a Weekly jourval of practical information, art, ScIENCiE, MECHANICS, CHEMISTRY, and Mantractures.

## ELECTRICALLY-FIRED GATLING GUN

We illustrate in the present issue a new application of the electric motor, in which it is caused to operate a Gatling gun. This well known type of mitrailleuse has been placed on many of the U. S. naval vessels, and represents a very powerful weapon for repelling attacks and for general fighting work at close quar ters.
Hitherto the Gatling gun has not been automatic. The loading is effected by turning a crank attached to the breech mechanism of the piece. As this causes the barrels to rotate, they are discharged one at a time. Ten barrels are comprised in the piece, so that for each revolution ten shots are delivered. While one man turns the crank, a second man holding the tail stock or lever way be employed in directing and aiming the piece, if continual change of direction is needed. While this character of manipulation is of ten required, and is that by which rapid-firing guns should per form the greatest execution, it has attendant difficulties. The turning of the crank inevitably causes the piece to oscillate and adds a second disturbing element to the vibration due to the recoil
The Crocker-Wheeler Motor Company, of this city, were invited by the U. S. Navy Department to arrange an electric firing mechanism for the Gatling gun. Several requirements had to be kept in mind in producing the design. The apparatus had to be attached to the barrel of the gun so as to move with it. It had to be out of the sighting line, and it was necessary to dispose of it so as not to interfere with elevation or depression of the gun. The motor finally had to be adapted for operation by the electric lighting plants as installed upon the ships of war. The drawings show clearly how the problem has been attacked.
Upon the left hand side of the breech of the gun an open frame of generally rectangular outline is secured. Within it is placed the motor. This is a specially wound motor, adapted for an electro-motive force o 80 volts, and a current of 3 to $31 / 2$ amperes intensity This, it will be seen, represents the absorption of a

## NEW YORK, NOVEMBER 15, 1890

\$3.00 WEELEAR.
little over $1 / 3$ electric horse power. The efficiency of the motor is placed at over 80 per cent. The spindle of the armature, which in general terms runs horizontally and at right angles to the axis of the gun, carries a pinion which engages a large gear wheel. The latter is inclosed in the cylindrical or disk-like case which is seen next to the motor by the side of the breech. The spindle of the large gear wheel is prolonged across the end of the gun barrel, and carries a worm at its end This gears into a worm wheel on the working spindle of the gun.
This double reduction of speed causes the operation of the gun at about 150 revolutions per minute, giving 1,500 discharges. This rate is rather high for general practice and can be considerably reduced.
A small switch is provided for turning the current on and off. The artillerist, after starting the motor, is free to swing the piece in any direction. This he can do without interference from a second operator and the gun is undisturbed by the shaking due to the turning of the crank
Between the motor and the large gear wheel is a clutch by which the motor can be connected or disconnected from the breech wechanism. The crank by which the piece is worked by hand under the former conditions is arranged for rapid disconnection or reconnection This provides for injury to the electric apparatus. If the latter becomes disabled or if its connections are severed, the clutch can be thrown open and the handle connected, when the gun will be ready for operation by hand. This change takes only a few seconds. This application of electricity is of special interest as bringing the Gatling gun into the rank of automatically fired artillery.

Dr. Koch's Cure for Consumption
A Berlin correspondent of the Pacific Medical Jour$n a l$, writing about the recent medical congress held in that city, says: Following Sir Joseph Lister came Prof. Dr. Robert Koch, who was enthusiastically received.
His paper had reference to a cure for consumptio
with which he was experimenting. Dr. Koch was shrewd enough not to name his "cure," so we did not learn much from the distinguished director of the Hygienic Institute of Berlin. The rest of Prof. Koch's address was a resume of bacteriology. He said, "Pubic opinion was at first against the germ theory, and it is necessary to prove in all cases that the disease and the micro-organism in question appear together and that the germ does not appear in any other disease, and that the same micro-organism, propagated outside of the body through several generations, always proof the body through several generations, always pro-
duced the same identical result if it got into the sysduced
"This had been proved in anthrax, tuberculosis, and erysipelas. But it has still to be proved in the case of typhoid fever, ague, leprosy, diphtheria, and Asiatic cholera; nor had the specific bacterium been proved in scarlet fever, smallpox, yellow fever, cattle plague, pleuro pneumonia, influenza and hydrophobia." Prof. Koch then mentioned that the most recent discovery in bacteriology was the poisons excreted by the bacteria. These poisons were now regarded as the mmediate cause of death.
For years past Prof. Koch has been seeking a cure or consumption. He began by pure cultivation of the bacillus, and found ethereal oils, tar pigments, mercurial vapors, salts of gold and silver, and especially cyanide of gold efficacious in destroying the germ, but this could not be done in the body of animals without also destroying the animal.

I continued my search, however," he continued, ' and at last found what I sought! Susceptible as the guinea pig is to the tubercle bacillus, it proved noninoculable when treated with the substance in question. Even when the disease was far advanced it could be brought to a standstill by this means.
This fact may give occasion to search for similar ffective remedies in other infectious diseases also, and highest and noblest kind.
After prolonged and enthusiastic applause the meet


FIRING GATLING GUNS BY ELECTRICITY.

# Friuntific gmmerian. 

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

## o. D. MUNN. <br> A. E. BEACH.

## TERIS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. for the U. S., Canada or Mexico...One cops, six months, for the U. S., Canada or Mexico $\stackrel{83}{80} 5$ One copy, one year, to any foreign country belonging to Postal Union, 4
Remit by postal or express money order, or by bank draft or check. MUNN \& CO., 361 Broadway, corner of Franklin Street, New York. The Scientific American Supplement


Spaninh Edition of the Scientific American.


 MUNN \& CO., Publishers,

NEW YORK, SATURDAY, NOVEMBER 15, 1890.

## Contento.



TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 776 .

## For the Weet Ending November 15, 1890

 II. ${ }^{\text {a }}$




 vil civin enginkeride-The sip
 vili. .isercrifirf















## ZAPON, A SUBSTITUTE FOR LACQUER.

An important feature of all fine mechanical or orna mental work is the final tinish. Beauty of design is insufficient to secure a pleasing result where finish is neglected. Lacquering has usually been resorted to for beautifying and protecting metallic surfaces, bu lacquer requires a dexterous hand for its successful ap plication, and it is not permanent under all conditions.
It will be of interest to our readers to know that a superior substitute for lacquer, known as zapon, ha been perfected by the Frederick Crane Chemical Com pany, of Short Hills, N. J. This new article is being largely used by manufacturers of metallic goods and instrument makers. It is also used on sheet metal ware and on wood. It is flexible, very permanent and
not easily scratched. It has other advantages which not easily scratched. It has other advantages which
will be appreciated by the novice, $i$. $e$., it dries without will be appreciated by the novice, i.e., it dries w
heat, and does not show streaks or brush marks.
Zapon is made both colorless and of all colors. It is used on brass, copper, silver, iron and other metals and is applied either with a brush or by dipping. Among the products of this establishment are brilliant and black enameloid, the first being an excellent substitute for baking japan, while the second-the deadis applicable to artistic iron work and to various uses in connection with photography and optical instru ments.

## how to estimate our work on war vessels.

Now that we have made so substantial a commence ment on our new navy, it may be interesting to ask What has been actually accomplished by foreign powers in expending immense sums on war ships dur ing the past twenty-five years, while we have done comparatively nothing? The triple-screw protected cruiser, No. 12, for which the contract has recently been a warded, to be of 7,400 tons displacement, with a horse power in excess of 20,000 and a speed of not less than 21 knots, marks the present limit of our investment in this line of vessels, and, with the contracts at the same time awarded for three large armored battle ships, we
substantially enter the field in which the great Eurosubstantially enter the field in which the great Euro pean powers have been competing against each othe Hampton Roads. Of the rtrer armored vessels being built, it may be said that, although not intended as the equals of first-class foreign war ships, they will owing to their more modern construction, fill a ver important minor position, while in high-speed cruiser our place will probably be second only to that of Great Britain.
The absence of any practical tests, in actual war, o the great ships on which so much has been expended by England, Italy, France and Germany, leaves open a wild field for judgment as to what their ultimat efficiency will be. A valuable aid in forming such judg ment, however, is afforded by a paper recently pub lished by W. Laird Cowles, entitled "Naval Warfare,
$1860-1889$, and Some of its Lessons."* The writer con-1860-1889, and Some of its Lessons."* The writer con-
siders the subject under the divisions, (1) speed, (2) the ram, (3) high explosives and torpedoes, (4) armor, and (5) guns and their role in action.

The experience of the vessels in the war between Chili and Peru is quoted to show that speed is important to enable a ship to bring her enemy into action, but will never enable her to beat him. The Huascar rammed the Esmeralda and sank her, but not until the latter's engines had been rendered powerless, while the 12 knot Independencia tried to ram the 5 knot Cova donga, but the slower craft easily slipped away, leaving her enemy to run upon a rock. In the battle off Lissa in 1866, when over forty vessels were engaged, many efforts were made at ramming, but the only success ful one was upon a vessel, the Red'Italia, previously disabled by gun fire. Many incidents of our own war and of the Franco German war are also quoted to show that a ship, so long as she can keep way on her, and can steer, need not fear an enemy's ram, while if ramming is tried before the enemy is disabled, the vessel trying it may be torpedoed in passing, and has added liabilities to other injuries
Torpedoes, as thus far employed, are declared to be almost as fatal to their users as to those against whom they are used. In the war between Chili and Peru the Huascar endeavored to use a Lay torpedo, which turned back on its course, and would have struck the vessel from which it was sent, had not an office jumped overboard and guided the machine aside, after which the commander buried the rest of his torpedoes in the cemetery at Iquique. The author's conclusion is that with good care and a careful lookout a ship not actually in action with other ships can generally protect herself from torpedoes.
As regards armor protection, it is difficult to over rate its value, provided the armor be thick enough to shells, while it is hard to overrate its danger if the armor be so weak as to permit projectiles either to pierce or shatter it. The ship's engines and boilers should be protected at all hazards, as a modern ship that cannot move in action is doomed, no matter how powerful she may be; but all armor has such definite
limitations-all of which may be overcome by the heaviest guns-that armor is at best only a compro mise. Speed, the ram, and high explosives, are ac counted factors of secondary importance, while the nain factor has conspicuously been gun fire.
This is divided into two kinds, that from slow and heavy guns, to act against the enemy's material, while the light gun fire includes that from quick-firing and machine guns and from rifles-to deter the enemy from manning his light guns, to throw a hail of projectiles nto his ports, and to riddle his unarmored ports. This is a business which to be successful must be thoroughly arried out by one party to the action from the ver commencement of an engagement, when even the heavy guns of its opponent can only be fought with difficulty, and therefore it is claimed that, where two forces are otherwise anywhere nearly equal, the force which earliest obtains and preserves the superiority in light gun fire will ultimately be the victor. The quickfiring gun, however, is not only a gun to work against the enemy's men, but takes rank among pieces designed to pierce armor. The fire from a six inch quickfiring gun is capable also of disabling the heaviest guns when the projectile is rightly directed, for many of these heavy guns are of such great size that they have to be largely if not wholly unprotected. The general conclusion is, therefore, that too many ver heavy guns have been employed, greatly to the detri ment of the ship's efficiency-that a ten inch gun, which will pierce a thickness of twenty inches of armor at 1,000 yards, is practically about as large as should be employed on a ship, and that there should be few guns of such size, and a larger proportion of machine and quick-firing guns.
As singularly confirming these views, the British Admiral of the Fleet Sir Thomas Symonds writes that, besides their inferior compound plates, British ironclads have "other faulty arrangements greatly de tracting from the fighting power and safety of ships wrongly classed as ironclads, in which untrustworthy monster guns have been mounted in enormously heavy turrets and barbettes, and thick patches of armor added to protect their unreliable hydraulic machinery The awful overweighting of our modern battle ships with monster ammunition, etc., also reduces greatly their seagoing safety. Whether we regard our guns our ships, or our armor, the lack of a wise and definite policy is evident."
Perhaps it is not so strange that what all would ac knowledge to be a "wise and definite policy" has not heretofore been settled upon, for the whole period of the modern war vessel has been an exceptionally transition one, as have all processes connected with the manufacture of iron and steel. It may well be presumed, however, that the expensive experiments nd costly mistakes of our neighbors across the Atlantic will be fully availed of in the construction of our new navy, the delay in commencing substantial work upon which for so many years has been so gen erally deprecated.

## DR. KOCH'S CURE FOR CONSUMPTION.

Great interest is being everywhere manifested in the eports now coming from Europe concerning the alleged discovery by Prof. Koch, of Berlin, of a nethod for the cure of consumption by inoculation. Dr. Koch announced his discovery of the tubercle bacillus as a living germ in 1882, and it now appear that he has so far succeeded in producing the tuber cular bacillus as to be willing to employ it practically on those afflicted with consumption, although it is an nounced that only leading bacteriologists and phy icians can be admitted to a knowledge of the prepa ration of the lymph, as it requires the most thorough care and a high degree of skill.
It is said that about one fourth of all the deaths occurring among human beings during adult life are caused by consumption, or pulmonary tuberculosis, a disease of the same nature also prevailing to a great extent among cattle. It is produced by living germ finding their way into the body, generally attacking the lungs first, where they multiply under favorable conditions and throw off new growths, the discharges from which contain also the living germs. The latter however, do not grow outside of the human or anima body, except under artificial conditions, although they may long retain their vitality, to again reproduce themselves when received into the body. It is thu that consumption is most often produced by breathing ir in which these germs are suspended as dust.
It is on these germs that Dr. Koch has been experi menting to produce, by artificial propagation, a bacillus of milder form, which, on being introduced into the system, as by inoculation, would overcome and eradicate the more dangerous bacilli causing the disease. The experiments have been substantially in the same line with those of Pasteur relative to the cure of hydrophobia, Dr. Koch having been one of the first to acknowledge the efforts of Pasteur in this field, and having aided largely in the successful development of the Pasteur theory and practice.
The Charity Hospital, at Berlin, has been the scene of Prof. Koch's experimental work, although it is said
that he has already had many patients of high social standing, and achieved some remarkable success. The accounts thus far received say that the patients have been pledged to secrecy as to the method of treatment, which would be somewhat strange were it not for the fact that the announcement is also made that Dr. Koch is preparing for publication a work fully explaining is preparing for publication a work fully explaining his discovery. It may well be that he is afraid more
harm than good would come from the getting abroad harm than good would come from the getting abroad
of any partial or incomplete understanding of it, which of any partial or incomplete understanding of it, which
might lead incapable or indiscreet practitioners into might lead incapable or indiscreet practitioners into
ineffective attempts to follow his line of practice. It is said that in cases now under treatment a change for the better is observed after five or six injections of lymph, within a fortnight, although one case of long standing required a month to effect an improvement. From four to eight weeks is thought to be the time that will be required to effect an ordinary cure. It is announced that before six months all the patients now under cure will have passed through the period of observation. and that then Prof. Koch will be able to publish his discovery to the world.

## Highs and Lows in the Atmosphere.

It is intended in this paper to set forth some facts tending to answer the question, What are highs (elevations) and Lows (depressions) in the atmosphere? The term anticyclone for a high pressure area see:ns a misnomer, and the term cyclone, for a storm, first applied by Piddington to the violent storms in the seas north and south of the equator, should be used in connection with these storms. These terms here suggested apply exactly to what we see on our weather maps and, till we know more about the mechanism of these phenomena, they may be regarded the most concise and satisfactory that can be used. The so-called permanent highs and Lows, for example, the winter HIGH in Siberia and the permanent Low over Iceland, are not included in this discussion, nor are thunder storms, tornadoes, water spouts or any such phenomena included, since they are known to be secondaries usually 400 or 500 miles to the southeast of the center of a general Low and have very few of its characteristics.
Every one is familiar with these HIGHS and Lows as they move rapidly or slowly one after another across the country. We are taught that in a high the air is denser and cooler ; this has a tendency to cause a flow of air to its center and there to raise th pressure. If anything, there is a slight tendency downward in the air, and this also serves to raise the pressure. There is also a tendency to whirl from left to right. In a Low the air is less dense, it is much heated, is full of moisture, and there is generally an uprush in the center as well as a whirl about it; all these conditions serve to diminish the pressure. Also the uprush at the center carries moist heated air to the cooler upper regions, and by expansion a still farther cooling is effected, which causes a condensation of the moisture and precipitation. This condensation, however, liberates latent heat, and this in turn heats the air and causes greater rarefaction, which in its turn causes a greater uprush, and this may continue till a most violent disturbance ensues. The fact that rain does not fall at the center, where Espy supposed it did, but 400 miles or more to the east and southeast in the United States, while in England a little more falls to the west than to the east of the center, would seem a serious objection to this view.
We may consider this whole question under several propositions:

1. Highs and Lows have a common progression or velocity.-This seems self-evident, for, if they had not, the one would overflow the other. It is not intended to imply that these conditions 2,000 miles apart, more or less, have a common velocity, but, as they pass along one after the other, their movement must be
practically the same, and when the velocity of one practically the same, and wher
changes, the othermust also.
2. There is no whirl in either, a few thousand feet above the earth.-Observations of clouds have shown this fact beyond a doubt, but the records for over sev enteen years at the station on Mt. Washington, N. H., $6,300 \mathrm{ft}$. in height, are absolutely conclusive on this point. There is no veering of the wind at this station such as is noted at the earth's surface, in fact, an east or northeast wind is a most rare phenomenon; over 90 per cent; of the winds are from a westerly direction. Some have gone so far as to declare that this proves that the centers of the great majority of HIGHS and Lows must be below $6,300 \mathrm{ft}$. Imagine a disk $6,300 \mathrm{ft}$. high and $3,000,000 \mathrm{ft}$. in diameter whirling round and round, and at the same time carried horizontally from west to east. Suppose we heat up the front (east) part of the disk, how many minutes will it be before the whirl will carry this warmer part around to the west and bring the cooler to the east? Now we know that the east and southeast part of this Low continues
warmer than any other part, and the west and northwest cooler, a condition which would be impossible i there were a whirl
3. I'he centers are far above our highest mountains.This proposition is of great importance, and if it could be positively settled, would clear away many difficul-
ties. It is thought by some that since in a Low there is a great increase of temperature in the lower layers, there must be a relative increase in pressure as we rise in the atmosphere, and hence in a very short distance we would reach the so-called "neutral plane," above which there would be an increase of pressure. Observations show that no such condition exists, and that, on the passage of a LOW, the pressure falls just as much at Pike's Peak, for example, relative to its height, $14,134 \mathrm{ft}$., as at the base. This shows that the condition making the change in pressurs is far above three miles in height. It will be shown shortly that temperature changes with highs and Lows on our highest moun tains are exactly the same as at the base, and this also proves that the center of the condition producing the changes must be far above these mountains.
4. There is no movement of air or moisture parti cles by air currents in a vertical direction in them.
The theory of an uprush in a Low is the most tenaciously held of any in meteorology. It is the primum mobile of all views of storm generation. There is not one scintilla of evidence that such an uprush exists except in imagination. One or two reasons for denying this have already been given, one other only is here noted from many. Since there is friction with the earth, the lower part of this uprush would lag far be hind the upper, and in a very few minutes the verticality of the uprush, upon which alone its integrity depends, would be entirely obliterated and the whole movement quickly brought to rest. To say, as some do, that the upper part of this uprush separates off and goes gyrating ahead of the lower part, and after ward communicates its gyrations through a frictionles medium to the earth, seems very strained. Computa tion has shown that it would require over 20 years for such gyrations to pass vertically through 300 feet in a frictionless medium.
5. There is no extended horizontal transference by air urrents of material particles in them.
This is probably the most important proposition of all that can be advanced, and it will be the one hardest to accept by those who have been taught that our Lows are enormous whirls transported in the drift of the upper atmosphere. The truth of this proposition is shown by the fact that while the Low travels, in the United States, in winter, at the rate of 35 miles per hour, the wind rarely attains half that, and even then the wind does not blow steadily from the west. It is easy to see that if the wind were blowing at the rate of 35 miles per hour in front and toward the Low, the velocity of particles in the Low toward the east would just counterbalance this motion, while on the west side, if the wind blew straight toward the center the velocity should be 70 miles per hour, but we know that the wind velocity is nearly uniform on all sides. Again, in a high having the same velocity, about 35 miles per hour, there is almost a dead calm. In this shown that one of the most important characteristic of a storm is an enormous increase in the dew point or amount of moisture over thousands of square miles in front, while there is as great a decrease in the rear. These effects are in no wise due to heat, winds, evapo ation or any other cause acting at the earth. I have also found that the diminution in the rear cannot be due to the advance of a HIGH with cold dry winds, be cause it often takes place when that does not follow up the Low.
It is probable that this drying takes place at some height in the atmosphere first and works down. What ever it is, it cannot be due to the onward movemen of air particles, now full of moisture and almost im mediately after with the moisture sucked out, as it ere. It is well known that it is one of the most diff cult things to either saturate air or deprive it of its moisture.
It would seem as though such transference of particles were improbable, but it may be asked, how can the changes be brought about by the HIGH and LOW if they do not travel? May we not consider these phenomena the result of another action? Suppose we have wo spheres 1.000 feet in diameter carried through the air at a height of 1,000 feet, the one very hot and the ther very cold, and we had thermometers delicate nough to register changes in temperature of the air at the earth, the resulting phenomena would be ex actly those that we now observe on the passage of a LOW and High.
6. They are almost entirely independent of the drift of the atmosphere, though they may affect that.
It will be conceded, on all sides, that the clonds drift in the atmosphere. This drift is almost invariably rom west to east, but we often notice our HIGHS and Lows changing position from north to south. The best proof of this proposition, perhaps, is to be found in mountain observations. As a HIGH approaches, the
drift or wind at the mountain station dies down and becomes about half the apparent motion of the HIGH, while with the approach of a Low the drift increases
to nearly double the motion of the LOw (see Journal of Franklin Institute, July, 1888). Now, as we have just seen, the progression of the HIGH is practically the same as that of the LOW, so that, if anything, the
drift of the atmosphere is changed by the progress of highs and lows inste
pendent upon the drift.
7. They are independent of temperature changes both above and below, and, in fact, bring about the latter.
This proposition comes next to 5 in importance, and is really established by that. If it can be sustained, it givesthe death blow to most modern theories of the generation of the HIGHS and Lows. We find exactly the same temperature changes at our highest stations as at the base, and hence it is very evident that the center of influence in the HIGH or LOw must be far above our highest station, or more than three miles above the earth. It is possible that the conditions pro ducing our HIGHS and LOWS extend to the limits of the atmosphere. We are taught that the sun heats up a limited portion of the earth, and this in turn heats the air, and the air above is heated layer by layer ; while there may be a limited action of this kind, yet it is evi dent that that could not account for more than a small fraction of the heat in our Lows, and it would not account at all for the cooling in the high. Some think that the air near the earth becomes heated, and this starts a rush of air upward, but it is very eviden that such a motion of a warmed particle cannot be maintained as we have seen under 4.
8. They are independent of direct heat influence from the sun.
This is plain in the case of HIGHS, since they show a lack of heat, and it is also true for Lows, since they have a continued heat action through the night. The fluc uations in temperature on the advance of a Low are much greater in winter than in summer, though it is plain that the sun's influence is very much greater in the latter case.
It will be seen at once that these 8 propositions are largely negative, and that we have advanced very little in our studies regarding highs and Lows. It is plain that nearly all of them are most intimately connected and must stand or fall together. No attempt has been made to theorize, but it has been my desire to present facts as simply as possible. If any one has been led to think of these things, and will enter upon a discussion of this interpretation of the facts, $I$ shall be entirely satisfied.

## Anchoring Bolts into Stone.

The Engineering and Building Record quotes from a letter to the Troy Polytechnic some interesting par ticulars about the usefulness of various substances for anchoring bolts into stone. It was necessary in the construction of an elevated railway, in a place where the line led over rock, to anchor the foundation by bolts to the ledge, and in view of the expense and other objectionable qualities of sulphur and lead for thi purpose, it was resolved to try whether cement could not be made available.
To test the question 14 holes were drilled in a ledge of limestone rock, all 42 in . deep, and bolts, some $3 / 4 \mathrm{in}$. and some 1 in ., were set in the holes. Around four of the bolts sulphur was then poured, lead was put in around four more, and Portland cement, mixed neat, around the remaining ones. Two weeks later the bolt were pulled by a powerful lever. Out of those run with sulphur, one was drawn out under a strain of 12,000 lb. With the others the iron yielded before the sul phur gave way. Three of the bolts calked with lead also broke in place, one pulling out; but of those set in cement, one yielded slightly and then broke, while all the others broke in place, showing that Portland cement is not only cheaper for setting iron into stone, as well as less likely to corrode the iron, but is stronger and much more easily applied. This account reminds us, the journal above referred to adds, of a little expe ience of our own, which has a certain interest.
In the construction of a building where external anchors are used, some of the bolts, which were built through the walls, were sent, by a mistake of the maker, with the ends cut for wood screws, instead of being threaded for a nut. As the work was being hur ried, and there was not time to wait for others, they were used, on the assurance of the maker that he could fit nuts to them. After the walls were ready for the nchors, it was found that no machine was made which would tap an iron nut to fit a wood screw, and the manufacturer made nuts of Babbitt metal which were forced on the screw. They were rejected by the archi tect on account of the softness of the metal, and a bolt with the nut, was tested at the Watertown Arsenal on the Emery testing machine, to determine the resist ance of the nut. The bolt was pulled in one direction, and the nut in the opposite one, and neither yielded until a force of 5600 lb . had been applied, when the ut burst, the threads stripped, and the bolt pulled out. The bolt was $3 / 4$ in., somewhat deeply cut, so thatrthe resistance of the nut was about three-quarters
of the strength of the bolt, and if it had been made of the strength of the bolt, and if it had been made
thicker, the iron would probably have yielded before thicker, the iron would

Utillizing scrap steel rod by welding it and draw electric welding.

LAKE STEAMERS BUILT BY A CLEVELAND FIRM. During the past nine months the Globe Iron Works Company, of Cleveland, O., has been building steel steamers of the class shown in our illustration, for the freight business on the great lakes on our Northern border, at the rate of about one steamer a month. This business will compare favorably with that of any other shipbuilding firm in the world, being exceeded, probably, in only one or two instances, for these steamers have a carrying capacity of about 3,000 tons each. The vessel shown is of the same style as eight others built during the present year, and has a length of keel of 296 feet length, over ail, 312 feet beam, 40 feet; moulded depth, 24 feet 7 inches draught, 15 feet 6 inches Her engines are triple ex pansion, with cylinders 24 38 , and 61 inches in diame ter respectively, and with a 42 inch stroke. She has an independent air pump condenser. Her wheel is sectional and 14 feet in dia meter, with a lead of 17 feet. She has two boiler of the Scotch type, each of the So tiame, eac 14 feet in diameter and 12 feet - inches long, with three furnaces, the boiler being designed to carry 160 pounds pressure. She has eight loading and two fuel ing hatches, with steam windlass and capstan for
ward, steam capstain aft, and steam steering apparatus. Like all the other boats of this class, she doe not carry any canvas.
The tonnage of vessels built upon the great lakes has shown a remarkable increase within the past two or three years, and there are striking indications that the growth will be even more pronounced in the next two or three years. As reported by the Bureau of Statistics of the U. S. Treasury, the tonnage built on our Northern lakes for the fiscal year to July 1, 1889, was 107,080 , while for the fiscal year 1887 it was but 56,488 . The vessels built on the Mississippi River and its tributaries for the year to July 1, 1889, foot up, by the same authority, to 12,202 tons, those built on the New England coast to a tonnage of 39,983 , while the entire seaboard, Atlantic and Pacific, contribute a tonnage of 111,852 , or an amount very slightly in excess of the tonnage put afloat on the great lakes. The largest amount of tonnage ever built in any one year on our entire seaboard was 310,421 , in 1864 . In that year there was built on the great lakes 49,151 tons, and the total was 415,741 tons, against a total of 231,134 tons the past year.
Proposed Tunnel between Ireland and
alid Scotland A public meeting, convened by the mayor of Belfast has been held to consider a scheme for constructing a
tunnel between Ireland and Scotland. Mr. Barton, tunnel between Ireland and Scotland. Mr. Barton,
civil engineer, submitted his scheme, which is to construct a tunnel from the junction of the Belfast and Northern Counties Railway, four miles inland from Whitehaven, on the Antrim coast, to the center of Wierston Hill, in Wigtonshire, also about four miles inland, the whole length to be about 34 miles. The scheme has the support of Sir Douglas Fox, engineer of the Severn Tunnel, Sir Benjamin Baker, the Forth Bridge engineer, and Sir John Hawkshaw, of London He estimated the total cost at $£ 8,000,000$, and the tun nel could be completed in ten or twelve years. The meeting passed resolutions recognizing the importance of the scheme, urging the government to render financial assistance, and appointing a committee to consider and report upon the whole question.

## How Time is Distributed by Telegraph.

The Naval Observatory at Washington considers it an important part of its business to determine aud give away to any one who chooses to ask for it absolutely correct time at noon each day. Experts paid by Uncle Sam make the computations and press the button at precisely 12 o'clock, thus communicating the hour to the various departments in this city. The Western Union is permitted to have its instruments in the room whence the message is sent, with an attachment to the button, so that the news is flashed directly from the observatory without even the aid of an operator all over the United States, reaching even so distant a point as Sau Francisco within the space of not more than one fifth of a second. For such is the utmost twinkling re quired for the passage of an electric spark through 3,000 miles of wire.
To accomplish this the telegraph company is obliged to take all other business off the wires each day just before 12 o'clock. Three minutes and a half before noon arrives operators in all parts of the-country cease sending or receiving messages and devote their atten-
tion to attaching wires in such a manner as to estab lish unbroken connection from Washington with points in every section of the Union to which the lines extend their ramifications. A dozen seconds before the time bell is to strike a few warning ticks come flashing along, and at the very moment when the sun passes over the seventy-fifth meridian a current gives a single throb from Maine to Florida and from the Atlantic to the Pacific, informing an expectant nation of the time of day.
day.
Now the way in which the telegraph company mak
per is supported upon a suitable pedestal, and the base has a hollow upward projection in which is a cavity for the reception of oil or other lubricant, and in which is journaled a hollow tool-carrying shaft with a change speed gearing, the arrangement per mitting of the use of a large quantity of oil, so that the ears may run submerged, and be tightly inclosed, to prevent the entrance of dirt or chips. Motion is communicated by means of a transversely arranged prim ary shaft having on one end a pulley and on the other end a crank. Upon the forward end of the other shaft is a circular head in which the dies and cutting off tools are mounted, the dies being secured upon die blocks radially movable in the head, while the face of the head bears gauge marks by which the standard marks upon the dies may be set. Behind each of the die blocks is a short shaft journaled in the head, each shaft hav ing an eccentric wrist pro jecting into the die block and its inner end carrying a small gear. Toothed sections in the periphery of a ring mesh with thes gears, and immediately a the rear of the ring is a hand wheel, which, with the ring, gear, and eccen trically placed wrists, im parts radial movement to the die blocks and dies in
oney by distributing the time in this manner is by selling it to people all over the United States who have clocks and find it of importance to keep them right In this manner it keeps corrected by electricity to ab solute solar time no less than 7,000 clocks in the city of New York alone. All that the company is obliged to pay is the cost of maintaining its instruments at the observatory and the wires connecting these instru ments with the main office in Washington. But it must be remembered that the cost of stopping tele graphic operations for four minutes in the busiest par of each day throughout the entire country is not in considerable.-Com. Gazette, Pittsburg

## A MACHINE FOR THREADING AND CUTTING OFF PIPES, ETC.

The illustration represents a recently perfected ma chine, patented by Mr. Arthur W. Cash, which pre sents many novel features, and is designed to perform


A PIPE-THREADING AND CUTTING-OFF MACHINE.
accurately and rapidly a wide range of work in thread ing and cutting off pipe, shafting, etc., while being imple and durable in its parts, and capableof bein operated either by hand or power. The machine pro-
the head, to project the dies inward to operate upon the end of a pipe or bar, or withdraw them, leaving the center of the hollow shaft clear for new work
The cutting-off mechanism consists of small carriage rranged opposite each other in the head between the die blocks, each of the carriages having an adjustable ool, and being moved inward or outward as desired by feeding screws. The threading dies and cutting-of tools are so arranged as to prevent any possible damage to work by their simultaneous operation, the dies when at work projecting into the field of the cutting tools, and the latter, when in operative position, preventing the engagement of the dies with the work.
A vise, whose base is adapted to slide upon ways on the end of the bed, as shown at the right in the en graving, presents the work to the tools, so the work is rigidly held against all movement for the cutting off operation, or is held against rotation and given an in ward feeding movement for the operation of the screw cutting dies. The power is applied directly at the rear of the vise jaws, so that the end thrust of the screw is borne by the standard instead of by any part of the machine out of line with the jaws. In cutting threads, the work is forced into engagement with the dies by means of a transversely extending lever fulcrumed oi the vise base, and is there held until the threading i completed, when, instead of reversing the machine or imparting movement to the work, the latter may be disengaged by turning the hand wheel operating the die blocks. In the work of cutting off, after adjust ment, the tools are operated into initial engagement when a movable trip engages the arms of small feed wheels, feeding the cutting tools inward inter mittently at either of two speeds until the pipe is severed. The hollow tool-carrying shaft being open at both ends, pipe of any length may be operat ed upon.
This machine is manufactured by the Armstrong Manufacturing Co., Bridgeport, Conn.

## Luminous Paint

We have before spoken of the new German manufacture of luminous paint, by which oil or water colors, shining by night with white, red, blue or yellow, ac cording to the variety desired, can be sold at retail at about a dollar a pound, while the price of the Balmain paint, as made and sold in England, is about nine dollars a pound
On account of its high price, the Balmain paint has never come into extensive use. It was evidently good, but, as the expense of covering a wall with it amounted to about two dollars a square yard, it was impracticable to use it, as the manufacturers recom mended, for painting the interiors of cellars, railway tunnels and other dark places, and it came at last to be used only for painting match boxes, key holes and small objects. The German luminous paint, which is sold in Berlin by Fretzdorf \& Mayer, Steinmetzstrasse 15, and in Dresden by Gustav Schatte \& Co. costs only about seventeen cents for enough to cover a square yard of surface, so that it would be really possible to paint a room with it, without ruinous expense. At present, a good deal of it is used in painting erucifixes and images of saints, which find a eady sale in Germany, and are exported in large quantities.-Amer. Architect.

A FOLDING TABLE FOR PAPER HANGERS
The table shown in the illustration folds in a wanner somewhat similar to a checker board, the legs folding completely within the covers formed by the top of the table, the under side of which has downwardly projecting strips on each section to constitute a hollow box when folded, with means for retaining in position a ruler and rotary cutting tool. On the upper surface of the table are two longitudinally extending metallic plates, of zinc or other soft metal, constituting suitable surfaces on which to cut the paper. The four legs ble surfaces on which to cut the paper. The four legs
are separately hinged to fold, two within each section,


BOYSEN'S FOLDING TABLE FOR PAPER HANGERS. edge.
testing and measuring objects on its inner surface, but by extending the blade in the opposite direction a square will be formed with graduations on its outer
For further information relative to this invention address Mr. R. E. Woodruff, the patentee, No. 192 Hannah Street, W., Hamilton, Ontario, Canada.

The Benefit of coffee.
Dr. I. N. Love, of St. Louis, in a paper on this subect, said that his experience for five or six years past had been strongly in favor of taking a cup of strong, black coffee, without cream or sugar, between two glasses of hot water, before rising every morning-at least an hour before breakfast. The various secretions were stimulated, the nervous force was aroused, an hour later a hearty meal was enjoyed and the ty meal was enjoyed, and the day's labor was begun favorably, no matter how the duties of the day and night preceding might have drawn upon the system. Another cup at four in the afternoon was sufficient to sustain the energies for many hours. In this way the full effect was secured. If along with this the proper diet was taken at the proper times-and the ideal dioper those who those who make large
draughts upon their nervous systems and expected to have them honored was hot milk-
as shown in one of the views, and when the table is set up, each leg is held in place by a small metallic rod, hinged at one end to the bottom of the table at one side, and engaging an eye on the leg. The legs are further stiffened by a cross rod joining the end legs, such rod being pivoted on one leg and having a hook engaging an eye or pin on the other leg. The cutting implement consists of a handle, in the lower end of which is journaled a rotary cutting wheel, the handle being so formed that the cutter may be readily buttoned upon a stud on the under side of the table when the latter is folded. The cutting wheel is of hard metal, such as tempered steel, and well adapted to cut wet paper. The table is preferably made about six feet long by two feet wide, the figure at the right in the picture showing it folded so as to be conveniently carried under the arm.
For further information relative to this invention address the patentee, Mr. George H. Boysen, No. 4312 Frankford Avenue, Philadelphia, Pa.

## SEVERAL USEFUL TOOLS IN ONE.

The illustration represents a compact combination of correlative tools for the use of wood and iron workers, to permit them to be carried as one piece in the


WOODRUFF'S COMBINATION IMPLEMENT.
pocket. It is a combined rule, square, bevel, scribe gauge, spirit level and dividers. Fig. 1 is a side view of the device folded, Fig. 2 shows its principal portions employed as dividers, Fig. 3 is an inner view of a joint section, Figs. 4 and 5 represent trans verse sections of the device when folded, and Fig. 6 shows it in the form of a square. The stock has two equal sized strips or side pieces held spaced apart at one end by a slightly tapered block. a slotted blade piece being held intermediate of the main side pieces and a screw bolt and nut being adapted to clamp these pieces, while a longitudinal rib on the inner surface of one side prece of the stock mates a transverse groove in the blade piece near one end, to hold the blade at right angles to the stock when the rib and groove are inter-
and at least eight hours of sleep were taken out of every twenty-four, one's capacity for work would be almost unlimited.

## AN IMPROVED HEAD-LIGHT FOR LOCOMOTIVES.

 The illustration represents a locomotive head-light in which the lamp may be filled and regulated from the outside, or an incandescent light may be used in stead of an oil lamp, while the construction provides for the display of various signals without the use of separate lamps, a receptacle being also provided in which day signals may be kept in position for ready use. A slide adapted to support the reflector is mount ed on a suitable bracket upon the bottom of the lantern casing proper, as shown in the small view. The re flector is made of two separate sections, divided verti cally and transversely at the point where the lamp chimney passes up, the front section having side flanges with movable slides connected to that section by springs, while the rear end of one of the slides is con nected by a hinge to the rear section of the reflector The other slide has a handle for its convenient manipulation, the construction being such that the rear section may be swung aside when desired, or drawn rearwardly against the tension of theadmit the lamp chimney between the front and rear sections of the reflector, as shown. The oil reservoir has a downwardly sloping upper side, to facilitate the adjustment of upper side, to facilitate the adjustment of
the lamp under the rear end of the reflector, and a filling tube, whose outer end is upwardly curved and provided with a cap, extends from the reservoir through the casing. The burner has a wick raiser or regulator, a shaft from which extends through the rear wall of the casing, where it terminates in a hand wheel, the construction being such as to prevent the wick from being jarred down into the wick tube by the jolting of the locomotive. One side of the casing has a sliding door at its rear end, with a glass-covered opening through which the interior may be inspected, while one of the sides of the rear section of the reflector has a similar opening, whereby the flame of the lamp may be observed while it is being adjusted. When an electric iucandescent light is to be used, its bulb has a bail to which is attached a wire passing through a staple on the inner side of the casing, the bulb being projected into a reflecting funnel adapted to fit in the front section of the reflector, the rear section of which is then swung to one side. In the front of the casing, at each side, are screw-threaded flanges or collars, at the outer ends of which variously colored glasses are suitably mounted, to give such signals as may be required, suitable caps or covers being provided for readily covering or exposing the light as desired. A supplemental bottom forms a space below the lantern casing proper, and the side walls of this space ing the guides for the rods; and Fig. 3 is a sectional have longitudinal cleats adapted to support a series of view taken at right angles to the plane of Fig. 2. day signals, the several signal plates carried here hav- This invention has been patented by Messrs. Wil ing at their rear ends laterally extending lugs, which, when the plates are drawn forward, will engage catches Jersey


BURKE'S LOCOMOTIVE HEAD-LIGHT.
at the front end of the casing, by which the day sig nal will be suspended, as shown in the large view.
The construction is designed to be economical, and to give all the day or night signals which way be required without the use of extra lamps. For further information relative to this invention, address the patentee, Mr. William J. Burke, Box 900, Seattle, Washington.

## IMPROVED CROZE.

The improved adjustable croze shown in the annex ed engraving is constructed so that it may be instant


## adjustable croze.

y adjusted to barrels of different sizes. The large segmental plate which rides upon the rim of the bar rel supports the other parts. Below the large segment al plate is supported a smaller plate of similar form, by three rods extending through the upper plate. The lower plate carries two cutters and a plow for forming the croze. The central rod extends through a guide attached to the upper .plate, and to the upper and lower plates upon this rod is placed a spiral spring. The guide of the central rod is furnished with ears in which is pivoted a lever which bears upon the end of a short rod arranged parallel with the segmental plate, and provided with a retractile spring for drawing it away from the central rod when the lever is released.
The cutters are placed in any desired position, and the central rod is clamped by pressing the outer end of the lever as the upper segmental plate is grasped to operate the tool. By this means the cutters may be instantly clamped so as to cut a groove for the barre head at any desired distance from the rim of the bar rel. The side rods are furnished with collars having serews by means of which the downward movemen of the lower plate is limited.
The perspective view. Fig. 1, shows the application o the croze to a barrel ; Fig. 2 is a sectional view show
ing the guides for the rods; and Fig. 3 is a sectigh
view taken at right angles to the plane of Fig. 2. iam Kampfe and Joseph Nagengast, Bayonne, New Jersey.

## Science Senses.

In the past ten or fifteen years there has grown up a need for special training of the senses, in order to use properly scientific instruments, not in study or in any way applying to it, but as necessary adjuncts of business communication in every-day life.
First on the list will come the telephone. Most per sons using one for the first time find themselves abso lutely hors de combat, unable to recognize a familiar voice, and are only conscious of the most helpless hear-ing-deafness. After a short'training the ear and mind adjust themselves with wonderful nicety to the new duty required of them, and learn to recognize a voice as unerringly as though talking face to face with the individual who is, perhaps, miles away.
Following closely in the wake of the telephone, which may be looked upon as the pioneer of the in ventions which will later rely upon the auditory nerves or hearing for their use, is the graphophone, a marvelous little machine, whose fitness for the work it has to do is so wonderful that, were it not explained on purely scientific principles of natural laws, man would think the inventor of it in league with the "Buyer of Souls."
It records sounds by the vibrations of the air acting on a steel stylus, which is so placed that it cuts or traces fine lines on a cylinder of rubber coated with wax.
These lines are of varying depth, according to the force of the sound waves.
The vibrations or sounds are reproduced by the afore mentioned cylinder being revolved under a small sty lus to which is attached a pair of tiny ear trumpet which are so adjusted that they transunit with absolute fidelity every sound wave to the ear.
It is impossible to predict the boundary line of scientific discoveries, and the uses to which man may put them in the near future.

But to follow out the idea of the trained senses, take the vision, how the microscopist with his little instru ment is every day opening new vistas.

It is only the supreme intellect of the human mind which renders what may be called the brute senses of man of use to him, because when untrained they rank far below the senses of the animal, though in the latte they are not so evenly balanced as in man.

The eagle and condor have wonderful vision. Of these birds it is said that the former can face with an unflinching eye the sun when shining with full noon tide glory, and of the latter Prescott in his "Conquest of Mexico" says, "The sight of the condor of the Andes is almost beyond belief. When a horse or mule drops by the roadside, scarcely a moment passes before one or more of these huge birds may be seen hovering over the unfortunate animal, proving plainly that they are guided by sight alone.'

The sense of smell in animals is perhaps found in the highest perfection known in the well-bred bloodhound This animal will follow a trail hoursafter the man or animal has passed, and never lose it, even though it had been passed over by hundreds.

The sense of touch possessed by the clumsy-looking elephant is most wonderful. The tough-looking hide which covers him would never make one think he could lay claim to the sense of touch in any degree o perfection.

Man supplements what he lacks by using his knowledge of the laws of nature. Thus with the aid of the microscope and telescope he can compete with the eagle and condor.
Up to the present time he has not invented any in strument which will aid in distinguishing odors, but passing over that, he has covered nearly the entire range embraced by the five senses-sight, taste, touch, smell and hearing.
When we speak of trained senses, we do not for an instant mean to imply that the man of the present age is better equipped by nature with the senses than his ancestors were, but that by the aid of scientific instruments he has supplemented the use of these senses to an almost supernatural extent. However, beyond a certain point he cannot go, as it is only in his power to use intelligently the things that be, not to create.
Every invention of man thus far has only consisted in some new or perhaps forgotten application of a law of nature, and is not in any way dependent on the inventor personally, savein his ability to make his know ledge of practical use to the majority of mankind.

The man of science is the idol of the present age. Hi daring and success in the field of invention have blinded the eyes of the people to the fact that there can be a limit to his power, and make them lose sight of the reality that he is only a pupil in the school of nature, where the doors are open to all.
It is not probable that any special benefit will be done mankind physically by this training, for it does not demand any abnormal conditions. It is simply a better understanding of our physical capability of using our senses by intelligently applying them to ob tain a result known to be as certain as the law, " wate seeks its own level."
There is a vast change in the tendency of the invent ors of the present age, and this generation specially.
Force is guided rather than controlled, and the result
is that machinery has become more delicate and often more simple, but requiring by that very fact a more highly educated mind to operate it than did the crude machinery of the early inventors, where muscle was a much needed as knowledge. All that is changed Ignorance is now often death-dealing, particularly when electricity is the motive power or where chemi cal compounds are used.
Every day adds to the necessity for a practical work ing knowledge of the numerous inventions which ar now found in daily use in all civilized countries the world over.
No one who has ever read "John Halifax, Gentle man," can forget the masterly description given of th personal antagonism felt by the working men to th machinery which was placed in his mill by the hero. In their blindness they could not realize that menta abor placed them on a higher plane than manual labor and that machinery at its best can only supply muscle, not mind, and that they were being given, by the very machinery which they were bent upon destroying, their one chance to be something more than were machine themselves.
It is to be hoped as the world grows older it grows wiser, and that we are being carried to a "Golden Age" on the wheels of the inventions of the twentiet century.

Dorsey Barton.

## A SIMPLE FORM OF GAME.

The game board shown in the picture is not unlike a checker board, but it has a surrounding marginal flange, and upon the lines or at the intersecting point of the squares are upwardly projecting pins, so ar ranged that they will appear in aligning parallel rows The game has been patented by Rev. Norbury $W$ Thornton, of Geneseo, Ill., and is styled by the in ventor "The Race Problem." The players have twelve
white checkers for one side and twelve black checkers white checkers for one side and twelve black checker or the other side, and the first play is made by snap ping a checker inwardly from the outer side, wit


THORNTON'S GAME.
the intent to lodge the piece behind one of the cen ral pins, out of reach of a similar play from an op ponent. It is the effort of each player, then, in this manner, to place as many of his pieces centrally on the board as possible, knocking outside of the area of the pegs or pins the pieces of his opponent. Two hundred points are designed to constitute a game, th highest count being for the central space, and the count diminishing proportionately toward the margin, all men outside of the pegs or pins counting ten for the opposite side.

## The Borate of Soda in Epilepsy

was first proposed by Charles F. Folsom, of Boston in 1881. Gowers reported four cases treated with the emedy, three of which were entirely cured
Lately, El Siglo Medico reports, Senor Dijond has tried the remedy in 25 old cases in which the bromides had been employed without any real benefit. The duration of the treatment with the borate of soda was
from four to seven months, the doses of the remedy rom four to seven months, the doses
varied from one to six grammes a day.
One case was completely cured, and all the others xcept six, were much improved.
The experiments heretofore made prove that the remedy can diminish the frequency of the epileptic seizures in a very large number of cases which are not influenced favorably by the bromides
The borate of soda may be given in doses of six grammes, daily, without any risk to the patient, but it is necessary to begin with one or two grammes a day and gradually increase the dose.
The following formula is recommended :

## Sodæ borat. pulv. Syr. aurant. carb. <br> Syr. aurant. carb Aquæ destillat. <br> $\begin{array}{ll}1 \text { to } & { }^{6} \text { grammes. } \\ \text { " } & 30\end{array}$ <br> " $\quad 100$

M. S.-To be taken in two doses, one in the morning and one in the evening.
For doses larger than four grammes, one gramme of glycerine should be added for each gramme of borat n excess of four.
For the prolonged use of the remedy, Senor Dijond ecommends the following

Sodx borat. pulv....... . ................... ... grammes 10
Glycerini puræ................................ 4
4
Slycerini puræ..
M. S.-To be taken in spoonful doses. An ordinary

## n Automatic Photographist.

According to The Electrical World, the application of the nickel in the slot principle to automatic photoraphing is about to be accomplished. Mr. Matthew J. Steffens obtained a patent on the device Decembe 11, 1888, and has others pending. The mechanism is operated by two separate and distinct electrical circuits. In securing a photograph, a quarter of a dollar is passed through a slot and the visitor takes the desired position, and then gives a slight pull to the cord in front of the case, when the shelter in front of the lens of the camera is automatically drawn aside and the flashing of some magnesium in a brass pan, fired by the heating to incandescence of a platinum wire, throws the necessary lights, and a perfect nega tive is secured on a plate having a white background and made of flexible celluloid. This part of the opera tion, the writer says, requires but two seconds of time The visitor then waits while the plate is rolled over two small wheels and gripped by two rubber tapes, which carry it through the developing, fixing -nd washing fluids, and finally pass it through a second aperture or slot, a perfected photograph. The entire move nent of the second operation is controlled by an elec ric motor operated by a current from a primary battery. The necessary chemicals are each supplied separately from an airtight reservoir, and the flow re gulated by a dial apparatus to correspond with the temperature of the atinosphere and the strength of the chemicals.
The machine will be placed in drug stores and other places where "slot" machines are found to pay. It is said that this device can be used in securing instan taneous photographs of criminals while they are being booked, and that it will be used by railway com panies to prevent improper use of mileage tickets, though the success of this latter application is doubt ful. The model of the machine was made by the Franklin Electric Company, of Chicago, for the inventor, who is a well known artist of Chicago.
To verify the statement of our valued contemporary before publishing it, we sent the article to the electric company who constructed the apparatus, to know if it worked satisfactorily, to which they reply as follows:

Chicago, Oct. 30, 1890
Messrs. Munn \& Co., Editors Scientific American Gentlemen: In reply to yours of Oct. 24, the automatic photographic machine was built by our com pany for Mr. M .I. Steffens, the inventor.
Regarding the merit of the invention, would say that the first machine, as described in inclosed article, was a success, but the inventor was not satisfied, as the mechanism was too complicated.
Our company has built four different models for the inventor, and the last one, which has just been completed, is very simple and promises to be a great pleted,
As the patents are not yet issued, we cannot give you a description of the machine, but it seems to work perfectly, day or night. At night or in dark places a mag nesium light is used. The inventor controls the magnesium or any artificial light used in automatic photographic machines, granted in former patent.
Pictures taken in daylight are very good, and the way the inventor uses magnesium light now seems as good as can ever be expected. Any one can work the machine, as there are no cords to pull or buttons to press, as the coin does it all. The time required to complete the picture is two and one half minutes. It is delivered with a metallic medallion-shaped frame, and the entire work is done by the aid of electricity. We will request the inventor to furnish you with the details of the machine, as we know him to be an admirer of the Scientific American.
As perhaps you are aware, Mr. Steffens is also the inventor of an aerial camera which caused some notice a couple of years since, and we are now constructing or him an improvement on the same. Trials with a small machine proved very successful, showing a distance of twenty-two miles distinctly.
The camera is attached to a small balloon, is regu ated and the exposing done from the ground by electricity.
The negatives are made on celluloid films, and several hundred can be taken at each ascension.

Yours respectfully,
Rankin Electric Company,
Per P. R. H.

## st. Clair Tunnel Celebranion.

The St. Clair river tunnel commission is making great preparations for a celebration on the opening of the tunnel. It is proposed to serve the banquet in the hole itself upon a table 1,000 feet long, 500 feet on each side of the international boundary, the chairman to sit exactly on the line. On the Canadian side of him will be the President of the United States, and on the American side the Governor-General of Canada, these two flanked by a string of ministers of state and notables from both countries. The tunnel will be brilliantly illuminated by electricity and the decorations will be intrusted to a corps of special artists.

## Sorrespondence.

## lngrowing Toe Nails.

To the Editor of the Scientific American
About ten years ago I cured ingrowing nails on both of my big toes in the following manner, which can be done by any one who has the least amount of ingenuity and patience. First thoroughly clean the parts, and then pack in front of the nail cotton or lint as hard as may be borne. This will remain with comfort for three or four days, then remove and in front of the pellet will be found a hardened mass of flesh; scrape this away and repack, continuing the operation until the corner of the nail has grown out and is beyond the soft tissues of the toe. Of course easy-fitting shoes or boot should be worn during the treatment and ever after

John G. Harper, D.D.S.

## The Sudbury, ontario, Nickel Belt.

To the Editor of the Scientific American
The Sudbury Nickel Belt, as it is called, was discover ed about six years ago, during the construction of the Canadian Pacific Railway through the district. But for two or three years afterward very little development work was done, as it was supposed at first that the ore deposits were copper. The range so far as ex plored is over fifty miles long, and from three to ten miles wide, running from Lake Wahnapilae to the Spanish River, in a northeast and southwest course. The mineral occurs in great beds that sometimes rise into tremendous hills and ridges above the surface, and covered with gosan or decomposed ore. The range culminates into literal mountains of mineral in the townships of Denison, Graham, and Drury, along the Algoma or Soo branch of the railway. Gold, silver copper, and platinum have also been found in variou places on the range, and even cassiterite or tin ore The copper and nickel are nearly always found to gether, and generally in about the same proportion in the ore, but in the famous vermilion mine in the town ship of Denison the whole five different minerals spe cified above occur
There are already five mines being worked on an extensive scale, and a great many other locations being opened up. Three smelters or blast furnaces are in constant operation, reducing the ore into matte. Six tons of ore on an average make one ton of matte, which carries from twenty to thirty per cent of nickel and an equal amount of copper. It is shipped in this state, mostly to Swansea, Wales. The ore is first roasted in large heaps in the open air, to burn the sulphur out of it.
A great number of capitalists have been here this season examining the nickel mines and deposits of the range, and from present appearances this is going to become one of the chief mining centers of the worl

## before long.

R. J. Swanson.

Nickel City, Ont.

## Physical Development of Children.

Dr. Axel Key, of Stockholm, read a very interesting paper before the recent Medical Congress, Berlin, on the development of puberty and its relation to morbid phenomena among school children. In Denmark and Sweden it has been the custom for many years to weigh and measure the school children every year. Out of 15,000 boys and 3,000 girls the results were as follows: "In the seventh or eighth year of lifs boys grow considerably in height and in weight, after which a delay sets in which reaches its maximum in the tenth year and lasts till the fourteenth year, when a considerable acceleration of growth suddenly sets in. This acceleration lasts till the end of the seventeenth year. Its maximum is in the fifteenth year. The acceleration is at first in height and later on in weight, gaining its maximum in the latter in the sixteenth year. At the end of the nineteenth year bodily development of youth seems to end. In girls the course of development is quite different. The decrease in growth after the eighth year is not so great as in boys and yields in the twelfth year to a rapid increase in height. The acceleration in the increase in weight comes later, but outstrips it in the fourteenth year. In the seventeenth or eighteenth year the increase is but slight. The increase in weight, however, sinks to zero almost in the twentieth year, when the growth in women may be regarded as ended." A remarkable thing, as pointed out by Dr. Key, is that boys grow faster than girls in weight and height till the eleventh year, then more slowly till the sixteenth, and then faster again. With slight variation these relations obtain all over Sweden and Denmark. In Italy and the United States of America the period of puberty in girls ends at least a year earlier. "In the spring and summer the child grows more in height, while in the autumn and winter it increases more in weight." "How is it now with the health of school children during the development of puberty? It was found that 40 per cent of the 15,000 boys in the high schools in Sweden were ill; that 14 per cent suffer from habitual headache, 13 per cent
from chlorosis." "We ought," he concluded, "to adapt our demands on the youthful organism to its
${ }^{\text {strength }}$ and power of resistance during the various phases of development, to promote the health and vigorous bodily development of youth better than we do now. I therefore indorse, from the bottom of my heart, the words which Johnn Petter Frank. the father of school hygiene, uttered a hundred years ago: 'Spare their fiber still, spare the forces of their minds, do no waste the energies of the future man in the child.

## The Street Railway Convention.

The popularity of the electric motor was well attest ed at the recent meeting of the American Street Railway Association at Buffalo. In the West, especially, where it has been in continuous use for a considerable period, comparative estimates of economy between horse and electrical traction have, it would appear, demonstrated the superiority of the latter, at least from the shareholders' standpoint. Practical men, used to estimating costs and familiar with both sys tems of traction, gave their views, recounted their suc cesses, and disappointments while looking for perfect service, and though not able to devise the means of remedying defects, furnished clear and comprehensible descriptions of their needs. From these it would appear that the repair shop for electric motors has taken the place of the horse hospital, which, in horse rail way
service, makes so formidable an item in the expense ac service, makes so formidable an item in the expense ac How
How to keep the electric notor out of the repair shop. That appears to be the most important question now agitating the field. The station and overhead trolley wires, with a minimum of expert attention, may be kept in repair, but unseen and often unexplained causes serve to stop the wheels of the motors. Now
it is a lame armature, again a burnt field magnet, a fused connection, or broken gear. These are everyday occurrences-so the railway men say. Not yet has the mechanic's cunning sufficed to make certain the work ing of the axle gear and intermediate shaft gear, shaft pinion, and armature pinion. Then there are the boxes or bearings of the axle, intermediate shaft and armature. Trouble here is trouble all over. There is a large and general demand for gear and pinions which won't break, for gear that will be reasonably durable and at the same time noiseless.
One of the speakers at the recent meeting said that cast iron might do for axle gear, which is large and o slow movement, but only steel was fit for intermediate shaft pinions. He was firm in the belief that steel does better than bronze in such employment, lasts longer besides being less expensive. His experience with electric motors had taught him that to overcome the hoise it is necessary either to have the gear covered and running in oil or to have the gear of wood or the pinion of rawhile. The large gear on the axle and in ermediate shaft, if made with wooden teeth and used with steel pinions, he had found to run noiselessly and to last longer. Those who gave extra care to making the keys in all gear and pinions tight and self-retaining would, he believed, find theruselves amply rewarded. The shaft boxes and bearing, experience had taught him, must be made of some compound metal that will not wear out toof ast, for but little wear on the armature bearing will allow the armature to scrape on the pole pieces of the motor.
Continuing, he said: "The electrical parts of the notor in which we are most interested are the arma ture, field magnets and the controlling switch or rheo tat. The armature of an electric motor is its mos wonderful and interesting as well as its mostexpensive and troublesome part. A street car is the most overloaded vehicle known to mankind. It may run a week with a light load, and then suddenly receive enough passengers to load fairly well three or four ordinary cars; the driver may forget to oil either the car or mo tor, he may reverse the motor accidentally or purpose ly to avoid an accident; these and many other causes require of an armature more work than it is capable of. Hence a burn-out. On the other hand, the armature itself may be at fault. An armature such as we use to-day consists of a shaft surrounded by a metallic core. Around this core is wound the best insulated wire, each coil terminating at the same end of the armature and being attached there by means of solder r screws to the bars of the commutator. The shaft of the armature will in a few years become worn by its bearings, and it would be well to have bushings or sleeves placed around the shaft at those points, which sleeves can be removed. As there is no wear to the core, and as the commutator can be renewed when worn down, which ought not to occur in less than two if three years, an armature should then have as long a Whe as one could desire. were it not for the coils of wire Where these coils cross around the head of the arma ure they chafe on each other and destroy their insula By. Where they end in the commutator they loosen. By an excessive load or careless driver they burn out. I may be possible to repair the armature by rewinding one coil or by refastening the loose ends, and even when a deep coil is burnt the total rewinding with new wire should not cost but forty or fifty dollars. Could we but prepare for the burn-outs by having the car on some side track near the repair shop, where it would
not interfere with our running time or cause a hinder ng of cars, we would not feel so aggravated; but it hap pens invariably at the time we need every car mos urgently. We can watch our gear and bearings, and when worn they may be replaced at our convenience, or at night, but an armature gives out without warn ing. It is on this account that those systems advocating but one motor to a car must give us positive as surance of no burn-outs, for were it not for the dou ble motor now so generally in use we would see crippled ars being towed into the shop, greatly to our discom fiture. In the matter of minor details, such as cables terminals, trolleys, and gearing, the electric manufac urers have made the greatest improvements during the past eighteen months; but so far as we can obtain nformation based on actual facts, there has been but ittle improvement in the armatures. The Edison company has recently announced a new armature, but we have been unable to learn what results it may show." According to the testimony given, the rheostat used in one system, and for which so much has been promsed, is not infrequently burnt out and often injured by rain leaking through the platform. A principal claim made for this rheostat is that together with re sistance coils the cars are started more easily and the notor is less liable to burn out, an excess of current being avoided. As to the first claim, it would seem to be fairly true, but the evidence of practice does not support the second claim. Indeed, it was openly asserted that motors using a rheostat require more current than those which do not use it-frow 15 to 20 pe cent more. Perhaps this is due quite as much to a difference in the winding in the armature or fields as to the use of a rheostat. As to the advisability of using he rheostat there seems to be some doubt, it bein suggested to collect evidence of the actual number o burn-outs. An owner of an extensive plant operated under fairly favorable conditions testified that his fue cost about $\$ 1$ percar per diem, and repairs $\$ 1.50$ per car per diem. "If," said he, " we can save 10 per cent each day on fuel by giving up the rheostat, we do not want to do it at the expense of adding 25 per cent to our repair account-already much too large."
An example of the approximate cost of repairs is thus given; the fignres referring to four 30 horse power Sprague cars for the six months ending October 1 , 1890, each car making 90 miles a day, the grade being 1,900 feet of 9 to $93 / 4$ per cent, one 300 feet of 5 per cent, one 300 feet of 8 per cent.

MECHANICAL.
 Total. \$1,191.50
er diem per car, $\$ 1.62$
Fuel, sawdust, and slabs, $\$ 1.30$
A statement which went unchallenged, and may therefore, be taken to be approximately correct, was that the cost of operations of a 10 car road is the same by electricity or horses; that, when the number of the cars is above 10 , a road may be more economically operated by electricity. When the number reaches 50 cars and upward, the cable is the most reliable and economic.
An interesting feature of the Buffalo meeting was the favorable testimony elicited for storage battery traction. The facts given by W. J. Carruthers-Wain, president of the Tramways Institute of Great Britain and Ireland, concerning the Birmingham road, will do much to prove that, even at its present stage of imper fection, the storage battery may be run with economy as a motor. The cars he operates are constructed to carry 50 passengers, 24 inside and 26 outside. They are 26 feet long, 63 feet broad. Each car with its motor and batteries weighs 9 tons. The average takings of the road are $\$ 1.250$ a week, as against $\$ 750$ for horses. The cars will run seventy hours-the road has grade of 1 in 19 -from one charging. They cost little comparatively for repairs, and when intelligently handled gi ve little trouble.

## 's Sundown Doctors."

This is the appeilation said to be applied in the city of Washington to a class of practitioners who are clerks in the government offices, and who have taken hourical degree with a view to practicing after the hours of their official work are over.

AUXILIARY RIFLE BARREL FOR GUNS.
We give an engraving of an improvement in guns which permits of converting any ordinary center-fire, breech-loading rifle into a weapon of smaller bore. This invention consists in an auxiliary rifle barrel adapted to be inserted in the ordinary gun barrel in the place of a cartridge, the auxiliary barrel being rifled and furnished with a hinged breech cap for confining the swaller cartridge.
The rear end of the auxiliary barrel is reduced in diameter, and grooved longitudinally to receive the cartridge extractor to which the breech cap is pivoted, cartridge extractor to which the breech cap
and the breech cap and the cartridge extractor are inclosed in a sleeve screwed on the auxiliary barrel. The breech cap is pro vided, in the present case, with an oblique firing pin, but where a center-fire cartridge s used, the pin goes straight through the cap. The sleeve on the auxiliary barrel is provided with a flange corresponding to the rim of the shell of the larger cartridge, and the auxiliary barrel is arranged to be with drawn from the gun barrel by the usua cartridge extractor.
The cartridge in the auxiliary barrel is fired in the same manner as the ordinary cartridge, and the empty shell is removed by drawing out the cartridge extractor, the hinged breech-cap being used as a handle for the purpose.
One advantage claimed for this improve ment is that a sportsman may use the auxili ary barrel and the smaller cartridges fcr small game, and without any change or adjustment may withdraw the auxiliary barrel and use the gun for the larger shot.
This invention has been patented by Mr. James W. McCandless, of Florence, Colorado.

## NOTES ON QUARRYING.

by wm. l. saunders
I have recently spent a little time at some quarries in the South, notably the extensive granite quarries of Brandywine Granite Co., on the Brandywine Creek, Wilmington, Del., and the soapstone quarries of the Albemarle Soapstone Co., North Garden, Va. It is a conspicuous fact that the quarries in the South are better equipped with machinery and with modern appliances than those in the North. Any one who has made a tour of inspection through the extensive marble

Hand drilling may be seen in many of the quarries. The derricks have the old iron rod guys. Boom lifting is unknown there, and in some of the deeper quarries a block of marble is lifted several times and by several derricks before it is landed on the bank. But the backwardness of Vermont quarrymen in modern methods of handling stone is nowhere shown so conspicuously as in the old stone boats which are drawn about the yards and mills by the ponderous ox.
The quarries in the South are of more recent origin than those in the North; hence those who operate than those in the North; hence those who operate
lifted by one man operating a hoisting engine, and by him transferred across the river and deposited upon a car. The conveyer is a steel wire rope two inches in diameter, anchored and resting upon "A" frame braces at each end. The cable may be either level or inclined as desired. The carriage travels either way on the cable, being propelled by means of an endless rope operated by a hoisting engine. This endless rope is sustained by carriers to prevent its sagging. By means of this rope the carriage may be stopped and held at any point on the cable while the stone is being hoisted or lowered. The hoisting and conveying may


## MeCANDLESS' AUXILIARY RIFLE BARREL.

some cases which have come under my observation the equipments have not been applied only because the foreman was from New England, and sailed in the old "stone boat" so long that it was difficult to get him out of the rut.
I visited the Brandywine quarries with a gentleman from Brazil, who came here for the purpose of studying American methods of granite quarrying. He had been through New England, and had been told that the best way to split up large blocks of granite into small ones was to do it by hand, just as he had been doing it in Brazil. This statement was made by men of large experience in the New England quarries, and it made such an impression upon him that it was necessary, in order to offset it, to show him actual results. We found at the Brandywine quarries a machine at work splitting up blocks of granite readily, economically and satisfactorily. We got at the exact facts in regard
be carried on either separately or together,
in the latter case effecting a great saving in time.
The reach of one of these conveyers ex tends at an angle of 45 degrees from the cable, by means of which stone can be dragged until it is suspended. Sometimes it is advisable to use a snatch block, by means of which the distance of drag may be considerably extended.
While at the Brandywine quarries I saw a man lift a large mass of stone from the quar ry, run it across the river on the conveyer and deposit it on a bank there. There was no one on the other side of the river, so that the stone was dislodged by the man running the hoisting engine. The courteous and intelligent secretary of the Brandywine Co., Mr. H. M. Barksdale, informed me that this stone was of a size and kind for which they had no orders at present, and they were simply depositing it on the other side of the river in order to get it out of the way, intending to bring it back again and use it later on. Here was a means by which a quarryman could, with but little expense, de posit his different grades of stone in different dumps on a line with each other, keeping his yard clear and free from all unused stone and having a means by which he can pick up a block at any time that will which he can pick up a block at any time that wil That the Brandywine quarries are producing stone economically is evident from the fact that they are supplying a large amount of finished stone for use on the Sodom dam, on the New York aqueduct.
This same system of hoisting and conveying, some what modified, is in use by the contractors who are building the Sodom dam, and I have also seen it in the slate quarries at Monson, Me. There are many


WIRE CABLE HOISTING AND CONVEYING APPARATUS AT QUARRIES OF THE BRANDYWINE GRANITE CO., WILMINGTON, DEL.
quarries of Vermont, going there with a view of enter ing the quarry business and of learning something, will find that, while he will be interested and instructed in what he sees, yet, if he goes through the Georgia quar ries, stopping en route at the Tuckahoe deposits, Tuckahoe, N. Y., he will realize that his Vermont in struction was largely in the line of ancient history. This applies not only to the quarrying, but to the finishing of the marble. Hand channeling is still pursued in some of the Vermont quarries, though this is rare.
an be done cheaper by machinery than by hand But the most interesting feature of the Wilmington quarries is the wire cable hoisting and conveying ap paratus, an illustration of which is herewith shown There are three of these conveyers reaching from one side of the river to the other, a distance of about 1,200 eet. The stone is quarried from both sides of the river, though at present operations are going on only
on one side. Blocks of granite weighing ten tons are
quarries in Vermont that might apply it with profit to themselves.-Stone.

AT the shops of the St. Charles Car Company there have recently been built four gorgeous museum cars The gilding alone cost over $\$ 3,000$, and the cost of the entire coaches is about $\$ 24,000$. The idea is to run the train into a town and have the exhibition on the cars. One car contains the electric light plant which is to light the museum train.

THE UNITED STATES COLLECTION OF STANDARD WEIGHTS AND MEASURES.
We illustrate in the present issue the collection of standard weights and measures, preserved at Washington, in the fireproof building of the United States Coast and Geodetic Survey. Many of these are now of purely historical interest, the more recent ones only being accepted as absolute standards.
The smailer cut is devoted to the collection of weights. Among these are shown the cruder forms of weights. Among these ariginally used in weights originally used in
this country as standards. this country as standards.
In the foreground of the picture, to the right of the glass case, are three which are of special interest. One which is nearly cylindrical in shape, with a slight groove around its upper portion, is known as the pilt pound, and represents gilt pound, and represents
the British unit of weight. Immediately back of it is the "committee kilogramme." It can be recognized by the knob on top. It is a brass weight, and is one of a number made at the same time under the charge of the French com nittee who, near the end of the who, near the end ished the oriminal estab lished the original metric standards of measure ment. It was procured


COLLECTION OF STANDARD GOVERNMENT WEIGHTS.
international standard of length. Professors Henry and Hilgard acted as the United States delegates to this convention.
In 1872 a treaty was signed at Paris establishing the International Bureau of Weights and Measures, which is under the administrative direction of delegates from the countries concerned. A large number of learned men were employed to study the methods to carry out practically the theoretical requirements of the case. Eventually standard meters and standard kilogramwes were constructed, which are termed international prototypes, and reproductions were distributed by lot to the differ ent governments in September, 1889. The reproductions are termed national prototypes and are numbered consecutively.
For the preservation of the original international prototypes a subterranean vault is provided at Paris This secures them against accident and against any sudden or great change in temperature which might conceivably bring about a change in the molecula structure of the metal. In this vault they are kept under lock and key, three different keys being re quired to open the vault The keys are in charge of J. G. Tralles, early in the present century. M. Tralles It has had a number of comparisons. In 1879 it was $\mid$ three separate individuals. The American national certifies it to have been of true weight within one-half compared with the British platinum kilogramme and prototypes will be preserved in Washington, with simimilligramme at the furthest. It is a cylinder 53 milli- its specific gravity was determined by Chaney. In lar precautions to those just described in the case of meters in diameter, the height being equal to the diameter. To the top of the knob it is 78 millimeters in height. The knob is 25 millimeters in diameter. The original committee had a peculiar stamp, which consisted of an ellipse supposed to represent a meridian section of the earth divided by two diameters into quadrants. three of which quadrants were shaded, while the figures $10,000,000$ were marked within the unshaded quadrant near its outer perimeter. This, of course, is an allusion to the base of the metric system. This stamp is impressed upon the bottom of the kilogramme we have described. The metal of which it is composed seems to have been porous, as it shows minute holes
the originals in Paris.
The prototype kilogrammes are made of a standard alloy of 90 per cent platinum and 10 per cent iridium with a tolerance of 2 per cent either in excess or defi ciency. The form of the kilogramme is a cylinder with slightly rounded edges, its height being equal to its diameter; its weight is referred to vacuo and it is prac tically an exact copy of the international prototype.
The national prototype meter, No. 27, is of the same alloy as that composing the prototype kilogramme just described. Its cross section, adapted to secure it against flexure and to allow of rapid accommodation to changing temperature, is shown in the corner of the


STANDARD AND HISTORICAL WEIGHTS AND MEASURES OF THE UNITED STATES GOVERNMENT.
large cut. The observers in the same cut are supposed to be holding a copy of it in their hands. The cross section is shown of the true size. The bar is 1.02 m . long. The meter is defined by lines drawn upon the upper surface of the portion connecting the side elements of the bar. It will be observed that the cross section is not symmetrical, and that the surface just referred to corresponds with the medial plane of the mass netal.
Upon the table in the large cut are shown other standards of measurement. Fig. 1 is the U. S. standard yard, such as is supplied hy the Federal government to the different States. It is an end measure and consists of the yard proper and of a teruplate which nests into it so as to protect its terminal planes from deterioration.
Immediately back of it, and represented by Fig. 2, is what is known as the Troughton scale, made by a London maker, bearing his name and dated London, 1814. It was made for the use of the Coast Survey of the United States. It is a brass bar with an inlaid silver scale. It is 86 inches long, $21 / 2$ inches wide, $1 / 2$ inch thick. The strip of silver which runs down its center is inlaid flush with the brass and is a little more than one-tenth of an inch wide. Two parallel lines are ruled upon the silver longitudinally, being about one-tenth of an inch apart. Starting at about 32 inches from one end of the bar, the graduations begin, and the silver strip is divided for its length into tenths of inches. As a standard of reference the interval between the 27 th and 63 d inches of that scale has been adopted. This portion, it is found, corresponds to the mean of the whole scale, and has been compared with ther standards.
Fig. 3 in the same cut shows the gard and ell bed plate made by Thomas Jones, instrument maker for the Honorable Board of Ordnance, etc., of Great Britain. This bearsthe impression of the exchequerstamp. Two grooves run longitudinally along the bar, with stops at the ends. The length between one pair of stops is supposed to be a yard, and that between the other pair an ell. It was made in the early part of the present century.
Figs. 4 and 5 represent copies of the British standard yard, and are designated respectively bronze No. 11 and iron No. 57. They were presented to the United States by the British government through G. B. Airy, Esq., Astronomer Royal. They were received in 1856, and are accompanied by statements as to their length, coefficients of expansion and directions for use. Each bar is 1 inch square in section and 38 inches long. At each end are wells $1 / 2$ inch in diameter and sunk $1 / 2$ inch below the surface, thus reaching the medial plane. In the bottom of each well is a gold pin one-tenth of an inch in diameter, upon which are drawn three transverse and two longitudinal lines. The yard is given by the distance from the center of one middle transverse line in one well to the corresponding point in the other well. Covers are provided for the wells in order to protect them from dust. The alloy used in the bronze bar consists of 16 parts of copper, $21 / 2$ parts of tin and 1 part of zinc. The iron yard is made of Low Moor iron. They are inscribed in each case with the temperature at which they are supposed to be standard, $61^{\circ} 79^{\circ} \mathrm{Fah}$. for the bronze bar, $62 \cdot 58^{\circ}$ Fah. for the iron bar.
Fig. 6 represents a committee meter standardized by the French committee in 1799. It is one of fifteen similar bars made at that time, and is an interesting remin iscence of the famous determination of the meter. It was presented to F. R. Hassler, already alluded to, who later became the first superintendent of the Coast Survey, by J. G. Tralles, of the Helvetic Republic. Mr. Hassler brought it to this country in 1805 . It is a plain iron bar 29 mm . wide and 9 mm . thick. It is an end measure, the entire cross sections of the bar being designed for abutting surfaces. It is stamped with three dots as a designating mark, and also possesses the three-quarter shaded ellipse already described as the mark of the original committee.
In the glass case back of the linear standards are shown various standards of measure and weight, which speak for themselves. It is sufficient to say that the measures of capacity are fitted with glass plate covers. In use these are to be slid over the accurately ground edge of the metal so as to secure absolute fullness A set of United States coin weights, troy ounces, etc., are also preserved here. All these standards are kept in a room which is dark and dustless. The two prototype standards will be preserved in specially constructed safes.
Our thanks for the facilities afforded in the preparation of this article are especially due to Dr. T. C. Mendenhall, superintendent of the United States Coast and Geodetic Survey.
The ceremony of breaking the seals of the prototype meter No. 27 and kilogramme No. 20 took place at the White House in the presence of President Harrison, Secretary Blaine, Secretary Windom and a distinguished company, on January 2, 1890. The departments were represented by the following, who signed a memorial to the effect that they had witnessed the

United States Coast and Geodetic Survey ; Prof. S. P Langley, Secretary Smithsonian Institution; R. M. Hunt, Esq., President of American Institute of Architects; Col. Thos. L. Casey, Chief of Engineers U. S. Army ; Capt. R. L. Phythian, U. S. Navy, Superintendent U. S. Naval Observatory ; Win. Henry Trescot, Esq., U. S. Delegate to International Congress of Three Americas; Oberlin Smith, Esq., President American Society of Mechanical Engineers, and many others, including members of Congress, professors, members of the Coast and Geodetic Survey, and members of engineering and scientific societies.

## As OChers See Us

The visit of the Iron and Steel Institute to this ountry and the criticisms made by some of its members upon the management of our iron and steel works have calied renewed attention to the differences be which we have frequently referred
'The point of difference which is most observable i the rapidity with which all operations are conducted in America as compared with foreign iron and steel works. Here both men and machinery seem to be strained to the utmost in the effort to turn out the largest possible number of tons in a day. The energy of the American owners is concentrated on the saving in two great factors in production, the namber of men
employed and time. Wages are high, therefore the employed and time. Wages are high, therefore the labor must be dispensed with wherever possible and
automatic machinery substituted. Time is still more valuable, and none of it must be wasted. It appears to be as criminal for a machine or a furndce to stand idle as for a man.
In consequence of this hurry and rush in American works, other economies are apt to be neglected, and
such neglect seemed to elicit criticisms from our English visitors which overbalanced their approbation of our skill in other directions. The waste of material was especially objected to. The amount of our crop ends in steel mills would not be allowed in any English works. Our steam engines were thought to be decidedly wasteful of steam, and our boilers not durable nor safe. Fuel economy, except in a few of the best managed works, seems a matter of no importance, and no attempt is made to save by-products of coke ovens as in Europe.
No doubt many of these criticisms are well deserved. Until the introduction of natural gas in Pittsburg, the waste of coal in the iron works of that city was simply scandalous. Scarcely a steam boiler could be found in the city in which the temperature of the chimney gases was not from $800^{\circ}$ to $1,000^{\circ}$ Fahr., and the puddling and heating furnaces were, with but few exceptions, of the old styles which seem to be especially calculated to utilize only five per cent of the fuel burned in them, and to waste the other 95 per cent. Steam engines also, except in recently built or remodeled works,
were of the old fashioned, slow stroke, throttling and non-condensing styles, the retention of which in these days of compound condensing engines is a disgrace. Since natural gas has been introduced, its great abundance and cheapness have even served to retard improvements in steam plants in iron and steel works, but now that there are signs of the exhaustion or curtailment of the supply, and the price charged for its use is raised, there will likely be more attention paid o its economy
In each of the cities which the foreign guests visited the daily papers showed their usual enterprise in printing interviews with some of the visitors, in which and approbation of what they had witnessed in America; but to one who had traveled with them from place to place it was noticeable that the expressions of commendation were generally offset by criticisms. What nature had given to America, such as her climate, her scenery, her greatness of distances, her wineral and agricultural wealth, her natural gas, were extolled as they should be; but what man had done was usually but faintly praised. "Very clever! but I think our way is quite as good, if not better,' was a common verdict. The large daily product of our blast furnaces was attributed to our excellent ores, and not to skill in management, and the short life of the furnaces was contrasted with the long life of foreign furnaces, to our detriment. Our rapid rail rolling was thought not to produce as good rails, and to be obtained with an excessive wear and tear of mill and driving of the men, which would not be submitted to in England. Even our newest machine works, such as the Westinghouse Air Brake Works, at Wilmerding, were found fault with as not being sufficiently lighted.
Much of the criticism was undoubtedly due to the mental habit of the Englishman-he is usually on the lookout for something to find fault with; but it is well for us to be criticised occasionally, as it may reveal to
us shortcomings which we had not before suspected, and lead to improvements in our practices, even if it should necessitate the copying of some foreign ideas and methods. While we do lead the world in the
there are many lessons we may yet learn from our transatlantic rivals.
It is a conspicuous fact, which was frequently brought out in addresses made at the meetings, that America is indebted to England for nearly all our iron and steel metallurgical methods, and while our iron and steel engineers have taken precedence in developing the mechanical engineering features of the works, they have not been noted as originators of new metallurgical processes. The names of Huntsman, Cort, Neilson, Heath, Mushet, Bessemer, Siemens and ThoNeilson, Heath, Mushet, Bessemer, Siemens and Tho-
mas stand pre-eminent as English metallurgical dismas stand pre-eminent as English metallurgical dis-
coverers, and no list of Americans can be named who coverers, and no list of Americans can be named who
can by any stretch of the imagination be compared with these as great originators and discoverers in iron and steel metallurgy. The one American engineer who by common consent is accorded the first rank among American steel works engineers, the late A. L. Holley, was strictly a mechanical engineer, and his work was in improving the methods of handling Bessemer steel and not in the process of making it. Of those who have brought our practice to its present stage of progress, such as the brothers Fritz, the two Joneses, Forsyth, Fry, and Hunt, there is not one who has contributed to it any original metallurgical idea. They have merely as mechanical engineers adopted the leading ideas of the foreign metallurgists, invented and improved machinery for carrying out these ideas, and have shown extraordinary skill as organizers of men and machinery in such a way as to turn out vast amounts of product.
The time has now come, however, when metallurgical discoveries ought to be as much expected here as in Europe. Many of our establishments are now on a solid basis, possessing great wealth, mechanical equip ment which ought to be good enough for ten or twenty years without further improvement, excellent organi zation of both technical and managing staff, and finely equipped chemical laboratories. Some of these works should be able not only to develop students and dis coverers, but to provide them with sufficient money for metallurgical experiments.
Another path in which the American works can now develop is in that of reducing wastes of fuel and of material. Now that mechanical engineering has de veloped machinery for handling to such an extent that the smallest possible amount of manual labor is re quired, the engineers might be allowed to take a rest in this direction and devote themselves to perfecting the steam boilers and engines and furnaces, with a view to saving fuel. The question of coking our poorer coals should be studied, and methods adopted of saving the valuable products now thrown away in the waste gases. The waste in crop ends, in scaling in fluxing, etc., should also be studied, and remedied. If the owners of our larger works would pay some at tention to these questions, it would result before long in removing the reproach that we are behind Europe in these inatters, and might in time enable American to point to a list of metallurgists who would rank with the English names above and with the list we already have of mechanical engineers. - Engineering and Min. Jour.

## Destruction of American Forests.

At a recent meeting in Berlin of the Geographical Society, Chief Forest Master Kessler called attention to the extravagant waste of timber in the United States. Among other interesting details Mr. Kessler spoke of the tremendous destruction of forests in the United States during recent decades of years. Quoting frow the tenth census, he stated that in 1880 the 25,708 saw mills then in operation converted $\$ 120,000,000$ worth of raw timber stock into various kinds of lumber, and he asserted that at the same rate there would be no good-sized timber left in forty years. He spoke of the enormous waste of wood through forest fires, which are the result, for the most part, of carelessness or a desire to clear land for cultivation, and declared that the planting of new forests, which has of late years received some attention in the Eastern States, cannot begin to offset the waste of forests. He said that there is every reason to fear that America will soon be a country impoverished for tree property. Mr. Kessler made the striking comparison that, while the United States had but 11 per cent of its area covered by forests, the empire of Germany has 26 per cent of ts entire area so covered. Mr. Kessler said that the reckless destruction of forest trees in America and th indifference manifested by Americans in the restora tion of forests is a menace, not alone to the wealth o the nation, but threatens serious deterioration both to climatic conditions and the fertility of the soil.
" IT is not intellectual work that injures the brain," says the London Hospital, "but emotional excitement Most men can stand the severest thought and study of which their brains are capable, and be none the worse for it, for neither thought nor study interferes with the recuperative influence of sleep. It is ambi tion, anxiety, and disappointment, the hopes and fears the loves and hates of our lives, that wear out our ner
vous system and endanger the balance of the brain."

An Official Trial of the Philadelphia The new steel cruiser Philadelphia, bearing the blue pennant of Rear Admiral L. A. Kimberly, President of he National Board of Inspection, returned to New York, November 1, from a forty-eight hour trial at sea. The cruiser has been accepted by the government, but this final trial was prescribed in the builders' contract for the purpose of testing her seagoing qualities and discovering any latent weakness in construction. To remedy such possible defects, $\$ 35,000$ has been retained by the government from the contract price.
The tests were in the main satisfactory, although the board finds room for improvement in numerous minor details, such as storage of boats, fitting of davits, etc. Three gun carriages were disabled. Owing to the foul condition of the cruiser's bottom, notrial of speed over the measured course was made.
It was the admiral's intention to take the vessel to sea immediately, and the necessary orders were issued. Before they could be carried into execution the English steamer Bremerhaven, of Liverpool, which had anchored in defiance of warnings that her berth was too close to allow her to swing clear, was swept by the current against the Pbiladelphia's port bow. The cable compressors were unlocked and a signal to back quick and hard was rung in the engine room. The engineer threw the throttles open, and the sudden rush of steam in the air-pump engine disabled that delicate and complicated piece of machinery. When the cruiser was backed out of danger an investigation of the damage showed that the bolts of the low-pressure crosshead of the starboard air-pump engine were broken, and that several hours' work was necessary to replace them ; so departure was delayed. The forward tor pedo port sustained some slight damage, and a strongback was broken. No other damage than this was done. The broken machinery having been repaired early October 30, the steam capstan was put in motion, the anchor run up, and the cruiser headed seaward. The main ship channel was the route chosen, and while standing through it another mishap befell the Philadelphia, namely, a collision with the coal schooner Gower.

Captain Rodgers, on the bridge of the Philadelphia, set both engines full speed astern. The next moment the schooner struck the Philadelphia on the starboard side and ranged alongside. The latter was perfectly motionless at the moment of contact, and a few seconds later her powerful engines had gathered sternway, and the vessels cleared. The ease with which the magnificent cruiser was handled is the best criterion of he efficiency.
The Philadelphia was uninjured, and having ascertained that the schooner was in no need of assistance proceeded on her course.
When well clear of the land a strong westerly wind rolled up a choppy sea, with an occasional heavy swell Through it the cruiser steamed, pitching deeply at times. The roll of the ship was almost imperceptible. Her pitching tendencies are due to the extreme fineness of her lines. Her movements, however, were always steady and easy and without a tendency to throw person off his feet.
At $10 \mathrm{~A} . \mathrm{M}$. the gun divisions were called to quarters. Two rounds at high elevation and extreme train for ward and aft were fired from each gun of the main battery. The blast shattered the glass in the skylights and damaged two cutters. The deck and gun platforms stood the severe strain well, but defects developed in the carriages of three six-inch rifles which will probably disable them.
These guns are mounted on central pivot gravity re turn carriages designed by the Bureau of Ordnance and cast by the Standard Steel Works. Cracks appeared in the piston rod lugs of numbers 3 and 4 starboard and number 4 port. The cracks, known as "heat cracks" to foundrymen, seem to have been calked over and sal ammoniac rubbed in, which rusted the steel effectually and concealed the defects until the shock and strain of firing opened them. The carriages are cast in one piece, and it is difficult to see how the de fects can be remedied. New carriages will, in all probability, have to be obtained.
The speed and turning trials took place on the following day. Full steam power was used. With 123 pounds of steam and making ninety-five revolutions to the minute, the cruiser's helm was put hard to star board. She described a circle in 6 minutes and 3 sec onds. Under the same conditions with port helm the time was 5 minutes and 33 seconds. With starboard helm she heeled 3 deg ., and with port 8 deg . The rea son for this remarkable performance has yet to be explained. The severest test to which the cruiser was subjected was reversing the engine while running full speed. The peculiar type of her engines enabled the vessel to perform the test safely and successfully.

The time from going full speed ahead until headway was checked was 1 minute and 50 seconds. The cruiser's tactical diameter, which is the diameter of the circle in which she can turn, is 2,400 feet. With one propelle backing, the diameter is much less.
Associated with Admiral Kimberly on the Board were Capt. Henry Erben, Commander W. R. Bridge-
man, Lieut.-Commander Hemphili, Lieut. L. C. Logan Chief Engineer Buehler, Naval Constructor Hanscom, and Capt. Porter, of the Marine Corps.

## AN INTERESTING EXPERIMENT

A rather amusing trick can be performed at the dinner table with the aid of two wine glasses and a visit ing card. Take two claret glasses of the same size, and fill one with claret quite to the brim, and the other with water. Cover the glass containing the water with the pasteboard card and then ask if any one at the ta ble can transfer the claret into the glass containing the water without pouring out or spilling the liquid in either glass. At first it appears that this is quite impossible, but it may be easily accomplished by inverting the glass containing the water and placing it upon the other glass. After the edges of the two glasses have been brought opposite one another, the card is slipped carefully to one side so as to open a small communica tion between the two glasses; this done, there immediately begins an exchange of the liquids, and it is observed that the claret is flowing in a gentle stream into the upper glass, the water descending through the small opening and displacing the claret. The claret soon begins to spread out in an even body over the water contained in the upper glass. This process continues until there is a complete interchange of the two liquids. Of course the explanation is simple enough


## GRAVITATION OF LIQUIDS.

The water being a heavier liquid than the claret sink into the lower glass, and the claret is forced up to fil the displacement of the water. It flows in a steady clear-cut stream, and the effect as it rises through the water is very fine
It is remarkable that in this experiment there is no observable intermixture of the liquids. The wate contained in the lower glass after the experiment is quite clear and transparent. It is also curious that the water in the upper glass passes the space between the rims of the glasses, and enters the lowerglass with out any leakage whatever. This, however, is fully ex plained by the surface tension existing on the liquid at his point.
The card used in this experiment is about the thick ness of an ordinary postal card. The experiment is easily performed and is worthy of trying. The upper glass containing the water may lifted and carried about while the card is attached, without holding it on with the hand, thus illustrating in a well-known way the effect of atmospheric pressure.

## Aluminium_Grabau's Method.

This process is based upon the reduction, by sodium, f fluoride of aluminium, produced from the action o sulphate of alumina upon fluor spar and cryolite; but the latter mineral is only employed at the commence ment of the operation, it being reproduced in large quantity in an artificial form, as a consequence of the reduction of the fluoride of aluminium, and of a much higher degree of purity than the natural mineral, which always contains spathic iron ore and quartz.
Production of Fluoride of Aluminium.-From ten to thirteen parts of sulphate of alumina, dissolved in water, is mixed with finely divided fluor spar, and heated to 60 deg . Centigrade for several hours, when a partial decomposition of the fluor spar takes place giving sulphate of lime and aluminium fluoride. By repeating the operation several times, about 66 per cent of the sulphuric acid in the sulphate may be re placed by fluoride. It is more convenient, however not to push the change beyond 55 per cent. The re
sult is a solution of fluo-sulphate of alumina, $\mathrm{Al}_{3} \mathrm{Fl}_{4} \mathrm{SO}_{4}$, which is filtered, freed frow iron by prussiate of pot ash, and boiled down to the consistency of sirup. This is then mixed with finely ground cryolite to a stiff paste, giving when dried in a lead basin of 150 deg . C. a spongy mass, which is broken into pieces of the size of a walnut, and subjected to a dull red heat in a cast iron vessel in a muffle. This decomposes the remaining sulphate of ammonia, giving as a result pure fluoride of aluminium and sulphate of soda. The latter salt is washed out with boiling water, about 15 per cent of the former also going into the solution. The residue, or 85 per cent of the fluoride in the materia treated, is pressed into cakes, dried, and broken up.
Reduction of Fluoride of Aluminium.-The reduc tion of the fluoride by sodium is performed in a cast iron vessel, whose diameter is equal to its height, lined with cryolite, either rammed, or preferably in the form of brıcks, made coherent with a solution of common salt. The fluoride is heated to redness in an iron cyl inder with a refractory lining free from iron and sili con, and having a cover at the top and a counterpoised drop bottom. The fluoride does not melt, and is but slightly volatile if kept well covered. The heated charge is dropped into the reducing pot, and immedi ately afterward an ingot of sodium, heated nearly to its melting point, is added, the whole being covered up by an asbestos cloth. The reaction is very violent the charge boils, and of ten flame colored by sodium escapes from beneath the cover. When the propor tions of sodium and aluminium fluoride are so chosen that only one-half of the latter is reduced, the remain der combines with the fluoride of sodium formed in the reduction and produces cryolite, which at the end of the operation is found as a well-melted mass, th temperature having risen to a red-white heat, having below it a lump of aluminium, covered with a thin adherent crust of cryolite. The cryolite so produced is much purer than the natural mineral, being perfect ly free from iron and silicon, and in consequence the aluminium obtained is often very pure, assaying up to 99.77 per cent, according to the results obtained at th Ecole des Mines, Paris. The sodium used is obtained by a new method, which is only described in genera terms, some details not being completely protected. I consists essentially in electrolyzing melted chloride of sodium in a crucible. One electrode is of carbon, and the other an iron wire. The latter plunges into the center of the crucible, and is covered by a bell of por celain with hollow sides, and a central tubulure con nected with the sodium condenser by an iron tube which carries away the globules of sodium as they form and rise to the surface; the chlorine goes to the car bon electrode. The production of cryolite in this pro cess is rather larger than the amount necessary for re duction, and therefore some surplus will remain for disposal. This may be used by glass makers. As com pared with Deville's process, it is said to utilize the sodium more perfectly, from 83 to 90 per cent of the re ducing effect being realized, as compared with 76 per cent.-Annales des Mines.

## Nickel-in-thenSlot Hot Water.

In Paris they now have stands in the streets, a faucet projects from the structure, and under it is a place to set a pail. Near the faucet is a slot, large enough to admit a copper five centime piece, and beside the slot is a button. To use the apparatus, a pail is set in the appropriate place, a five centime piece, equivalent in size and value to the old-fashioned copper cent, is dropped into the slot, and the button is pushed whereupon a jet of steaming hot water issues from the faucet, and runs until nine quarts have been delivered when it stops. It may be imagined that in a district hickly settled with poor families, the cost of hot wate so obtained is much less than it would be if a fire were kept in the cooking stove to heat it, and the house keepers who would otherwise have to do their wash ing with cold water must bless the inventor. The ap paratus has, however, another use. It is the custom in Paris for hackmen to keep " bouillottes," or cans of hot water, in their carriages in cold weather, to warm the feet of their patrons, and it is often troublesom and expensive for them to get the water renewed as it cools. By means of the new kiosks, the bouillotte may be replenished with the smallest trouble and expense, to the great benefit of the drivers. Th interior of the kiosk is partly occupied by a coil of pipe within which is a gas burner, for heating water rapidly The coil communicates with the city water supply, so that the water drawn through is always fresh. The gas is not wasted by being kept burning all the time, but is lighted by the pressing of the button, which also opens the faucet, and the automatic closing of the faucet, and turning off the gas, after the pailful of water has been delivered, are effected by simple devices.
The wholesale price of whalebone is now $\$ 10,000$ a ton. A project is on foot to organize whaling expeditions from Australia to th Antarctic seas, where it is believed plenty of whales are to be found. It is an almost untouched whaling ground.

RECENTLY PATENTED INVENTIONS. Engineering.
Steam Boiler Feeder. - Bernard Jevlin, Jersey City, N. J. This is an antomatic feeder,
in which a drum commuricating with the steam and water spaces of the boiler has a float valve to cut off the supply of steam from the boiler a piston device eing arranged in connection with a valved water sup ply pipe, the device having a self-opening rellef valve, hile a steam supply pipe conne
alve-coutrolling piston device

## Railway Appliances.

Car Coupling - Justin E. Clark Andover, Mass. In this device the drawhead with a
hook or horn, and a peculiar form of ball. like link is ends pivoted to the link, with means for raisug the nds pivoted to the link, with means for raisug the
ink, which may at any time be thrown out of the link, which may at any time be thrown out of the
coupling position to permit of the drawhead being used as an ordinary link coupler, while the device is operable rom the top or the sides of the ca
Car Coupling. - Benning Rowell, Badger Mills, Wis. The drawhead is, according to this invention, movable vertically at its forward end, suitahly held suspension rods extending down along opposite sides of the drawhead, and their ends being
held in a plate ou its under side, forming a simple and held in a plate ou its under side, forning a simple and head mouths may be readily set up or down as desin
Vestibule Car.-John H. Kirkham, Niles, Mich. Combined with the contacting frame of the latter being also connected with buffer springs, with other novel features, whereioy the contacting frames of opposing flexible wortions are held in conism consisting of ferv and simple parts that can be CAR BuFFER. - Seely W. Ashmead t. Louis, Mo. Combined with buffers adapted to located as usual at opposite sides of the drawhead are riction rollers or balls held to revolve therein and pr jected out therefrom, a lubricator communicating with he recesses in which the balls revolve, forming an
anti-friction buffer by meeans of which the wear and anti-fiction buffer by means of which the wear and
Crossing for Cable Raliways.James P. Orr. Pittsburg, Pa. Accoriiug to this invenwith a frame adapted to be raiswd and lowered, with wo sets of pulleys arranged thereon, one set supporting one of the cables whue the other passes under the othe set of pulleys, the arrangement being such as to bring he crossing cables near each other, at the same tim preventing the cahles from coming in coutact.

## Mechanical.

Traveling Crane. - Charles Davy, Sheffield, England. This invention is designed to dis supports of the drwing shafts, and provide mean whereby sliding connection may be maintained with a shaft mounted in ordinary fised bearings, whether it be the main or transverse driving shafts, which tranemit
power to the hoisting crib.
Laying off Woon Work. - Robert G. Love, Richmona, Va. This invention provides machine for laying off and marking the stiles hutters and doors and similar work, preparatory order to save labor by doing the work more expeditiously than can be done by hand and insure exactemy simple and inexpensive, and operable either by treadle or by powe

Barrfi Hooping Machine. - Frank Glankler, Memphis, Tenn. This inveution covers a whereby the hoop is not driven entirely on the burrel, but is allowed to project a litte beyond the chine or or stored for future wse it may bo subsequently cracks which might appear from shrinkage being thereby closed to make a tight barrel.
Shingle Shapisg Machive.- Daniel chate above a sliding support is a shaper haring for wardly projecting arms proviled with inner shoulders to move the support from muder the chute after the
ehaper has acted on the shingie, ani outer shoulders to return the support on the back stroke, the machine dressing the sinngles to the requirech width and cutting

Couch Roll for Paper Macimites. -Frederick W. Miller and Joln J. Newman, Elkiart. hollow ends adapted to be comected with suction
devices, journaled boxes forming the heads of the roller and an annular chamber being formed about the heads, the roll having a porous cover, and ports con-
necting the anuular chamber with the hollow shatt, the roller being also adapted for use as a revolving suction box wh

Ruling Machine Artachients. William C. Smith. Brooklyn, N. Y. Tralswersely rock-
ing forks or links are pivoted to vertical standards at pposite sides of the frame, aud a pen beam with arms at its ends is mounted on the forks or links, there being papermay be tinted or ruled in wave lines at a small ost, producing effects heretofore usually accomplishe by lithography.
Gripper for Job Pressks.-.-George W. Banks, Philadelphia, Pa. This invention provides
a means wherehy the grippers may be set without the
aid of a wrench or similar tool, and se that when they
are set they will be retained in a postively fixed posiion upon the gripper plate and rendered
Theatrical Appliance. - Joseph Arthur, New York City. This invention embraces a ovel construction and combination of parts employed or planing mill, machinery usual in such establish ments appearing in full operation, giving to the scene

Apparatus for Treating Cotton Seed Hulls.-Emil Bohn, Galveston, Texas. By
means of this apparatus the hulls are successively round, screened and stirred, and the ground product directed by an air blast over pocketed chutes, where
the coarse, heavy particles are separated from the fine, ie coarse, heavy particles are separated from the finc

Type Writiva Machine.-Philip P Teaz, Meadville, Pa. The type wheel of this machine has the letters arranged thereon in combinations such follow each other in words of common use. By etter or portion of a word may be printed at onc

Lasting Machine.-Charles E. Goss Brooklyn, N. Y. In this machine novel means are pro-
vided for opening and closing the grippers and for hifting them horizontally, to insure proper stretchin of the upper and even fit upon the last preparatory to it being tacked. The tacks are released sing,
thes the upward movement of the drivers.

## Agricultural

Plow Attachment. - Archibald B. De Bruce, Arkansas City, Ark. A plate is arranged board, of the same form and general size as the mould board, the under surface of the plate being convexed
and not smooth, the design being to compress the soil turned up by the plow, and so that it will all pass easily ticking to the mould board.
Pneumatic Milker. - Julius T Cover has connected therevith a simple form packe punp, whereby a partial vacuum may be readily created in the pail, and from the top portion of the pail extend at their outer ends, provided with nipples and spreaders these nipples are in place for milking, sections of glass the rubber tubing permitting the operator to see
when the milk is flowing freely into the pail, and the Wen the milk is flowing freely into the pail, and th Grain Scourer. - Peter Provost, Minneapolis, Minn. This inventioiz covers an improve-
ment on a former patented invention of the same inventor, the machine having a cylinder in which thre opper-shaped screens are arranged one above the upper section, a disk with conical lower portion on the shaft in the second screen, and a brush on the slaft in the lower screen, whereby the grain may
thoroughly cleaned and all the dust removed.

## Miscellaneous.

Nursing Botmpe-James W. McKimnon, New York City. This nursing bottle is so convtructed as to avoid an corners, depressions, or
cavites in which milk is liable to collect and sour, and to enable the bottle to be thoroughly cleansed with little labor, and to allow of the free circulation of air after
such cleansing or while the botle is not in use. Buckle. - Benjamin H. Day. Jr West Hoboken, N. J. This is of the class of lever huckles for holding straps and other flexible comnec-
tions and having a hiuged tungue, and its novelty con ists in making the tongue of spring metal of corrugat ed or U shape at or back of its clanping portion, so
that it will readily adapt iteelf to different thicknesses of straps and exert a spring pressure upon them.
Pump Water Closetr. - William D barter, Brooktyn, ... . cone wherever there is a water sapply. Two pump nately fush the bowl and draw out the contents of it soil pipe for discharge to a place of deposit, ail odors
in the meantime being cffectually prevented from coming back throush the sonl pipe.
Table. - Edwards A. Reed, Oliver collapsible tables, the constraction being such that whil the art icle is stable when in onse, it is capable of being compacted to economizs space in shipping or stowing doors or crooked and crampeal passages, and in which inldeg or let down.
Burner. - August F. Reinhold. New Bork City. This burner is particularly adapted for designed to be safe and practically odorless, having non-comucting, concaved and apertured platc, aloo
the flame, and one or more perforated heat-abourbin and radiating plates held below the top and around the wick tube or flaming point
Raliator, - Arthar J. Brown, Edward Brown, Jr., and Denms Shay, Bellefonte, Pa. This ap in sections of a double tubular circulatiug and steam-packed slip joint between the sections, with novel construction of the sections and arrangement their inlets and outlets, affording a most perfect. circuation and quickly heating the radiator.
Freezing Box for Ice Machines.
ment of parts in which a box or tank is subdivided Inth a series of parallel cells by means of hollow parti-
tions through which a refrigerating liguid is made to circulate, in order to freeze ihe water into slabs of ice
GUN Charge Indicator.-Gideon K. gun is provided with pins that will not appear when the barrel is empty, but will project from the upper and
lower surface of the gun when the shell, accurately indicating both to the sight and touch whether or not the gun contains a cartridge, and pre venting accidents occasioned by the discharge of guns

Ear Trumpet. - Frank M. Blodget ew lork city. The receiver or b 11 of this trumpet of volute form, its onter curve having a gradually insize to fit snuggly around the back and over the top of the ear, so that the trumpet stays in phace without holding, while the outer surface of the tip which euter the ear and in a degree adhere to it to assist in holding he receiver in place.
Leaf Turner. - James E. Pellow sierra City, Cal. This is a music turner with one moreshafts, each carrying an arm adapted to hold the Her for turning the shaft are is a spring-actuated nid means whereby on pressing a button, the locking device is released, the shaft is turned from right to left
trning the leaf.
Spoon. - Martin L. Schoch, New dapted to move on the has a spring-pressed scraper regulating its movement, by mealus of which all stick and adhesive substances may be quickly and easily restrument
Gate Opener and Closer. - Frank W. Kmball, Milford, Ill. A lever bracket-like projec aranged to rur in reverse direction to or beyond oposite sides of the gate, and constituting pull device解 post, and operating to complete the opening or closin post, alld op
of the gate.

## SCLEVTIFIC AMERICAN

BUILDING EDITION
NOVEMBER NUMBER.-(No. 61.)
TABLE OF CONTENTS

1. Plate in colors of a modern dwelling of pleasin design at West End, Chicago. J. De Howarth, architect, Chicago. Floor plans, perspectiv iew, sheet of details, et
a $\$ 1,400$ cotuge at Chicago. Two floor plan heet of
2. Desicu for an entrance hall

An attractive dwelling at Hollis, Long Islaud, erected at a cost of $\$ 6,000$ complete. Perspectiv
view and floor plans. Schwietzer \& Dieme view and floor plan
neat looking cottage at Humboldt Park, Chicago Cost $\$ 3.200$. Photographic perspective view and two floor plaus.
colonial honse erected for Mr. C. A. Hutchings,
at Montelair, N. I. Cost $\$ \mathbf{5} .000$ complete at Montelair, N.I. Cont $\$ 5.000$ complete. Floo
plans and perspective elevation.
Femen cotage erected in Philla Park at Way Pa., at a cost of $\$$
view and floor plans
\$5,200. Photographic perspective view and tloor Perspective elevation and floor plaus of a handAtwood, New York, architect. Cosi $\$ 13,000$ complet
10. Engraving showing a block of economical brick
houses erected at Philadelphia, Pa. Cost $\$$ :, (u00 each. J. M. Stiller, of Phi
Floor plans and perspective.

1. Perspective and iloor plans of a Lake Side cottag at Minnetomka, Minm. Cost about
II. Demis, architect, Minneapulis.
2. Miscellameons couteme: Some of the merits of the Architect And beliden- Edition of the
comptrio Anebican.-The air supply.- The Ahambra-Decoraton of entrance hall, illus-
trated.- Qumbions on construction.-The Henry Hater-- Quentions on construction- -The Henry
Martin brick min chinc, illustrated. - Buckeye Portland cement. - A avernment contract for
woodworking machinery.--Architects' and carpenters' transit, ilhestrated.- Improved dwelling
honses, illustrated. D power eleczators. Improved double blind wiring machine. ilinetrated, -An improved boiter for
power and heating, illustrated.-Resistance to lite of wood posts.-An improved door suring. . .1-mastati.- An mproved hot air furnace, illus-
trated. The Taylor " old sty: "" rooting tin. Edition is issured monthiy. $\$ \$ .50$ at year. , Single copies, Edition is issued monthly. $\$ 2.50$ a year. Single copies,
2) cents. Forty large quarto pages. copal to about two hundred ordmary book pages: forming, pract tere. richly adorned with elegant plates in colors and with tine engraving-, illustraturg the most inieresting examples of Modern Archatectural Construction and allied subjects.
The Fullness, Richness, Cheapuess, and Convemience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Solld hy all newrdealers.

NEW BOOKS AND PUBLICATIONS Geological Survey of New Jersey. Vol. II. Trenton, N. J. 1889. Pp. $\mathrm{x}, 642$.
In this second volume of the final report of the la mented Prof. Cook, mineralogy, botany, and zoology
are comprised. It amonuts to little more than a caty logue of the subjects, with the localities or places where found, given under many of the titles. It is needless to eay that it will be of great importance and interest to
those scientists to whom it is partucularly addressed. SEWAGE DISposal Works. A guide to the constraction of works for the prevention of the pollution by sewage of Crimp. London: Charles Griffin \& Company. Philadelphia: J. B. L.p, pincott Company
277 . Price $\$ 7.50$.
A subject of importance, and one which is daily ac quiring new importance in the suburbs of our large ferent plans adopted in England are elaborately explained and illustrated. It is offered as a guide for the construction of works for large and small cities, and inlustrates a subject which is only at the present day geginning to acquire its proper position in sanitary en-
rineering in this vicinty. Numerous folding plates illustrate the subject.

Practical Blacksmithing. By Mr. T.
Richardson. Vol. III. New York Richardson. Vol. III. New York:
M, T. Richardson. 1890. Pp. i, 307 .
Price $\$ 1$.

He welc hise most heartily the appearance of the third by most tecinical authors. The numerous illustrafons and detailed instruction are such as to bring this all. The most experienced blacksmith will receive my The Ciner Maker's Hand Book. A omplete guide for making and keepNew York: Orange Judd Co. 1890.
Pp. 119. Price $\$ 1$. Price $\$ 1$.
Judging by the many inquiries made about the manufacture of cider, there is every reason to believe that the readers. It has several illustrations, and many tables to it.
Dust and its Dangers. By T. Mitchell Prudden. G. P. Putnam's Sons.
New York. London. 1890. Pp. iii,
111. Price 75 cents. 111. Price 75 cents

Dr. Prudden's exhaustive work on bacteria gives his emanations on the subject of dust and its disease germs a peculiar value. The most practical methods of analy-
sis were applied to determine the quantities of dust and of germs growing thereon, from which numerous illus. trations are given, showing the results obtained under a microscope.
Wood's Medical and Surgical MonoNew York. 1890 . Pp. 291. Price N10 a year, single copies $\$ 1$.
In this, the first number of the sixth volume of this rery valuable series, the human foot, modern crema-
tion, and aphasia are treated. We have before this revewed the series, and need only say that this number yiclds nothing to the others in interest and beauty of
illustration. The colored plates and the very practical illustration. The colored plates and the very practical
outlinc drawings appeal to the laity almost as much as outline drawings appe
to the medical world.
Elements of Plane and Sphritical TrigonombTry. By Edwin S. Craw-
ley. Philadelphia: J. B. Lippincott Company. 1890. Price $\$ 1$.
This work is supposed to comprise the subject of
trigouometry as far as treated in the collece cou trigonometry as far as trented in the college conrse.
The method adopted has been to give the first portion in detall and later on to throw the student more upon his own resources. It includes both plane and spheri.

The Lighting in Photographic practical work on the various modes and appliauces sed in lighting sitters in photogwe.phic studios. The methods of distributing the light, the construction of the skylight, devices for screening and shadng the light; backgrounds and their relation to the sitter:
the use of orthochromatic plates in portraiture are all the use of orthochromatic plates in portraiture, are all
fully described and explained. The book is designed fully described and explained. The book is designed
for the practical photographer, and contains much nsefor the practical photographer, and contains mu
ful information conpreseed into a small space.

The Dhevelopment of Gelatine Dry Pla'tes. A practical manual for the
amateur. By Rev. W. H. Burbank. amateur. By Rev. W. H. Burbank.
Brunswick, Maine. Pp. 92. Price 75 Brunsw
The book covers thitteen clapters, explaining the yeneral principles of development, illustratious of de-
veloping room conveniences. giving formulas of the veloping room convelilences. giving formulas of the
various deve:opers, describing methods of washins, fixing, intensifying, and reducing negatives. There are also supplementary notes, formulas, and tables for reference which will prove ver'y useful to any amateur desiring to know all about development. The book has he merit of being free from strictly terhuical terms and is easily understuod, and the directions to be followed in teveloping a pate are carefuly and concisely writ-
ten. As a whole it is a desirable and useful addition to photographic literature
Any of the above books may be purchased through lished.
Address MunN \& Co., 361 Broadway, New York.

DBusiness and Personal. The charge for Insertion under thes head is one Dollar a line jor each insertion: about eight words to a line
Advertisements must be received at publicuron offic as early as Thursday morning to appear in next issue. The demand for the Sturtevant mill for grinding ores, phosphate rock, cement. etc., is steadily increasing an
the tuerits of this wonderful machine universally ac knowledged wherever used. Among those recently adopting same may be mentioned the Richmond Chemimagnetic rron ore, S. P. Wetberill \& Co barytes, and magnetic irn ore, S. C. Wetherile © Co. barytes, and
Southern Pavement Co.lime stone. Address for full particulars and testimonials Sturtevant Mill Co., 88 Flour emery a specialty. New process. No dust. All t.

Billings' Drop Forged Lathe Dogs, 12 sizes-
Best Ice and Refrigerating Machınes made by Davi The Improved Hydralic Jacks, Punches, and Tub The Improved Hydraulic Jacks, Punches, and Tub Wanted-A small power vacuum pump. Must be in Kood condrion. Ac Werner d co., 22 Warren St., N. Y. Power presses and dies. Also contractors for special
machinery. T. R. \& W. J. Baxendale, Rochester, N. Y. Screw machines, milling machınes, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Tight and Slack Barrel Machinery a specialty. Joh reenwood \& Co., Rochester. N.Y. See illus. adv., p. 30 Manufacturers of appliances to ventilate rooms in Which there are no flues will ple
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, a
pumps, acid blowers, filter press pumps, etc. The best book for electrictans and beginners in electricits is " $"$ Experimental Science," by Geo. ML. Hopkins.
By mall, 84 ; Munn $\&$ Co., publishers, 361 Broadway. N. Y. Sheet Rubber Packing, 1-16, 3-32, $1 / 8,3-16$, and $1 / 4$ iuch thick, $11 / 2$ cent- per pound. All kinds of rubber gonds at
low prices. John w. Buckley, 1 :6 South St.. New York English tanned walrus, hippopotamus, giraffe,elephan and buffalo leather for polishing metals. All kinds m frs,
supplies. Greene, Tweed $\&$ Co., 83 Chambers St., N. Y. For the original Bogardus Unıversal Eccentric Mill, Foot and Power Presses, Drils, Shears, etc., address
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y Magic Lanterns and Stereopticons of all prices lews illustrating every subject for public exhibitions tal. Also lanterns for home amusement. 20 S page cataAn experienced business man and engineer, experi enced in steam and electrical matters and an expert in eneral mechanics, is open for an engagement as mana er of the New York business of sonne manufacturin ncern. My age is fort $y$-two. Salary expected fa For Sale-New and second hand iron-working ma chinery. Prompt delivery. W. P. Davis, Rochester, N. Acme engine, 1 to $5 \mathrm{H} . \mathrm{P}$. See ad. next issue. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Send for new and complete catalogue of Scientific New York. Free on application

## 

HINTS TO CORRESPONDENTS
Names and Addrese must accompany all letters,
or no attention will be paid thereto. This is for
or no attention will be paid theretom. This is for our
information, and not for publication Rererencex to former articies or answers should
give date of paperand page or number of question.
In inItien not ansered in reasonable time shold
be releated: corresuondents will bear in mind that some answirs require not a little research, and,
though we endeavor to reply to all, either by letter
 persoctal rather than seneral interest cannot
eppected without remuiration. cienninc American Suppiemsents referre
to may be had at the otice. Prict 10 cents each.
Books referred to promptly supplied on receipt TII nere in sent for examination should be distinctly
marked or labeled.
(2570) F. J. McV. asks : Will you pleas inform me what kind of a paste or cement I can use to gether equal parts of common pitch or Burgundy pitch
(2571) J. H. H. asks: What is the ratio of the increase in rapidity of vibration of the strings of That is, a pinuo string, in sounding a particular note, vibrates so many tumes per second, the string aster and so tone above vibrates a certain degree fasterease is for each note of the eight components of an ctave? A. The vibrations of musical notes are arranged nder two systems, the harmonic scale as fixed by the In the Stuttgart scale C below the treble cief has 264 vi brations; E, 330, with intervals for each half tone of $161 / 2$ vibrations; A has 440 vibrations, with intervals of 22 for each half tone from E . C in the clef has 528 vibrations, with intervals of $271 / 2$ between A, A sharp and A B; while
from B to C is 33 vibrations difference. The geometrifrom B to C is 3.3 vibrations difference. The geometri-
cal system has the same octave vibrations of C as in the harmonic, but with a geometrical ratio of increase for each semitone, which ratio has a variable. It 18 too complex for full explanation here. You will find the chanics, $\$ 3.50$ mailed.
(2572) W. H. B. asks : What is the pre cise nature of the work of a mechantcal engineer? Is nly shop experience and a general education hat echmeal education? Does mechanical engineering or
advancement? A. Designing is the principal forte
the mechanical engineer. This requires a technic ducation in the principies of mechanics, ability as draughtsman and experience as a guide. Will all thes he has a fair start for success in a business way. Sho experience is one of the uecessitics. The other essen tials are matters of stuay and aptide whin power of the aspirant for mechancal fance. The cie ended experience in the mathematical and mechanic relations of the forces of uature. Both pay in the
(2573) J. F. S. says : I wish to construct a aquarium, size $21 / 2$ by $1 / 4$ by $11 / 4$ feet, bottom of wood ing thro phe of wood, fastened by ing. I wish now what is best wood, to use. How should wood b prepared fo prevent leakage or dampness warpin om edge. A. Make the frame of your aquarim ides and bottom of oak, with glass in bottom. Bo he frame before putting together in linseed ofl for ew minutes. Make a cement of equal parts of litharge ne white sand and plaster of Paris. Mix with boiled
inseed oil, with a little drying oil, to a stiff putty. Let inseed oil, with a little drying oil, to a stiff putty. Let
it stand a few hours before using. A frame bottom with glass is better than a solid wood bottom.
(2574) W. P. asks: 1 . What is meant by wo explain it the same. A. The volt is the unit of
whe electromotive force or pressure of the current. The
current from one cell of gravity battery has an E. M. of slightly more than 1 volt $\left(\mathbf{1 0}^{\circ}\right)$ ) 2. What is meant by shunt wound dynamos? A. A shunt wound dynamo is one in which the terminals of the armature are con with the external clrcuit, so that the current divides at he brushes, a part passing through the field magne he remainder through the external circuit. 3. How Voltage or E. M. F. is measured by means of a voltue er, or galvanometer. Cousult any work on physics
(2575) D. B. A. says : Some years ago dam was built across a river here, aud a short time sinc
began leaking badly. Upon examination it was found cheaper to build a new dam than to repair the old on consequently a new one was buil, bat a little furthe down the stream, and the water filling in soon becan has arisen as to which dam supports the pressure weight of water in the lake above. One party contends that the old dam has still the same pressure upon it as formerly, while the other party claim that the new dam has now the whole pressure of the lake against it. A. The new dam supports the whole pressure of the lake as ong as the water covers the old dam, which has the alanced pressure, a neutral point. If there was a dif erence of level in the water above and below the old dam, the pressure would be divided by the hydrostatic difference of level.
(2576) H. G. C. asks: What kind of ma terial shall I use for tanning alligator hides? A. Bark is nainly used for the tanning, but a special technical quired for the preparation of the skins for the tan nors, in order to make good leather.
(2577) A. E. B. says: Some people say the b. b. caps No. wa are injurions to the rifling of gun. Is this so, and why? A. The B. B. are no more injurious than cther caps of less strength, if the gum is properly cleaned after use. It is allowing the products does the mischief, by starting oxidation in the rifle
dem, drooves. In cleaning the wiping wad should do tight and follow the rifle grooves, otherwise the dirt will odge in the grooves and roughen them by oxidation.
(2578) E. R. D. D. says : I have two wells, 38 feet and 35 feet deep respectively. In the first well is I run a suction pipe from this pump, over the ground and down into the second well, and draw all the water out of it? 'The wells are 30 feet apart. A. You cannot raw all the water out of the second sell, but by digging trench for your suction pipe 5 feet deep, youn may be om, possibly a little nearer.
(2579) N. O. L. asks: When a gun is discharged, what is the cause of the noise or report? Is
it concussion of the air, or has it anythung to do with the vacuum produced in the barrel? a gun is caused by the concussion or vibration of the air at the instant of the charge leaving the gun. There is no vacuum formed, but on the contrary a momentary rressure made by the expansion of the gases or powder
(2580) J. H. G.-The plant sent for dentification is a small form of Helenium tenuifolium,

## Replies to Enquiries.

The following replies relate to enquiries recently pub ished in Scientific American, and to the numbers
(2475) If P. C. N., of query No. 2475, will horoughly smoke his buckskin articles with any ordinary wood fire, the same as bacon is smoked, say hang smudge under them three or four times each day for about a weels, being careful not to get them too hot, he can then wash them the same as any woolen cloth is washed, and I guarantee, they will not get hard if the

Splitting Wood.-Please tell your inquirer of query No. 2459 to use 3 C blasting powder for splitting wood. If he cannot get this grade at the blasting powder. Three $C$ is the slowest powder made It is the best for quarrying large fine stone or splitting straight-grained wood. When it explodes it merely
gives a grunt, but it is sheol for smoke. Single $F$ is the next quickest, double $F$ the next, and 3 F the next

Judging by his query, he does not live in a mining dis-
rict, aud it is quite probable that he cannot get blasting trict, aud it is quite probable that he cannot get blasting
powder. He should not use gunpowder by itself for spliting wood, unless it is very hard to split, as it would gunpowder let him mix it with fine sand, one-third sand, two thirds powder. The sand reduces the strength of the powder, but not its quickness. Gunpowder itself
is too quick for wood, stone, or coal. Coal miners can

## $\xlongequal{\text { Enernent }}$

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unequaled faclities for procuring patents everywhere. A synopsis of the patent laws of the United states and a
foremen countriesmay be had on application, and perse contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices Which are low, in accordance with the times and our ex tensive faclities for conducting the business. Address
MUNN \& CO., oftice Scientific American, 6 Bl Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of then
United States were Granted
November 4, 1890,
and EACH HEARING THAT DATE
See note at end of list about copies of these patents.]



|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |








sitid. Wi. initiee w. T. Jamis
Jamison....
or saies. i :ment.........Brak
Brea
Brick
Brid
Bridi.

Caneron siei ibiotiofisihicic camersion inorriphc camerit
 
sinisseier




H. B. Renwic
d

Chat
 

## ene

 9 릉 : "㱍

## 



,



 ..... 

 ..... 
 .....  ..... 
$4.40,128$
-43997
$4.40,128$
-43997
:
 ..... 

is














RECENTLY PUBLISHED. The Metallic Aloors





## FANS.

 GEO. P. CLARK, Manuf.

 $\dot{\mathrm{K}}$ ODEL Double Case TYPE WRITER WANTED.-A reliable party to handle the Eurenk
dress AEEOMatio W. YOCUM, Coupler of Huntingon,

## 




Office of The Scientific American 361 BROADWAY, NEW YORK.




 Nowe cormen Expen it most heartily to all teachers,",



 Clinhe book would be a most judicious holiday gift."
Enitering and Mining




## quatente.

An deutsche Erfinder.

## Die grosse und thätige Klasse der deutschen Erinder in den Vereinigiten Stataten machen wir besonders darauaf aufmerksam, ass unsere Firma durch ihre Verbindun-

 gen mit Washington und den europaiischen Hauphttaiten, besondere Vortheile zur Erlangung von in Jeder Patenten bietet. , hörig, ist durch die liberalen Patentgesetze der Vereinig Unsere Firma ist bereit, gesturtztauf auf eine 45 jährige Erfahrung, deutsche Erfinder jeder Zeit zu berathe und pünktlich Patente zu erlangen.
Unsere e deutsche Abtheilung wird von fähigen deut
And sönlich vorsprechenden Erfindern direkt verkehren, un
Rath und Auskunft geben. - Unsere welthek anute und populär gehaltene Zeitschrift der "Scientific American" besprichtin inren Spalten die hedeutenderen Erfindungen
der Neuzei. Eine kirze Becchreibung von Erfindungen,
die durch uns patentirt werden, geben wir unentgeltich die durch uns patentirt
Parrespondenz in in deutscher Sprache erbeten.
Pamphle, in dentscher sprache, ūber Patente wird auf
Verlangen frei zugeschickt. Pamphlet, in deutscher prache,
Verlangen frei zugeschickt.
Man adressire :



The CHANDLER WATER MOTOR
 WM. H. LOCK, Buffalo, N. $Y$ THE MOD WERN Poik. ICE Yew and valuable paper, containing

 $\underset{\text { Printing }}{\text { Cheap }}$


## A LIBRARY for $\$ 1,00$





## 

## 

Goon HơSEKEEPING with any publication or publications. Send a postal, it costs but a cent, write plain
and don't forget to put down your town, street, and number. Name just as many publications as you want
with Goon Houserering, and if you take many others, you will get the whole lot so cheap that Goon Housekeeping may be had for virtually nothing. You will save paper, envelopes, and stamps, not to speak
of the time you will waste in writing to different publishers. Now. why do we do this, you ask. We expect a lot of them, and while ordering yours we will order hundreds of others, and as we know so well how many
different things there are to do in every twenty-four hours, we will help you to secure your reading matter
Beginning with January, 1891, Good Housereeping will be published monthly. The regular subscription price is $\$ 2.40$ a year, 91.20 for six months, $\$ 1.00$ for five months. Twenty cents a number. All news
dealers sell it. SAMPLE Copies Free.

CLARK W. BRYAN \& CO., Publishers, Springfield, Mass.









PROPOSALS.






 Cris.


## NICKEL PLATING \&POLISHING MATERIALS.  CHEMICAL CO NEW YORKU.S.A NICKEL ANODES, NICKEL SALTS COMPOSITION | ELECRO \& NELCK |
| :--- |
| PLATING OUTFITS. | <br>  <br> Barrel, Keg, Hogshead STAVE MACHINERY. <br> E. \& B. Holmes, 

 The S $S$ cienticic $A$ melician PUBLICATIONS FOR 1890.The prices of the difrent pulications in the United
States, Canada, and Mexico are as foliows. The Scientific American ( (eeekly one year
The Scientifc American Supplement (weekly), one The scientific American .upplement (weekly), one 5.00
yene scientific American, spanish Edition (monthy).
 CoMBINED RATRS.
The Scerntifc American and Supplement The Scientlff American and Architectst and Build. 8 .




STEREOTYPING; THE PLASTER AND mould the best alloys of metal and proper degree o
heat, trimming and mending the plate, etc. Aminut


COMPTOMETER
ALL ARITHMETICAL
 straine Adapted tom alo conta
mercial and scientific compu
tations. Send for circular.

THE FORUM.


 f pressing concern in American life that are in sum
 he Negros is more trequently quoted by the best
THE Forem
anspars, American and Enylish, than any othe Amspapers, hmerican and engelish, than
Aherican pubbication. Its contribut irs inc
than of of tormot write in the world. THE FORCM, NEW YORK.












ELECTRIC MOTORS
ATI BPHCIAT WOORIX
Crocker-WheelerMotorCo.
430 West 14th St., New York

## PERFECTED MOTOR,



ICE.HOUSE AND COLD ROOM.-BYR

 s. S. wheeler,
"Improvement the order of the age."
THE SMITH PREMIER TYPEWRITER


 $\frac{\text { Send for Catalogue. }}{\text { OUR SLIDE TOP }}$ $\stackrel{y}{5}$


H. W. JOHNS ASBESTOS
$\mathrm{O}_{\text {FIREPROOF, }} \mathrm{NON-CONDUCTINQ} \mathrm{O}$,
SO SB PR CENT OF FUEL SAVED. H. W. JOHNS MANUFACTURINC CO.

 онісаво.





 The mat Sucesefulu Iurreato LAN DUZENSPEATENTER



95 MILK ST., BOSTON, MASS.
HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Builders of High Class
Steam Engines. Diamond Drilling and General
Machinery. Flour Mill Rolls Ground and Grooved.


2nd MACHINERY RANKS THE HIGHEST

## NATIONAL <br> TUBE CLEANER

rect


The OTIS Electric Elevator


## GRAVESELEVATORS. NEW KODAKS

> THE EASTMAN COMPANY

## Sciatific Amprican

The Most Popalar Scientific Paper in the World. only 83.00 a Year, including Postage. Weekiy.

This widely circulated and splendidly illustrated
paper is pub istifd weekly. Every number contains sixteen pages of useful information and a large number ot representing Engineering Works, Steam Machinery,
New Inventions. Novelties in Mechanics, Manufactures, Cnemistry, Electricity, Telegrapby, Photography, Archi-
tecture. Agriculture. Horticulture, N: Complete List of Patents ach weels Ter mis of Subscription--One copy of the ScIEN-
TIFIC AMERICAN will be sent for one year-52 numberspostage prepaid. to any subscriber in the United States, Canada or Mexico, on receipt of three dollinis by the
publishers; six monts, $\$ 1.50$; three months. 81.00 . Masters. Write for particulars The safest way to remit is by Postal Order. Uraft, $\boldsymbol{r}$
Express Money Order. Money carefully placed inside cf envelopes, securely sealed, anó correctly addressed seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., payable to MIUINIJ \& CO

361 Broadway, New York. TIEI
Scientific American Supplement.
This is a separate and distinct publication from
TBE SCIENTIFIC AMERICAN, but is unif.rm therewith in size, every number containing sixteen large pages full
of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions.
THE SCINTIFIC AMERICAN SUPPLEML:T is published weekly, and includes a very wide range of contents. It
presents the most recent $p$ ers by emin all the principal departments of science and the
Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astron ${ }^{\text {My }}$,
Chemistry, Electricity, Light. Heat, Nechanical E• Chemistry, Electricity, Light. Heat, Mechanical E- TiShip Building, Marine Engineering, Photography, gineering, Agriculture, Horticultare, Domestic Economy, Biograpty, Medicine, etc. A vast murunt of fresh
and valuable information obtainable in no other pub. licatıon.
The mos
and Manufacturestant Ensineering Works, Mechanisms. Price for the SUP SUPPIIEMENT. Canada. $\$ 5.01$ a year, or one copy of the Scientific AmERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$$ \$7.00. Single copies 10 cents. Address


## Building Edition

 Single copies, 25 cents. Forty large quarto pages, :qual
to about two bundred ordinary book pages; forming a large and splendid Magazine of A rchitecture, richtne engravings; illustrating the most interesting ex-
amples of mudern Architectural Construction and allied subjects
A special teature is the presentation in each number
of a variety ot the latest and best plans for private resierate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Spec fications, sheets of Details, Estimates, etc. have won for it the Largest Circulation of any
Architecural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York.
PRINTING INKS.


