

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LXXIII.-NO. 3.]	NEW YORK, JULY 19, 1890.	

马rixntific Ammitan.
 EHABISHED 184

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

 o. D. MUNN.E. BEACH.

Building Edition.	
D BUILDERS EDITI	
taining Hoor plans, perspective views, and sheets of constructive details,	
隹	
ing this work is invaluable. Id.	
(embined rate for bulling hidition with Scientipic American *5.00	

NEW YORK, SATURDAY, JULY 19, 1890

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 759.
For the week Ending July 19, 1890 .
Price 10 cents. For sale by all newsdealers.
. ASTRONOMY.-Astronomy.-Six stars and data of the same adapted for spectroscopic investigation, with notes on t
teoric theory of comets, shooting stars, and other topics. 1I. BOTANY.-Honessuckles.-The cultivation of honeysuckles and their utilization in the garden.-1 illustration.......................
The Shapes of Leaves and Cotyledons.- By SIR JoHN LUBBock.
-The various shapes of seed leaves and maturc leaves of plants -The various shapes of seed leaves and maturc leaves of plants
considered by the great naturalist.-A recent Royal Institute lec-ture...
III. CIVIL ENGINEERING.-Great Tower for London.-Design and
specifications of a 1,250 foot tower. -1 illustration................... The V yrns Aqueduct to Liverpool.-The new I..................
works.- Particulars or crossing a navigable stream by the use of works.- Particulars of crossing a naviaable stream by the use of
special joints un the pipes. 1 illustration....................... ELECTRICITY.-A Sewing Machition.
IV. Elecctricity.-A Sewing Machine Motor for Amateurs.-By
C. D. Parkhurst.-A very simple and satisfactory motor with C. D. Parkhurst.- A very simple and satisfactory motor with
laminated armature of sufficient power to drive a sewing machine -11 illustrations.
v. mechanical engineering.-The Morgan Engineering Works.-A modern first class engineering works at Alliance, Ohio. described..
VI. METEOROLOG Y.-Velocity of the Wind on the Eiffel Tower
and at the Forth Bridge.-Interesting data as to the velocity of and at the Forth Bridge.- 1 nteresting data as to the velocity of
the wind at differentelevations, showirg the striking difference in surface velocity and that observed at.great heights.
II. ordnance.-Modern French Artillery.-The De Bangeguns and mortars, as made by the Cail Gun Factory, with elaborate tables of dimensions. -4 illustrations.
ViII. NATURAL HISTORY.- Bustards at the Zoological Gardens.areat bustard of South A frica. -1 illustration.
iX. NAVAL ENGINEERING.-Sailing Ships.-The present aspect
of sailing ships, their increased size, and the present extensive use of the same.-Contrast of English and American vessels. X. PHYSICS.-A Simple Barker's Mill.-A simple apparatus mad

XI. TECHNOLOGY.-Automatic Gas Retorts.-The use of inclined gas retorts, charged and discharged automatically.-6 illustrations
Early Printing in America. - By A. De F.-Interesting notes, with dates of the history of printing in this country The Asphalt Industry in France.-The of attempts at the solving of this great chemical problem, as yet an unsolved one.
The Use of Gas

COST OF THE NEW AQUEDUCT.
The new Croton Water Works for New York City millions of cost a little over twenty-three and a half let on within a few days. The total length of the new aqueduct is $331 / 8$ miles, of which $303 / 4$ miles is in the form of a tunnel, mostly through solid rock, 18 feet diameter, lined with brick 16 to 18 inches thick, filling of concrete, interior diameter for the most part of 14 ft . The delivering capacity is three hundred and ten millions of gallons per day. The work of excavating the tunnel was begun March 7, 1885, and finished July 7, 1888. This may be regarded as excellent progress, and shows the practical a

THE PANAMA CANAL BUBBLE.

It is now over eight years since work was first begun upon the Panama Canal, and about two years have elapsed since active operations were suspended. The total cost of the work up to the present time, including the indebtedness of the company, is estimated at seven hundred millions of dollars, and the canal is hardly half finished.
De Lesseps' estimate of the cost in 1881 was one hundred and twenty millions, and the time required to open the canal five years. The mismanagement of the enterprise has been conspicuous, and the swindling practiced upon the company fearful. Among the methods of deception the following system was at the
time reported. When a ship arrived with a cargo of time reported. When a ship arrived with a cargo of coal, a small portion would be landed and vouchers given for the whole cargo; the ship would then depart and return again in a short time, ostensibly with another cargo, for which new vouchers would be given; the same trick would then be performed again. Thus by the knavery of its agents, who were simply plunderers, the company paid for materials several times over. There were rumors of frauds in almost every department of the work. There seems to have been a woful lack of that rigid business organization,
and close scrutiny of details, which should govern in such an undertaking, in order to secure economy and success. Much of this laxity was doubtless due to the deadly and enervating climate, which almost at the beginning of the work carried to the grave several of the ablest and most experienced chief officers and many of their valued assistants.
After the failure of the company to meet its obligations, a receiver, as we should term him, but in France he is called a liquidator, M. Brunet, was appointed to take charge of the work and the properties of the company. He named a commission, consisting of twelve independent, experienced, and prominent per sons, among whom were engineers and professors, who were charged to visit Panama, examine the works and machinery, and report on the best way of completing the canal, the further costs, otc. Efforts were also to be made to obtain a renewal of the concession granted by the Colombian government, as the privilege will soon expire-having now only a little more than two years to run. The commissioners reached Panama in
December last and investigated everything with much care. Their report has lately been made to the Chamber of Deputies, and is anything but encouraging.
The committee says that the construction of the canal at the calculated level would occupy twenty In the opinion of the committee the work could only be completed on the basis of an international agree ment or a syndicate of the states interested.
The report further states that, taking into accoun the interest to be paid during so long a period without any receipts, and also the general financial charges, the capital necessary must be estimated at three mil liards of francs, or say six hundred millions of dollars.
A further report deals with the defects and omissions of four plans proposed for the completion of the canal. According to the first of these plans, the canal is to be isolated, no use being made of the existing waterways. The second plan proposes to make use of such water ways. The third provides for a ship railway as a por tion of the proposed interoceanic route, and the fourth for a ship tunnel through the high land at Culebra.
Meantime the unfortunate shareholders have peti tioned the French Congress, asking that the liquidator shall prepare a statement showing precisely what has been done with the money received by M. De Lesseps and the directors. More than twice the sum they stated would be required has been subscribed, and the
creditors now believe it was obtained upon false reprecreditors now believe it was obtained upon false repre
sentations. They seek to have the directors made per sonally responsible for their losses, and hope in that way to recover back at least a portion of their vanished treasures.

The Plasticity of Ice.
Mr. Thomas Andrews, F.R.S., recently read a paper on this subject before the Royal Society. The experi ments named in the paper form a continuation of a previous research by the author. The experiments were made to investigate the relative plasticity o

- 35 deg . Fah. The arrangements of apparatus used in determining the plasticity of pure ice, and also of ice, are illustrated in detail in the paper
The ice for the pure ice experiments was frozen from distilled water; the coldest freezing mixture used, consisting of three parts by weight of crystallized calcium chloride and two parts by weight of snow, yielded a constant temperature of - 35 deg . Fah. Other freezing mixtures were used for the temperatures above this, The cylinders of pure ice employed were 2 feet $11 / 2$ inches long and 2 feet $11 / 2$ inches diameter, and weigh ing 470 pounds. The plasticity was ascertained by measuring the relative penetration during equal periods of time of the polished steel rods into the ice, care being taken to avoid errors from conductivity. A large number of experiments were also made on the plasticity of natural, lake, or pond ice. The influence of the composition of water on the plasticity of the ice irozen therefrom was investigated, and a number of experiments were made to ascertain the proportion of the saline constituents of the lake water taken up into the ice during crystallization.
Roughly speaking, it was found that the proportion of inorganic matter in the melted ice was about 10 per cent of the tota inorganic salts contained in the lake water from wh.ch it was frozen. The general summary of results of the experiments on the plasticity of pure ice at the various temperatures employed are plotted out in four curves, and the results of the experiments on the plasticity of pond ice were shown in detail. In the majority of instances it was found that if the plasticity of the ice at -35 deg . Fah. be called one, at 0 deg . Fah. it would be about t wice as much, and at 28 deg . Fah. the plasticity would be about four times as great as at 0 deg . Fah., or eight times as much as at -35 deg . Fah. The comparatively great contractibility in ice observed at considerably reduced temperatures-see the author's former paper " On Ob servations on Pure Ice and Snow," Royal Society "Proceedings," No. 245, page 544 -may probably ac"Proceedings," No. 245, page 544 -may probably ac-
count for the great reduction in its plastic properties count for the great r
at low temperatures.

This is in accord with the practical cessation of motion in glaciers during the cold of winter. It was also noticed in course of the research that the plasticity of the naturally frozen pond ice was manifestly greater than that of the prepared pure ice. The comparative difference in the behavior of the pond ice was doubtless owing to a portion of the saline constituents of the water interspersing during congelation between the faces of the individual crystals of ice, thereby tending to reduce the cohesion of the mass as a whole, and in creasing its plasticity.

Latent Heat.

The phenomena of latent heat were first investigated by Dr. Black, of Edinburgh, nearly 130 years ago. He was first attracted to the subject by noting that it was impossible to raise the temperature of ice until it was all melted. For instance, if a pound of ice is put over a spirit lamp, a large quantity of heat passes into the ice, but the mixture of ice and water shows no tendency to rise in temperature until all the ice has disappeared. The question then was what became of the heat. It was proved that the heat was used to melt the ice, but where did it all go to ? It had disap peared and was unaccounted for.
Another experiment was tried in which a pound weight of water at $100^{\circ} \mathrm{C}$. and a pound of water of $0^{\circ} \mathrm{C}$. were mixed, and the result was two pounds of water at $50^{\circ} \mathrm{C}$. In the mixture the pound of boiling water gave up 50°, reducing its temperature one-half, and the cold water receiving it is raised to 50°. But if instead a pound of water at $100^{\circ} \mathrm{C}$. and a pound of ice t 0° be mixed, we have two pounds at the same tem perature, but the mixture, when the ice is melted would show but about $10^{\circ} \mathrm{C}$. instead of 50°. Thus it would appear that 80 units of heat had disappeared and were unaccounted for. The experiment was the tried, from which it was found that this 80 units of heat reappeared when water was converted back again to ice, and this heat was manifest and given to the surrounding bodies. The question was: Where does this heat go to and where does it come from when it reappears? Dr. Black answered that heat was a kind of matter, a subtile and elastic fluid, and wate had a great capacity for holding this fluid. Between the molecules of the water, it was said, there are min ute spaces into which the heat finds its way, and ther lies hidden as long as the water remains in the liquid state. In this condition the heat produces no sensible effect on the thermometer. But no sooner does the water begin to pass back into the solid form of ice than this heat is forced to come out from its lurking place and to make itself sensible once again. This was the doctrine that prevailed down to the close of the last century. The same action is seen in making steam, for if heat be applied to water, the temperatur will rise until the boiling point is reached, and if the steam formed is allowed to escape, the water will show no higher temperature, though heat is being constant ly added. This heat, it was said, was concealed be tween the particles of the vapor, and was squeezed
out again when the vapor was changed back to water. This is what is known to day as latent heat, just as it was called by Dr. Black, and the point for the engineer to remember is that in making steam 966 of the units of heat required to make a pound of steam at atmospheric pressure disappear and have no effect on the thermometer; also that when the steam is con densed, this heat reappears and is sensibly felt, hence is not lost.
But although it has disappeared, the modern theory of heat as a kind of motion does not allow this idea that it is hidden somewhere and can be found by shaking. According to the modern theory of heat when we add heat to a mass, we do not pour into it a certain quantity of matter, but we impart to it a cer tain amount of energy. This energy goes to pull asunder the molecules of the ice against the molecular action that tends to keep them locked together in solid form. In overcoming these forces the heat expends it self, and ceases to exist as heat. Hence the term latent heat is hardly applicable. To make this theory clear, assume two blocks of lead suspended by two strings from one point. Under the influence of gravity each tends to place itself vertically below the point of suspension, and thus they cling together with a certain small force. If we wish to pull them asunder, we must overcowe the force that is pulling them together and in doing so expend a certain amount of muscular energy. If we allow the blocks to go, they will fall together and acquire an energy of motion equal to that expended in separating them. In the transformation of ice to water, and water to steam, this same process is seen, for the particles cling together and resist separation. Heat is the agent by which we overcome this attraction, and in doing so it expends its energy until all the particles are separated and the block of ice becomes the liquid water or the liquid water the vapor steam. The heat has disappeared as heat and has become energy. Hence the term latent heat is not applicable in a strict sense. It is applicable to this extent, that as the particles of water and steam are held apart they possess a certain amount of energy of motion which will cease when the particles come again in collision, and be converted into the energy of heat. It was so with the two blocks of lead on a large scale, and exactly the same on an indefinitely smaller scale in the conversion of water to ice and steam to water. The energy of motion of the steam is changed into heat by condensation. Hence all the heat that disappears to separate the particles of the water to make steam is given up and becomes sensible when the steam is condensed and becomes water. This heat disappearing and appearing again is what is known as latent heat, yet our engineer friends will understand that when it has disappeared to make steam it is no longer heat that can be shaken up and driven out of its hiding place, but energy which can be converted into heat again by condensing the steam. It is this fact that makes steam such an efficient vehicle of heat, because in condensing it so much heat is produced in its change of form. It is put into the boiler and car ried in the steam as energy, but all is given up again. Therefore there is no loss.--Bos. Jour. of Commerce.

Files.

bi James d. foot.
Files is a word which to the average mind conveys various meanings. Persons looking at the word associate it with newspaper files, stationers' files for properly assorting invoices, letters, etc., but to the mechanical mind it represents a tool which for centuries has been the mechanic's best friend, and sometimes the convict's in his prison cell. It is the object of this article to dwell especially on files as applied to the various mechanical arts, and it may be of interest to know the various materials used as files from the earliest ages.
The first application of any article as a file we find by research to have been the dried skin of certain fish. As arts progressed, copper was treated in such a way as to produce a file sufficiently hard to work the softer metals. At a later period, when iron was largely used for armor, house trimmings, and decoration, the people of that age succeeded in forming a metal harder than iron, and practically what is known by the present generation as steel. From that time on this material has been used exclusively for the manufacture of files.

Jumping from this early period several centuries forward we find in Switzerland, Germany, and France
files being made of all grades of cut, both fine and coarse, large and small; most of the work being done by families in their houses, their work being afterward assembled by one large factory and in turn placed on the market with dealers and large consumers. It is these files. Those which are perhaps best known in the market to-day are manufactured in Switzerland, and known by the maker's name as the "Grobet" files. The common shapes of these files are flat, hand, half-round, round, triangular, and square, and at the present time this special brand of file is principally
used by jewelers, silversmiths, etc., on the finer class of work-files being cut with teeth so fine as to finish
to a polish gold material without showing a scratch on
the surface. Formerly these files were cut entirely by the surface. Formerly these files were cut entirely by been cut by machine and part by hand. To cut most of the shapes by hand a chisel and hammer are used. Where cut by machine the chisel is used in connection with a plunger or hammer worked by a machine. On the finer grades of round files and the backs of halfound, the cutting is done by what might be called a system of etching, that is rubbing in the teeth by the use of a large nile. Persons sometimes ask how it is
that a tooth can be raised on a file which is so hard as that a tooth can be raised on a file which is so hard as
to file or cut other hard material. The answer to this is that the blank before being cut is annealed so as to be as soft as the softest iron. After it is cut and goes through the various processes it is then tempered, or in other words the carbon restored to it, and the needleike points are thereby made extremely hard and tough. Space will not permit the writer to give an extended account of the manufacture of files at the present day. If brief, where twenty-five years ago all files made in this country were virtually cut by hand, to-day over 90 per cent of the files used are cut by machines; in fact, most of the work necessary to produce a file is to-da done by the operation of the machine.
The process of making the files of to-day, briefly, is as follows: The manufacturer of files first secures his steel rolled to proper shape and size from the steel manufacturer in bars about eight feet in length. After the steel is received it is cut into proper lengths to make the various size files, and then passed under power hammers, where the shape and tang of the file is produced. The file is then known as a black file blank, and this process is known as forging the blank. From the forging it goes to what is known as the an nealing department, which consists of large ovens in which the files are stacked or placed in a mass sur rounded by a hot fire. At the proper time, when files are at the right heat, the fire is allowed to burn out and the files cool gradually, being kept entirely from contact with the outside air, this cooling process tak ing perhaps two or three days. When the blanks emerge from this fire they are then known as annealed blanks, that is the carbon has been extracted from
them without destroying the quality these blanks destroying the quality of the steel. Aut shape for grinding they are then taken to large machines, where several are inserted at a time and brought with great force against the surface of a revolving grindstoue. This produces an abrasion on the surface of the blank, it being necessary to remove the scale o what is known as the "skin" of the steel. These stones are about 6 feet in height, 12 inches face, and
weigh something over two tons, and it requires about 25 horse power to run one of these machines in which the stones are used, the stone revolving about 200 revo-
lutions a minute. When the blanks are finished on these stones they have a bright, polished appearance, and are known as ground blanks.
Where, owing to the shape of the file, as in round and half-round, it is not possible to grind by use of the machine, what are known as hand-stones are employed, the work being accomplished by hand instead of by machine, the result being the same. These blanks are now supposed to have a true surface and be ready for
cutting; that is they are soft and free from scale, or cutting; that is they are soft and free from scale, or
what is known as the "skin" of the steel. From this what is known as the "skin" of the steel. From thi
point they go to the department where cutting ma chines are used, and here, by the blow of chisels, very short in length but as to edge and shape very much like the ordinary chisel of carpenters' use, ridges of metal are raised on the blank, producing what are known as the teeth of the file. Where the lines of ridges intersect they form a diamond-pointed tooth and make files such as are used for general machinists' use.
For filing hand saws and mill saws they are cut with what is known as a single tooth, or only one long line ridge may be coarse or fine, according to the class of work the file is to accomplish (this also applies to the other form or diamond-pointed tooth previously mentioned), some of them being so fine as to necessitate the use of a magnifying glass to be seen, while others have rom 10 to 14 to the inch.
Passing from the cutting shop, files then go through several processes, finally being ready to temper. When
the tooth of the file is properly protected by what is known as pasting, the file is immersed into a bath of hot lead, commonly called " tempering pots," where it remains until it becomes what would ordinarily be called red hot, but what would be called by the practi cal man as "low cherry red." It is then taken from the bath and immersed in a tub of water more or less
chemically prepared, and in this transformation takes back its carbon formerly given up in the annealing and becomes the hard-tempered file, ready for use to file
anything from moderately hard steel to the softest anything from moderately hard steel to the softest
metals or wood. After tempering there are several other processes, such as scouring, oiling, packing, etc. and the file is then ready for market, being placed in neat boxes, 10 inches and under a dozen in a box, 1
inches and upward one-half dozen in a box.

About two thousand tons of grindstones are used in the manufacture of files yearly, while probably from 4,000 to 5,000 tons of steel are annually cut up and made into files. The larger concerns of this country manufacture or have the capacity to manufacture from 800 to 1,500 dozen a day, and over 90 per cent of the files now used are cut and almost entirely made by the use of machinery. To a very small extent for making a few special files, or for recutting old files, the work is still done by hand, but this process of manufacture is fast becoming a thing of the past.

Artificial Emeralds from Gas Retort Refuse. Owners of precious stones were surprised a short time since by the announcement that a method of producing artificial emeralds and other gems from the refuse of gas retorts had been discovered by Mr. Greville Williams, F.R.S., the chemist of the Gaslight and Coke Company, London. According to a contemporary, the gem which Mr. Williams has modeled is composed of about 67 to 68 per cent of silica, 15 to 18 per cent of alumina, 12 to 14 per cent of glucina, and minute proportions of magnesia, carbon, and carbonate of lime. The intensely green color for which the jewel is valued is believed to be due to a slight dash of sesquioxide o chromium, though this tint has by some chemists been attributed to vegetable matter-the analyst having to proceed warily when dealing with such costly stuffs as diamonds and emeralds. It may, therefore, be presumed that Mr. Williams has turned out his artificial emerald by skillful fusing and crystallization of these ingredients. It seems, however, that there is nothing very new in the artificial production of precious stones -these having been made upward of sixty years ago In 1837 Gaudin produced rubies by heating ammonia alum, and potash by means of the oxy-hydrogen blow pipe; the intense heat developed by this apparatu volatilizing the potash and the alumina, then crystal lizing in rhombohedral forms identical with those of the natural stone, and having the same specific gravity and hardness. The artiticial production of precious stones is interesting from the standpoint of the chemist and mineralogist, and in the present case the gas manufacturer may be included; but the cost entailed is too great to allow of the operation being a commercial suc cess, and th. eefore the dealers in these adornments will probably not have to close their shops as the result of Mr. Williams' discovery.

Remarkable Electrical Invention.

"The woods are full" of wonderful electrical inventions, some good, some bad, and some so supremely foolish as to make one wonder that any man of aver age intelligence should waste a second thought on them. But turn the ordinary newspaper reporter loose on anything which has a suspicion of electricity or magnetism about it, and he will see, if not "sermons in stones," at least some wonderful manifestations destined to overturn all previous conceptions of force power, and mechanical theory. "Heat as a mode o motion" is nowhere as compared with the deduction of these modern Tyndalls. The latest instance of re portorial credulity we find in a daily exchange. It is so good, and so far from being true, that it merit special mention. The invention described consists o two twenty horse power boilers to which is tempora rily connected a ten horse power boiler, engine and dynamo. Steam is raised in the small boiler, the engine drives the dynamo, the wires from which are connected with the ends of the tubes in the large boilers, the tubes being filled with asbestos. The current of electricity is turned on and, presto! the asbestos becomes red hot, the water in the large boil ers is converted into steam and forty horse power is the result. This process can be multiplied withont limit, and it is only a question of a string of boilers engines and dynamos a mile or two long to put Niagara totally in the background. Shades of Carnot, Joule, and Watt, what will come next! ex claims the editor of The Stationary Engineer, from which paper the above is copied.

William L. Gilbert.

William L. Gilbert, aged 84, of West Winsted, Conn. died recently near Toronto Can., whither he wen everal weeks since on business. He had been fifty years president of the Gilbert Clock Company, o Winsted, very prominently identified with many large factory interests in Winsted, and with railroad inter ests of Connecticut, as well as banking interests of the State. His fortune is estimated at $\$ 3,000,000$. He built and endowed the Gilbert Home, of Winsted, a few years since, at the expense of $\$ 500,000$. He was also the promoter of a project to tunnel the mountain o as to connect the waters of Crystal Lake with Mad River, with a view of giving increased power to about twenty Winsted factories. His promised donation to that project was $\$ 50,000$, and it is thought some pro vision has been made in his will so that the project can be consummated. Mr. Gilbert was extensively known from Maine to California.

AN IMPROVED GUIDE FOR SEWING MACHINES. The illustration represents a sewing machine gauge capable of use either as a right or left hand gauge, without being detached from the machine; it is also a device which may be expeditiously and conveniently adjusted, and is of simple, economical, and durable construction. The invention forms the subject of a patent issued to Mrs. A. La Guayra Mayo, of West Duluth, Minn.
The device h
The device has two main parts, the gauge bar and a perpendicular standard, to which is attached a sleeve adapted to receive the presser bar of a machine and be secured thereto by a set screw or equivalent device. The gauge bar is capable of sliding upon the standard, and has at each end a downwardly extending arm with right-angled extension having a curved outer end, forming feet for the gauge bar. Upon the inner face of the standard is a slideway formed by a bracket secured to the standard, and the body bars of the gauge are introduced into the bracket, the adjustment being made by a set screw, whereby the gauge bar may be slid to the right or left and secured at any point in its length. When the gauge bar is placed in position the lower edge of the horizontal section of its feet arms is practically in the same plane with the lower edge of the standard, or the arms may extend farther downward than the stand ards, as in practice may be found most desirable

A HEMMING ATTACHMENT FOR SEWING MACHINES.
The invention herewith illustrated relates to an improvement especially designed to facilitate the hemming of all articles that require a wider hem than the ordinary fell, providing a device that will turn a hem from a quarter of an inch in width to about seven and a half or eight inches in width, and also providing means whereby a draw-string, ribbon, or tape may be inserted in the hem. The hemmer also has a double gauge, and is made in a simple, durable, and practical manner. It has been patented

The body bar of the device has a vertically apertured post integral with its upper face, in which the presser bar of the machine is secured by a set screw passing through to a contact with the presser bar. The frame consists of two side bars, one of which is provided with a scale of inches, the side bars being connected at their outer ends by a cross bar resting upon their upper sur faces, while a forward cross or guide bar is formed integral with one of the side bars, and extends at right angles therefrom. The latter guide bar is bent downward to form a vertical flange, so that the guide bar resembles an angle iron. The body bar, carrying the vertical post, is adjustably attached to the longer of the two side bars by a spring clamp or clasp, its other end resting upon or sliding along the side bar having a scale. The hemmer proper is secured to the edge of the body bar, and may he of any desired construction
In operation the body bar is moved upon the side bar until the inner face of the body bar is made to register with the inch or fraction of an inch to which the hem is to be turned, when the material is passed under the entire frame and body bar, carried down in the direction of the guide bar, and beneath it and into the hemmer. A ribbon or tape may be inserted in the hem by placing it beneath the gauge, and in lace it can be used as a border, and in heavy material as a drawstring.

MAYO'S HEMMING ATTACHMENT FOR SEWING MACHINES.

Robert H. Scott, in Longman's Magazine, says a flash of lightning a mile in length is nothing very extraordinary, and it is therefore not to be wondered at that experiments to bring electricity down from the clouds are very dangerous, and have frequently had fatal results. Soon after Franklin, in the last century had made his famous experiment with a kite, and proved that electricity existed in a thunder cloud natural philosophers generally began to imitate him. One of them in St. Petersburg, a Professor Richmann,
arranged an apparatus to collect this electricity. On
then connect all of these separate points by copper rods, and eventually carry down a stout copper rod to the earth. Care must be taken that due attention is paid to certain main precautions: (1) The point of the conductor must be kept sharp; (2) the section of the conducting rod must be sufficient to allow the electricity to pass along it ; (3) the rod must be per fectly continuous ; and, lastly (4), the rod must be eff ciently connected with the ground

1. The sharpness of the point is insured by gilding it or coating it with some metal which resists oxidation 2. As to the section of the rod, a bar half an inch in diameter is sufficient for all ordi nary buildings. Bars are not usu ally employed, as it is difficult to bend them over cornices, etc.; ac cordingly, either wi:e ropes or tapes are taken. The wire ropes are more liable to corrosion from wet getting in between the strands than are tapes, so that the latter are gene rally preferred. The metal used is always copper, being less oxidizable than iron, anc. being reasonably cheap and a very good conductor.
2. "he continuity of the metallic conrw ection from the highest point of the rod to the ground can only be secured by having as few joints as may be, and by making those joints as true and firm as possible by soldering. The joints should be examined from time to time, for it is often found, on examination of old conductors, that while the cop per wire or tape is quite sound along its straight reaches, at the bends or joints corrosion has set in. As a chain is no stronger than its weak est link, a corroded conductor, such as has been described, is perfectly useless.
he first occasion of a storm he went to his laboratory to observe the effects. A ball of fire was seen to leap from the apparatus to his head, and he fell lifeless. Having thus got some idea of the force exerted by lightning, it may be interesting to the reader to learn something as to the means we possess of guarding our selves, or rather our houses, from injury. A flash of lightning really consists of a discharge between two objects, say two clouds, or a cloud and the earth. oppositely electrified, the charges on which suddenly combine, with the manifestation of light and heat Lightning conductors are contrivances by which the electricity of the earth is allowed to escape quietly into the atmosphere, where it meets with electricity of the opposite character from the clouds, and the two neu ralize each other quietly, without any explosive diis charge, or, in other words, without lightning. I need

3. The earth connection It is not easy in all case to insure that this is satisfactory. Electricity will not pass at all so easily into dry earth as into wet earth and merely plunging the end of the rope or tape into wet earth is not sufficient. The conductor from the building should be soldered at its end to a large shee of copper, say at least two square yards in area, buried in damp soil, or else soldered to the water or gas mains, o as to insure that a large surface of metal is in con tact with damp earth.
Supposing that the whole system of protection against damage from lightning has been properly planned, the work should be carefully tested after it completion, because injury to it often occurs at the ery last, owing to accidental causes or to the careles ress of workmen. Conductors should also be examined moughout their whole length, to make sure that all the joints are sound. Care should also be taken that the earth in which the ter minating plate is buried is kept thoroughly moist. If any of these particulars be neglected, the conductor will be practically useless, and will afford no protection to the structure. The extreme practical importance of security against light ning must be my excuse for having been more diffuse over the subject of lightning conductors than over other details of the phenomena and effects of thunder storms.

Tapping the Underfow.

What promises to be one of the most important features in water irrigation in California has been brought forward at Riverside, in the question as to the right to tap underground flow, or percolating water.

A company is at work upon a tunnel which will tap the underflow that makes a vast body of land around San Bernardino moist. Should this land be drained to such an extent that the moisture will be diminished near the surface, and thus compel irrigation where the character of the soil has heretofore

Wood brought to a mirror polish is coming into use for ornamental purposes in Gerany, and has wisture. The stuff is first treat with a bath of caustic alkali for two or three days, at a temperature between 164° and $197^{\circ} \mathrm{F}$. Next comes a dip in hydrosulphate of calcium, for from twenty-four to thirty-six hours, after which a concentrated solution of sulphur is added. After another soak in an acetate of lead solution, at 95° to $120^{\circ} \mathrm{F}$., it is thoroughly dried and polished with lead, tin, or zine, as may be desired, when it resembles shining metal.

not go back to the first principles of electrical science and explain why it is that electricity passes most easily through metals, and escapes with greater freedom from sharp points than from rounded knobs. Assuming these elementary facts, I may say that on any object, such as a house or other building, the electricity tends to accumulate itself on all projecting portions of the roof, etc., and especially on the highest points of it. The ideal complete lightning rod system would call or a sharp-pointed copper rod erected at each of these $\left\lvert\,$	for \AA sharp pointed copper rod erected at each of these
projecting pinnacles, and rising above it, and would	\(\begin{aligned} \& the result w

\& Diego Union.\end{aligned}\right.\)
not required it, a great hardship will fall upon property owners, and protracted litigation will follow. It is a wholly distinct ieature in riparian law, and may result in riparian legislation. It would seem to be much on the same principle that one artesian well may be sunk on a lower level than another, and diminish or even dry up its flow, yet the owner of the upper well has no recourse at law. The question is fraugh with immense importance to Southern California, and

HOT WATER TO DRIVE CATTLE FROM TRACKS.
The accompanying illustration represents a device under the control of the engineer on a locomotive, designed to drive cattle off the track by means of a jet of hot water or steam from the engine. It has been pat-

BURKE'S DEVICE TO DRIVE CATTLE FROM TRACKS.
ented by Mr. William J. Burke, of Seattle, Washing ton. Near the front of the boiler, on one side, is a bracket carrying a post mounted to turn, in the upper end of which is journaled one end of a horizontal bar the other end of the bar being supported by a semi circular disk resting with its periphery on the base of the bracket, to turn or rollon the latter. From the bar extends an arm in which is secured a nozzle pointing in front of the locomotive, the rear end of the nozzle being connected by a flexible tube with a pipe leading into the boiler within the locomotive cab, where there is a valve by which the engineer may cause hot water or steam to be thrown forward by the boiler pressure through the pipe and nozzle. The outer end of the bar supporting the nozzle is connected to a rod extend ing rearwardly to the cab, the rod being so curved as to be readily hooked on the outside of the cab, and having a handle, whereby the engineer can so turn the nozzle as to direct the stream of water or steam to any part of the track in front of the locomotive, whils also slightly varying its vertical direction, as may be necessary in thus driving cattle from the track. The pipe and valves are so arranged that the water will flow out of them by gravity after use, thus prevent ing the freezing of water therein.

AN IMPROVED FOLDING SCAFFOLD BRACKET.

A strong, light, and inexpensive scaffold bracket for carpenters, painters, etc., and one which may be quickly applied to an upright or detached therefrom and folded compactly for convenience in carrying it, is shown in the accompanying illustration, and has been patented by Mr. Charles A. Stowell. The upright body bar of the bracket has a vertical opening or slot, the base wall of which is downwardly beveled, and at the base wall of the slot a bearing plate or strap is attached, the strap passing across the rear face, with its ends attached to the sides of the body, there being at the rear of the body and at each side of the slot a rabbet adapted to receive a plate to rest upon the bevel, whereby a slideway is produced, as shown in the sectional view
The supporting beam of the bracket is pivoted at one end in the upright, and has on its under face, near the outer end, a recess, adapted to receive one end of the brace bar, which is attached to the supporting section by a hinge. The brace section is adapted to enter and slide in the slot or opening of the upright, when the bracket is folded up, as shown in one of the views, and its lower end is beveled to bear upon the inclined base wall of the slot in the upright, the brace being prevented from leaving the slot by a plate on its

STOWELL'S SCAFFOLD BRACKET.
lower end resting in the rabbeted surface of the body To the inner end of the supporting section is fastene a rearwardly projecting screw bolt, passing through an aperture in the body, and the bracket is held in position by a lock nut with a handle screwed upon the threaded end of the bolt. Wben the bracket is to be folded, the base plate of the brace is lifted, and the brace portion is swung through the slot in the body section, a threaded bolt near the lower end of the base projecting from its inner side, being then made to projecting from its inner side, being then made to
pass through an aperture in the upper end of the upright, and the handle nut is screwed on this bolt, mak ing a firm and substantial fastening for the bracket when closed, as shown in one of the views.
For further information ralative to this invention address the Stowell Manufacturing Company, Putney, Vt.

A SOLAR ATTACHMENT FOR TRANSIT INSTRUMENTS The accompanying illustration represents an attach ment for an engineer's transit, to furnish means to obtain the true meridian, solar time, and latitude and longitude of the locality, where observations are taken by the usual methods, from the data furnished by the instrument. It is a patented invention of Mr. Walter Scott, of Hot Springs, South Dakota. A latitude arc is secured on the vertical side of the inclined standards of a transit frame on their bed plate, with a vernier scale therefor adapted to move vertically, while a carriage for a solar attachment is pivoted to the side of a rame standard by one end, and a horizontal sigh ube bearing an hour circle on one end, the sight tub being clamped to the carriage so as to be revolubly ad justed thereon. The small figure represents a rear ele vation of the time-indicating device, a solar reflecto and a diagram in elevation indicating the different angles of incidence and reflection produced by the con

SCOTT'S SOLAR ATTACHMENT FOR TRANSIT INSTRU MENTS.
entrated rays of the sun when directed on the reflector through the lens of a vernier attachment to the declination arc. The sight tube has an eye lens at one end and a web cross at the other end, and a ray lens is set in an aperture in the vernier scale plate at its zero center, an inclined mirror-supporting block with mirror being pivoted below the vernier limb in the same vertical plane, the mirror being set at an angle of forty-five degrees. An upwardly projecting arm affixed to the mirror block loosely engages the depending limb of the vernier plate, and the sight tube is supported to receive a light beam from the mirror. When the parts are correctly adjusted, the degrees and minutes of the sun's declination may be read on the arc plate and vernier scale plate, from which data, with the time shown on the solar circle and its vernier, the true meridian may be calculated by the usual methods, as well as the longitude of the locality.

Sir George Airy

Sir George Airy, the oldest of the English men of science, has just entered upon his ninetieth year. Sixty-five years ago he was elected to the Lucasian professorship at the University of Cambridge, having been Senior Wrangler two years before. The remuneration was nil, or consisted merely of a house, and this circumstance gave the late Mr. Todhunter an opportunity for his mot, "They gave to Airy nothing-a local habitation and a name." Airy has been for forty-five years Astronomer Royal (he resigned in 1881), and has received every
honor and distinction open to men of science, includ ing the presidency of the Royal Society.

AN IMPROVED GARDEN IMPLEMENT.

A simple and efficient tool for cutting up weeds, oosening the soil and gathering up weeds, stones, etc, is shown in the accompanying illustration, and ha been patented by Messrs. James H. and G. L. Baxter,

of Lexington, Ky. Figure 1 shows the implement ar ranged as a rake, and Figure 3 illustrates it in the form of a hoe made as a triangular loop. The handle has a metallic socket, shown in Figure 2, with a square hole for receiving the shank of the hoe or rake, the hoe being arranged at a slight angle to its shank. The handl. socket has ears, in which is pivoted one end of a hook adapted to enter the angle of the loop of the hoe, to hold it in the socket, or an aperture in the rake head, whereby the latter is held in place in the handle socket.

American Bell Telephone company.
The American Bell telephone statement of instru ments for the month to June 20 records a net increase of 1,414 , or more than 50 per cent of the increase for the half year, as see the fcllowing

AN IMPROVED BRIDLE FOR HORSES.

The illustration represents a combined bridle and check device, designed to be readily convertible for service with an overdraw check rein or a side check rein, and adjustable also to fit animals' heads of different sizes, while being light and inexpensive. It has been patented by Mr. John H. Rafferty, of 12 Green St., Worcester, Mass. Except its metal trimmings and bit, and the brow band, this bridle may be made practically of one continuous leather strap, the check rein strap being made partly of the leather straps forming the bridle, and stitched fast to the bridle straps. The cheek and face pieces of each side are formod as continuous straps connected at one end to the crown strap, and extending rearward at the other ends to form a check rein.
Bent or U-shaped divided clasps hold the straps at their lower bends or bights, the straps here being bent around or doubled upon themselves within the cavities or openings of the clasps, the two parts of which are also made to form a round eye to receive the bit ring, while overdraw check loops and side loops are held to the crown strap, with a detachable clip device for the face straps. By this means the bridle may be adjusted with an overdraw check or a side check, and the strap bights may be readjusted in the divided clasps to prevent twisting the straps when the overdraw check is changed to a side check.

RAFFERTY'S BRIDLE

THE NEW CROTON AQUEDUCT-THE HARLEM

 RIVER SIPHON AND PUMPING APPARATUS. As our readers know, the new Croton aqueduct will soon be in use. It is now practically completed. One of the most interesting features of its construction is the siphon by which it passes under the Harlem River. The old aqueduct was carried above the river on the High Bridge, and up to the present time all of the Croton water supplied to the city of New York has passed over this structure. In constructing the new aqueduct, it was determined to carry the conduit under the bed of the Harlem River, forming an inverted siphon. The conduit, coming from Croton Lake in a practically straight line, reaches the banks of the Harlem River at a point north of High Bridge at shaft 24. The general course of the aqueduct up to this point may be summarized in a few lines. Its grade for the majority of the distance is seven-tenths of a foot to the mile. This average it maintains for a distance of about 23 miles from the Croton Dam to South Yonkers. In the neighborhood of Van Courtland a ten per cent grade exists for about a quarter of a mile. For the next four miles it resumes the original rate of descent of seven-tenths of a foot to the mile until within two miles of the Harlem River. Here the descent is very steep, being 15 per cent, and it ends at shaft 24 .Shaft 24 marks the eastern extremity of the siphon with which we are now particularly concerned. The shaft is 341 feet deep. In its center there is a break indicating the level originally contemplated for the tunnel under the river. At its bottom it forms a sump 6 feet deep. On attempting to prosecute the work on this level, it was found that a large fissure in the bed near the western bank interfered with the progress of the work. It was accordingly abandoned and a further descent of about 150 feet was made, and a new tunnel started. This is the reason why this shaft is so deep. Starting six feet above the bottom of this shaft, the tunnel runs across the river with a uniform grade of 1 per cent, descending toward the western extremity. The tunnel runs 1,500 feet under the river, falling in that distance 15 feet, to shaft 25 , on the western extremity. The shafts and tun els are all circular and 12 feet 3 inches in diametor. Fhey are constructed of 12 feet 3 inches in diametor. They are constructed of
brick, and the tunnel in places is lined with cast iron brick, and the tunnel in places is lined with cast iron
plates bolted together by flange joints. The tunnel plates bolted together by flange joints. The tunnel
ends at shaft 25 , on the west bank of the Harlem River. Shaft 25 is a double shaft, 413 feet 6 inches deep from the original level of the ground. From the floor of the engine house above it, its depth is 424 feet 6 inches. The original excavation was in general terms a rectangular one, but is now divided into two circular shafts of identical size, one the aqueduct shaft, which is brick lined, the other one the pump shaft, also brick lined, but lined in addition with cast iron plates. The rest of the rectangle is filled in solid with rubble masonry. At its bottom the pump shaft has a sump, which descends 21 feet 6 inches below the floor of the conduit.
On both sides of the Harlem blow-offs are constructed, connecting respectively with shafts 24 and 25 . Shaft 24 has a single line of pipe connected with it for the blow-off, partly of 30 and partly of 36 inches diameter. The blow-off on the western bank connecting with the pump shaft of shaft 25 is naturally larger, and includes
two lines of 48 inch pipe. Both lines of blow-offs are two lines of 48 inch pipe. Both lines of blow-offs are
provided with gates, in order to keep them closed durprovided with gates, in order to k
ing the working of the aqueduct.
Owing to its great depth, there is no means of draining the siphon. The establishment of pumps for pumping it was not approved of, not only on account of its great depth, but also because it will have to be emptied very seldom, and an installation of pumps would be exposed to deterioration for want of use. Accordingly a system of buckets have been applied to its emptying and for some days they have been in use discharging water. For many months the siphon has been full of water that has drained into it from the long line of
aqueduct. Before pronouncing it acceptable, it has to aqueduct. Before pronouncing it acceptable,
be emptied and examined by the authorities.
The pump and aqueduct shafts, it will be remembered, are side by side. Near their bottoms they are connected by a rectangular conduit, two feet six inches by one foot eight inches. This conduit is provided with a gate. In the normal working of the aqueduct this gate is kept open. To empty the siphon, the valve or gate is opened, admitting water to the pump shaft. In the latter two buckets are suspended by steel wire cables. The buckets are made of sheet iron and are of 1,390 gallons capacity each. The cables by which they are suspended are carried over pulleys to the drums of a pair of hoisting engines. The whole is so connected that as one bucket rises, the other deceends. At the bottom of each bucket is a butterfly valve, opening upward. When such a bucket is lowered
into the water, the butterfly valve opens upward and water enters. In addition to the valve in its bottom, each bucket has'a valve or gate in its side. This is normally closed. As a bucket rises filled with water it comes in front of a discharge spout near the top of the
shaft which connects with the blow-off. The rear of this discharge piece is curved to correspond in shape with the coutour of the bucket. A handle is connected
to the side gate of the bucket, which, as the bucket rises opposite the discharge spout, strikes a cam so as to open the gate. The water from the bucket then en ters the discharge spout and escapes through the blow off into the Harlem River.
The buckets are worked by a pair of engines built by the Franklin Iron Works, of Fort Carbon, Pennsyl vania. They are provided with a steam reversing gear, so that the links are thrown one way or the other by reversing a lever controlling the admission of steam into a cylinder which actuates the reversing mechan ism. An attendant at the entrance does the reversing. Turning the engines one way, one bucket descends and the other rises. As the proper height is reached a bell rings and an indicator also shows the fact to the at tendant. The engines are stopped until the bucket has emptied itself. By motion of the lever they are next reversed ; the empty bucket descends and the ful one rises, until the alarm is again given, notifying the attendant to stop the engine. In this way the water is rapidly withdrawn. It will be seen that several peculiar features are involved in the process. While the buckets always rise to a standard height, they have continually to be given a little more descent. This is effected by having one of the drums fixed upon the shaft, while the other is loose and attached to the first by eight bolts. By releasing these bolts, while holding the loose drum with the brake, the engine is driven in one or the other direction until the proper amount o The operation takes about three minutes. The con tract requires each bucket to be hoisted in an average of 40 seconds. So far this time has been exceeded. While it would seem that atgreater depths theoperation would be slower, it is found that the reversing and emptying takes most time, and that the actual hoisting opera
will be of short duration for the maximum depth.
Both aqueduct and pump shaft are provided with heavy brick diaphragms, each embodying an inverted arch. These, when the aqueduct is in use, have the manholes closed, and resist the pressure of the water. As some water will percolate through the pores of the brick, a small overflow of 12 inch pipe is nrovided to discharge this leakage into the Harlem River.

Carbon.

george l. berditr
In looking over Mendelejeff's table, we find at the head of the fourth series the element carbon. It is one of the most abundant elements, and one of the most important in nature. It is the characteristic element of organic chemistry, where it forms a sort of frame work upon which the organic compounds are grouped. Indeed, inorganic chemistry is called by some the study of the carbon compounds. Carbon occurs in all vege tables and in some minerals. It also exists in three allotropic forms, as the diamond, graphite, and char coal.
The
The diamond is the purest form of carbon, occurring in nature usually in the conglomerate formations. In of the diamonds in use, the Cape of Good Hope mines being more recently discovered. The diamond has probably never been made artificially, although many attempts have been made. In order to make one, the carbon would have to be liquefied and crystallized But carbon is only soluble in melted cast iron, and i infusible; and so diamonds could not be got in this way. Making diamonds from benzole was at one time tried by a Scotch chemist, but with questionable sucliquid form of carbon, but little or nothing is known of the process. Although they may be of almost any color, they are usually white, and when entirely free from all color are said to be of the first water, and these are the most valued. However, owing to impurities, they may be gray, yellow, brown, green, red, blue, or
black. The rose diamonds are valued highly, and next black. The rose d
to them the green.

To heighten the effect of a diamond it must be cut This is a very slow and tiresome job, sometimes taking many weeks or months to finish. The stone is first clipped off, piece by piece, untilit is nearly the required size. It is then fixed upon a steel spring, by means of melted lead, and the lead allowed to soldify. This spring is then pressed down until the stone reaches a swiftly revolving steel wheel, upon which there is a
quantity of diamond dust, called "bort." By the constant grinding of the stone against the bort, a smooth plane or face is formed. And this is what is meant by diamond cutting. The operation must be repeated for each face. The commonest forms after cutting are the rose and brilliant. The diamond is the hardest sub stance known, but is quite brittle. Besides its exten sive use as a gem, it is used for cutting glass and in making diamond drills for boring rock. Quartz is hard enough to scratch glass, but the diamond point is more curved than that of quartz, by virtue of which it gives a cleaner scratch, and so is always used. Diamonds do
not occur to any extent in the United States, although not occur to any extent in the United States, al
The second allotropic form of carbon is graphite sometimes-but wrongly-called blacklead. It is found $\left.\right|_{\text {foul }}$
principally in Siberia, Cumberland, and at Ticonderoga, where it occurs as lumps between layers of slate It is of a grayish-black color; soft, greasy, and has a metallic luster. It can be made artificially by dissolv ing carbon in melted cast iron, and treating the pro duct with dilute hydrochloric or nitric acid to remove the iron. Owing to its high fusibility, it is used in making crucibles for melting substances which require great heat. It is also used with oil as a lubricator; also in electrotyping. Its most important use is in making pencils. The graphite is crushed fine under water, on top of which it floats off through a series of tubs, each a little lower than the one before; and in this way the fine powder is separated from the coarser. Pipe clay is then added to it, and enough water to make a past about as thick as cream, and this is ground until the substances are perfectly mixed. For hard pencils, more clay is added; for soft ones, less; medium hard pencils contain about seven parts of clay to ten of graphite. After grinding, the paste is put into canva bags and pressed until all the water runs out, leaving a thick dough. This dough is then put into an iron cylinder with a tight-fitting piston. In the bottom of the cylinder are holes the size and shape of the lead desired, and through these the dough is slowly forced by the descending piston, coming out in long strips These strips are then cut into the proper lengths, baked, and put into their wooden cases.
The third or amorphous form is represented by char coal. Charcoal is made by burning wood in a limited supply of air. Sticks of wood are piled up into a round heap, with a small hole in the center for a chimney. Another hole runs from the chimney to the outside of the pile, so as to give a draught. The whole pile is then covered with sod and earth. The wood is lighted through the chimney, and chars slowly until it is al converted to charcoal. The time required varies from one to three weeks, according to the size of the pile The best quality of charcoal is made by heating wood in iron cylinders. When made in this way, some other valuable substances-such as wood alcohol, etc.-are also formed, which run off as liquids and are collected This kind of charcoal is used for gunpowder. Charcoal is black, lusterless, soft and smutty. It has no crystal line form, but retains the internal and external forms o the tree from which it is made. While the wood in the pits is charring, the walls of the wood cells become charcoal, but the matter within the cells is driven off. This makes the charcoal very porous, and it absorbs air to such an extent as to float on water. Charcoal has a strong tendency to condense gases on its surface. It acts on different gases to different degrees, but most readily on ammonia and sulphureted hydrogen. It is also used to absorb coloring matter in bleaching colored solutions; but boneblack-a sort of charcoal made by burning animal bones-is better for this purpose Brown sugar is turned into white sugar by running it through a layer of boneblack from twenty to thirty feet high.
Lampblack is made in much the same way as char coal, only no wood is used. Heavy oil of tar or natu ral gas is burned in a close chamber, at the top of which is a tight-fitting iron dowe. The oil is lighted and burns with a smoky flame, giving off small particles of carbon, which are condensed on the sides of the cham ber into lampblack. When the process is finished, the dome descends and scrapes the lampblack off. It is tolerably pure, is very black and permanent, and can be advantageously used in making paint, blacking
The question may sometimes arise: How do we know that these allotropic forms are really carbon? The proof is, if we burn twelve parts of carbon, it will give forty-four parts of carbonic acid gas-and this is the case with each of the three forms.-Pop. Sci. News.

The Infrequency of Deaths by Lightning.
It is probably idle to tell people that there is a thousand times the danger in the sewer pipes that there is in the thunder clouds, but it is true all the ame. The deaths by lightning are few indeed. Who of the readers of this paragraph, says the Hartfor Courant, ever lost a friend that way? Who of them hasn't lost a score of friends by the less brilliant and less noisy destruction that comes up out of the drains? The trouble with the lightning, or the trouble that it ives the people, is in its indescribable suddenness and ts absolute uncertainty. You know neither when it s coming nor where it is going, all you feel certain bout is that some storms leave a number of catastro phes to mark their course. The caprice of the light ning defies the explanations of science, and there is no predicting beyond a few generalities. This much it does seem safe to repeat, even in a lively lightning eason, that the increased use of electricity, with the multiplicity of wires, has tended to fewer fatal strokes of lightning in cities.

To Remove Thirst.

Paint the tongues of your fever patients with glycer ne, says a physician; it will remove the sensation of
hirst and discomfort felt when the organ is dry and foul.

HOME MADE GRILLS AND GRATINGS

 A dwelling house without ornamentation of the class mentioned above indicates one of two things, either the owner or occupant does not appeciate the value of this kind of home decoration or he does not possess the skill to make or the ability to purchase it. It is true, the beautiful meta and wood work now manufactured for this purpose is very expensive; but it is also true that something equally as beautiful may be had without much trouble or expense.The grills shown in Figs. 1, 2, and 3 are made of rope, sized, bent into shape, dried glued in a wooden frame and finally painted an appropriate color or gilded or bronzed These ornaments when placed in a doorwa or window or across a hall from the stairwa to the wall, or in some corner in the library derfully to the appearance of the room.

The materials required are some $\frac{5}{16} \mathrm{in}$. sash cord, glue round sticks or doweling $\frac{5}{16}$ in. in diameter, paraffine, (a paraffine candle will do), some strips of wood, and paint or varnish.
There are in the present case only two fundamental forms for the spindles or bars, but these are combined in several different ways, as shown in Fig. 6. The spindle most used is shown in Fig. 4. It is formed by winding the sash cord-which has been previously steeped in the glue size-upon the wooden rod. The rod is coated with melted paraffine befor use, to prevent the size from adhering, and equidistant marksare made upon the rod as guides for the winding. These marks are $11 / 2$ inches apart. The winding can be easily done by placing one end of the wooden rod in a vise, civing a tack through the end of the rope into the rod. If every turn of the rope around the rod is made to coincide with one of the marks, the spindle will be true enough for all purposes. A tack should be driven through the end of the finished spiral into the rod to prevent the rope from unwinding. A number of rods will be re quired. Part of the spindles should be wound in a right-handed direction and the remainder in a left handed direction. The rope should be allowed to stand for a day or so dry. lt is well, especially in warm weather, to add to the size some oil of cloves or carbolic acid to prevent it from souring while drying.

The other form of spindle is shown in Fig. 5. This is made by bending the sized rope around pins driven

Fig. 4.-SPIRAL SPINDLE.

into a board in two rows, the pins of one row alternat ing in position with those of the other row. The board and pins are covered with paraffine, as in the other case.

The spiral spindles may be combined with each other, as shown at a, b, c, d, and e in Fig 6, and with a straight rod, as shown ai f At g they are shown in combination with the zigzag rope. At h the combination with the zigzag rope. At h the
zigzag rope is shown in combination with straight rods.
The circles and segments of circles shown in Figs. 2 and 3 are made by winding th sized rope around a tin pail, a can, or som other cylindrical body and allowing it to dry To form a complete ring, one turn of the rope is cut off, its ends are cut off diagonally and fastened together with strong glue.
The spindles are cut by means of a sharp knife. The various parts of the work are fastened together and attached to a light wooden frame, and, as a rule, no fastening other than glue will be required. If, how ever, a stronger fastening is necessary at some points, small brads or wire nails, or even screws, may be used
In Fig. 3, the rosette, d, is formed of a cir cular ring filled with segments of a similar ring in the manner shown. Each pair of spirals, a, consists of one right-handed one and one left-handed The spindles, b, c, are spirals.
Grills made in this way may be finished in the same manner as wood. They may be stained or painted to match the work into which they are fitted, or they may be painted white and relieved by a little gilt on the projecting part.

It is obvious that a large number of patterns may be
worked out by the aid of these suggestions. Differ ent kinds and sizes of rope may be used alone or in ombination.
These grills may be placed in windows, doorways

ner: fm. $n \%$

Fig. 1.-GRILL FOR DOUBLE DOORS.

windows, and in many other piaces which will suggest arched porches, the lower tier being in the pool. Th themselves. Like many other household ornaments, if intelligent labors of the monks who are in charge of well and carefully made, they will repay the labor and trouble of making.

Electrical Workers will Please Report.
Electrical Workers will Please Report.
We are constantly in receipt of letters from interested

Fig. 2--Rope arill for window, DOor, or hall.

The Pool of Bethesda.

Consul Henry Gilman, writing to the state depart ment from Jerusalem, gives the following account of the discovery of the pool of Bethesda : Of the more re arkable discoveries in the ancient city during the year, that of the Bethesda is of paramoun interest and importance. As is well known, the Birket Israel has in the past been con sidered as the site of the Bethesda; but the excavations of the Algerine monks under the ruins in the rear of the Crusader Church of St. Anne have gradually transferred opin ion in favor of the latter locality. This was strengthened by the discovery of a rock hewn pool containing water beneath thre tions revealed the remains of two tiers of fiv arched porches, the lower tier being in the pool. The the property have been further rewarded by the recent discovery of another pool containing a good supply of water to the westward of that first discovered, the ontire agreeing with the descriptions of the Bethesda s given by the fathers of the church and Christian pilgrims and writers as early as the fourth century. The correspondence in number of the five porches to those mentioned in the gospel of St. John (v: 2) will not escape notice. Steps cut in the rock lead down into the water. An ancient Christian church in ruins surmounts the whole. The remain of the upper tier of porches extend above the pool at right angles from the north wal of the crypt beneath the church, in whic the apse, at the east end, though dilapi dated, is still distinctly defined. On clear ing away the debris that choked the fifth porch westward of the apse all these discov eries culminated in revealing the remains of a painting or a fresco upon the plaster of the wall in the rear. This discovery was made just before Easter, or about April 18, last The fresco represents an angel as if descend ing into and troubling the water, which lat ter is depicted by conventional zigzag and
readers of our articles on electrical machines and appa ratus for amateurs, which indicate that a very large number-we might almost say an army-of amateurs, as well as many electricians, are in some manner fol lowing our instructions in these matters. We ar pleased to know that many of them have done som very creditable work
We have in mind a plan of mutual exchange of ideas on these subjects, and therefore request any reader of the Scientific American, or of the Supplement who has made electrical machines or apparatus of any sort after instructions given in either of our papers, to send us a brief description of the same, giving size and amount of wire, size, weight, and material of various parts, the amount and kind of current; if a battery is used, the kind and quantity ; and finally, an account of the performance of the machine or apparatus. State exactly what it will do.
We refer to dynamos, motors, electro-magnets, gal vanometers, batteries, induction coils, static machines; in fact, anything in the electrical line made after the instructions given in either of our papers.

A Canal which will afford a cheap and more direct means of communication between the west of France and the north is that which was formally opened on June 1, by M. Yves Guyot. It connects the Ois with the Aisne. Its length is 48 kiloms., or 30 miles and it saves a detour of 58 kiloms., about 36 miles

Fig. 3.-GRILL FOR WINDOW

Many serious difficulties have been encountered in carrying out the work, notably in the construction of the subterranean portion of the canal. This turnel is $2365 \mathrm{~m} ., 1 \frac{1}{2}$ miles, in length, and the cost of boring was about $10,000,000 \mathrm{f}$.. or $\$ 2,000,000$. In this work both fire and water had to be contended with, and six years ago eighteen men were suffocated in the workings. The canal, which was made under the direction of M. Bonswilwald, has occupied ten years in construction
wavy lines of an olive green, shaded with black, mor suggestive of Egyptian hieroglyphics than of modern art, and surrounding the figure on every side. The right hand of the angel was shown as uplifted; but this has been carefully destroyed, probably by the Moslems after their habits, in the early days of their power. So also, the face of the angel, which has been battered so as to be completely obliterated. The glory or nimbus

Fig. 6.-FORMS OF spindles and bars

above the head, painted an orange yellow, still re nains, but little injured. The edge of the pool ap pears to be indicated by a broad red line inclosing the painting, and having an occasional rectangular pro ection into the water, perhaps representing steps o the piers for the porches. On the east of this fifth barreled ar cuan of another figure, angles) ar much defaced, and supposed to represent the Saviour. Above the head, evidently intentionally mutilated, is a portion of the nimbus, and in the lower outer corner of the painting, part of a blue robe. It is to be regretted that these frescos, the colors of which were quite bright when first uncovered, have since greatly faded, so that the blue is now a dull, ashy gray. The reds and yellows, however, though lowered in tone, preserve their hues somewhat better To summarize, these discoveries are as fol lows : First comes the rubbish covering the ruins, and built upon by the more or les modern Turkish houses; next beneath i the small church, with apse; under this the crypt, with five porches, containing the frescoes ; and fourth and last, underneat all is the pool itself, cut in the solid rock and with five arches of well preserved masonry. This last, from the historical and other evidence, I have not the slightest doubt is the veritable pool of Bethesda.Boston Herald.

To fill up cracks in a boat, melt equal parts of pitch and gutta percha in an iron pot; thoroughly mix by stirring. Make up in sticks and melt into the cracks with a warm iron.

THE MCLEOD PNEUMATIC SYSTEM OF HEAT ING, VENTILATING AND COOLING, AND IMPROVED SUBWAY CONSTRUCTION.
The accompanying illustrations represent a few of the most important features of a new and improved system of heating and ventilating buildings, etc., the invention of Mr. J. S. McLeod of Boston to be owned Mr. J. S. MeLed, of Boston, to be owned and controlled by the McLeod American ton, and sub-companies, embracing the field of pneumatic heating both automatically and inexpensively, together with the construction of improved subways, etc.
The inventor designs to use for this purpose a furnace to be specially constructed at a central point, whereby a current of fresh air will be heated and circulated through a series of pipe coils and heating tanks, so arranged in a zigzag flue as to absorb all the heat from the burning fuel and its gases usu ally escaping to waste through the chimney, and extending through one or more pipes to as many buidings, offices, and apartment as may be desired.
The hot air in these pipes, which are con nected with a series of adjustable radiators, registers, and open air vents, controlled either by hand or automatically by thermostatic connection, continues around back in circuit to the flue end of the heater to b reheated and circulated, except that which is emitted from the registers for heating and ventilation, and is controlled by a blowe and an adjustable valve to admit fresh air and regulate the pressure to about two pounds to force circulation through the heater and buildings.
This system provides for the utilizing of hot air in the same manner as hot water and steam when used for similar purposes, while also providing an additional means of heating and ventilating additional means of heating and ventilating by allowing the escape of the hot air itself
into the rooms through vents and registers into the rooms through vents and registers
during cold weather, and for cooling and ventilating by forcing cold air through the same or similar pipes in hot weather.
The construction of the zigzag furnace with the heating pipes and hot air tanks provides for the utilizing of all the heat of combustion, and, in connection with the blower, to insure continuous circulation, is designed to heat many buildings and apartments from a central point, thereby insuring not only a ξ reat saving of fuel, but furnish ing in addition, in an admirable manner, the great desideratum of pure, fresh heated air for ventilation. It is designed to secure as well the warmth and comfort of the occupants of the buildings during the cold term, and a most healthful, salubrious, and invigorating supply of fresh cold air to heated interiors during the hot spell, together with an entire immunity of the destruction of walls, ceilings, and ornaments, caused by leakage of steam, or explosions with loss of life and property, and the well known deleterious in fluences injurious to health, as well as the dust and dirt, and the great expense of supervision and attendance incident to all other methods of heating.
The circulating pipes will be connected with differ ent buildings and apartments by branch circuit pipes,

THE MOLEOD HEATER AND RADIATOR PIPE

THE MCLEOD THERMOSTATICALLY REGULATED RADIATOR
mostat as shown, this regulator being elec trically connected with a switch operating practically as a valve, whereby the amoun of hot air admitted to the pipes is regulated as readily as the admission of steam to an engine is controlled by its governor. By means of a handle on a connecting rod ex tending above the top of the radiator, as shown in Fig. N, the flow of hot air in the system may be confined entirely to the large supply pipe near the floor when desired, as may frequently be the case in mild days, in colder weather the circulation being caused to flow through the radiator itself, while, when the weather is cold enough to call for still more heat, the radiator, in connection with the thermostat, will admit hot air to the room in sufficient quantity to keep the temperature at the desired point, the valve connected with the thermostat opening and closing automatically, as may be required to effect this object.
The subway construction shown is de signed to be of such good, strong and substantial character as to last for ages, afford ing convenient facilities for the placing of electric wires, and their connection with the buildings at either. side, as well as for the arrangement of sewer, water, pneumatic and gas pipes, etc., and their connections, in such a way as to avoid the enormous expens and annoyance of constantly disturbing the streets and tearing up pavements, while the various pipes and wires can always be provided at their junctions with special damper valves. \mid readily reached.
to divert the current from one apartment to another, This subway may be divided by partitions into as may be desired, and designed to work automatially by thermostat or be controlled by hand.

APPLICATION OF THE MOLEOD SYSTEM vided to supply a current of fresh air for cooling and such shut-off valves, unions, etc., that any portion ventilating purposes, which may be drawn directly from may be disconnected or shifted at any time
the outside, to be supplied through the registers or by For further information relative to these inventions means of elastic tubing and spray jets to the desks or apply to McLeod \& Hartley, promoters, P. O. Box 2492 tables of occupants of the different apartments, where- Boston, Mass., or in care of Robertson \& James, bank by the temperature may be kept at the most salubrious \quad ers, No. 7 Nassau Street, New York City. Also H and agreeable point during either hot or cold weather. H Hartley, No. 6 St . Paul St., Back Bay, Boston, Mass.
In our view of the radiator, Trepre sents the thermostat M the thermostatic operating vaive which controls the admission of hot air. N the radiator, Fig. 3 the interior of the supply valves of the radiator, operated by cog wheels by by cog wheels by means of connecting rod with handle, as shown at the top of
radiator, while J radiator, while J
shows the automatic air pressure regulating valve governing the supply of fresh air and regulating the force of the cur rent.
The thermostati control, whereby the temperature is regu lated as desired to any degree of heat, is effected by setting the dial of the ther-

THE McLEOD SUBWAY CONDUIT SYSTEM

THE GRAMOPHONE

Among instruments for recording and reproducing speech and other sounds, the invention of Mr. Emil Berliner, of Washington, D. C., known as the gramophone, is remarkable as being distinct from the others in both form and principle. The gramophone was one of the early modern talking machines. It was nearly per fected when the latest form of phonofected when the latest form of phono-
graph appeared. Since that time it graph appeared. Since that time it
has been improved, and we understand that recent trials of the instrument in Europe have proved very successful.
Fig. 1 shows the recording apparatus; Fig. 2 the reproducer; Fig. 3 a print from an electrode taken directly from a gramophone record plate; from a gramophone record plate;
and Fig. 4 shows the record of the and Fig. 4 shows the re
vowels greatly magnified.
In this machine a central apertured disk of zinc is used for receiving the record. The disk, which is covered with an extremely thin film of wax, is mounted on a vertical spindle within an etching trough which revolves with the spindle. The recording stylus, the diaphragin, and the mouth tube are mounted on a carriage, which is moved toward the center of the zinc disk by a screw, taking its motion from the spindle carrying the disk. Motion is imparted to the record disk by a friction wheel on the horizontal shaft at the right of the engraving. This shaft is provided in the present case with a hand crank by which the plate is revolved. The same shaft is also provided with a pulley for receiving a belt from a suitable motor, when it is desired to operate the machine by power.
As the record disk is revolved, sounds uttered in the mouth tube cause the diaphragm to vibrate, and the stylus is moved in a direction parallel with the face of the record surface, forming in the wax film a sinuous line representing the sounds uttered in the mouth tube. As the plate revolves, the stylus and parts connected with it are carried forward toward the center o

Fig. 3.- PRINT FROM SECTION OF GRAMOPHONE PLATE
the disk, thus forming a spiral sinuous line in the wax film. When the record is complete, the stylus is removed and acid is admitted to the etching trough from the bottle supported at the right of the machine. As soon as the plate is sufficiently etched, the trough is removed, the acid is returned to the bottle, the wax film is dissolved off, and the plate is transferred to the reproducing apparatus shown in Fig. 2.
In this apparatus the record plate is mounted on a vertical spindle and revolved as in the other case. The diaphragm of the reproducing instru ment carries a stylus which follows the spiral groove in the plate, thus causing vibrations in the diaphragm similar to those produced by the sounds uttered in the mouth tube of the re cording instrument. The diaphragm cell and reproducing stylus are carried upon the smaller end of the trumpet, which is delicately pivoted on a standard and counterbalanced so that the reproducing stylus exerts only a slight pressure upon the record plate. The volume of sound issuing from the trumpet is great. Instrumental and vocal music are faithfully reproduced It is obvious that the records formed by this instrument are permanent, and the plates capable of being stored in a very small space.

Danger in Wet Cellars.
Scarcely anything is more prejudicial to good health than wet cellars Rheumatism, bronchitis, pneumonia and malarial affections, including neuralgia and sciatica, are some of the dangers to be apprehended. Damp cellars mean foul and noxious air, and should be sedulously avoided. Now, before the rains come, while the water or moist line is considerably below the surface, is the proper time to prevent these evil influences. Drain tiling, laid outside and a foot below the base of

Fig. 1.-BERLINER'S GRAMOPHONE-THE RECORDER.
a circle the moment the film inside it is ruptured. Oil forms a film on the surface of water, and covers it entirely, even if the mass of the oil be collected into drops. This is well shown by dropping a particle of oil on to a vessel of water lightly covered with sulphur flour. The sulphur will be immediately driven to the edge by the spreading film. The reason of this is that the tension of the water-air film is greater than the combined tensions of the water-oil and oil-air films, and con sequently pulls out the oil film. It is possible to reduce the surface tension of water by mixing it with various substances, such as ether and cam phor. Camphor scrapings placed on the surface of pure water enter into vigorous movements, because the dissolved camphor diminishes the surface solved cat ane water, but if the wate tension of the water; but, if the wate be contaminated by the least quan tity of oil or grease, the motion ceases. Lord Rayleigh made several experiments to find what thickness of oil film would accomplish this: he found it to be about $1 \frac{1}{2}$-millionth of a milli meter. This thickness bears to an inch the same ratio that a second of time bears to half a year. Lord Rayleigh explains the calming action of oil on the sea as follows: As the waves advance, the surface has to submit to periodic extensions and contractions. At the crest of a wave the surface is compressed, while at the trough it is extended. So long as the water is pure, there is no force to oppose this furnish no opportunity to put into it anything but |but, if the surface be contaminated, the contamwhat is extracted from the soil. It should never, on any conditions, have any connection with sewage, nor receive any kitchen slops or surface water, and should be well below the frost line. If possible, the cellar floor and the sides of the wall, as high as the surface of the ground outside, should be well cemented. It is well, owing to the great porosity of brick, if used for founda tion walls, to have intervening layers of cement, so as to prevent, as far as possible, the upward passage of the water by absorption. This drain should be laid as far as possible from the well, lest in some way its contents should be emptied in the well and contaminate the drinking water. The expense of such drainage and the drinking water. The expense of such drainage and
wise precaution would be but a trifle--especially if, by wise precaution would be but a trife--especially if, by
its neglect, a protracted sickness, with its doctor, and its neglect, a protracted sickness, with its doctor, and
drug and nurse bills, and eventually a funeral, should be prevented.
The soundest wisdom and strictest economy favor the adoption of all measures that lessen, or reduce to a minimum, the dangers from preventive diseases. Monthiy Bulletin Iowa State Board of Health.

Foam.

In a lecture on "Foam," Lord Rayleigh insisted that foaming liquids were essentially impure, for pure iquids will not foam. For instance: neither wate nor alcohol can be raised into a froth, although a mix ture of the two may be to a certain extent. The addition of gelatine to water in the proportion of 1 in 100,000 develops the foaming quality quite noticeably Of course, the best-known foaming liquid is a solution of soap, such as the children use for blowing bubbles. A liquid foams when its films have a certain durability

Fig. 2.-BERLINER'S GRAMOPHONE-THE REPRODUCER. ination strongly resists the alternate stretching and contraction. It tends always, on the contrary, to pread itself uniformly, and the result is that the water refuses to lend itself to the motion which is required of it. The film of oil may be compared to an nextensible membrane floating on the surface of the water, and hampering its motion.

Mixtures for Cleaning the Hands.
In chemical works, it is not an uncommon occurrence or one's hands to become so soiled with the various

Fig. 4.-MAGNIFIED RECORD OF THE VOWELS.
well defined and separate nastinesses to be found there as to be quite insusceptible of cleansing by ordinary soaps or soap powders. One or two chemists of our acquaintance, the Chemical Trade Journal says, use a mixture under these circumstances, which we publish for the benefit of those of our readers who care to try it. Take about two or three grammes of bleaching powder, the same quantity of soda ash, and about wice their bulk of sawdust. Completely saturate wice their bulk of sawdust. Completely saturate and quickly rub over the hands. As soon as the desired effect is producer, rinse the hands with water. It is occasionally necessary to repeat the process, but, as a rule, one application suffices to make the hands perfectly clean. There is an odor of bleaching powder perceptible from hands thus treated, to which some may object, but this may be destroyed, and the appearance of the hands still further improved, by rubbing them over with a little sulphurous acid solution, or by rubbing first with a solution of sulphite or hyposulphite of soda, or sulphite of ammonia, and, while still wet from this, rubbing over with very dilute hydrochloric or sulphuric acid. The hands should be well washed with water, and a little ten per cent glycerine rubbed in to keep them soft.
Nitric acid stains on the hands still appear to defy all comers, except pumice stone, but inks and organic stains may--in the absence of bleaching pow is covered with a thin film. Now, the most striking they may be regarded as being in the condition of a stretched membrane, as of India-rubber, with the diference that the tendency to contract never ceases. An air bubble will force the air back through the pipe, and a loop of silk floating on a film will be forced into
der-be generally removed by
potash and hydrochloric acid.
Glue for Tablets.-For 50 lb . of the hest glue (dry) take 9 lb . glycerine. Soak the glue for ten minates and heat to solution and add the glycerine. If too thick, add water. Color with aniline.

NEW YORK CITY AQUEDUCT-ITS ENGINEERING FEATURES AND DESIGN.*

The capacity of the Croton watershed to furnish a minimum supply of $250,000,000$ gallons per day was determined from its meteorological history. The whole question was narrowed down to the selection of plans and means to secure sufficient storage and to conduct the water to the city. The plans for the utilization of the waters of the Croton basin were, therefore, to com bine a simplicity of construction, embracing economy in their design, large storage capacity, and a conduit from the Croton River to New York City.
The erection of numerous small reservoirs for storage purposes had been under consideration by the Board of Public Works prior to and during the years 1857 and 1858. Departing from the original plan, it was proposed in place of numerous small dams to build a large one on the Croton River at Quaker Bridge, about four and one-half miles above the mouth of the river, forming a reservoir of 3,635 acres in area, with a storage capacity of about $32,000,000,000$ gallons, above the level of the proposed new aqueduct. This dam will receive the entire drainage of the 361 square miles of watershed, including about 23 square miles below the present Croton Lake, not included in any previous plans or calculations. The most economical means for conducting the waters garnered by a system of reservoirs, or a single dam, was by means of a conduit to New York City, constructed of masonry circular in form, with a capacity to deliver $250,000,000$ sallons of water per day, the conduit to be in tunnel wherever possible.
This plan has the advantage of being almost wholly in rock tunnel, securing the greatest possible strength and stability of structure, with the least cost for supervision and maintenance after completion. The prominent features of the entire plan therefore are a large reservoir to receive the entire drainage of the Croton watershed, and capable of holding $32,000,000,000$ gal lons of water above the level of the aqueduct.

The Croton watershed is located some thirty miles north of New York City, in the jurisdiction of the State of New York, having a catchment equal to an area of $361 \cdot 8$ square miles, with an average yearly rainfall equal to 45.97 inches, an average yearly flow of $135,400,000,000$ gallons, or a daily flow of $371,600,000$ gallons. This was determined from a meteorological history covering 17 years.
It had long been felt that the capacity and supply of the old system, erected when the population of the city was 350,000 , were inadequate for the needs of a population of over $1,500,000$, and that steps must be taken to increase the present supply. The Aqueduct Commis sion was accordingly created by the Legislature of New York in the year 1883, with power to provide an addi tional water supply.
Plans and specifications were presented by the Board of Public Works, specifying dams and reservoirs to be located at Quaker Bridge, in the Croton River basin with a dam at Muscoot Mountain, in the upper Croton basin, together with a dam at Sodom, known as the West Branch Reservoir. After many public hearings and discussions the commission decided that the new aqueduct should be constructed with a conduit having an inside clear area equal to that of a circle of the in ternal diameter of fourteen feet, locating its northern terminus at Croton Lake, and afterward its southern terminus at Manhattan Valley.
The 9th of April, 1884, the plans relating to a con duit or tunnel thirty and three-fourths miles in length were adopted from gate house at One Hundred and Thirty-fifth Street to Croton Lake. The water was to be conducted to the reservoir in Central Park from the One Hundred and Thirty-fifth' Street gate house, by means of pipes, a distance of two and three-eighth miles, making the total length of aqueduct thirty-three and one-eighth miles. The entire aqueduct is practical ly finished and ready for the introduction of water, its use being debarred only by some minor details. The water will enter the tunnel through a gate house loca ted near the present Croton dam, this being construct ed so as to receive water at an elevation of 140 feet above tide at the invert. Two other entrances are provided, one at elevation 166 and one at 184, discharging in Central Park Reservoir. The elevation of the flow line of Quaker Bridge Reservoir will be 200 feet above tide. The maximum elevation of the receiving reser voir in Central Park is 113 feet, the bottom 79 feet The elevation of point of discharge is 104 feet; the hy draulic grade line at Central Park 113 feet, the total fall from water level of greatest flow in the aqueduct at Croton dam to high water in Central Park Reservoir being 33.8 feet, the distance being thirty-three and oneeighth miles.
The cross section of the tunnei is in the shape of a horseshoe, this modification from a circular cross section baving been made with a view to economy in blasting ut the rock, the natural inclination of which was to assume a square shape rather than a circular one; the hydraulic area of cross section-remains the same as that
*Abstract of a paper read before the Frankiin Institute, Philadelphia,

adopted by the commission, and extends without change twenty five miles south of Croton Lake, with a hydraulic slope of 0.7 of a foot per mile, giving a velocity of four feet per second, and not being under flow pressure.
The remaining five miles being under flow pressure, by reason of a change in elevation, the diameter was reduced to twelve feet three inches. The hydraulic grade being raised increased the static head, and the capacity to deliver the amount of water required permitted a decreased diameter. The tunnel approached the surface four times in the total distance, enabling the work to be prosecuted by means of open cuts. Headings were driven in the rock north and south of thirty-eight shafts together with the portals in open cuts.

The work of excavating the tunnel proper was begun March 7, 1885, and finished July 7, 1888, the time being three years and four months. The remarkably short time occupied in excavating the tunnel was due to the advance in mechanical appliances for drilling and excavating rock.
In passing under Gould Swamp the tunnel was driven on an incline with a hydraulic slope of fifteen per cent to a depth of sixty feet below the main tunnel, then carried for a distance of 716 feet under and beneath the swamp, rising again by a vertical shaft to the level of main tunnel. A pumping house was erected at this shaft, No. 11 "B," for the purpose of clearing the siphon of water when the tunnel is to be emptied for examination. The diameter of this siphon is the same as that of the tunnel, the change of elevation in main tunnel, which occurs about twenty-five miles from Croton Lake, descending by an incline with a hydiaulic slope of ten per cent to a depth of sixty feet be ow the main tunnel. From this point the flow line is under pressure the remaining distance and the diameter is reduced to twelve feet three inches, the flow due to the increased velocity being about the same. Shaft No. 21, which is located near Jerome Race Course, twenty-five and one-fourth miles from Croton Lake, was designed with a view to the location of a reservoir at this point, discharging the water through this shaft. The total capacity of the tunnel not under flow pressure being $310,000,000$ gallons per day, will admit of storage of the surplus water at this point, the elevation of the surface at shaft 21 being at hydraulic grade line.
The hydraulic slope of the tunnel from the point at which the diameter changes to twelve feet three inches, as far as the north bank of the Harlem River, is 0.7 of a foot per mile. At this point a vertical descent of 169 feet is made in order to pass beneath the Harlem River. [See illustrations on first page.] The tunnel under the Harlem for a distance of 965 feet, being under flow pressure, was reduced to a diameter of ten feet six inches, which was found to be all that was required. In this part the hydraulic slope is 1 foot in 100 feet. The water is delivered to the tunnel through shaft No. 25, rising 321 feet, to an elevation 9 feet above high water mark, the tunnel being designed from this point to deliver the water at a gate house located at One Hundred and Thirty-fifth Street, with a rising slope of 0.065 per 100 feet, in order to drain that portion of the tunnel south of the Harlem into the Harlem River by an adit emptying into the river at shaft 25 , situated on the south bank of the Harlem. Shafts 24 and 25 were constructed for the purpose of draining the tunnel under flow pressure north and south of the Harlem River, shaft 25 also serving as a pumping station to free the siphon under the river. The tunnel ends at the gate house located at One Hundred and Thirty fifth Street, and the water is then conducted to th reservoir in Central Park by twelve lines of iron pipe, three feet in diameter. Four waste weir gate houses are located on the line, one at Pocantico River, nea Tarrytown, nine and one half miles south of Croton Lake; the second at Saw Mill River, six and one-fourth miles further south, near Ardsley; the third at Tibbets Brook, five and one-half miles further; and the fourth at the Harlem River, seven miles below. Three gate houses serve to control and regulate the water supply through the aqueduct; the largest at Croton dam, th entrance; the second at the south end of the tunnel, One Hundred and Thirty-fifth Street, where the pipe line begins; and the third at the final terminus, in Central Park. The character of the rock varied con siderably; hard, granitic, and syenitic gneiss rock was encountered, also lime rock, a soft laminated, micaceous gneiss and mica schist appeared in stretches. Disintecruted talcose rock occurred at shaft 18 soun crushed in the strongest timbering. At shaft 30 south, some 300 feet of the tunnel were lined with iron in the
form of rings bolted together, surrounded with brick form of rings bolted together, surrounded with brick
and backed with rubble masonry. This was found necessary in such bad ground. Nearly every variety of tunnel experience was met with in this work.
The entire tunnel is lined with brick from end to end,
orming a wall sixteen to twenty-four inches thick,
and filled in from brick lining to rock face with rubble
masonry. In order to obtain room for this lining, the masonry. In order to obtain room for this lining, the
tunnel had to be excavated to a clear diameter equal to eighteen feet along the section, with an internal diameter of fourteen feet, and to fifteen feet in that part twelve feet three inches in diameter.
By far the greatest feature of the system designed for an additional water supply is the erection of Quaker Bridge dam and reservoir. Its utility and necessity are conceded, though its construction has not been finished. Its successful and permanent construction will undoubt-

edly become an established fact, in view of the real de sign and intention for which the new aqueduct has been constructed. The total height at center will be 265 feet the width or thickness at base will be 216 feet; width at top, 20 feet; its length at top, 1,500 feet; elevation f base, - 52 feet; elevation of flow line, +200 feet elevation of flood line, +206 feet; elevation of top of rail, +213 feet. This dam has been designed as a straight dam, and has met with difference of opinion in regard to this feature from numerous engineers In connection with Quaker Bridge reservoir, the erec ion of a dam and reservoir at Muscoot Mountain, six miles above Croton Dam, is contemplated as a neces-
sary auxiliary to Quaker Bridge reservoir. The dam sary auxiliary to Quaker Bridge reservoir. The dam
would cover this territory with its back water, and would serve a sanitary purpose. In case the reservoir were drawn down at any time, the surrounding country would not be laid bare to the sun's rays, the conse quences of which would be the serious contamination of the water. In order to acquire an increased storage of water above the present supply, pending the final deof water above the present supply, pending the final de-
termination and erection of the Quaker Bridge reservoir, a selection of a site on the west branch of the Croton River, near Sodom, was resolved upon. The reservoir is nearing its completion. One of the feature
 to secure a deviency of the free delivery service, desire ings that will be simple in construction, low priced, and capable of adjustment to the interior or exterior of doors without injuring or defacing them. Aletter box that will fill these requirements will save much of the carriers' time, while increasing the security of the mail to the householder. The Postmaster-General has ap pointed a committee, of which Postmaster Van Cot and the postmasters of St. Louis, Washington, New Orleans, and Boston are members, to invite the public to send to either of the members designs, samples, models, or suggestions for such a box. Designs will be received until October 1 next, and the committee, afte examining them, will tell the Postmaster-General which box, in their judgment, is best adapted to the pur pose. The Postmaster-General will probably officially adopt the box or recommend it to the public for general use.
PaSte might have been the richest man in the world if he had cared for the commercial value of his discoveries and protected them by patents. In addition to his discoveries in the prevention of hydrophobia he discovered the cause of a mysteri ous disease among silkworms, which threatened to destroy the silkworm industry in France, and applied a remedy. The wine growers of France and Italy complained of their vines being slow to mature and the grapes to turn sour. Pasteur's investigations of the yeast germs taught the grower how these evils could be cured. He discovered the microbe which propagates disease in sheep, and suggested a remedy. These discoveries represent a gain to the community of many millions of dollars, but the great scientist has made no effort to profit personally from any of them -N. Y. World.

RECENTLY PATENTED INVENTIONS. Railway Appliances.
Car Coupling. - William P. Clark, Elberton, Ga. This is an improvement in automatic couplers in which a latching drawbar is employed. the
drawhead being preferably cast from metal with an interior recess to receive the working parts, and the ob ject being to provide a simple, practical device whereby
the coupling may be effected without danger to the opthe coup
Extensible Car Step. - James F and John F. Wood, Wilmington, Del. This step has piston rod angular in cross section, with a piston and a
cylinder in which the piston works, provided with a head having an opening corresponding to the shape o the piston rod, whereby the step will be prevented from tilting, the invertion being an improvement
former patented invention of the same inventor.
Signal. - Albert C. White, Afton, Iowa. This invention provides a signal capable of
being manipulated to positively display any desired colored side of the signal to the train when employed as a semaphore, and any desired colored light at night providing means also whereby the signal may hang
very high, and the lantern may be conveniently lowered very high, and the lantern
for lighting and cleaning.
Automatic Air Brake. - George B. Williams, Portland, Oregon. This improvement pro vides for the recharging of the ausiliary reservoir with release of the brakes, as desired, and means whereby the pressure in the brake cylinder can be reduced to any desired extent, and the brakes only partially re-
leased coincident with a partial recharging of the leased coincident with a partial recharging
auxiliary reservoir, with other novel features.
Releasing Attachment for Air Brakes.-This is another patent of the same inventor for an improved construction and arrangement of parts connected with the triple valve and train pipe and governing the discharge passage from the auxiliary
reservoir to the pipe to effect a rapid and immediate reservoir to the pipe, to effect a rapid and immediate
equalization of the air pressure when that is increased by the engineer to release the brake.

Railway Spike. - Samuel Emrich, Reno, Nevada. This spike has a longitudinal cavity wedge-shaped end being fitted to the cavity for forcin the plates outwardly in the mortises and causing the to project into the wood at the sides of the spike, whereby the spike is hed in place in the wood into
which it is driven.
Freight Handling Machine.-Isaa Henderson, Vancouver, Canada. This invention conwith cages traveling on the track, and conveyers con nected with the track to move articles to and from the or elevating and lowering and transporting freigh from and to cars, ships, docks, etc.

Mechanical.
Lubricant. - John J. Stock, Waterown, N. Y. This is a compound consisting of pulver ized talc, beef tallow, parafine oil, potash lye, ver-
milion rod, and other ingredients, mixed and boiled together to form a reddish paste, and designed to be mixed with other lubricating oil to bring it to the esired gravity
Die for Lead Presses.-Christopher . Tracy, Brooklyn, N. Y. This die is designed more particularly for covering wire with lead and for making raps, and is so constructed as to enable the attendant die if a straight and uniform product is to be produced or to angment the flow if a curved pipe or trap is to be made.
Amalgamator. - Samuel L. Townsend, Ohio, Col. This is of the so-called "pan" type of amalgama which channel the pulp flows, being admitted at the
enter and discharged at the periphery of the apparatus.
Pneumatic Ore Concentrator. Charles Ballard, Pueblo, Col. This invention provides a machiue designed, by means of an exhaust blast, to through water jigs, the ore to be treated being previously sized by suitable means, and only sufficieni blast
Belt Fastener. - George W. Southwick, Stamford, Conn. This fastening consists of a
plate having at each end arms of unequal length, with plate having at each end arms of unequal length, with
downwardly projecting spurs on their ends, the long rms at each end being opposit short spurs at each end other end, and vice
Separator.-Edward Leslie, Orangechine, Ontario, Canada. This invention relates to machines for separating grain, gravel, etc., and consists
mainly of a screen mounted to swing and having an intermittent fast and slow motion, the invention also covering various novel details and combinate
parts, and being simple, effective and durable.

Agricultural

Cultivator. - John D. Burkhart, Dayton, Washington. The plows of this machine are
each made with lateral wings having a wide open space, each made with lateral wings having a wide open space,
the plows being secured to the lower ends of curved the plows being secured to the lower ends of the rear
beams, to the upper ends of which are bolted converging ends of connecting rods, and there being a clear of the ground.
Farm Gate.-John C. and Luther Merrill, Westphalia, Kan. This is a balanced sliding and swinging qate, designed to be simple in construction, covering various novel features and peculiar combinations of parts.

Planter. - Frank F. Shanks, La Cygne, Kansas. This invention consists essentially of aplanter wheel provided with hill openers arranged to deposit a certain required number of grains at stated intervals in ground that has not been prepared by plow-
Hay Rack. - John L. Wilkerson, San Marcos, Texas. This is a rack adapted for application to a wagon body, standards or uprights being
connected with the base bars, the standards havin top shoulders or hooks, while side arms have the imner sections pivoted to he e prights at a point in from
the stop shoulders and arranged to rest on the shoulders when turned outward.

Miscellaneous.

Ordnance. - James A. Longridge,
Oreve d'Azette, Isle of Jersey, Great Britain. This invention covers a wire gun, the breech portion having an
inner tube on which are wound coils of wire, a jacket inner tube on which are, wound coils of wire, a jacke
inclosing the coils and receiving the breech-closing plug, with various other novel features designed to obiate prejudicial strains, first, affecting principally th
tube.
PERCUSSION FUSE.-Abraham Martin Birmingham, Warwick County, England. This fuse
of that class in whichthe plunger acts byits inertia and momentum to bring into position and give force to a part not integral with it, but so connected as to admit
f a change of the position of the parts to bring them rom the safety to the firing position, such change being ifected by the impact of the plunger and the sudde
WAll FOR Ships. - Carl W. M. F. Busing, Oldenburg, Germany. By this invention th walls forming the hull of the ship, and its partitions, ing a water wor and entering the hull through a defective partor a hole

Padlock - David M. Thomas, Au
PADLOCK. - David M. Thomas, Au as to form a safe and durable fastening, not liable to picked, and which can only be unlocked by those familiar with its workings, the invention covering
various novel features of construction and arrangement of parts to form a simple and effective lock, readil nderstood and operated.
Metallic Ceiling. - George H. Burt Philadelphia, Pa. This ceiling consists of metall plates adapted to be secured to the under sides of the joists and projecting on each side of them, arched bars
being supported at suitable intervals on the projecting ides of the plates, and a sheet metal covering supporte on the arched bars between the and jom adapted for a kinds of buildings.
Vehicle Wheel. - Gabriel J. De Cordova and Percy A. Isaacs, Kingston, Jamaica, W. I. In this wheel the nave has an annular recess holding projecting elastic band upon which rest spokes, there
being flanges to hold the spokes from lateral displace ment, making a wheel designed to prevent jar and noise when traveling, and decrease wear and tear on the
vehicle, and also one that can be readily repaired. anti-Rattler for Thill Coupling -Robert J. Mitchell, Girard, Ill. This anti-rattler ormed from a single piece of spring wire, bent into
described shape, the wire being sufficiently stiff to hold the thill iron and bolt in position. but not so stifi but that it may be easily appled, and designed
durable and cheap, while little affected by wear
Anti-Rattler for Thill Coupling. Clarence A. Carman, Wyandance, N. Y. This inven-
tion relates to anti-rattlers in which provision is made for adjusting the spring io increase its pressure on the thill when desired, or to remove the pressure in
taking out and replacing the thill, the hanger being ad justably supported from a plate, and a spring pivotally nnected with the hanger.
Metallic Post. - Foster Milliken New York City. This invention is for a post adapte or use when the post or strut is subjected to a pull or
strain at a point above the base, and has an addition diameter at the base from the partial spreading of it segments, the post being designed to be readily climbed to be of neat and ornamental design, and to be op or convenient inspection, painting, and ventilation.
Washing Machine - William J. Brackney, Coyleville, Pa. This machine has a rectan-
gular suds box, with two oppositely pivoted rockin levers connected by a cross bar, and an upper rubber frame with slotted standards engaged by studs on the rocking levers combined with a lower rubber frame
having open slots engaged by pivot studs on the lower having open slots engaged by pivot studs on the lower
end of rocking levers, with other novel feature end of rocking levers, with other novel
Shutter Fastener. - Willie O Whitney, Glens Falls, N. Y. This is a blind fastene closed window blind when the lower window sash raised, and also afford additional security by engage ment of a portion of the blind fastener with the lowered and locked window sash.
Swing. - John Hannen, Chicago, Ill. This invention relates to swings in which suspension frame being employed in which are two swinging suspension rods carrying a slightly tilting spring seat, the
device occupying but little space and being one that be easily operated by the person swinging
Leaf Turner. - Cyril P. Brown, Spring Lake, Mich. This is an instrument adapted for attachment to either a vertical or horizontal surface,
without marring the latter, and to be folded into small space when not in use while designed to positively turn the leaves of music, books, manuscripts, etc , either way by means of a conveniently located lever actuated by a by means of a conveniently
careless stroke of the hand.

Almanac or Calendar.-Zeboim C Patten, Chattanooga, Tenn. This invention relates to almanacs and weekly, monthly or yearly calendars,
be used in either book form or on independent cardboard, etc., combining therewith a code of signa indicating the phases of the weather or changes in temperature.
Cuff Fastener.-Charles E. Candee, New York City. This fasterer consists of a U-shaped ar forming two members, carrying at its inner end members an apertured post, the opposite member car rying a pointed slide adapted to move laterally and en
gage the aperture of the post.
Button Holder. - Eugene T. Elliott and William O. Lyles, Danville, Va. This is an attach-
ment for the drawers of a button cabinet to hold the ment for the drawers of a button cabinet to hold the
sample button, whatever its size or shape, the button to be adjusted instantaneously, and the arrangement being such that it cannot be separated, while the price mark will always appear on a slate provided therefor, en bling dealers to display stock to advantage.
Wick Material.-Myron H. Chapin, Chicago, Ill. This is a new article of manufacture mad held with adhesive substance and its exterior surface formed with a protective skin of compressed fibers and adhesive substance, the wick being designed to be less
expensive, more lasting, and more efficient than th ordinary woven cotton wick.
Extracting Bad Odors from Vege ables, etc.-Gysbert D. Nellensteyn, Amsteraan Netherlands. This invention covers a method where the substances are inst treated with a volatile solve to as ether, petroleum, etc., then exposing the substance hose of the solvent, and subsequently condensing the extracte
quired.

NEW BOOKS AND PUBLICATIONS

Practical Electrics: A Universal
HANDY-BOOK ON EVERY-DAY ELEC-
TRICAL MATTERS. New York: E. \& $\underset{\text { 135. N. }}{\text { Frice, } 75 \text { cents. }}$
This work is a reprint of a chapter on electrics given in the third series of "Workshop Receipts," a wor with which many of our readers are already familiar.
It forms a convenient compendium of practical electricity, and as such may be recommended to experimenters and those who are elecrrical lore.
The Chronicle Fire Tables for 1890. An invaluable compilation of fire statistics. New York: The Chronicle
Company, limited. $1990 . \quad$ Pp. 297.
A most complete resume of location, causes, and other facts in regard to fires in the United States during the
year 1889 fills the body of this work. The classes of year 1889 fills the body of this work. The classes of
risks, numbers of fires, property lost, insurances and causes of fires are given. facts fills a large number of pages. This is supple-
mented by other tables and by diagrams showing the proportions between fires of exterior and interior origins, comparison by areas being used for the purpose. A very striking diagram gives the property lost by fires from electric lights and wires for the last successive
four years, the amount rising from $\$ 460,259$ in 1886 to four years, the amount rising from $\$ 460,25$
nore than $51 / 2$ millions of dollars in 1889 .
The Fairyland of Flowers. A popular illustrated botany. By Mara L. Pratt. Boston: Educational 154. A botany for children, admirably arranged and diver sified in the most pleasing manner with numerous illus The book does not well lend itself to a review, and the most that can be said is that it is very complete and hat it is surprising how interesting it has been made by the insertion throughout the family grouping of legends and poetry referring to the different flowers. It is calculated in every way to make botany see
thing, instead of a dry and abstract science.
Report of the Royal Commission on The Mineral Resources OF OnTARIO, AND MEASURES FOR THEIR xxiv, 566.
The titular subject of this report, which is due to the investigations of the Royal Commission, is treated in a very general manner. The geology of Ontario, notes on mines, locations and works visited by the commission, dustry, mining laws and regulations the sminelting ores, legislation for encouragement of mineral development, are the principal headings of the work. It will
be of interest to all students of mining and metallurgy, be of interest to all students of mining and metallurgy
and is of economic interest as showing what our colonial neighbor is doing in the production of metals.
"The Electrician", Electrical FOR 1890. London. 1890. Pp. xcix, FOR
704.
The vast impulse which industrial electricity has r ceived is well exemplified in this directory, which in cludes a calendar of electrical news arranged in months,
obituary notices and biographical notices, in many cases accompanied by portraits. As its scope is not confined to Great Britain and its dependencies, but extends also to America and the colonies, it is of interest and value
to all electricians, and not merely to those connected with the industries of the British lsles.
A Short Course of Business Short HAND. By David Philip Lindsley, Kimball. Boston : Otis Clapp\& Son.
New York: Fowler, Wells Co. $\begin{array}{lll}\text { New } & \text { York: } & \text { Fowler, } \\ \text { 1888. } & \text { Pp. } 95 . & \text { Price } \$ 1.25 .\end{array}$
A simple style of shorthand adapted to many pro-
fessional writers purports to be given in this book. It
is not claimed to give a style rapid enough for the court
reporter, but is supposed to give a simple method which reporter, but is supposed to give a simple method which
will suit very many. Numerous examples and exercises are embodied in the work.
The Elements of Tachygraphy. Rewritten and re-engraved. By David
Philip Lindsley. Boston: Ottis Clapp
\& Son. New York: Fowler, Wells \& Son. New York
Co. 1889.
Pp. 115.
This is a work similar to the one just reviewed, the or the use of non-professional people
Slide Valve GEars. An explanation
of the action and construction of plain and cut-off slide valves. By
Frederic A. Halsey. New York: D.
Van Nostrand Coup Van Nostrand Company. 1890. Pp.
viii, 135. Price $\$ 1.50$.
The drawing board practice in designing a valve gear. the graphical treatment of a complex problem, is given
here by the author, rejecting formulæ and higher mathematics. The subject of lap aud lead is also treated raphically. Numerous diagrams and a full index are included.
Thomas Jefferson's Views on PubLIC Education. By John C. Henderson. New York and
P. Putnam's Sons. 1890.
The views of the great statesman on university education are here brought forward, partly as an original work and partly as made up from Jefferson's letters and other writings. It is a work which is very timely, at the present day, in view of the great interest manifested
in the higher education as well as in the development of the youthful mind in the kindergarten and by grammar school training.
Any of the above books may be purchased through lished.
Address Munn \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION.
JULY NUMBER.-(No. 5%.

TABLE OF CONTENTS

1. Elegant colored photographic plate of the residence of Henry R. Towne, at Stamford, Conn. H. H. Holly, of New York, arcbitect. Perspective $\$ 20,000$.
Floor plans of a dwelling at remont, N. Y. Floor plans, perspectiv
tails, etc. Cost $\$ 6,000$.

Perspective elevation and floor plans of a residence at Monclair, N. J. J. C. Cady,
architect. Cost complete $\$ 10,000$,
. Photographic view and floor plans of a residence at West Brooklyn, N. Y. Cost $\$ 4,500$.
5. A cottage at Dunwoodie, N. Y. Floor plans and
. A dwelling at Holyoke, Mass. Perspective and floor plans. Cost complete $\$ 5,500$.
7. Sketch of a residence at Surbiton.
8. Design for a one story house to cost about $\$ 1,000$. Engravings rep
large piggery.
A dwelling erected for Mr. C. D. Danforth,Yonkers,
N. Y. Floor plans and perspective. Cost $\$ 9,000$ complete.
11. Photographic perspective view and floor plans of a neat and desirable cottage recently erected at Griswold, owa, from plans and perspective pub-
lished in the Scientific American. Cost lished
$\$ 1,075$.
12. A handsome residence at Springfield, Mass., erected for Mr. E. W. Shat
floor plans. Cost $\$ 15,000$.
13. Floor plans and photographic perspective of
several cottages erected for the late Hon. Chas. Crary, at Chester Hill, Mount Vernon, Chas. Cost $\$ 4,000$ each complete. Mr. J. C. Brown, of Mount Vernon, architect.
14. Sketch of a chapel and village hall. Estimated

Page engraving of the Ripon Cathedral, Yorkshire, England.
16. Miscellaneous contents: Steam and hot water heating.-The garden.-European health resorts.
-Fireproof paint.-Testing well water for sewage. -The carpenter.-Fire clay in Montana.-The Spence hot water heater, illustrated.-Improved
sliding blinds, illustrated. - Preared paper. - An improved separator and trap for paper. - An improved separator and trap for
steam boilers, illustrated. - Lyle's storm and screen door, illustrated..-A sheet copper statue
thirty-five feet high, illustrated.-A boiler for greenhouses, dwellings, etc., illustrated.-An efficient ventilating fan, illustrated.-An improved door hanger, illustrated. - Taste in selecting paint.
The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forning, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and
allied subjects. allied subjects.
The Fullness,
of this work have won for it Cheapness, and Convenience of any Architectural publication in the world. Sold by of any Architect
all newsdealers.

MUNN \& CO.. Publishers,
361 Broadway, New York
.

Business and Personal.
The charge for Insertion under thes head is one Dollar
a line for each insertion: a bout eight words to a lint. Advertisements must be received at publication office
as earty as Thursday morning to appearin next issue.

For Sale-New and second hand iron-working mahinery. Prompt delivery. W. P. Davis, Rochester, N.Y Tuerk water motors at 12 Cortlandt St., New York.
Presses \& Dies. Ferracute Mach. Co, Bridgeton, N J Hoisting Engines. The D. Frisbie Co., New York city For best hoisting engine. J.S. Mundy, Newark, N. J. Send to H. W. Kuight \& Son, Seneca Falls, N. Y.. fo Best Ice and Refrigerating Machines made by David Boyle, Chicago, ill. 155 machines in satisfactory use. Steam Hammers, Improved Hydraulic Jacks, and Tub Screw mace. Dudgeon, 24 Columbia St., New Yor. The Garvin Mach. Co., Laight and Canal Sts., New York Packer Ratchet Drills are drop torged from Norwa on and bar steel. Billings $\&$ Spencer Co., Hartford, Conn "How to Keep Boilers Clean." Send your address
or free 96 p. book. Jas. C. Hotchkiss, 120 Liberty St., N. Y. First.class Marine Draughtsman wanted. Give refernce and salary expected. F. w. Wheeler \& Co., shi est Bay City, Mich.
Split Pulleyะ at low prices, and of same strength and
apearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocom
Works, Drinker St., Philadelphia, Pa.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps. vacuum pumps, vacuum apparatus, air pumps. acid blowers, fllter press pumps, etc
und Industrial Pur poses," by E. A. B. Hodgetts. 134 pages. Illustration
$* 2.50$. E. \& F. N. Spon, 12 Cortlandı St.. New York. For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& w. S. Carr Co., 135 and 140 Centre St., New York. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address J. Foot and Power Presses, Drills, Shears, etc.. address
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The Holly Manufacturing Co., of Lockport, N. Y will send their pamphlet, describing water works ma The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkin
By mail, $\$ 4 ;$ Munn $\&$ Co., publishers, 361 Broadway, N. Every Pharmacist should have a copy. "A Pocketbook for Pharmacists, Medical Practitioners, Students,
etc.," by Thos. Bayley. 528 pages. Price, $\$ 2.00$. E. \& F . N. Spon, 12 Cortlandt St New York

A business man who has visited nearly every town in or others having doods or machinery for sale. References. Address w. Y.., box 132, Cheshire, Conn.
Send for new and complete catalogue of Scientific nd other Books for sale by Mun
Mew. York. Free on application

虚

HINTS TO CORRESPONDENTS

(2325) L. G. B. asks for a good way to remove warts. A. Use a strong solution of chromic
acid, appliedthreeor four times. It is said that repeated applications of whale oil will cause warts to disappea
(2326) F. O. asks what the advantage is in making the ordinary mouth blowpipe conical. Is it
simply a convenience in manufacture, and would a straight tube of same opening as the small end of the blowpipe auswer as weil? A. The conical shape of the mission of air, and the operator does not need to blow
(2327) D. \& S. ask: Is not much of the Vichy dispensed from fountains in drug stores, etc., arof that name? What is the formula for the artificial manufacture? A. Yes; nearly all is artificial, made by ormulæ approximatirg more or less to the true composition. For 10 gallons (80 lb .) of water use

Sodium carbonate.		grs.
Sodium chloride	112	"
Potassium chloride		"
Sodium bromide.	10	"
Sodium silicate	1512	"
Lithium carbona		"
Calcium chloride	736	-
Magnesium chloride.	308	"
Barium chloride.	61/4	
Aluminum chloride.	121/2	
Iron chloride..	$\stackrel{1}{10}$	
(2328) F. M. N.	ill sh	shel
; use asphaltum		
ides of the wooden tray		
Resin............	by weig	ight.
Beeswax.	"	"
Paraffine		
elt the above first, wa composition with a	hile	

hotographic prints without going to expense of purwhile wet to the smooth varnished side of a ferrotype plate, squeezing it by rolling a rubber roller over the ack, having blotting paper between the print and paper When dry it will have a high polish and drop off the
heet. The polish is called glace finish. To mount heet. The polish is called glace finish. To moun uch prints without losing the glass, make the follow. ing mounting solution : Soak an ounce of refined gelaqueeze out the water as much as possible; put th gelatine in a jelly pot and place the latter in a pan of hot water on the fire; when the gelatine has melted stir in slowly $21 / 2$ ounces of pure alcohol, and bottle for use.
This glue will keep indefinitely, and can be melted for his glue will keep indefinitely, and can be melted for hot water. As it contains a very small percentage o
water, it hardly affects the gloss of the prints and drie most immediately, 3 How can make nitrate of sil ver for photographic purposes? A. By dissolving me me tallic silver in nitric acid; the solution is then boiled down and set aside to crystallize. It should then be re allize. The recrystallized is the best. 4. Would lik know the difference between a glace polish and luricat.or used for polishing prints? A. The glace finish
is obtained as described above or by coating a plate with collodion and squeegeeing the print on to it, the stripping the whole from the glass plate. The lubriator is material rubbed on surface of photograph be ore it is run through the burnisher, and consists of white soap cut up in small bits dissolved in alcohol ne method consists in breathing on white curd soap nd rubbing a cloth over it, then rubbing the soa hoto. Another plan is to dissolve 20 grains of ffine wax in one pint of benzole and rub that over the
(2329) I. S. D. asks : 1. What is putint uid drawing ink to make it waterproof or to prevent preading when applying colors? A. It depends on he quality of the ink. Shellac dissolved in borax wate may be used to rub the ink up in to increase its perma ency. 2. What is used for moist water colors to keep Glycerine will retard their drying but will do the sam after they are on the paper.

Replies to Enquiries.
The following replies relate to enquiries recently pub lished in Scl
F. A. M., in query No. 2266, asks for nethod for polishing vulcanized rubber. I use pow
dered pumice stone and water for t moothing, and hal polish, and finish with rotten stone and sweet oil on co n flannel disk. This gives a very high polish. In query 2261 W. P. S. asks what will take a way the bad smell from cistern water without
making it unfit for use. If he will take a pole with a dasher head on it and agitate the water once or twice entirely disappear. I presume W. P. S. uses a pump entirely disappear. Y presume W. P. S. uses a pump, being drawn from the bottom.

TO INVENTORS.

An exper of forty years, and the preparation of ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons foreign countries may be had on application, and persons
contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, ensive facilities for conducting the business. Address mUNN \& CO.. office Sclentific American, 361 Broad-

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedJuly 1, 1890,
AND EACH BEARING THAT DATE

Bicycle lock, T.J. Glover. Binder, G. W. Henry....... Blasting car, A. R. Shanno Block. See Fuse block. .
 13lock. See Fuse block. Board. See Key board.

Boat raising and lowering devic
Bobbin head cover, J. Hegeman
Boiler. See Hot water boiler.
Boiler. See Hot water boiler.
Book and paper rack, w. S. Mende
Book and paper rack, W. S. Mendenhal
Book, manifold order, J. S. McDonald
Book rest, W. Dawson...................
Boot and legkin. combined, E. Gorrill.
Boot or shoe, W. A. Neely.
Bottle epener, J. A. Traut.
ottles, means for preventing the fraudulent r Box. See Electrical call box. Parcel and lette
box.
Box binding machinery, J. E. Chapman.
Box stay, M.
Bracket. See Scaffold bracke
Brake. See Arr brake. Car brake. Sleigh brake.
Vehicle brake.
Vehicle brake.
Brick machine, R. K
Bridge, lift, J. F. Alden
Bride, J. H. Raffert
Brush, E. M. Ryan.
Brush and broom, W. Dicicininon.
Brush, bath or flesh, E. M. Ryan
Brush, flue, Miller \& Schultz.
Brush, paint or other. L. Z. Jenkıns
Buckle, harness, J. P. Tillson ...
Building, metallic, B. J. La Mothe
slabs for, A. Van Berkel 431,
Bullet moulding dipper, J. H. Barlow........ 431,
Burner. See Hydrocarbo burner. Spirit burne
Steam burner.
Button holder, Elliott \& Lyles
Cable tramway, W. E. \& W. M. Winby
Cap and plug, combined, H. Houghton
Car brake. 1'fingst $\&$ Bemis.
Car couplink, w. P. Clark.
Jar coupling, o. Jennings....
Car coupling, M. C. Lankford
Car coupling, Renshaw \& Burde
Car coupling, A. S. Weakley.
Car driving mechanism, C.
ar heating apparatus, railway, e. Coll
Car label, railway, Snyder \& Homan.
Car, poultry, H. Danley....
Car seat, railway, P. J. M
Car starter, C. G. B. Boomer................
Car step. extensible, J. F. \& J. F. Wood
from, J. H. Harrington
Cars, electric motor for railway, w.
ars, self-adjusting fender or guard for railwa
S. S. Putnam, Jr...
Carburetor, P. Keller.

Carpet stretcher, J. W. Crise
Carpet stretcher, I. S. Denis
Carpet stretcher, C. Sack.........
Carpet stretcher, I. H. Spurgeon
Carriage, child's, W. W. Sch
Carrier. See Sheaf carrier.
Cartridge magazines, spring for, J. J. Speed
Carts, spring back for road, G. T. Wilson.
Cash indicator and register, W. H. Clark.
Ceiling, metallic, G. H. Burt.
elling, metallic, . G. Caldwell
hair. See Artist's chair. Railway chair.
hair or seat iron, c. c. Trrapp...................
chamfer cutter and lathe, combined, c. Matt
Churn attachment. J. Romshe.............
Cigarette machine, J. v. Bohannan....
Cllp. See Wire ropeway clip.
Clock, motion, A. Phelps....
lock, motion, A. Phelps........
Cloth piling machine, H. A. Bindeman..
Clutch for conneeting and disconnecting
Clutch for connecting and disconnecting shaf
Clutch, friction, L. D. Dana....
Clutch. friction. Hayes \& Felch
Clutch, friction, E. A. Muller...
Coffee, composition for coating, F.................
Coffee moore (r)
Coffee mill holder, D. W. Rowland..
Collar fastener, horse, G. B. Himes

Comb. See Curry comb
Conveyer, F. H. C. Mey....
Cooler. See Water cooler
Cooling and freezing, H.
Corn popper, O. Watson................................
Cosmetic, remedial, C. J. Wilkins................
Coupling. See Car coupling. Hose coupling.

Coupling. See Car coupling. Hose coupling. Pipe coupling. Thill coupling. Tug coup

Pipe ling. Cracker

Cracker machine, J. Parr
Crane, swinging, H. A. Hughes.
Crate, knockdown, J. D. Scovel.
Crate, knockdown, J. D. Scovel...........
Crate, poultry, Cain \& Mann........
Crossing and switch, N. O. Goldsmith
Crusher. See Stone crusher
Cuff fastener, C. E. Candee

Cuff fastener. C. E. Candee. Cultivator for listed corn, L. P. Schrader

Curry comb, H. G. Thoma4..
Cut out, automatic. Haines $\&$
Cat out, automatic. Haines \& Curry...
Cut-out, multiple fusible, L. B. Favor
Cutlery handles, manufacture of, W. . II. Chapin
Cutter. See Chamfer cutter. Shingle cutter
Cutter. See Chamfer cutter. Shingle cutter.
Damper for steam boilers, automatic, G. Cu
ming


```
Digger. Seead potesso die.
Dish washer, B. F. Wilson... ..............
```

Dog line, detachable, A. Sc
Door check, S. D. Ashmore
Dredge or excavator, river, J. M. Sherman.
Drier for grain. seed, etc., II. A. Hogel...
Drier for grain, seed, et
Drill. See Rock drill.
Drill system, electro-magnetic, H. N. Marvin...
Drilling apparatus, J.
Driling apparatus, J. 1'. Cowley
Drilling machine, C. A. Bell....
Drilling machin,
Drilling machine, J. T. Cowley.
Dye, blue. T. Reissig.................
Dynamometer, belt, J. D. Riggs.
Enar

Cheever..................
Electric connector, H. Stu
Electric cut-out, L. Daft.

Electric cut-out, L. Daft.
431.5.54
431,227
${ }^{431,227}$
431,373
431,071
4
4331,036
431.348
4 Electric machine regulation, dynamo, w. Stan- $431.1,1 / 4$ Electric meter, J. Cauderay....
Electric switch, O. P. Loomis
Electrical call box. G. F. Gale
Electrical distribution, system of, L. Gutmann..............431,4601
Electrical locomotion, system of, F. Wheeler..... 431,095
431,249
431,068
Engine. See Electric engine. Pumping engine.
Rotary engine.
Envelope sealer, M. H. Watson.................... 431,0
Evelet for traces, etc., D. Cinnamond.......... 411,1
431.117
431101
 Feedwater heater and purifier, , ... F. Lynch......... 431.231
Fence looper, wire, w. P. Yeoman.............. 431,222
ence wires, machiue for fastening pickets to. D
S. Frackelton......................
Fender. See Vehicle wheel fender. . ${ }^{431.043}$
Fifth wheel, Scandlan, Jr., \& Gross............... 431,152
File for drawings, plans, and heavy documents,

Filtering apparatus, O. H.
Fire kindler, J. S. Becker..
Fishing reel, D. Harris
Floor and partition thimble, J. Vosburgh
Floor and partition thimble, J. V
FII paper, sticky, A. B. Trenner.
FIJ trap, W,
Fly trap, W. Jl Kayser....... .
Freight thanding machine. I.
Fruit grader. G. W. Thissell..
Furnace. See Heating furnace.
Furnace, P. A. Goodwin... ..
Fuse block. Kimball \& Wirt..
Gauge. See Sewing machine welt gauge.
Game, W. H. Kelly...

Garbage receptacle, H. Kaufmann. | 4311,062 |
| :--- |
| 43 |

Garbage receptacle, H. Kaufmann....................
Gas, apparatus for the manufacture of, w. 431,363
431,058
Taylor... ..411,32
Gas heater, A. Brown..............
Gate. See End gate. Farm gate.
Gate, A. Snow................................. 431,4
Gear wheels, machine for dressing the teeth of,
W. Curtiss.
Gearing, F.. Rae.. 431,1129
Gearing for threaded rods, anti-friction, C. A.
Lieb... 431,
Generator. See Electric generator. Steam geue-
rator. Steam and hot water generator.
rator. Steam and hot water generator.
Geographical maps or globes, mannufaturing re-
lief, T. Jones............................... 431.469

Northwood....................................
Grading or road scraping machine, c. E. Kilpa
Grate bar, F. M. Ferguson
431,470
431,204
Grinding, ball, C. . . Gould..................................... 431.1693
Grooming device., S. Walker.........
Guard. See Cattle gurd Rein

Hand rest for penmen,
Harrow, A. G. Hill.....
Harrow, e. E. Little...
Harrows, spring tooth for, P. R. Wells................ 431,241
Harvesters, platfornu thaf for, H. E. Pridmore $\ldots 4.1283$
Hat bodies, machine for starting W. P. Mahoney 431,272
Hat bodies, machine for starting. W. P. Mahoney 431,222
Hat brim shaping apparatus, L. H. Hot......... 431,288
Hat tray, L. S. Bartlett... ${ }^{431,503}$
Hent
Hatchet, box opening, o. Watson................... 431.199
Hay loader and stacker, M. C. Gates............. 431,13
Hay rack, J. L. Wilkerson.................. 431,302
Hay rake, side delivery horse, . M. McPherson..... 431,1
Heater. Bee Feed water heater. Gas heater.
Heating and cooking apparatus, steam, E. H.
Warner....................................... 4
Heating furnace, w. H. Riddell................... 4.31,151
Heel trimming machine. Fuller \& Plummer...... 431,343
High and low water alarm for steam boilers, J.

Holder. See Button holder. Coffee mill holder
Peunolder. Sleeve holder. Spool holder.
Hook. See Snap hook.
Horse boot, R. T. Ferguson....................... 431,11
Horse stopping device, C. A. A melang.......... 4i1,309
4int

Hydraulic motor stop, I. H. Venn.................... 431,087
Hydrocarbon burner. W. Powell.......................431,49
Ice creank freezer, C. H. A. Gerding35

Insecticide, C. C. Parsons......................
Irou. See Chair or seat iron. Soldering iron.
Irouing table, . . W. Nothstine................... 431.19

Jack. See Pegging jack.
Keyboard. transposing. . Lindberg................ 431,
Knife. See Shoe knife. Skinning knife. Surgicai
knife.
Knife for meat cutters and similar machines, C.
T.
T. Leopold....................................... 431,23
Knitting frames, covering point for, J. A. Bar-
foot..
Knitting machine, A. Townsend............... 311,11

Knitting machine, circular spring needle, D. F.
sulvan...................................31,39:
Knitting machine looping attach ment, R. A.
Gage 431,047

Lamp, central draught, J. Jauch..

431,046
431.535
411,359
1,23

Lamp extinguisher, J. M. Amiss 4
Lamp fixture, electric, s. Bergmann.........
L. W. Dillon..
Latch, reversible, T. Lincoln

Lathe attachment. E. Prietz...
Lead, making white, P. Bronner......
Lead, manufacturing red, M. Alsberg
4131,533
413323
41,502
431,026
431,295

			Hoertisements.
Lock. See Bicycle lock. Nut lock. Permuta lock. Railway switeh lock. Seal iock.	v		Inate praese ench
		Nelmememen	coick
harnes			
	Remen	Nomen	USE A DAMANT WALL PLASTER
Mail bag, L. Creps.. Mail bag catcher and			
			-
		Washing machine, W. J. Bra Watch perdants, machine for	
	deame		
Metallic post, F. Milliken... 431,193 431,276		McHugh..	
	$1,4.41$		
Se roline			
drem	Sele		Esin
n, appara	Beardslee et al 431,136 Sewing machine, wax thread, E. J. Peirce, Jr..... 431,192		
	Sewing machine welt gauge, W. F. Beardslee 4.31.13: Sewing on buttons, machine for, J. Mathison...... 431.473	Well drilling apparatus, W. Webber Wick material, M. H. Chapin.... ... 431,131 431,033	
			SEBASTIAN MAY\& ${ }^{\circ} 0^{\prime}$
Note	${ }^{\text {Stall }}$	Wnad	
Natemeremicit			Power LAIHES
titeme		Wrer per	
	cind	Noind	
${ }^{\text {Pata }}$	Stinal		
Packing for volatile gas, rod, T. J. Sullivan.......... 431,293 Packing rod, R. C. Snedeker..................... 431,532		Desifns.	
		${ }^{\text {ata }}$	
			Z
	Somen		CHEMICAL CONEW YORKUSA
ander			NICGEL ANODES
Pen	spin		
	Sast	${ }_{\text {Knom }}^{\text {Kiom }}$	
	(en	Serem	
			RK
	为	ade m	
	Stase		
Pumeom maid	diam		
Phat		Cen	
,	Sole	${ }_{c}^{\text {Clpa }}$	
	mala	Drea	
	Sme	Dee	
			NEW CATALOGUE
			ABLE
	Mel		
Pratare	Teentee.	Line	
Prim			Yw Yik Stencil Wor 100 Nassau Street, New
ng mim		Mne	
	${ }^{\text {Tmim }}$	Pemen	VED
	z^{2}		
	,		
ar. seseneme			Home
		Rem	
Railway chair, F. Coblyn............................ 431.138 Railway conductor, electric, E. Thomson......... 431.414			
		Ton	nish Rolls
	$\substack{\text { Trine } \\ \text { Tpers }}$		
		neme	

HENRY CAREYBAIRD \＆CO S10 Walnut St．Philaselphin，Pa．．U．S．A． ence applii to any on one addaress． pricillid hantr－bouts

 ENGINEERS AND FIREMEN． By STEPHEN ROPER，Engineer． Written in plain，practical lannzage，devoiHand－1Book of the locomotive．－One of the most
valuable treatises ever written on the subject，and con－
taina motives in uxe．Price．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 2.50$ Enginers＇Handy－Books－The most comprehen－
sive and best illustrated book ever published in this
country
 of suggestions and instructions，the result of recent
experments and the best moderin practice in the care of
Steam Engines and Boilers．Price．．．．．．．．．．．．．．．$\$ 2.00$ Use and A buse of the Steann Boiler．－Contain－
insilustrations and descriptionsof aliclasses of team
Boilers in use at the present day．Price．．．．．．．．．．．．0
 Hand－Book of Modern Steamb Fire Engines．－
The only book of the kind ever pubbished in this coun－
 Hand－Book of land and Marine Engines．
Containing a description and illurirationsof every．
scription of Land and Marine Engine．Price．．．．3．
 Care and Management of the Steam Boiler．－
orimmense value to owners of Steam Eoiles：
Price．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 FOR SALE BY ALL BOOK SELIERS． Any of the above books will be sent to any part of the
United States or Canada on receipt oflist price．

EDWARD MEEKS，Publisher，

ARTESIAN
 Wもいまも
 Pirections and

ON GAS ENGINES．－A VALUABLE

DEAF wes andwuwig

PERFORATED METALStwINING SCREENS
 HARRINGTON \＆KING PERFORATING © ，CHICAGO．
 A SYSTEM FOR BURNING CRUDE PETROLEUM．

The Western University
OF PENNSYLVANIA.

 TYPEWRITERS．
 ment manufactured shipped，privilege etoexamine．
EXCHANGING A SPECIALTY．Wholesale prices to dealers．Tllustrated Catalogues Free．
$\left.\left.\begin{array}{l}\text { TYPEWRITER }\end{array}\right\} \begin{array}{l}7 \text { Broadwa，New York．} \\ \text { HEADQUARTERS，}\end{array}\right\} \begin{aligned} & 144 \text { La Salle St．，Chicago．}\end{aligned}$ ．

HE PENNA．DIAMOND DRILL \＆MFG．CO．
Bteds
Steane voLney w．mavored CO．，
FRICTION POLLEYS CLDTCHES and ELEVATORS
providence．n．i．

THE BEST LIME KILN KNOWN

After being on the Market Five Years Tim＂ACME＂
 ROCHESTER MACHINE TOOL WORKS，B BOWn＇s Race，ROCHESTER，N．Y．

NOW READY
Fxperinental $\$$ ciener

By Geo．M．Hopkins．
740 Pages． 680 Ilimstrations．
PRICE，by mail，postpaid，．．．．\＄4．00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents．
MUNN \＆CO．，Publishers，
（antice of The scinntifit dmericad，

IDEAL MUSICAL BOX

 IMPROVED MACHINERY FOR SPLIT－ Also Machines for Knitting and weaving Reeds，binitif

WANTED WANTED！Hard－Warking and Mrewd

 EXTRA Ordinary Piope，American patent No． 48,341,

FOR SALE．Four Valuable Patents．
The Scientific American PUBLICATIONS FOR 1890.

The prices of the different publications in the United
States，Canada，and Mexico are asfollows．
The Scientific American（weekly one year equen

The Scentutic American and Supplement，
The Scientific American and Architects and Build
The Scientific American，Supplement，and Archi－ 5.00 This Proportionate Rates for six Months．

TO BUSINESS MEN
 rooms of the world A businciss minn wants and reading
more than to see his advertisement in antrintent

 from the papars having a smanl circulation than is allow
ed on the SCIENTFIC AMEICAN.

ALUMINUM-DESCRIPTION

POPE MFG. CO,
77 FranklinSt., BOSTON. $\begin{gathered}\text { BRANCH HOUSES: } \\ 29 \text { Warren St., NEW YORK, } \\ 291 \text { wabash Avo., CHICAGO. }\end{gathered}$
\$ 1 TYTPEVRITER

Driving Plant for Cable Railways LEFFEL TURBINE WATER WHEELS. Shaftirg, Pulleys, and Hangers.

Robt. Poole \& Son Co., Baltimore, Md. NEW KODAKS

"You press the button,
even New Styles and

Sizes
OADED with

Cransparent
Films.
THE EASTMAN COMPANY,
Deater in Wire, Ele ECGRIG BeLLS, BAT

 J5 MILK ST., BOSTON, MASS.

This Cowpany owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465 and January 30th 1877. No. 186,787

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

FIRE FELT. Ashentos Boiler Coverings, Steam Packings, Asbestos Cloth, Asbesto

SYRACISE MALLEABE ROWWDOKKS

OTIS ELEVATORS

THE STANDARD OF THE WORLD of passenger and freight OTIS BROTLERS \& CO. GRAVESELEVATORS.

BASE BMLL - A DESCRIPTIN O

The Most Popular Scientific Paper in the World.

This widely circulated and splendidy yllustrated paper is pub isted weekly. Fivery number contains six-
leen pages of useful infoimation and a large number oo rripinai engravings of new inventions and discoveries,
representina Engineering Works, steam representing Engineering Works, Steam Machinery,
New Inventions. Novelties in Mechanics, Manuffictures Chem istry, Electricity, Te egraphy, Photography, Archi tecture, A griculture. Horticult ure, Natural History, etc. Complete List of Patents each week. Tific A. rbican will be sen- fone copy of the scienpostage prepaid, to any subseriber in the United States, Canata or Mexico, on reeeipt of three dollthron by the
 Masters. write for particulars. The safeqt way to remit is by Postal Order. Dratt, or
Express Money Order. Monsy carefully pliced inside Express Money Order. Mones carefully plat ced inside
of envelopes, securely sealed, ano correctly addressed, of envelopes, securely sealed, and correctly siddressed,
seldom qoes astray, but it at at he senedrs risk. Ad-
Ad seldom goes astray, but is at the esnder's risk. Ad
dress all letters and make all orders, dratts, etc., pus able to MIUINIT \& CO.,

361 Broadway, New York.

 TIEエScientific American Supplement.
This is a separate and distinct publication from
THKSCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full papers, and accompanied with trenslated dem foreign The Scientific american subplimilint is published weekly, and includes a very wide range of contents. It all the principal departments of science and the Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geopraphy, Archæology, Astronomy,
Cbemistry, Electricity, Light. Heat, Mechanical Eugineefing. Steam and Railway Engineering; Mining,
Ship Building, Marine Engineering, Photogring, Tecunology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic E.cono-
my , Biography, Medicine, etc. A vast amonnt of fresh and valuable information obtainable in no other pubThe most impcrtant Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated na described in the Supplement. Canada. 85.00 a year, or one copy of the Scientific Amehican and one copy of the Supplemient, both mailed for one year for $\$ 7.00$. Single copies 10 cents. Address and remit by postal order, express mones order, or check.
MUNN $\&$ Co., 361 Broadway, N. Y..
Building Edition.

The SCIENTIFIC AMERICAN Architects' AND
BuILDERS' EDITIoN is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal large and splendid Magazine of A relititecture, rich1y adorned with elegant plates in colors. and with other tine engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with full
Plans, Spec fications, Sheets of Details, Estimates, etc. The elegance and cheapness of this inapnificent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all MUNN \& CO., Publishers,

361 Broadway, New York.
PRINTING INKES,

