

a WeEkly Journal 0f practical information, art, science, mechanics, chemistry, and manufactures.

	NEW YORK, JANUARY 3, 1891.	

EXCAVATING AND PIPE LAYING APPARATUS IN USE ON THE BROOKLYN AQUEDUCT.

The operation of laying large pipe lines has hitherto been conducted by rather primitive appliances. The operations have generally been to a great extent manual, and little more than a derrick placed over the trench forswinging the pipes into place has been used in the way of machinery. The labor of laying such mains has been very severe, and progress necessarily slow, as the work is limited to one point of attack. To secure a consecutive line without sleeve connec-
tions the work must be advanced length by length, altions the work must be advanced length by length, always in the same direction and without intermediate
side of the trench. In advance of the whole arrange ment the excavation is kept in progress. The trench diggers work as long as practicable by throwing the earth out by hand. As the depth increases, the crane carried in advance of the hoisting plant is brought into play. It is used to elevate the earth from the into play. It is used to elevate the earth from the is shown in Fig. 1 of the to one side. This operation is shown in Fig. 1 of the engraving. As fast as neces-
sary, the apparatus is moved forward on the rails by sary, the ap
Along one side of the trench a portable railroad has been laid. This serves for cars to run upon to carry
off the dirt from the excavation where necessary, and
portions being laid in advance. The apparatus we illustrate has been used with great success upon the Brooklyn, N. Y., water works, in laying a new line of fortyeight inch pipes. As the sections or lengths of pipe weigh from 7,000 to 8,000 pounds each, the capacity of the machine has been sowewhat severely tested. It has, however, worked most successfully, laying frow o hundred to three hundred feet per day
The apparatus consists in general of a hoisting ap paratus and crane followed by a lead-melting plant, all moving over the trench. The two are separate and
independent of each other's movements. They are

1. Excavating and pipe laying plant at work. 2. Section of aqueduct, new pipe line, and pipe laying plant. 3. Iuterior of lead melting plant. 4. Ponring a joint. 5. Arrangement of joint for pouring.

EXCAVATING AND PIPE LAYING APPARATUS IN USE ON THE BROOKLYN AQUEDUCT.
to bring pipes to be laid in the trench. In Fig. 2 of the engraving the relations of trench, pipe-laying plant, and portable railroad are clearly shown. Below the pipe-laying apparatus the new line of water main is indicated lying at the bottom of the excavation.
The pipes, as fast as required, are run up to the scene of operations upon the portable railroad. The hoisting apparatus consists in general terms of a rectangu lar platform carried on four wheels and extending over and across the trench. Through its floor a longitudinal opening is arranged, directly over the center of the excavation, large enough for a pipe to pass through in a horizontal position. The superstructure serves as support for the jib tackle of the crane and to carry pulleys, etc., for handling the pipe. As the length of pipe is run alongside, skids or short timbers of wood are laid from the car to the platform, and a pair of skids are also laid across the opening over the axis of the trench. Two or more ropes are brought from the platform to the car, passing under the pipe and then partially around and over it, returning to the upper framework. At this point they pass through pulleys and are brought to the floor, where there is a steam windlass, which is seen mounted on the platform. On drawing in the ropes, the pipe, it is obvious, will be rolled up the inclined plane formed by the skids, and can be brought directly over the trench. The arrangement is what seamen call a common "parbucke." It is often used in the city in l^wering heavy barrels into cellars.
Slings are then placed sound the pipe now lying on the skids over the apertr : e. Tackle is hooked on, and it is lifted a little by the steam windlass, and the skids are withdrawn. It is then lowered into the trench. This stage of operation is shown in the cut. As it descends, the pipe layers guide it into position. Its small or spigot end is entered into the hub or socket of the preceding length, and it is blocked up in a horizontal position in line with the work. This ends this stage of operations.
The joint has next to be calked with oakum. This is driven by hand with a calking iron. It extends all around the pipe within the hub, and is of as even thickness as possible. It forms a base for the lead, which latter is the actual joint-making material. It should be noted that there is a slight space left between the abutting ends of the pipe to allow for changes of temperature
To complete the joint melted lead has to be introduced into the space in front of the oakum and the lead in turn has to be calked. As the apparatus just described is moved forward, the 'lead-melting plant seen in its rear is moved into its place. This consists of a house with furnace and lead pot, ladle, and crane. Its interior is shown in Fig. 3, the men being engaged in lowering a ladle full of melted lead. Next to the large furnace is a smaller circular furnace. This is used to keep the ladle hot when it is not in use.
The lead is lowered, as shown, into the trench, where it is received by the pipemen and poured into the joint, as shown in Fig. 4. Before doing this a band of iron hinged at the bottom is placed around the pipe and bolted at the top, so as to inclose the annular space in front of the oakum. A clay mouth or funnel, Fig. 5, is arranged for the lead to be poured into. The connection of two pipe ends, hub and socket, with their oakum and lead filling, and with the band in place, is shown in the small sectional view at the foot of the cut.
The lead at once solidifies. The band is removed, and the calkers attack the lead with large-faced calking irons and hammers and drive it home. This operation expands the lead and makes it fill the joint perfectly.
The metal being somewhat yielding does not form oo rigid a connection, and allows for changes of temperature. In spite of numerous attempts, leadcalked joints have never been displaced. The trench in rear of the apparatus is filled in as fast as it progresses, and the work is complete up to that point.
The object of the line is to carry water from the new reservoir between Rockville Center and Baldwins, on the south side of Long Island, to the Ridgewood reservoir and new pumping station at East New York. It will be a pressure line, and will have a capacity of twenty-five millions of gallons per day. It follows the line of the old aqueduct for part of the way. The sectional view, Fig. 2, shows the aqueduct full of water on one side of it. The aqueduct embankment is thus, in part, utilized in its construction.
The work is being executed by Mapes, Crawford \& Valentine, of Brooklyn, N. Y. They are the designers of the ingenious and efficient apparatus whose results have taken the direction of greatly accelerating the work we have described

Professor Orton, State Geologist of Ohio, says that the natural gas supply is rapidly and surely being exhausted. The way in which the gas is wasted makes the average stranger sick at heart. Great roaring wells, huge batteries of the cheapest and most wasteful types of boilers blowing off steam night and day, empty furnaces kept hot for weeks at a time strike him as crimes against the economy of nature.

Suintifir gmmoriam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN

One copy, six months, for the U., S., Canada or Mexico................. 1530 One copy, one year, to any foreikn country belong ing to Postal Union, 400

 Remit by postal or express money order, or by bank draft or check.

MUNN \& CO.. Publishers,
Dif The safest way to remit is by postal order, express money order
pratt or bauk check. Make all remittances payabie to order of MUNN
d CO.
NEW YORK, SATURDAY, JANUARY 3, 1891

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 783.

For the week Ending January 3, 1891.
Price 10 cents. For sale by all newedealers.
ARMS OF WAR.-The Lebel and Mannlicher Guns.-The new German army rifle.-Its construction and arrangements for secur-
ing magazine action.-A comparson between it and the Lebel rifte
CHEMISTRY.-Method for Rendering Aniline Colors Soluble in Benzene, Carbon Disulphide, etc.-An excellent suggeestion, and
details of a method for rendering aniline colors soluble in bydrocarbons and similar solvents...
Recovering Tin from Tin Plate Scrap.-By B. Schutrze.-A Recovering Tin from Tin Plate Scrap.-By B. Schultze.-A
method of recovering tin from scrap by chemical reactions in the iII. civil engineering.-The Metropolitan Rallway of Paris. Construction of a subterranean railway without entirely stoppin
surface transit - 4 illustrations
 Use of Water Power and Electricity in Tunneling.-A new
Uure in railroad engineering, to be used in the Andes Mountains. - ELECTRICITY.-Electric Power Transmission in Mining Opera-tions.-By H. C. Spaulding.-Review from the electrical stand
point of the work that electricity can do for the civil point
followed by a series of papers by prominent engineers, prepare and published under the auspices of the American Institute of Mining Engineers.-2 illustrations...
Small Electric Motor for A mateurs.-By G EERGE M. H Hopkins
-A simple Gramme electric motor for construction by the am teur.-Full details of its construction. -5 illustrations............. MEDICAL AND HYGIENE.-Alimentation as a Therapeutic Measure.-By Dr. G. Arcirie STockwell.-A valuable and pro-
gressive review of the philosophy of alimentation and of in anition... VI. MISCELLANEOUS.-Petroleum in South Africa.-Possibilities of the development of a petroleum field in South Africa............
The Chicago International Exhibition of 1993.-By JAMES Dridge... II. NA VAL FNGINEERING.-The 25 de Mayo.-A new twin scre ViII. TECHNOLOGY.-The Central Tobacco Factory in Constanti in Constantinople.- 5 illustrations................................... ung review of this rapilay exteadin appication of pas.-The rea

THE NEW CRUISER NEWARK.

On the 22d of December the new U. S. steel cruiser Newark had her official trial trip, and proved a great success, the contract requirements being exceeded by about five hundred horse power. This was developed in a continuous run of four and a half hours, at the end of which time the machinery was runuing more smoothly and the engines developing more power than at the commencement of the trial, a result which is seldom obtained on first pushing a new boat to its best performance. The steam pressure was kept at 161 and 162 pounds, the maximum revolutions of screw made were $129 \cdot 2$ per minute for fifteen minutes, the engines vibrat ing very little, and the firerooms were cool, rendering the firemen's work comparatively easy. The builders are to rcceive $\$ 100$ bonus for each horse power developed over 8,500 , and it is confidently expected that the final figures will show that 9,000 horse power was developed on the trial. The builders, the Messrs. Cramp, of Philadelphia, and the officials of the Navy Depart ment, were greatly gratified at the good showing made by the vessel, and in this feeling, it is hardly necessary to say, the people generally share, as there are few subjects which attract a more widespread or a keener interest than is manifested concerning each forward step taken in the development of our new navy.
The Newark's hull is the same as that of the San Francisco, whose fine lines have commanded much admiration, and which was illustrated and described in the Scientific American of October 18, 1890. The engines of the Newark are swaller, however, and are horizontal. The machinery is protected by a steel sloping deck, two inches thick on the top and three inches thick on the sides. The length of the vessel between perpendiculars is 300 ft .10 in ., length on water line 310 ft ., and length over all 327 ft .7 in .; extreme beam, 49 ft .; dcpth of hold, 28 ft .8 in .; mean draught $18 \mathrm{ft} .9 \mathrm{in} . ;$ displacoment 4,090 tons. There are four main cylindrical, double ended, return tube boilers, with four firerooms, and two smoke pipes, each 6 ft .6 in. in diameter. The boilers are each 19 ft .5 in . long, and 13 ft .6 in . in diameter, with three corrugated furnaces at each end, and a total grate surface of 540 square feet. There are two horizontal, direct acting, twin screw triple expansion engines, each in a separate compartment. The cylinders are 34,52 , and 76 inches in diameter, respectively, with a 40 inch stroke. The shafts are hollc : steel, the crank shaft being fourteen inches in diameter with a four inch hole, while the after section of the propeller shaft has an eight inch hole. The coal capacity of the vessel is 830 tons, which is disposed of in fifty-three different coal bunkers. She will burn four to five tons of coal per hour when pushed to her utmost limit
The armament of the Newark will be twelve six inch breech loading rifles; four rapid fire guns, two threepounders and two one-pounders; four revolving cannon and four Gatling guns. There are also six torpedo launching tubes. Three steel masts are adapted to carry fore and aft sails, and the fore and main mast have military tops.

OFFICIAL PROCLAMATION OF THE GREAT FAIR.
The last act necessary to start into booming activity the gigantic works pertaining to the great fair has been performed. The presidential proclamation has been issued, and soon we shall see holes in the ground and structures in the air. The following is the text of the proclamation :

By the President of the United States of America
A proclamation: Whereas, satisfactory proof has been presented to me that provision has been made for adequate grounds and buildings for the uses of the World's Columbian Exposition, and that a sum not less than $\$ 10,000,000$ to be used and expended for the purposes of said exposition has been provided in ac cordance with the conditions and requirements of section 10 of an act entitled 'An act to provide for cele brating the 400th anniversary of the discovery of America by Christopher Columbus by holding an in ternational exhibition of arts, industries, manufacture and the products of the soil, mine and sea, in the city of Chicago, in the State of Illinois,' approved Apri 25, 1890.

Now therefore I, Benjamin Harrison, President o the United States, by virtue of the authority vested in me by said act, do hereby declare and proclaim that such international exhibition will be opened on the first day of May, in the year 1893, in the city of Chicago in the State of Illinois, and will not be closed before the last Thursday in October of the same year. And in the name of the government and of the people o the United States, I do hereby invite all the nations of the earth to take part in the commemoration of an event that is pre-eminent in human history, and o lasting interest to mankind, by appointing representa tives thereto, and sending such exhibits to the World' Columbian Exposition as will most fitly and fully illus trate their resources, their industries, and their pro gress in civilization.

In testimony whereof I have hereunto set my hand and caused the seal of the United States to be affixed. "Done at the City of Washington, this twenty-fourth
day of December, 1890, and of the Independence of the United States the one hundred and fifteenth.
" Benjamin Harrison.
"By the President. James G. Blaine, Secretary of State."
The proclamation marks an epoch in the Exposition. The work heretofore done has represented the civic or ganization of the enterprise. Actual erection of buildings could not be commenced in the absence of the governmental sanction, now granted, and which comes just at the time when it is likely to be the most beneficial. The legislatures of many of the States are about to meet and will be asked to take part in the grand display. That all the States will liberally respond there is no question. The commission may now solicit foreign exhibitors to come to Chicago, and the contributions from abroad will doubtless be great and wonderful.
In this connection we would call attention to the very interesting and able lecture upon the Chicago Exhibition recently delivered before the Society of Arts, in London, by Mr. James Dredge, editor of Engineering, upon the nature and scope of the great enterprise. We give the paper in full in our Supplement of the present week, Number 783. The lecturer presents a brief history of the project of the fair. Its financial basis he considers to be equal to that of the recent Paris exhibition. He then describes the history, situation, resources, population, area, importance, trade, and industries of Chicago, giving a most glowing picture thereof, of which Chicagoans may well be proud. The author next proceeds to describe the grounds selected for the exhibition purposes, namely, Jackson Park, Washington Park, and the broad connecting strip known as the Midway Plaisaunce, the whole compris ing an area of 1,200 acres, more than ample for actual requirements.
The selection of Jackson Park with its lake front for the location of the great buildings is highly cowmended. He declares that no such favorable site has been ever placed at the disposal of an exhibition executive. The desirability of European participation is next discussed, and the important benefits likely to be realized by English exhibitors are forcibly stated. But whether a British section is created or not, the author urges every Englishman who can spare the money and time to visit Chicago in 1893, for in no other way can he become so readily informed respecting the vast capabilities and resources of America and her wonderful advances in industry and invention. It is evident the undertaking will be full of the greatest interest to the thoughtful foreign visitor
In the discussion which followed the reading of the lecture, some most excellent and some quite funny English ideas were expressed, all of which are given in our Supplement report.

PROGRESS OF THE GREAT RAILWAY TUNNEL UNDER THE HUDSON RIVER.
Since our last account, published in the Scientific American of November 1, about 470 feet have been added to the Hudson River tunnel, which brings the total completed length up to 2,720 feet. This indicates a progress at the rate of about 7 feet per day. The work is progressing without interruption. By re moving the intermediate accumulating pump, and bringing the power of the pump direct to the hydraulic jacks, the Beach pneumatic shield is advanced the width of one of the rings in eight minutes, a progress formerly requiring from 2 to 4 hours. Formerly, the great trouble was in getting the shield ahead, at pres. ent the great obstacle is in getting away the excavated silt rapidly enough. A system of chutes is soon to be tried, one under each opening in the shield front, down which the silt will slide direct into the waiting cars, instead of shoveling it by hand as heretofore. The company hope to record ten feet per day when these changes are completed.

NEW TERMINUS OF PENNSYLVANIA RAILROAD IN JERSEY CITY.

The work of elevating the tracks and terminal struc tures of the Pennsylvania Railroad Company, at their terminus in Jersey City, has so far advanced as to clearly outline its completion, advantages and defects. Entrance to Jersey City has been effected upon a two track roadbed. By the present change to the elevat ed plan, four tracks will be obtained. Beginning at a point back of the city near what is known as Bergen Hill, a slope ultimately merging into an iron superstructure, similar in design to the Sixth Avenue elevated road, has been constructed, to the station at the water front, about one and a half miles. The part so nearly completed is but one-half, or two tracks, of the system, the present road tracks being moved a little one side, that the business of the road might continue until the two elevated tracks are ready for use, after which the other half will be erected and wedded to it. The structure is a continuous plate II girder in it continuity, including street bridging, with scarcely an exception.
The broad girders and substantial upright columns
its kindred structure in New York, promise is given o a metallic resonance under moving t
burdensome to nerves near its path.
High in the air, at the river front, timbers of massive strength are being put up, as a superstructure for the erection thereon of the iron train shed.
The work so far as accomplished has ail the characteristics of strength, but few of beauty, as compared with the terminal approaches at Philadelphia.
On the New York side, work has been commenced in raising the height of the ferry houses to accommodate the two-story boats that are to be used in connection with the elevated structures on each side of the river This part of the system we described and illustrated in our issue of February 8 last.

Magnetic Rocks and Ships' Compasses.

The following extract from a letter of Profs. Rucke and Thorpe, which recently appeared in the London Times, may be of interest :
As it has been suggested that the loss of her Maj esty's ship Serpent, lately wrecked at night on the north coast of Spain, may have been due to a deviation of the compass caused by magnetic rocks, we think your readers should be warned that such an explanation should only be accepted after rigorous proof. In the first place, it must be borne in mind that ordinary ironstone is not magnetic. Metallic iron and the mag netic oxide are practically the only substances which could affect the compass to an appreciable extent Large disturbances generally occur in the neighbor hood of basalts, gabros, and the like, throughout which magnetite is scattered in a more or less finely divided state. Such rocks are plentiful on the west coast of Scotland, and on the island of Canna there is a clifi named Compass Hill, from the great effect which it produces on the magnet.

We have made a special study of the magnetic properties of this island, and can confirm the statement that its basaltic cliffs are powerfully magnetic. The needle of a compass placed near them may be deviated by two points. The effect, however, diminishes very rapidly with the dis tance, and is inappreciable on a ship's compass 200 yards from the base of the hill to which tradition ascribes, and in which we have ourselves detected, the most powerful magnetic properties. We have tested this on more than one occasion. In particular, in 1888, we approached the island from the north. The course was magnetic S. $1 / 4 \mathrm{E}$., a direction most favorable for the detection of the effect of Compass Hill. We passed it within 200 yards of the shore, but observed no effect on the compass.

Nowhere in the United Kingdom have we discovered a disturbance which extend for a mile and also produces throughout that distance a constant deviation of the compass of as much as a couple of degrees. While, therefore, it is difficult to assign any limit to what might occur in an extraordinary and special case, and while we believe that there are some well-authenticated instances of magnetic rock affecting seriously the compasses of ships in their im mediate neighborhood, the greatest caution ought to be exercised in accepting any such instance as proved It is contrary to general experience that intense local magnetic disturbances should also be far reaching.

White Ants in India.

That species of Termes known as the white ant i very abundant in India, and is dreaded by all European residents, on account of its extraordinary ravages, es pecially in the larva state, in which it is truthfully called a worker.
The workers unite in colonies of countless number and take up their abode in the ground, in wood, on the ceiling or roof of a house, making tunnels and form ing routes which lead to the center of their nests.
Their deeds are deeds of darkness, for so ingenious are they that they form the tunnels inside and leave the surface of the door or beam intact.
I was standing by the door of our parlor, says C. M. Wherry, in the Graphic (Chicago), talking to a friend, and on putting my hand upon the door frame, found that it was hollow. On further examination it was found to be filled with earth along one side, which the Termes had deposited as they worked their way through.
One morning our sweeper removed a pile about two feet in height from our dining room floor, but the en ergetic creatures, nothing daunted, began their work over again, and by the next morning the pile was a
vard in height from the floor and up the side of the yard in height from the floor and up the side of the wall.
Day after day the sweeper wielded his broom over he spot until he was forced
As a last remedy, after a great many experiments, he poured a gallon of kerosene over the spot and was exceedingly rejoiced to find that at last they had been diven away after two weeks of hard fighting. But alas! his spirits sank within him when one morning few days later he found the pile higher than ever.
Jt became necessary to dig for the queen, as after
her expulsion no more are hatched, and they gradu-
ally disappear. A hole in the cement floor was dug i
which a horse could have been buried, before th queen was found in the center of her colony.
The abdomen of the queen becomes very much dis tended with the innumerable eggs which it contains It is said that one such insect has been known to de posit 80,000 eggs in one day. The larvæ are a creamy white and transparent enough to show the substance in the body with which the tunnels are moistened when in construction.
After a time they acquire wings, and flying about during the night, lose them. Being particularly at tracted by lamp light, many swarm around the draw-ing-room lights until the floor is quite littered with the wingless creatures, which soon become the prey of lizards and toads, and by daylight, of birds. The na tives do not eat them as the Africans do.
On account of their secret ravages, the houses of Europeans and of most natives are usually only one story high, with plastered floors and roofs of earth or grass, which can be renewed every few years.
I have known of people being severely injured by the falling of a heavy mud roof, caused by the white ants having eaten out portions of a heavy beam. So common are they, that railroad ties and telegraph poles are often made of iron, as nothing but metal seems to be impervious to their waste.
Trunks and boxes must be kept off the floor, on bricks at each corner, or on stands made for the purpose. It is a common occurrence to walk into a room some morning and find a carpet eaten in several places, or a box of clothing tunneled through and ihrough, from which you could not get a square large enough for a table napkin. Thus a housekeeper's life becomes one of everlasting vigilance.

American Cars and Locomotives for Foreign

Two complete trains of drawing room cars have jus been completed for the Buenos Ayres and Ensenada Port Railway Company by the Gilbert Car Manufac turing Company, of Troy, N. Y., U. S. A., and St. Ermin's Mansions, Westminster, England. Each train consists of four saloon cars, two ladies' cars, one buffet and smoking car, and one baggage car. The extreme length of cars is 65 feet, with the exception of baggage car, which is 53 feet by 9 feet 10 inches wide. The gauge of rails is 5 feet 6 inches. The whole of the ma terial is of the highest class, and the cars are of hand some design and finish.
The government of New South Wales has placed with the Baldwin Locomotive Works an order for twelve tenwheel passenger locomotives, somewhat similar to the engines of the same type built for the Baltimore and engines of the same type built for the Baltimore and The Railroad Gazette says limited weight-on account The Railroad Gazette says limited weight-on account
of the bridges-makes it necessary to reduce the dimenof the bridges-makes it necessary to reduce the dimen-
sions somewhat, while the specification of materials is altered to conform to the practice of the New South Wales government. Thus, the fire boxes will be of copper, tubes of brass, staybolts of copper, and possibly the wheel centers will be of wrought iron. The speci fications are not yet fully determined. The engines will have screw reversing gear. The service for which they are intended is to haul passenger trains weighing 144 gross tons- 2,240 pounds-at a speed of 22 miles per hour up a grade of 176 feet per mile, or trains weighing 176 gross tons at the same speed up grades of 130 fee per mile, there being curves of 528 feet radius on the 130 foot grades. In all important respects the engines will conform to American practice. These egines are to be built with the utmost dispatch and shipped direct to Sydney by steamer.

Colorado Electrical Street Railways.

Electricity as a street car motor is rapidly supersedng other mediums in Western cities.
Denver has already thirty miles of electrical street road in operation, employing an aggregate of 1,150 horse power of generators, 58 motor cars, each titted with two 15 horse power motors, and 60 trailers, tra versing the city and reaching out in every direction to suburban points.
The old cable and horse car companies are rapidly adopting what is apparently to be the motive power of the future for all city and suburban traffic. Several additional electric lines are in contemplation. Some re already in process of construction, notably the so-called Suburban line of 15 miles and the Golden line of 21 miles mentioned in a previous issue.
The West End line uses double truck cars 40 feet long and of 2,000 pounds weight, fitted with two 15 horse power Sprague motors, this motor and overhead wires being in general use on all the lines.
The Colorado Springs electrical main line, with branches, is 22 miles long, and runs to Colorado City, the former capital of the State; to Mauitou, connect ing with the new steam railway to the summit of Pikes Peak, altitude 14,150 feet, and to numerous other points f interest. The aggregate power of the generators of this line is 280 horse, employing 18 motor cars and a like number of trailers.
The various lines are all doing a large and an appa rently increasing and profitable business.

the photographic necktie

Where will the progress of instantaneous photoyraphy end? In view of the admirable results obtained by scientists, and especially by Mr. Marey, inventors have for several years been setting their wits to work to devise small apparatus for allowing amateurs to take photographs without any one seeing them do it. We have already made known the photographic opera glasses and hat; but here we have something cleverer, and designed to meet with great success among practicians: it is a question of a necktie provided with a pin. The latter is an objective, and the necktie is a camera. When any one approaches you and speaks to you at a distance of 2 or even 3 ft ., you press a rubber bulb concealed in your pocket, and you have the portrait of your interlocutor.
This ingenious little apparatus, with which also general views may be taken, was devised by Mr. Edmond Bloch, who has operated it in our presence, and, although the instrument is not yet being manufactured for sale, we have decided to make it known to our readers at once.
Fig. 1 represents the photographic necktie, and Fig. 2 gives a front view of it as it is to be worn by the operator, the metallic camera, which is flat and very light, being hidden under the vest. Fig. 1 gives a back view, the cover of the camera being removed to show the interior mechanism, comprising six small frames which are capable of passing in succession before the objective, and which permit of obtaining six negatives. The instrument may be constructed with 12 or 18 frames. The apparatus is operated as follows: The necktie having been adjusted, the shutter is set by a pull upon the button, A (Fig. 1, No. 2), which passes under the vest. In order to change the plate, it is necessary to turn from left to right the button, B , which has been introduced into a button hole of the vest, and which simulates a button of that garment. This button must be turned until the effect of a locking, which occurs at C (Fig. 1, No. 1), is perceived, and which puts the plate exactly before the objective. In order to open the latter, it is necessary to press the rubber bulb, D, which has been put into the trousers pocket. The rubber tube, E, passes under the $v e s t$ and serves to transmit the action of the hand.
In order to charge the apparatus, it is opened at the bottom by turning the small springs, G G G ; the sensitized plates are put into the frames, and the springs are turned back to their former position.
The apparatus is scarcely any thicker than the ordi nary necktie called "Regate." The camera that contains the plates is not more than 0.2 inch in thickness. The six frames are carried before the objective through an endless chain, as shown in the figure.
Mr. Bloch has shown us some of the photographs that he has taken with this first apparatus, which he considers as yet but an experimental instrument. We reproduce herewith three portraits obtained with the apparatus, Fig. 3, through the minute objective skillfully concealed in the center of the pin. These photographs are about $11 / 2$ inch square, and are sufficiently sharp to allow the portraits to be recognized. If this apparatus can be well constructed, we predict a great demand for it.-La Nature.

A COMBINED HARROW AND CUTTER.

The implement shown in the illustration, which forms the subject of a patent issued to Mr. Thomas \mathbf{L}.

FLANAGAN'S HARROW AND CUTTER.

Flanagan, of Vicksburg, Miss., is also capable of use as a rake or cultivator, and is designed to be quickly and conveniently manipulated. It has a main outer frawe and an inner suspended frame, a series of hangers from the front cross bar of the latter having slots which re-
ceive a bar extending from side to side of the main frame, this bar being raised and lowered by upright rods, threaded at their ends, on which is a nut with handle attached. At each rear corner of the main frame is a standard carrying a segmental grooved pulley, a standard on each forward end of the frame supporting a shaft carrying segmental grooved pulleys in alignment with those at the rear, while a chain secured to the front end of each segmental pulley forward is extended by a link to connection with the for-

Figs. 1 and 2.-PHOTOGRAPHIC NECKTIE-BACK AND FRONT VIEW.

Fig. 3.-facsimile of portraits obtained with the apparatus.
ward̃ side of the rear segmental pulleys. The forward cross bar of the inner frame is hinged to the adjustable bar of the main frame, and the inner frame is also attached to the outer by a length of chain at each rear corner, the chains being carried up over the segmental pulleys to attachment at a point near where these links are attached to the pulleys, the inner frame being
raised and lowered by a lever through these link and raised and lowered by a lever through these link and
chain connections. Upon the inner frame are transverse shafts supporting the teeth, formed in the shape of a sickle, any one or more of the teeth being readily removable as desired, while the forward teeth have beveled side faces to throw the dirt to the right and beveled side faces to throw the dirt to the right and
left. The rear teeth are so placed that thoir convex edges will face to the front, and this edge is sharpened or brought to a knife edge, that the teeth may act as pulverizers, the shaft to which these teeth are attached being held in position by springs, to permit the teeth to pass over obstructions. Levers upon the forward transverse shaft of the inner frame are so connected by means of links as to enable the operator to pive the desired inclination to the two forward series of teeth, these levers being adapted for latch engagements with racks. The implement may be used as a cultivator by removing two of the middle teeth from their spindles and raising the rear set of pulverizer teeth. As a harrow the teeth are intended to enter the soil about twelve inches, and when the implement is used as a rake, the rear set of teeth is also preferabl removed.

Making the Deserts to Bloom.

 Professor Hilgard, Director of the Agricultural Experiment Station at Berkeley, and esteemed the best authority in America on these matters, says the underflow of great gravel beds existing in the southern part of California is proving to be of increasing importance as a source of irrigation supply. It iṣ possible to maintain and increase the supply of water far beyond its present magnitude. All that is necessary is to understand the controlling principle of its action. These gravel beds are natural storage reservoirs. They may be emptied andreplenished, with due regard to the rainfall and drainage. Antelope Valley, in San Bernardino and Los Angeles Counties, a high intermountain plain or basin
stretching between the Mojave Desert and the upper part of the great Colorado Desert, has been considered, until recently, almost irreclaimable. There are now upon it several great fruit colonies.
In reply to inquiries for information sent out there by the departwent, interesting answers have just come. They give the details of three large surface ystems of irrigation by water drawn from mountain streams. This has all been done since April, 1889. There are fifty miles of main ditches, five feet wide at the top, and fifty miles of smaller ditches, two and a half feet wide at the top. There are three reservoirs with a capacity of $30,000,000$ gallons. There are five dams, five head ways, seven weirs, and six mountain tunnels. The expenditures to date amount to $\$ 450,000$. To this will be added $\$ 21,000$.
The land now irrigated amounts to 10,000 acres, and will be increased to 25,000 acres Small grains, cotton, and alfalfa are the chief crops. Such experiments as have been made with fruits have given great results. The land is chiefly government, unpatented, and, therefore, unassessed for taxation. Patented land, irrigated, sells for from $\$ 10$ to $\$ 50$ an acre. Nonirrigated land is worth from $\$ 2.50$ to $\$ 8$ an acre. Five artesian wells have been sunk in a belt of twelve miles. They indicate that a much greater supply of water is available. These wells are from 180 to 500 feet deep. They have a flow of from 50,000 to 200,000 gallons in twenty-four hours. They serve about 7,000 acres. There are 100 dug and bored wells, with wind or steam power, ranging from 20 to 100 feet deep. These wells penetrate the gravel drift, and supply water for vegetable and stock purposes, and for desert and tree claims. This is the beginning of what is believed will result in the reclamation of the whole valley, and even of the Mojave Desert.-Pacific Lumberman.

AN IMPROVED SCISSORS GRINDER.

The device shown in the illustration is adapted for attachment to a sewing machine table or other support, and is so constructed that the edges of scissors blade may thereby be hollow-ground when desired, without grinding the cutting edges, the separate grinding of the latter being also provided for. It is a patented invention of Mr. Frederick Visscher. The shaft carrying the emery wheel passes through two hubs, on each of which is an eccentric collar on which is fitted the lower end of an upwardly extending plate having a vertical slot, and a circular flange integral with its upper edge. A second inner plate is attached to the outer plate by a set screw, but has a slot by which it is capable of free vertical movement, and when the outer plate is rocked upon its eccentric collar the inner plate is carried upward thereby, there being plates on each side of the body, and the inner plates also having horizontal flanges at the top to correspond with the

VISSCHER'S AUTOMATIC SCISSORS GRINDER
flanges on the outer plates. From the upper edge at each corner is an upwardly extending arm, and the arms of the plates at each side of the body are connect ed by rods or bolts, so that the connected plates constitute a carriage to receive the blade of the scissors to be hollow-ground. When the carriage is carried in the direction of the clamp, the blade is transversely presented to the grinding wheel, but by reason of the ccentric mounting of the carriage the cutting edge is kept out of contact with the wheel. The carriage is locked in the desired position for proper grinding by a slotted curved latch which extends from the carriage a binding screw passing through the slot of the latch. When the cutting edge of the blade is to be ground, it is placed on a tapering block held to slide on the body, as shown in the illustration. The block is adjustable to and from the wheel by means of a set screw, while it is retained in adjustment by a binding screw, and the blade is held in proper position upon the block by means of a spring, the lower end of which has a bearing upon the upper face of the blade.
For further information relative to this invention address the patentee, or Mr. Frederick F. Visscher. No. 51/2 Dexter Avenue, Montgomery, Ala.
the worcester chemical fire pail. The fire pail shown in the accompanying illustration forms the subject of several patents which have been taken out in the United States and foreign countries, and has received the strong indorsement of leading insurance men, and of prominent manufacturers and mill owners who have given it a trial. The pail proper is made of glass, consequently it cannot rust out, soak out, or dry up and fall to pieces, as so frequently happens with other pails. It has a threaded top as

the worcester chemical fire pail complete.
glass and has openings in its sides at the top so that the liquid contents may be readily inspected. After being filled with a chemical fire-extinguishing liquid, the glass pail is hermetically sealed with a soft tin foil cover, Fig. 3, which is secured in place by having screwed over it a rim, shown in Fig. 6. The bail, shown in Fig. 4, is so made as to hold the pail and tin jacke together; and the tin cover, which fits over the tin foil top, is connected by a small chain with an eye on the hook by which the pail is ordinarily suspended ready for use, as shown in one of the views, so that when the pail is quickly taken for use, in any emergency, the cover will be automatically removed. The tin foil
cover is then readily broken with a slight thrust of the hand, and the liquid, which has been kept from evaporation, is ready for use. This chemical liquid is said to contain no acid, will not freeze, and will not harm the hands or clothing, and will not lose it strength by being kept for a long period. Coming in contact with flame, it is designed to evolve 1,500 times its volume of fire-extinguishing vapor, and also form a tireproof coating, making it impossible for the fire to continue where it strikes.
Further information relative to these handy fire buckets may be obtained of the manufacturers, the Worcester Fire Appliance Company, Worcester, Mass

A PROJECTILE ROTATED BY THE EXPLOSIVE,

In the projectile shown in the illustration, which has been patented by Mr. William Bowman, of Atchison, Kansas, it is designed that a portion of the gases generated by the explosion shall pass through transverse and horizontal passages of the projectile, and, bearing

bowman's projectile

upon the walls of the passages, act to turn the pro jectile, on the principle of the Barker mill. Fig. 1 is a perspective view, showing in dotted lines the passage through the projectile, Fig. 2 representing the butt end of the projectile, in the edges of which is the usual gas check, held in place by set screws. Two or more bores are made from the forward end of the projectile to a point not far removed from its base, where they are in tersected by smaller transverse bores, tangential to an imaginary circle concentric with the peripheral face of the projectile, the other end of the smaller bores opening into bores extending forward from the butt of the projectile. The transverse bores may be made, as shown in the cross sectional view, Fig. 3, by boring in from the outside of the projectile, and afterward in-
shown in Fig. 1. The glass interior is inclosed in a corrugated tin jacket, Fig. 2,

serting plugs to close the exit of the gases excep t through the longitudinal passages, or such transvers bores may be made diagonally from openings in the base, thus avoiding the use of plugs. The necessity of rifling or grooving gun barrels is designed to be obviated by the use of this projectile, to which the neces sary rotary motion may be given by the force of the gases of explosion acting on the walls of the passages.

The Preservation of Timber.
The chief processes that have been employed for the preservation of timber are, says Engineering, kyaniz ing, burnettizing, and creosoting, that is, impregnation with bichloride of mercury, with sulphate of zinc, and
tried, but only these three have survived. The firs seems to be well adapted for bridges, or for timber exposed to weather alone, and not to constant moist are. Examples have been found in America which were in a good state of preservation after twenty-eigh years' exposure. But when kyanized timber has been used for railway sleepers and pavements it has had only a doubtful success, probably in consequence of the washing out of the corrosive sublimate. The wood is allowed to steep one day for each inch in thickness of its least dimension, and one or two days in addition The solution contains 1 per cent by weight of corrosiv sublimate, and from 4 lb . to 5 lb . of this are absorbed per $1,000 \mathrm{ft}$. b. m. Burnettizing may be performed in the same way, sulphate of zinc being the chemical employed, but it is usual to steam the timber first to open the pores, and then to subject it to a vacuum to withdraw the sap. If this be not done, the timber must be stored for a considerable time to allow it to dry naturally. When treated the wood should not be placed in exposed situations, such as bridges, or els the zinc will be washed out and leave it unprotected This is particularly true when weak solutions are used and when the potency is greatly increased the tenacity of the timber is impaired. In Germany 1.91 per cent is considered the proper strength for railway sleepers. Several suggestions have been made to confine the zinc in the timber; Mr. W. Thelmany proposed to subject the timber to a subsequent bath of chloride of barium with the view of producing an insoluble sulphate of baryta. It is doubtful, however, if the reaction would go on in the minute sap ducts of the wood. Another process is that of Mr. Wellhouse, who also employs a double solution, the first being chloride of zinc to which a little glue is added, and the second a solution of tannin. It is claimed that the latter upon coming in contact with the glue forms small particles or films of artificial leather which plug up the mouth of the sap ducts and prevent the zinc being washed out Certain experiments which have been made seem to confirm the idea. Another plan consists in using a solution of chloride of zinc and gypsum. The gypsum crystallizes and hardens inside the sap ducts, and forms partitions to hold the zinc within the cells. There are three burnettizing works in the States, and the cost of the process is about $\$ 5$ per $1,000 \mathrm{ft}$., board measure, or 20 cents to 25 cents a sleeper.
Creosoting is so well understood that it scarcely needs description. It is in almost universal use for sleepers for English railways, and no other process has been commercially proved capable of resisting the Teredo navalis and Limnoria tenebrans. Here and in Holland 10 lb . to 12 lb . of creosote oil per cubic foot of timber are found sufficient for harbor purposes; the French use 19 lb . for the same purpose, and a similar quantity has been found necessary in the Gulf of Mexico, where the marine worms cut off an unprepared ple in eight months. The creosoting process needs to be well done to be effective, and for ordinary purpose 8 lb . to 12 lb . are required per cubic foot of timber.
It was generally considered that the presence of heavy oils in the creosote was objectionable, and there fore engineers were accustomed to specify that not more than 10 per cent should be present. This view has been controverted by others, who take the view that it is only the heavy oil which can be relied upon to exert a continuous preservative action, the creosote
time. This view receives confirmation by the good results of the preservative process introduced by Mr Henry Aitken, of Falkirk. This consists simply in soaking timber in melted naphthaline for a period varying from two to twelve hours, depending on the bulk of the piece. A temperature of 180° to 200° Fahr is all that is required for the process, and is mos easily obtained by placing steam pipes in the bottom of the tank which contains the material. Simple as the process is, that is not its chief merit. A more valu able feature is that it can be applied to green timber, thus doing away with the long and expensive proces of seasoning. The naphthaline makes its way through the pores of the wood, decomposing the albuminoid compounds, and displacing both sap and water. It then becomes fixed, and the whole substance is per meated with solid antiseptic of a permanent character

A JOURNAL CAP FOR WOOD-WORKING MACHINES. The illustration represents a journal cap more es pecially designed for use on bearings of spindles which carry matcher heads on planers, and also adapted for other machines, being capable of ready and accurat adjustment to take up wear. It is a patented inven tion of Mr. Willard A. Shank, Amoskeag, Ga. On the inside of the casing is a longitudinal recess in which are held two bearing plates or boxes, as shown in the perspective view, Fig. 1, and the sectional view, Fig. 3, these plates together forming a semicircular reces to engage the top of the spindle. The plates are con nected with each other on top by a hinge, as shown in Fig. 2, the pintle of the hinge being passed through eyes in the lower ends of screw bolts which extend up ward through hollow screws screwing in the top of the casing. Nuts on the outer threaded ends of the bolt crew against washers on the outer ends of the hollow screws, and by screwing the latter up or down in the casing the pintle of the hinge is raised or lowered to nove the bearing plates up or down in the recess. An

SHANK'S JOURNAL CAP.

arm extends outwardly from the side of each bearing blate through a hollow screw adapted to abut against the plate, a nut screwing on the outer end of the arm gainst a washer bearing on the hollow screw, whereb he bearing may be firmly held in place by screwin up the nut. When the cap is first used, the bearing plates are left slightly apart, as shown in Fig. 1, the crews being afterward adjusted to move the plates downward and inward when their inner recessed sur faces have become slightly worn, whereby all slack or wear is taken up.

Phenomena by Means of the Electric Discharge In a recent communication to the Academie des Sci ences, M. Ch. V. Zenger states that observations of the effects produced by the Wimshurst machine on smoke glass plates led him to experiment with a view of ob taining an electrically produced imitation of various well known solar phenomena. A large sheet of glas well dried on one face and covered with lampblack on the other was placed between the terminals of a Wims hurst machine. The + pole was brought very close to the blackened surface, in the center of which ther was a circular tin disk. The - pole was from 10 to 20 cm . distant from the other side. Sparkless discharges disturbed the blackened surface, and a representation of the lines of electric force was drawn upon the glass The result was a striking reproduction of a total eclipse of the sun, the metallic disk representing the moon. The lines of force produce around the edge of this disk all the chromospheric phenomena witnessed during a solar eclipse, such as eruptive, linguiform and uroral protuberances. If the experiment is carried out in a dark room, red flames may be seen com ng from the edge of the disk, which exactly resemble in form and color those visible during a solar eclipse Blackened glass balls submitted to the Wimshurst dis charge exhibit white spots, the photographic negative of which are precisely similar to those of sun spots.

Sorrespondence.

The Maohinist's Shibboleth.

To the Editor of the Scientific American:
To form an estimate of a machinist's ability, in these days of improved methods, is not so easy a matter as it was thirty years ago. Almost everything is now done on machine tools, and the hammer, chisel, and tile are little used. In the old time, it was by his manner of using these that we were accustomed to gange the skill possessed by the new man. If he took hold of his hammer handle at the middle, and struck as if his elbow had no joint, or took up a file with his thumb under the handle and shoved it across the work with a teetering, jerky motion, he would at once be put down as an impostor.
Sometimes worse blunders than these were committed. For instance, grinding the cutting edge of a drill on the wrong side, or attempting to put a belt on a pulley from the wrong side.
The file test is a good one, and, if followed up, way put to shame some who claim to be good workmen. We wonder if one in ten of the thousands!of?machinists who read your paper can file a spot on a round iron bar, perfectly straight, crosswise. We have seen such a surface concaved by the slight rotundity of the file, One of the interesting features of this performance is
the nice vibratory movements of the joints in the arms the nice vibratory movements of the joints in the arms
and body that are necessary to secure the perfectly and body that are necessary to secure the perfectly
parallel motion of the file. Comparing these with the mechanism in the beam engine, the latter is very simple, for in this there is but one point to be kept in a parallel line (the crosshead), while with the file both ends must be controlled and held true to a line. Yet the operation seems very easy when, by practice, the the art is acquired.
The plumber takes pride in his "wiped joint ;" the slater in shearing and punching his brittle material like so much putty ; the blacksmith his perfect weld and the machinist will ever esteem his dexterous use of the file as one of his best proofs of skill.
One of the modern tests, we believe, is the use of the scraper; and the fitting together of two surface plates so perfectly that they can only be separated
them apart, may be considered no mean art.

Quirk.
The Curability of Galloping Consumption.
The announcement by so well known a physician as Dr. McCall Anderson that acute phthisis, or galloping consumption, is curable, excites a good deal of sur prise and quite as much incredulity, yet Dr. Anderson reports in the British Medical Journal seven cases of this character, of which five recovered.
Acute phthisis is considered by Dr. Anderson to have two forms, acute tuberculosis and acute pneumonic lar character. The treatment advised is given in detail and contains no especially new feature.
"The principal indications," he says, "are: 1 , to keep up the strength; 2, to keep down the fever; and 3 , to treat any special symptom or complication which
may arise. "1. Two thoroughly trained and reliable nurses are
indispensable, one for day and the other for night duty; indispensable, one for day and the other for night duty;
for without admirable nursing no hope of improvement can be entertained; and the hygienic and other surroundings of the patient should be satisfactory, so that we need not be surprised that when the disease occurs in the homes of the working classes it is almost necessarily fatal, and that hospital patients have the best chance of recovery. The patient must be fed constantly on fluid food (soup being avoided if diarrhea is
present), both day and night, and stimulants (from present), both day and night, and stimulants (from
3 ij. to $\overline{3}$ x.) are required early in the attack, but should be given in small quantites, frequently repeated and along with the food. In fact, the dietetic treatment should correspond with that of a case of fever presenting symptoms of a similar degree of severity.
" 2 . At bedtime a subcutaneous injection of sulphate of atropine (gr. $\frac{1}{100}$ to gr. $\frac{1}{6 \pi}$) is given. This checks perspiration when present, acts as a sedative to the sys tem, indirectly helps to reduce the fever, and diminishes the secretion from the lungs.
"3. Remedies are given with the view of lowering the temperature. This is a point of the utmost consequence, because the majority of the patients die consumed by the fever. Some benefit is derived by allowing the sufferer to suck ice freely, by giving the food and drinks iced, by sponging the body with iced vinegar and water, or even by using iced enemata But our main rel
"(a) Niemeyer's antipyretic pill or powder every four hours, containing gr. j. quinine, gr. $1 / 2$ to gr. j. digitalis, and gr. $1 / 4$ to gr. $1 / 2$ opium. The portion of opium may even have to be increased beyond this if there is much diarrhea. The effect of the digitalis must be carefully watched, and it must be omitted for a time if the pulse becomes preternaturally slow and irregular and the secretion of urine very scanty.
"(b) The administration daily-particularly shortly
ten to thirty grains of quinine, given, as suggested by Liebermeister, either in a single dose or, at all events, within an hour.
"(c) The application of iced cloths to the abdomen for half an hour every two hours so long as the temperature exceeds 100°. The application of iced cloths is made in this way :
'The nightdress is pulled well up over the chest, so as to avoid any possibility of its being wet, and, for a similar reason, a folded blanket is placed across the
bed under the patient's body. The usual bedclothes are arranged so they reach up to the lower part of the chest only, which latter is covered by a separate blanket in order to prevent unnecessary exposure
while the cloths are being changed. Two pieces of while the cloths are being changed. Two pieces of
flannel are employed, each being sufficienly large when folded into four layers to cover the whole of the front and sides of the abdomen. One of these, wrung out of and sides of the abdomen. One of these, wrung out of
iced water and covered with a piece of dry flannel to iced water and covered with a piece of dry flannel to
protect the bedclothes, is applied, while the other is lying in a tub of iced water at the side of the bed. The pieces of flannel are changed every minute, or so often that they still feel cold when they are removed. The changing of the flannel, particularly when two persons are in attendance, one to remove the bedclothes and the flannel, the other to apply the piece which is freshly iced, can be accomplished in a few seconds." Medical Record.

PHOTOGRAPHIC NOTES.

The American Photographic Conference is the title of a new organization of scientific and amateur photo graphers recently organized in New York for the purpose of establishing an association which shall be national in character and have as its controlling ele and clubs.in the United States or of America.
An annual conference is to be held in different cities, to last three days and be accompanied by an exhibit of photographs and apparatus. Papers and researches on different branches of photography are to be read and measures adopted for furthering the practice of photography. One of the objects of the conference will be the establishing of a photographic institute, where, for
a given tuition, any special application or branch of a given tuition, any special application or branch of
photography can be learned. The next meeting is to be held April 21, 1891, in this city. Among the officers elected were : President, Dr. Ely Van de Warker, o Syracuse, N. Y.; Secretary, T. J. Burton, of the So ciety of Amateur Photographers, of New York.
The transactions of the conference are to be published and distributed to members. Any amateur or profes sional photographer may join the conference as a sub-
scribing member, the annual fee being but three dolscribing member, the annual fee being but three dol-
lars.
How to Remove Nitrate of Silver Stains from the Fingers.-A correspondent gives the following harm less process:
First.-Paint the blackened parts with tincture of iodine, let remain until the black becomes white. The skin will then be red, but by applying ammonia the odine will be bleached, leaving white instead of black tains of nitrate of silver
Density in Negatives Developed with Eikonogen.-A correspondent having some trouble with eikonogen writes as follows:
Mr. Burbank in his excellent handbook on "Development of Dry Plates," mentions the fact that instantaneous views lose their density in the fixing bath. find this trouble myself, and that my well developed plates are but ghosts of what they were before being laced in fixing bath.
Mr. Burbank makes no suggestion as to the remedy can any of your readers give any advice in the matter I notice in another part of the book Mr. Burbank speaks of certain brands of plates having this trouble, but mentions no name. Is this the only cause ?
Our correspondent signs himself Eiko, which we sup pose means that he employs the Eiko developer. In general it may be remarked that the amount of density an instantaneously exposed plate is capable of giving depends on the actinic quality of the light at the time of the exposure and the duration of development. The tronger the light and the slower the shutter, the more deeply will the light penetrate into the film and affect a greater number of the particles of bromide of
silver, which, being reduced by the developer, gives the relative density. Hence it follows that a film which has only been faintly impressed with light, as some of the instantaneous exposures are, cannot be brought out by the most powerful developer any further than the action made upon it by the light. That is, the particles of silver on the surface are reduced first and the picture appears on the surface fully developed and of sufficient density we will suppose .by reflected light.
But the light not having had time to pass through the film has not acted on the underlying stratum, thus the stratum is unaffected by the developer. When the supposed fully developed plate is now put into of silver is dissolve underlying necessarily reduces the density very much and gives the negative the appearance like that described.

There is no remedy for this, except, should the detail appear fully developed, to resort to intensification, or the building up of the image obtained. The precautions to be observed are to use a strong eikonogen developer, 11 grains of eikonogen to the ounce of water and 10 grains to the ounce of carbonate of potash, pouring the eikonogen solution, without the addition of potash, on to the plate for four minutes first, then by adding the potash. Development should be kept up until the high lights show through at the back of the plate and until the density looks suff cient by transmitted ruby light, though when this time arrives the plate may appear to be black over its ntire surface.
The general fault is that insufficient time is allowed for the bringing out of the image. The eikonogen developer may be left on a plate for two hours without staining the parts that were in the shadow; thus it is dmirably adapted for shortly exposed plates. It is rue also as Mr. Burbank remarks that some brands of plates have too little silver for instantaneous work such can only be found out by experiment. When an emulsion is found to work well, it is advisable to secure wore plates of the same number, if uniformity and certainty are desired. In cold weather the temperature of the developer should be at $65^{\circ}{ }^{\circ}$.

Stokers on the Fast Ships.

On the steamship City of Paris there are sixty firewen, who feed the fiery maws of fifty-four furnaces that create steam in nine steel boilers. Fifty coal
passers shovel the fuel from the bunkers to the furnace passers shovel the fuel from the bunkers to the furnace
doors, and the firemen toss it in. There is something more than mere shoveling in firing. The stoker must know how to put the coals on so they will not burn too quickly or deaden the fire. He must know how to stir or poke the fire so as to get all, or nearly all, the caloric out of the coal. He must know how to obtain the best results from the Welsh coal he burns on the voyage to this port and the American coal he uses on the trip eastward. Each kind requires different handling. Often the result of a race eastward has been deter mined by the superior knowledge of the handling of American coal possessed by the winning ship's stokers. To a man who thoroughly understands it, firing is easier than it used to be. But it is, nevertheless, so arduous that the veterans are not over forty-five years old. Nearly all the stokers on the City of Paris and the City of New York are between twenty and thirty years of age. They received $\$ 20$ a month and their board. The leading stoker gets a few dollars more and does not have to work quite so hard. He is usually the eldest of the crew he directs. The coal passer, the limit of whose ambition is to become a fireman, gets $\$ 17.50$ a month. The leading coal passer, or trimmer, gets a little more than this.
Service in the fireroom is divided into six watches of four hours each. The fireman works and sleeps every alternate four hours. After the first day from port two out of every six furnaces are raked out to the bare bars during the first hour of each watch. Thus, in a oyage, all the furnaces are cleaned once in every wenty-four hours. The steam goes down a bit in the hour while the cleaning is going on. The perspiring stokers shovel into the furnaces fifteen tons of coal every hour, or 340 tons a day. The ship usually takes In 3,000 tons at Liverpool, and has between 500 and 800 tons left in her bunkers when she arrives here.
The engineers' department is entirely distinct and separate from the fireman's. On the City of Paris there are twenty-six engineers, including hydraulic and electrical. They are educated in engine shops on shore, and a certain number of them go on ships every year. They are all machinists, so whenever the ship break down they know how to repair the damage. In case the chief engineer should be disabled, any assistant could take his place.-New York Sun.

Laziness a Foe to Originality.

We do not know who said it, but it is a fact well stated, and we regret not being able to give the writer proper credit. The great enemy to individualism is aziness, and those who know anything of human frailties will, I am sure, bear me out when I say that "mental" laziness is far more common and far more difficult to overcome than that of the body. It is somucheasier toaccept dogmatic teaching, and to shift the responsibility of our views on to others rather than to concentrate our thoughts and work out the lessons of our own observations. It is much more pileasant to butterfly from theory to theory than to seek truth with patient tenacity; why trouble ourselves to learn self-reliance, when natural indolence protests against the sacrifice? It is easier to imitate than to originate; plagiarism and mimicry are such prominent features in our lives, that their presence wight almost be quoted as an argument in favor of our evolution in past ages from simian ancestry. How plausible are the excuses we make for our want of this individualism! We are so dreadfully afraid of being thought bumptious, we are so delightfully humble, we really do not wish to intrude our opinion, and yet all the brightest lights of our profession have been men of strong individualism.

The Railroad across south America.
El Echo de los Andes, a semi-technical newspaper, in its issue of August 28, gives the latest particulars concerning the Transandine Railroad. Attention is especially called now to the cutting of the tunnels which, under the snowclad mountain, will unite Chili and the Argentine Republic. The total length of the tunnels already cut is 1,800 meters (the meter being equal to $39 \cdot 38$ English inches) ; 750 meters on the Chilian side $39 \cdot 38$ English inches) ; 750 mete
and 1,050 on the Argentine side.
and 1,050 on the Argentine side.
The international railroad of the Andes, as is well known, is being built jointly by Chili and the Argentine Republic, the two countries which it will unite directly, and each of which is working on its own territory. The frontier limit of the two nations is in the tunnel of la Cumbre, or "the Summit." The Buenos Ayres government began its tunnel work three months before Chili, which explains the fact that out of the 1,800 meters of pierced tunnel only 750 belong to Chili. But this difference will not be maintained, for Chili is now working more rapidly. For instance, 180 meters have been recently perforated on the Chilian side, while only 160 were cut on the Argentine side within about the same length of time.
The monthly progress in perforating amounts to about 450 meters. There is a succession of eight tunnels, crossing from one side of the Andes to the other. The tunnels, with their lengths, are as follows

Of these tunnels, 11,158 meters are on the Chilian ter itory and 4,217 on Argentine. The work is, therefore, of greater importance to Chili than to the Argentine, not only on account of the large number of miles to be tunneled, but also because the engineering difficulties are greater. For instance, the tunnel of Del Portillo is really a curiosity. It is helicoidal in form, and is like an immense corkscrew, winding under the mountain. Its upper opening is 135 meters above its lower entrance. The tunnels are divided into three sections, two belonging to Chili and one to the Argentine Republic. The section of Juncal includes the two tunnels of Juncal and Juncalillo; and that of Calavera includes the tunnels of Portillo, Calavera, and Cumbre. All these are on the Chilian side, while the section of Las Cuevas is on the Argentine side.
In each of those sections are erected houses for engineers and workmen, hospitals, office buildings, etc. They are built of materials capable of resisting the intense cold of those high regions.
The tunnels are attacked in twenty-six different places; half on the Argentine and half on the Chilian side. The finest machinery and engines are used, and motive power is mainly furnished by electrical machines, working on a larger scale than has ever been attempted before in similar undertakings. It is calculated that, through the use of that kind of motive power, and of improved machinery, the work moves four or five times as rapidly as if it were done by the ordinary methods.

The last Kew Bulletin contains a report by Mr. Alvan Millson, the Assistant Colonial Secretary of Lagos, on Yoruba Land, the native territory adjacent to Lagos. After describing the wasteful system of cultivation employed by the natives and the wonderful rapidity with which the soil recovers from it, he says the mystery is solved in a simple and unexpected manner during the dry season. The whule surface of the ground beneath the grass is seen to be covered by rows of cylindrical worm casts. These vary in height from a quarter of an inch to three inches, and exist in astonishing numbers. It is in many places impossible to press a finger upon the ground without touching one. For scores of square miles they cover the surface of the soil, closely packed, upright, and burnt by the sun into rigid rolls of hardened clay. The rains ultimately break them down into a fine powder, rich in plant food and lending itself easily to the hoe of the farmer. These casts are very different in form from those familiar in English gardens. On digging down, the soil is found to be drilled in all directions by a countless multitude of worm drills, while from 13 inches to 2
feet in depth the worms are found in great numbers in the moist subsoil. It is impossible to estimate their number per cubic foot, as the quantity varies according to the season and the locality. Having carefully removed the worm casts of one season from two separate square feet of land ε, t a considerable distance from
one another, and chosen at random, Mr. Millson found the weight to be $103 / 4$ pounds in a thoroughly dry state. This gives a mean of over 5 pounds per square foot, and a total of not less than 62,233 tons of subsoil brought to the surface on each square mile of cultivable land in the Yoruba country every year. This work
goes on unceasingly year after year, and to the untir ing labors of its earthworms this part of West Africa owes the livelihood of its people. Where the worms do not work, the Yoruba knows that it is useless to make his farm.
Estimating 1 square yard of dry earth by 2 feet deep as weighing half a ton, there is an annuai movement of earth per square yard of the depth of 2 feet amounting to not less than 45 pounds. From this it appears that every particle of earth in each ton of soil to the depth of 2 feet is brought to the surface once in twenty-seven years. If seems more than probable that the comparative freedom of this part of West Africa from dangerous malarial fevers is due, in part at least, to the work of earthworms in ventilating and constantly bringing to the surface the soil in which the malarial germs live and breed. From specimens which Mr. Millson has sent home it appears the worm belongs to a new species of the genus Siphonogaster. The type of this genu has been quite lately described from the Nile mud.

BACILLUS OF TUBERCULOSIS

It is well known that infectious diseases, such as consumption and cholera, have a parasitic origin, and that each one of them has its characteristic micro-organism. In 1878 Dr. Koch published his "Untersu-

Fig. 1.--SECTION THROUGH TUBERCLES OF THE LUNGS SHOWING TWO LARGE CELLS WITH NUMEROUS BACILLI.
The specimen having been colored, the bacilli appear as dark dashes. Magnified 900 times.
chung ueber die Aetiologie der Wundinfectionskrank heiten," which embodied the results of his investiga tions in this field of research and formed the basis of future study, the result of which was the discovery of the bacillus of tuberculosis. The course followed by Dr. Koch has been so fully explained in former issues of the Scientific American that it seems unnecessary to treat the subject again in detail, but we publish to-day two excellent cuts, for which we are indebted to the Illustrirte Zeitung, showing the bacilli alone and as they are found in the tubercles.
Dr Koch's methods, which have been so strikingly

Fig: 2.-TUBERCULAR BACILLI, MAGNIFIED 2,000 times.
At the left, bacilli free from spores. At the right, bacilli with colorless
places which are supposed to be spores.
confirmed by his work, have opened new fields in the have been felt in every department of medicine

Photo Carbon Printing.
by т. с. Roche.
The principle or foundation of carbon printing is based on the action of light on bichromate salts when combined with organic matter. This discovery was 1839. M. Becquerel Mr. Fox Talbot, and others expe rimented on this new reaction, but M. Poitevin, in 1855, was about the first to bring out any real practical results. It was through him that photo-lithography, photo-mechanical printing and kindred processes were put into commercial use.
The first to introduce prepared carbon tissue, and a practical formula for working the same, was Mr. J. W. Swan, in 1864. Since then there have been several important improveinents made, simplifying the process still more. A suitable paper is coated in long rolls with a pigmented gelatine; this is cut to the required
size and sensitized for use in a bath of bichromate of potash, 15 to 20 grains per ounce of water. When dried in a dark room it is ready for exposure, under the negative, to the action of sunlight. It is important that the negative has a safety edge about half an inch all around it, to prevent the light from acting on the margin of the tissue. After exposure, which must be judged by a photometer, the tissue is placed in cold water until it lies limp and flat. Your glass or porce lain, which has been cleaned and coated with plain collodion, is wetted or washed in water, then laid on a table, some water sprinkled on, the carbon paper is laid face down on it, a thin rubber cloth laid over, and then a squeegee passed over lightly to bring the car bon paper in contact and drive out all air bells. It is now allowed to rest for a few minutes, then placed in a pan of tepid water and rocked. The first portion of the gelatine mixture to dissolve is that which had been protected by the safety edge on the negative. Now the paper which had been coated can be peeled off and the transferred picture washed out according to the gradation or tones in the negative and the action of light on the sensitive compound. The coating is rendered more or less insoluble, and all soluble por tions will wash out in the warm water. The picture is then washed in cold water, and finally a solution of alum water is flowed over and the plate set up to dry. While the surface is wet it is very tender, but will dry hard and sharp.

The collodion is used to prevent the delicate detail or half tone from washing away. In sensitizing or washing, the light has no effect on the material while wet. After sensitizing, the paper will keep two weeks if put in an air-tight tin box. Porcelain or zinc plates that have been cleaned, slightly waxed, and then collodionized, can have the proofs developed on them re-transferred when dry on to transfer paper by. wet ting the paper until it feels slimy, then squeegeeing it down on the picture, and when dry it can be peeled ofl easily. Proofs on porcelain or for lantern slides should be printed light; those for window transparencies, deeper. The proofs can be, after printing, transferred to almost any material, such as celluloid, metals, o wood. When you hang the paper up to dry after sen sitizing, it must be in a room well ventilated; if not the coating is apt to dry insoluble and will be of no use. All carbon pictures are considered permanent.Jour. Soc. Am. Photo.

Completion of the Great Mountain Bridge.

The new Verrugas bridge was lately opened for traffic. The bridge is of the cantilever type, supported on two iron towers. Its total length is 575 feet, its suspended span being 105 feet long. At its middle point it is 252 feet above the bottom of the valley which t spans. The bridge is entirely of wrought iron, and was constructed by Cooper, Hewitt \& Co. at their works in Trenton.
The Verrugas bridge is one of the features of the Oroya Railway, now known as the Central Railway of Peru. This railroad starts from Callao on the Pa cific, runs through Lima, and thence ascends the Andes by difficult grades, reaching its greatest elevation at Chicla, about 12,300 feet above the level of the sea. The bridge spans a chasm of 235 feet in width, with precipitous sides, and replaces the old Verrugas viaduct built in 1871, which was destroyed in March, 1889, by floods.

The Harvester Trust.

A mammoth combination has been effected between the harvester machine companies of the United States. The new trust is to bear the name of the American Harvester Co., and it has been organized under the laws of the State of Illinois, with a capitalization of $\$ 35,000,000$. The following companies have acknow$\$ 35,000,000$. The following companies have acknow-
ledged their allegiance to the new company: The ledged their allegiance to the new company: The
McCormick Harvesting Machine Company, Chicago ; McCormick Harvesting Machine Company, Chic Com pany, Hoosick Falls, N. Y.; Warder, Businnell \& Glessner. Springfield, O. ; Aultman, Miller \& Co, Akron, O.; the Whitman \& Barnes Manufacturing Company, Akron, O.; the Plano Manufacturing Company, Plano, Ill. ; the Milwaukee Harvester Company, Milwaukee, Wis.; the Esterly Harvesting Machine Company, Whitewater, Wis.; the Minneapolis Har vester Works, Minneapolis, Minn.; Emerson, Talcot \& Co., Rockford, Ill. ; the J. F. Seiberling Company, Akron, O. ; Seiberling, Miller \& Co., Doylestown, O. Amos Whitley \& Co., Springfield, O. ; Hoover \& Gam ble, Miamisburg, O. ; D. M. Osborne, Auburn, N. Y. the Richardson Manufacturing Company, Worcester Mass.; Adriance, Platt \& Co., Poughkeepsie, N. Y. ; D. S. Morgan \& Co., Brockport, N. Y.; the Johnston Har vester Company, Batavia, N. Y.
The incorporators are Cyrus H. McCormick, Wm. Deering, Hon. Walter A. Wood, Hon. Lewis Miller Gen. A. N. Bushnell, and Col. A. L. Conger.
Some idea of the interests that will be affected by the trust may be inferred from the fact that nearly all the farmers will be affected favorably or unfavorably by the rust, and it is stated that the companies included in the corporation employ some 15,000 men.

METALLO CHROMES.
 by Geo. ML Hopkive

The production of Nobili's rings is a very simple and pleasing electro-chemical experiment which may be readily tried by any one having one or two batteries, or a small dynamo or magneto-electric machine, and figures of various kinds may be produced by the same process in brilliant colors.
To produce the rings, all that is required is a Bunsen or Grenet battery in good order, a strong solution of acetate of lead (sugar of lead) and a steel or nickel

Fig. 1.-PẼODUCTION OF NOBILI'S RINGS.
plated brass plate. The lead solution is placed in a common saucer, the steel or nickeled plate is placed in the bottom of the saucer and connected by a wire with the zinc pole of the battery, and the end of the wire, which is connected with the carbon pole of the battery, is held near the steel plate without touching it, as shown in Fig. 1. In a very short time a spot of color will appear on the plate, and in a minute or so the spot will spread rapidly and form concentric rings of prismatic colors, as shown in Fig. 2. A few trials will enable the operator to determine the time required for the production of the best effects. When the operation has proceeded far enough, the plate is removed from the solution, washed in clean water and dried. The beautiful color effect is due to the decomposition of the light by the exceedingly thin film of peroxide of lead deposited on the surface of the plate. It is quite
permanent, and serves to protect the surface of the plate from oxidation.
To secure the best results, the plate should be highly polished and the lead solution should be filtered.
By providing anodes of different iorms, various ornamental figures may be produced on the surface of the plate. For example, a wire bent into the form of a letter or figure of any form may be used as an anode for producing a figure of the same general form on the for producing a figure of the same general form on the
plate. As it is sometimes difficult to hold the anode in the proper position, ordinary insulated wire (magnet wire) may be used. This permits of placing the anode down upon the plate, the insulation serving to prevent direct electrical contact.
Very beautiful effects may be secured by cutting an anode of the desired shape from sheet copper and bend ing parts so as to vary their distance from the plate as in the case of the cross, Fig. 2. The result is that the film is deposited in beautifully graduated colors at the extremities of the figure, the arrangement of colors bear tremities of the figure, the arrangement of colors bea
ing some resemblance to those of a peacock feather. ing some resemblance to those of a peacock feather.
The arrangement of the colors in these films is that o the solar spectrum. Nobili's rings resemble Newton's. The colors are fully as intense and more readily seen.
Nobili discovered this phenomenon in 1826. Since that time many modifications of the process have been devised, and some commercial applications have been made. It has been used to some extent in the orna mentation of small objects, such as buttons, articles of jewelry, etc., imparting to them an iridescence which cannot be imitated by any artificial coloring.
Becquerel suggested a solution for this purpose, the formula of which is as follows: "Dissolve 200 grammes of caustic potash in 2 quarts of distilled water, add 150 grammes of litharge, boil the mixture for a half hour, and allow it to settle. Then pour off the clear liquor and dilute with its own bulk of water."
This solution is adapted to other metals than those above mentioned, but the acetate of lead solution rields very satisfactory results and is sufficient for experimental demonstration. In conducting these experiments the poisonous nature of the solutions should be borne in mind.

HORIZONTAL TRIPLE EXPANSION ENGINE.

We illustrate a triple compound horizontal engine constructed by Messrs. Tangyes, limited, Cornwall

Works, Birmingham. Engineering, to which we are indebted for our engraving, says: The cylinders are respectively 8 inches, $111 / 2$ inches, $161 / 2$ inches in diame ter by 18 inches stroke, and drive cranks set at angles of 120 degrees. The cut-off to the high pressure cylin der is controlled automatically by the Tangye-Johnon expansion gear direct from the governor ; the cutoff to the intermediate and low pressure cylinders is not variable, ordinary Trick-ported valves being used.

Fig. 2.-METALLOCHROMES AND ANODES.
All the bearings and wearing surfaces are of liberal proportions. The main and crank pin bearings are lin d with anti-friction metal. As this type of engine is often required to run continuously for hours without stopping, the oiling arrangements for all the moving parts are suitable for these conditions. One of these engines was tested at the Cornwall Works in March 1889, making several continuous runs of three to five hours; diagrams were taken at frequent intervals, and the feed water carefully measured. The temporary boiler then used was rather small, and the fire had therefore to be forced, so that no coal record was kept.
The results work out to 186 lb . of water per indicated horse power per hour when indicating 96.8 horse powe and running 141 revolutions per minute. The load was applied to two friction brake wheels 7 ft .6 in . in

diameter by 12 in . wide, one on either side of the engine. The rims of these wheels were made with internal flanges, and were kept cool by water.
When desired, these engines are placed under locowotive boilers constructed for a working pressure of 165 lb . per square inch ; the smokebox resting upon a pedestal fitted to the cylinders, and the ash pit being bolted hetween the channel irons, which are prolonged beyond the crankshaft bearing.
A Tangye duplex boiler feeder, supplying the boiler, is fitted to the ashpit casting alongside the firebox, in order to leave free access to one side of the engine. One end of the crankshaft is lengthened; a single large flywheel and an outer bearing are supplied. The even distribution of power which is attainable with this class of engine, and its steady running at high speeds, commend it for extensive use where these qualities are of importance. - Engineering.

REMARKABLE RAILW AY COLLISION IN IOWA.
The accompanying illustrations, reproillustrations, repro-
duced from pictures duced from pictures
made by Mr. Theomade by Mr. Theo-
dore A. Brown, a dore A. Brown, a
photographer of Marshalltown, Iowa, represent the curious result of a railway collision which took place in that took place in that neighborhood, on the Iowa Central
Railroad, on OctoRailroad, on Octo-
ber 30. The accident, ber 30 . The accident,
if such it may be if such it may be "a mistake in train orders," and two men were seriously

Dangers to Street Car Motors by Lightning. The Electric World says : We recently received from a correspondent a very instructive account of a singular accident from lightning, which happened the past summer, on a Sprague electric road of moderate size. The vulnerability of railway apparatus to lightning has been the cause of considerable loss to the various companies, more especially as the dynamo is subject to injury, but now and then armature and field coils on cars are burned out from the same cause. So far as the dynamo is concerned, the powerful shunt winding has a tendency to force the discharge through to the core of the armature instead of choking it as is ordina-
rily the case with a series-wound motor. On the par-
precisely similar. In each case the "A" coil was the one damaged, and injury had occurred by the dis charge from the coil to the magnet core. The cause of this selective injury of the three cars running down grade is not far to seek.
In the method of field commutation employed the "A" coil, as is well known, remains always charged, even when the motor is not running. Consequently when the lightning got upon the trolley wire it was free to pass down into the motors, and then broke through the insulation and jumped across to the cores. In the cars that were running, this discharge was checked by the high self-induction of the magnet coils, checked by the high self-induction of the magnet eoils,
and what suall amount could pass through was free to go to earth withou iujury to the motor. In the cars where the current was shut off, however, there was little of this check ing action, and consequently the light ning jumped across to the core and went to the earth. The electrical super intendent of the road in question, who is more than usually ingenious in the matter of re pairs, saw the point of the accident at once and promptly changed the connec tions, so that the " A" coil should not be charged when the motor is not in action, but should be cut off at the switch box. Since that time the line has not been struck, so that the efficiency of this arrangement has not been tested, but the arrangement

REMARKABLE RAILWAY COLLISION IN IOWA.
injured, but no one was killed. The crews of both \mid ticular occasion to which we are referring, a severe certainly lessens the likelihood of damage to the engines jumped just before the collision. A regular thunder storm occurred while the cars were out upon motors. freight train was going west with orders to "run the line. Now the road in question has rather severe regardless of all trains," when a switch engine, with two empty flat cars, was ordered to back east for some miles on the same track, to take on a load of stone. The two trains met, both running at a high rate of speed. The engine of the westward-bound freight train made kindling wood of the two flat cars that were backing east, then made almost a clean jump over the tender of the other locomotive, and landed upon its back. The lower engine and tender did not leave the track, although its tank was knocked loose, and in the position shown both engines were hauled back to the station at Marshalltown. The coal in the tender took fire, and was burning fiercely when the two en gines reached the station.
grades, produced by a series of ridges over which the oad passes in succession.

The latest and fastest, for her size, torpedo boat is During the course of the storm the trolley wire was Ahe Bathurst, built by Yarrow \& Co., London, for the
 were running down grade on three of the ridges before tive boiler, with heating surface of 1.500 square feet. mentioned by gravity alone the current having been cut off as usual. The other cars were in motion several of them on heavy grades. The result of the shock was to disable the three cars that were running down grade and to leave the others quite unharmed, although from their position they were at least as much exposed as the injured ones. On subjecting hours' run, $24 \cdot 426 \mathrm{knots}$, or $28 \cdot 1$ statute miles per hour. the damaged cars to a careful examination it was Maximum speed on measured mile, 26.086 knots, or a found that the injuries received by them were alnost \| little over 30 miles per hour

RECENTLY PATENTED INVENTIONS

Engineering.

Engine Governor.-Martin A. Green Altoona, Pa. This governor is of a class which have engine, centrifugal welghts operating in connectio with centripetal springs to vary the position of the ec centric, the invention covering an improved construction whereby the force exerted by the springs may b readily and accurately adjusted with reference to
$0 ;$ posing force exerted by the centrifugal weights.
Locomotive Exhaust Nozzle.-John J. De Lancey, Binghamton, N. Y. This nozzle has an
unobstructed open upper end, and in connection thereunobstructed open upper end, and in connection there-
with is employed a flat plate having an unobstructed opering of the same size as the nozzle outlet, to one side of which it is pivoted to vibrate horizontally across it its swinging motion being under the control of the engineer in the cab, whereby the exhaust may be regulated, thereby regulating the draught in the boiler.
Wheel for Road Engines.-Rescue B. Puge, Oakland, Cal. This wheel is so made as to
prevent the sinking into the ground of the shoes used prevent the sinking into the ground of the shoes used
with it, also providing means whereby one of the shoes will at all times be in contact with the ground, and whereby the shoe to be lifted will be elevated first at
that end facing the line of travel of the wheel, thus that end facing
Boiler Leveler. - Ole O. Kravik, St. Carl, North Dakota. This invention provides
construction specially designed for portable boilers to raise and lower their front ends when going up or down a grade without interfering with the turning o the front wheels, the devices therefor being simple durable, and easily manipulated.

Railway Appliances.

Car Coupling.--Benjamin J. French and John H. Carroll, De Smet, South Dakota. The
drawbar of this coupler is made in two hinged sections drawbar of this coupler is made in two hinged sections capable of lateral movement, the outer end of the bar
terminatng in a coupling hook, while a spring is attached to the drawhead and the hinge of the drawbar and a shaft has a chain connection with the drawbar,
the device being desigued for use with the ordinary drawhead, to be manipulated from the top or sides of the car, and for coupling with an opposing coupler of Car Coupling.-William H. Franks, Sonora, Texas. This is a coupler of simple construc cars and from the sides or platform of passenger cars the drawhead having an upwardly extending post in which is fulcrumed a lever, combination with pecular
forms of lock and link lifte, and various other novel features.

Mining, Ete

Crushing Rolls and Apparatus For Reducing Ores.-Daniel Brennan, Jr., Bayonne,
N. J. Three patents have been granted this invento N. J. Three patents have been granted this inventor
for radical improvements in machines for the reduction of ores, the crushing rolls of which comprise fixed and yielding rolls, the yielding rolls carrying pulleys and ropes provided with weights, there being a sprin cushion for the weights, and screw rod stops of improved construction for the yielding roll, etc., whereby
the rolls will have a steady and uniform pressure, but the rolls will have a steady and uniform pressure, but
will yield should a drill point or other like article will yield should a drill point or other like article
be passed in with the ore. For use in connection with be passed in with the ore. For use in connedis a sories of separator screens is provided, com mon to all the rolls, with conveying
the rolls and screens. The screens of the apparatus form receivers for the coarse products or tailings of each of the rolls, as well as distributers for the delivery of the
tailings to the several rolls, thus facilitating the more tailings to the several rolls, thus facilitating the more
speedy and economical reduction of the ores by assortspeedy and economical reduction of the ores by assort
ing the material after its initial breaking, with special reference to the adjustment and capacity of the severa the rolls until reduced to the requisite degree of fineness The feed regulator provided for use with these mills, though also capable of use for other purposes, has two superposed slides, arranged after a novel manner, and
formed of sectional slides made up of relatively movable strips or individual slides, by means of whic the orcs, either coarse or fine, rnay be fully under the
control of the operator, and the feed may be varied to supply more or less material at any particular point, or entirely cut off the supply at any point, the main object being to prevent any uneven wearing of the roll.

Mechanical.

Plate Printing Press.-Wellington P. Kidder, Boston, Mass., and George H. Kendall New York City. This nnvention relates to presses in
which the inking, wiping and polishing of the plate ar performed automatically, and provides improved mechanism for the wiping and polishing, and means for shifting the web over the face of the wipers and polish ers, whereby the cloth will be applied in both service on both the forward andsm is provided in plate, while with the other improvements.
Tool for Dressing Emery Wheels -Anson A. Reed, Worcester, Mass. In thisdevice the hreaded between journals and hes a collar, the cutter lars clamped together by rivets or bolts and screw
tilrended interiorly to fit the shaft, the tool being adapted for use by hand or in the tool post of a lath

Shoe Turning Machine. - Jason H edgerly, Chicago, III. This machine has a hub pivote n a support and provided with radially extending forms, which are changed to fit the varying sizes of shoes, a curved arnn extending from the upper portion
of the hub having its lower end opposite the toe of a form, to facilitate quickly turning shoes made aa "turns " right side out.

Cutter Bar for Headers. - Charle E. Plumtree and Louis A. A. Tonnet, Spokane Falls, Washington. This is a double cater bar for a harvest ing machine, a pitman connected with a lever operat
ing one of the cutter bars, the other cutter bar belng perated by another lever formed of two member nited by a sliding inection, each of the member connected to and operated by the first lever.

Miscellaneous.

Tailors' Stove.-George Hay, Picton, anada. This is a compact and convenient stove for
guickly heating tailors' irons, the fire chamber having apertured side plates connecting with vertical side flue which intersect a horizoutal flue above the side walls of he fire chamber, the stove being
Platform Rockers. - Richard H. Srall, Allentown, Pa. This invention covers an attac ent providing means whereby the body of the cha ay be readily locked to the platform, and held rigidiy a a apright or inclined pocting the body of the rocker rom falling backward should an accident happen to the spring.
Adjustable Swing. - William K. hiller, Troy, Kansas. Two doubled ropes are used in rom each end carrying a locking sleeve ad tpted to reain a rope end, with other novel features, whereby the swing may be readily adapted for height to suit differ-
Window Screen.-Christian C. Schup bach, Grand Island, Neb. This is a wire cloth device,
applicable either in a stationary or sliding form, and which can be readily put in position, being adjustable or windows of different widths, while it is designe without letting in others.
Drawer Attachment. - Edward W Stone, Chicago, Ill. This is a stop attachment in whic novel form of angle iron turning in a socket is so ap-
plied that the drawer may be pulled outward essentially is entire width and yet sustained against falling from the cabinet, it being possible also to remove the drawe from its place when desired without disturbing the a ached device.
Water Wheel. - Thomas A. McDoels adapted to be anchored in an improvement in he force of the current may be utilized to drive ma chinery, and the hub of the wheel is divided into ver tongue-like extensions of paddles of peculiar form aving pockets thereon.
Foot Rest.-John K. Phillips, South Orange, N.J. This is an improved article of manufac-
ure designed especially for use in shoe stores in the are designed especially for use in shoe stores in the economy of space, and there being in connection wit he foot rest a sliding knee rest for use by the salesman the latter rest being moved into the foot rest when not

Knitting Seines, etc. - Nathanie D. Sollers, Sollers, Md. This invention covers an imiventor, and provider a new mesh plate for the use of sine knitters in forming the loops or meshes of the seine, being designed to permit of the formation of the by a single passage of the needle in a rapid and convenient manner.
Permutation Lock. - Alphons Metzger, Milton, Pa. Combined with a tubular lock ular externa longitudinare radially apertured ring having, interchangeable pins projecting their apertures
into the grooves, and a bolt having a notched edge to into the grooves, and a bolt having a notched edge to
be engaged by the inner ends of the pins, with other novel features, the lock being so constructed that the olt may lock various devices.
Pike Pole. - Alfred E. Creigh, Ron piece for the end of the pole, and a pike or point having its shank formed to fit the socket, and so that it may be easily slipped in or removed therefrom when the clamping band is removed, whereby the point ma e readily renewed when it becomes dulled.
Pavement. - Frederick C. Schmidt New York City. This invention provides a form of
construction by which a pavement may be readily laid, and designed to prevent sagging of the paving blocks which are laid between the transverse ribs of cast met plates, the ends of these plates having flanges which
eest in channels in the top of supporting beams laid on

Funnel.-William R. Cole, Pottsville fillin il lamps, and for other uses where the filling up of the vessel cannot be readily observed, there being combined with the funuel tube a float and indicator to be lifted by he liquid when the vessel is full or nearly so, the floa being attached
to the spout.
Atomizer.-Josef Schoettl, Brooklyn neck piece on a coupling head by a rib and groove otated on the neck piece, the pipe and its nozzle to be to facilitate the spraying of medicinal liquid prepara tions within the head and throat, and being a compac Dental Mallet. - William H. Dibble Brooklyn, N. Y. This mallet has a plugger at each end, with means for pnenmatically delivering a blow imultaneously on each plugger, so that one blow neatralizes the other, the hande remaining stationary, parted to the pluggers.

Vehicle Wheel. - Victor F. Mogk Seattle, Washington. This wheel has an inner tire with
n annular channel in its periphery, and an outer elastic re, with springs interposed between the tires, whereby he percussion resulting from travel is absorbed, and the wheel is subjected to excessive weight.
Fence. - Aaron F. Dickey, Friedens a. This is a truss-support ion, whereby the fence may be raised to any desire height by drawing on the ends of the truss wire, and span of fence from ten to twenty rods in length ma hus be held up.
Ornamental Nail Head, - Otto F Wegener, Seattle, Washington. This is an improve nent in ornamental hangers designed for use as picture nails, nails or screws for supporting brackets, etc., nd combination of parts.
Window Screen.-Thomas Robinson, inneapolis, Minn. This invention relates to remov rames which when taken from the window may b olded to occupy small space, the screen in place bein entirely outside the sash, so that the latter may be
raised and lowered without interfering with the screen. Mop Wringer.-John Frost, Omaha, Neb. This is a simple and durable device for easily me time the pail or bucket is not liable to be apet. No Note.-Copies of any of the above patents will b
urnished by Munn \& Co, for 2 c cents each Please end name of the patentee, title of invention, and date

SCIENTIFIC AMERICAN

buILDING EDITION

JANUARY NUMBER.-(No. 63.)

TABLE OF CONTENTS.

1. Handsome colored plate of an elegant residence o Riverside Avenue, New York City. Cost $\$ 60,000$
complete. Floor plans, two perspective elevacomplete. Floor plans, two perspective eleva
tions, etc. Mr. Frank Freeman, New York, architect.
2. Plate in colors showing an attractive cottage a Maplewood, Chicago. Estimated
Perspective view and two floor plans.
3. A cottage at Rutherford, N. J., erected at a cost of
$\$ 6,000$ complete. Perspective elevation, floor $\$ 6,000$ complete. Perspective elevation, floo
4. An elegant residence at Chestnut, Hill, Pa., recently erected for Mr. Alfred C. Rex. Cost $\$ 30,000$ co
plete. Floor plans, perspective elevation, etc.
5. Sketch and floor plat a residence at Stockto Sketch and floor plans of a res
Cal. Estimated cost $\$ 10,000$.
6. Cottage at Englewood, Chicago. Perspective view and floor plans. Cost $\$ 4,200$.
Residence on Powelton Avenue, Philadelphia, Pa
Cost 30,000 complete. Architect Thos Cost 30,000 complete. Architect Thos. P. Lons dale, Philade
vation, etc.
7. A cottage at Jackson Park, Chicago. Estimated cost $\$ 4,100$. Floor plans, perspective elevation
etc.
8. Cottage on Munroe Avenue, Chicago.
9. Residence at Wayne, Pa., from plans prepared by W. L. Price, architect, Philadelphia, Cost $\$ 7,000$
10. An attractive country church of moderate size recently erected at Glen Ridge, N. J. Estimated
cost about $\$ 15,000$. Perspective view and floor plan.
11. Cottage at Lakeview, Chicago. Floor plans and 13. A stactive view. Cost $\$ 3,000$
rected for Mr. A. C. Rex, at Chestnut Hill, Pa Cost $\$ 1,800$. Plans and perspective. A cottage at Austin, Chicago, Ill. Cost $\$ 4,200$.
Two floor plans and photographic view. 15. Sketches of park entrance lodges.
12. Engraving of the Woman's Temperance Temple, Chicago, Ill., as it will appear when finished. Esmated cost of the Temple $\$ 100,000$.
13. View of Whitworth Memorial Hospital.
14. Miscellaneous contents: The marble industry.Lighting streets of London.--Mahogany ties and marble bridges.-Staining floors.-The Peruvian temple of Pachacamac.- How to catch contracts. your property.-The Scientific American a heip to builders.-An improved article for plastering, clair double rocker, illustrated.-An improved veneer press, illustrated.- Our last year's volume.
-The Albany Venetian blinds, illustrated.-A convenience for hospitals, families, etc., illustrat-d.-The education of customers.-The Buffalo hot blast heating system, illustrated. - The

- Willer" sliding blinds, illustrated.-Mueller's water pressure regulator.-Artistic wall decorawater
tions.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid MAgazine of Architecwith fine engravinge willustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation Il newsdealers.

MUNN \& CO.. Publishers,
361 Broadway, New York

Dusiness and ゆersomal.

The chargefor Insertion under thes head is One Dollar
a line for each insertion: about eight words to a line. a line jor each insertion: about eight words to a line. Advertisements must be received at publicairon office

For Sale-New and second hand iron-working maHelp in yoar studies. I. D. Boyer, Dayton, O. Ptesses \& Dies. Ferracute Mach. Co, Bridgetın, N Wanted-A 50 inch chisel tooth saw. W. Reid, West Hebron, N. Y
Wanted-Patent broker for commission only. A. G. For steel castings
For steel castings of best quality, write the Buffalo
Steel Foundry, Buffalo, N. Y. For Sale-Rights on a b
For Sale-Rights on a blank book that can be use Best Ice and Refrigerating Machines made by David Boyle, Chicago, Ill. 155 machines in satisfactory use. Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Power presses and dies. Also contractors for special Screw machines, milling machines, and drill presses "How to Keep Boilers Clean." Send your address or free 96 p. book. Jas. C. Hotehkiss, 120 Liberty St., N. Y. Best driers for grain, said, clay, fertilizers, wet feed,
Wanted-The general agency for a first class specialty,
or an article of merit to manufacture and introduce or an article of merit to m
Alta Mfg. Co., Boston, Mass.
Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air Canadian and other foreign patents of the Worcester chemical fire pall for sale. See illustrated article on
page 5. Address the Worcester Fire Appliance Co., page 5. Adaress.
Worcester, Mass.
For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St., New York. The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn $\&$ Co., publishers, 361 Broadway, N. Y. For Sale.-Farrel Foundry and Machine Company six tether with iron and stone base. Nearly new. A pply to Charles Warner Company, Wilmington, Del.
Wanted-A first-class engineer, capabie of taking
charge of drawing room and who is thoroughly versed charge of drawing room and who is thoroughly versed
in the construction of roofs and building iron work. German preferred.) Address, giving reference and stat-
ing conditions, The L. Schreiber \& Sons Co., 177 Eggleson Ave.. Cincinnati, O
Send for new and complete catalogue of Scientific New York. Free on application.

HINTS to CORRESPONDENTS.

 personal rather than general interest cannot be
expected without remuneration.
scientific American supplements referred
to may be hat at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of

(2660) E. J. E. asks: 1. What will preserve a proof of a photograph to keep it from fading?
A. Dip the proof in a solution of hyposulphite of soda, A. Dip the proof in a solution of hyposulphite of soca,
g grains, is isolved in 5 ounces of water for ten minutes, hen was, issolved in 5 ounces of water for ter minutes,
thanging water for two hours. 2. How hould a young Canary bird be treated as Weca, and ly yon with "Canary Birds, a Complete Guide for their Breeding, Rearing, and Treatment," price 75 cents.
Also " The Canary Book, containing Full Directions for Also "The Canary Book, containing Full Directions for the Breeding, : \&earing, and Managemen
tc.," by Waiace; illustrated, price $\$ 2$.
(2661) C. R. asks why gas formed in an explosion of coal gas, i. e., the exhaust of gas engines,
is not used for inflating balloons, as I should think it necessarily would be lighter than coal gas. A. It is not only heavier than coal gas, but is heavier than air. It ter condenses immediately, leaving the other two
(2662) A Subscriber asks: Is the film of (2663) A. M. F. asks for the best formula or making "blue print" solution.-A. See Scientific (2664) S. A. R. asks : Can you tell me ow they may be fired? A. See Henderson's method in ievtific American Supplement, No. 382
(2665) Health Officer asks : Do you know of any process for the destruction of the gases
and smoke emerging from stacks resulting from burnand smoke emerging from stacks resulting fron: burn-
ing copper ore and evolving large quartities of sulphm
disposing of the trouble you mention. In some places the
gases are saved and made into sulphuric acid, but this gases are saved and made into sulphuric acid, but this
we presume does not apply to your case. If a wate tower could be used, so as to wash the escaping gases, some improvement wonld be effected
(2666) R. asks how to run white wax gums out in cubic form, while the paraffine is hot and tin, but find it sticks to them all. A. Use powdered starch. Place it in a tray and form the mould by press ing down into it a cube of wood, slightly tapered to
make it "draw;"
(2667) Subscriber asks for a recipe fo replating knives, Rodgers' make A No. 1. A. In our Supplement, No. 310, you will find electro-plating de creased. Steel should receive a light deposit of coppe
(2668) A. B. F. asks how to make a glue or cement which will hold copper and zinc filings to leather when exposed to dampness or water. A. Try other varnish, and when tacky sprinkle on the filings.
(2669) A. T. O. asks: 1 . What is the present market price of aluminum, and how much of it price depends on the quantity. It is about $\$ 4$ a pound quantity in clay varies. It may be fifty per ceut, generally it is much less. 2. How much carbon diox ide results from the complete combustion of 1 gal
lon of good kerosene? A. About 16 pounds. 3 . lon of good kerosene? A. About 15 pounds. 3 .
have applied strong water of ammonia to the red spot formed on a woolen coat by nitric acid, but it does no remove them. What shall I do? A. You cannot re-
move them except by instant application of ammonia. Any delay makes them ineradicable. 4. Would it be hands at once if the feet do not touch the ground or any other conductor? A. Not under ordinary conditions it might be unpleasant. 5. Does increased speed in a dynamo result in increased voltage? A. Yes. 6. I there anytuing in the following: "Smokers will be
glad," says Invention, "to hear that tobacco may be enjoyed to any extent without injury to health. Dr. Gautrelet, of Vichy, has discovered that by inserting in the pipe or cigar holder a piece of cotton wool steeped in solution of pyrogallic acid, all the ill effects of nicotine will be neutralized. The mischief frequently caused to heart, mounh, and nerves is thus prevented, while the not know. We doubt it
(2670) F. E. A. asks : 1. Is there any way you know of in which kid gloves can be cleaned without wetting them, that will work as well as
wetting them? A. Stale bread is sometimes used for thls purpose. The gloves are put on and the softer part of the bread is broken up into crumbs and the hands are rubbed one over the other as in the act of washing, the crumbs being thus rubbed over all parts of the gloves. Spongy rubber is often used for glove cieaning. It is applied in the same manner as in ciean ing drawings, i.e., it is rubbed over the soiled parts of
the glove. 2. What are first class lantern slides painted with to produce the greatest transparency and brilliancy without light, etc., affecting the colors? Also how to apply the colors without showing brush marks when enlarged? Λ. Transparent oil colors are generally used. They are mixed with varnish and carefully ap plied. Large masses of color are sometimes applied to the back of the glass, where they will be out of focus show. The finest lantern pictures are tinted with color mented on with balsam.
(2671) B. F. E. asks : 1. How is dry battery compound made, such as is simply dissolved in hattery compound is made by mixing sulphuric aci with dry powdered bichromate of potash. As the dust of the bichromate of potash is poisonous, and as the fumes given off during the mixture are deleterious, w vould not advise a novice in chemistry to try to mak npleasant consequences, 2 When wire is said to be burned out, is it consumed or simply destroyed as conductor, I mean in a small dynamo? A. An armaure is burned out when the insulation of the wire is destroyed. In addition to this result of a heavy current, he wire may be fused. 3. How much wire should be oond on a magnet core (such as used for bells) to nake it five ohms resistance, No. 28 wire? A. 74 feet of No. 36 wire? A. About $211 /$ ohms. 5. Should ainc and carbon be same size and thickness? A. They need not necessarily be of the same thickness. The carbo may be thicker.

INDEX OF INVENTIONS

which Leters Patent or the

were Grant

AND EACH BEARING THAT DATE
djustable chair, E. Pynchon.................... ${ }^{443,19}$ Avertiser's repply coupenon, A. O Kititreage
ir moistenin apporatus,' W. V. Wallace Air moistening apparatus, W. V. Wallace
Air puritying aparatus. Sobtain.
Ammonia soda apparatus.J.S. Barnum (r)
Axe nut. carriage,
Saa. See Mail bap. Schultz.
Bay. fastener J.

Bed aryd lounge, combined, H. Burgess.
Bell cord attachment, G. A.La Fever.

 $\substack{\text { Bra } \\ \text { rica }}$

 dins for shipment, machine for preparing
drive J. D. Sorie
Char. See Ajustable chair. Convertibie chair Chair. See Adjustable chair. Convertibe
Dhannentinchair minne. w. H. Bryant (r).

 Comb. See Cury comb. .
Combination lock. D.
Commutated
ommutators in dynamo machines, machine fo
dressnn the. G. P. . 4 naming

Locomotives and cars, device replacing derailë
H. schreine batrives, steam brake mechanism for, Dun
Loom jacquard mechanism J. E . $\&$ से W, Garlici Loom jacquard mechanism J. E. \& w. J. Garlick
Loom phicker.,. H. Waag
Loom shedding mechansim. E. Hoiliing worth....
Looms. batten-operating mechanism for power 333 33․․

hegister.
Feed rexulator. Temperature

icroscopprealiex examination or photooraphic opic
tures, apparatus for facilitating the, H. Dun
can

 Musical iox, C. A. Roepke....
Masioal instrument. S. Tanaki
Musical instrument

 Organ stop action, N. M. Boynton....7. for coationg
Ornamenting strps of compositon
moulding therewith, machine for, B. C. J

 Picker. See Loom picker.
Pine hee Susponder securing pin.
箱第

STEREOTYPING; THE PLASTER AND

 Foot \& mproved Screw cutting
Power $\$ 60$

 SEWING MACHINE MOTOR FOR AMA
 Punching Presses

TO BUSINESS MEN

CE-BOATS - THEIR CONSTRUCTION

ipman Antomatic Steam Engine

THIN PANEL STOCK

 After being on the Market Five Years The "ACME" Still Leads!
 ROCHESTER MACHINE TOOL WORKS, BTOWn's Race, ROCHESTER, N. Y.

SPECIAL

IDEAL MUSICAL BOX

Steam! Steam! quaty Hyben, prico Lower.
 B, W, PAYNE \& SONS,

How sHoUse Loo Lears
Useful information on this sub.

 ICE and REFRIGERATING MACHINES

Popular Books

 holidays.

 Marvels of Earth, Air an
Marvels of Astronomy.

Marvels of the Elements.

Haif Hours of Scientitic Amusement.
Marvels of Invention and scientific Puzzles.
Marvels of Heat, Lisht and sound.
Marvels of Gealo
Marvels of Geology and Physical Geography.
Marvels of Animal and Plant Life.
Maveels of Electricity and Magnetism.

Enyineers' Hand Book- Containing at full Ex- Ex

 Weberersin teruational idictionary. Thisisisianew
book trom cover to cover, bein the authentic eaition of
 bryetical Microscopy--By G.E. Davis. A Desiraz

畩雨 Any of the above books promptly sent by mail,
postaid, on receipt of the price, by
MUUNIN de CO., Publishers of the "Scientific American," 361 Broadway, New York.

Stored Energy ACCUMULATORS
 THE ACCUMU ATOR company

By GEO. M. HOPIINS. 746 Pages. Over 680 Illustrations. SEND FOR FULL ILLUSTRATED CIRCULAR

This is a book full of interest and value for teach-
ers, students, and others who desire to impart MUNN \& CO., Publishers, Office of The Scientific American 361 BROADWAY, NEW YORK. What the Press says of '"Experimental Science,"

"'The book would ea most Jacicious holiday gift."

CIARRIX:
FANS.
Light Running, Ady istab

GEO. P. CLARK, Manuf.
SOME APPLICATIONS OF ELECTRIC

PATENTS!

 VULCANIZED RUBBER FABRICS
RUBBER BELTING, Packing, and Hose.

Mats, Matting, and Stair Treads

BRICK

 MACHINES$\underset{\substack{\text { EIGFRETHT }}}{\text { Digh }}$ JAMIFS TPFF尸I \& CO. FARLO STT, SPRINGFIELD, OHIO.
110a Liberty

THE EACLE
THE EASIEST RUNNNGG, BICYCLE
NTHE WORLD. Speed, Comfort and Safety. AGENTS WANTED Large Illustrated Catalogue sent Free to any Address.

RAILWAY \& STEAM FITTERS SUPPLIES Rue's Little Giant Injec sCREW Jacks, sturtevant blowers. \&c. JOHN S. URQUHART, 46 Cortlandt St., N. y.

THE PROPELLING MACHINER

FIRE FELT.

The Best Mechanical Help An inventor, investigator or experimenter
can have is a great machine shop, whose business is (first) to do regular work, and (second) to help develop ideas. We have that shop, and have put what we have to
say in a primer-will send it. The Jones Brothers Electric C

THE NEW NON-CONDUCTING NATERIAL

tor pipesuperior to thair

AU'TOCOPYIST
AGENTS
人 YRER TO F.AM. Fine Clopred

$\$ 10.00$ to $\$ 50.00$

MAGGGLANTERNS WANTED AN0 FORR SAAEE DERFECT: NEWSPAPER LE
 CASH ${ }^{\text {An ingetentent ot min }}$
 W HAA Uncle Sam and Aunt Columia thind, ete., of

MECHANICAL DRAWING.
of Technology. A series of new original, and
practical lessons in mechanical drawing a ccompractical lessons in mechanical drawing, accom-
panied by carefully prepared examples for practice, with cirections, all of simple and plain cha-
racter, intended to enabe any perso racter, intended to enable any person, young or
old, skilled or unskilled, to acquire the art of ola, skinied or unskilied, to acquire the art of
da wing. No expensive instruments are involved.
Any person with slate or paper may rapidly learn. Any person with slate or paper may rapidly learn.
The series embodies the most abundant illustrations for all descriptions of drawing, and forms the
most valuable treatise upon the subject ever publishen, as well an athe the cheanest. The The series is illus-
trated by upward of 400 special trated by upward of 450 special engravings, and
forms a large quarto book of over one hundred pages, uniform in size with the SCIENTIFIC Amer-
ICAN. Price, stitched in paper, 82.50 ; bound in handsome stif covers, 83.50 . Sent by mail to any
address on reeeipt of price.
For the convenience of those who do not wish to purchase the entire series at once, we would state
that these valuable lessons in mechanical drawing may asoo be had in the semarate numbers of SUSP-
PLEMENT, at ten cents each. By ordering one or
mor more numbers at a time, the learner in drawing
may supply himself with fresh instructions as fast
as his practice requires. These lessons are publish-

$\begin{aligned} & * 14, * 16, * 18, * 20, * 22, * * 2, * 2, * 29, * 30, \\ & * 32, * 36, * 37, * 38, * 39 * 40, * 41, * 2, * 43,\end{aligned}$,
 $\begin{aligned} & * 53, * 54, * 56, * 58, * 80, * 62, * 65, * 69, * 74, \\ & * 78, * 84, * 91, * 94, * 100, * 101,{ }^{*} 03, * 104, \\ & * 105, * 106, * 107, * 108, * 134, * 141, * 174,\end{aligned}$, ${ }_{* 176}^{* 105,}{ }^{* 178}$

MIUININ de CO

PROPOSALS

Municipality of Bombay. electric lighting.

NOTICE.

HOW TO MAKE DYNA MO ELECTRIC

STEEL TYPE FOR TYPEWRITERS
 ART OF WORKING IN LEA THER-

TYPEWRITERS.

 ment manufactured shippod, privileg eto examine.
 VOLNEY W. MASON \& CO. FRICTION PULLETS CLUTCHES and ELEVATORS

MONON ROUTE

The Scientıfic A merican

PUBLICATIONS FOR 1891.

The prices of the different publications in the United
States, Canada, and Mexico are as follows.
The Scientifc American (weekly one year . $\$ 3.00$
Tyear. Scentifc American, spanish Edition (monthis)
one year.

The Scientife combined rates.
The Scientinc American and supplement, -
The Scientifc American
s.00

The Scientific American, Supplement. and Archi- ${ }_{\text {tects }} .00$
This includes postage, wnich we pay. Reme Rem by postal
or express money order, or draft to order of

THE BACKUS WATER MOTOR. THE BACKUS EXHAUST FAN.

Wfovertisements.

COMPTOMETER
ALL ARITTMMETICAL Solved r apidy and accurately
by unin the the compTometer
Saves to per cent on time ELT \& TARPANT MFG, THE COPYIN I $^{\text {PPAD.-HOW TO MAK }}$ U. $=2=$

JENKINS STANDARD PACKING!
gate valves

The Lunkenheimer Brass Mfg. Co., THOMAS ALVA EDISON. - A BIO

Victor Bicycles!

 VCHOS ARE BEST Overman Wheel Co., Makers THE PHONOGRAPH.-A DETAILED

NEW KODAKS

 we do the rest"

Seven New
Styles and

Films
THE EASTMAN COMPANY

THEAMERGANBELUTEEHEHONE CD
95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th; 1876, No. 174,465, and January 30th, 877, No. 186.787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each
individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

LITTLE GIANT WATER WHEEL

The

Remington

has set the copy for writing machines for 15 years.
It is to-day the

Standard

and expects in the future, as it has in the past, in adding improvements to what will always be the true model of a

Typewriter.

Wyckoff, Seamans \& Benedict, 327 Broadway, New York.

THE SMITH PREMIER TYPEWRITER

 The Most Durabie in Alignment. Most Silent.
Alt type cleaned in in 10 seconnas and
Aithout soiling the hands. The Smith Premier Typewitier Co., Syracuse, N. Y., U. S. A.

HLTCTRIC MOTORS
For all Bpocial brorlx.
CEOCIKFR Correspondence invited by the Mannfacturers of the PERFECTED MOTOR,
Mannfacturers of the PERFECTED NOTOR,
Acknowledged to he the Standard for all hịh-class work where power is requ
S. S. WHBELER, President.
F. CROCKER, Vice-President.

Scientific Rook Ḡatalogue
 mailed rre to any address on application. MUNN \& CO., Publishers Scientific American,

CASTINGS. - A DESCRIPTION BY

ASbESTOS SEGTIONAL PIPE GOVERIMG.

A Non-Conducting Covering for Steam and Hot Water Pipes, etc. ASBESTOS BOILER COVERINGS We are prepared to take contractsfor applying Steam Pipe and Boiler Coverings in any part of the Unied St

SCIENTIFIC AMERICAN SUPPLE-

GRAVESELEVATORS.

WORKING MIODELS $\underset{\substack{\text { and } \\ \text { Machinery, } \\ \text { Mantal } \\ \text { metal }}}{\text { E. }}$

OTTO GAS ENGINES 風

Engines and Pumps Combined

 For COAL GAS SCHLEICHER, SCHUMM \& CO. Phila del.pha,chicago,

ฐrientific Americau The Most Popular Scientific Paper in the World Only ¥3.00 a Year, Including Postage. Weekly

This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, tet. Complete list of patents each week. tific Ambrican will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States,
 Clubs.-Special rates for severat
Masters. Write for particuars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carerully placed inside of envelopes. securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. selaont goes astray, but is at the sender's risk. Address
all letters ana make all orders. drafts, etc., Dasabale to Scientific Americat Kuphlemput This is a separate and distinct publication from Trp
SCIENTIFIC AMERICAN, but is uniform therewith-in size every number containing sixteen large pages full of engravings, many of which are taken from foreign papers,
and accompanied with translated descriptions. THE
SCIENTIFIC AMERICAN SUPPIEMENT is published weekly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal departments of Sceience and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy. Chemistry
Electricity, Light, Heat., Mechanical Emgineering, Steaw Electricity, Light, Heat. Mechancical Engineering, Steam
and Railway Engineering, Mining, ship Building, Marine Eng ineering, Photography, Techisology, Manufacurinh
Industries, Santary Engineering, Agriculture, HotiIndustries, Santary Ene Domestic Economy, Biography, Medicine, etc. A
culture,
vast amount of fresh and valuable information obtainvast amount of fresh and valuable information ovtain
able in no other publication.
The most impontanc Engineering Works, Mechanisms and Manufactures at home and abroaa are inustrated
and described in the SUPPLEMENT.
 Canada, 校, OO a year; or one copy of the SCIENTIFIC AMER-
ICAN and one copy of the SUPPLEMENT, both mailed for one year for $\$ 7.00$. Single copies, 10 cents. Address, and
remit by postal order, express money order, or cheelk, MUNN \& CO., 361 Broadway, New York.
Publishers SCIENTIFIC AMERICAN.

Buildiung ©dition.
The Scientific American archiects' and builn
ERS' Emition is issued monthly. $\$ 2.50$ a year. Single copies, 25 is issued monthly. $\$ 2.50$ a year. Single about two hundred ordinary book pages; forming a large and splendid Mayazine of Architecture, rich
adorned with elegant plates in colors, and with other fine engravings, illustrating the most interesting examples
of modernarchitectural construction ana allied subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, perspective and in color are given, together with full
Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Archi-
tectural publication in the world. Sola by all newsdeala year. Remit to
MIUNN \& CO.. Pnblishers,

361 Broadway, New York.
PRINTING INTKES

