

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

ILLUSTRATIONS OF SIBLEY COLLEGE, CORNELL UNIVERSITY, ITHACA, N. Y.-[See page 229.]

Srientific Amprican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. publishel weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. \quad A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN. One copy, one year. for the U. S., Canada or Mexico...
One cops, six months, for the U. S., Canada or Mexic. One copy, six months, for the U. S., Canada or Mexico. 1
One copy, one year, to any foreign country belonging to Postal Union. 4 Remit by postal or express money order. or by bank draft or check.
MUNN $\&$ CO., 361 Broad way, corner of Yranklin Street, New York.

The Sclentific American Supplement

o foreign countries w

Spaninh Edition of the Scientific American.

NEW YORK, SATURDAY, OCTOBER 11, 1890.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 771.
For the week Ending october 11, 1890. Price 10 cente. For eale by all newedealers.
I. BOTANY.-9ome Notes on Echinocactus.-By C. R. ORCUTT.-
Different species found in Southern California.-3 illustrations Different species found in Southern California.-3 illustrations.... 11. CHEMISTRY ETC.- Notes on the Colors of Minerals.-A list of
the different minerals, giving their chemical constituents and their colors when pare and when impure, torether with the cause of the variation of color.
Examination of Oils, Fats, and Allied Substances.-By THomAs
iiI. CIVIL engineering.-The London Electric Underground Railway.-The plan folloved, methods of construction, and use V. marine enginefring.-The New Steamer Majestic.-A full description of the sister ships Majestic and Teutonic, of the White Star line.-With full page of illustration
V. MISCELLANHOUS.-Meeting of the British Association. 1890.The inuugural address by Sir Friderice a doustus Abil, President, treating of the rapid advance of science in the various
branches, especially those of electricity, metallurgy, physics, apbranches, especially these
plances of war. -2 pot traits.
lopod Oper
vi. natural histort, stock raising, etc.-Hriendship of Birds. -1 illustration..
Early Tambs for Marke
Eariy Lambs for Market.-By Geo. L. Giluingham.-Selecting
the ewes.-Selection and care of the buck.-The lambing season...
VII. ORDNA NCF.-The Victoria Torpedo.-An article treating of the
improvements of torpedoes in general and the Victoria torpedo in improvements of torpedoes in general and t
particular.- With full page of illustrations.
VIII. PHYsics.-A New Form of Sprengel Pump and Apparatus in Connection Therewith.-By SIDNEY S. RAWSON.-
of pumps and advantages of the new apparatus..
ix. physical geography.-The Highest Mountain Peass North A merica.-Height of Ponocatepetl.-The Mountain of Ori-
X. TECHNOLOG Y.-Flexible Gelatine Capsules.-By Jobr A. For-
RET.-A description of the nethods of manufacturing capsules RET.-A description of the methods of manufacturing capsules
from a ceriain formula, and the apparatus used. - tigures.......

MEETING OF THE BRITISH IRON AND STEEL INSTITUTE IN NEW YORK.

During the week commencing September 29, there were assembled in New York City a larger number of representative men connected with the iron and steel inanufacture than were ever before congregated in this or probably any other country. The American Institute of Mining Engineers held its sessions here on September 29 and 30 , and on Wednesday, Octohere on September 29 and 30 , and on Wednesday, Octo-
ber 1 , commenced the daily sessions of the British Iron and Steel Institute, which held its fall ineeting here this year on the invitation of the American society. In addition to a very large attendance of members of both of these societies, there was a numerous delegation of German and French engineers present, and one of the principal hotels of the city, which had been made the headquarters-of the visiting delegates, was crowded to overflowing. The time not taken up by the regular business at the meetings was devoted to sight seeing and social intercourse of the most friendly nature in New York and vicinity, the visitors then departing to inspect the mines, furnaces, and leading industrial establishments of the country, view some of its more notable exawples of engineering work, and obtain a more adequate conception of the great wealth of its natural resources, a task to which a number of the visitors will devote themselves for several weeks.
The British Iron and Steel Institute was founded in 1869, two years before the similar societies in America and Germany, and among its original members were Sir Henry Bessemer, Sir J. Lowthian Bell. and Sir William Siemens. The society has included in its membership nearly all who have been in any way prominent in the iron and steel manufacture of Great Britain for the past twenty years, and although it has formerly held meetings in othercities-in Paris, Liege, Dusseldorf, and Vienna-it is peculiarly significant that is should hold its first meeting on this side of the Atlantic in the first year in which the American production of iron exceeds that of Great Britain. Hereafter, the United States will lead the world in this great branch of inanufacture, with a constantly increasing production the magnitude of which no one would wisely undertake to predict, but it is rather as co-workers in the same field, than as competitors, that our iron masters met the visiting engineers.
The address of welcome to the visitors by Mr . Carnegie, the president of the American society, was extremely felicitous, and especially so in its generous acknowledgment of what was due from A nerican iron manufacturers to the foreign workers in the same field, concerning which he said: "What the new land owes to you of the old constitutes so vast a debt as to baffle computation. In your own immediate domain of co il, of iron, and of steel, we have been only your pupils. The original inventions were all your own. The American has necessarily been restricted to the development and improvement rather than to the origination of new methods in this department. The genius of Eu rope has preceded him and invented the of Cort, Neilson, Nasmyth, Bessemer, Siemens, Thomas, Whitwell, and Gilchrisf, the investigations of Bell, Richards, Snelus, Riley, and others of Europe, have made possible the amazing development of our own country."
In replying to this address Sir James Kitson, Presi dent of the British Iron and Steel Institute, dwelt particularly on the idea that the progress which had been made in the iron manufacture during the past twenty years had been in a marked degree due to the establishment of scientific institutions, the discussions before which disseminated the truth as to new methods and processes and discovered and made possible the early rectification of errors and mistakes. The second president of their society had been "Sir Henry Bessemer whose brilliant discovery of a process for the produc tion of steel, with which his name will forever be associated, has revolutionized the trade and led to vast industrial developments throughout the world. Next came Sir Lowthian Bell, described, and justly so, by
your Professor Howe, as 'magister magnus in ignibus,' whose interest in our work and proceedings has been maintained with unflagging zeal for one and twenty years, whose scholarly attainments and scientific and practical knowledge have been of infinite service to this institute."
Among the interesting figures given by President Kitson were the following:
'The production of open hearth steel last year was, in Great Britain alone, $1,429,169$ tons. This was very largely employed in the building of ships, the gross tonnage of ships launched in the United Kingdom in 1889 having been $1,288,251$ tons, of which $1,215,276$ tons were of steel-steel made by the open isearth process esting, too, to note the rapid progress of the basic process, invented and developed by Messrs. Thomas \& Gilchrist, materially assisted by other members of this institute, during the twelve months ending December 31, 1889. The total make of steel and ingot iron from phosphoric pig during this period amounts to $2,274.552$
tons, being an increase over the make for the previous
twelve months of about 321,318 tons, and making the total production of basic steel to this date $10,845,000$ tons. It will be noticed that of the above mentioned make of $2,274,552$ tons, no fewer than $1,764,639$ tons were ingot iron, containing under $0 \cdot 17$ per cent carbon. With this 2,274,552 tons of basic steel were produced some 700,000 tons of slag (containing about 36 per cent of phosphate of lime), most of which was used as a fertilizer."
Perhaps the most notable event of the week was the presentation to Hon. A. S. Hewitt of the special Bessemer gold medal which had been awarded him by the British institute, for distinguished services in the development of the manufacture of iron and steel. In presenting the medal President Kitson said : "Inmediately after Sir Henry Bessemer's first experiments were announced, Mr. Hewitt went to England to investigate it, and so rapidly did he work-as all American iron men seemed to work-that he had the first Bessemer converter running in the United States at his iron works in New Jersey within sixty days after English circles knew of this invention of the pneumatic process. Mr. Hewitt was alsc the first to build an open hearth furnace in America. He was identified with this branch of the steel business from the first announcement of Mr. Snelus' improved basic lining to the perfection of the Thomas and Gilchrist process, which he introduced in the new world."
In accepting the medal Mr. Hewitt made a forcible speech in elucidation of the value of the Bessemer invention to the world, during which he said:
" 'The whole product of steel of all kinds made prior to his invention was insignificant. 'ro-day the production has reached $10,500,000$ tons, being at least onethird of the whole consumption of iron in the world. It is still rapidly advancing upon the domain occupied by the ordinary iron of commerce, and it is quite evident that the time is not far distant when this commodity wiil be regarded as a relic of the past, although in some special branches its use will survive, serving to remind us of processes which otherwise would have been consigned to history. I do not propose to enlarge upon the practical application of the Bessewer process to the manufacture of steel, but, if you will bear with me, I think it would be well to direct attention to the effects of this invention upon the economic, social, and political condition of the world. A very few considerations will serve to show that the Bessemer invention takes its rank with the great events which have changed the face of society since the time of the middle ages."

Memorial to Alexander L. Holley.

On the afternoon of October 2, the members of the British Iron and Steel Institute joined with the American society in the ceremony of unveiling a memorial statue of the late Alex. L. Holley, in Washington Square, New York City. Previous to the unveiling, a eulogy was delivered by Mr. Jawes Dredge, of Engineering, London, who told of Holley's early life, his strong liking for mechanics, and delight in making drawings of engines. He left Yale to take the scientific course at Brown University, and was graduated in 1853 with honors; after which he entered a number of machine shops about the country. He wrote on scientific sulijects connected with an engineer's profession for various magazines and papers, and in 1857 became the owner of a paper devoted to railroad matters. He was not successful financially in this venture or in several others of a similar nature, and went to Europe to study the railroads there. He published several books as the result of his experiences, which aroused great interest in the engineering profession. His most conspicuous successes resulted from his association with Sir Henry Bessemer, of whom he purchased the American rights for his invention of the new process for making steel. He became intimate with all the great engineers of the world, who were attracted by his writings and speeches as well as by the records of his work. He was himself an inventor and improved many points in the Bessemer process. He died on January 29, 1883.
The statue is a bust, modeled by Mr. J. Q. A. Ward. It is of bronze, and a perfect likeness of Mr. Holley. The pedestal, of sandfinished limestone, is particularly handsome. The rectangular die rising from two steps is surmounted by a handsome ornate cap, the whole being eight feet high. It is flanked by two wings, jutting out near the back and terminating in rectangular posts five feet high. The inscriptions are
"In Honor of Alfixander Lyman Holley. Born in Lakeville, Conn., July 20, 1832. Died in Brooklyn, N. Y., January 29, 1882 . Foremost among those whose genius and energy established in America and improved throughout the world the manufacture of Bessemer steel. This memorial is erected by engineers of two hemispheres.'

Do not spare sulphur from the mixture when you salt your cattle. It will cool and purify their blood, and probably save you from having distemper or bloody murrain. Sulphur is the only remedy I have ever
found, says W. W. Hobson, in one of our exchanges.

The Worat Serpent in the Wor de Capello.
 Portuguese traders found in the East Indies a peculia

 erpent in early days, and named it in their own lan guage "the snake of the hood," and even till this day this fatal serpent is generally known as the "cobra," rather than "Naja tripudians," which illustrates the rather than" Naja tripudianThe "Naja tripudians" belongs to the genus "Najadæ," or hooded serpents, class "Elapidæ," sub-order "Colubriform," and order "Ophidia.
To locate the cobra exactly it may be an assistance to notice that the order "Ophidia" is divided into two great sub-orders, each subdivided :

1. Colubriform. 2. Viperiform.

The second sub-order is represented in India and Ceylon by six genera.

Viperiform serpents are all poisonous.
The first sub-order is represented in India and Ceylon by nine genera of venomous snakes and seventeen genera of innocuous snakes.
Colubriform serpents of the subdivision "venomous" present four genera of "Hydrophidæ," or sea serpents-which we do not wish to consider--and five genera of the class "Elapidæ," or gliding serpents, and to the genus "Najadæ" belongs the species "Naja tripudians," commonly known as the "cobra de capello " or hooded snake, and locally in India and Ceylon and the East Indies, in its varieties, as " gokurruh," "kutiuh" in India, "pariah nahum" and " nulluh "kutiuh" in India, "pariah nahum" and "nulluh nahum" in Ceylon, and by similar local
pore and other parts of the East Indies.
My observation of the cobra has been limited to Ceylon, and particularly to Jaffna, a Tamil district in the northern province of the famous "pearl and spice isle."
The Hindoo religion prevails there, and the superstitious reverence in which devout Sivites hold this terrible reptile may account in Ceylon as well as in India for some part of the annual loss of life from the bite of venomous serpents.
Tawils speak of two cobras in Jaffna. First "pariah nahuin," or low caste furious cobra.
This serpent has the ocellus or spectacle mark upon the back of the hood. In speaking of the hood, the natives-referring to this double mark-say "pardum," or picture. This serpent attains a length of from three to six feet, and is of a medium brown color upon the back, unvariegated, while the ventral surface is metallic in luster and grayish white in color, with two purplish blue bands diametrically crossing at the neck.

The second variety, euphemistically called "nulluh nahum,'' or good cobra, is smaller and more deadly, if possible, while the ocellus is faint or missing, and the back delicately marked with inverted V-lines of dark brown upon a lighter gronnd work of the same color, somewhat intermixed with faint yellow dashes.
This serpent is very beautiful and remarkably perfect in shape, as evinced by a specimen that was killed in Batticotta church upon the evening of September 1, 1889.

All the species of genus " Najadæ" are hooded, but not all ocellated
The hood is expanded by means of free elongated ribs sidewise.
The cobra only expands its hood when angered, cor nered, or struck.
It is very terrifying even to strong nerves and cool heads.
Cobra venom is different from viperine poison, for this serpent is not a viper at all.
The toxic element is venom peptone, according to Dr. Weir Mitchell, and attacks nerve centers at once.
Men who have been bitten by a cobra die in from one to three hours of inability to breathe.
Many antidotes for " venom de Naja" have been suggested, affirmed and employed, but any crucial test shows them to be unavailing.

The conclusion is at present that there is no known physiological antidote, although $\mathrm{NH}_{4} \mathrm{OH}$ and KMnO_{4} are very useful.
There seems to be a wide and dangerous field of dis covery open to analysts, physicians, and specialists in this line. Speed the undisco vered!
Amherst, Mass.
Wm. D. Marsh.

Edison's Accidental Discoveries.

Dr. William D. Gentry, of Rogers Park, Ill., a life long friend of Mr. Edison, relates the following interesting reminiscences :
"When I look back to twenty-five years ago, and put Tom Edison as I then knew him alongside of the Thomas Edison of to-day, and note what has taken place, I am prepared almost for anything. Twentyfive years ago, as I sat by Edison in a New York telegraph office, I little thought that there slumbered within that man the fire of a genius that would one day startle the world. There was nothing wonderful about Edison. A plain and unpretentious man, he conversation. Perhaps he spoke to me more than to
any other man in the place, because we sat at adjoining tables.

One day his wire gave out or went wrong in some way. He was working New Haven, I was operating Boston. He started to fix it, and while thus engaged his message came back over wy wire. I called him. 'Tom, can you explain this?' He looked for a moment and then remarked, 'Why, that is caused by induction ; the two wires are near each other.' He went off and shortly afterward came back, seemingly lost in thought. 'Yes; that's what causes it,' he repeated. 'I wonder if we could devise a plan like that to make two circuits on one wire, so that two men could send and two others receive at the same time?' And he went back to his instrument.

There is a tide in the affairs of men
Which, taken at the finod, leads on to forṭne.
" Tom Edison took it then. Out of that little accident, he devised the duplex telegraph system. Then followed the quadruplex, and these have saved the telegraph company willions of dollars.
"He had been working on a telegraph system, but he discovered that the Wheatstone system-I think that is the name-covered the ground, and he gave it up. You know the rest. Edison's achievements are now no secret.
The steps leading up to that perfected phonograph, how Edison discovered that the sound waves of the human voice might be so directed as to trace an ful. Edison found it, almost accidentally while he was experimenting with a different object in view. In manipulating a machine intended to repeat Morse characters, he found that when the cylinder carrying the indented paper was turned with great swiftness, it gave off a humwing noise. That led to several expe riments, such as fitting a diaphragm to the machine, which would receive the vibrations made by the voice. The cylinder, when rapidly revolved, caused a repetition of the original vibrations, just as if the machine itself were speaking. That settled the matter, and Edison found that the problem of registering human speech so that it could be repeated by mechanical means as often as might be desired was solved. Yes Edison is a genius."

Fortunes in Small Inventions.

Every little while the newspapers take up the subject of inventions and tell their readers how many have made fortunes out of small inventions. The Pittsburg Dispatch gave the other day a list of small things that have made their inventors wealthy. It commences with the pen for shading in different colors, which yields an income of $\$ 200,000$ per annum. The rubber tip at the end of lead pencils has already made $\$ 100,000$. A large fortune has been reaped by a miner who invented a metal rivet or eyelet at each end of the mouth of coat or trousers pockets to resist the strain caused by the carriage of pieces of ore or heavy tools. In a recent legal action it transpired in evidence that the inventor of the metal plates used to protect the soles and heels of shoes from wear sold upward of $12,000,000$ plates in 1879, and in 1887 the number reached $143,000,000$, producing realized profits of $\$ 1,250,000$.
A still more useful invention is the "darning weaver,'' a device for repairing stockings, undergarments,
etc., the sale of which is very large and increasing. As large a sum as was ever obtained for any invention was enjoyed by the inventor of the inverted glass bell to hang over gas to protect the ceilings from being blackened, and a scarcely less lucrative patent was that for simply putting emery powder on cloth. Frequently time and circumstances are wanted before an invention is appreciated, butit will be seen that patience at times
is well rewarded, for the inventor of the roller skate made over $\$ 1,000,000$, notwithstanding the fact that his patent had nearly expired before its value was ascertained.
The gimlet-pointed screw has produced more wealth than most silver mines, and the American who first thought of putting copper tips to children's shoes has realized a large fortune. Upward of $\$ 10,000$ a year was To the foregoing might be common needle threader. To the foregoing might be added thousands of trifling
but useful articles from which handsome incomes are derived, or for which large sums have been paid. Few inventions pay better than patented toys. That favorite toy, the return ball, a wooden ball with an elastic attached, yielded the patentee an income equal to $\$ 50,000$ a year, and an income of no less that $\$ 75,000$ fell to the patentee of the "dancing jimcrow.'
The invention of "Pharoah's serpents," a toy much in vogue some years ago, was the outcome of some chemical experiments, and brought the inventor more
than $\$ 50.000$. The sale of the little wooden figure, "John Gilpin," was incredibly large for many years, and a very ingenious toy, known as the "wheel of life," is said to have produced upward of $\$ 100,000$ profit to its inventor. One of the most successful of modern toys has been the "chameleon top," the sale of which has been enormous. The field of invention is not only vast
and varied, but is open to everybody, without respect to sex or age, station or means.

Two Important Movements.

There are at present two commendable projects under way in this country, and ones that will be the means of imparting to those of our rising generation who are inclined to become thorough mechanics a theoretical and practical knowledge of mechanism.
The first project originated with the noted ship builder and philanthropist, Williain H. Webb, who, since his retirement from the shipbuilding industry, has been seeking a means by which young men may becowe educated in the art, science and profession of shipbuilding, and also afford free and gratuitous aid, relief and support to the aged, decrepit, invalid, indigent or unfortunate men who have been engaged in building hulls of ships or vessels, or marine engines for such, or any part of either the hulls or engines in any section of the United States.
The new institute to be built will be known as Webb's Academy and Home for Shipbuilders. Real estate located in this city, and valued at over one mil lion dollars, has already been deeded to this home The cost of grounds, buildings, and additional en dowment required will necessitate an investment of two million dollars, all the State law allows.
Notwithstanding he long since ceased to build ships, Mr. Webb has not lost his interest in the profession, as is shown by his exertions to establish a home for old shipbuilders and a school for young ones. There are only two similarinstitutions in the world-one in Lon don and one in Paris. What a favorable opportunity will this be for any young man who is a native or citi zen of the United States, and who may, u pon examina tion, prove himself competent, of good character, and worthy. With these requisites he will be entitled to ree and gratuitous education in shipbuilding and ma rine engine building, together with board, lodging and necessary implements and materials while obtaining such education.
The other project is the opening of the engineer corps of the navy to young mechanics who have shown a special aptitude. Those who are urging these changes seem to be influenced by the consideration that the ex tensive machinery of the new steamships of the navy requires a greater number of engineers than the old style war ships. The tendency of the naval academy education is to ward the theoretical rather than the practical, and the navy draws from its ranks men who are far better fitted to design and construct machinery han they are to stand in the engine room and run th engine.
This matter will receive attention in the coming annual report of the engineer in chief and secretary of the navy, and will be watched for with interest, as it will be the means of affording employment to many competent and worthy engineers.-American Ship builder.

Bromoform in Whooping Cough
Dr. Hugo Lowenthal, of Professor Senator's clinic in Berlin, has tried bromoform in the treatment of whoop ing cough, it having been recommended by Dr. Stepp, of Nurnberg, and he is disposed to agree with him in considering it a very valuable remedy. Dr. Lowenthal says that it exerts an almost specific action upon whooping cough, at all events, if it is used at the commencement. A hundred children were treated with it, varying in age from 8 weeks to 7 years. The doses given were from 2 to 5 drops three or four times a day. The liquid was simply dropped into a tablespoonful of water, and formed a bead floating in the water. The quantity dispensed at once was about a drachm. The parents were cautioned to keep the bromoform from the light, as otherwise it is liable to be decomposed. As a rule, the good effects of the medicine began to show themselves on the second or third day, the vowiting being arrested within a week after the commencement of the bromoform. In cases where complications, such as pneumonia, occurred, they ran a favorable course, and where there were relapses, a return to the bromoform soon arrested the symptoms. In a very few cases the drug appeared to produce sleepiness and lassitude, and in one case, that of a weakly child a little over a year old, where a drachm had been given in the course of three days, a semicomatose condition was induced. Subcutaneous injections of ether revived the child, who was found to have pneumonia. This, however, ran a rapid and favorable course, and afterward the whooping cough was successfully treated by renewed doses of bromoform.Lancet.

Another Tunnel under the Hudson River.
The scheme to connect Staten Island and Long Island by a tunnel under New York Bay at the narrowest point of the channel, near the mouth of the Hudson, is beginning to take definite shape. A bill to authorize the construction of such a tunnel was introduced lately in Congress, and referred to the Committee on Commerce. The concern seeking the franchise from Congress is the New Jersey and Staten Island Junction Railroad Company. The immediate point in view is to give the trunk lines now centering on the Jersoy shore a Brooklyn terminus.

THF RANSOME CONCRETE MIXER.

The economic use of concrete has been greatly limited in every branch of construction by the crude and imperfect manner of mixing the materials. Hand man ipulation with the shovel and hoe is not only slow and expensive, but is necessarily inefficient in the thorough admixture of the ingredients, and the character of the work suffers in consequence. In almost every other department of building, mechanical appliances, driven by steam, have superseded hand labor. The steam drill, pump, excavator, rock crusher, and elevator, may have ouly greater speed and efficiency to commend them, the quality of the work not necessarily being any improvement upon the more toilsome methods they have supplanted. But when materials are to be mechanically united and a compound formed, the quality of which depends upon the accuracy of the proportions and the thoroughness of the wanipulation, manual labor becomes not only slow and expensive, but also a very inferior and unsatisfactory substitute for the precision and effectiveness of automatic mechanism, driven with ceaseless persistence and untiring force.

Ernest L. Ransome, of San Francisco, has invented and introduced into successful use there a series of easily operated machines for the wore accurate handling and rapid and perfect mingling of the various constituents for concrete or monolithic construction. These devices are covered by U. S. patents Nos. 306,522, 322,006 410,292 , and 416,
950. No. 1 is a sta tionary machine No. 2 is portable and No. 3, shown in our illustra tion, works auto matically. The last named is the largest and lates of the series, and is designed to meet the require ments of the most extended work. It is perfectly automatic in the feeding, as well as in the process of mixing.
This mixer con sists of, First suitably arranged chutes or bins fo the reception and supply of the ce ment, sand, and broken stone as required. To these are attached independent measuring chambers suring chambers cally determine, by means of easily regulated gates or supply openings, the exact propor tions of each to be fed to the mixer. Second : a traveling carrying trough or channel, which receives from the measuring chambers the several constituents, and conveys them to, Third : the rotary receiving drum or cyl inder, which, mounted upon rollers or wheels, receive the materials, and perfectly mingles them into one compact inass.
The rotary drum has upon the inner surface of its periphery directing guides or flanges, and lifting shel ves, by means of which the materials are thrown together perfectly commingled and delivered. The water is admitted into the mixing chamber, and the discharge regulated to meet the requirements of the case.

The entire process, including the exact proportions of the constituents, is adjustable by the operator at will, and can readily be so arranged as to insure automatic accuracy and unexampled perfection of work.
The efficiency of this machine is something altogether unapproached by any other known process or device. The first of the No. 3 mixers was employed upon th Academy of Sciences, San Francisco, and the second upon the Piedıont and Fourteenth Street Cabl Roads, Oakland, Cal
Further information relative to these machines may be obtained by addressing the Ransome \& Suith Co.. 230 Montgomery Street, San Francisco, Cal or at the office of J. W. Mather, 48 Wall Street, New York City.

The British Association address in section E, geo graphy, was delivered by Sir R. Lambert Playfair, K. C.M.G., F.R.G.S., president, who said that for nearly quarter of a century he had held an official position in Algeria, and it had been his constant delight to nake himself acquainted with the islands and shores o the Mediterranean, in the hope of being able to facili tate the travels of his countrymen in that part of the world. What he had to say might be to some a twicetold tale; but still he should like to speak in a familiar way of the "great sea," as it was called in Scripture. It was a well defined region of many parts, all intimately connected by geographical character, geology, flora fauna, and the physiognomy of the people. To the general statement there were two exceptions-Palestine and the Sahara. The Mediterranean region wa the emblem of fertility and the cradle of civilization. The sea, a mere gulf, now bridged by steam, rather united than separated the two shores, modifying thei climate and forming a junction between three conti nents. The Atlas range was a mere continuation o the south of Europe. It was a long strip of mountain land, about 200 miles broad, covered with splendid forests, fertile valleys, and in some places arid steppes. In the east of the range the flora and fauna do not es sentially differ from those of Italy; in the west they resemble those of Spain. A conifer (Abies pinsapo and alfa grass or esparto grow in both the Atlas and

THE RANSOME CONCRETE MIXER.

South Europe. Of the 3,000 plants found in Algeria the greater numbêr are natives of Southern Europe and less than 100 were peculiar to the Sahara. The commonest plant on the south shores, the dwarf palm, grows spontaneously on the north shores, but does not occur in Palestine, Egypt, or the Sahara. There are maminalia, fish, reptiles, and insects common to both sides of the sea. Sowe of the larger animals, such as the lion, panther, jackal, etc., have disappeared before civilization in Europe, but lingered through Moham medan barbarism in Africa. There was abundant evi dence of the former existence of these and other large mammals of tropical Africa in France, Germany, and Greece. It was probable they only migrated to tropi cal Africa after the upheaval of the great sea which in Eocene times stretched from the Atlantic to the Indian Ocean, making Southern Africa an island. The original fauna of Africa, of which the lemur was the distinctive type, was still preserved in Madagascar which once formed part of Africa. The truut wa ound in all the snow-fed rivers which fell into the sea but not in Palestine south of the Lebanon, or in Egypt, or the Sahara. The fresh water salinonoid wa European type often found in the Atlas. There were newts and tailed batrachians in every country round the sea, again excepting Palestine, Egypt, and the Sahara. The zone of desert called the Sahara was
popularly supposed to have been a vast inland sea, in
very recent times; but the theory was supported by geological facts wrongly interpreted. It was abun dantly proved by the researches of travelers and geo logists that such a sea was neither the cause nor the origin of the desert. Rainless and sterile regions occurred in two belts around the world about equal dis tances north and south of the equator. These corre sonded in locality to the great inland drainage areas from which no water can be discharged into the ocean and which occupy about one-fifth of the totalland surace of the globe. Some parts of the Sahara (described n detail) are below the level of the sea, and here are ormed open depressions without any outlets, inundat ed by torrents in winter and covered with a saline efflorescence in summer. The salt does not prove the former existence of an inland sea; it is produced by the concentration of the natural salts washed down by winter rains, with which the unevaporated residue of water becomes saturated.

Opening of the River Danube.

An important work in clearing the lower Danube was inaugurated September 15. After being joined by the Save, the Danube forms the boundary between Servia and Hungaria. At Semlin, near Belgrade, it is 1,706 yards wide, but soon becomes contracted by spurs of the Transylvanian and Servian Mountains Within the space of seventy-five miles there are eight istinct and the most dif ficult being tha known as th Iron Gate.
It has hitherto presented a seri ous and impass able obstacle to navigation. Many attempts have been made to en large the channel Austria having bound herself to do so under th treaty of Berlin but the first seri ous effort has only now been made.
On the 15 th the Hungarian minister of com merce fired the first of a series of blasts by mean of electricity, in tended effectually to remove a por tion of the ob struction.
Hitherto $t w o$ engineering sys tems have been advocated, the first being urged by French capi talists, and in volving the use of locks; the second was pre sented by an Anglo - American company, which proposes to util ize the plan adopted by the Roman Emperor Trajan begun by him, but never completed. This proposes to construct a navigable canal round the Gate, blast ing minor rocks, cutting channels, building dams and ther improvements. It is this plan that has been adopted.
The effect of the present undertaking on the com merce of Europe and the East, when it shall have been ompleted, will be most beneficial, and can only be de scribed as a most desirable international enterprise.

The Forty-Inch Telescope objective for the Uni versity of Southern California.
The glass for one part of the great forty-inch object ve for the new Southern California observatory ha been received by the Clark Brothers, of Cambridge port, Mass. They were the makers of the thirty-six nch objective of the Lick telescope, which is now the largest in the world. The new one is to be of four inches greater diameter. The telescope is to be mount ed in an observatory upon Wilson Peak, of the Sierra Madre Mountains, 12 or 15 miles back of Los Angeles Cal. The site is about 6,000 feet above sea level, and will be favored by an unusually clear atmosphere.

Paper and pulp making stands thirteenth among the sixty-three industries of Wisconsin, and new plant to the value of $\$ 243,775$ were erected last year.

AN EXPERIMENT IN RESONANCE.

BY aEO. m. Hopkins

Nearly every one must have heard the cathedral clock gong. Some time since it was applied only to fine French and English clocks, but at present it is largely used in the better class of American clocks. There is, however, a great difference in these gongs and in the way in which they are mounted, and a corresponding difference in the sounds they emit when struck. A gong of uniform temper attached to a standard of suitable weight, securely fastened to a sounding board of sufficient size and thickness, is capable when struck of producing a composite sound, strongly resembling that of a very large, moderately distant musical bell. To avoid a harsh, clanging, metallic sound, the hammer used in connection with a cathedral gong is provided with a comparatively soft striking face, consisting gen

EXPERIMENT WITH THE CATHEDRAL CLOCK GONG and resonator
erally of a firm piece of sole leather. If one listens intently to the sound of one of these gongs, he will intently to the sound of one of these gongs, he will
be able with little difficulty to detect a few of the be able with little difficulty to detect a few of the
many tones which form the very complex sound. He can readily distinguish a very grave, subdued note, also a sound of high pitch, and a discord, but no approximation to the nuwber of sounds produced by the gong can be made without a resonator which will select out thedifferent sounds in succession. An instrument of this kind is shown in the annexed engraving. It consists of an upright tube closed at the bottom, open at the top, and furnished with a small lateral tube at the bottom for receiving a flexible tube for conveying water. In the present case the flexible tube is connected with an ordinary tin pail having a lateral tube at the bottom. The upright tube is elevated above the level of the table so that its full length may be utilized as a resonator. The cathedral gong used in this experiment was a small one formed of a rod of steel oneeighth inch wide, one-sixteenth inch thick, and about thirty inches in length, formed in a spiral of about three turns, the outer end being secured to an arm projecting upward from a heavy metal cap resting on the top of the resonator. The hole in the cap is somewhat smaller than the mouth of the resonator

The gong being struck at a point, near its fixed end by a small soft rubber mal let, is set in vibration. As the striking is repeated at frequent intervals, the pai containing the water is raised, causing the water to flow quietly into the resona tor, gradually diminishing the length of the column of air contained by the tube When the length of the air column is such as to respond to any particular such as to respond to any particular
note, that note is re-enforced so as to note, that note is re-enforced so as to
become prominent. In this manner one note after another is brought out unti the last and highest is heard.
By lowering the pail and allowing the water to return to it from the resonator the re-enforced sounds will be heard in reversed order. As many as eight tones will be heard prominently, while with more care still others will be heard thus showing the complex character o the sound produced by the gong, and showing clearly the reason of the harmonious and pleasing effect which has made them so popular.
By skillfully using the mouth as a re sonator, most of the tones may be sepa rated out so as to be readily distinguished by the operator.

Employer's Liability-Safe Machinery
The measure of an employer's liability in the matter of providing machinery for his employes was defined as follows by the Supreme Court of Pennsylvania in the recent case of the Lehigh \& Wilkesbarre Coal Company $v s$. Hayes: "An employer is not bound to furnish for his workmen the safest machinery, nor to provide the best methods for its operation, in order to
save himself from responsibility for accidents resulting from its use. If the machinery be of an ordinary character, and such as can with reasonable care be used without danger to the employe, it is all that can be required from the employer; this is the limit of his responsibility and the sum total of his duty."

A MACHINE TO SET AND FILE SAWS

In the machine herewith illustrated the saw is alter nately clamped and released, and moved the distanc of one tooth during the reciprocation of the file by means of a holder sliding in a guideway, the teeth being at the same time automatically set by an ad justable mechanism, whereby the work is effected with unfailing accuracy, and the teeth appear uniform when filed. It is a patented invention of Mr. W. H Parry, New York City.

On the power shaft in one end of the frame of the machine is a crank disk which operates a slide moving in a longitudinal guideway, a file holder on the outer end of the slide having adjustable bushings by means of which different sized files may be readily supported therein. The guideway is pivoted at its inner end on the main frame, while its outer end is supported upon a friction roller adjustable upon a lever, there being on the rear end of the lever a friction roller engaging a cam, whereby, when the slide moves outward, the file remainsin a horizontal position, but on its return stroke the file is raised from the saw. A spring whose tension can be readily regulated holds the outer end of the guideway in contact with the friction roller
The saw is held on a transversely extending bar held between the fixed and movable jaws of a cla:uping device, the transverse bar being connected with verti cally arranged racks whereby it may be adjusted ac cording to the width of the saw blade. The fixed jaw of the clamp is formed on the main frame, and the movable jaw is made in the form of a lever fulcrumed on the main frame. The movable jaw has a tail piece carrying a spring whose free end rests on a cam ful crumed on a pin on the main frame, and the cam has an arm carrying a friction roller engaging a cam on the main driving shaft,whereby a releasing and clamping movement is given to the movable jaw. On the op of this jaw is held a block whose front face is in line with the face of the jaw, and carrying a guide bar adapted to engage the top of the teeth of the blade holding the latter in place as it is fed along. Over the rounded front edge of this block the feed pawl is adapted to travel in feeding the saw forward to bring new teeth successively in line with the reciprocating file. The feed pawl is pivoted on the outer end of a feed lever whose other end has a pin engaging a cam on the main driving shaft, each revolution thereo moving the pawl backward and forward, while the eeding forward of the blade is regulated by means of stud on which the pawl lever is mounted. Fig. 1 represents the position of the pawl as the blade is being ed forward, while Fig. 2 shows its position during the orward stroke of the file.
The saw-setting mechanism has a longitudinally ex tending bar operated from the main shaft to make a forward and backward stroke to two full strokes of the file. In the front of the bar is a vertical slot in

PARRY'S SAW FILING AND SETTING MACHINE

which slide dies for setting alternate teeth to the right and left on the saw blade, the dies being adjustably held by set screws, and readily movable to the posi tion necessary to set the teeth of the saw blade more or less to the right and left. The handle seen at one side will be used, ordinarily, only during the adjustment of the saw in the machine for the starting of th work
For further information relative to this machine address Mr. G. H. Havens, Fifty-sixth Street and Eleventh Avenue, New York City.

A VACLT COVER FOR SIDEWALK OPENINGS

The illustration represents a device designed to af ford for vault openings a cover which may be conveni ently lifted and held in elevated position, for purpose of ventilation and the introduction of coal or other material into the vault below, without entirely removing the cover from the opening it is designed to close. It has been patented by Mr. Henry W. Sauer, of No. 207 Tenth Avenue, New York City. The lining thimble or shell inserted in the vault hole, and permanently fixed in its arched roof, has secured in its sides verti cally arranged keepers or rectangular loops, adapted to engage toes integral with downwardly projecting limb on the under side of the cover. The handles are made of rectangular links, loosely secured to slide in perfora tions in the cover, which, in use, may be raised to the height desired and then held in such position by a

slight lateral turn, whereby the toes on the limbs may be placed in engagement with the keepers. A revers novement of the cover will permit it to be lowere upon its seat in the top of the vault opening.

Horned Dinosaurs.

At the late meeting of the British Association, in the Geological Section, Prof. Marsh gave an interesting account of his discoveries with regard to the gigantic Ceratopsidæ, or horned Dinosaurs. During the las wo years Prof. Marsh has been working in the far West of America, near the Rocky Mountains, at certain beds called Laramie. It was formerly doubted as to whether these beds were tertiary or cretaceous, and it has now been found, by examination of the flora, tha he lower part is true cretaceous and that the upper part is tertiary. In the true cretaceous these saurian emains have been discovered. They are of great size, and the blocks in which they are embedded sometime weigh as much as two tons. Securing them has been a work of great difficulty, and has called for the exercis of much engineering skill. The remains, of which the professorexhibited diagrams, particularly of the skull, differ from those most fami liar to European workers. The skull is of great size, and is characterized by two large horn cores near the eyes, and by one smaller horn core on the nose, like the rhinoceros, the latter extending a con siderable way backward, where it appear to be armed by rudimentary cores. The teeth also are peculiar in having two fangs implanted crosswise. In the adult the length of the skull is quite eight feet The brain is relatively very small. To bear this enormous weight there are pecu iar modifications of the neck vertebr and of the four limbs. Prof. Marsh is disposed to refer this Ceratopsida to a distinct order of the Dinosaurs.

A Paste which will stick Anything. A paste which will stick anything is said by Professor Winchell to be made as follows: Take two ounces of clear gum arabic, one and a half ounces of fin tarch, and half an ounce of white sugar Dissolve the gum arabic in as much wate as the laundress would use for the quan tity of starch indicated. Mix the starch and sugar with the mucilage. Then cook the mixture in a vessel suspended in boiling water until the starch becomes clear. The cement should be as thick as tar and kept so. It can be kept from spoiling by the ad dition of camphor or a little oil of cloves

To cure a felon, says a correspondent, mix equa parts of strong ammonia and water, and hold your fin ger in it for fifteen minutes. After that withdraw it and tie a piece of cloth completely saturated with the mixture around the felon and keep it there till dry.

Cements of Rubber and Gutta Percha.*
The number of rubber cements in use all over the world is something remarkable. Almost all of them have as the base either gutta percha or India rubber, and some cheap solvent. Gutta percha tissue, to be sure, is used as a cement without the addition of any solvent, its sticking properties being brought out by the application of heat. This may be noticed in the application of the bindings that goaround the bottoms of trousers and the stamp marks in hats, and other work of a similar nature. In making a cement, one should know pretty thoroughly what is to be expected of it before they could advise upon it. For instance, an ordinary rubber cement will hold on a host of different surfaces and with the best of success, except where there is continued dampness. For holding to damp walls, or surfaces where there is a constant pres ence of moisture, there is nothing equal to Jeffry's marine glue, the formula for which has been published and republished all over the world. It consists of India rubber, 1 part; asphaltum, 2 parts; coal tar, 12 patas

The rubber, after having been massed, is dissolved in the undistilled coal tar, and the asphaltum is then added. This glue, as its name indicates, is oftentimes used for mending articles at sea, or patches, for instance, that are to be laid on surfaces that are to be under water, and it has been found to be a most excellent thing. Of glass cements there are a great many, the rubber as a rule being dissolved in some very volatile solvent and some hard drying gum is added. . . .
A gutta percha cement for leather is obtained by mixing the following. It is used hot; gutta percha, 100 parts; black pitch or asphaltum, 100 parts; oil of turpentine, 15 parts. An elastic gutta percha cement, especially useful for attaching the soles of boots and shoes, as on account of its great elasticity it is not liable to break or crack when bent. To make it adhere tightly the surface of the leather is slightly roughened. It is prepared as follows: by dissolving 10 parts of gutta percha in 100 parts of benzin. The clear solution from this is then poured into another bottle contain ing 100 parts of linseed oil varnish, and well shaken together.
Davy's universal cement is made by melting 4 parts of common pitch with 4 parts of gutta percha in an iron vessel, and mixing well. It must be kept fluid, under water, or in a dry, hard state.
A very adhesive cement, especially adapted for leather driving belts, is made by taking bisulphide of carbon, 10 parts, oil of turpentine, 1 part, and dissolv in this sufficient gutta percha to form a paste. The manner of using this cement is to remove auy grease that may be present in the leather by placing on the leather a piece of rag and then rubbing it over with a hot iron. The rag thus absorbs the grease, and the two pieces are then roughened and the cement lightly spread on. The two pieces are then joined, and subjected till dry to a slight pressure.
A solution of gutta percha for shoemakers is made by taking pieces of waste gutta percha, first prepared by soaking in boiling water till soft. It is then cut into small pieces and placed in a vessel and covered with coal tar oil. It is then tightly corked to prevent evaporation, and allowed to stand for twenty-four hours. It is then melted by standing in hot water till perfectly fluid, and well stirred. Before using it must be warmed as before by standing in hot water.
A cement for uniting India rubber is composed as follows : 100 parts of finely chopped rubber, 15 parts of resin, 10 parts of shellac ; these are dissolved in bisulphide of carbon.
Another India rubber cement is made of : 15 grains of india rubber, 2 ounces of chloroform, 4 drachms of mastic ; first mix the India rubber and chloroform together, and when dissolved the mastic is added in powder; it is then allowed to stand by for a week or two before using.
Cement for sticking on leather patches and for attaching rubber soles to boots and shoes is prepared from virgin or native India rubber, by cutting it into small pieces or else shredding it up; a bottle is filled with this to about one-tenth of its capacity, benzin is then poured on till about three parts full, but be certain that the benzin is free from oil; it is then kept till thoroughly dissolved and of a thick consistency ; if it turns out too thick or thin, suitable quantities must be added of either material to make as required.
An elastic cement is made by mixing together, and allowing to dissolve, the following: 4 ounces of bi sulphide of carbon, 1 ounce of fine India rubber, 2 drachms of isinglass, $1 / 2$ ounce of gutta percha; this cement is used for cementing leather and rubber, and when to be used, the leather is roughened and a thin coat of the cement is applied. It is allowed to completely dry, then the two surfaces to be joined are warmed and then placed together and allowed to dry.
Cement used for repairing holes in rubber boots and shoes is made of the following solution : a. Caoutchouc 10 parts, chloroform 280 parts ; this is simply prepared by allowing the caoutchouc to dissolve in the chloro
form. b. Caoutchouc 10 parts, resin 4 parts, gum turpentine 40 parts; for this solution the caoutchouc i shaved into small pieces and melted up with the resin the turpentine is then added and all is then dissolved in the oil of turpentine; the two solutions are then mixed together to repair the shoe with this cement First wash the hole over with it; then a piece of linen dipped in it is placed over it; as soon as the linen ad heres to the sole, the cement is then applied as thickly as required.

POST FOR WIRE FENCES.

The engraving shows an improved fence post re cently patented by Mr. Henry Adams Peabody, of Santa Ana, California.
Two forms of this post are made, one for the division of the panels in a straight fence, and the other for turning angles. The single post consists of a bar of iron cast integrally with the base piece, and perfor ated with a series of pairs of holes, each pair of holes being designed for receiving the tie wire which bind the fence wire to the post, the wire being passed through the post in the form of a staple, and twisted or bent to retain it in the post. The base piece is pro vided with triangular projections which extend down ward into the earth and form efficient anchors for holding the post in an upright position. The back of the post is furnished with an angled arm for receiving a wooden rail whenever it is desired to use a rail in connection with the wire in the construction of the nce
The corner post is formed practically of two post imilar to that already described, arranged at the re quired angle and cast integrally with the base piece

PEABODY'S FENCE POST.
In this case the base plate is furnished with a greater number of anchoring points for insertion in the ground. A fence constructed according to this im provement may be used anywhere, but it is especially designed for use upon farms, ranches, etc.

Experimental science"-What is Thought of 1 .
The American Engineer, referring to Hopkins' "Ex perimental Science" in flattering terms, and naming the subjects treated under the twenty-three chapters which the work contains, concludes by saying: "Each of these chapters contains beautiful engravings of devices and apparatus, methods and means, that illus trate the instructions. Like the celebrated Faraday the instruction is conveyed and the experiments described without recourse to mathematics. The majority of students have little taste for the intricacies of numbers and the higher formulæ of mathematics Most of the apparatus illustrated and described can be constructed and used by any one having ordinary me chanical skill. The work bears the stamp of a tho rough scientist, a writer who writes nothing but with certainty of action and result, and of a teacher who imparts scientific information in an attractive and fas cinating manner. Like all productions from the publishers of the Scientific American, this admirable work contains engravings and typography of the high est order. It should find a place in every technical in stitute and in every engineer's library."

The Consumption of Salt.

According to some statistics recently published in France, the annual consumption of salt per head in England exceeds that of any other country in Europe or while in France the amount is estimated at about pounds, Italy 20, Russia 18, Austria 16. Prussia 14, less than 40 pounds. The Hospital Gazette thinks that perhaps this is the secret of British thirst. If so, it offers an easy solution to the drink question, which the temperance party should not be slow in adopting. $-N$. Y. Med. Rec.
[The large consumption of salt in England is due to etc., which are made from salt.-ED. S. A.]

Loss in Keepling Manure.

In order to make some observations bearing directly on the changes which take place in the amount of fer inizing elements between fresh manure and well rotted d manure, this trial was made
From the top of a pile of fresh manure from the cow stable one-half cord was taken, weighed, sampled for analysis, and piled into a close conical heap Janu ary 4, 1889. This was the mixed excrement from cow as thrown out of the stable twice daily, and cut corn stover which was being fed freely and the waste used for bedding and to absorb the urine.
At the same time a half cord of an old compost, of which muck was the leading ingredient, was treated in the same way, i. e., was weighed, sampled, and piled in the same manner close by the pile from the stable.
Both piles were reweighed April 13, and returned to the same places, and as carefully piled as before. This was equal to a complete forking over, the piles having been handled twice with a fork in the operation.
On January 21, 1890, both piles were weighed, mea sured, and again sampled for analysis. The result were :

January 4, 1889.
April 13, 1889....
January 21, 1890.

Per cent of lost weight in one yea..........	$2,2,148$	2,130
1,810		

Per cent of lost bulk in one year............ $50.00 \quad 28 \cdot 6$
The weights, when drawn out January 4, were for half cord fresh manure, 3,298 pounds ; and for one-hal cord compost, 2.376 pounds. By April 13 these piles had decreased in weight to 2,376 pounds and 2,130 pounds respectively.
On January 21, 1890, the manure had shrunk frou one-half to one-fourth cord, and weighed only 1,148 pounds; the compost had diminished two-sevenths of its bulk to five-fourteenths of a cord, and weighed 1,810 pounds. To compare these losses of weight and bulk in one year

Below is given the composition as found on analysis of the above named samples, the first analyses being by Mr. Ladd and the later ones by Mr. Whalen :

Calculating the total amounts of these fertilizing elements in the manure and compost at the times noted above gives the following :

	Lb.	Lb.	Lb.	Lb.
Nitrogen.	10.06	5.884	16.096	1264
Potash.	20.94	8227	trac
Phosphoric acid	0•6?	$0 \cdot 80$		$2 \cdot 095$

These figures show a loss from the weathering in every particular, except the phosphoric acid, of which a somewhat larger amount was obtained from the later analysis, but the apparent gain is so small that it could easily have occurred within duplicate determinations on so small an amount.
In calculating the actual money loss, Prof. Roberts estimate on the value of the fertilizing elements has been adopted.*

Value of one-half cord $\$ 2.595$
ame after weathering one year and 17 days Nitrogen

5888 lb at $\$ 0.17, \$ 1.00$ Potash.
$\begin{array}{lll}8.227 \mathrm{lb} \text { at } & 4, & .329 \\ 0.30 \mathrm{lb} . \text { at } & 7, & .056\end{array}$
Value of above rednced by weathering to one-fourth cord $\$ 1.385$ Value of above rednced by weathering to one-
Lost on one-half cord, $\$ 1.21$, or.per ton, $\$ 0.734$.
Lost on one-half cord,
Per cent of loss, $46 \cdot 6$.
This lost portion was, of course, the easiest soluble and hence most available and valuable part of the manure.
As no ash determinations were made on the compost at the first analysis, the full value cannot be calcu lated.

Nitrogen in compost.......................
Nitrogen in compost after weathering one
16.096 at \$0.17, $\$ 2.736$
$12 \cdot 64$ at $17,2.149$
Lost from close pile by one year and 1 '، days' weathering $\$ 0.58$
Ler cent. of loss from a rather stable fertilizer, 21.45 .
It will be remembered that the season of 1889 in this locality was exceptionally cloudy and wet. \dagger Great losses of nitrogen from manures are generally associated with drying and burning out. Hence we must consider these results to be under, rather than over what may be expected in average years. Hence this condition helps this experiment to show more plainly that stable manure should not be piled up uncared fo for any length of time.-Bulletin N. Y. Ag. Station, Geneva.
*Cornell University Agricultural Experiment Station, xiii., Art. i. + Eighth Annual Report, N. Y. State Agricultural Experiment Station
article " Meteorology for 1899")

sibley college, cornell university.

 five fears of arowth.Five years ago we published an account of the then new schools of the mechanic arts and of mechanical engineering, which had just been established by the formal organization of four of the departments of Corof Mechanical Engineering and the Mechanical Arts. of Mechanical Engineering and the Mechanical Arts.
Sibley College had been, for some years, the departSibley College had been, for some years, the depart-
ment which, in accordance with the fundamental U.S. land grant act, and the charter of the University, the University and the State of New York were to found in order that the institution might pursue as its "leading object," in the words of the law, the plan of promotion of the useful arts, which was the initial and main purpose of the land grant bill. It had been named after Mr. Hiram Sibley, who had supplied those funds which the act made the State responsible for, to put up buildings and to furnish equipment, a responsi bility which the State has thus far failed to assume, in any direction. Ezra Cornell undertook this, the obvious duty of the State, as respects the Uuiversity generally; while Sibley took in hand this special part of the work, in which he was most interested. He retained his interest until, two years ago, he died, leaving some $\$ 200,000$ worth of property as the testimony of his philanthropic zeal in behalf of technical education.
In 1885, the demand having indicated the wisdom of the wove, the trustees reorganized this side of the University in the manner described in our earlier account, placing the organization in charge of a "direc tor," with instructions to plan the system, lay out proper courses of study, and suggest desirable changes and improvements in studies, methods, buildings, equipment, and whatever should seem desirable. This was done, the suggested changes were approved, and
the college was given the form and character indicated the college was given the form and character indicated
in the ScIENTIFIC AMERICAN five years ago (October in, 1885).
We now propose to indicate what five years have brought forth. At that time it was estimated that the buildings and equipment were ample for 200 students, the University, however, supplying all non-professional instruction, as in pure mathematics, languages, the physical sciences, and general academic studies, as far as called for. A remarkable growth at once began.
The number graduating the first year, 1886, was 5; the next year 16 took the first, and 3 the higher degree o master in mechanical engineering. The third year 19 took the irst degree and 6 the higher one. In 1889, 27 took the first degree and 5 the higher one; and in the
fifth year, 1890,54 took the degree of mechanical en gineer and 6 that of master-the latter including a gineer and distinguished professors and instructors from other colleges; while among those taking the first degree were many graduates of classical and other academic courses and of many other colleges. During this period the total numbers rose rapidly until, in the academic year just passed, there were over 400 students crowded into accommodations intended for 200 , and instructed by the smaller force organized for that num-
ber; while there were 1,300 in the University. The re sult has been that the authorities have been compelled to choose between enlarging their buildings and equipment and their teaching force or rigidly excluding the excess in numbers of students applying for entrance. Not withstanding the fact that the income of the Uni versity is seriously taxed, the former course was de cided upon, and the changes now going on will enable the college to work 600 students more conveniently and profitably than they formerly could handle 200 .
In the college year 1890-91, about to commence, the shops, laboratories, and experimental departments of the college will be about doubled in extent. The new chemical laboratory will give similarly enlarged accan
modations, and the physical laboratory will fill Frank modations, and the physical laboratory will fill Frank-
lin Hall, and occupy also a large dynamo roon adjalin Hall, and occupy also a large dynamo room adja-
cent to the engine and boiler rooms of Sibley College, thus more than doubling its extent. As this department supplies the instruction in electrical physics, and all the introductory and much of the advanced work in the course in electrical engineering, its extension and improvement constitute an important gain to Sib ley College. Other improvements about the University add also greatly to the facilities for advanced study which will be appreciated by the increasing number cowing to pursue semi-professional with their profes sional studies, as in technical reading, adva
ematics, political economy, patent law, etc.
Our first illustration shows the university campus a it would appear from a balloon over Cayuga Lake, at the N.W., and a mile from the grounds. It is seen that the half mile square of campus now includes a dozen great buildings, and about thirty professors' houses, most of the older members of the faculty residing with in the beautiful park. At either end is a deep gorge Cascadilla and Fall Creek, full of beautiful cascades
and magnificent falls of from a few feet to sixty feet descent in the half mile abreast the campus. The Fall descent in the half mile abreast the campus. The Fall
Creek Falls supplies power for the water supply department and for the wheels driving the shop and other machinery when required. Steam engines also
abound for the purposes of the electric lighting depart
ment and the laboratory. The largest buildings in the "Professors' Row," crossing the middle distance in the picture, are those of ex-President White and President Adams; while directly in the vertical line, over Sibley College.
The "technical side" of the University is seen in the foreground at the left, where are grouped the buildings of the College of Civil Envineering, Sibley College, the wo great chemical and physical laboratories, the shops and the laboratories of the department of uechanical engineering. The Sibley College group is distinguished by the tall chimney, at the foot of which are the 600 horse power boilers supplying heat to the whole Uni versity. Fall Creek gorge drops a hundred feet or wore beside it, and a thousand feet of steel wire is there in operation bringing up the energy of the fall below to turn the machinery of the shops and laboratories. The second picture shows the house of Director Thurston, and the next one to the right represents the Sibley College buildings, with the recent additions which have been made to them. The department of ohysics occupies the largest building, at the right. The rees about the buildings are rewoved to give a better view. These buildings are from 150 to 165 feet long, and from 40 to 60 wide, yet, in the working season, are crowded with busy and interested students, some under instruction, the older ones engaged in verification of data and formulas of eugineering, and advanced stu dents in researches in a thousand interesting and important departments of applied science. The pro fessors and instructors also make time, despite their ong working hours and fatiguing duties in instruc tion, to pursue those investigations which have a spe cial charm for the man of science familiar with the
higher walks of his profession. The small building at the right is the magnetic observatory of the depart meut of physics, containing the famous great tangen galvanometer ; that next it is the mechanical laboratory. At the left follow the Sibley College main buildings, the physical laboratory, and the chemical laboratory, just completed and perhaps the finest of its kind yet built.
The equipnient of the college is as interesting and remarkable as are the buildings. All students have ac cess to the great library, which will hereafter expend $\$ 15,000$ or $\$ 18,000$ annually in the purchase of books having accommodations for a half million, nearly, with facilities for doubling conveniently. The new laboraories are filled with the needed apparatus for instruc tion, of the standard sorts, and, in addition. are pro vided with very extensive collections for research, partly secured by purchase, largely by construction at the University. The physical laboratory, besides the sual lecture room illustrative apparatus, contains working instruments for several hundred students, and special apparatus for research is constantly in use and continually being made. The great structure is occupied from top to bottom. In electrical engineering sive. There are collected here and in Sibley Colleg proper, in the departments of physics and of electrical engineering, representatives of all the well known systems of dynamo, motor, and distribution. There are two or three dozen, and of all sizes, as well as all kinds, ranging from the "pony" alternators of
Westinghouse and the half horse power Edisons to Westinghouse and the half horse power Edisons to
the machines for 400 and 600 lights, for lighting the campus and, ultimately, the larger buildings and groups of buildings about the campus. Ball, Edison Brush, Mather, Gramme, Stanley, Thomson-Houston, Westinghouse, Weston, Tesla, Sprague, the variou storage batteries, and various sizes and forms of dy namo built in the University, crowd the rooms to over flowing; in fact, some could not be set up until the extension of this summer was made, in consequence of lack of space.
The dynamos are grouped in large rooms adjacent to the boilers, and near them are also placed the variou engines employed for experimental and other purposes. There are a h
more to come
These are usually fitted up with Prony brakes for to which a surface condenser is so arranged that those measured by the Bryan and Donkin systew. A dozen sorts of indicators-all the well known and many un familiar kinds-usually in pairs, permit a large amount of this kind of work to be carried on at once. 'The
boiler room is also intended to offer special facilities for boiler trials and measurements of efficiency and of quality of steam, including in its outfit all the "calori meters " for the latter purpose. Transmission, as well as the various forms of absorption, dynamometers are milt in and include among the former the Norin, and the Ald shops, and among the mares of all the and the Alden forms. The testing machines, of all the than the dynamos. They include all the best makes and range from a little Brown \& Sharpe " yarn tester to a 5 ton transverse machine, and from a small impact apparatus to $40,000,50,000$, and 100,000 pound machines
made by Fairbanks, Olsen, and Riehle. Oil testing
machines and an "autographic" machine, mainly of the Thurston forms, as built by the Pratt \& Whitney Co., and other apparatus too numerous for cataloguing these lahoratories.
The shops of the Department of the Mechanic Art now occupy two large buildings, one, 150 feet by 40 , devoted to foundry and blackswith shop, the other 165 by 40, and two stories high, to the machine shop on he lower floor, and the wood-working shop above They are well fitted up with machinery and hand tools, and will be of ample capacity for six hundred studente The toilet rooms, with their hundreds of lockers, and the tool rooms, are hardly less interesting, as exhibit ing the extent of this great institution, than are the sops and laboratories themselves. The skilled work nen here employed and the pupils vie with each other in the construction of apparatus and tools for the Uni versity and for the various purposes of the college Besides the machinery built here, there are good exanples of the best work of all the great tool builders of he country, and lathes and planers, milling machines, drills and shapers of all the standard kinds, are made useful in giving a practical instruction such a very good citizen desires his son to obtain. When hese young men attain to positions of responsi bility, it is found that this part of their education is of enormous advantage to them and to their men, not only in facilitating the application of the best methods of work, but in giving them a good idea of what con stitutes good work, and enabling them to deal fairly by those working under their direction.
The course of instruction includes four years of work in drawing roons and shops, a continuous course in nathematics, pure and applied, the modern languages, and the sciences. Two years are given in part to the
course in chemistry, including a certain amount of course in chemistry, including a certain amount of analytical chemistry; and two years of physics in ecture room and laboratory. Advanced work in physics is also given, the electrical engiueers devoting much time both to electrical measurements and the theory of the dynamo, and to electrical engineering construction of stations and of machinery and distri buting apparatus. With these students, the last yea is mainly given to work directly needed and character istis of their special calling. Two years of work in the nechanical laboratory, in learning the use of ap paratus, in testing metals and other materials o engineering, engines and boilers, and other machinery and in pursuing various lines of scientific and professional research, give the young engineers most attrac tive as well as practically useful knowledge. The ecture room work in machine designing, in the prin ciples of construction, and in the theory of the prime novers, places the graduate in these courses in a posi ion to profit aduirably by his later opportunities.
A large amount of work is now done by graduat students, most of whom are candidates for advanced degrees, and intend to pursuc, as a rule, the vocation of instructors in science and in technical schools. Many professors of engineering go to Cornell and Sibley Col lege to secure an experience in laboratory work and to make scientific and engineering researches such as their earlier opportunities failed to offer them. Facili ies for this branch are here exceptionally great and continually improving.
The standard of requirements for admission to the ourses leading to degrees is higher than is usual, even in technical schools of high standing, and is steadily advancing; but the number who are found competen to enter is, nevertheless, continually increasing, and the authorities are constantly embarrassed in their en deavor to find funds for erection of buildings and to en large the teaching force. Particulars can be obtained by addressing either President Adams, the dean of the University, or Dr. R. H. Thurston, director of Sibley College, Ithaca, N. Y. The opportunities here for those who desire and are able to aid higher education re exceptionally great, and the larger the endow wents and the larger the income of the University, the more widely do the opportunities in this direction open

Trial Trip of the Steamer Plymouth.
The steamer Plymouth had her trial trip on Wednes day, October 1, and it was in all respects a success. With a numerous party of guests representing the steamboat and general mechanical interests of this eity, she ran up the Hudson River as far as Spuyten Duyvil Creek. There the steamer was turned in variou directions to adjust her compasses. When this was in measure attended to. she turned and proceeded down the river and bay to Sandy Hook, where the adjust ment of the compasses was completed. Meanwhile the guests had partaken of a banquet in the grand saloon which was followed by some speeches. The engine were started by their designer, Mr. Andrew Fletcher They showed to great advantage, working up to twenty-six revolutions. The control over them was re markable, and they worked with perfect swoothness, and, in connection with the feathering paddles, pro pelled the boat with great steadiness. The entire ab sence of a dead point was very noticeable. A speed o nearly twenty miles an hour was developed withon any effort andat a low boiler pressure.

THE PITCHER AUTOMATIC REPEATING RIFLE Since the advent of the Spencer and Henry rifles of 1863-64, thousands of inventors have been striving to accomplish some decided and radical improvements thereon, or to do the same thing in a different way, and disappointment has been the result in far the larger number of cases. Rapidity of fire for a limited number of shots, combined with accuracy, are at this day the principal elements worthy of any considerable attention with a view to improved fire arms construction. The first Henry rifle would fire as rapidly and accurately as the repeating rifle of to-day, and to increase the powder charge and facilitate the manner of recharging the gun have been the most considerable improvements since. In the piston recoil system, of which Dr. Pitcher is the inventor, and which iorms the subject of the accompanying illustrations, the degree of efficiency of the gun is practically only limited to the ability of the shooter to aim, while no considerable expertness in the manipulation of the gun is required.
This result is obtained by the application to a barrel and lock mechanism of a cylinder, a, as shown in Fig. 1 , in which is a piston, c, and in front of which is a spiral spring, m. A smail vent or opening, e, extends from the interior of the barrel to the interior ot the cylinder, a, through which a small portion of gas passes at each discharge. The energy of recoil is stored in the spring, m, at the instant of discharge and operates upon the lock immediately as the explosive force leaves the barrel. It will thus be seen that it is only necessary to place the cartridges in the magazine and load the gun for the first charge by hand. When the trigger is pulled, the explosive force operating upon the piston through the vent, e, presses it forward against the spring, m, carrying forward the drive rod, g. The explosive force having left the barrel, the piston, c, and drive rod, g, are forced back by the spring to their former position. The drive rod, g, when at its forward limit engages with a notch in the segment, i and thus it will be seen that when the piston is pressed to the rear by the drive spring, m, it also forces the segment, i, to the rear, unlocking the abutting arm, y, through the link, a^{\prime}, and carrying the breech block, k, with it. When the utmost rear limit is reached, knock-off disengages the drive rod and permits the recoil spring to close and lock the gun. The entire operation o extracting the shell, cocking the hammer, replacing a fresh car tridge, and closing the breech is performed automatically, leaving but the one operation of pulling the trigger to repeat at pleasure.
The magazine is on top of the barrel. The cartridges are fed into the receiver through an opening on the right hand side near the rear upper edge, as shown in Fig. 2, and not on top of the receiver.
A tubular magazine, with spiral spring and follower, is used in the guns constructed, but for military purposes the gun is equally well adapted to use the Lee, Mannlicher, or other form of box magazine. The tilter, which takes the place of carrier or lifter in other guns, is constructed of one piece, and is pivoted in line with the magazine tube. The cartridge remains stationary until the shell is ejected. It is then pressed down and held in align ment with the barrel.

The cartridge is drawn from the barrel by a spring hook ex tractor and ejected by a positive "stop" ejector. The gun is ope rated by hand, by a bolt or but ton upon the right hand side of the frame. But one motion is required to load by hand, viz. to press the bolt to the rear and release the hold, allowing the re coil spring to operate the breech block to place.

The gun is entirely operate
by hand, when desirable, by turning a thumb piece or valve upon the side of the frame which closes the vent.
It is claimed that with this gun four shots may be fired per second with a considerable degree of accuracy no time being lost in reloading and recovering the aim, while the safety blocking is effective and positive. The sights are placed upon the magazine, and firm with the barrel, being higher than ordinary, making it unnecessary to bend the neck to any considerable extent, while at the same time a straighter stock may be used. The facility of charging the gun is somewhat increased by the absence of a spring cover. A slide
cover is used instead, and after it is once pushed for-ward-and it is usually carried and fired in this posi-tion-the cartridges may be entered through the open-tion-the cartridges may be ent
ing almost by their own weight.

The gun as constructed, of which a perspective view is shown in Fig. 3, weighs ten and one-half pounds, is of 0.38 caliber, the cartridge carrying 50 grains powder, 190 grains lead. The barrel is 26 inches long, and the whole is well balanced. The magazine upon top of the barrel and the form of the stock lends to the arm a first impression of oddity which is soon dispelled when one becomes more familiar with its capabilities The weight of gun for the cartridge used, it is said,

THE PITCHER AUTOMATIC REPEATING RIFLE.

AN IMPROVED WINDMILL

In the windmill shown, which has been patented by Mr. George D. Hawley, of Urbana, Iowa, the tower consists of two parallel spaced upright masts, connected at the top by a cap having a central opening sur rounded by a collar on its upper side, the cap being bolted to the masts, and preventing their heads from warping or splitting. Below the cap, and held horizontally between the uprights, is a cross piece with central opening, forming a bearing plate. The main casting, or turn-table, is of novel form, and is shown in one of the small views. Centrally from the bottom of its disk body portion, a tubular and preferably tapering stem extends downward and is journaled in the cross piece. From the top of the disk body, and at one side of the vertical opening therein, a guide standard extends upwardly, there being a transverse bar at the bore of the guide standard through which the shaft of the governor vane is passed.
The wind wheel is mounted on one end of a shaft having bearings in the turn-table, and on the shaft is a crank disk with a series of apertures at different dis tances from the center, to receive a detachable wrist pin for connection with the pitman, whereby the plunger may be made to make any one of six different lengths of stroke. The lower end of the plunger is attached to the upper end of the pump piston by a swivel con nection. The tail vane has at its inner end, on the side facing the wind wheel, a brake shoe supported by stay rods. The vane is carried into the wind to stop the wheel by a chain secured at one end to the brake shoe or its stay rods, and passing around a pulley held on an arm of the turn-table, thence over another pul ley in the upper portion of the standard, and down through a tubular section of the plunger. To carry the vane quickly from one position to another when the chain is slackened, a weighted arm is connected to the vane and pivoted upon the main casting, its pivo bolt being surrounded by a coiled spring, the combined ction of the weight and spring greatly accelerating he movement of the vane. In the plan view, partly in section, shown in one of the figures, the positive lines indicate the working position of the vane and he dotted lines its position when carried out of the wind to stop the movement of the wheel. The position and length of the wheel shaft of this windmil minimizes friction and wear, and enables the wheel to be fitted close to the tower, as the shaf runs in two boxes, one at each side of the vertical center, by which also the wheel is enabled to ride steadily, and the side leverage of the mill is lessened when thrown out of gear during a storm. The moment the whee is thrown out of gear, the brake operates to stop its revolution and hold it quiet until again thrown into gear

The speed of a Horse.
While the public is still mar veling over Salvator's wonderfu performance in running a mile in $1.351 / 2$, there are few who have through comparison and analy sis, sought to realize what a ter rific burst of speed this is. It is nearly forty miles an hour-a rate averaged by very few of our fastest railway trains. There are 5,280 feet in a mile, so that for every one of these ninety-fiv seconds-for every beat of a man's pulse-this wonderful horse covered fifty-five and three tenths feet of ground. The short est space of time noted by the turfman's watch is a quarter of a second-an interval so brie that the eye can hardly observe the mind can hardly appreciate it. Yet in every one of those 382 quarters of a second that magnificent creature leaped six teen and three-tenths feet. Such are the amazing results of care ful breeding as exhibited in th American race horse. Is the hu may be reduced to nine pounds or less. The last gun|wan race improving in the same ratio? Scarcely.constructed has fired more than three thousand Cincinnati Enquirer. shots within six weeks, and is said to be in smoother working condition, after this amount of work, than at first. No spring or part has required to be replaced from breakage since the gun has been in operation The operative power to extract or replace a cartridge is greater than can be applied by hand, and is univer ally positive.
For further information relative to this gun, which forms the subject of several patents issued to Dr. Henry A. Pitcher, address the Pitcher Automatic Re peating Fire Arms Co., Neillsville, Wis.

At Scrantou's rail mill, Scranton, Pa., beginning with cold pig iron, 1,800 men turn out one finished steel rail every sixteen seconds. The men are aided by fuel and the most effective machinery. Each rail is 30 ft. long and weighs 60 to 70 lb . per yard. The pig iron is melted, converted into steel, sent through the vari ous rolls, is sawed into proper lengths, punched and delivered, all in one continuous operation. 350,090 tons of steel rails is the annual product of the establish ment.

A BALLOON ACCIDENT

An ascension of the balloon Patrie took place from the Avenue de la Defense de Paris, at Courbevoie, at four o'clock on the afternoon of Sunday, August 31. Mr. Paul Leprince, the aeronaut, and Mr. George Dumuit, one of his friends, both of the age of 19 years, were in the car. The ascent was very rapid. The spectators who were present saw the balloon assume suddenly a peculiar shape. First it flattened out, then it assumed the shape of a spindle, then that of a ball. They supposed at first that the balloon was a dirigible They supposed at first that the balloon was a dirigible
air ship; but the real facts became apparent by the air ship; but the real facts became apparent by the
swaying of the balloon, and then by the awful drop swaying of th
that followed.
"The balloon has burst, and the poor unfortunates are lost!" cried the spectators. This is what took place as narrated by Mr. Paul Leprince, who has been good enough to give us the facts of the case :
"There was nothing unusual about the inflating usual about the inflating
operations. For a moment, operations. For a moment,
however, the balloon was carried by the wind against the branch of an acacia tree by the side of the road, but I only heard the rustling of the branches, and I did not think of the incident again. My friend and I embarked and in a short time reached an elevation of 1,500 feet, when we began to hear a peculiar whistling sound. I looked in the space about me, but seeing nothing, I climbed on to the ring and then discovered a tear of a few inches in length, partially filled by a branch of acacias which had penetrated the interior of the balloon. At this moment the sun dispelled the clouds and shone with all its luster upon the balloon. This produced such an expansion of the gases within that the gas was not able to escape sufficiently rapidly from the valve. The fabric was stretched to its utinost, with a dry, cracking sound, and I at once knew what would follow.
"George," I cried, " the balloon is torn and will not be able to bear the strain of the expansion, and will explode!"

I had scarcely uttered the words before the tearing of the fabric like the rustling of leaves could be heard, and a blue cloud appeared about the opening where the gas was pouring through in great volumes.

We are lost!" cried George.
"The ballast !" I cried, " the ballast!"
Fortunately he did not lose his head, and in an instant two bags were thrown out. I glanced at the barometer and saw that we were 4,740 feet from the ground, and the fall commenced.

Without losing an in-
stant, and without relying at all upon my equipment, |the downward flight of the balloon. The other lesson I cut off the anchor, I threw out the rope and myover- is that however near death any one may be, it is always coat, in fact everything of any weight, and we prepared to throw off our clothes and to cling, at the moment of striking, in the netting above.
I notice that, fortunately, there is a strong wind blowing, which is carrying us along in an oblique line at the rate perhaps of 3 ã or 40 miles an hour. We were falling at an angle, and this perhaps would break the fall somewhat.

The balloon was violently shaken in its flight, and kept swinging and swaying in a horrible manner, but it was this that saved us. During one of the most violent of these swinging movements the lower part of the balloon was thrown to the upper part of the netting and rested there against the valve in the form of a dome, forming an immense improvised parachute. At once the fall was arrested sensibly. Still we were ouly about one hundred yards from the earth. I cried
to Dumuit to throw out more ballast, and about 150 b. more ballast in the form of sand was passed over the side. Now for our clothes. But there was no time Scarcely had we reached the ropesattached to the ring when a terrible shock was felt, and we and the basket and the balloon and all were rolled over on the ground together. We were not injured, nor did we even lose consciousness. This fall of nearly a mile was accom plished in less than four minutes, during which period as may be seen, no time was wasted.
I believe that our safety is due to the fact that neither of us lost our presence of mind. The conclu sion to be drawn is that, even in an accident as serious as the bursting of a balloon in mid-air, the stuff out o which the balloon is made is likely to be formed into a sort of parachute by the upward current of air during

A FALL OF NEARLY ONE MILE THROUGH THE AIR. necessary to keep one's courage. -Paul Leprince, Aeronaut, in L'Illustration.

Snakes in Banana Bunches.

Banana bunches brought from tropical America sometimes contain snakes of the family Boidæ tightly wound round the central stem. A specimen of this kind was taken in Savannah, Georgia, and was sent to the United States National Museum. I identified it as the Epicrates augulifer, a native of Cuba. More recently a snake was found in a similar situation in a lot of bananas in Chicago, and was sent by Dr. J. L. Han cock to the National Museum. Dr. Stejneger has dentified it as the Boa imperator, the common species of Central America and Mexico. The specimens are not be concealed in so small a space. $\sim \boldsymbol{E}$. D. Cope.

Dying Usually a Painless Experience.
The signs of impending death, says the Medical Journal, are many and variable. No two instances are precisely identical, yet several signs are common to many cases.
Shakespeare, who observed everything else, observed and recorded some of the premonitory signs of death also. In the account of the death of Falstaff the sharpness of the nose, the coldness of the feet, gradually ex tending upward, the picking at the bedclothes, are accurately described.
For some time before death indications of its ap proach become apparent. Speech grows thick and labored, the hands, if raised, fall instantly, the respira tion is difficult, the heart loses its power to propel the tion is difficult, the heart loses its power to propel th
blood to the extremities, which consequently becom cold, a clammy moisture oozes through the pores of the skin, the voice grows weak and husky or piping the eyes begin to lose their luster.
In death at old age there is a gradual dulling of al the bodily senses and of many of the inental facul ties, memory fails, judg ment wavers, imagination goes out like a candle. The muscles and tendons get stiff, the voice breaks, the cords of the tabernacle are loosening. Small noises irritate, sight become dim, nutrition goes on fee bly, digestion is impaired the secretions are insuffi cient, or vitiated, or cease, capillary circulation is clogged. Finally the cen tral organ of the circula tion comes to a stop, a full stop, and this stoppage means a dissolution. Thi is the death of old age which few attain to.
Many people have an idea that death is neces sarily painful, even agonizing, but there is no rea son whatever to suppose that death is a more pain ful process than birth. It is because, in a certain pro portion of cases, dissolu tion is accompanied by a visible spasm and distor tion of the countenance that the idea exists, but it is as nearly certain as any thing can be that these distortions of the facial mus cles are not only painless but take place uncon sciously. In many in stances, too, a comatose o semi-comatose state super venes, and it is altogether probable that more or less complete unconsciousness then prevails. We have, too, abundant evidence of people who have been nearly drowned and resus citated, and they all agree in the statement that after a few moments of painful struggling, fear and anxiety pass away, and a state of tranquillity succeeds. They see the visions of green fields and in some cases hear pleasing music, and so far from being misne downward flight of the balloon. The other lesson lerable, their sensations are delightful. But where at-
tempts at resuscitation are successful, the resuscitated persons alınost invariably protest against being brought back to life, and declare that resuscitation is accompanied by physical pain and acute mental misery. Death is a fact which every man must personally experience, and consequently is of universal interest, and as facts are facts, the wiser course is to look them squarely in the face, for necessity is coal black and death keeps no calendar.

To clean iron parts of machinery, tools, etc., two to three cents' worth of paraffine chipped fine are added to one liter petroleum in a stoppered bottle, and during two or three days from time to time shaken up until the paraffine is dissolved. To apply it, the mixture is well shaken, spread upon the metal to be cleaned by means of a woolen rag or brush, and on the following day rubbed off with a dry woolen rag.

Photographic Dyeing and Printing

In the section of chemical science at the recent meet ing of the British Association a paper was read on the action of light on the diazo-compounds of primuline aud dehydrothiotoluidine. It was prepared mainly by Mr. A. G. Green, with the aid of Messrs. Cross and Bevan.
It has long been observed by Mr. Green that the diazo compound of primuline is very sensitive to the action of light, being readily decomposed thereby and losing its property of combining with phenols and amines. On this fact has been founded a photographic process by means of which designs can be produced in fast colors on cotton, silk, wool, linen, and other fabrics. The process can also be applied to wood, xylonite, celluloid, paper, or to gelatine films upon glass, thus affording a very wide range of employment. The process, which is a very simple one, merely depends upon the fact that if a material con taining diazotized primuline be exposed to light under a design, those parts which are acted upon by light will be decomposed, while the parts protected from the light will remain unaltered, and, consequently, on subsequent development with a phenol or amine will produce colors, while the decomposed portions will not. The details depend somewhat upon the material to be treated. As an instance, the production of a design upon cotton cloth, cotton velveteen, etc., was taken. The material is first dyed with primuline from a hot bath containing common salt until the required depth is obtained. It is then washed and diazotized by being immersed for a quarter of a minute in a cold bath containing about one-quarter per cent of sodium nitrate, and strongly acidified with sulphuric or hydro chloric acid. The material is washed again, and exposed damp (or if preferred after having been dried in the dark) to the action of light beneath leaves, ferns, flowers, or other natural objects, or beneath glass or transparent paper upon which may be painted or printed any design which it is required to copy Either the arc electric light or daylight may be em ployed. In the latter case the time of exposure wil vary with the intensity of the light; under half a minute is required in bright sinnshine, and nearly hal an hour in very dark, cloudy weather. When the de composition is complete, which may be readily ascer tained by means of a test slip exposed simultaneously the material is removed from the light, and eithe passed into the developing bath at once or kept in the dark until it is convenient to develop it. The develop ing bath consists of a weak solution (one-quarter to one-half per cent) of a phenol or amine made suitably alkaline or acid, the phenol or amine employed depend ing upon the color in which it is required to produce the design, thus-
For red, an alkaline solution of b-naphthol
For maroon, an alkaline solution of b-naphthol-di sul-sulphonic acid.
For yellow, an alkaline solution of phenol.
For orange, an alkaline solution of resorcin
For brown, a solution of phenylene diamine hydrochloride.
For purple, a solution of a-naphthylamine hydrochloride.

If it is required to produce the design in two or more colors, the respective developers, suitably thick ened with starch, may be applied locally by means of a brush or pad. After development the material is thoroughly washed and requires no further fixing Linen, silk, and wool are treated in exactly the same way. Paper for copying drawings, etc., is coated on the surface with primuline by means of a brush or roller. For the production of galatine films upon glass the primuline is incorporated with the gelatine before being applied to the glass. In place of ordinary primuline the homologues already mentioned may be used. For silk and wool the primuline may be replaced by dehydrothiotoluidine-sulphonic acid, by means of which colorless backgrounds way be obtained. Concerning the reaction which occurs when the diazo-primuline or the diazo-dehydrothiotoluidine is decomposed by light, nothing definitecan yet be said except that the diazo group is completely destroyed, for on treatment with sodium hydrosulphite (true hy posulphite) it cannot be converted into the amido group (re-forming primuline or dehydrothiotoluidine). The reaction may consist in a replacement of the N_{3} group by OH or by H , or way be even more complex The diazo compounds of this group of bodies possess an extreme susceptibility to light, far greater than that of other diazo compounds, while at the same time they are far more stable to heat. It is thus possible tha this property may depend in some way upon the sulphur which they contain.
Mr. J. Spiller said that Mr. Green had kept him in formed of the progress he had made since he discover ed primuline, and he (Mr. Spiller) had worked on the paper basis a good deal. He found that he was deal ing with a material which was extremely sensitive to light; indeed, he should be inclined to describe it as sensitive as the ordinary chloride of silver. At one time he thought it would be worth while to endeavo to use it in the camera, but his patience became ex
hausted when at the end of ten minutes he failed to secure the images. Of course, unless it was sensitive enough to take an impression in that time, it was not of much use in that direction. It was, however, inter esting to find that when leaves and ferns or any object from which copies could be made by transmitted light were employed, according to the length of the exposure impressions either merely surface deep or which pene trated the whole paper were obtained, and the im pressions were wonderfully permanent. They were not destroyed or injured in any way by the vast number of chemical bodies to which he had submitted them. He had tried almost everything he could think of, and nothing would destroy the impressions excep the hydrosulphates to which Mr. Green had referred He should like to hear whether Mr. Green and his col leagues had succeeded in getting a white basis by em ploying some agent to dissolve the unaffected portion of the material operated upon.
The president (Professor Thorpe) remarked that Mr Green's discovery was another instance of history re peating itself. The old process of reproducing archi tects' and engineers' plans on a blue background with white lines was likely to be run very hard by the one they had unfolded to them by Mr. Green. When Sir John Herschel occupied the post he (Professor Thorpe) now filled, on the occasion of the previous meeting of the British Association in Leeds, the blue background process was in full vogue. Now they were likely to hav nother in its place.
Mr. Green stated that as yet he had not succeeded in getting absolutely white background, but he believed that it would ultimately be obtained

THE NEW "PATRICK" TURBINE WATER WHEEL. A water wheel of inexpensive construction, which annot easily get out of order, and which is designed to give the greatest possible percentage of power from the amount of water used, is shown in the accompany

THE NEW "PATRICK" TURBINE WATER WHEEL.
ing illustration, and has been patented in the United States and Canada by Mr. Adolphe Patrick.
In this wheel the principle of outward horizontal discharge is combined with an upward discharge and to this end the water is conducted into the nner or central portion of the wheel, whence it flow between fixed partitions and intermediate regulating cates, by which it is directed against the buckets of the wheel immediately outside of the guides. The mode of regulating the flow of water on to the bucket f the wheel is simple, avoiding all interfering mechan min and giving the way clear to the water from th penstock into the wheel case, whence it flows out beween the partitions and the regulating gates on to the buckets of the wheel. The latter is supported by a central pivot which carries both the wheel case and the penstock, which is attached to it.
This turbine has been largely employed in Canada uring the past three years, and is said to have given the greatest satisfaction to all parties using it. For Grenier, Manager, Patrick Water Wheel Co., No. 204 St James Street, Montreal, Canada.

New Zealand Flax.

The purchase of New Zealand flax by the United States, in 1889, largely exceeded that of any othe country. It is really a species of hemp, and costs, laid down in this market, from $51 / 4$ to $63 / 8$ cents per pound or good Wellington and Auckland brands, as com pared with 9c. for mauila, 6c. for sisal and $61 / 2 \mathrm{c}$. for American hemp. It is used extensively by the cordage mills in mixes with sisal and manila hemp in making
ow grade rope and binder twine. The flax for export is usually cut from the swamps, marshes and river banks. It is in its wild, uncultivated state, and it is cut down and run through the machines without any attempt at selection. The persons usually employed to cut the green flax are paid by the ton, and, in order to get as much weight as possible, they cut as close to he ground as possible. The lower en of the leaf is thick and fleshy, containing a large amount of gum
nd vegetable matter, and weighs heavily as compared with upper portions of the leaf; besides, the fiber obtained from the butt end is very much inferior in exture
To imperfect machinery and carelessness in the selection of green plants may be ascribed the coarsenes and inferiority so often complained of in the flax ex ported from certain portions of New Zealand. But with improved flax-dressing machinery and proper care in the selection of the raw material, our consul at Auckland states that a very superior article can be produced. The hand-dressed article prepared by the natives is as fine as silk compared with the modern wachine-dressed fiax of to-day, which demonstrates the fact that the fiber may be reduced to a much fine quality if an improved machine can be invented, but the requisite machinery is lacking.
Many who profess to understand the toughness and durability of the fiber believe that if it could be properly reduced, it would enter largely and successfully into the manufacture of valuable textile fabrics. It is thought that the plant (Phormium tenax) would flourish in many parts of the Southern States.

some Uncommon Metals.

There are quite a number of metals which are very paringly distributed over the earth, and which few people have ever seen, but which have some exceed ingly useful applications in the arts, and, in smal quantities, are in almost constant use. Hydrogen, the ightest of all the elements, was discovered by Caven dish in 1766, and is considered by the best authorities to be a gaseous metal, just as mercury is a liquid meta t ordinary temperatures. Very few persons have ever seen solid hydrogen. Mercury becomes solid at -40°, but, according to Professor Pictet, hydrogen gas requires a temperature of -140°, and pressure of over two tons to the square inch, before it liquefies even. By suddenly removing the pressure from this liquefied hydrogen, the cold produced by its evaporation is so drogen, the cold produced by its evaporation is so
great that a part of it solidifies into a state resembling great that a part of it solidifies into a state resembling
metallic grains, which remain visible for several minmetallic grains, which remain visible for several min-
utes. Its metallic nature is also rendered probable by its directly uniting with a metal resembling platinum and known as palladium, to form a sort of alloy. The weight of a single molecule of hydrogen has been cal culated not to be greater than one ten-thousand-mil lionth of a gramme, and a cubic centimeter of the gas contains at least t wenty-one trillions of such molecules Although these figures are quite incomprebensible to the human mind they must be approximately correct and represent actual and existing magnitudes.
Lithium is a quite rare mineral, which occurs in some varieties of mica, and also in small quantities in the waters of certain mineral springs. It is considered to possess a distinct medicinal value by some physicians and is probably taken into the system, at least, as we have detected it by spectroscopic analysis in the blood of a person who had been drinking a strong lithia

Barium is a metal closely allied to calcium, the me tallic base of lime. It is never used in the metallic tate, but the sulphate of barium is quite extensively used-either honestly or dishonestly-as a substitute for white lead in paint. It is cheaper than white lead and is not changed in color by the sulphur compound often present in the air, but possesses less covering power than lead, and is less permanent in other ways. The peroxide of barium is used in the preparation of peroxide of hydrogen, and the phosphorescent sulphide of barium is a constituent of some varieties of luminous paints. The green fire used in pyrotechny is also due o the presence of this metal in the form of a nitrate. Selenium is not a metal, but belongs to the sulphur roup of elements. We must mention, however, the wonderful property by which its electrical conductivity varies according to the amount of light falling upon it ust as the chemical relations of silver are altered by the same means. By this power Professor Bell was en abled to construct an optical telephone, and actually transmitted words and sentences between two distan points which were not connected in any way except by a beam of light, which faithfully carried the vibrations of his voice to a selenium disk, by which they were ransformed into electric energy and reproduced in an ordinary telephone. Whether we shall ever be able to see our friends at a distance, as we now talk with them, is exceedingly problematical; but if we ever do so, it will doubtless be through this mysterious connection between light, electricity, and the element selenium.Popular Science News.

To give a brilliant white light, a lamp needs a thorough cleansing every little while. The oil should be poured out of the fount, leaving no dregs on the bot tom. The fount should then be washed in strong soapuds, rinsed in warm water, and dried. It should then be filled with fresh oil. 'The burner should be boiled in soda and water until the network that crosses it is reed from dirt and dust. If the wick has become clogged with the sediment, replace it with a new one.

CENTENNIAL OF THE COTTON MANUFACTURE IN america.

December 20, 1790, marks the date of the real birth of the cotton-spinning industry in this country, and in commemoration of that fact the town of Pawtucket, R. I., where the event occurred, held a centennial celebration, lasting through the week from September 29 to October 4, inclusive. The programme was an elaborate one, as for that of an occurrence whose importance it would be difficult to overestimate, and included parades by the militia and Grand Army men, firemen's and trades organizations, and an immense procession of Sunday school children, largely attended meetings at which suitable commemorative addresses were made, and a great industrial exhibition designed to illustrate the progress of the cotton manufacture during the last one hundred years. The military pageant on one day of the celebration is said to have been greater than had ever before been seen in Rhode Island, and it is estimated that more than one hundred thousand visitors were present.

The main features of the celebration, as of the event itself, have clustered around one name, that of Samuel Slater, who arrived in Pawtucket in 1789, and was the first to bring to this country a clear understanding of the system which had been perfected by Arkwright for the carding and spinning of cotton by machinery operated by power, with the practical knowledge necessary to construct and operate such machinery. Previous attempts had been wade to build an operative spinning jeuny, with the machines working the raw cotton therefor, both in Massachusetts and Rhode Island, in 1786-87-88, and like efforts in this and other branches of the wanufacture were at the same time being made in New York and Pennsylvania, but the first to undertake the business were everywhere unsuccessful. At the same time the English cotton manufacture, mainly through the inventions of Hargreaves, Arkwright, and Samuel Crompton, of Bolton, with the contributions of many lesser inventors, had become established on the modern lines along which it has since shown such wonderful development, and all who were interested therein were reaping rich harvests. Every effort was made to keep the secrets of English machinery from the knowledge of the outside world, an act of Parliament prohibiting the exporta tion of such machinery, and great care was taken to prevent the departure of any one having knowledge of the manu facture. Admission to the factories and workshops where the new business wa carried on was everywhere jealously guarded, and manufacturers were also extremely watchful of each other.
It was at this time that Samuel Slater landed in New York City, in the yea 1789. He was twenty-one years old, and had only just completed an apprentice ship of six years with Jedediah Strutt, ol Belper, England. Mr. Strutt was a part ner of Sir Richard Arkwright, and by the terms of the indenture, which is very quaint and peculiar document, the young ap prentice was to be taught all the mysteries of the cotton manufacture, as it was then known, in what was probably one of the best factories in England at the time. On his arriva! here he had no measurements, patterns, or designs of the great amount of new and complicated machinery he had been studying during his whole apprenticeship to faniliarize himself with, for he deemed it would have been unsafe to have at tempted to leave England with such property in his possession, and his departure was kept a secret from his friends and family, a letter to his mother after h had boarded the ship to bear him away being the first intimation he gave of his intended departure.
After working in New York for a short time for the New York Manufacturing Company, the young cotton spinner made the acquaintance of the captain of vessel sailing to Providence, R. I.-sailing vessels then being the most convenient means of communication with Eastern cities-and through him learned of th efforts that had been made to establish the cotton manufacture in Rhode Island. Moses Brown, a Qua ker. of Providence, the direct predecessor of the great cotton manufacturer whose name has since become famous as a member of the firm of Brown \& Ives, had invested some money in machinery for making yarns for the weft of mixed linen and cotton goods, but the attempt to carry on the manufacture had broken down. To Moses Brown, therefore, young Slater ap plied for the position of manager, saying it was a busi ness in which he flattered himself he could "give the greatest satisfaction in making machinery, making good yarn, either for stockings or twist, as any that is made in England." A favorable response came imme diataly, and early in January, 1790, Slater arrived in

Providence, and was thence taken to Pawtucket, where the machinery had been set up. The contriv ances he was here shown were at once declared useless, but the young mechanic added that he could make machines that will do the work and make money at the same time."
An arrangement was finally agreed upon by which the young mechanic was to build a set of machines according to the Arkwright system, and receive there for all the profits over the interest of the capital invested, Mr. Brown pointing out that to the young Eng lishman would belong " the fame as well as the advantage of perfecting the first water mill in America " -the terms " water will" and "water frame" being then used to designate machinery run by water power. The reply was, "If I do not make as good yarn a they do in England, I will have nothing for my ser vices, but will throw the whole of what I have at tempted over the bridge." The agreement under which work was commenced was with the firm of Brown \& Almy, who were to turn in their old machines at cost price, furnish materials for the con struction of two new carding machines, a breaker and a finisher, a drawing and roving machine, and enlarge the spinning irame capacity to one hundred spindles, Mr. Slater to contribute his time and experience to building the machines, and, when built, to operating them, his compensation to be one-half of the profits.

FOUNDER OF THE COTTON INDUSTRY OF THE UNITED STATES.
be obtained short of England, and from thence none were allowed to be exported. After advising with the maker of the cards, it was perceived that the teeth were not crooked enough; as they had no good car leather, and the holes were pricked by hand, the punc ture was too large, which caused the teeth to fall back from their proper place. They bent the teeth with a piece of grindstone, which gave them a proper crook and the machinery moved in order, to his great relie and to the joy of his friends.'

When Mr. Slater came to Pawtucket, he was intro duced to the family of Oziel Wilkinson, as a suitable home, and afterward married one of the daughters of Mr. Wilkinson. The latter had five sons, all of whon were brought up as blacksmiths, and had more or les to do in aiding Mr. Slater in building his machines One of the sons, Smith Wilkinson, afterward became the principal owner of the Pomfret, Conn., factory and David, another son, bore a prominent part in the early development of the manufacturing business of Cohoes, N. Y. The lately deceased Robert Johnson for nearly half a century the superintendent of the Harmony Mills, at Cohoes, was also a worker with Mr Slater.
From the successful organization and starting of the factory at Pawtucket, in 1790, dates the real commence ment of our cotton-manufacturing industry upon a permanent foundation. It is believed that nearly al the establishments put in operation, up to 1805 , were started under the direction f men who had learned the business in that factory, or had some connection with it, and for many years Slater's wil was the point to which nearly all Englis mechanics seeking employment in thi country first directed their footsteps, fterward finding their ways to th various other factories which began t spring up soon after. Up to 1817 the operations of the factories were confined to spinning yarn only, which was put ou in webs and wove by hand loom weaver Mules for spinning filling had not the been introduced. The cotton used to be put out to poor families in the country and whipped on cords, stretched on a mall frame, the motes and specks being picked out by hand at four to six cent per pound. In 1810, however, there wer early one hundred factories in opera ion, with over eighty thousand spindles, ud Englaud had a competitor in the and Eng business of cotton manufacture whose ceased to feel.
It is claimed for Samuel Slater, also hat to him belongs the credit of having started the first Sunday school in America. It is certain that this was work entered upon by him very soon after his arrival here, and in which he was always greatly interested. During the centennial week there was an in mense Sunday school procession, and in his remarks on this occasion Governo Davis, of Rhode Island, said : "The wel fare of his employes and the wants of the

To commence the work of building the machinery necessary to make cotton yarn with the limited appli nces then at hand, and with the necessary knowledge in the mind of only one individual, was a task which would have daunted any but the most courageous. It required nearly a year to complete the first frame of wenty-four spindles, because everything was to be made, even tools to work with, but Mr. Slater was a worker, and is reported to have said in after life that he had labored sixteen hours a day for twenty years uccessively. His greatest perplexity was in making he cards, concerning which an erroneous report has been widely published that he was extricated from his embarrassment by means of a dream. Such, however, was not the case. The truth of the matter is related as follows in White's "History of the Rise and Pro gress of the Cotton Manufacture," published in 1836 the author having personally obtained the particular of Mr. Slater: "After his frames were ready for ope ration, he prepared the cotton and started the cards, but the cotton rolled up on the top cards instead of passing through the small cylinder. This was a great perplexity to him. and he was for several days in great agitation. The family in whose house he boarded have since described his trial to me. When leaning his head over the fireplace they heard him utter deep ighs, and frequently saw the tears roll from his eyes. The family had become interested in his favor. He said but little of his fears and apprehensions, but Mrs Wilkinson perceived his distress, when she said to him Art thou sick, Samuel ${ }^{\prime \prime}$ When he explained to the amily the nature of his trial, he showed the point on which he was most tender, saying, 'If I am frustrated in my carding machine, they will think me an impo tor.' He was apprehensive that no suitable cards could
poor were ever before him, and for them
poor were ever before him, and for then
he established a Sabbath school and a secular and a ragged school, and as a great benediction upon Samue Slater's Sabbath school, planted in this humble town, now nearly one hundred years gone, a son of his, John W. Slater, has given $\$ 1,500,000$ to endow schools, and o scatter scholars, teachers, and learning broadcast among the poor freedmen of the South-children of the very toilers who once produced the cotton which he father here taught the scholars to spin."
The exhibition was arranged as a display of the products of the genius and skill of American labor, in memory of Samuel Slater, "the father of American otton manufacturers."
Many thousands of spindles were idle throughout the State to allow operatives to participate in the cele bration, and in Pawtucket but little else was done fo the entire week but make the most of the occasion.

Rothschild's Wish.

A story is related of one of the Rothschilds which may never have been said by him, but which neverthe ess is true, as every successful business man will testify
"I hope," said a friend to Rothschild, "that your children are not too fond of money and business. I am sure you would not wish that." "I am sure I should wish that," replied Rothschild. "I wish them to give mind, soul, heart, and body to business-that is the way to behappy. It requires a great deal of boldness and a great deal of caution to make a great fortune and when you have got it, it requires ten times as much wit to keep it."
Uranium was unknown a century ago, but a lode has been found in a mine in Cornwall, England. It sells for $\$ 12,000$ a ton.

RECENTLY PATENTED INVENTIONS. Engineering.
Point for Well Sinking Machines -A new point, adapted for well sinking or prospecting machines, has been pateuted by Messrs. Joseph R. \&
Wm . B. Coffin, of Bliss, Nebraska. This point is conWm. B. Cofinn, of Bliss, Nebraska. This point is con-
structed so as to permit a free downward fiow of water while the well is being sunk and a free upward flow of water when the well is completed. It consists of a
perforated tube, carrying at one end a drilling tube containing a pipe provided at the top and bottom with valves.
Adtomatic Cut-Off.-Henry Beddoe, Rolla, Mo. This invention covers a spring-pressed wheel mounted to oscillate and connected with the cut-
off valve, but controlled from the main valve, being off valve, but controlled from the main valve, being
simple and durable in construction, and adapted for simple and durable in construction, and adapted for
reversing or non-reversing engines, to cut off the supreversing or non-reversing engines, to cut off the sup-
ply of steam to the cylinder in proportion to the work ply of steam to the cylinde
required at a given speed.
Ore Roasting Furnace,-Simon B. Dexter, Glendale, Montana. This furnace has a veri i cal roasting chamber with an outlet on top for waste
gasesand products of combustion, side fire chambers near its lower end, with updraught flues from below the fire chambers discharging into the top outlet, with other novel features, for treating ore dust by passing it through the furnace in the direction of the draught of the fre, thereby insuring a thorough treatment of the re without appreciable waste.

Rallway Appliances.

Car Coupling. - William H. Harris, Newberry, S. C. This is an automatic coupler in which
each drawhead is made with a rigid and a movable jaw, the movable jaw being articulated about a vertical axis and having locking devices for holding it in position, the coupling being designed to be simple and in-
expensive, and to effect the coupling and uncoupling expensive, and to effect the coupling and
in a certain, safe, and convenient manner.
SNOW Plow. - John H. Pielert, Triumph, Md. This is a machine arranged to be fitted to a locomotive, as a double ender of powerful capacity,
to cut out and throw away the snow to either or both to cut out and throw away the snow to either or both
sides of the track, and is provided with means whereby sides of the track, and is provided with means whereby
so much of the sow as may be required can be led to so much of the snow as may be required can be led to
the water tank of the locomotive to supply water for boiler use.

Electrical.

Electro Osthotome. - Dr. M. J. Roberts, New York City, has recently patented an improved electrical apparatus for conducting operations
in bone surgery. The various implements used are operated rapidly, smoothly and positively by means of of the instrument. By means of this improvement the operator's attention and strengthmay be de
to guiding and controlling the instruments.

Mechanical.

Wheel or Pulley. - David C. Frazeur and William J. Davis, New Market, N. J. In this
wheel or pulley mechanism, combined with a supportwheel or pulley mechanism, combined with a supportendless chain of rollers between the axle and the wall of the bore, end plates for the hub secured to the frame,
and bolts adapted to the hub and end plates, whereby the strain of working is not taken at one place along the bore, but at opposite sides or all around it.
Wrench. - David V. Cash, Johnson City, Tenn. The handle of this wrench turns upon a socketed hub, there being a pair of ratchet disks hav-
ing their teeth arranged in reversed directions between ing their teeth arranged in reversed directions between
the handle and hub, and a rotatably reversible pawl pivoted to the handle and having oppositely disposed
prongs adapted to engage their respective ratchet prongs adapted to engage their respective ratchet
disks, the tool being designed to be simple, durable and disks, the tool being designed to be simple, durable and
safe.
Packing Rings.-Charles L. Eastman, Packing Rings.-Charles L. Eastman,
Brooklyn, N. Y. This invention relates to cylinder packing rings, and making them as expinsible rings
designed to fit accurately in place as well as if each designed to fit accurately in place as well as if each were made from a single piece, the ring being formed
with radial slots crossed by transverse slots, filling the slots with melted metal, and after cooling cutting the slots with melted m
ring into segments.
Calcining Gypsum. - James Sickler, Salina, Kansas. This invention covers an improved
process, which effects the retarding of the setting of process, which effects the retarding of the setting of the plaster prior to the complete calcining, and whereby the retarding agent is uniformly and homogeneously mixed with the finished plaster without deterioration to its fual setting qualities, and giving the workman m
Wire Drawing Drum.-William W Shearer, Port Angeles, Washington. By means of this
invention the wire is seized at the die by automatic invention the wire is seized at the die by automatic pinchers attached to a chain or wire rope secured to
the sheave within the drum, the sheave revolving indethe sheave within the drum, the sheave revolving inde-
pendently of the drum and drawing the chain and pendently of the drum and drawing the chain and
pinchers holding the wire entirely within the drum through an opening in its side, thus drawing the wire
from the die and attaching it to the drum with one continuous motion.

Agricultural.

Corn Planter and Fertilizer Distribtter.-Jacob W. and William C. Duryea, Blawenburg, N. J. This is a machine adapted to oper-
ate one or two seed-dropping mechanisms and correate one or two seed-dropping mechanisms and corre-
sponding fertilizer distributers, located at suitable dissponding fertilizer distributers, located at suitable dis-
tances apart according to the space between the rows of corn to be planted, and, while simple ard dnrable in construction, is desigued to permit an accurate check construction, is desigued to permit an accur
planting of the seed and marking of the hills.
ChURN Power. - John S. Dickey,
vertical single-dasher reciprocating churn, providing a and durable and give a maximum leugth of stroke whle always keeping the dasher elevated where not in operation.
Measuring Butter in Milk.-John T. Riley, West Union, Iowa. This is a device for determinng the butter value of milk or cream of differcarrier at its lower end, a lever pivoted at the uppe end of the guide, and a sample tube carrier adapted to VI the guid
Vine Securing Device. - J oh h Stangl, Harlem. Mo. This is an improvement on a Yormer patented invention of the same inventor, pro-
viding a slotted hoop or band with a spring projecting viding a slotted hoop or band with a spring projecting held between the spring and the hoop or band, to hold vines upon a trellis in such a manner that the tendrils will not indiscriminately clasp the support, and the

Bee Swarmer. - Francis D. Lacy connection with any kind of hive, and provides mean whereby an empty and an occupied hive may be so
connected when the bees show inclination to swarm connected when the bees show inclination to swarm
that they will be forced to take possession of the empty hive without incurring any loss in numbers and with to the operator.
Peandt Cleaning Machine.-James M. Williams, Petersburg, Va. This invention relates oo a machine having a revolving cylinder in which the
good nuts are separated from the dirt, which is positively drawn from the cylinder, so that the nuts will polish each other, with simple means for separating the pops and shells from the good nuts and produce a fing
quality thereof, with a minimum degree of waste. Calf Weaner. - Ernst H. Geisler, Deshler, Neb. This is a device formed of a number of
rods bent to constitute a halter-like frame and united rods bent to constitute a halter-like frame and united connection with a re-enforcing plate which holds the prongs from spreading or becoming loosened.

Miscellaneous.

Type Writing Machine.-Henry R. Kennedy, New York City. This machine has 29 keys, 26 of them bearing alphabetical and other characters,
while three central keys are specially marked, one to be while three central keys are specially marked, one to be
depressed when a capital letter is to be made, another when a figure or apecial character is wanted, and another being the spacing key, the machine being designed to be light, compact, inexpensive and efficient.
Printing Addresses.-Hugo Lewinsohn, Bromberg, Germany. This invention is for a printing press adapted to print addresses or other
matter upon envelopes, wrappers and parcels, etc., the invention covering a novel construction, combination

Reed Organ. - Jarvis Peloube Bloomfield, N. J. The wind chest of this organ is pro-
vided with two resonating chambers located one above vided with two resonating chambers located one above
the other and provided with a flexible top and bottom, the other and provided with a flexible top and bottom,
these chambers being located below and above the key these chambers being located below and above the key
board, and being more resonating than the remaining ts of the wind chests.
Frame Bars for Glazed Struc-tures.-Willard F. Mills, Kalamazoo, Mich. This in vention covers an improved metallic setting or glass glass of different contours used in the production of ornamental artistic designs in windows or similar works of art, the object being to make a light, strong
and handsome bar out of sheet brass or other metal, nd one which will be economical.
Rotary Measure. - William C. Wells, Chicago, Ill. A casing with vertical sides has a graduated wheel journaled therein operating an indicator disk by means of a cam, disk, lever, and pawl
whereby straight, curved or compound lines and diswhereby straight, curved or compound lines and dis-
tances of all descriptions may be measured, such as the side measure of bozes, rooms, etc.
Baling Press.-Henry Kile, Marshall, ill. This invention is intended to provide an improved press, simple and durable in construction and very
effective, specially designed for pressing broom corn, hay, cotton, etc., into compact bales for storing and shipping.
Ash Lifter. - Henry D. Wendt, 29 ifting ashes, etc., from the holds of vessels, and similar uses, working in a vertical position with adjustable chutes or spouts by means of endless chains, the machine requiring but little space and being designed to work very economicnlly; it is also applicable for con-
veying coal from barges into ships and ore out of mines.
Floating Breakwater. - John M. White, Long Branch, N. J. This invention consists of a series of pontoons pivotally connected with each verse hollow cylindrical tubes and projections extending npwardly therefrom, for the protection of coasts from the action of heavy waves.
Camera Shutter.-Henry W. Hales, Ridgewood, N. J. This invention covers an attached
arm and spring made capable of swinging to actuate the arm and spring made capable of swinging to actuate the
ehutter from opposite ends in either direction, whereby the shutter is always self-setting, as regards its closure of the lens aperture, to admit of the withdrawal of the plate holder of the camera, witho
the plate till the shutter is shot.
Beer Cooling Apparatus.-Joseph Peter, Bucyrus, Ohio. A refrigerating chamber through which water constantly circulates and throngh which pass the beer pipes is provided, a cabinet containing the
refrigerating chamber, with storage compartment for bottled liquors and a water cooler, all communicatin
with each other and cooled by the circulating water.

Mechanical Fog Horn. - Frank E. Dyer, Mount Desert, Me. Connected with the horn from to a receiver provided with shoulder straps, the receiver being connected by another flexible tabe with be readily carried about and sounded with full blasts. Counter Guard. - George C. Peck awtucket, R. I. A series of perforated brackets a secured on the edge of the counter and bent to extend over it, while wires are strung through the perforations nd secured therein at spaced intervals, to protect good xposed for display on counters and shelves, the a
Tricycle Attachment. - Danie ennett, Brookhaven, Miss. This is a chair attachment pancy by babies or small children the char being con pancy by babies or small children, the chair being con-
veniently and eafely secured to or snspended from the ear axle of the vehicle.
Knockdown Trunk.-Monroe Green Brooklyn, N. Y. This invention provides a trunk
designed to be quickly and easily taken apart to be packed in small compass, while it may bs as quickly packed in small compass, while it may be as quickly
put together, and will be as strong as if the parts were permanently fastened in the usual way.
Gas Stove. - James Gibbons, Jersey City, N. J. Combined with a stove body which has an interior fire and mixing chamber, closed at the front b transparent outer wali, are npper and lower partitions, a superheating chamber for air supplied for com bustion, and other novel features, making an inexpensive and efficient stove designed to present a cheerful appear-
ance and insure a maximum radiation of heat with a minimum supply of fuel.
Carver's Frame. - James M. H rederick, Akron. Ohio. This is an adjustable sup porting frame for poultry or other cooked meats, to
hold them in position apon a platter, whereby the operation of carving will be facilitated, the frame being of metal, and having supporting standards to engage the articie to be carved and hold it in position.
Water Closet Indicator. - John Dihrberg. Visalia, Cal. This is a device of prominent and permanent character, to be attached to the outside
of the closet door, and controlled by a cord or string rom the interior, to signify when the closet is occupied.
Fly Front Garment. - Charles Dusenberry, Jr., Tuckahoe, N. Y. Combined with the front fabric and attached fy facing is a cord re-enforce
held to the fabric and facing, and crosed at places beheld to the fabric and facing, and crossed at places be-
tween or adjacent to the button holes of the fiy, the imtween or adjacent to the button holes of the fiy, the im-
provement being adapted to all classes of fly front provement being adapted to all classes of fly front
coats or garments, but especially to rubber goods.

SCIENTIFIC AMERICAN

BUILDINGEDITION. OCTOBER NUMBER.-(No. 60.)

TABLE OF CONTENTS

1. Elegant plate in colors of an attractive cottage
erected at Montclair, N. J., at a cost of $\$ 2,800$.

Perspective elevation,'floor plans, sheet of details
etc. Munn \& Co architects, New York
Plate in colors of a residence recently erected at
Hollis, Long Island, N. Y., at a cost of $\$ 5,500$ Hollis, Long Island, N. Y., at a cost of $\$ 5,500$ details, etc. Schweitzer \& Deimer, New York, architects.
3. Engraving of a Pompei

Saratoga Springe, N. Y.

perspective elevation, etc.

dence at Yonkers, N. Y. Cost $\$ 10,325$
Long Island cottage erected at a cos
Floor plans and perspective elevation.
Suburban residence at Short Hills, N. J. Cos
$\$ 10,000$ complete. Perspective and floor plans.
erspective and floor plans of an attractive residence Perspective and floor plans of an
at Chicago, Ill. Cost $\$ 5,500$.

Design plans.

A very handsome residence at Porchester, N. Y.
Cost $\$ 10,000$. Floor plans and perspective elevation.
City. Cost residence on 176th Street, New York City. Cost, $\$ 12,000$. Mr. Alfred Taylor, of New
York, architect. Perspective and floor plans,
12. Miscellaneous contents: Building in 1889.-The growth of cities.-Treatment of oak.-Examples of plumbing and drainage, illustrations.-Ers lev's asphalt.-A new idea.-A new trimmer for
pattern and cabinet work, illustrated.-Signor pattern and cabinet work, illustrated.-Signor
Brentano.-Concrete in France and Italy.-A new plan to supply Chicago with water.- Lignomur.-
New gasoline engine.-Architectural -Standard expanding water conductors, eave troughs, etc., illustrated.-A highly improved
heating apparatus, illustrated.-The secret of heating apparatus, illustrated.-The secret of
cheap building.-Geometrical wood carving, illuetrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid MAGAZINE or Architre TURE, richly adorned with elegant plates in colors and with fine engravinge, illnstrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fallness,
The Fallness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newedealers.

MUNN \& CO., PUBlisarza,

Pusiness and Personal.

The charge for Insertion under thes head is One Dollar. a line for each insertion: about eight words to a line. Advertisements must be received at publicaron office
as early as Thursday morning to appear in next issue.

For Sale-New and second hand iron-working ma-
chinery. Prompt delivery. W. P. Davis, Rochester. N.Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J
For best hoisting engine. J.S. Mundy, Newark, N.J.
Plater wishes a position on gold, silver, brass, and
Belting.-A good lot of second hand belting for sale Best Ice and Refrigerating Machines made by David Boyle, Chicago, ill. 155 machines in satisfuctory use Steam Hammers, Improved Hydraulic Jacks, and Tube . Duakeon, 24 Columbia Power presses and dies. Also contractors for special Screw machines, milling machnnes, and drill presses. Beach's Improved Pat. Thread Cutting and Diamond "How to Keep Boilers Clean." Send your address Rubber Betting, all sizes, $771 / 3$ per cent from regular list. All kinds or Rubber Goods at low prices. John W.

Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
The Holly Manufacturing Co.. of Lockport, N. Y., will send a book of emcial reportsof pumping engines on application.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, alr amps, acid blowers, filter press pumps, etc.
For lowo prices on Iron Pipe, Valves, Gates, Fittings, ron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St.. New York.

The best book for electricians and beginners in elec tricity is " Experimental Science." by Geo. M. Hopkins.
By mail, $\$ 4$: Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. For translations from or to French or Spanish, for publication or reference, address A. Del Valle, 211 West
48th Street, N. Y. Reference, by permission. Messrs.

ETS Send for new and complete catalogue of Scientifc dother Books for sale by Munn Co 361 Broadway, New York. Fre on application.

HINTS TO CORRESPONDENTS.

(2479) S. B. writes: 1. What is the name of the best gas to sustain human life in a sub merged boat? A. Air; the oxygen of the air is the sus-
taining agent, and its proper dilution with nitrogen is essential. 2. What quantity of said gas would be ample to sustain 10 adults for 24 hours? Length of boat inside 95 feet, width 12 feet, depth 15 feet, tapering from the center to both ends. A. The same air will last a long time if properly treated. Caustic soda or freshly slaked lime should be used to aboorb the carbonic acid gas, and a strong solution of permanganate of potash
should be used to destroy organic emanations. These agents must have a good surface exposed to the air, and should be occasionally agitated or stirred. The motio of the boat should do this. Then for each person 15 to 20 cu bic feet of oxygen should be added to the air during the 24 hours.
(2480) G. F. D. asks : 1. Is the skull of the negro formed of the same number of bones as the skull of the white man, the suture between the parie tal bones being present in the negro? A. Yes. 2. Please give process of preparing absorbent raw cotton. A Boil best quality of cotton with 5 per cent solution of
caustic soda or potash for one-half hour. Wash thor canstic soda or potash for one-half hour. Wash thor
oughly and press out all water as far as possible, and oughly and press out all water as far as possible, and
immerse in a 5 per cent solution of chloride of lime (bleaching powder) for 15 or 20 minates; wash with a lit tle water, then with water acidulated with hydrochloric acid, then with water. Boil once more for 15 minute plain wanter soda solution and wash with acidulated an plain water as before. 3. Please give receipt for a goo and appearance are the most practical tests.
(2481) W. H. W. asks: 1. In what way is the dry plate nsed in photographing prepared ? A See SCientific American Supplement, Nos. 272 and
541. 2. In what way is the albumenized paper prepared before the silver nitrate is added to it ? A. It is coated
with the white of egge containing a smaill quantity of
salt. It is easier and cheaper to buy it ready coated han to do it yourself. The prepared paper is sensitized by floating on a nitrate of silver bath. 3. What is the they have been mixed together, so as to retain all he acid 9 A. Boil off the water. 4. In what way is the metal aluminum got from clay? A. We refe others.
(2482) O. T. D. writes: 1. Can you if asted whestion, what is electric not known whe electricity is. Human knowledge has not yet gone far enough to define it with certainty. 2. What is the reason torms from the west seem to generally blow harder than from the east? A. Dry winds come from the west ater is an equalizer of temperature, and the ocea same time it would take some examination of record to ascertain the relative violence of east and west wind
(2483) C. E. A. asks how to make rubber stamps. A. Rubber stamps are made from rubber un The letters, etc., are set up in metal and a mould in plaster of Paris is taken from them. This is brushed over with ground talc. The sheet of prepared rubber is placed on it and pressed down in a small scre press. The whole is then exposed to heat in a vu anizer. For general manipulation of India rubbe 252. Even what is known as "pure gum," a kind of ulcanized rubber, may be made to work as abov escribed without any addition of vulcanizing material What is the process of zinc etching, and is the ny publication on the subject? A. There are many of ar SUPPLEments that feat of photo-zincography, Noo. 438, 584, 587, 656. etc. Plain etching may be
done with sulphuric acid.
(2484) A. H. H. asks: 1. Where can get a book on photo electrotyping 9 A. We have published a great many SUPPlements on this and related s there any good printer's ink eraser that will take prin ff paper? A. No. 3. Is Edison incandescent ligh suitable for photo-printing! If so, what candle powe is required ? A. No. Use Edison arc light on incanescent circuit with resistance lamps. Voitage must educed from 120 to 60 . 4. Can you tell me what mitate black print? A. Tone the prints black and borux and cold toning both See scieviric A CAN, April 3, 1889, page 225.
(2485) G. S. E. asks : 1. In speaking o lloys as so many parts, do you mean parts by weight as violent churuing, pumping, compression, etc., while in the liquid state, without breaking up into their constituent parts? A. Yes. 3. About what per cent of he current is used by the meters to measure the curren lowing from the dynamo? A. It varies with different nstruments, but is very small. 4. Will magnetic line A. No. 5. Will they in a mass of steel e, g, if the pole of a permanent horseshoe magnet were to be placed at the center on each side of a straight permanent magnet. would magnetic lines cross the center of the straight magnet ? A. No
(2486) E. B. asks : 1. How many grains of carbonate of soda and how many of caustic soda will it take to soften one gallon of water of 15° hardess (carbonate or lime 15 grs .) ? A. If the lime is present as bicarbonate, add 12 grains caustic soda. If ammon caustic soda is used, add about 20 grains add 15 grains of dry carbonate of soda. This cau be made by drying washing soda at a strong heat (short of red) or use 25 grains baking soda. The last is best. Also is there any precipitate? A. Yes. Decant or filter
pay no atlenion to the precipitate.
(2487) J. T. F. asks: What are the colors used in making solid black photogravure ink $?$ A. The best lampblack is the basis of black printing inks. We can supply you with books containing formulæ, for printing inks, but successful inks are in the nature of
(2488) F. L. W. asks (1) how to make a nood leather cement, such as is used by cobblers on in iisible patches. A. It is a solution of gutta percha in ffect the adhesion 9 . The lother tar or buffed off, so as to bring clean leacher surfaces to gether.
(2488) C. B. asks: How can lantern slides, made on Carbutt's gelatino albumen plates, be colored? A. See Scientific American Supplement, 2.75. Aniline dyes slightly diluted, put on with amel's hair brush, are largely used.
(2490) A. G. T. writes: I have an electric bell, and have been trying different things with it and have found that the electricity after having gone through the magnets makes a brighter spark than t does before it goes larough them, when connected and rubbed on iron (that is, the wire); could you The coil of the bell magnet with its iron cores acte "spark coil," and increases the potential or sparking power of the current.
(2491) G. L. S. asks : How can a meersed by the makers to do this, but it is a secret. The only satisfactory way is to smoke the pipe and prodnce the color naturally. Queries No. 2364 and 2474 may be eferred to in this connection.
(2492) A. S. B. asks for a recipe for fixing drawings made with carbon pencils, that the draw-
ings will not rub out or be spoiled if touched. A. Immerse the drawing in skimmed milk. A special fixative sold for the parpose by deal
(2493) S. M. H.-asks : Will a man of or-
res by stadying a manual, such for instance as the one tice is the great teacher for assaying; chemical know-
ledge is not absolutely essential for the ordinary work n volumetric work considerable manipulative power i
(2494) E. E. writes : Wishing to preserve ca color of the red bronze hinges of small white metal
cases which get discolored (oxidized) by exposure, would ask you kindly to inform me of any powder or olution answering the purpose. A. Varnish wilh
linseed oil and japan if bronzed; if of real bronze, apply
(2495) G. A. S. writes: I have had given ne recently the following problem: Given the chor given me the following rule whereby to find the quantity desired, but my man tells me it is not accurate and practical. To four times the square of the rise add the

(2496) T. J. W. asks (1) the cause of th lackening of the globes of incandescent lamps. A. No really good theory has been advanced. The succes sive dissociation and new formation of carbonic acid oxygen in the globe. 2. Has the minute quantity of oxygen that it is impossible to get out anything to do with it ? A. Possibly, yet some lamps contain probably no oxygen whatever. 3. What is a good paste to cement the carbon filament to the platinum wire? A. Use a fine screw or electro soldering, viz., the depositio (2) J. S. W.
(2497) J. S. W. asks whether there are any valves used in a calcium light burner. A. Not in
mixed gas burners; sometimes thereare cocks on blow
(2493) G. M. D. asks how to make the mixture which is put on the edge of pads of paper to seep the sheets together? A. For fifty parts dry glue take nine parts glycerine, disook in water, first soak (2499) E. R. asks (1) a receipt for som hing to kill fieas on a cat or dog without injuring the simal. A. Use brhach or weak mercural ddress of a technological will drive them off. 2. The more. A. The Johns Hopkins University, Baltimor Md.; the University of Virginia, Charlotessille Va
(2500) E. S. McG. asks for a receipt for ticking glass together so that it will hold water. A. (2501) A. asks: Is th
a liquid water is added? A. No, unless a solution of an alker which combines with the sulphur be considered such a liquid.
(2502) G. M. asks : How can porcelain Davy' pitch anent, made by melting together equal parts of diamond cement might be tried. Sopen eigh was singlass in a very little water add 1 part apirit of wind Dissolve in 3 parts spirit of wine 1 part gum ammonia (2503) 1 part galbanum. Mix. Apply ho
(2503) D. N. asks: 1. Give a short quarter of the diameter multiplied into the circumference gives the area. The circumference is found y multiplying the diameter by 3.1416. 2. A recipe for good liquid shoe polish not injurious to leather. A. The following is said to be a good formula for liquid gall nuts coarsely powdered, with 25 of their combined weight of strong vinegar. Filter, add 8 parts of green vitriol. Allow it to settle for twenty-four hours; stir in 8 parts of gum, 100 of sugar, and 80 of sirup.
Strain and add 50 parts of spirits of wine, 40 of shellac olution, and 40 of pulverized indigo.-Techno-Chemial Receipt Book.
(2504) Bristol asks : 1. How to make a good imitation or substitute for horn. A. Try a soluchromate of potash, boiled down in the dark, and ex posed to the sun. 2. How to dissolve aluminum palmitate. A. It dissolves slowly in benzine, kerosene turpentine, etc. Heating facilitates solntion, but a return condenser must be used. A 10 per cent solution in urpentive is quite thick.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this offfe for prices, Which are low. in accordance with the times and our exMUNN \& CO.. of
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

September 30, 1890.
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]

arrier. see gash and parcel carrier.". Paint ca

and

象

－，My
$x^{2}=4 x^{2}$
54zway
$\underline{T}=$
Desass
3：
trade mat
cis
＋ta
Wet
－$=3$
\pm
3
－
Maizewixa

みฝреrtisements．

 SEBASTIAN，MAY\＆CO＇S Se＿息私

$\underset{\substack{H E \\ \text { BI } \\ \text { Ste } \\ \text { Ma }}}{\substack{\text { M }}}$HE PENNA．DIAMOND DRILL \＆MFG．CO BIRDSBORO，PA．，Builders of Hikh Clas
team Engines．Diamond Drilling and Gener TO BUSINESS MEN

Starrett＇s Surface Gauge．

 A EDISON LAMPS
 We will send free，Catalogue E，
to Which gives prices and descriptio
lamps， operate them． EDISON LAMP CO．，

A B C of ELECTRICITY By WM．H．MEADOWCROFT limp cloth，fully illustrated．Price，
WHAT THE PRESS sa YS：

 ＂No pains have been spared to make．it
reliable throughout．＂－Electrieal Review relabe inroughout．，－－tectrieal eriew．
IIn simple language the author any bare the secrets of
Electrical science and application．＂Electrical Worla． United States Book Company，Publishers，NewYork

SMOKELESS EXPLOSIVES．－A LEC

Greene，Tweed \＆Co
～NEW CATALOCUE VALUABLE PAPERS MUNN \＆CU．， 361 Brondway，New Yor PROPERTIES OF ALUMINUM．－BY A．E．Hunt．J．W．．Langley．And C．M．Hall．Purity of
Aliminum and proesese of manifacure．Properties
with respect to speciffe gravity．Action of heat on alu－

GIRAND PRETYR

Phin Panel Etock Manufactured by th
 HENRY T．BARTLETT，
CABINT WOMDS
and VENEEIRS，MAHOGANY MLS
2OU Lewis Street，New York．

ARTESIAN

 POP SAFETY VALVE
ROSB WATER RELIEF VALVE SB IMPROVED STEAM GAGE STEAM ENGINE INDIOATOR

 STANLEY＇S ADDRESS TO THE ROY－

THE EACLE
THE EASIEST RUNNING BICYCLE
IN THE WORLD．
IN THE WORLD．
eed，Comfort and Safety．
AGENTS WANTED． Large Illust Catalogue sent Free to any Address． THE EAGLE BICYCLE MFG．CO．，
CONT

VOLNEY W．MASON \＆CO． FRICTION PULLETS CLJTCHES and ELEVATORS PROVIDENCE．R．I．
MILK ：WITH SPECIAL REFERENCE

OTTO GAS ENGINES
Engines and Pumps Combined For COAL GAS

G GASOLINE SCHLEICHER，SCHUMM \＆CO． PHI
CHICAGO，
Useful Books！

Manufacturers，Agriculturists，Chemists．Kngineers．Me－ chanics，Builders，men of leisure，and professignal men，of all classes，need good books in the line of their respective callings．Our post office department permits the transmission of books through the mails at very small cost．A comprehensive catalorue of useful books by different authors．on more than fifty different subjects，has recently been pubdished for free circulation at the office of this paper．Subjects classifled with names of author．Persons desiring a copy，have only to ask for it，and it will be mailed to them．Address， MUNN \＆CO．． 361 Brandwny，New York．

IDEAL MUSICAL BOX

JACOT \＆SON，${ }^{30} \mathbf{N E W R O A D W A Y}$
STANDARD WEIGHTS AND MEAS－

 Stored Energy
ACRUMULATORS street Car propur
THE ACCUMUI，ATOR COMPANY

An Encyclopedia of Useful Technical Knowledge.
\qquad
JUST READY.
Price $\$ 2.00$.
Free of Postage to any Address in the World. TITI English and 1 merican $/$ echanic an Eviry-Day havd-Book for the
shop and the Factory.

 HENRY CAREY BAIRD \& CO., $\mathbf{8 1 0}$ Walnut St., Pliiladelphin, Pa., U. S. A.
A New and Splendid Companion to all the Metal Industries.
Fuly abreat
well
ceast of the latest inventions and discoveriea
smole laresest and coorsest as in in the - worl JUST READY Price, $\$ 2.50$.

TEIT
 Mana Wumith hav-Bu:

RECEIPTS AND PROCESSES.

 languape.
 HENRY CAREY BAIRD \& CO.

RUBBER TIPPED ARROW OO.'
HOW TO MAKE DYNAMO.ELEG'TRIC

 Treen Eyck \& Parker, 66 Pine Street, New York ARBAlifevirill boxs. Useful, Beautiful, and Cheap.

[^0] After being on the Market Five Years The "ACME" still Leass!
 rochester machine tool worrs, Bromn's Race, Rochester, n. y. ide automatic engines.

HARRISON CONVEYOR!

 Fanoing Grain, Coal, Sand, Clay, Tan Birkh, Cinders, Ores, Seeds,\&C.

A Primer on Inventing;
Or rather on mechanical helps to inven tion, experiments, investigation, etc., sent ree, to advertise our machilue shop.

 heat, electric likhts, elevators, and all modern con-
veniences. Hens moderater
WILLLIM FOULKE, Treas., Room 6, Bible House. OLEOMARGARINE-BY PROF. JAMES

TYPEWRITERS.

 chines sold on monthly payments. Any Instru-
ment manufactured shipped, privilegetoexamine.
EXCHANGING A SPECIALTY. Wholesale prices ment manufactured shipped, privilegetoexamine.
EXCHANGINGA SPECIALTY. Wholesale prices
to dealers. Illustrated Catalogues Free. $\left.\begin{array}{l}\text { to dealers. Illustrated Catalogues Free. } \\ \text { TYPEWRITER } \\ \text { HEADQUAREIERS, }\end{array}\right\} \begin{aligned} & 74 \text { Broadway, New York. } \\ & 144 \text { La Salle St., Chicago. }\end{aligned}$
54TH EDITION.-113TH THOUSAND.

ENGINEERS' POCKET - BOOK

By CHARLES H. HASWELL.

Mechanics' and Engineers' Pocket-Book of Tables, Rules, and Formulas pertaining to Mechanics, Mathematics, and Physics : including Areas, Squares, Cubes, an Roots, etc.; Logarithms, Hydraulics, Hydrodynamics. Steain and the Steam-En gine, Naval Architecture, Masonry, Steam-Vessels, Mills, etc.; Limes, Mortars, Cements, etc.; Orthography of T
"I cannot find words to express my a amiration of the sill and indnotry displayed in producing the same
oo you belongs the honor of having preeented to the world a book contanin

BY THE SAME AUTHOR

MENSURATION AND PRACTICAL GEOMETRY. Containing Tables of Weights and Measures; Vulgar and Decimal Fractions ; Mensuration of Areas, Lines, Surfaces, and Solids; Lengths of Circular Arcs; Areas of Segments and Zounes of a
Circle; Board and Timber Measure, Centres of Gravity, etc, etc With a Treatise on the Carpenter's Slide-Rule and Gauging. 12mo, Sheep, pp. 324,90 cents.

Published by HARPER \& BROTHERS, New York.

$\$ 10.00$ to $\$ 50.00$

-REAT FALLSA, MONTANAA

WAS Uncle Sam and Aunt Columbla think, etc., ot

ATTRACTIVE manufactuding sites IIN SOUTHERN ILLINOIS.

 SO. ILL. IMMIERATION ASS'N

BARREL ${ }^{\text {mid }}$,

DEAF waw wiwai

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

NOW READY.
Experimental $\$$ diene

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,

FOREIGN PATENTS their cost redeced.

The expenses attending the procuring of patents in
most foreign countries having been considerably remost foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting theirinven-
tions abroad. CANADA. - The cost of a patent in canada is even
less than the cost of a United States patent, and the formerincludes the Provinces of Ontaric. Quebec, New Brunswick, Nova Scotia, Britisb Columbia, and Mani-
toba.
The number of our patentees who avall themselves of The number of our patentees who avall themselves of
the cheap and easy method now offered for obtaining ing. orce on Jan. 1st. 1885, enab:es parties to secure patents in Great Britain on very moderate terms. A British pa-
tent includes England, Scotland, Wales, Irel Ind and the Channel Islands. Great Britain is the acknowiedged naods are sent to corerial center of the world. and her invention is likely to realize as much for the patentee Knzland as bis United States patent produces for
him at home. and the small cost now renders it possible for almost every patentee in this country to secure a patent in Great Britaiu. Where his rights are as well projected as in the United States.
OTHERCOUNTRIES.
OTHER COU TRIES.- Patents are also obtained on very reasonable terms in France. Belgium, Germany,
Austria, Russia. Italy. Spain (the latter includes Cubs ano all the other Spanish Colonies), Brazil, British India Australia, and the otner British Co onies.
An experience of over forty years has enabled the
publishers of THE ScIENTIFIC AMI EuICAN to estaulish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
have the business of their clients promptly and proper ly done and their interests faithfully guarded.
A pamphlet containing a synops1s of the patent laws
of all countries, including the cost for each, and othe information useful to persons contemplating the prothis office.
ntific an (N.. Editors and Proprietors of Tee ScieNTIFIC AMERICAN, cordially invite all persons desiring
any information re ative to patents, or the registry of
trade-marks, in this trade-marks, in this country or abroad. to call at their
offices, 361 Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly

Address. MUNN \& CO..
361 Broadway, New York.
Branch OFFICES: No. 622 and 624 F Sireet, Pacifl
Builalng, near 7th Street. Waskington. D. C.
The Scientulic $A \xlongequal{\text { merican }}$
PUBLICATIONS FOR 1890.
The prices of the difierent publications in the United
States, Canada, and Mexico are as follows.
RATES BY MAIL
The Scientifl American (weekly one ye
The Scientifc America (weekly one year $\$ \$ 3.00$
The Scientific American, Spanish Edition (monthly) $\stackrel{\dot{0}}{ }$.
The Scientittc American, A rchitects and Builders
Edition (monthly), one vear.
COMBINED RATESE.
The Scementic American and Supplement,
The Scien and Architects and Build
$\$ 7.00$
The Scientitcic American and Architects and Build- 5.00
The Scientific American, Supplement, and Archi- 9.00
tects and Builders Edition.
Proportionate Rates for Six Months.
This includes postane, which we pay. Remit by postal
or express money order, or draft to order ot
xpress money order, or draft to order ot
MUNN \mathbb{E} CO., $\mathbf{3 6 1}$ Broadway, Now York.

Victor Bicycles！
 For pleasure，business．recrea
tion，and for anything you
could use a bicycle for．
VICTORS ARE BEST Overman Wheel Co．，Maker Chicopee Falls，Nlass．
Scientific Book Catalogue
 MUNN \＆CO．，Publishers Scientific

JENKINS standard packima！

COMPTOMETER
ALLAR：TRHEEGLLEAS

FELT \＆TARRANT MFG．CO．， $52-56$ Illinois St_{t} ，Chicago． CASTINGS．－A DESCRIPTION BY

WORKING MODELS Ma Maxperimental
O KEEP COOL！
Light－Running Ventilating dapted for Ventilating and D GEO．P．CLAB Box L ，
mith，$A R$

MACHINISTS＇FINE TOOLS．
STANDARD TOOL CO．，ATHOL，MASS．

ACUTE COLDS：WHY AND HOW

PATENTS！
MESSBS．MUNN $\&$ CO．，in connection with the publi－
cation of the SCINNTIFI
AmMERICAN

 reasonable terms．
tain pamphat free of charee，on application，con－
till cure them；directions concerning Labels，Coprriights，
Designs，Patents，Appeals，Reissues Infringements，As－ signments，Rejected Cases．Hints on the Sale of Pa－
tontse etc．
We atso send，free of charee a a synonsis of Foreitn Pa－ tent Laws，showing the cost and method of securing
patentsin all the principal ountries of the worid．
MUN a con．，Solicitors of Patentm，

 Paterit Riveted Monaded Rinber Belting
 the gutta percha and rubber mfg．co． Para Building， 35 Warren St．，New York．
San Francisco，Boston，Mase．

4）

The Montauk CAMTERA

THE TEACHING OF SCIENCE．－

CULTURE OF STRA WBERRIES AND

FIRE FELT．
THE NEW NON－CONDUCTING MATERIAL
 it to be superior to Hair Felt in Non－Conducting qualities．Made einto ovectional form Asheet os Boiler Eoverings，Steam Packiugs，A bbestos Cloth，Asbestos

nila RNSMISSION OF POWER BY MA－

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use．and all the consequences thereof，and liable to suit therefor．

YALLEABLE ANO FINE GRAY IRONALSO STEEL

－lituatlons procured all pupis when competent．
MEDICINAL USES OF LEAVES．－BY

ESTABLISHED HALF A CENTURY．

HAVE MANY PATENTED
PATENIIDPROVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION By THOE WHO THE BEST SAFE MARVIN SAFE CO． NEW YORK，PHILADELPHIA LONDÓN．ENGLAND．

R CUTLER DESK．BESTA

INATIOINAI FILTBR＿

BRIGHT SPARKLING WATER

LARGE SIZE FOR MILLS AND WATER WORKS．
national water purifying co．

SYACCUSE MALLEABE IROWWORKS

 THE PHONOGRAPH－A DETAILED

GRAVESELEVATORS．

150 TON ICE MAKING PLANT．－DE－
 Sill
NEW KODAKS

THE EASTMAN COMPANY，
sat ine cuitume エエエロ
Zrixntific Amprican
The Most Popular Scientific Paper in the World． Only 88.00 a Yenr，including Postage．Weekly．

This widely circulated and splendidly illustrated paper is pub ished weekly．Every number contains six－ teen paRes of useful information and a large number of
original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery， New Inventions．Novelties in Mechanics，Manuf，ictures， tecture．Agriculture Horticulture，Natural Bistory，etc． Complete List of Patents each week．
Torms of Subscription．－One copy of the SCIEN－ TIFIC AMERICAN will be sent for one vear－ 52 numbers－
postage prepaid，to any subscriber in the United States postage prepala，to any substion or Mexico，on recelpt of three dollarm by the Canada or Mexico，on recelpt of three donlin＇wh by the
publissers ；six monthe，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－Special rates for several names，and to Post
M asters．Write for particulars． M asters．Write for particulars．
The safest way to remit is by Postal Order．Draft，o
Express Money Order．Money carefully placed inside Express Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc able to MIUININ \＆CO．

361 Broadway，New York．

Scientific American Supplement．
This is a separate and distinct publication from
TBE SCicNTIPIC AMERICAN．but is uniform therewith In size，every number containiug sixteen large pages full of engravings，many of which are taken from foreign
papers，and accompanied with translated descriptions． papers，and accompanied with translated descriptions． The Scim．itipic Anerican suppleming is published
weekly，and includes a very wide range of contents．It weeks，nnd inciudes a very wide range of contents．It
presents the most recent napers by eminent writers in
all all the prinzipal departments of science and the
Useful Arts，embracing Biology，Geology，Mineralogy， Natưral History，Georraphy，A rchæology，Astronomy， neering．Steam and Railway Engineering，Mining Ship Building，Marine Engineering，Photogr：iphy，
Tecnnology，Manufacturing Industries，Sanitary En－ gineering．Agriculture，Horticulture，Domestic Econo my，Biograply，Medicine，etc．A vast anjunnt of fresh
and valuable information obtainable in no other pub－ lication．
The most
The most important Ensineering Works，Mechanlems，
and Manufactures at and described in the SUPPIIEMENT
Price for the
 ERICAN and one copy of the SUPPLEMLINT，both mailed
for one year for and remit by postal order，express money order，or check MUNN © Co．， 361 Broadway，N．Y．．
Publishers Scientific Ameitican．

Building Edition．

The Scientific american architects＇and Buliders＇Edition is lssued monthly． 82.50 a year
Single copies， 25 ． to sbout two hundred ordinary book pares；forming a large and splendid Magazine of A rchit ect Inre，rich
Iy adorned with elegant plates in colors，and with othe ly adorned with elegant plates in colors．and with othe
tine engravings ；illustrating the most interestiog ex amples of mudern Architectural Construction and allied subjects．
A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences．city ard country，including those of very mod erate cost as well as the more expensive．Drawings in perspective and in color are given，togetber with ful
Plans．Spec fications，Sheets of Details，Estimates， have won for it the Larness of this mapnificent wor have won for it the hareest cinculation of any
Archicecural publication in the world．Sold by all
newsdealers． 82.50 a year．Remit to

MUNN \＆CO．，Publishers，
361 Broadway，New York．

PRINTING INKS：

[^0]: He, either in the country or city. or any builder wishing oo examine the latest and best plans for a church. school or low cost, should procurea complete set of the ArcHi tects' and builders' Edition of the scientifio
 amirican. The information these volumes contain renders the
 work almost indispensable to the architect and builde and to persons about to build for themselves they will
 find the work suggestive and most useful. They zontain nod the work suggestive and most useful. They sontain colored plates of the elevation, plan, and detail draw
 Ings of ilmost every class of building. with specifica ion a.id approximate cost.
 Eight bound volumes are now ready and may be obained, by mail, direct from the publishers or from any
 newsdealer. Price, $\$ 2.00$ a volume. Sutched in covers. Subscription price, per annum, 82.50 . Address nd remit to

 MUNN \& CO., Publishers, 361 Broadway, New York.

