to cool the crank
pin as much as possible． 2 ．When a boiler is worked pinth a high pressure and shut down for the night， everything being tight，what sort of a vacuum will be producea in the cooling down？Can it in any way be
come dangerous？Will the water in the boiler show its natural or true level while there is a vacuum？A．The vacuum，which is of no harm，as a perfect vacuum is never over 15 pounds to a square inch，and the vacuum in boilers seldom reaches 10 pounds，for which they are
ampiy strong．The case is different in the copper boilers of our kitchens，which are very thin and have been known to collapse by vacuum．The vacuum doe affect the water gauge
（2764）G．A．K．asks whether fluor I have found a certain ore which I hor of the same believe contains something of that mineral．A．Fluo spar is found as a natural deposit in great quantities and in various colors．It may
（2765）M．McI．asks：What is the simplest method of making rubber stamps？A．By
pressing a sheet of mixed rubber against a plaster matrix while heated to about the temperature of boiling he rubber being still in press，the curing is effected The matrix may be made from plaster of Paris by ou to query 2696.
（2766）J．W．F．asks（1）how to dissolve rude or virgin rubber．．What I want is to soften the rubber so I can work it into a round ball and remain
pliable to collect waste gold around the finisher＇s bench． A．Chloroform，tnrpentine or benzol are recommended 48 solvents．You can softer the gum by low heat，about
that of boiling vater，and press it into shape．Coat our mould，etc．，with talc powder．The best su bstance of all for this purpose is what is known as＂burned rubber，sold for artists use in removing crayon marks．
For full particulars of manipulation of Indaa rubber， burned rubber，etc．，we refer yon to＂Rubber Hand ply by mail for \＄1．2．Also ho o water silk．A．Silk is watered by hot calendering
（2767）W．H．G．writes ：I had an argu－ ment the other day with a friend of mine，and he said f you could dig a hole through the center of the earth the antipodes，and then drop a stone down from the op，it would hang in the middle with nothing to hold there；another one put in on the other side without nything to holdthem up．Will you please give me your opinion on this subject？A．The stone would naturally seek the sides of the hole．If it remained effectively equidistant，it would act as your friend describes，after ling up and down for a while．The second
（2768）J．W．B．asks：1．Has muriatic or sulphuric acid greater effect in dissolving wrought iron？A．There is little or nodifference between them．

2．Wiil sirup of 29° Baume density fall over a vertical
row of horizontal tubes as rapaidy as water in 160 heat
and 21 inches vacuum？A．It will not，as it will con． inually thicken and concentrate in its descent． Can you give any preparation with which to pain wrought iron，which will withsland 220° heat a
muriatic acid？A．Nothing reliable can be given． muriatic acid？A．Nothing reliable can be given．
Can you also name a preparation which will prevent iron from rusting and which will run off when heated to
190° ？A．Try paraftine wax，made more fusible if ocesary Try parain
（2769）J．B．S．writes：Would you have he kindness to give me a simple rule，and an illustra－ re in a math．How many supericial feet are ．The superficial feet in one face are given by multh－ plying the width and length together，bothexpresed in nches or in feet．If in incles，the product is divided eet one inch thick，multiply by seven and divide by ight．Thus 18 by $18=2 \frac{1}{4}$ superficial feet．This r aces to $1_{3 \frac{1}{2}}^{2}$ superficial feet one inch thick．If the en take double the ares of a single face to give both sides and add the product of $7 / 8$ by 72 inches（the perimeter erefore $1823 / 4+23 / 4+\frac{7}{10}=4 \frac{18}{18}$ euperficial feet．
（2770）G．A．G．writes ：We had a call moking it Crude pyroligneous acid comes the nearest to your保
（2771）J．H．M．asks：What chemical change，if any，takes place in the atmosphere of a closed carbon heated by a red hot shich A ．It is believed that carbon monoxide gas，which is poisonous，can pass
through red hot iron．There is some doubt，however s to how far the action may go，and
may be enough to be injurious or not．
（2772）P．B．writes：I find that a plunge attery or rather a chromic acid battery，of yery large Laclede battery，using for zinc a zinc of the Bunse battery，pint size．The zinc is to be bent out so as to set in the end of the jar，and a channel cut into the carbon cup toallow the zinc connection to pass out
without touching．The bending must be done before malgamation．I do not know the amperage of a cell hus constructed，but it is quite large，for one cell will heat a short piece of platinum wire，such as goes with small zincs will，I think，maintain its initial cur ent for five or six hours，which is doing very well，con－ idering that each cell hoids only a quart of solution． in plunge batteries．It appears to give almost as goo an electromotive force as zinc，and I believe can be used with much stronger solutions，and does not heat ike zinc when unamalgamated．It is certainly much cheaper．The iron I found best adapted to that use，of ny I used，was the largest size of iron wire nails， wire rods．Should any of your correspondents experi－ ell mentis direction or find out the amperage of the hear from them．I desire to ask you how the white surface caused by dilute sulphuric acid falling on colored marble can ke removed．A．By repolishing by mean

NEW BOOKS AND PUBLICATIONS．
The Life of John Ericsson．By Wil vo Conant Church．Charles S Sons．Pp．xii， 303 ；x， 357 ．Price $\$ 6$ ． In wesetwo boks the complete biography of Ericsson rapher．Whatever popylar renown has been hitaine grapher．Whatever popular renown has been attained
by the more public achievements of his busy life，many the most interesting and characteristic features oo particular in his work，and so mindful of his repu－ tation，that he hesitated to divulge much that he did which was in itself of the highest merit．All through the two volumes instances of his skill and ingenuity in engineering are met with．It is refreshing to read of his way of meeting the conservatism of old－time pre－
judices which so often sought to thwart him．It is an ex－ judices which so often songht to thwart him．It is an ex he is striving after the unattainable．But the moral effect has been felt in this direction，and people have learned to be more cautious than hitherto in pronouncing in our columns given resemes of the work of Ericsso We are exceedingly glad to find his full biography so handsomely and adequately presented to the public
book form．His views on mathematics book form．His views on maltent the ordinary mathe matician had no reasoning power or he would not be driven to the use of symbols unintelligible to others He wrote a letter giving a short method for determin－ ing the thickness of iron plates，ending with the note， A great mathematician would cover half a dozen heets with figures to solve the above problem．＂His
absolute reliance on his drawings appears when he rejected the use of measurements of partially com－ pleted engines having keyways cut and all arranged by the drawing only．The account of the caloric steam－ ship Ericsson，with her giant cylunders 14 feet in
diameter，of her stormy voyage to Washington，of the perfection of the machinery，which proved unable to mpart the necessary speed，of her sinking off Sandy Hook，with a view of the vessel at sea，reads like er disappointment．Column after column［could be filled with the accounts of the inventor and of his work The book itself must be recurred to by those interested

A handsome calendar for 1891 has been issued by Styles \＆for tioners，No． 77 Eighth Avenue，New York．It has attractive views in colors of the old colonial days in figares and pointer，for each month．

TO INVENTORS．

 INDEX OF INVENTIONS
 For whith Leters Patent of the January 13，1891，

and each bearing that date．

	Railway switch，A．M．Grubbs Railway tie，Hollin \＆Smith Railway time signal，F ．Robinson Railways．current collecting device for electric， R．M．Hunte	2んDvertisements．	00 Lar ¢00ks		
	Railways，rack rail for rack，P．Simons．．．．．．．．．．．．． 441,641 Regulator．see Electric machine regulator．Fur－ closet valve regulator．	Back Page．ench insertion $-\ldots \mathbf{8 1 . 0 0 \text { n line．}}$The above are charges per agate line－about eight The above are chareses per agate line－about eightwords per vine．This notice shows the width of the line， and is sot in agate type．Engravings may head adver－			
		tisements at the same rate per agate line，by measure－ ment，as the letter press．Advertisements must bereceived at pubication office as early as Thursday morn－ ing to appear in next issue．			
		USE ADAMANT WALL PLASTER Light，Photography，Microscopy，Optical Illusions，Me－ chanics，etc．A world of Vialnable Information．A Source of Rational Amusement．A superb work for			
			Cyclopedic scionce simplified．－By J．H．Pep－ per．With over 600 illustrations．Treation on Light，Heat．Electricit，Marnetism．Pneumatics．Acousticsand Chemistry．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．50		
			Popular Scientific Recreations．－Translated and enlarged from the French of Gaston T＇issandier，and pro－ fusely illustrated．This book includes the famous series won such wide appreciation in so many households．Ex－ periments in Physics and Chemistry，Natural Magic，		
		STEREOTYPING；THE PLASTER AND Paper Processes．－Composition and preparation of the mould，the best alloys of metal and proper degree ofheat，trimming and nending the plate，etc．A minute description of both processes with numerous illusira－ tions．A paper of great intereat to every printer．ByThomas Bolas，F．C．．．F．t．C．SCIENTIIC AMEHICAN SUPPLEMENTS， $\boldsymbol{7} \boldsymbol{j} \boldsymbol{3}$ and $\boldsymbol{\gamma} \boldsymbol{y}$			
			fully illustrated with the most artitistic woodcuts 9000 uts． fin large pages．Holiday edition．Half leather top．．．		
			Boys＇Book of Rcience．－The Boys＇Book of Sci－ of Metals．＂Illustrated with 43 engravings，chietty exe－outed from the uuthor＇s sketches．By H．G．Hine．Re－vised，with many additions，by T．C．Hepworth．New		
		Seneca Falls Mfg．Co．， 695 Water St．，Seneca Falls，Nı Y．			
			Home Experiments in science．－By T．o＇Conor Sloane，E．M．．A．M．．Ph．D．Illustrated by 91 engravings．		
			complete in itself．Containing from 110 to 175 pages． Prof usely illustrated．Handsomely bound： Marvels of Earth，Air and Water．		
		Power LATHES ${ }^{\text {P }}$ \＄60	Marvels of Astronomy． Marvels of the Elements． Half Hours of Scientific Amusement． Marvels of Invention and scientific Puzzles．		
		165 to 167 Highland Ave．， SIDNEY，OHIO．	Marvels of Invention and scientific Puzzles． Marvels of Heat，Light and Sound． Marvels of Geology and Physical Geography． Marvels of A nimal and Plant Life． Marvels of Electricity and Magnetism． Price，per volume． \qquad		
		ICE－HOUSE AND COLD ROOM．－BY R． G．Hatfeld．With directions for construction．Four engravit， 59 ．Price $!0$ cents．To be had at this office and of all newsdealers．			
		AIR COMPRESSORS，			
		Ingersoll－Sergeant Rock Drill Co． No． 10 PARK PLACE，NEW YORK． Send for Complete Priced Catalogue．			
	Typewriling machine．Hohenshell \＆Overholt．．．．444， 636 Typewriting machine．Ho Umbrella bracket，A．A．Sherman．．．．．．．．．．．．．444．i69		tars．Cements，ete．is Orthography of Te．innreal Words and Terms，etc．Fifty－second edition．By Chas．H．Has－ well．12mo，pocket book form．．．．．．．．．．．．．．．．．．． $\mathbf{4} .00$		
	Umberla bracket，A．A．Aherman．．．．．．．．．．．．．．．．．． 444.69				
		Mining，Tunneling， QUARRY \＆RAMRORD NORK． RAND DRILL co 23 Park Place new york ${ }^{3}$ ti	The Practical Steam Engineer＇s Guide．In he Design Construction and Manigement ornes，Steam Pumps，Boilers，Injectors，Governors，Indicators，Pis－ tons and Rings，Safets Vaives and steam Gauges．Forthe Use of Enyineers，Firemen，and Steam Users．By Emory Edwards．Illus，trated by hila Engravings． 1 ． 1 hird		
		STEAM ENGINE．HOW TO MANAGE． By J．C．S．－A very practical paper on the subject．How supply，how to clean the engine，how to clean the supply pipe．how to gauge the pump，etc．With 12 illustrations． Contained in ScIfNTFIC AMERICAN SUPPLEMENT，No． 747 ．Price 10 cents．To be had at this office and fromall newsdealers．	The Young Mechanic．－Practical Carpentry．Con－ taining Directions for the Use of all kinds of Tools，and for the construction of Steam Engines and Mechanical		
	Wheel．B．H．Gedge Whiffletree coupling，J．J．Kocher $444,4,00$ 444,46				
		GIC LANTERN			
			prising also a System vir inable Tables．${ }^{\text {illlustrated by }} 44$ plates，comprising nearly 200 flgures．By William		
		ecting Lantern Transparencies． We make several other styles			
	DESIGNS．		 		
		seum of Nat ural History，has charge ing．Slides to order from Amatear Negatives．Correspon－dence solicited．$\mathbf{1 6}$ Bekman street，B．New York City，U．S．A．			
			Magician＇s Own Book；or．The Whole Art of Conjuring，－Being a Complete Hand－Book of Parlor Mal，Mechanical，Magnetical，and Magical Experiments，		
	 Wateh bridge，A．Philippe				
	TRADE MARKS．				
		tained in SCIENTIFIC AMERICAN SUPPLEMENT No． $\mathbf{1 1 6 .}$ dealers．			
	Bronze，manganese，B．H．Cramp \＆Co．．．．．．．．．．．．．．．．．． 18.824 Chemicals，certain named．Chemische Fabrik auf		de Physique，＇with the author＇s sanction．By E．Atkin－ son．Ph．1．T．C．S．Professor of Experimental Sckence．		
		OSBY，WATER RELIEF VALVE	12 mo volume of over 800 pages，pprof usely illustrated by chromo－lithographic plates and 840 wood engravings． 8 8o． muslin ．．5．0才		
	Paper，writing and typewriter．W yckorf，Seamans		Webster＇s Unabridged Dictionary（comprising the issues of 1864．1879 and 1884），now thoroughl y revised and enla rg－ed under the supervision of Noah Porter，D．D．D．		
	Remedies for externai and internai use，vegetable． Remedies for exterbal a dicine Company American Herbal Medicine Company．	Single IBell chime Whistle，and all instruments used in connection with Steam，Air and Water． Sole Agents for Clark＇s Linen Fire Hose．NEW YORK． CROSBY STEAM GAGE \＆VALVE CO．98 Oil ver ist．			
			Mechanical Pastimes：－Being the frst Volume of the new Amateur Work Illustrated．＂A practical Maga－ zine of Constructive and Decorative Art and Manual Labor．With supplements sontaining Desions and Work－ ing Drawings to scale for Various Pieces of work，Use arge quarto volume， 586 pazes．Cloth．Price．．．．83．0才 \qquad Any of the above books promptly sent by mail， postpaid，on receipt of the price，by MIUININ de OO．， Publishers of the＂Scientific American，＂ 361 Broadway，New York． sent free to for our New and Complete Catatogue of Books，		
		$\$ 3$ PRINTING PRESS．Do an por som logue for two stamps．Kelsey di Co．，Meriden，Conn． CIAREIES Ventilating and Drying FANS． Light Kunning，Adjustable Blades，Self－Oiling Bearings． Also Rubber Press Rolls for Wool and Yarn Wushing and GEO．P．CLARK，Manuf． Windsor Locks，Ct．			

MACHINE-MOLDE

 gearinc.Driving Plant for Cable Railways. LEFFEL TURBINE WATER WHEELS. Shafting, Pulleys, and Hangers. Mixers and General Outtlt for Fertilizer Works b.-special attention

Robt. Poole \& Son Co., Baltimore,Md. GATES ROCK \& ORE BREAKER

 VELOCITY OF ICE BOA TS. A COLLEC,

THE PENNA. DIAMOND DRILL \& MFG. CO.
 LITTLE HERCULES DRILL CHUCK

 THE LEAD PENCILS "DIXON'S $\underset{\substack{\text { armerican } \\ \text { GRatite }}}{\text { S. M. }}$."

 PATENTS!

THE SMITH PREMER TYPEWRITER

Truss Hoop žriving. E. \& BuFAA. Holmes, Al.so a full line of wood Working machinery.
ON GAS ENGINES. - A ValuabLe

THE EACLE THE EASIEST RUNNING BICYCLE
N THE WORLD. N THE WORLD.
eed, Comfort and Safety AGENTS WANTED.
Large Illustrated Catalogue sent Free to any Address.
THE EAGLE BICYCLE MFG. CO., PARTIES DESIRING MACHINERY

WANTED.

CASOLINE and

 GAS ENGINES

INVFNTIONS WOMRKED OUT, Drawings and

BLUE PRINT Paner, finp fion Minites

Who has a bright thought to be worked to us. We send a primer first.

THOMAS ALVA EDISON. - A BIO

THE LONDON ELECTRIC UNDER

 Printinng por sail inspas ELECTRICITY The AMATEUR ELEETIRIAAN,

PROPOSALS

OIL WELL SUPPLY CO. Ltd.

ARTESIAN

 AIR BRUSH

STEEL TYPE FOR TYPEWRITERS
 THE STEAM ENGINE: ITS PRINCI-

2nd MACHINERY 薸票

Electical Experimenters. inventors and stur

TO HARDWA RE AND SEEL TOY MAN-
The S cientıfic A merican
PUBLICATIONS FOR 1891.
The prices of the difierent publications in the United

The scientific American supplement (weekly), one 5.00
The Sceientific American, spanish Edition (monthly) ${ }^{5.00}$

The Scientific American and Rupplement, . . 87.00
The Scientife A American and Architects and Build-
ers kdition,
The Scientific American, Supplement, and $\begin{gathered}\text { Archi- } \\ \text { tects and } \\ 9.00\end{gathered}$

D $\boldsymbol{\text { PDvertisements．}}$

COMPTOMETER
ALL ARITPMMETICALS

Victor Bicycles！

For pleasure，business，recrea－
tionn and for anything you
could use a bicycle for．
Overman Wheel Co．，Mlaker
The NeW Books．

Experimental Science

By GEO．M．HOPIKINS． 740 Pages．Over 680 Illustrations． SEND for full illustrated circular This is a book full of interest and value for teach－
ers，students，and others who desire to impart MUNN \＆CO．，Publishers， Office of The Scientific American 361 BROADWAY，NEW YORK．

 another so long，und，instead，ofers aset of experiments
whlch are largely of a notel character and vers strik－
ing．＂．Eiuginering and Miniul Journal．
 Ne All teachers of sclence are aware that real know－
ledge ie accurired best by the sudunt making expri－
ments for nimself，and any one who points out how
thot

chunic．book would be a most Judicious boliday gift．＂
Enulinerering und $\mathbf{M i n i n y}$ Jonrnul．

mamamam maneo．

$$
95 \text { MILK ST., BỌSTON, MASS. }
$$

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186， 787
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not fors such unlawful use，and all the consequences thereof，and liable to suit therefor．

耳•W。JOモIE ASBESTOS SEGTIONAL PIPE COVERIMG． （4） 4 ，
 A Non－Conducting Covering for Steam and Hot Water Pipes，etc． ASBESTOS BOILER COVERINGS． We are prepared to take contracts for applying Steam Pipe and Boiler Coverrings in any part of the United H．W．Johns＇Asbestos Millbar，Sheathings，Railding，Felts，Fire－Proof Paints， 87 Maiden Lane，New York． CHICAGO．Philadelphia．boston．

NEW KODAKS

MEETING OF THE IRON AND STEEL

The Lunkenheimer Brass Mfg．Co

A

 NEW CATALOGUTE VALUABLE PAPERS

HOMEMATEINCUBATOR．－PRACTI

THE COPYING PAD．－HOW TO MAKE

SMALL ELECTRIC MOTOR FOR AM

SCIENTIFIC AMERICAN SUPPLE－

SEWING MACHINE MOTOR FOR AMA－

GRAVESELEVATORS．

JENKINS BROS．VALVESI

¥́rientific ：Americam
The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year，Including Postage．Weekly 52 Numbers a Year．
This widely circulated and splendidy illustrated teen pages of useful information and a large number of oripinal engravings of new inventions and discoveries，
representink Enfineering Works，Steam Machinery， Nefr Inventions．Novelties in Mechanics．Manufactures，
Chemistry Cemistry，Elecetricity，＇Telegraphy，Photopraphy，Archi－
teeture，Arriculture，Horticulture，Natural History， etc．Complete list of patents each week．
Terms of Snbscription－－One copy the Scien－ TIFIC AMERICAN will be sent for one yeor－32 numbers－
postage prepaid，to any sulseriber in the United States．
 pubishers；six months， 81.50 ；three months，\＆1．．00． Clubs．－Special rates for sereral names，and to Post
Masters．Write for particulars． TTe sifest way to remit is by Postal Order，Draft．or
Express Money Order．Money carefully placed ind Express Money Order．Mones carefully ylaced inside
os envelopes．securels sealea．and correctly addressed，
seldom mpoes astray，but is is at the senders seldom moes．astray，but is at the sender＇s risk．Address
all letters and make all orders，dratts，eto

Srientific Anxericau ฐupylement This is a separate and distinct publication from THE
ScIRNTIFIC AMERICAN，but is uniform therewith in Size． every number containing sixteen larke pages full of en－ gravings，many of which are taken from foreign papers．
and accompanied with translated descriptions．
TBE Scientific American Supplement is publishen week 1y，and includes a a ery wide range of contents．
sents the most
recent papers by eminent writers in all the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural History，（jeography，A rchwology，Astronomy，Chemistr and Rail was Enyineering，Minime，Ship Euilding，Marine
and Engineering，Photography，Technology，Manufacturink
Industries，Sanitary Engineering，Asriculture，Horti－ culture，Domestic Economy，Biography，Medicine etc．A
vast amount of fresh and valuable information obtain－ able in no other publicaticn．
The most importent and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPPLEMETET for the United States and Canadia， 8,500 a yearr or one copy of the SCIEMTIFIC A AER ICAN and one copy of the SUPPLENENT，both mailed for
one year for \ddagger fivo．Single copies， 10 cents．Address，and

Guilding Cedition．
The Scientific American a rchiects＇and build copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture．richly
adorned with elegent plates in colors，and with other fine of modern architectural construction and allied subjects
on A special feature is the presentation in each number
of a variety of the latest and best plans for private resi dences，city and country，Including those of very mod
erate cost as well as the more expensive．Drawings in perspective and in color are exiven，together with full Plans，Specitications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this magnificent work tectural publication in the world．Sold by all newsdeal

MUNN \＆CO．，Publishers，
361 Broadway，New York
PRINTING INKS

