
a WeEkly Journal of practical information, art, science, mechanics, chemistry, and manufactures.

	NEW YORK, DECEMBER 6, 1890.	

500 FT

§nimutific ghmeriaut.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN. A. E. BEACH.

TERIS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S., Canada or Mexico....One copy, six months, for the UU.S., Canada or s.exico.
One copy, one 5300
150 Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ Co., 361 Broadway, corner of Franklin Street, New York.

Spanimh Edition of the Scientific American.

UNN \& CO., Publishers,

䟧:

NEW YORK, SATURDAY, DECEMBER 6, 1890.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 779.
For the Week Ending December 6, 1890
Price 10 cents. For eale by all newedealere.
I. ARCH
interesting relic of of the later Roman empire described
 changes color; curious instances of sudden whitening of the hair.
Concerning Spiders.-A very interesting article on the Arachides of different species; the curious water spider, nest-building spiders. and others.- illustrations.
structure and peculiarities of a leaf; why and how it falls from the tree.- 7 illustrations.
CHEMISTRY.-Constituents of Insect Powder.-An inter...
analysis of the well known Persian powder
V. ELECTRICITY.-Electrical Storms on Pike
experiences of observers from 1874 to 1888 .
experiences of observers from 1874 to $1888 . ~$ hurst concerning his motor recently described in the SuppleMENT...
The Electromagnet.-By Prot. SiLVANUS P. THOMPSON.-Con-
clusion of Prof. Silvarus P. Thompson's classic lecture: ending by giving the generalities of the subject, materials, typical forms, etc.- 11 illustrations.
VI. MECHANICAL ENGINEERING.-The Altmann-Kuppermann Petroleum Motor.-A motor for use with ordinar
following the Otto cycle of action. -1 illustration.
VII.-METALLURGY.-Blast Furnaces at Sheffield, Alabama.-Depails, plan, and elevation of a recent1y desisned breast Alabama region. -1 illustration..............
The United Forge Masters' Association.-A recent meeting of this representative body of metallurgists in New York City, with notes of the president's address.
VIII. MISCELLANEOUS.-Very Neat Puzzles.-Twointeresting e
amples of mental deception or optical illusion. -2 illustrations.. amples of mental deception or optical illusion. 2 illustrations.
The New Hydraulic Laboratory of the Massachusetts Institu of Technology.-By GEoRGE F. SWAIN.-A very valuable addi-
tion to the well known technical institute of Boston........... tion to the well known technical institute of Boston..
IX. ORDNANCE.-Recent Artillery Trials at the Gruson Works.Recent meeting at the Gruson Works for inspection of the same
and examination of their products; remarkable armor and ordnance tests.-11 illustrations.
X. PHOTOGRAPHY.-Stag Hunting reproduced by Photography.Reproduction of an interesting scene in a stag hunt.-1 illustration..
XI. TECHNOLOGY.-Loading Materials and Their Uses.-Materials
used for loading paper pulp ; their characteristics and uses...... used for loading paper pulp; their characteristics and uses.......
Notes on the Vulcanization and Decay of India Rubber.-A valuaa ble paper read at the recent meeting of the Chemical Section of the British Association. Paper Pul
for paper... for paper..
Sulphite Pulp Boiling.-The chemical preparation of Sulphite Pulp Boiling.-The chemical preparation of wood pulp.
with elaborate tables of experiments...............................

BIG GUNS FOR COAST DEFENSE.

The chief of the bureau of ordnance, Gen. S. V Benet, in his recently submitted annual report, notes that a twelve inch breech-loading steel rifle is now nearing completion at the Watervliet Arsenal, and wil probably be ready for trial in February. This is the largest size of modern gun we have yet a being put in
manufacture, but the Watervliet plant is bein shape by the government to turn out, also, sixteen shape by the government to turn out, also, sixteen
inch steel guns. These guns will be fifty feet long and weigh 125 tons each, requiring a full firing charge of 1,000 pounds of powder of the description at present used, and throwing a projectile over a ton in weight. It is expected that these guns will have a maximum range of about fifteen miles, and a muzzle power equal to the penetration of three feet of iron. The plans of the fortifications board call for forty-four of theseguns for the defense of ports of the first importance, with the idea of manning our future coast defenses with guns of heavier caliber than are now made for the largest iron clads, and which the highest authorities declare it is impracticable for them to carry and work. The proposed artificial island forts at the entrance to New York harbor, shown in our first page illustration, would afford admirable positions in which to place a few such guns, which, according to the plans of the ranance department, are to be " mounted in pairs in turrets occupying low and exposed sites, and command-
ing the principal water approaches" to the port, where they will have "an offensive power commensurate with they will have "an offensive power commensurate with
the importance of the position they will occupy." It is altogether probable, too, that before these guns are completed, or the forts in which they are to be placed will be ready for them, we shall have found and adopted a practicable smokeless powder, affording much greater penetrative force than the explosive agent at present employed, and giving the defsen known.

PROGRESS OF ALUMINUM.

Since 1885 the efforts made to cheapen the cost of aluminum have been especially earnest among the metallurgists and chemists, both in this country and abroad. In this work Mr. H. Y. Castner, of New York, and Messrs. Cowles, of the Cowles Electric Smelting and Aluminum Company, of Cleveland, O., and Lock power dynamo having been erected at the latter place for the aluminum manufacture in 1886. And yet so difficult has been its production that five years ago its price was quoted in troy ounces at from 75 cents to $\$ 1.25$ per ounce, although within the past year or two it has been sold at $\$ 3$ to $\$ 4.50$ per pound. Now, however, Mr. Eugene H. Cowles claims to have discovered a new process for the cheap extraction of this metal from common clay. According to the New York Times he says:

We now expect to offer a pure metal made by a new process that is radically different from anything yet known to metallurgists-a process that is ridiculously simple in operation and almost theoretically perfect. By reason of two chemical discoveries it is
found that the pure metal can be extracted direct from found that the pure metal can be extracted direct from
the clay. This can be done without the use of electri cal heat. When operated on as large a scale as that on which iron is produced, aluminum will be produced at a cost permitting it to sell at $\$ 200$ per ton, a price less than the present price of copper. Alterations will be made immediately in our works at Lockport to make the metal on a large scale. Capitalists in New York are preparing to build immense new works of
probably twenty times the capacity of the Lockport probably twenty times the capacity of the Lockpor
works. One of the large plants will undoubtedly be at Niagara Falls, where 10,000 to 12,000 horse power wil be required to operate it."
It is to be hoped these expectations will be realized, and if so aluminum is likely soon to occupy a highly important position in the arts, some of which it prob ably will revolutionize.
The metal has a specific gravity of $2 \cdot 58$, a cubic foo of silver weighing four times as much, and a cubic foot of iron or steel three times as much as a cubic foot of aluminum. It is of sensibly the same color as silver, oxidizes but slightly in air, water has no action on it nor is it attacked by nitric acid or dilute sulphuric acid or sulphureted hydrogen. From its extreme lightness strength, and resistance to tarnish, it is used to a con siderable extent in the manufacture of dental, surgical, optical, electrical and scientific instruments of various kinds. It is very malleable and ductile, and may be readily beaten and rolled into thin sheets or drawn into fine wire. It melts at a temperature higher than that of zinc and lower than that of silver, has a tensile strength of 25,000 to 30,000 pounds per square inch Among its uses heretofore have been as an alloy of copper, making aluminum bronze, also in small per centages as an alloy of iron and steel, with remarkabl advantages.

THE newest street-cleaning wagon works on the principle of a patent parlor broom-dustless, and
gathers up the dirt as it goes.

PIGEONS AS DISPATCH CARRIERS.

The wonderful instinct which leads homing pigeons to return to their cotes, though liberated many miles way, has been taken advantage of by sportsmen and many persons, who enter with great zest into the work of breeding and training these birds and entering them for races. There is a federation of homing pigeon fanciers, consisting of upward of three hundred members. The secretary's office is at Philadelphia, and upon his books is entered a description of each bird belonging to member of the federation participating in a contest A piece of metal is attached to the leg of the bird takng part in a race, and upon this is inscribed a mark or number which serves to identify it, should it stray from its course or be driven by wind or storm. The organization of pigeon fanciers has also arranged a series of stations at various distances extending toward the south from New York, and birds when trained are sent by express to these stations, and are there released by a member or a representative of the federation. During the racing season many birds are constantly being started, and occasionally items like the follow ng appear in the daily prints :

On the last cruise of the New York pilot boat Ed mund Blunt, when it was seventy miles southeast of Sandy Hook lightship, a carrier pigeon settled on the oremast rigging. The boat keeper climbed up and brought the almost exhausted bird to the deck, where t was fed and afterward revived. It had a meta band on its leg upon which was engraved $27-29 \mathrm{H}$."
" A carrier pigeon bearing a message written on some essel by A. Ross to Mrs. A. Ross, Annapolis, Md, nder date June 26, flew on board the schooner Fleur de Lis, Captain Duffy, at 4 P. M., July 11, when the vessel was twenty-seven miles off No Man's Land. The bird appeared to be nearly dead, but recovered."
Such excellent results were attained by the pigeon fanciers, so unerringly did the birds come back to their lofts-only a small proportion of failures occur-ring-it was not to be wondered at that their marvel ous abilities as carriers of messages should have been urned to practical account. During the siege of Pa is, 1870-71, pigeons were frequently made use of, and is, 1870-71, pigeons were frequently made use of, and continuous efforts to develop their use in both the mili tary and naval service. A series of experiments wer initiated at Toulon, looking to the introduction of the birds into the naval service. They were conducted by Vice Admiral Bergasse du Petit Thouars and the Societe Forteresse. The first effort was directed to ward domesticating the birds on board the St. Louis, the artillery practice ship. Considerable difficulty was xperienced from the birds becoming frightened by the guns on board ship, but by rearing them near the puns they soon became accustomed to the sound, and when liberated from the various vessels during targe xercise, would form groups above the smoke, some times mingling together, but never losing their own ship. France is the only country which has made careful experiments and adopted a system connecting the fleet and the shore. Germany, Austria, Russia, Italy, Spain, and Portugal each has a military pig eon service. Germany has the most complete mili tary system in the world. Lieutenant Richard Wain wright, U. S. N., in speaking of it, says: "The whol of the northern coast is studded with pigeon stations which are under the control of the minister of marine. Experiments have been made by the German nava authorities on homing pigeons on board men-of-war so that messages may be sent to the ship from the shore. It is said that the birds experience no difficulty in recognizing their own ship among a number of others."
From 1855 until the laying of the Atlantic cable homing pigeons were employed to take the news from transatlantic steamers to the Sandy Hook telegraph stations to be transmitted to New York. A bird libe rated from the steamer Waesland at one o'clock in the afternoon, when three hundred and fifteen miles from Sandy Hook, was at its loft in the evening. Another let go from the Circassia at nine in the morning, when wo hundred and fifty miles out, brought a message in the afternoon.
Canada has quite recently established an organized ystem of messenger pigeon stations throughout the dominion, extending from Halifax to Windsor and con necting her principal seaports with the interior. Gen D. R. Cameron, director of the Messenger Pigeon As sociation, in speaking of the utility of the service says: "I am of opinion that a most important branch of the pigeon service will be connected with the coast service. The evidence that these birds can be relied upon to cross 400 miles of the ocean is apparently tho roughly reliable." A report from Halifax states that it is proposed to put Sable Island in communication with the mainland by means of carrier pigeons. This locality has always been regarded as one of the most dangerous points on the coast, and wrecked mariners have sometimes been stranded on the island for week without being able to communicate with those who might rescue them.
Efforts are now being made to introduce a carrier pigeon service into the United States navy. Professo
H. Marion, of the Naval Academy, at Annapolis, has given considerable attention to the subject, and in a communication to the writer, dated October 6, says : "The United States have no organized service yet, but t is to be hoped that it will soon be established, as numerous experiments have proved that homing pigeons can fly several hundred miles at sea-if liberated in the morning of course; that birds can be bred and trained on board ship, that they can be accustomed to the noise of the ships, that they can recognize their own ship among others, that they can be relied upon to carry news from the fleet to the shore and under favorable circumstances from the shore to the fleet and from one vessel to another. A service of carrier pigeons for naval purposes could not be improvised at short notice as the birds would require long and careful training before they would be of any use as bearers of dispatches. In war time serious derangement of plans, loss, and discomfiture may be involved by the absence of previously organized provision for the rapid transmission of news. We, therefore, advocate the speedy establishment of a permanent system of naval messenger pigeon lofts at the principal navy yards and stations along the Atlantic coast."
Some very interesting experiments have already been made with homing pigeons at the United States training station at Newport, R.I. One of the birds, accord ing to the report of Commander T. J. Higginson, U. S. N., flew from the Hen and Chickens lightship to the cote at Newport, a distance of twelve miles, in 16 minutes and 35 seconds. Another bird flew from Washington to Fall River, a distance of 365 miles, in 11 hours and 7 minutes. A number of the birds were taken to New York on the Juniata last year, with the intention of liberating them along the coast, but the weather was unfavorable, and they were not flown. While at Brooklyn one of the pigeons escaped from the Juniata, and it was considered lost, as it had never flown a greater distance than from Point Judith, but in a few days the bird arrived at its home safely and in good condition
War vessels employed in defending a coast are often without the means of transmitting information of the utmost importance to the mainland. By means of carrier pigeons they could send communications ashore over a distance of several hundred miles, signal the approach of the enemy's fleet, and report all his movements.
It would hardly be supposed that homing pigeons would have been called into requisition to aid operations in Wall Street, though such is the case. A well known stock broker purchased a farm in Somerset County, New Jersey ; and finding that the telegraph service in the vicinity did not give satisfaction, especially when an excited stock market necessitated quick communication with New York, the broker decided to establish a messenger pigeon service of his own. The distance from his office in New York to his farm is forty-three miles. A hamper with several birds in it is kept in his office, and when the broker is spending a day or two at his farm, and his manager wishes to communicate the condition of the market, it is very quickly done by means of one of the birds. This gentleman went to an isolated point in Buzzard's Bay Mass., on a fishing excursion, the only communication with the mainland being by a small steamer which arrived about twelve, noon, and departed at one o'clock. One day after the steamer had left the broker opened his mail and found that the stock market had taken an unexpected turn which necessitated imme diate communication with his office. There was no telegraph or other means of communicating with the mainland, but fortunately he had brought with him the hamper containing the pigeons. A message was quickly written and attached to a tail feather of one of the birds, while to insure absolute safoty a duplicate was attached to another bird. They were released a 3 o'clock in the afternoon, and arrived at the broker's farm early the next morning, so that the order which they transmitted was acted upon at the opening of the Stock Exchange, and resulted in saving a very con siderable sum of money for the owner of the pigeons.

A MOUNTAIN RAILWAY NEAR NEW YORK CITY. Thirty-nine miles above New York, on the wes shore of the Hudson, the Dunderberg Mountain rise eleven hundred feet into the clouds, towering abov all the other elevations in its neighborhood, and afford ing from its summit views of such grandeur and mag nificence as are hardly to be surpassed anywhere in th world. On the extreme top of this mountain is to be built a great hotel, to be surrounded by a beautifully laid out park, and access thereto is to be provided for by means of a cable railway, whereby the cars will be drawn up in eleven minutes. The enterprise was con ceived by Messrs. T. L. and J. H. Mumford, the con trollers of the Mauch Chunk switchback railroad, and is being carried out by the Hudson River Improve went Company, of which Mr. James Morgan is presi dent, at an estimated cost of $\$ 800,000$. The trip to the top of the mountain, however, and the view to be obtained therefrom, will be by no means the principa attraction, for the return journey is to be made by a
gravity spiral road, winding in, out, and around the various inequalities of the mountain and adjacent
country for a distance of twelve miles, affording a noble panorama of constantly changing views to surprise the passenger at every turn.
Much of the work on this enterprise has already been done, the roadbed being now about ready for the rails, and the machinery and cars in a forward state of construction, so that it is expected the road will be opened to the public early next season. At the main station at the base of the mountain, convenient of access to passengers both by rail and boat, besides the car and engine houses, etc., there will be a large hotel and seven acres of ground to be used as a park for the accommodation of passengers waiting for trains or steamers. From this station runs a double plane about twenty-five hundred feet long, having at its top haul ing engines and an electric light and pumping plant. A second double plane runs from this station to the summit. The hoisting machinery and engines, being built especially for this work, will embody all the best features hitherto known in such construction, as wel as original plans for the safety of the drawing cables and safety ropes. 'The lower plane will have a maximum grade of 31 per cent, and the upper one a maxi mum grade of $281 / 2$ per cent. The back or gravity track will have an average grade of $11 / 2$ per cent, with a minimum of 1 per cent, and a maximum, on 40 de gree curves, of 3 per cent. About one-quarter of the distance down, a dam across a deep gorge forms a beau tiful lake or reservoir for the use of the hotels, cot tages, and works of the company, and at three different points on the down track will be stations sur rounded by grounds laid out for pienic purposes. It is intended to keep the road and grounds open from May until late in October. It seems difficult to make a really conservative estimate of the immense patron age which this most picturesque resort for summer ex cursionists is likely to attract, it being so easy of ac cess by the great population of New York City and vi cinity.

Collapse of a Standpipe at Temple, Texas.
The Sun of Temple, Texas, gives a thrilling accoun of the sudden collapse of the new standpipe pertaining to the water works in that town, which took place a $21 / 2$ A. M., in October last, when the inhabitants wer wrapped in peaceful slumber. No danger was feared, when all at once, with a shock that shook the town, the 280,000 gallons of water went seething, foaming, and hissing over the doomed portion of the city, and im mense sheets of boiler steel, hundreds of pieces of scaffolding, houses, barns, fences, and all the debris of the surrounding neighborhood went floating and crashing in all directions.
Everybody was awakened. The people in the houses near were almost frightened to death. The houses swayed with the rush of waters, and two of the neares were taken away, one crushed and the other twisted and washed off its blocks.
There were sixteen sections of the pipe, a great holow cylinder, 20 feet in diameter and of the heaviest boiler steel. Eight sections, or 40 feet, the lower tiers of the pipe, were thrown in a different direction, seven oing east and one twisted and torn sheet going north and all lodging from twenty to fifty feet away. They weretorn as the power of man might tear tin foil t wisted and crumpled as a seamstress would handle he cloth.
The standpipe was 120 feet high and 20 feet in dia meter. It was built recently at a cost of $\$ 10,000$, by Thomas \& Gorman, of Houston, experienced con tractors in this kind of structures. The material wa the best sheet steel supplied by Ripley \& Bronson, St Louis, Mo.
The failure of this standpipe brings to mind the co apse of a similar pipe, which occurred at Sheepshead Bay, near New York, on October 7, 1886, and which was illustrated in the Scientific American of De cember 25,1886.

Nickel-in-the-Slot Gas Meter.

A new penny-in-the-slot contrivance has been adopt d by the gas department of the corporation of Birm ingham, for the benefit of small consumers, and, inc dentally, its own. The price of gas in Birmingham, as everywhere else in England, is, according to our ideas, eet. Small householders, however often like to enjo definite amount of such luxuries, without bein bound to any regular contract; while the gas company is glad to make sure of its pay from such consumers by getting it in advance. To meet the wants of both parties, a sort of meter has been constructed, which on dropping a penny in a slot, will deliver twenty-five cubic feet of gas. This is at the rate of eighty cents a thousand feet instead of sixty; but the company feel justified in charging a rather higher rate to such small customers. If any of the latter wish for a larger supply, they may drop nine penny pieces at once into the slot, and 225 feet will then be delivered before the valve oses. The accumulated pennies are collected once a week by an official of the gas company. The burners
on the house fixtures are regulated to burn five feet per hour, but, of course, they can be turned down, so as to hurr more slowly. No direct charge is made for the measuring apparatus, the extra price of the gas delivered through it covering the expense.

Electricity in Paper.

How to control the electricity in stock, or which develops about a press in working, is a problem that till bothers many pressmen. We have given remedie for this trouble several times, and, as far as we have earned, all of them proved efficient.
For those who are only recent readers of the $A v t$ Printer, and indeed for older ones as well, let us say that the most thoroughly effective method is the use of a copper wire connected at one end with the zinc covered fly board, and by a second wire with the feed board, and at the other end with the gas pipe at the ceiling or elsewhere, thus establishing electrical com munication with the earth, to which the lower end o the gas pipe conducts.
Here is the modus operandi: As we have said, the fly board is covered with zinc. Under one side of thi zinc, near the press, is thrust a piece of brass about two inches long, half to three-quarters of an inch wide and an eighth of an inch thick. A thick piece of bras rule would do nicely. In the outer end of this bras rule a hole is made through which one end of the cop per wire is passed and fastened. This wire is carried to the framework of the press, wound about the corne post of the framework, then carried along the entir foundation, winding about a pillar to keep it up Reaching the corner post of the frame at the farthe end, the wire winds about it and is then passed up and fastened to the gas piping at the ceiling.
A second wire connects with the first one at the center of the foundation frame, and runs winding round the central post directly under the lower end of the feed board, near the gripper line. Having reached the feed board it is passed through the hole of anothe piece of brass similar to the one at fly board. This second piece of brass is attached to the iron framework of the gripper or guide motion.
The point is to establish a conducting line between he paper and press, wherein electricity is either stored or generated, and the earth, along which line the fluid has a chance to escape or be drawn. This done, ther is no more worry about electricity around a press.
Some pressmen cover the feed board with zinc-o the lower part of it-as well as the fly board, in order to insure the action of the two metals, zinc and copper, upon the electricity in the paper; but the experience of the majority who use the wires is that if the connec tion is properly made with the metal of the grippe motion, contact is certain, and the electricity is abso utely drawn off and sent through the gas piping
The wires being wound about the press, as well a being brought into contact with the paper, catch al the electricity generated by the rapid motion of the machine and send it off in the same way.-Amer Art Printer.

Edison Toy Manufacturing Company
The annual meeting of the Edison Toy Manufactur ing Company was held at Clarence Hale's office in Port land, Me., October 30. Mr. Edison was represented by his secretary, Mr. Tate. This was the treasurer's ex hibit September 30 :

Capital stock.	1,000,000.00
Working capital.	62,871.37
Total	\$1,062,871.37
ASSETS.	
Treasury stock.	\$160,000.00
Licenses and patents.	846,894.84
Cash........	2,973.03
Cost of dolls' parts and merchandise.	35,384.23
Edgar S. Allen, general manager..	69,025.00
Europear expense account	5,699.84
Thomas A. Edison.	1.000.00
Office furnture	1,229.15
Total.	

These officers were elected : Directors, Benjawin F Stevens, Danield Weld, John W. Mackintosh, Winfield S. Hutchinson, Thomas A. Edison, George Borgfeldt, Oscar E. Madden ; clerk, Clarence Hale ; treasurer and secretary, Daniel Weld.-Electric Review.

A RATHER handsome compliment has recently been paid to the Scientific American by the well known jewelers Messrs. Benedict Bros., of 171 Broadway, N. Y., who have designed a novel and beautiful match box representing a copy of a newspaper folded in a wrapper. The ends of the paper extend beyond the wrapper and display the familiar heading of the ScIentific American. The wrapper has a blue enameled penny postage stamp and bears the New York postmark, while a blank space is left for the name and address of the owner to be enameled in black on its surface. It was found desirable to select some representative non-political journal, and the ScIENTIFIC American was chosen as most appropriately filling e requirement.
We take pleasure in acknowledging the compliment that has been offered us.

The Patent Sales Agency Business.
Those of our readers who have taken out patents within recent years know something of the extent to which inventors are besieged by various individuals and firms from Maine to the Pacific coast, who are anxious to negotiate the sale of patents, and whose circulars, letters, pamphlets, etc., are many of them skillfully designed to make the unhappy inventor, whose name and address has just appeared in the Patent Office Gazette, believe that there are plenty of people who are anxiously waiting for an opportunity to buy his patent and pay fabulous amounts for it, only these persons must be found.
The finding of them is what these patent salesmen propose to do. Their proposition is usually to take the patent in hand and find a purchaser for it, charging a percentage for their services. But the main feature of the business seems to be the fact that the inventor is always required to pay a certain amount of cash, varying with different concerns from five to twenty dollars, as his part of the expense of advertising, traveling, correspondence, etc. It is perfectly safe to say that in a vast majority of cases this payment required of the inventor upon placing his patent in the agent's hauds pays not only a part, but all the expenses involved, and leaves a handsome profit to the agent; in most cases probably all the profit he seriously looks for from the transaction.
Sometimes, after a year or so has passed by, the anxious inventor, who has invested some of his cash in "advertising expenses," is informed that the arduous labors of the agent have at last resulted in the finding of a man who wants the right to make and sell the invention in several States, but can only pay for it in land upon which there is some sort of incumbrance to the amount of say fifty to a hundred dollars, varying in different cases. If the inventor will forward the amount to the agent, the sale will be immediately closed.
The significant feature of the whole business is, says the American Machinist, and which, from the long experience of the editors of this paper with this class of people, they can verify the truthfulness of, i. e., that the inventor is in every case required to pay something for which he has no assurance of a satisfactory return, and it is easy to see that with the vast number of patents being taken out, many of them by people more or less unused to the ways of the world, the income of these selling (?) agents must be considerable if they succeed in getting payments of small amounts from only a small fraction of the total number of patentees

A REFRIGERATOR VEHICLE FOR PERISHABLE

ARTICLES.

A vehicle provided with refrigerating compartment especially adapted for the storage and conveyance of milk or other perishable articles is represented in the accompanying illustration, and forms the subject of a patent recently issued to Mr . Charles A. Knight, of No. 98 Sterling Place, Brooklyn, N. Y. In the roof of a top chamber, and bars extend from the partition to the floor of the wagon at the sides. Sheets of zinc or other suitable metal or non-conducting material are secured to the inner faces of these bars and the side nprights, these sheets constituting the sides of the refrigerator and, with the uprights, forming side flues through which air passes from bottom apertures into the top chamber, while the latter has front and rear openings, the air passing through which is designed to create a suction and cause currente of air in the direction indicated by the arrows A second horizontal partition in the top of the refrigerator proper forms a storage compartment, open at its front end and with an upwardly opening hinged door at the rear. In the front end of the refrigerator is a fixed central perpendicular post, to which are hinged two doors closing against the sides of the vehicle, and centrally in the rear is a removable post constitut ing the rear wall of an ice chamber, at each side of which are arranged compartments for the reception of baskets or boxes containing the milk cans or other articles to be placed in the refrigerator. These compartments have openings on their inner sides, toward the ice-containing chambers and they are built up in such manne as to have tracks or slideways in their bottom edges, to facilitate the placing and removal of the baskets or boxes, etc.
The bottoms of the ice receptacles have apertures, the drip from the upper one passing into the lower one, and the latter draining through a tube in the bottom of the refrigerator, passing through the wagon bottom.

AN AUTOMATIC STEAM BOILER FEEDER.
In the accompanying illustration of a boiler feeder patented by Mr. Bernard Devlin, of No. 327 Grand St., Jersey City, N. J., Fig. 1 shows a front view of one of two or more steam boilers and feed pumps therefor, with the improvement applied. Fig. 2 is an enlarged sectional view of the valved regulating drum or casing and connected steam pipes, and Fig. 3 is an enlarged

DEVLIN'S AUTOMATIC STEAM BOILER FEEDER.
view of the steam-actuated regulator device shown in connection with the pump. The drum is connected to the steam and water spaces of the boiler by upper and lower pipes, and is fitted with an ordinary gange glass.
Within the drum is a float having a vertical spindle Within the drum is a float having a vertical spindle
guided in a tubular bearing at the bottom, and in an upper cross bar or bridge piece and a skeleton bear ing, both fixed to a hollow fitting flared downward from the top of the drum, and forming a seat for a conical valve fixed to the float spindle. Suitable col lars or washers on the spindle hold the float in proper relation to the valve and its seat, causing the float when lifted by rising water in the drum to close the valve and cut off flow of steam from the upper part of the drum to a pipe leading therefrom. Side holes in the spindle guide near the bottom of the drum give outlet to a blow-off cock for cleaning the drum when desired.

To the pipe leading from the top of the drum is couanother containing a check valve, a pipe from which is connected to a steam pipe leading to a regu-

KNIGHT'S REFRIGERATOR MILK WAGON

drum and each of any number of boilers set up in a battery. These regulators, as well as one to control an injector, are made alike, the regulator in the latter case receiving steam from the drum while a steam pipe connects the steam space of the boiler with the in jector, to which is coupled also the feed water supply pipe, which may have a valve controlled by the regulator. A valve may also be fitted into the steam supply pipe from the boiler, near the regulator, to be controlled by the latter simultaneously with its control of the main water inlet valve
The regulator itself has a hollow rear chamber, from the side of which projects a cylinder, into which is fitted a piston made as a cylinder, closed at its outer end by a head, and surrounded by a packing. One end of the hollow rear chamber is connected to the steam pipe leading from the drum, and to its other end is fitted a check or relief valve, closing by pressure from the pipe, but normally held open by a spring on its stem. A stop device limits the outward movement of the cylindrical piston, and a retracting device is provided, which may be a weight from a cord running over a pulley on the hollow rear chamber and connected to the head of the piston, or a spring connecting the piston head and chamber. By means of certain rod and link connections to the head of the regulator piston, one regulator may operate the main steam and water inlet valves and the steam and water valves of an injector, when the latter is used instead of a pump to feed a boiler.
The operation of this boiler feeder is entirely automatic, and very simple and effective. When applied in connection with two or more boilers, each boiler is fed independently of every other boiler, the check valve of the boiler in which the water stands at the proper level being closed by steam pressure in the pipe leading to the regulator, so as not to prevent the free operation of the drum valve at the boiler, and when all the boilers are filled to the proper water level, the feeding pump will stop, as its valve will remain closed. A similar effect is also produced, through the regulator, in starting and stopping the injector, when the latter is used to forc the feed water into the boiler

The Gypsy Moth.
Mr. J. O. Goodwin writes as follows to the Medford Mercury:
"I have had quite a little experience with the pest, as in the rear of my premises are three or four large apple trees which have been wholly uncared for by the owner, and the tent caterpillar and gypsy worm have held high carnival there until every vestige of green has disappeared. After devastating my neighbor's trees they marched in myriads for my premises, fairly covering the fences, houses, outbuildings, grass-land current bushes, and concrete driveways with their trooping battalions. I immediately tacked tarred sheathing paper around every one of my trees and keep the paper well coated with printer's ink. The worms will not go over the printer's ink if care is taken to make frequent application of it. Experience, the best. of teachers, proves it. During the past week or ten days I have personally attended to the matter and have killed millions of gypsy worms which have congregated below the paper on my trees. The trees nearest my neighbor's land were the first ones attacked (they will not pass a tree), and five or six times a day the trees below the paper are literally covered with thousands of worms, notwith standing I take great care to kill ever worm seen at each inspection, while not a worm can be found on the tre above the application of printer's ink. The number of worms culitivated on the three or four worthless trees on the premises adjacent to my own is astonishing; numbers fail to convey an adequate idea. The grass-land and the earth seemed to be covered with them. In fifteen minutes after killing every worm to be seen on the trunk of the tree below the tarred paper, hun dreds can be found making their way up the trunk, to be stopped by the application of printer's ink.'

The 'Serve" Boiler Tube.

The "Serve" tube differs from the ordinary boiler tube in having eight internal ribs one-half inch in height, in 3 inch tubes, which have the effect of increasing the efficiency of the tubes as heating surface, by absorblator which controls the steam inlet in a steam supply ing the surplus heat in the gases, as they pass from pipe which leads from one of the boilers to the valve the combustion chamber to the funnel. Indeed, chest of the feed pump. To a nipple on the pipe lead- the extent of tube surface coming into contact with ing from the top of the drum, between its valve and the gases is nearly double that of a plain tube. the check valve, is coupled another pipe which leads to a similar regulator bolted or clamped to the feed pipe, and provided with a gate valve. Such a pipe connection and regulator are provided between the

The inventor, M. Jean Serve, is a native of France and in that country the invention has already found considerable favor, as it effects an economy of 10 per cent in fuel.

A BRAKE FOR STREET CARS.
The device shown in the engraving is designed to be operated as easily and effectively as the ordinary brake, while it obviates the forcible flying back of the brake-shaft crank-arm as the brakes are taken off, whereby persons standing on the car platform are fere quently injured. The drum on which is wound the chain connected with the brake beams is journaled in the car platform, the top of the drum shaft carrying a
ing strip on one side of the elevator well are arranged three parallel vertical dovetailed slots, and pivoted in the upper portion of the strip between the slots are three pulleys, one a little above the other. Aligning with two of these pulleys are two pulleys pivoted in the lower portion of the strip, the pulleys at the top and bottom being adapted for the passage of the gate cables. In each of the two outer slots of the strip is dovetailed a catch projecting from the face of the strip and adapted
rs which point in ward, is arranged in front of and par allen to the stationary rail, the movable rail being pas tend by means of screws and tail guides to a recipro eating frame which slides upon horizontal guide rods supported at their outer ends by offsetting curved brackets. To the bottom of the frame are jointed the outer ends of curved connecting bars which at the i inner ends are jointed to cranks on a rock-shaft, the latter being connected by other cranks with a vertical

O'NEILL \& REINHART'S WRENCH.

pitman jointed to a treadle. When the treadle is depressed, the reciprocating frame, carrying the front rail with its markers, is forced inward, marking upon both sides at once the piece of lumber that has been placed beneath the rails. A vertical leaf spring is arranged to force the reciprocating frame backward when the foot is removed from the treadle.

AN IMPROVED WRENCH

The wrench shown in the illustration, of which Fig 1 is a view in perspective and Fig. 2 a longitudinal section, is especially adapted for use in places where working room is limited and where ordinary wrenches cannot be employed. The jaws of the wrench extend outwardly from arms adapted to slide longitudinally suitable guideways in the head On the opposite ar the faces of the arms are formed racks meshing into a gear heel, sha view on the line, $x x$, of Fig. 2. This gear wheel i en a central shaft turning in suitable bearings, and on to move vertically therein to engage the gate-operating latches, the catches being connected with the gate-operating cable. The latter is attached centrally to the upper portion of the gate, and is composed of two strands or members which pass upwardly over pulleys pivoted near the upper part of the story, thence turning at right angles and passing over pulleys pi voted near the upper corner of the elevator well, from which one of the member as e over the pulley pivoted the top of the first dovetailed slot, and the other member passes over the pulley pivoted at the top of the third dovetailed slot. The member passing er the first pulley is continued own the slot and attached to the atch, while the other member extends down the third slot, over a pulley a the bottom, and up to the other catch o which it is attached. A second cord or cable is attached to the upper end of the first catch, and extends up

The device shown in the cut is designed to facilitate

GOLDER'S DEVICE TO OPERATE ELEVATOR GATES.
will be so controlled that nothing will be broken if the gate meets an obstruction. It forms the subject of a patent issued to Mr. William H. Golder, Nos. 18 and 20 Front Street, Portland, Oregon. In a vertically extend-
head-plate, which preferably furnishes a loose bearing for the lower end of the usual vertical brake-shaft journaled to the dash-board and in the top of a box or casing on the platform. The chain drum is not fixedly connected to the brake-shaft, but the latter carries at its lower end two pivoted clutch-bars adapted to engage two lugs on the head-plate of the drum shaft. These clutch-bars automatically drop by gravity into engagement with the lugs, but to disengage them, as shown in dotted lines, and allow the drum shaft to unwind without rotating the brake shaft and its crank, a trip device is provided, consisting of a ring which underlies the outer ends of the clutch-bars, and is connected to a treadle lever. A spring normally holds the ring down, except when the treadle is depressed. Within the box or casing is arranged a spring-pressed pawl which engages a ratchet wheel fixed to the brake-shaft to prevent backward turning of the clutched shaft and chain drum when the brake is applied.
For further information relative to this invention address the patentee, Mr. Joseph C. Chase, No. 88 Lyons Street, New Orleans, La.

AN IMPROVED ELEVATOR GATE.

The construction shown in the accompanying illustration is designed to provide for the dropping of an elevator gate by gravity, while the descent of the gate

\qquad
| blade. A second movable rail simi-
larly slotted, and provided with markwithout bread corks from the inside of a bottle dented by Mr Bernie cork. It has been patthe implement consists of a flat strip of spring metal, the upper end of which is looped over a handle, while, at a slight distance from its lower end, are outwardly and upwardly extending claws, another set of similar claws bending claws, another set of similar claws
at a point higher up on the strip. In operation the body of the device is inserted in the vessel, when the cork is engaged by the claws and drawn out through the neck, as shown in the illustration. The handle has one tapering outer end, suitable for use in forcing the cork down into the bottle in case of full bottles or where the cork has lodged in the neck, after which the cork is withdrawn as described.
Further particulars \bar{r} elative to this invention may be obtained of Mr. M. E. Donally, No. 166 Third Avenue, New York City.

A MARKER FOR WOOD-WORKERS.

The illustration shows a machine especially designed for laying off and marking the stiles of shutters and doors and similar work, preparatory to cutting the mortises by a mortising machine, to save labor and insure accuracy in the joiner work. It has been patented by Mr. Robert G. Love, of No. 814 East Clay St., Richmond, Va. Upon the front edge of a strong framework, adapted to support dressed lumber, is fixed a stationary horizontal rail having horizontal slots in which slide markers. These markers, one of which is shown in the small figure, which is shown in the small figure,
have toothed edges, and are fastened have toothed edges, and are fastened
by a screw to a dovetail lug in a block by a screw to a dovetail lug in a block
clamped to the rail by a screw bolt passing through one of the slots, whereby the markers, of which there are a number in the rail, may be adlusted horizontally as desired. To mit the depth of cut of the marker th an adjustable stop crew i aced in each block beside the mark

LOVES MACHINE FOR LAYING OFF WOOD-WORK
thereon by a spring latch. This cylindrical part may be disengaged from the latch, moved outward, and swung into a right angular position as shown in Fig. 1, to be used as a lever to turn the wrench.
For further information relative to this invention address the patentees, Messrs. Augustus J. O'Neill and Henry Reinhart, in care of Parrot Smelter, Butte City, Montana

THE DEFENSE OF NEW YORK

It has'for many years been patent to every one that New York City, with the great industrial forces and vast aggregate of wealth concentrated around what is known. as the Port of New York, are entirely without defense against such an attack as might be made by the vessels of any first class power with but a few hours' notice. The forts at present guarding the entrance to the harbor would not protect the city from the long-range guns now in use, and in heavy armored vessels, and the high-powered ordnance therefor, by which such attack might be repelled, we have as yet nothing that will compare with the great ironclads of several of the European powers. The matter has for several years had much consideration by eminent engineers of the government War Department, but no complete system, adequate as a permanent and thoroughly effective defense, has yet been decided upon, although the Fortifications Board has declared the urgent need of such work, not only at New York, but at twenty-seven of our seaports, New York coming first on the list, Boston second, and San Francisco third.
The illustrations on our first page present a plan quite unlike anything heretofore attempted any where for the construction of forts for the defense of the ocean approach to the city. It has been, in fact, only within a few years that such constructions would have been deemed at all possible, but such have been the re cent advances in engineering methods and practice that not only doesjthe plan appear practicable, but engineers are ready to-day to figure on the cost and at once commence the work. The plan we illustrate has been brought forward in its present shape by Mr. John F. Anderson, a New York engineer, and consists in the
construction, on artificial islands, of three forts, each with a diameter of 500 feet, between Roskaway Beach, on the Long Island shore, and Sandy Hook point. The bird's eye view afforded by the principal engrav ing gives a good idea of their proposed location. They would be about two wiles apart, and the same distance from each shore, so as to command all the channels of approach, while being from twelve to fifteen miles dis tant from the city.
At the points where it is proposed to place these fort there is now a depth of water of from twelve to twenty feet, but with deep water on all sides in each case. The manner of their construction is not unlike that of several large engineering undertakings which have been successfully prosecuted by Mr. Anderson. There will first be built, of iron or steel, a double-walled cir cular caisson having an outside diameter of 500 feet and an inside diameter of 400 feet. The inner
and outer shells of the walls of the caisson will be and outer shells of the walls of the caisson will be
suitably tied together by cross rods and braces, and the bottom of this space will be shaped to form an in ner and outer cutting edge, with an intermediate work ing chamber, as shown in the sectional view at the middle of the page, while vertical working pipes or well will be placed at frequent intervals. This structure will be towed to the proper position over the shoal where the future islind fort is to be made, where it will be sunk by opening valves in the bottom. The space between the outer and inner walls is then to be weighted with concrete, and at the same time the sand
underneath the structure is excavated through the wells in the ordinary manner, so that as the excava tion proceeds, the caisson will continue to sink evenly and a solid wall of concrete will be built up within the iron shells.
The excavated material passed up through the work ing wells would be dumped on the inside, to fill the area inclosed by the walls. The remainder of the in terior filling would be readily accomplished by mean of steam sand pumps or dredges, which would take up sand from the sea bottom-outside the fort, and dump it within the inclosure. Thus the principal materials required for the work are ready at hand.
The plates forming the shell for the walls would not necessarily be carried up further than was required by the sinking of the caisson, but, although the walls of this fort would be fifty feet thick, it is probable that their outer face would be provided with a belt of nickel steel or other approved armor. The guns with which such fortifications would be provided would, o course, be of the heaviest and most effective kind, and they would probably be mounted in armored turrets, whereby the guns and gunners would be protected during loading and training. An oscillating turret for heavy guns, operated by hydraulic rams, is now in use in France, with which a crew of five men and on officer are found sufficient to fire a 100 ton gun twice mounting heavy guns on disappearing carriages and
lifts, whereby the gun will be exposed to an enemy's fire only at the moment of firing, and a fort of the character described would afford facilities for mount-
ing and working such an armament far superior to those which could be provided on the largest war vessels.
Another feature proposed by Mr. Anderson in the plan for these forts is to have a portion of their interior left partially open on the New York side as harbor for torpedo boats or rams.
In the view at the top of the page one of the pro posed forts is shown, presenting a space of about five acres, with temporary buildings occupying a portion of its area, in the manner it would probably be used in time of peace, a bomb-proof magazine being centrally located almost entirely underground. The top of this magazine would be protected with any required number of heavy plates, and underground passages would probably lead from it to each gun or battery.

Mr. Anderson has roughly figured up the cost of building an island such as here described, and esti mates that three of them could be built at an expense of about one million dollars each. His approval of the scheme as entirely practicable, and the moderate figure at which the outlay for such defensive works is placed has caused considerable attention to be attracted to the plan. Mr. Anderson now has a contract with the government for building a lighthouse off Cape Hatteras, he has built the foundations of many of the most important bridges in the country, and in the building of the Hawkesbury Bridge, at New South Wales, Australia, he successfully carried down piers 155 feet below the water line and 108 feet below the bottom. It is not expected that the caissons for the proposed island forts would have to be carried to a great depth to obtain a firm foundation.

Taking Care of Hopes.

An article in a recent issue of the Chicago Journal f Commerce gives some interesting and valuable in formation regarding ropes, from which the following extracts are made. It is stated that the reason why it is necessary to take out the "turns" in a new rope, and that it is untwisted when first put to work, is that in making ropes, the fibers are first spun into yarn, this yarn being twisted in a direction called right hand. From twenty to one hundred of these yarns are then put together and twisted in an opposite direction, or left handed.
This forms a single strand or rope; from three to four of these strands are again twisted together, and it will be noticed that as this twisting is again in the right hand direction, it untwists the strands and again wists up the yarn. When a weight is placed upon one end of the rope, its tendency is to untwist and becom longer, and the untwisting will continue until the strain of the untwisted strand just equals the strain of the yarn being twisted together.
If it were possible, in making a rope, to put in just enough twist so that these strains should balance each other, then there would be no necessity for taking out the turns when a new rope is put to work. The greater the twist, the harder the rope, and to the con-
trary, a rope with little twist is much softer and rary, a rope with little twist is much softer and
tronger. The reason for this is easily seen, as in a tightly twisted rope the strain does not come as nea in the direction of the length of the rope; that is, the fibers lie at a greater angle to the axis of the rope, and weight upon the rope forms a breaking instead of a tretching strain.
Ropes sometimes wear out internally while appar ently sound outside. This is caused by bending the ope over a sheave. In doing this the fibers slide a mall distance upon each other and eventually wear out. In the best ropes this wearing out is prevented
by lubricating the strand with plumbago, mixed with by lubricating the strand with plumbago, mixed with place.
In designing pulleys, they should not be made less than forty diameters of the rope; this is the limit of conomical wear and they may be made as much larger as practicable. The speed ol ropes may vary from 2,500 to $5,000 \mathrm{ft}$. per minute. If five feet be taken as a ninimum diameter of a pulley for a rope one and a half inches in diameter and running $2,500 \mathrm{ft}$. per min-
ute, the pulley should increase one foot in diameter for ate, the pulley should increase one foot i

Imitation of Marbles.

Good Portland cement and colors that take on that material are mixed dry and made into a paste with the least quantity of water added. One paste has to be made for each color. The different pastes are placed on top of one another in layers of different thickness The mass is pressed from all sides and beaten so that the colors of the different parts impress themselves on each other without uniformity. The result is that more or less deep veins penetrate the mass; this is then sawed into plates, which are pressed in a monld for twelve days, during which time it is necessary to keep hem moist as long as they are not entirely hardene The plates are polished in the same way as marble.

Census Adventures in Alaska
A recent report of progress in taking the census of Alaska has been issued by the U. S. Census Office in the form of a bulletin. It comprises a preliminary re port by Mr. Ivan Petroff, special agent in charge of the Alaska division, and embodies a vivid picture of the difficulties encountered in getting results in the northernmost regions of the United States. After a preliminary trip in the mail steamer, a second trip was undertaken from San Francisco to the shores of the Bering Sea, at Nushegak, in a leaky little steamer of only 25 tons burden. Special agents for different sections were ap pointed and sworn in on these voyages. To reach one special agent a voyage up the Nushegak River was undertaken, but failed, owing to his recalcitrant Indian paddlers. On returning to Nushegak, the U. S. Fish Commissioner's steamer Albatross took the party on board, and after six days landed them on an inhospitable shore, with a crew of Indians, mostly sick from pneumonia. The work, in spite of all obstacles, was accomplished, Mr. Petroff having divided the territory into six districts and organized a force of special agent familiar with the many languages spoken there. Hi journeys aggregate some 12,000 miles, while the specia agents will probably travel over five times as much ground to cover Alaska's 570,000 square miles of terri tory.

Effect of Copper upon Rubber.

In a paper read before the British Association, Sir William Thomson made interesting remarks relating to the decay of India rubber. The following extract howing that copper has a marked effect upon rubber when in contact, will be noted with interest : Prof. Dewar observed, accidentally, that metallic copper, when heated to the temperature of boiling water, in contac with the rubber, exerted a destructive effect upon it With a view of finding whether this was due to the copper per se, or to its power of conducting heat more rapidly to the rubber, he laid a sheet of rubber on a plate of glass, and on it placed four clean disks, one of copper, one of platinum, one of zinc, and one of silver After a few days in an incubator at $150^{\circ} \mathrm{F}$., the rubbe under the copper had becomequite hard, that under the platinum had become slightly affected and hardened a different parts, while the rubber under the silver and under the zinc was quite sound and elastic. This would infer that the pure metallic copper had exerted a grea oxidizing effect on the rubber, the platinum had exerted a slight effect, while the zinc and silver respectively had had no injurious influence on it. A still more curi ous result was this, that the rubber thus hardened by the copper contained no appreciable trace of copper the copper, therefore, presumably sets up the oxidizing action in the rubber without itself permeating it

The Use of the Diamond Drill by the Ancient Egyptian

Mr. W. F. Durfee recently, in connection with his ecture at the Franklin Institute, Philadelphia, inves tigated the curious question of the ancient use of an annular drill, equivalent in mechanical action to the modern diamond drill. Through the U. S. Secretary of State and the U. S. Consul-General at, Cairo, the Hon. Eugene Schuyler, a statement from Mr. Flinder Petrie was secured. It is this last named archæolo gist who originated the theory. The substance of the tatement is as follows: In Mr. Petrie's "Pyramid and Temples of Gizeh" illustrations are given of sam ples of work, showing in his judgment the use of jewe points in drilling and sawing. Various samples of this work he states are now in his own possession. In Egypt he cites six examples, some in the Bulak Museum and some at Gizeh. One is of special interest. In the ranite temple at Gizeh there is found in one of the linels of a door a drill hole with the core still sticking in t. Almost as interesting as this is a base of a tube drill hole between the feet of a statue of Chefren (Kofra) now preserved in the Bulak Museum.

A Life-Saving Invention for Use at Fires. Mr. Alfred Harley, of Aijany, N. Y., has invented a ife-saving apparatus to catch those who are forced to jump from windows in case of fire. A cushion or mattress is carried upon a suitable carriage or running gear. Springs of long range of action are placed intermediately between the mattress and carriage frame. The whole is so light that it can be very speedily dispatched to the scene of conflagration. The springs are not the only feature of construction. Under the stress of a falling body the mattress may descend nearly three feet. This might result in a disastrous rebound. To prevent such action, dashpots or air cushions are applied, as in the well known door checks, so that the mattress gradually rises to its normal level. Deflecting wings are provided that increase the effective area of the apparatus to about 100 square feet. It is claimed that with the ordinary life-saving net the jumper must be an expert as well as the men who catch him as he descends. Mr. Harley's contrivance eliminates to a great extent the expert element, and would seem to be a most useful advance on the old form of net.

Correspondence.

Extraordinary Depression in the Bed of a Florida River.
To the Editor of the Scientific American:
The following information regarding a phenomenon to be seen in Southern Florida would perhaps be o interest to you and the readers of your paper.
While knocking about the Gulf coast of Florida during the months of January and February, 1890, in search of game, our party had occasion to verify the long-rumored existence of an extraordinary depression in the bed of the Myakka River, situated immediately below what is known as Myakka Lake. This river is shallow and slowly flows over a bed of sand and ooze, and was at the time that we saw it extremely low, having, in fact, no longer a connection with salt water. Ten miles distant from the coast, and near the above mentioned lake, we came across a dark circular pool of water filled with innumerable fish and turtles (writer counted at one time 56 head of leatherbacks appearing at once). Our attention was attracted by the blackness of the water, which was plainly due to the great depth and to no impurities held in solution. We sounded the pool with a primitive arrangement of fish lines and wooden floats, and found it to be 136 ft . Considering the shallowness of all other bodies of fresh water in Florida, this is phenomenal; what makes it more so is the strong indication of a tide, i. e., a regular ebb and flow in the water of this depression corresponding to that of the sea, ten miles off, although there is not a trace of salt to be found in solution. Lead sinkers that went to the bottom came up coated with a jet black deposit. The shaft that descends to such a depth must have sides of stone or coral, as the sand that lines its shores would soon fill it to the top from its tendency to drift, were it otherwise.

Have any of the readers of the Scientific Ameri CAN information of a similar freak in the formation of the soil of Florida?
As far as I know, our party may claim to have sounded and verified the greatest depth of fresh water in that State, exceeding, in fact, any depth to be found fifty miles off shore in Gulf of Mexico.

Louisville, Ky.

The Telephone Suggested in 1854

To the Editor of the Electrician, London:
SIR: We are all familiar with the earlier telephonic experiments of Reis, which are given in the Jahres Bericht des Physikalischen Vereins, of Frankfort, for 1860-61, and which are regarded as the precursor of the telephone of Graham Bell. Prof. Bell read a paper on the subject before the Society of Telegraph Engineers on October 31, 1877 ; and at this lecture I called attention to a still earlier description of a telephone by Charles Bourseul, which is to be Ifound in the second edition of the Comte Theodore du Moncel's Expose des Applications de l' Electricite, published in Paris in 1857 (vol. iii., p. 110). Du Moncel does not give any reference to the original paper ; but in the Didaska lia, a weekly paper published at Frankfort-on-Main dated September 28, 1854, there is an interesting account of his invention, which I do not remember to have seen printed in England. I am indebted to Messrs. Siemens Brothers \& Co. for making the translation which I inclose, and, if not hitherto published, it will, I am sure, interest your readers, as his description of the principle of the telephone is almost as clea as if it were written at the present date. If he had only put his ideas to the test of experiment, we should have had the telephone in 1854.
It would be interesting to find the original source from which Count du Moncel derived his account of Bourseul's telephone. Yours, etc.

Latimer Clark
6 Westminster Chambers, Victoria Street,
London, October 28, 1890.
Didaskalia, No. 322, Thursday, September 28, 1854. Electrical Telephony.
The number of miracles with which electricity has astonished us lately is said to have been increased by one which would not only cause a revolution in elec trical telegraphy, but would add considerably to its utility. The invention in question is nothing less than the electrical transmission of the spoken word. The idea was conceived by an educated and modest young man named Charles Bourseul (now living in Paris), who was a private in the African army in 1848, where h brought himself under the notice of the Governor-Gen eral by a course of mathematical lectures which he gave to his comrades in the garrison of Algiers. Pos sibly Bourseul's scheme, of the practicability of which
he is perfectly convinced, may be one of those which learned men will afterward declare very simple, and which, if troubled about, would have been brought out much sooner. The principle of electro-telegraphy, as is well known, is the following: An electric current passing throngh a metal wire surrounding a piece o
magnetic properties of the iron vanish when the elec tric current is discontinued. This magnet, called the electro-magnet, can, therefore, alternately attract or repel a movable plate, which by its forward and backward movements produces the conventional signal used in telegraphy. It is further known that all sounds are transmitted to the ear through the air vi brating ; and that, therefore, sounds are virtually vi brations of the air, and that the infinite variety of sounds is solely dependent on the rapidity and strength of these vibrations. If it were possible to construct metal plate sufficiently sensitive and flexible to admi of the reproduction of the vibration of sounds(like the air), and if this plate could be connected with an elec tric current in such a manner as to alternately interrup and continue it according to the vibrations of the air to which it would be exposed, it would be equally pos sible to electrically affect a similar metal plate so as to repeat exactly and simultaneously the vibrations of the first plate. This would create the impression as if the speaker had spoken in immediate vicinity of the second plate, or, if put differently, the ear would be affected in a similar way as if it had received the sound through the first metal plate. Electrical telegraphy which was once academically declared to be almost an absurdity, is now almost universally established; and if we investigate this new idea of the young scientist on the principles of physics, we find that not only no objection could be raised against the soundness of his theory, but that its practicability is more probable than that of electrical telegraphy was only a short time ago. If the theory should prove a success, electrical telegraphy will attain a position of general use fulness. No special knowledge or apparatus will be required,'except a galvanic battery, two suspended plates, and a metal wire. Without any other prepa ration one person will have to speak into one of the plates, while the other person places the second plate close to his ear, thus enabling them to converse as if in private.

The youthful inventor is confident of the success of his invention, and challenges scientists to prove the impracticability of his theory on scientific grounds. In the meantime the invention fully deserves the at tention which will, no doubt, be bestowed on it. L.

When and Why Air Brakes Fail.

Mr. P. H. Griffin, President New York Car Wheel Works, in a letter to the New York Tribune, gives the following information and advice :
Without entering into a technical explanation of the subject, it may be said briefly that the brakes are applied through the medium of rod connections, levers, etc., operated by the air brake mechanism. When the brakes are applied, compressed air is admitted into the air cylinder under each car, the piston is moved forward by the pressure, the motion is communicated through the rods, levers, etc., forming the brake connections, until the brake shoes are applied to the wheels.
The air pressure used is about seventy pounds to the square inch. It is manifest that this power, subdivided and applied through eight or more brake shoes, would not be sufficient to stop a train under headway; the power is increased by means of levers in the usual mechanical manner, with the usual result that the movement at the outer ends of the rods and levers, i. e., at the brake shoes, is very much less than cylinder.
Some years ago air cylinders were made twelve inches long, but lately this has been increased to fourteen inches; the greater number in use are twelve inches long. When the air pressure is applied to the cylinder, the piston head is moved twelve inches. To obtain the increase in power required to apply the brakes properly, as stated, this movement is decreased to one inch at the brake shoes'; thus, when the piston
moves twelve inches, the brake shoes move one inch. moves twelve inches, the brake shoes move one inch.
If for any cause the piston movement or travel of welve inches does not apply the brakes, they cannot be applied by the air brake mechanism. The latter may be in perfect order, the operation of applying may be in perfect order, the operation of applying the brakes be performed either by design or accident, travel is not properly and effectively communicated to the brake shoes. Under each car will be found from thirty to fifty feet of the rods, levers and connections referred to. They are under severe strain every time the brakes are applied, and are constantly giving and stretching a little in service.
The brake shoes are rapidly worn out through friction with the wheels when brakes are applied; to ake up this wear means are provided for shortening the rods and levers. It is not possible to utilize the total movement of one inch at each shoe, for the reason that even that small space represents the tota amount available between the maximum application
and the greatest relaxation; three-quarters of an inch and the greatest relaxation; three-quarters of an inch
is about all that can safely be counted on for actua is about
service.
When the connections are adjusted with new brake
of four inches will apply the brakes. As the shoes wear out or the connections give under strain or wea at the pivotal points, the piston travel must necessarily increase to effectively apply the brakes.
The wear of brake shoes is rapid, and the total effect ve travel of the piston is more than exhausted in the wearing out of one brake shoe. Constant attention must, therefore, be given to the connections to see that they are of proper length, and inspectors at cer tain points have this work in charge. As a rule the work cannot be done until trains are all made up and ready for departure; the air pressure is then applied, the travel of the piston watched, and if it is too grea the connecting rods should be shortened in order tha the brakes may be applied with less piston travel, and margin of safety provided to allow for wear.
The very short time available for this work, the hurry and confusion incident to the departure of trains and the pressure to gain every moment of time in this age of minutes and seconds are serious obstacles to a proper performance of the work; unfortunately, it annot be done at any other time unless every car is aken to some point provided with apparatus for mak ing a test, a practice almost impossible when the great number of cars in service is considered, as well as the ne that drawing room and sleeping cars are often in ervice constantly for months at a time.
The reports of the Michigan Central Railroad show that 2,316 cars passed Windsor, Önt., in the year 1889 with the pistons of air brake cylinders traveling twelve inches; on such cars absolutely no braking power was btainable.
Nearly all of these were sleeping cars running through rom distant points, the inspection and care of brak attachments being given by different railroad companies. In transferring the cars across the river from Detroit to Windsor and vice versa, time was afforded for testing the piston travel and a record taken with the above result. I do not know of any other railroad company making a systematic record of the kind.
During the last year the Michigan Central have quipped their cars with indicators, operating auto natically, that show the exact condition of piston travel at all times. When the indicator is used the maximum travel of the piston is always shown, and the necessary alteration to take up wear can be made a any time. From a careful investigation of the subject on many of the leading railroads of the United States and Canada, I have no hesitation in saying that on one-quarter of all cars in service the braking power is o small as to be absolutely useless in case it is neces sary to make? a sudden stop, for the causes given bove.
In every-day practice it can readily be seen that in making the usual stops an engineer can handle his train without difficulty; he knows perfectly the con trol he has over it, whether a moderate pressure wil suffice or whether extra pressure must be used. The latter is al ways dangerous, through liability to stop and slide wheels, with entire loss of control. But when danger confronts him and he must strain everything to make an immediate and unexpected stop-well, we know they are not always made, and that the difference f a few hundred feet has a terrible result. Investiga ion follows; it is said that the "air brakes failed to work," and that is the end of it. I firmly believe if the attachments through which the air brake does its work were always in proper condition, accidents from this cause would be very rare.
The conditions of service above explained are in no way attributable to any feature of air brake construc tion or application. The manufacturers of air brake have been indefatigable in their efforts to improve and perfect their devices. Without their labors it would be absolutely impossible to run trains at the speeds in practice to-day. It is only just to them, therefore that accidents so commonly attributed to the failure of the air brakes should be located where they belong and that every effort be made on the part of railroad anagers to supplement the valuable appliances now btainable with every safeguard that can be found for their effective use.

Oleo in Vermont.

The Vermont legislature has passed an act which will doubtless receive the approval of the governor It prohibits the manufacture of " any article in imita tion or semblance of natural butter or cheese" unless colored pink, and the use of oleo at any public eating house is also prohibited unless it is colored pink Heavy penalties are imposed for violating the law Butter is defined as "the product usually known by that name, and which is manufactured exclusivel rom milk or cream or both, and with or without salt or coloring matter."
It looks as if this new State law probably would be held to be unconstitutional and void. To say nothing of its interference with commerce, it is a prescription as to the manner of preparing an article of food, by which it is adulterated and contaminated. The legis lature might as well enact that boiled eggs shall not be eaten in a public restaurant unless the shells are dyed green and the contents pickled in vinegar.

CURE OF CONSUMPTION-AN INTERVIEW WITH PROFESSOR KOCH.

by dr. charles hacis, in "lillustration.'
"My hour of consultation is between 12 and 1 o'clock," signed "Koch." This is written on a little

Fig. 1.-THE BACILLI OF CONSUMPTION FROM NEW
square piece of paper fastened by four pins in a gray frame against the wall at the foot of the grand stair case in the entrance of the Imperial Hygienic Institute in Berlin, and it was this that four European reporter were studying on the 5 th of November, at 9 o'clock in the morning. Alas! what an illusion! Many others have been stopped by that little card, and gone no further. It is not easy, in fact, to reach this celebrated savant. From the porter to the secretaries, every one is extremely reserved in that house. lt is almost impossible not to have one's card intercepted before it reaches its destination. We had the good fortune, nevertheless, to overcome all obstacles, and by excep never for tional favor obtained admission. We are going to try to lift a corner or the vell under will the German sphinx lies hidden, and to show to all the world the great question of the cure of consumption and by what intellectual and experimental processes the present condition of the science has been reached.
The intimate friend and adviser of Dr. Koch received us in his private study on the third floor of the institute. On the door is a little card on which are the words "Dr. Koch." The room is very small, and is partly filled by an enormous stove of faience, which reaches to the ceiling, and opposite to it is a large table covered with green and provided with two drawers At the end of the room near the window is a little oak bureau, on which we perceived two proofs of photographs of which so much has been said, and which ought to be annexed to the report which is waited for with so much impatience. They represent two forearms with a hand showing the scars of tubercular lesions that have been cured, and photographs of which have been taken from day to day

Prof. Koch immediately arose and stretched out his hand to me.
"I am very pleased to meet you," said he. "I renember very well our former intercourse at Marseilles at the time of the cholera in 1885 . I remember also that you were the first one to translate my works and discoveries, but," and he held my card in his hand, "I guess the cause of your visit, and regret to say that I will not be able to tell you all I would like."

Nevertheless, "I replied, " the French public wish to know you, and to know and to see something of you and of what relates to your researches. That you will certainly grant me. In the first place, let me ask you for your photograph signed."
I then asked him for a tube containing some bacilli. Prof. Koch passed immediately into a neighboring room and came back holding in his hand a tube containing the culture, which he gave to me
"Will you authorize me to say that these came directly from your laboratory and were given to me by you? ly from your laboratory and were given to me by you?
"You know very well that I am a simple man, and how much I fear the notoriety which has arisen. Ne vertheless, you desire it, and I give you the authority."
"Since you are in the vein, what would you think of letting me have a tube of the culture of comma bacilli of cholera? You are probably the only person in the world who has the germs of cholera bottled up, and it will be interesting to show as coming from the author of the discovery."

Fig. 3.-THE SIMPLE CULTURE OF BACILLI OF TUBER-
CULOSIS EXAMINED UNDER THE
" It is not necessary for me to recommend to you the greatest prudence, as these bacilli are virulent.
Certainly 1 shall destroy them just as soon as 1 finish using them. I would like to give photographs of the laboratory."
"As you please. You can have what you wish ex-
cept the swall room at the rear. I am going to ask Dr. Pfeiffer to assist in making photographs of my labora tory of bacteriology, especially that part of it which elates to my work and where my experiments are made. He will give you all the information you need.'

g. 2. THE SAME BACILLI EXAMINED UNDER THE MICROSCOPE AFTER A PERIOD OF DEVELOPMENT

Dr. Koch was born December 11, 1843, at Clausthal where he first attended school. From 1862 to 1866 he studied medicine at Goettingen; then, having become a professor of medicine, he commenced his practice at Posen.
A few years later he was chosen professor and commenced his first work on the study of tuberculosis. He discovered the bacilli, he studied it, and settled the fact that consumption is caused by a bacillus. This work at once put him in the very first rank, so that in 1883 he was sent by the Prussian government to India to make a study of cholera and to discover the cause of that infectious malady. This time again success crowned his efforts, and it is admitted to-day without doubt that cholera is caused by comma bacilli (a name which Dr. Koch himself gave it on account of its resemblance to the comma), as tuberculosis is caused by the Koch bacilli. As a reward for his services, on his return the state voted him a purse of $\$ 25,000$. Theimportance of the work of this German savant was thus recognized, and it appears that he is justly entitled to be considered one of the most extraordinary persons of our time. It may be well to mention at this point form hat accord urning to Europe, or at itwin Bur beyond ome of the countries of the South. Berlin with its remarkable system of sewerage, and Paris also, have nothing to fear from that terrible malady. This is certainly reassuring. Thus it may be seen that the object of all of Professor Koch's work is the discovery of the cause of infectious diseases. He is satisfied that what he has done for tuberculosis and cholera, and what others have accomplished for other maladies that are less deadly, such as erysipelas, could also be done

DR. KOCH AT WORK IN HIS LABORATORY.
for all diseases, whatever they may be. From this it may be seen that his labor on behalf of science is not yet finished. It appears in fact that Koch has for the time being abandoned the exawinat on of microbes for that of their destruction in the living human body. It is well known, thanks to him, that consumption is occasioned by microbes whose presence in the lungs, as, for example, in the case of pulmonary tuberculosis, occasions the phenomenon of phthisis. It is useless in treating this disease to repeat the errors of the past by the use of tonics and by telling patients to avoid taking cold, and even, when some new specific has been discovered, to force the patient to swallow it; all this and the use of a hygienic regime, and certain remedies resorted to in the treatment of phthisis, have accomplished nothing, and patients continue to suffer and resist the disease a longer or shorter period of time. Dr. Koch abandoned this well-beaten road, he threw aside everything which did not rest upon the solid scientific basis, all the experiments that had been made, rom the benzoic acid to the hot air method, all that is an illusion because it is based on a misconception.
Prof. Koch first commenced experiments with a tube which we represent. It is an ordinary test tube, such as is used in all ordinary experiments. It is, in the first place, sterilized over the fire, then a bouillon of sterilized culture is poured into it, that is to say, culture which does not contain any germ. This bouillon is prepared with agar-agar, a sort of gelatine. When this has been done the microbe, which is taken directly from the mucus of a consumptive, is placed in the tube and the orifice is closed with cotton, thereby permiting the air to pass into the vessel, but retaining the organisus, which are held suspended therein. The tube thus prepared is subjected to an even temperature in an oven. After a certain length of time the microbes begin to develop and increase, and assume the clotted appearance which we see in one of the engravings, and which is one of the characteristic peculiarities of consumption. But in order to experiment effectually it is necessary to have the culture absolutely pure, and it is obtained in this manuer: In the first place take some of that treated as above and place it in another tube. This is repeated, and after 50 or 60 successive changes of this nature a residuum is obtained which is called pure culture, that is to say, it contains absolutely nothing but the microbe which it is desired to study. The pure culture of bacilli of tuberculosis is represented in the photograph which we have produced, Fig. 3, the negative produced, Fig. 3, the negative
of which came from the Koch laboratory. It gives perfectly the idea of what may be seen in the field of the microscope. Each one of the black points which are seen in the photograph represents a bacillus, that is, a pathogenic organism, which is the cause of the disease and which was discovered by Koch. It was upon these pure cultures that Koch made his first experiments, to sry upon each one a long series of chemical reagents, of which the following are the principal: In the series of ethers, etherized oil ; of the series of aromatics, B naphthaline, para-toluidine, xylidine, fuchsine; among the colors, gentian violet, methylene blue, China yellow, aniline yellow, orimene ; of metals, tin, silver, and gold. He found the action upon the last of these the most energetic of all.

It only required one or two millionths of chloro-cyanide of gold to stop all development of bacilli of tuberculosis in pure culture. It is seen what an enormous amount of time and trouble was required to make all these tests. Koch saw not only that all the substances which we have cited, but many others with which he experimented-a list of which would be too long for us to give-have the power in a test tube of arresting the development of bacilli of consumption. He had, therefore, finished the first part of his programme in searching for the substances which when
mixed with pure culture of bacilli of tuberculosis were able to arrest their development. He passed on then to the second part of the prograimme, viz., experiments upon animals. He selerted the guinea pig as a subject, because of all animals this is the most liaiole to

Fig. 5.

Fig. 5.-TUBE CONTAINING THE GERMS OF BACILLI OF TUBERCULOSIS FROM THE LABORATORY OF DR. KOCH. Fig. 6.-TUBE CONTAINING THE GERMS OF COMMA-BACILtuberculosis when inoculated. He tried all the substances mentioned in the above list upon the guinea pigs thus rendered consumptive, and he observed that although the action of these substances was so remark able in the test tube, there was no apparentj result when thcy were applied to the animal. All the inocu lated guinea pigs died of consumption. Without being discouraged, however, he undertook a second series of experiments, also upon living animals. He succeeded in discovering a substance (and it is here that the
 serve serves its action when it is transferred to the body of the animal. Upon the second series of guinea pigs which had been inoculated, the increase of the bacill was stopped as soon as the substance was administered, and all were cured. Here it is necessary to rectify an error which the journals have spread. It is known that he made his experiments upon a large number of animals, and every day one of this number disappeared, and it was supposed that it was one of those that had been inoculated. No, it was simply that he killed one from day to day because he wished to follow all the stages that were reached. In all the autopsies it was stages that were reached. In all the autopsies it was
found that the lesion was stopped as soon as the substance was injected, no matter what stage of development the disease had reached. He was, therefore, able to let a certain number of ex-consumptives live, and they are to-day in a perfect state of health.
It was after these two series of investigations, which were so long, that having arrived at a definite result, he was enabled, before the Congress of Physicians held in Berlin in August last, to make his first communication, which caused so remarkable a sensation. This is what he said in concluding his remarks: "My re searches are not yet entirely finished, and I am only able to affirm one thing, viz., that the guinea pig, which is, as every one knows, liable to consumption, became entirely free from it the moment that it had absorbed this substance, and from that moment the disease was arrested and its progress stopped, what ever may have been the stage previously reached, and that also without the constitution being in any way impaired. I am only able to draw one conclusion from these researches, viz., the possibility which exists from this day of paralyzing absolutely the action of the mi crobes in the animal. It is a new field open to experi ment and observation." These were exactly, wor for word, the conclusions of Dr. Koch in the month o August last, and it is on a false interpretation, or rather on a premature conclusion, that the idea was created at that time that his researches bad attained to the cure of consumption in the case of man. Dr Koch had not even made allusions to this. It was only later, and following always the idea and the scientific methods which have alway guided Dr. Koch, that he be gan to experiment upon man, guided by the definite result already obtained upon ani mals and with a feeling of certainty that like results would follow.
With a simple Pravas syr inge and drops of the liquid, the consumption disappears and the hectic flush is modi fied; the patient is cured; and if Dr. Koch is not yet willing to divulge his secret, it is because he is wise in his own opinion, founded on scientific principles, and that he is not willing to leave one iota of error. He wasable to kill and to examine his guinea pigs when he wished to know the degree of advance in their cure; but he cannot follow the same course with men He is no longer experimenting, he is curing. He is obliged to wait until his cure is complete and absolute. When the last of his patients is a well man, he will speak, and we man, know all. Before then he will say nothing. This is the cause of his delay in satisfying a public curious and anxious to know all. These are the sorts of discoverie that open up the infinite hori zons of science and elevate to the highest pinnacle the one who has conducted the experiments; and one is compelled to respect the true savant, who fears notoriety, and who will quietly and modestly bestow, some day, this cure upon humanity, without any re compense (in spite of offers of all kinds, which come to him from every side), without any other profit than adding one other profit than adding one
more leaf to the already beautiful crown of that modern science of which the French genius, in the person of the great Pasteur, has furnished the elements, founded the principles, and brought about such magnificent results.

SAFE CONSTRUCTION OF BUILDINGS.

At the last great fire in Boston, some of the modern fireproof structures actually crumbled from intense heat, while iron roofs were gradually expanded until the walls were forced apart, permitting the whole structure to collapse. It is said that 80 per cent of all fires are extinguished where the loss falls below $\$ 100$, and where the loss passes this amount the damage is very likely not to stop short of total destruction of the premises and those adjoining. The total loss by fire last year was computed at $\$ 125,000,000 ; \$ 75,000,000$ representing the loss where fire originated on the premises, and $\$ 50,000,000$ the loss that was caused wholly by exposure, that is where tire was communicated from adjoining buildings.
The method of anchoring a building is one of the most is one of the most
important items in its construction, but proper anchoring is very often neglected. The method usually practiced consists of

Fig. 1.
fastening an iron strap to the sides of the joist, and securely building the same into the wall. In case of fire the joist quickly burns through, and, in falling, the metal strap cannot free itself from the wall, and either pulls the wall along, as shown in Fig. 1, or else makes a breach, so fire can pass through to thenext building. In addition to this, defective flues ignite the joist ends, and careless builders sometimes permit joists to overlap each other, when resting on a party wall.
The Goetz-Mitchell method of anchoring joists is designed to obviate these serious defects. The falling joists free the anchorage and leave the walls standing.

By the ventilation provided at the sides, it also prevents the rotting of the ends of the joists. A greater weight upon the beam increases the bondage of this anchor. This joist anchor (see Fig. 2) consists of a dovetail form cast iron box, which is built into the wall, its form securely holding it in position. A notch on the bottom edge of the joist fits over a lug in the box, and thereby forms the tie between the opposite walls. In case of fire, the joists, in falling, free themselves from the lug and have no tendency to pull the walls down. When used on every fifth joist the method costs no more than the old style strap and star. The device can be arranged for iron beams, forming a secure anchorage and also a safe bed plate.
Fig. 3 shows the anchor arranged with air spaces at the sides so as to provide air for the heavy timber ends, preventing dry rot, which is so liable to occur whenever heavy timbers are excluded from the air or covered with air-tight material. Beams are frequently sealed so tightly where they enter the wall that dry rot takes place in the walls while the exposed portion of the beam within the room is entirely sound.

An architect's aim should be to so construct his building that the entire interior of the structure might be destroyed, but without damage to the exterior walls. The Goetz-Mitchell methods are designed to ac complish this; for should the joist upon one side of a building burn and fall, then those upon the other side would be holding the wall in position (see Fig. 4). The main ob ject of the method is to keep the fire and partition walls erect during a fire, for nothing can resist the spread of fire so well as a standing brick wall.
Fig. 5 illustrates another improvement in the way of a timber cap arranged so that any burnt or defective parts can fall out of their respective positions, but without bringing down adjacent parts. The advantages are, they are easily put up, prevent crushing of timbers when loaded, and prevent vibration of building, because the bases of columns are securely fastened. They save 12 inches in length on the long lengths of timbers, and all parts are securely held together, and still any horizontal timber can fall without damage to
the sustaining posts. The cap being bolted to the up per column will carry the horizontal timbers, should the sustaining post be destroyed. Nearly twenty buildings have so far been supplied with the new Goetz-Mitchell anchors. For further particulars address the company, 78 State St., New Albany, Indiana.

A Successful Case of Transfusion

It is always a pleasing duty to have to record examples of devotion to the welfare of their patients on the part of medical men; and although but few such instances are ever recorded, they would, if published, form a long catalogue. Such an instance earned the just encomiums of the Hull Examiner in a recent number, where we find mention of the success attending the transfusion in a patient who had apparently been attacked by internal hemorrhage, the operator himself giving the blood. Although, very properly, our lay contemporary does not give the name of the operator who thus distinguished himself for his humanity and skill, there can be no objection to our stating that it was Mr. Robert Hagyard. We are also enabled to give some details of the case. It was one of enabled to give some details of the case. It was one of
cancer of the breast, which had been removed ten days before by Mr. Hagyard. While the wound was being dressed the patient was suddenly attacked by syncope. She became pallid and completely collapsed-a condition not to be accounted for by the fact that she was the subject of mitral disease. After the subcutaneous injections of brandy and ether, and the performance of artificial respiration, Mr. Hagyard decided to have recourse to transfusion. This was effected by means of Aveling's apparatus, the blood being taken from his right arm (he is left handed) and injected directly into the patient's veins. It was calculated that more than a pint of blood was transfused, the operation being terminated by the operator becoming faint. The result was most satisfactory, for at the end of ten minutes the patient had completely recovered, and in a few days was able to leave the hospital. The cacrse of the collapse was thought to be internal hemorrhage, as on the following day the motions were observed to be blackened. There is no doubt that the patient owes her life to Mr. Hagyard's prompt and courageous act, which he had to perform with only the assistance of a nurse. It may be remembered that a similar instance of a surgeon resuscitating a woman suffering from puerperal hemorrhage by transfusing blood from his own arm was recorded a few years back from a Hampshire village; and we may recall the statement of Professor Von Nussbaum (who, we regret to learn, is seriously ill) that he had given blood for this purpose no less than ten times.-The Lancet.

Liquor Decision by the Supreme Court.
Mr. Christensen, of San Francisco, having for several years kept a liquor saloon in that city, applied for a renewal of his license in 1889, but was refused by the police commissioners on the ground of keeping a place of bad repute. He continued to sell without license, and was arrested, but he appealed to the United States Circuit Court and was discharged on the ground that the liquor law was unconstitutional. This decision the Supreme Court of the United States now overrules, thus maintaining the rights of States and communities to suppress or regulate the sale of liquors for drinking purposes.
In stating the grounds for its decision, the cour says that it is undoubtedly true that it is the right o every citizen to pursue any lawful business, subjec only to such restrictions as are imposed upon all per

Fig. 5. lation.
part of a great body of rules varying with the nature of the businesses regulated, and their validity is to be decided on like general principles. Continuing, the court says :
It is urged that, as the liquors are used as a bever age and the injury following them if taken in excess is voluntarily inflicted and is confined to the party of fending, their sale should be without restrictions, the contention being that what a man shall drink equally with what he shall eat is not properly watter for legis

There is in this position an assumption of a fac which does not exist, that when the liquors are taken

in excess the injuries are confined to the party offending. The injury, it is true, first falls upon him in his health, which the habit undermines; in his morals, which it weakens, and in the self-abasement which it creates. But as it leads to neglect of business and waste of property and general demoralization, it af fects those who are iminediately connected with and dependent upon him. . . . The sale of such liquors in this way lin small quantities to be drunk at the time] has therefore been at all times considered the proper subject of legislative regulation. For that matter, their sale by the glass may be absolutely pro-

Fig. 4.
hibited. It is a question of public expediency and public morality, and not of federal law.
There is no inherent right of a citizen to sell intoxicating liquors by retail, it is not a privilege of a citien of the State or of \neq \{citizen of 'the United States. In the prohibition or regulation of the traffic discretion may be vested in officers to decide to whom to grant and to whom to refuse!liquor licenses. The officers may not always exercise the power conferred upon them with wisdom or justice to the parties affected, bu that is a matter which does not affect the authority of he State," or one which can be brought under the cog nizance of the courts of the United States.

A Mammoth Steel Bridge.

According to the Philadelphia Telegraph, the grea steel bridge across the Columbia River, at Vancouver, will be a mammoth concern. It will be 6,000 feet from the Washington to the Oregon shore. It will be double tracked with a road way on top for teams, and will be erected upon pneumatic piers. The pivoted pier, or draw pier, will support a draw which will give an opening of 200 feet space on either side for vessels to pass, and the span immediately south of the draw span will be 375 feet. The whole structure is to be of steel, built 10 feet above the high water of 1876, and 40 feet above low water. On ac count of the sandy formation it will be neces sary to go down 80 feet below low water to get a firm foundation. There it rests on a foundation of coarse gravel similar to tha upon which the great bridges across the Mis souri River are built. This gigantic struc ture will cost over $\$ 1,000,000$ and employ hundrec's of men in its erection. It will be January 1, 1892, before the cars can pass over
possession and enjoyment of this right, and, indeed of all rights, are subject to such restrictions as may be leemed by the governing authority essential to the safety, health, peace, good order and morals of the community. Even liberty itself, the court says, is not unrestricted license to act according to one's own will, but is only freedom from restraint under conditions essential to the enjoyment of the same right by others. Regulations of the liquor traffic are only
it. The company is pushing its bridge and also it road as fast as men and money and its present perfected plans will permit. They have now between Vancouver and Kalama over 2,000 men and 1,500 teams at work.

The balloon proposed for polar explorations is ainety-nine feet in diameter and 500,000 cubic feet in volume. The journey will be from Spitzbergen, and with a favorable wind will last four or five days,

Highest North American Peaks.*

Among the objects for which the expedition recently organized under the auspices of the Academy of Natural Sciences, of Philadelphia, was dispatched to Mexico was the determination of the physical features of the giant volcanoes of the south, with special refer ence to a study of the vertical distribution of animal and vegetable forms. While prosecuting our observa tions in this direction, I took the opportunity, in com pany with one or more of my associates, of scaling the four loftiest summits of the land; namely, the peak of Orizaba, Popocatepetl, Ixtaccihuatl, and the Nevado de Toluca. This gave me the advantage of making personal comparisons between the life that existed in different regions of "cloud land," at the same time that it offered me the opportunity of more closely investigating the geological features of some of the most gigantic volcanic mountains known to us. Numerous measurements of altitude were made during the ascents, and, in the higher regions, always with the same instrument. This was a registered aneroid tested and corrected at Philadelphia (immediately before the starting, and shortly after the return of the expedition), at the sea level of Vera Cruz, and in the Central Meteorological Observatory of the city of Mexico, at an elevation of 7,403 feet. To the officers o the latter institution I am indebted for the privilege of making comparisons with the standard mercurial column.

The results of our measurements show a striking accord in some instances with those obtained from earlier measurements, while in other cases they exhibit marked divergence. The fact that all the summits were ascended within a period of three weeks, were measured with the same instrument, and during a period of atmospheric equability which is offered to an unusual degree by a tropical dry season, renders the possibility of errors of any magnitude almost nil. At any rate, such errors as may have crept in will probably not affect a general com parative result. The points of import ant difference are: 1. The highest summit of Mexico is not, as is com monly supposed, Popocatepetl, bu the peak of Orizaba (Citlaltepetl, the "Star Mountain"), which rises 700 feet higher (18,200 feet). 2. Ixtaccihuatl, the familiar "White Woman" of the plain of Anahuac, is but a few hun dred feet (about 550) lower than Popocatepetl.
The peak of Orizaba was ascended on the 6th and 7th of April, Popocate petl on the 16 th and 17 th of the same month, the Nevado de Toluca on the 21st, and Ixtaccihuatl on the 26th and 27th.

The restoration of the peak of Ori zaba to the first place among Mexican mountains, and its increased altitude, open up the interesting question as to what constitutes the culminating point of the North Amefican contivent. The only other mountain that need be considered in this conuection is St . Elias, situated approximately on the 141st meridian of west longitude, and
whose summit is claimed for both th Great Britain and the United States possessions of measurements of this mountain depart so widely from one another, however, that we are not yet in a posi tion to affirm, even withir limits of a thousand feet or considerably more, how nearly it approaches in height the Mexican volcanoes.

Angelo Heilprin.

The Man with a Patent

The New York Sun relates the following story There were only half a dozen people in the palace car all day long, and after dinner, when the man who had been sleeping and reading in seat No. 12 came over to me for a chat, I welcomed him with open arms. He said his name was Saunders, and that he had a patent or improvement on some part of a locomotive. He was going through to Cincinnati to have it perfected or adopted, or something of the sort. He had been in partnership with a mean man-a man who had tried to swindle him out of a fortune. To get even, he had stolen the patent and run away. He had it with him in a valise. That was all he said just then, but later on he confided to me the fact that at a town about 30 miles away this wicked partner of his might possibly be on hand to board the train and attempt to wres the treasure from his keeping. He wanted my advice, and I offered to take charge of the valise. He thanked me with great effusiveness, and as we approached the town he shut himself into the smoking compartment.
"As the train drew up I saw an old acquaintance on delphia.

ELECTRIC CHIMES.

ut little explanation : Attached to each of the thirty bells hung on the rack above the key-board is an elec-ro-magnet. The keys make the circuit from a batter in the base to the electro-magnets at the bells.-West ern Electrician.

Iron Ore Discovered by Lightning Strokes Commenting upon a report that a house in Ohio supposed to be situated over a bed of iron ore, has been struck by lightning eight times within three years, a writer in the Chicago Journal of Commerce says: The truth is that all iron ore deposits are not confined to the several well known localities of the United States where they most abound. If careful observation was made, undoubtedly many new fields might be opened up in places where the presence of ron is not suspected. The writer, in his youth, lived on a farm in Southern Wisconsin, on t wo acres of which ightning had struck, it was estimated, at least forty trees. No sane man could for one moment suppose that the stricken trees of themselves possessed sufficient metallic attraction for the lightning to single them out for destruction. The suggestion made at the time that underneath these two acres was a bed of iron ore, has never been effaced; yet it is doubtful if ever any other person noticed the peculiarities of that particuar plat of ground.
Nature seldom errs in her indications of mineral wealth, and makes electricity a prominent agent in determining the location of iron deposits near the sur face. Hence if a forest at any point shows unusual effects of lightning, or if a house becomes a peculiar
attraction for it, it might pay to engage an experienced prospector to develop the hidden ore.

Selections of Building Materials.

In preparing plans for a new structure, says the Car penter and Joiner, the most important matter to de cidejupon is the selection of the material. This, to a large extent, is determined by its cost, but not to so great an extent as might at first be imagined. It is to be taken for granted that an architect will build his structure of the best material his cost limit will permit. Now, this does not mean always the costliest material, although the public are apt to think so; but if the designer be a man of fine taste and well trained in his art he will select a material that, while essentially durable will confessedly subserve the best effect. Effect is a prime cause with every architect who has a genuine love for his art, and to a large extent is the dominant feeling in his design, but he still has a wholesome respect for a material that is admittedly substantial and durable.
If the new structure is a public building, he will naturally choose stone in preference to brick for his naturally choose stone in preference to brick for his
external walls, because with stone he can obtain a external walls, because with stone he can obtain a
more noble and dignified effect. With stone, too, he can obtain a much more beautiful and perma nent color scheme, and if the structure will admit of decoration, he can obtain, more closely, a better interpretation of bis designs than is now possible in brick or terra cotta. Public buildings demand dignity and repose and simplicity of coloring, and stone, as a material, offers the proper medium of expression. As to stone itself, great care and considerable knowledge of its structure is required to enable an architect to make a proper selection.
Considerations governing the choice of material exist naturally in the purpose of the proposed structure, its geographical location and its situation with respect to adjoining or contigu. ous structures. In addition to these, a further condition is imposed on its selection by a circumstance which we have reason to believe is seldom thought of, namely, the character of the coal burned in its immediate vicinity. In a district where soft coal is used largely for manufacturing purposes it is impossible to use a coarse, white stone, such as granite, marble or limestone, because soot becomes deposited on its roughened faces, and darkens and ultimately blackens the entire stonework to such an extent as to destroy its original expression. Where the use of soft coal prevails so as to become detrimental to the beauty of stonework, it is necessary to resort to brick and terra cotta work, because they are not injured so readily as stonework. Where granite is to be used it is advisable to employ it in such a manner that it will not be damaged by fire from other buildings. This can be done only by strict isolation, and would relegate granite to isolated public buildings. For office buildings, built close to adjoining structures, it is evidently quite unsuitable. Granite-faced structures are often built of one uniform tone as to color, and the effect is cold and harsh. This practice has prevailed in the past, but it is gratifying at the present time to observe a marked change in this regard. Dark-colored granites are now used for lower stories, upon which are imposed stories lighter in color as the crowning cornice is approached. This choice is in keeping both with the proper expression of stability and of aerial perspective. Where brick is chosen for the sake of its inviting field as to color, it is necessary to use the utmost care in selecting not only materials but color. Brickmakers, with good judgment and taste, owing, we believe, to the urgent demands of architects and their clients, have been making marked innovations not only in the color of brick, but in their forms. Bricks 12 inches long, $11 / 2$ inch to $11 / 4$ inch face, are now made. Other irregular sizes are obtainable, and in addition to this, rock-faced stonework has been imitated by rough-faced brick. This roughing face is a moulded face, and when used in a climate or locality free from soft coal smoke, it can be used to great advantage. It is a mistake, however, to suppose that artistic brickwork is cheaper than desirable stonework. The choice of either at the same cost is dependent, to a large extent, on the capability of the designer. Some men have a positive talent in designing brickwork which will be exquisite in its refinement of line and its delicate glow of color. In every case permanent effect is the ultimate aim, and can be obtained only by an almost encyclopedic array fully fully studied.

RECENTLY PATENTED INVENTIONS.

Engineering.

Steait Engine Valve.-Joshua Rose wickenham, England. This invention relates to slide valves, and provides for prolonging the period of the
expansion of the propelling fluid for all points of the ut-off in engines whose steam admission is effected o controlled by a single valve, by alluwing the steam, aring certann periods of the walve travel, to hold on part of the valve is actuated positively, the inventio also covering other novel features.

Railway Appliances.

Rail. - Michael A. Glynn, Havana uba. This rail is made with a scalloped flange, and dapted for use in connection with a sleeper having transverse dovetail slot to fit the widened portions o he rail flange, whereby the rails and sleepers may be uickly adjusted in position, and will not be liable

Mechanical.

Winder for Spinning Spindles. rnst Gessner, Aue, Germany. This invention cove n improved form of the guiding piece of winders in continuous spinning machines forming the subject of a cormer patent issued to the same inventor, so as to e of running at a high speed.
Nipple Holder.-Daniel A. Holland, , A , a section of pipe from which the nipple is to be cut ma e firmly held to place while the completion of the nipple is being effected, while the device is so con veniently removed in perfect shape.

Agricultural

Cultivator and Pulverizer. Carles C. Crumb, Burlingame, Kansas. This is an fmplement designed to remove all weeds from the surface
of the ground, and pulverize and leave the soil fine and mellow, the pulverizing or cultivating surfaces being inerchangeably arranged,permitting the soil to be thrown oward or away from the plants, and the machine bein ows.

Hiscellaneous

Album.-Thomas Kelly,New York City his is a device consisting of a hollow base with compartments closed by a lid, the latter supporting the
book containing the pictures, affording a secret drawer or loose pictures, while one of the covers can be used

Thill Coupling. - Olaus A. Dahl, Mona, Iowa. The thill iron of this coupling is pivoted upon conical bearings capable of being readily oiled, while the parts may be easily tightened when worn, the construction being simple, durable and economica,

Whip Socket Support. - Alexander E. Tulloch, Leadville, Col. A bracket with a stem having an integral lateral fiange is provided by this inits end portion, making a simple and neat bracket sup port for the attachment of a whip socket to a vehicle body or seat.
Tanner's Tool. - Robert H. Houk, Morris, In. Tnis invention covers a novel form of clampnesses for suspension in the tan pits or points of the jaws being arranged to come together to hold the hide without cutting a hole therein, whereby the necessity of cutting loops or punching holes in the
hides is avoided.
Tricycle. - Frank Searle, Virginia ity, Montana. This invention covers a novel construction and combination of parts in a machine designed to be very powerful, and to be readily pro-
pelled by the operator manipulating crank arms with pelled by the operator manipulating crank arms steering being accomplished by the feet of the rider.
Blacking Brush. - James S. Moore, Bar Harbor, Me. This brush is so made that the black-
ing may be located in its back and completely hidden from view when not in use, means being also provided for conveniently drawing the blacking out from the
back of the brusb, without its being detached, and for for conveniently drawing the blacking out from the
back of the brush, without its being detached, and for
its effective application in a neat and convenient manits effective applica
ner to the dauber.

Carbonizing Apparatus. - A dolf Silverberg and Cunibert Detering, Bed burg, Germany. Combined with a revolving drum and hollow shaft, to which is fixed a retort, under which is a fireplace, is an acid reseptacle, a tube from which opens into the re-
tort, whereby the quantity of acid introduced may be regulated as desired and the vaporized acids will be prevented from escaping.
Stringed Musical Instrument. George W. Van Dusen, porta relatively to the plate or frame and sounding board of the instrument, being applicable more particularly to pianos, and designed to maintain perfect pitch and harmony of tone from the strings, irrespective of changes of temperature or long-continued use of the
instrument nstrumen
Mail Indicator and Advertising Board.-Thomasb. Peacock, Topeka, Kansas. This is a board with movable slides for advertisements, whiee embedded intermediately in the board is a box with a transparent front wheel, a series of cubical ranged in the box to indicate undelivered mail.

Key Board Attachment. - Casper movably attached to any cabinet organ or piano, to furnish means for the mechanical execution of any une the attachment is adapted to play by peri
movement of the keys of the musical instrument.
Copy Press.-Richard A. Brown, New York to slide is a hollow slotted paper-carrying cylind with an exterior pad adapted to contact with the platen the press giving the impression of a letter by one revo ution of a crank arm, while the cylinder will carry stock of copying paper, which is automatically damp ned and cut to a proper length as the impression

Automatic Gate.-Alibert Edwards, Lanesville, Va. This is more particularly a roadway gate, of simple and inexpensive construction, to be
easily operated by a passing vehicle or by a person riding on horseback, the devices patented being also applicable for use with railroad gates by placing the riggers provided
by the car wheels.
Wire Fence and Fence Post. Samuel H. Gregg, Crawfordsville, Ind. Three patent mprovements combining in one fence some of the advantages of both a barbed and smooth wire fence, and
avoiding the objectionable features of both. The trands are made of unannealed spring wire, preferably pring steel, but the wire is crimped to make it more plainly visible, and also to allow for expansion and
contraction, while between the posts are stays usually arranged about five feet apart, and secured to ancho posts or plates driven into the ground. The terminal posts are designed to be made at a small cost and easily set in place, while their pecoliar construction is such as to admit of the ready connection therewith of simp wire-tightener means, which can be readily pat in po ion and detached from the post.
Hoop for Coopers' Ware.-Leonard L. Frost, Barada, Neb. This hoop has at one edge an
inwardly projecting portion or fiute and a plain opinwardy projecting portion or fiute and a plain op-
posite edge, the lower edge of the hoop being designed posite edge, the lower edge of the hoop being designe
to rest in yielding contact with the face of the recep-

Hogshead Making Machine. central bed piece to which horizontal semicircular formers are hinged carrying at their free ends fastening and compressing devices. the machine requiring but little skill in adjusting the staves, and being one in ooping the hogshead.
Singletree Support. - Robert C. Allen, Grove City, Pa. This invention consists of a portIng the block from the cross bar of the shafts, and rms connected with the block and pivoted on the axle of the vehicle, the device being specially designed for relieve the animal from ail strain on its back.
Wardrobe Trunk.-Sarah M. Mccormack, Cold Spring, N. Y. This is a combined ether at the top, each section provided with shelves and drawers, and an elastic packing strip being secured to the outer surface of the sections and extending across

Overalls. - Isaac M. Appel, Baltimore, Md. Two patents have been granted this inventor, the garment having the front portion of the leg
folded upon itself above and below the knee, forming olded upon itself above and below the knee, forming friple thick not showing apacent to the knee portion in front, but not showing upon the outside, while there
are also knee re-enforce pieces, forming also braces, which can be readily cut and easily applied, made with strips of different lengths to fit different sizes of over-

Scissors Sharpener. - Wales E. Woodruff, Essex, Conn. This device has a box clamp with a seat or recess in its top for a file, the seat being cissors to the angle usually given to the cutting edge of coinciding with that of the seat, the outer edge of the plate forming a straight edge or guide for the blade
Convertible Furniture.-Frank A. Thomas, Brooklyn, N. Y. This invention provides nn article of furniture designed to be used as a chair, cradle, or lounge, at pleasure, there being a main body
and a sliding section, each composed of intermeshing and a sliding section, each composed of intermeshing back section to form the front of the craade, and means for preventing accidental extension and detachment of

Window Shade and Curtain Pole. -Rinaldo A. Bat-te, Norfolk, Neb. This invention covers a novel construction and combinatlon of parts with peculiar means for on, and also affording a bracket on which the hangers a curtain pole may be held
Egg Boiling Device. - Jacob Verdam, Alkmaar, Holland. This device consists of loosely connected vertical wire links and a yoke loosely sus-
pended thereby and having rings at its ends, for holdpended thereby and having rings at its ends, for hold-
ing or retaining eggs whle being boiled in a kettle. Household Water Heater.-Henry . Steinhoff, Union, N.J. This is an attachment fo coves or kitchen ranges, consisting of an efficient system of water pipes applied independently of the ordinary water back, and adapted to heat water and being required from the ordinary setting and the device being operated by the manipulation of a damper.
HAND FOR Dolls. - Matthew W. Alderson, Bozeman, Montana. According to this integral with hollow forearms of a jointed arm, combined
with which is a pivotally mounted finger section and holding the fingers closed by its tension, permitting the doll's hands to hold articles.
Complexion Mask. - Nettie E. Jenkins, Auburn, N. Y. This is a medicated mask or glove of purely vegetable substances, designed to heal, purify, soften, and beautify the skin, and is made of a compound possessing, the merits of rubber, yet free
from the dieadvantages attending the use of that from the
material.
Leather Dressing.-John M. Jolly Marlin, Texus, This is a stufting or filling compound in which are employed neat's foot oil, beeswax, extract of logwood, borax, castile soap, and other ingredients, as well as proportions, in order ble as a dressing for harness, boots and shoes, etc. Note.-Copies of any of the above patents will furnished by Munn \& Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS

Electro-Chemical Analysis. By Edgar F. Smith. Philadelphia: Blak
iston, Son \& Co. 1890. Pp. 116 Price $\$ 1$.
This work is exactly what it purports to be, a laboratory lysis Under metal is given a brief of the literature relating to its analytical determination by electricity, so that the work, small and compact as it is, is really of very great value, and embodies all leading authorities. It has numerous illustrations which add to its attractivess,
A Sister'S Love. $\underset{\text { Translated by }}{\text { By }}$ W. ${ }_{\text {Margaret }}^{\text {Peimburg. Water- }}$ Translated by Margaret P. Waterman. Illustrated. New Yor
ington Co. 1890. Pp. 319.
This novel, in printing, binding, and numerous illustrations, fully maintains the high standing which the Worthin
world.
A Bor's History of the United STates. Worth-
ington \& Co., New York. Price 50 cents. Russian Country House. Translated
German. Illustrated. Worthington the
Gork
Co., New York.

SLIENTIFIC AMERICAN

BUILDING EDITION
DECEMBER NUMBER.-(No. 62.)

TABLE OF CONTENTS

Plate in colore, illustrating a handsome residence at Plainfield, N. J., erected at a cost of $\$ 20,000$ etc. Messrs. Rossiter \& Wright, New York, architects.
recently colored plate showing a summer cottage recently erected at Grand Yoint, Mich., from plans furnished by Munn \& Co., New York,
Floor plans, perspective view, sheet of detais, etc. Cost complete $\$ 1,200$.
3. The Hackley Public Library Building at Muskegon, Mich.
An attractive and economical church for a country village. Cost $\$ 5,000$, perspective view and ground plan.
A cottage at West Brooklyn, N. Y. Fioor plan
and photographic view. Estimated and photographic view. Estimated cost $\$ 2,500$. Country house at Wayne, Pa. Cost complete
$\$ 9,000$. Perspective elevation and two floor plans An attractive cottage in Buena Park, Chicago.
Estimated cost $\$ 4,500$. Photographic view and two fioor plans.
. Residence at Graceland, Chicago. Estimated cos $\$ 4,000$. Photographic view and two fioor plans. Photographic view and two fioor plans of a hand-
some residence at Auburn Park, Chicage. Estimated cost $\$ 7,000$.
10. A piciuresque example of a bungalow at Bellagio. Cost $£ 900$. R. A. Brigge, Londou, architect. Plans and elevation.
Attractive cou
11. Attractive country house at Narberth Parl, Pa Cost complete $\$ 1$
and fioor plans.
12. Miscellaneous contents : Some of the merits of the Architect and Builders Edition of the
Scientific American. - How to catch contracts -Improve your property. -- The education of customers.-The Scientific American a help to builders.-Setting back houses in new streets.-
Plumters' materials.-" Adamant" wall plaster -Inside window blinds, illustrated.-Employers liability and accident insurance.-An improved scroll saw, illustrated.-Embellishments of subur
ban station grounds. - Repeated building from the same plans.-Mortar colors foz builders.-Builders' ornamental iron work. - Improved spring hinges, illustrated.-Improved two-speed boring machine, illustrated.-Oil and wax in paintıng.Mineral wool in house construction, illustrated. Edition is issued monthly. $\$ 2.50$ a year. Single copies Edition isissued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid MAGAZiNe of Architec Vith fichly adorned with elegant phas most interesting examples of Modern Architectural Construction and examples of
The Fullpess, Richness, Cheapness, and Convenience this work have won for it the largest circulatio any Architectural pubication MON
muNN \& CO., Publishers

③usiness and Personal.

The charge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a lint. advertisements must be receivea at publicaron office

For Sale-New and second hand iron-working maFerracue Mach Co Bridgeton N Preses \& Dies. Nerracue Mach. Co., Brageton, N.J or best hoisting engine. J.S. Mundy, Newart N.J. For steel castings of best quality, write the Buffalo el Foundry, Buffalo, N. Y.
Wanted-Second hand Barnes patent foot power enWine lathe, Address k. F. Vason, Valdosta, Ga. Best Ice and Refrigerating Machines made by David年e, Chicago, III. 155 machines in satisfactory use. Steam Hammere, Improved Hydraulic Jacks, and Tube Power presses and dies. Also contractors for special chinery. T. R. \& W. J. Baxendale, Rochester, N. Y. "How to Keep Boilers Clean." Send your address
or free 96 p. book. Jas.C. Hotchkiss, 120 Liberty St., N. Y. Screw machines, milling machines, and drill presses. Split Pulleys at low prices, and of same strength and Works, Drinker St, Philedelon
Rubber Belting, all sizes, $773 / 2$ per cent from regular Buckley, 156 South Street, New York.
Guild \& Garrison, Brooklyn, N. Y., manufacture mps. acid blowers, filter press pumps, etc. For low prices on Iron Pipe, Valves, Gates, Fittings, A. \& W. S. Carr Co., 138 and 140 Centre St.. New York. The best book for electricians and beginners in elecTricity is " Experimental Science," by Geo. M. Hopkins.
By mail, 4 ; Munn \& Co., publishers, 311 Broadway, N. $\overline{\text { F }}$ WantedWrougt in-A first class foreman for our general experienced in iron a and steel roof, truss, and bridge work. Permanent situation to the right man. Address, stating experience and references,
Architectural Iron Co., St. Louis, Mo.
Send for new and complete catalogue of Scientific and other Books for sule by Munn \& Co., 361 Broadway New York. Free on application

HINTS TO CORRESPONDENTS.

Names a nd Add ress must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. information, and not for publication.
Rererente tes to former articles or answers should
give date of paperand page or number of question.
In uniries not ansered in reasonable time shonld give date or paper and page or number of question.
In iul rien not ansered neasonale time should
be repeated; correspondents will bear in mind that
 or in this department, each mast take his turn.
Spectat rititen Informaltin on matters of
personal rather than general interest cannot be expected without remuneration.
Scient111 A American Supplements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of price.
minera sent for examination should be distinctly
marked or labeled.
(2610) H. E. McC. asks how to tan calf skins thoroughly on both sides by the use of chemicals or otherwise, and produce the best results. A. You cannot learn how to tan calfekins well by any treatise
or book. It is a technical trade requiring knowledge, or book. It is a technical trade requiring knowledge,
experience and acquired skill. We sell a large, fully ilexperience and acquired skill. We sell a arge, fally il-
lustrated book, Davis on "Tanning," containng much lustrated book, Davis on "anning," containing much of leather. Price $\$ 10$ by mail, postage paid
(2611) W. H. D. asks : Would you kindly inform me through your paper what kind and size bat
tery to use on silver plating solution six cells of Bunsen battery. See Supplement, No. 310 (2612) A. M. F. asks : What is the whit ish powder that adheres to rubber belting and uncol ored rubber goods in general, when new, and what is used to prevent India rubber adhering to the mould in which it is vulcanized.
(2613) C. A. S. asks: What ingredients would you recommend for hardening and waterprofing gest a solution of shellac in wood alcohol.
(2614) R. A. asks : 1. What causes the foliage to change color in the autumn? Is it a chemica hange? A. It is a chemical change. 2. How many
elements are there at present known? A. 67 ; but th elements are here ad present known? A. 67; but ese
number may be modified at any time from new investigations. 3. Is not the idea of sight without light erro neous, that is, can a cat or any other animal see in the ark, and what makes their eyes appear luminous in sight to exist. A A. There must be some ligho darkness they are invisible. 4. What form of batter (and how constructed) is best for a small pocket batter used for running an incandescent electric light scar pin? A. Use a small storage battery, which is best
bought. 5. What battery is best for doing small iob bought. 5. What battery is best for doing small jobs
of gold, silver and copper plating (two or three pints of solution), also for nickel plating? What are some o the best books on electro-metallurgy? A. Smee o Daniell batteries are good. See Supplement No. 310 We recommend Watt's "Electro-Deposition of Metals, $\$ 3.50$. 6. What takes place when soldering (both hard and soft solder) $\%$ Is an alloy a mechanical or a chemical combination ? A. An alloy is supposed to be formed
with the surface of the metal united. of an alloy is hard to fix. It probably partakes of both characters. 7. How can rubber (such as rubber bands characters. 7. How can rubber (such as rubber bands,
etc.), be united? A. If unvulcanized, by simply cutting
and pressing together the fresh surfaces．Otherwise it
cannot be eatisfactorily done．8．How can I get a price cannot be eatisfactorily done．8．How can I get a pric
list of chernicals？A．Address
（2615）G．A．asks：1．What is the high est altitude ever reached by a rarefied air balloon，and also a gas balloon？A．Accurate data are not obtaina
ble for rarefied air balloons．In Coxwell and Glaisher＇s famous a cent．of September 5，1862，with a gas balloon the height of 37,000 feet was probably attained．This i the highest altitude ever reached．2．Can you recom loon making？A．We refer you to our Supplement Nos． 726 and 249 ，and for an excellent illustrated ac count of the history of ballooning to our Supplement Nos． 738 and 739．3．Is there any school on the Pacifi coast where aeronautical engineering is taught？A．No 4．Can you supply me with a book on the subject？A
We can supply May＇s Ballooning，$\$ 1$ ．The book you mention in your letter is out of print．
（2616）J．G．H．writes：1．I want t make an electrophorus as mentioned in＂Experimenta make one composed of resin，shellac，and Venetiont tur pentine．Please let me know the proportions，how to go about making it，also is there any danger of explo sion from the turpentine？A．Use 6 parts of resin， $4 \circ$ shellac，and 1 of Venice turpentine．Work at a low heat；there will be some danger of fire．2．What kind of different electrical experiments？ ing bichromate battery would suit your pabply a plang bottie form commonly known as the Grenet battery is le phonograp or which1am unabie to get any suitable tin foil（12 square feet per pound）．I have been to several foil manufacturers，but what they have is either too thin or kind，also by what tell me where I can get the righ used is called＂ too stiff．A．By going directly to the tinfoil manufac turers you can get any grade of foil you want．Some of the dealers who call themselves manufacturers do no ally make the article．
（2617）Reader asks：In the simple elec－ tric motor is it necessary to have the wire on the twelve oils wound even，provided all the coils have the same to wind the wire as compactly as possible，on account of making the space between the armatnre and field magnet as small as possible．A motor will operate wit more or less efficiency，whether the wire is wound
（2618）A．F．writes：Can you tell me if the piece of metal I sent you is the same as non－mag metal will draw steel filings，if left on a magnet for shield sold as non－magnetic，but it is attracted by the magnet．A．The metal you send is nothing but iron． As a magnetic shield it is the only serviceable metal For non－magnetic work iron，on the other hand，mu ergorously excluded．The conditions in the two magnetic shield is the worst for non－magnetic mor
（2619）W L．R asks what to add to the ordinary starch paste to make it permanent．I make it of a little water and common gloss starch，for moun ag pictures，but it dries in about eight days．A．Yo must keep it in a tightly closed vessel．If it did no October 11，1890，page 227 ，and also November 1，1890， age 281，for pastes．
（2620）H．H．writes ：1．Will shaving cause pimples on the face of a young man in goo same？A．Wash with a solution of Rochelle salts in water．3．I find that bisulphate of mercury will mak It willdike polish on brass．Will this polish last ？A． t should never be used．
（2621）P．M．asks what the musical play on musical glasses，tumblers partly filled with water．A．Powdered resin may be applied to thefing
（2622）C．H．R．aske ： 1 In whe ber of the Scientific American can I find a descrip ific American of June 20，1885，and of May 4,1800 ． The latter article describes her as altered into a tor pedo boat．2．What is the rate of speed in miles at tained by the speediest ocean steamers？A．From 23 to 25 miles an hour．3．Would it be possible to attain same speed in a 50 or 60 foot boat built on approved speed lines by using specially designed engines？ （2023）B．R．B．Wites：W
（2623）B．R．B．writes ：Will you inform the alizarine test？Would it not do to pass the cotton hrough a solution of alum to which soda ash has bee ath of 24 parts alum and 6 parts gray tartar for 100 ours and dry for a day．With 8 parts alizarine，an equal weight of sumac， $1 / 2$ part flavine and 2 parts chalk may be used．Add the alizarine last．Many other mor－ dant formulas may be used．Your mordant wonld
doubtless answer．We can supply excellent workson dyeing，such as Bird＇s＂American Practical Dyer＇s ompanion，＂price $\$ 10$ ．
（2624）R．C．asks ：What would be the ffect of using an alternating current dynamo in con－ salt would be reached batery？A．Practically produce certain electrolytic effects．butit would not an－ wer for charging a storage battery．
（2625）H．W．A．writes：I have a plas er cast，which from age and careless usage has be come discolored．Is there any way in which it can be restored to its original whiteness？A．Only by paint
ing or calcimining．A thin wash of plaster of Paris
and water might answer．
（2626）M．T．asks：1．Can parchment paper be sized？A．R can be sized，but the parchment needed．2．What is it used for？A．It is used largel stretching and tying over the corks．It can be bought of different qualities．
（2627）J．H．M．asks：1．Is there any mixture that retains its coolness permanently No．2．What one retain
of ordinary substances，ice．
（2628）C．H．M．asks ：1．What will dis ve aniline color or dye，besides alcohol？A．Wate assolves most aniline colors．2．Will you give me we refer you to our Supplement，No．157．3．A good mucilage．A．For mucilage use a solution of gum （2629）W．H．asks ：What treatment is necessary to extract tannin from new oak vessels in
order to prepare them for the storage of wine？A．The order to prepare them for the storage of wine？A．Th annin can be extracted by solution in water，or can poundpsulphate of iron and 3 pounds sulphuric acia ollowed by thorough washing out with water．Or rinse at with 4 gallons water and 6 ounces sulphuric acid and wash thoroughly
（2630）H．S．B．asks if anything can be one to soften rubber mackintoshes，silk finish，whe hey have become stiff and hard．A．Probably nothin （2al．Try sponging with ammonia．
（2631）W．E．S．asks for the ingredient nd manner of making stick pofly paper．A．Sticky fly Resin 9 parts，rapeseed oil 4 parts．b．Resin 8 part trpentine 4 parts，rapeseed oil 4 parts，honey $1 / 2$ part c．Resin 1 pound，molasses 31／2
ounces，boil until thick enough．

TO INVENTORS．

An experience of forty years，and the preparation of more than one hundred thousand applications for pa ents at home and abroad，enable us to understand th equaled facilities for procuring patents everywhere．A ynopsis of the patent laws of the United States and a oreign countries may be had on application，and perso broad，are invited to write to this office for prices which are low．in accordance with the times and our ex－ MUNN acches for conducting the business．Addres MUNN \＆CO．．oftic
way，New York．

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

November 25， 1890
AND EACH BEARING THAT DATE
［See not at end of list about copies of these patents．］
Adding and recording machine，D．E．Felt．．．．．$\dddot{\mathrm{M}}^{441,233}$
Adjustable pattern for draughting garm ents，
Advertising articie．w．．．．．
Air brake．G．B．Williams
ir cushion，W．Wh．Whit

Meat biock．Pävin

B

$\begin{array}{cc}. . . & 441,464 \\ \text { ink } \\ 441,587\end{array}$
4441.133
441,439
441,415

441.130 441.550 441.590

䚡 | Car |
| :---: |
| Car |
| Car |

c

30
203
20
1

Steam eng ine．
Engine indicators，device for operating steam，J
D．Davies．
Dat．．．．．．．．．．．

Evaporating liquids．J．A．Morrell．

auter．See Tube catter．Tube and pipe cutter

 Electricil caili，iighting，and älarm system，c．

 Seonatiryaiteing.a.i. Hiator

Slieich iobo. H. .J. Simo.

 Thill suporter. It. T. Bow...
 Tooss, vise pipe J. . Elis.i......

 wine holder, A. vileyn.

 Wrench, w.T. \& W. T. Kosinski

DESIGNS.

Khotokraphic card board, E. Stepeppera:
TRADE MARKS.

 Canalinn Parents may now be obtained by the
Mrentors for ang ofthe inventions named in the fore

EDISON LAMPS

For Batteries or Dynam | 4. to 36 Candle Power. |
| :---: |
| We will send free, |
| 3 to 40 |

 How to Make a Cheap Battery

EDISON LAMP CO
 THE MODERN ICE YACHT. - BY

 Starrett's Universal Bevel Protractor

 Howto Use Loose Pulleys,
 AN DUZEN \& TITT, Cincinnati, ohio.

 HOLIDAYS.

 Practical Microscopy -By G.E. Davis..... Desira-

books promptly sent by mail,
he price, by

MIUININ de OO.,

 Publishers of the "Scientific American," 361 Broadway, New YorkCTARER's FANS.
 and Rubber Press Rolis for woo
Dyeñ Wasion and
GEO. P. CTAR RK, Manuf. THE EACLE THE EASIEST RUNNNN peed, Comfort and Safet GENTS WANTED. arge illustrated Catalogue sent free to any Add
THE EAGLE BICYCLE MFG. CO,

Steam! Steam!
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$145

B. W. PAYNE \& SONS

LITTLE WONDERS

THE ACCUMULATOR COMPANY,

HENRY CAREYBAIRD \& CO. Indastrial Publishers, Booksellers, and Importer
810 Walnut St. Philadelphia, la., U. S. A. RFis Our new and Revised Catalogue of Practical and
scientifc Books, 86 pages, $8 v o$ and our other Catalogues
 THE ! EDWARD L. YOHMANS
POPULLAR SCIEICE $\underset{\text { william Jay Youmans. MONTHLY }}{\text { Edited by }}$
 The Development of American Industries since

 preparation. . Wells on Ta xation. A series of pa-
Horn. David A. Well
pers on The Principles of Taxation, based upon a course pers on The Principles of Taxation, based upon a course
offentures piven by Mr Wells at the invitation of the
Faculy of Harvard University, will be one of the fea
tures the the Harar tre or the coming year. New Chapters in the War-
ffre of Scw Dhite White will continue to appear from time to
time. The other contents of the magazine will be of the
same general character and high order of excellence as
heretofore Hertore.
With other illustrations, each number contains a fine-
ly engrave Plotrait of ome eminent man of science,
with Biog'aphical sketch. There is hardly a quastion of the day upon which scienc
does not throw light. hardy a problem of human interes

 New York: D. APPLLTON \& COMPANY, 1, 3, \& 5 Bond St. Single number, 50c. Yearly subscription, $\$ 5$

Remington

has set the copy for writing machines for 15 years. It is to-day the

Standard

and expects in the future as it has in the past to lead all others in adding improvements to what will always be the true model of a

Typewriter.

Wyckoff, Seamans \& Benedict, 327 Broadway, New York.

Shipman antomatic Steam Engine
 Over 25000 n Actual 1 see

 Hipman Engine Co.,
200 Summer Street
Boston, Mass.

TYPEWRITERS.

Largest like establishment in the world. First-
Classsecond--hand Instruments athalf new price.
Unprejudiced advice given on all makes. Ma Unprejudiced advice eiven on alt. maky. Intru-
chines sold on monthly payments. Any In ment manufactured shipped, privilege to examine.
EXCHANGINGASPECIALTY. Wholesale prices

4After being on the Market Five Years The "ACME" sill Latas!
 roceesster machine tool works, brown's Race, roceester, n. y.

"THE BEST PERIODICALS FOR FAMILY READING."

Harper's Magazine.
 $\$ 4$ a Year. Issued Monthly.

Harper's Weekly.| Harper's Bazar.

Harpeis Young People.

2 a Year Isaned Weetry

pOSTAGE FREE IN THE UNITED STATES, CANADA, AND MEXICO.
The American people ought to be proud of these four periodicals. It is no exaggeration to say that the steady influence exerted upon the life and thought of the nation from the publishing house in Franklin Square is at least equal to that of one of the great universities.... All four of the Harper means, everybody knows who has been Harper bred.-N. Y.Sun, Feb. Io, i8go.

Booksellers and Postmasters usually receive Subscriptions. Subscriptions sent direct to the Publishers should be accompanied by Post-office Money Order or Draft When no ime is specified, Subscriptions will begin with the current number
Published by HARPER \& BROTHERS, Franklin Square, New York.

ELEETRICITYY He manten filernicant

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

Undeveloped Wealth. The edge of an invention crops out of
the mind of a thinking man who lacks the mind of a thinking man who lack the mechanical means of following it up. have a primer to send.

IDEAL MUSICAL BOX is the latest Invention in Swiss Musical Boxes
It in the Sweetest and Most Perfectinstrument
for the Parlor. Any number ofunes con be ob. ained for it. The Largest Stock of Musical Boxes in
America. Sen 4 cent tstamp for Illustrated Catalogue.
JACOT \& SON, Bobrbiditiv,
The. Frgat Prizzo of got Got Medal awardid tho THE HAMMOND TYPEWRITER CO 447, 449 East 52d Street,

GREAT BUSINESS OPPORTUNITY

 The Directors will almost givethe
for a term of years, to any one wh
well. For particulars.address
C. A. FULLER,

THE BRIDGEPORT WODD FINISHING CO
 Manufacturers of

HuvTrpis SIFTER \＆MIXER SES

Sen．for catalogue of all kind H．DAY \＆CO：${ }^{2}$

Victor Bicycles！

tion，and for ansthing recrea
could use a bicvele for VICTOISS ARE BEST reman Wheel Co Makers verman Wheel Co．，Maker
JAMES LEFFEL WATER WHEELS ミ尸エ \＆C○． Farlo St．，SPRINGFIELD，OHIO．
（10a Liberty Street

THIN PANEL STOCK In Whitewood，Wainut etc
 HENRY T．BARTLETT， CABINET WOODS and VENEERS，MAHOGANY

NEW KODAKS

 we do the rest＂

Seven New Styles and Transparent HE EASTMAN COMPANY，

THE PENNA．DIAMOND DRILL \＆MFG．CO． BIRDSBORO，PA．，Builders of Hikh Clase
Steam Knkines．Diamond Drilling and General
Machinery．Fiour Mill Rolls Ground and Grouved．

道

rochester，n．y．

GRAVESELEVATORS．

WORKING MODELS and Experimentai JENKINS STANDARD PACKING！

M ARCO A．FOUSECA \＆CO．General Com．

エエエ

Šicntific sic_{9} merican

The Most Popalar Scientific Paper in the World． Onis 83.00 a Yent，including Postage．Weekly．

This widely circulated and splendidly illustrated teen pares of useful information and a large number of original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery， New Inventions．Novelties in Mechanics，Manufactures，
Cnemistry，Electricity，Telegraphy，Photography，Archi－ Chemistry，Electricity，Felegrapus，Potography，Archi－ Complete List of Patents each week．
Terms of Subscription．－One copy of the ScIEN－
TIFIC AMERICAN will be sent for TIFIC AMERICAN will be sent for one year－52 numbers－
postage prepaid，to any subscriber in the United States， Canada or Mexico，on receipt of three dollura by the publishers；six montks，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubn．－Special rates for several names，and to Post
Masters．Write for particulars Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，ana correctly addressed seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－ dress all letters and make allorders，drafts，etc．，pay 361 Broadway，New York．

Scientific American Supplement．
This is a separate and distinct publication from
THE SCI KNTHFIC AMERICAN，but is uniform therewith THE SCILvilific American，but is uniform therewith of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions The Scientific American Sulplieming is published
weekly，and iucludes a very wide range of contents．It presents the most recent papers by eminent writers in all the principal departments of science and the Useful Arts，embracing Biology，Geology，Mineralogy． Natural History，Geouraphy，Archæology．Astronomy
Cbemistrys Electricity，Light．Heat，Mechanical Engi Ceering．Steam and Railway Engineering，Mining nhip Building，Marine Engineering，Photogt：phy Technology，Nanufacturing Industries，Sanitary En gineering，Agriculture，Horticulture，Domestic Econo
my ，Biograply，Medikine，etc．A vast amuonnt of fresh my ，Biograplly，Medicine，etc．A vast amulnt of fresh
and valuable information obtainable in no other pub－ ilcation．
The most important Ensineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and described in the Suppiement
Price for the SUPPILEMENEMENT．for the United States and Canada． 85.00 a year，or one copy of the Scienturic AM ELICAN and one copy of the SUPPLEMENT，both maile and remit by postal order express money order，or check MUNN \＆Co．， 361 Broadway，N．Y．．

Building Edition．
The Scientific ammerican architects＇and Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordinary book pages；forming a large and splendid Magazine of A rchitect ure，wich
ly adorned with elegant plates in colors．and with other Ane engravings；illustrating the most interesting ex amples of modern Architectural Construction and allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full
Plans，Specifications，Sheets of Details，Fstimates， Tlans，specincal and cheapness of this napnificent wor have won for it the Largest Circulation of an Architectural publication in the world．Sold by all

MUNN \＆CO．，Publishers，
361 Broadway，New York．

PRINTING INKS

