

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Abstract

 THE 155th STREET VIADUCT, NEW YORK CITY, N. Y. been carried out, quantities of building material, coal, that ran from the 155 th Street station of the 8 th

The part of New York City north of 125th Street and and other goods for this region, now, to agreat extent, west of 9 th Avenue is cut off by its altitude from convenient access, except at one or two points. A good grade can be followed to the north from 125th Street, and an approach of fair grade can also be found leading from the north by way of Kingsbridge. Thus an immense tract of one of the most attractive regions of the city is almost isolated. The ground is largely made up of gneiss rock, and already much of it is well built up with beautiful residences, surrounded by grounds of the suburban type. Even from the Hudson River the grades are almost prohibitive as regards heavy loads. This portion of the city is destined always to be the seat of elegant residences, and is even now the center of very active building operations. The high elevation and nature of the ground make it a peculiarly healthy and attractive spot, and it already feels the need of better communication with the rest of the city. The portion near 155th Street is termed Washington Heights. When the Harlem River improvement shall have cut off from the rest of the city, should properly be dis charged upon wharves along the bank of the new Har lem channel. The shore of the Harlem River, as shown in the map, near its intersection with 7th and 8th Avenues, will unquestionably be the location for extensive dock and bulkhead work. It represents the nearest available point for general distribution to the high ground on the west. Parallel with 8th Avenue, and lying about 700 feet to the westward, is the base of the great ridge, which rises steeply from the level ground formerly called Harlem Plains. The steep ascent cuts it off from this part of the city. To draw a load up the hill a team has to be taken a mile or more to the south of the point shown on the map before it can begin the ascent, either on $S t$. Nicholas A venue or the Boulevard. From 125th Street north to the Harlem River the hill is only practicable for light loads. Some years ago a wooden foot bridge was erected that ran from the 155th Street station of the 8th Avenue elevated railroad to the him. This for some ears bridged over the low ground, but was eventuall emoved. The city authorities have now taken the natter in hand, and are erecting an iron viaduct matter in hand, and are erecting an iron viaduct which will supply the want, and which will provide a good road of easy grade for horses and pedestrians upon the line of 155th Street. We illustrate in our present issue some of the principal features of this work which assumes peculiar importance in its connection with future operations, such as the Harlem River im rovement and the new bridge over the same river at 7th Avenue. The map shows the general features of the ground St. Nicholas Avenue at this point, after a long ascent, has nearly reached the crest of the ridge. St. Nicholas Place and the Edgecomb Road mark the starting point of the viaduct. It runs down 155th Street over th tracks of the elevated railroad on 8th Avenue, and reaches McComb's Dain Bridge at 7th Avenue. Here a (Continued on page 394.)

NEW VIADUCT FOR CARRIAGES AND PEDESTRIANS, CONNECTING WASHINGTON HEIGHTS AT 155TH ST. WITH MCCOMB'S DAM BRIDGE.

Šrientific Ammerical.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. peblished weekly at
No. 361 bROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS POR THE SCIENTIPIC AMERICAN. One copy, one year. for the U: S., Canada or Mexico.
One copsf six month. for the U.S., Canada or Mexico
One copy, one year. to any foreivn country belonkink
 The Sclentitic american Supplement

 Building Edition.
THE ARCHITECTS AND BULLDERS EDITLON OF THE SCIKNTIFIC AMER-

Spanish Edition of the Scientitic Americau.

NEW YORK, SATURDAY, JUNE 21, 1890.

Contento.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 755.
For the week Ending June 21, 1890.

Price $\mathbf{1 0}$ cents. For sale by all newedealers.

I. CHEMISTRY.-A Process for Decomposing Commercial Nickel By Prof. Gereard Kruss.-A curious paper, treating nickel By Prof. Gertard Kruss.-A curious paper, treating n.
an alloy containing two per cent. of an unknown metal...
II. Civil engineering.-The New York and Long Island Tan nel.-Contemplated cunnel across the city of New
III. ELECTRICIT Y.- Wlectrical Works at Spokane Falls.-Descrip
IV. IRRIGATION.-Artesian Wells in Kansas acd Causes of their Flow.-By Robert Hay.-A review of the Kansas wells, being an interesting concribution to the geology of irrigation.-3 illustra-
V. MEDICINE AND H YGIENE. - Orexin.-A new medicine, stomachic and appetite producer: its formula and properties.....
The Action of Caffeine on the Motor and Respiratory Functions in the Normal State and in Inanition.- By MM. GERMAIN SEE and LAPICQUE.-A very remarkable paper showing the beneflcial ofVi. miscellaneous.-African Insect Wax.-A new wax from Thamaraland.-1ts use by the Zulus in their toilet.- 1 illustration. ple mechanical experiment. 8 illustrations.......................... the attack.-Curious illustrations of a seal drive and of a seal ii. meteorolog y.-Atmospheric Dust.-By D:. Wilinam Mar-CET.-A very ex
spheric dust...
VIII. NAVAL ENGINEGRING.-H. M. S. Latona.-A recent ad tion .. , loating upon its own paddle wheels. -8 illustrations....... IX. ORDNANCE.-Modern Gunpuwder as a Propellant.-By Major F. W. J. BAREERR-An exceedingly elaborate paper on the subject
of modern powder, its composition, and other features.-6illuairaThe Gun Factory of the Forkes et Chantiers, at Havre.-Th
manufacture of great !guns in France.-The turning of a $100-\mathrm{to}$ iece. -2 illustrations
X. PH YsiCs.-Scientifc Opportunitlee.-By Prof. Oliver Lodae. H SICs.-Sclentinc Opportunities.-By Prof. OLIvrR LODGE.-

THE WINNEBAGO COUNTY (IOWA) METEORITES. On Friday evening, May 2, 1890, at 5:30 P. M., stand ard Western time, a meteor was observed over a good part of the State of Iowa, and is described as a bright ball of fire, even in the sunlight, moving from west to east, leaving a trail of smoke which was visible fo some minutes. It was accompanied by a noise likened to that of heavy cannopading or thunder ; and many people rushed to the doors, thinking it was the rumb ling of an earthquake. Substantiated reports have been received from Des Moines, Mason City, Fort Dodge, Emmetsburg, Algonia, Ruthven, Britt, and Forest City. The noise was also heard at Sioux City. Some of these places were at a distance of over a hundred wiles from the point where the meteor fell. It exploded at Leland, about eleven wiles north west of Forest City, Winnebago County, in the center of the northern part of Iowa, latitude $43^{\circ} 15^{\prime}$, longitude $93^{\circ} 45^{\prime}$ west of Green wich, near the Minnesota State line. The fragments were scattered over a considerable surface of ground Up to the present time there have been found a 66 pound mass, a 10 pound mass, two 4 pound masses, and 500 fragments weighing from one-twentieth to 20 ounces each, one lot of twenty masses weighing only 12 penny weights. A part of the main mass of the meteor ite is believed to have passed over into Minnesota. The pieces are all angular, with rounded edges.
This meteorite is a typical chrondite, apparently of the type of the Parnallite group of Meunier, which fel February 28, 1857, at Parnallee, India. The stone is porous, and when it is placed in water to ascertain it specific gravity, there is a considerable ebullition o air. The specific gravity of a fifteengrammepiece was found to be $3 \cdot 638$. The crust is rather thin, opaque black, not shining, and, under the microscope, is very scorious, resembling the Knyahinya (Hungary) and the West Liberty (Iowa) meteoric stones. A broken sur face shows the interior color to be gray, spotted with brown, black, and white; the latter showing the ex istence of small specks of meteoric iron from one-tenth to four-tenths of a millimeter across. Troilite is also present in small rounded masses of about the same size. On one broken surface was a very thin seain of a sof black substance, evidently graphite(?), and soft enough to mark white paper. A feldspar (anorthite?) was also observed, and enstatite was also preseni
Professor H. A. Newton says: "The path that satis fies best the accounts that appear to be reliable was directed from a point a little north of west and some what higher than the sun, the sun being then about $20^{\circ} \mathrm{higb}$ and due west. The velocity of the meteor ite may be safely assumed to have been greater than that of Encke's comet at distance unity, and less than that belonging to a parabolic orbit. With this assump tion the orbit would be inclined to the ecliptic between 10° and 20° with direct motion. The ascending node is in longitude $42^{\circ} .5$. The body had passed perihelion several weeks, how long depends mainly upon the in clination to the horizon of the path through the air The perihelion distance was probably between 0.50 and $0 \cdot 70$, this element also being largely dependent upon the same inclination. Better observations of thin in clination than are now in hand are hoped for.'
This is the fourth meteorite that has been seen to fall in Iowa. The other three falls were as follows: At Hartford, Linn County, February 25, 1847; at West Liberty, lowa County, February 12,1875 ; and the grea fall of siderolites at Estherville, Emwet County, May 10, 18i9, which fall comprised over two thousand pieces weighing from a tenth of an ounce to four hundred pounds.

We are indebted for the foregoing to Mr. Georg Frederick Kunz; he has secured over 300 pieces for hi collection.

The Great Wall of China.
The Rev. Wm. P. Sprague, of Kalgan, North China writes as follows to the Missionary Herald:
If any one doubts the existence of China's great wall let him come with me to Kalgan, and see for himsel the identical wall built by the first Emperor Chin, in 200 B. C.
Take a steamer across the Pacific to Tientsen, then ative boat up the Pei Ho River three days, then pac saddle or mule litter five days wore, through moun tains and plains to Kalgan. Before you reach the cit, you see a dark line along the hilltops just beyond the town, and by the time you enter our compound you see the wall stretching away over the mountains as far as the eye can reach, both east and west, with tower for closer inspection, you find its. As we pay it a visit for closer inspection, you find it a windrow or ridge of reddish-brown porphyry rock broken, not cut, into irregular blocks. These are so well fitted to each othe that the outer surface is tolerably smooth, and has somewhat the appearance of crazy patchwork.
It is about ten feet broad at the base and fifteen fee high, the sides sloping to a sharp ridge like a stee sea roof. You may follow this wall eastward to the vince; and so doing you will have traversed the entire northern frontier of Cnina, fifteen hundred wiles. northern frontier of China, fifteen hundred miles.
Though you find several hundred wiles of adobe
sun-dried mud wall, yet other hundreds of miles ar of good brick and higher than at Kalgan By the time you have traced its length you will be willing to time you have traced its length you will be willing to
concede not only that China has a great wall, but also concede not only that China has a great wall, but also
that the ruler who could conquer so vast a country, drive out the invading Tartars, and build a fortifica tion fifteen hundred miles long to keep them out, was worthy to be called the first emperor, and to give his ame (China) to the country.
If any one laughs at the folly of spending so much labor on such a useless defense, let him remember that it was a defense only against horseback riders, armed with nothing but bows and arrows. A few guards on the watchtowers could, with their signal fires on the wountain tops, easily rouse the villagers, far and near to the defense of their homes. And this wall accom plished its purpose for over a thousand years, when the great Ghenghis Khan with his brave Mongol fol owers broke their way through.
This section of the great wall becomes for half a wile the city wall of Kalgan. A beautiful temple is buil n this wall to celebrate Ghenghis Khan's victoriou passiage.
This two thousand year old wall is little known to he world at large, because there is another wall much oftener visited and described hy visitors frow the westrn world. It is near Peking and a far more imposing tructure. This is only an inner arm of the great wall but five hundred wiles long, and not so old by seven hundred years. It is built of cut granite and good brick, and is thirty feet wide at its base, twenty-five eet wide at the top, and thirty feet high. It is a fine sight as it winds over the highest mountain tops.

The Art of Living to a Great Age.

The enchanters of China prowised the emperors of that country to find an elixir of long life that should efface the irreparable inroad of years. The astrologer and necromancers of the middle ages flattered them selves to have discovered the fountain of youth, in which a person had merely to bathe in order to re over his youth. All such dreams were long ago dis pelled by the progress of science. Yet, in the heart o most men there is such a desire to prolong their stay upon the earth that the art of living for a long tim has not ceased to impassion a large number of person who would be willing to endure all the evils of an in definitely prolonged old age. We have several time had proof of this mania, which Dean Swift has so wittily stigmatized in his second voyage of Gulliver, b howing in what a state of abjection the mortals of Laputalived-those unfortunates who were condewned o survive their own selves through the loss of memor of what they had been.
One of the perpetual secretaries of the Academy o Sciences has written a volume to prove that man should consider himself young up to eighty years o age. A noble Venetian named Cornaro spent twenty years in a scale pan in order to ascertain what alimen tary regimen was best adapted to him. We have known old men who, having learned that Mr. Chevreu had never drank anything but water, took the resolu tion to abstain wholly from wine, hoping in this way t xceed a hundred years. Fortunately, a rag gatherer who reached the same age as the celebrated academi cian, spared them this sacrifice by informing his con rere in longevity that he had never drank anything but wine.
But of all these whimsical tentatives, there doubtless is none more worthy of exciting our risibilities than the one to which the Society of Hygiene, of Vienna, is now devoting itself. In fact, this association has just started an extensive investigation in order to determine what it is necessary to do in order scientifically to prolong life beyond the ordinary limits and to rival the patr archs of the Scriptures, as compared with whom Mr Chevreul himself was but a child.
The Society of Hygiene has therefore drawn up a circular which it has sent to all the old men of Germany and Austria-Hungary occupying a certain position in the world, and which contains a multitude of questions about their regimen, their habits, the duration of thei intellectual work, the nature of their recreation, thei wanner of clothing themselves, etc. The good Vien nese hope in this way to get up a practical manual designed for those who wish some day to double the ormidable cape of eighty years.
We wish the hygienists luck, but we much doub whether this tentative will have the effects that they anticipate from it, so great are the differences in phy sical aptitudes and in the occupations of each person. The prolongation of human life is in itself a desirabl result when it is obtained, in a manner, by a series of progressive measures, and not by an ensemble of min ute precautions which would make life a sort of antici pated hell.-La Science Illustree.

IF you want a lovely odor in your rooms, break off branches of the Norway spruce and arrange them in a arge jug well filled with water. In a fiw days tender pale green branches feather out soft and cool to the touch, and giving the delightful health-giving odor.

Mounting Photographs.

Procure from your grocer a supply of "flour of rice" (I don't mean rice starch), take two tablespoonfuls, and with a little water work it up into a nice thick cream in a common bowl. When this is done, and it is seen that there are no lumps, go on adding water to the extent of about twenty ounces. Keep well stirred, and add a teaspoonful of powdered alum when quite dissolved. Take a suitable enameled pot or other clean one, such as in Scotland we make our porridge in, stretch over the top of it a piece of coarse muslin, and pour through the same into the pot the rice flour and water. While these operations have been going on a little gelatine, about twenty grains or so, is to be softened in clean cold water. When quite soft place this also in the pot and add thirty drops of oil of cloves. Place over agas stove or bright fire free from dust, and bring gently to the boil, stirring weil all the time. When the boil is reached the result will be a nice thin paste. If too thick, it must be thinned down by the addition of water at this stage and gently boiled a little longer. I way just describe that when the paste assumes a thickness of the consistency of thin treacle, or when it will of its own accord permitits being poured frow the pot direct into a wide-mouthed bottle, it will at the end of the operation be about right.
If it is seen that at this stage the paste is of the right thickness, add one ounce of alcohol, and when the same is well stirred and incorporated with the paste, pour the whole into a wide-mouthed bottle, set aside to cool, and when quite cold you have a permanent mountant that will delight the heart of the most fastidious operator. Let we add, then, when cold and going to use it, the same should be taken out of the bottle with a spoon and placed in a saucer or cup and beaten up with the hog's hair mounting brush, the bottle being carefully corked again till future use. A dirty or used brush should not be allowed to go into the bottle or remain there, as we so often see done with common gum bottles. If such little precautions as these are attended to, the stock bottle will keep good indefinitely, and the amateur or professional, wherever he may be, will have on hand always a stock of as good a mounting medium as the world has ever seen.
The color of this paste is one of its great points, while it has very excellent adhesive properties. A print, if carefully brushed over round the edges, will never lift, provided the mount is what it ought to be.
I now proceed to give a few hints, which I believe are not generally known to the great bulk of amateurs, or professionals either for that matter, on the mounting of prints in optical contact on glass.
First of all get your glasses thoroughly clean and dry, and be sure they are free from dust. When quite dry, brush over the surface of them a quantity of mounting medium, work this well on to the face of the glasses, and set aside for a few moments while you give a cimilar treatment to the "face" of the print, which ought to be damp. When the face of the print has been well brushed over with the medium, it is placed face down on the prepared side of the glass. I feel it is at this stage that many have gone wrong in their attempts to mount their prints in optical contact with cold starch. Were a squegee to be applied to the back of the print in this state, it is just about ten to one it would result in the tearing of the print by the friction of the rough surface of the back of the paper with the rubber of the squeges; but once this difficulty is recog rized, and a simple means adopted whereby some efficient lubricator is brought to bear on the back of the print that will permit of the squegee slipping nicely along its surface without any fear of tearing, even when a fair amount of pressure is applied, the difficulty will be at once solved. I remember once when giving a demonstration to a photographic society how pleased a gentleman was to find what a little matter stood between him and success in his endeavors to put his prints on to glass by this means. Now the secret of success lies in not only brushing the cold mountant over the face of the print, but the back also. When the print is placed face down on the glass, take the brush and apply a good dose of mountant to the back also. This done, the squegee will slide most beautifully, and no tearing of the prints results.
For many years I have mounted all my prints in optical contact in this manner, and have often smiled when being told that I used hot gelatine for it. I find my prints keep quite as well as those mounted with gelatine, and no one can tell the difference. If the face of glasses and prints are free from grit or grease, there
will be no slug markings. I can confidently recommend those who have a supply of old negatives or spoiled glasses to utilize them in this manner.
So much for placing the prints on the glasses. When dry, a neat appearance may be given to the pictures by binding round the edges of them a suitable colored paper. Most artists' colormen keep a supply of gold and other colored papers, and a few pence will acquire a sufficiency of such to bind a lot of pictures. Having made up your mind as to the color of the paper, cut even strips of same about one inch broad, and having provided some card boards the same size as the pictures
as the picture will do equally well), bind them together just like a lantern slide. When dry, a smal
ring or piece of ribbon may be attached to the back ring or piece of ribbon may be attached to the backs
to hang the picture by.-T. N. Armstrong, in Brit. Jour. of Photo.

Key West and Yellow Fever

In Surgeon-General Hamilton's abstract of sanitary reports. No. 11, March, 1890, there is a report by Dr. J L. Posey upon the sanitary condition of Key West Fla., from which we make the following extract
The city of Key West, covers an area of $11 / 2$ square miles of the island, which is 7 miles in length and 2 wiles in breadth, and is between latitude $24^{\circ} 32^{\prime} 58^{\prime \prime}$ and longitude $81^{\circ} 48^{\prime} 4^{\prime \prime}, 80$ miles distant from the city of Havana and 230 miles from the port of Tampa, Fla. The entire island is a coral rock formation (oolitic limestone) rising at a slight elevation out of the waters of the Gulf of Mexico, constantly swept by strong and varying winds, and its atmosphere tempered by the Gulf Streaw. The products of the soil are tropical in character, lofty cocoanut and date palms, cactus trees wild fig, and Indian-laurel and many handsome flower ing shrubs thrive in the gardens; low brush thickets of buttonwood, acacia, and mango cover the uninhabited area. The climate of this island is delightful, and is unexcelled, I think, in any section of the United States of America, with an average winter temperature of 70°, and 85° in summer. The surface of the island is generally level, with slight undulations north and south, east and west. The estimated population is 20,000 souls, comprising Anglo Saxons, Cubans (Span ish creoles), negroes, and mulattoes, the Cubans and negroes predominating. The manufacture of cigars and the sponge fisheries constitute the most valuable industries. After a thorough and systematic sanitary survey of this city, covering some weeks, and in which I was materially assisted by Dr. C. B. Sweeting, port physician, I find that thereare many evils to condemn, and very few features in municipal sanitation to commend. The general condition of the principal street is cleanly, but badly graded and imperfectly drained, and during the rainy season most of them are flooded, making it impossible for pedestrians to get about dry shod. On many of the streets there are no side walk and no drains. The average condition of premises, as
seen from the street, is among the intelligent and better classes of Americans and Spanish creoles clean and well kept, and contrasts forcibly with the filthy yards and alley ways where the negro and Cuban population, employes of the cigar factories, are huddled together in small huts and shanties, and whose stolid apathy and utter indifference to even ordinary personal cleanliness and domestic hygiene and sanitation is apparent. In the majority of in stances the garbage, refuse of kitchens, and a variety of offensive waterial, when not cast loose into th narrow streets or alleys, is heaped under their wretched
hovels to undergo a slow process of moist decomposition. The yards of many of these dwellings after the heavy tropical rains are inundated, the contents of the shallow cesspools, mingling with the festering garbage, tropical abroad to be subjected an abundance of mephitic vapors, whose baneful influence is in part happily diminished by the constant disinfection of the winds from the sea that sweep over the isle
One of the main sources of atmospheric pollution, as well as of the soil (which, though rocky, is more or les porous), is the privy vault system which is in vogue
here. These vaults are dug to a depth of 4 to 6 feet, 3 to 6 feet in length, and about $21 / 2$ feet wide. I have as certained that where the premises are small, the house occupying the greater portion of the lot, after the cess pool was filled it was covered over with sand and broken rock and a new one dug, and the practice repeated until many small yards were honeycombed with thes fecal pools, and the important question to tenant o owner arose where to locate the next receptacle fo human dejecta. This is certainly a deplorable system and must be productive of foul atmospheric conditions in dwellings in a latitude where the therwometric markings range from 60° to 90° Fahrenheit the entire year. The water supply for domestic purposes is ob tained from underground reservoirs excavated in the rock and cemented, which receive the washings from the roofs of dwellings during the prevalence of heavy tropical showers of the spring and summer months In the poorer classes of premises the privy vaults are not many feet distant from these subterranean cisterns and during periods of drought and in badly cemented reservoirs it is possible that by seepage from the closets the water may become contaminated with organic matter. I am of opinion that during the dry season water obtained from these reservoirs bears some close relation to the production of types of continued fever (non-malarial in character), presenting some typhoidal symptoms. There are several large covered drains in different parts of the city, one on Simonton street, leading from the head of Eaton street to the sea, and another on Angela street, extending to a sal pond in the rear of quarters used by the sergeant in
the course of these drains is well known to many old residents.
The history of yellow fever in Key West (being the most exposed point in the United States) dates from a very early period. The frequent occurrence of epi demics of this disease, the recurrence of isolated cases between epidemic periods, its recent reappearance in October, 1889, and during the month of January, 1890, point, in my opinion, to but one rational conclusionthat the disease has finally become endemic in Key West. What constitute the principal factors involved in the production of this condition are matters of the first consideration : First, the very unsanitary condi tions of the city yield a favorable nidus for the propa gation and preservation of the germs of this disease second, certain classes only of the population furnish the pabulum which evinces the presence of the appar ently inactive and latent poison of yellow fever. believe that only a thorough and vigorous cleansing o the city will rid it of the strongholds of disease, which will otherwise increase in number, and during the summer season develop the epidemic state, unless the municipal government of Key West begins at an early date to rid their rich and growing city of this "pest of the tropics," which was originally introduced on thei island by infected vessels and by their creole industria classes, but which, owing to years of criminal apathy and sordid indifference to the simplest laws of sanita tion, has become (finding a congenial nidus in the filthy inhabited areas) at last domesticated
The city of Key West is the only point in the United States that continues to harbor this "dreaded infec tion," and is coming to be noted as a great manufac turing center of the fragrant "conchas, principes, and egalias," and also the distributing focus of yellow ever fomites. A formidable rival of Havana in the wanufacture of tobacco, she will soou enjoy the unen viable reputation, from the view of the sanitarian, of an equally active competition in the production of the microbe." As long as her citizens are willing to live without the adoption and execution of such modern sanitary reforms as scientific sewerage, good drainage abundant and pure water supply, cremation of gar bage, well-graded and clean thoroughfares, public parks, improved domestic hygiene, so long will her sister cities on the wainland secure the dollars of the tourist, invalid, and capitalist. A system of sewerage which seems entirely practical and efficient, is contem plated by the present municipal council, who were es pecially appointed to carry out the needed sanitary re forms, and the taxpayers should demand that the work be commenced and completed as soon as the funds voted for that purpose are obtained. The city has issued bonds to the amount of a half million which is to be devoted to this general sanitary im provement.
In concluding this report I cannot refrain from ex pressing as my conviction that yellow fever is a pre ventable disease, and that its intimate relation to fou and filthy conditions of soil in towns and cities is no onger a surmise, but a fact, and that this city has be come temporarily an endemic center from such condi tions, and will so remain until they are removed.
The people of the United States cannot permit the city of Key West to remain a center of infection of the "fiebre amarilla" or "fiebre perniciosa," the preva ence of which among the infantile population of the sland city, and the strangers within their gates, ex ites no alarm or fear among the heterogeneous inhabi tants of this island. The State and national health authorities will, if this condition prevails much longer be forced to adopt the same measures against Key West as are enforced against the infected ports of the sland of Cuba.

decisions relating to patents.

U. S. Circuit Court.-District of Minnesota. MINNEAPOLIS HARVESTER WORKS

Nelson, J

An inventor who first conceives and gives expressio to the idea of an invention in such clear and intelligi ble manner that a person skilled in the business could construct the thing is entitled to a patent, provided he uses reasonable diligence in perfecting it, as agains n inventor whose conception was of later date, but who was earlier to apply for a patent.
An inventor is entitled to a reasonable time, to be judged of according to the circumstances of the case in which to perfect his invention and reduce it to prac tice without impairing his claim to priority.

I Notice one thing," says an observant manufac "rer, "and that is that hard wood logs, especially oak that have been placed in the water immediately afte cutting and allowed to thoroughly soak, make brighter lumber, with less tendency to sap stain, than that from ogs that are left on the ground for several months. I ind, also, that in green logs, if sawed immediately afte utting, and the lumber is thoroughly steamed prepa atory to placing it in the dry kiln, the same result will be obtained, greatly enhancing the value of the will be obtained, greatly enhancing
lumber for fine finishing purposes.

A DEVICE TO NAVIGATE THE AIR

The aerial catamaran herewith represented has been patented by Mr. Charles E. Bechtel, of Udall, Kansas It has two cylinders adapted to hold a buoyant material, and connected by a light frame beneath which is stretched a platiorm of woven steel wire supporting an electric or other motor designed to drive a rearwardly extending shaft which operates two propeller blades. To the outer sides of the cylinders are connected wings, pivotally mounted on horizontal shafts, the

BECHTEL'S AIR SHIP.
wings carrying racks engaged by annular gears in guideways carried by the cylinders, whereby the wings may be inclined at such angle to the horizontal line as may be desired. In operation it is designed that the cylinders shall be just sufficiently buoyant to not quite overcome the attraction of gravity, when, the wings being set at the desired angle, the motor is started to drive the ship by the action of the propeller blades, the upward and downward motion being regulated by the inclination of the wings, while steering to the right or left is effected by disconnecting either the left or right propeller wheel from the motor shaft.

AN IMPROVED BOOK HOLDER.

The illustration represents a light, inexpensive, and convenient portable device, which may readily b

STRIPPEL'S MAGAZINE AND BOOK SUPPORT.

clamped to a magazine or other book having a flexible cover, and thus afford a handle whereby the book or magazine may be supported in proper position for reading. It is a patented invention of Mr. John Strip pel, of No. 107 West Twenty-ninth Street, New York City. The device is preferably made of hard wood somewhat elastic, and the handle bar, which forms the central portion of the support, has a slot adapted to receive the back of the book or magazine, such slot be ing wider near the handle than at the outer end of the bar, thus forming spring limbs. The outer edges of these springs limbs curve slightly outward, from near the handle to the other end, and are beveled on each outer edge. A dovetail grooved locking bari adapted to fit over the beveled portion of the handle bar, the size of the dovetail groove of the locking ba being such that as it is pushed forward it will press th spring limbs of the central bar inwardly, and clamp them upon the back of the book or magazine placed in the slot. The locking bar can be readily released from the handle bar, when the parts may be conveniently carried in the pocket.

A recent number of the Northwestern Lumberman contains one hundred pages, and includes a lumber trade directory, also descriptions of some of the larger lumber establishments. Toledo, Cleveland, and Chicago are especially favored, over fifty superb engravings being given, illustrating the most notable lumber yards. The vast extent of the lumber industry in this country is well exemplified in the pages of our enterprising contemporary.

Metamorphoses of Fleas.
Mr. W. J. Simmons read before the Microscopical Society of Calcutta, March 5, 1888, an interesting paper on "The Metamorphoses of the Dog Flea," which has since appeared in the American Monthly Microscopical Journal. He presents some novel phases of flea life, well calculated to excite one's interest in these quite generally anathematized insects. It is stated that there are twenty-five different species of fleas; the dog cat, fowl, marten, rat, squirrel, hedgehog, mole, pigeon, and bat each having its own species, while it is a curi ous fact that there are also vegetarian species, two of which are mentioned. One of these latter lives in brushwood, while the other is a lover of mushrooms. Besides these, the flea which attacks man has not been mentioned, to which must be added the jigger of tropical America, this being also a true flea. Mr. Sim mons makes a considerable point of the order of length of the tarsal joints in the classification of fleas.
Following his notes on the transformations of the dog flea we find: Eggs were deposited early in the morning of October 17, 1886. These were put in a glass and covered with a pane of the same material. On the morning of October 19, about fifty hours after deposition, most of the nits had hatched out, but a few took twenty-four hours or so longer. The majority, therefore, required only a little more than two days as their period of incubation. The larvæ were white, eyeless, cylindrical, active grubs; their bodies, exclusive of the head, with thirteen segments. These segments are beset with long hairs, the terminal segment ending in two curved spines, which probably aid the larva in locomotion. They were supplied with no food excep blood pellets (the supposed excreta of the adult flea) that had been left with the nits, etc., on a cloth by a sleeping dog. They were suspected, however, of can nibalism, as their numbers thinned with no othe apparent cause. On October 25, the seventh day after leaving the egg cases, the surviving individuals were found curling up and otherwise acting as though about to pupate. Upon noticing this they were supplied with a fragment of "puttoo," into which, though eye ess, the larvæ quickly swarmed, and there spun little white silken cocoons. November 2, most of them quitted their cocoons as perfect, active fleas. They were, therefore, in the eggs for something over two days, as larvæ for six days, and pupæ for eight days, attaining their adult state on the seventeenth day after the deposition of the eggs. This is a muc shorter period than given by older writers-W estwood ollowed by Packard-who affirm that fleas are larva or twelve and pupæ for eleven to sixteen days. How
ever, this may in part be due to the warmer climate of ever, this may in part be due to the warmer climate of
India, where the observations just detailed were made. -Insect Life.

AN IMPROVED BAGGAGE CHECK.

The illustration represents an excess-baggage tag which has been patented by Mr. Frank H. Crump, of No. 1300 Pennsylvania Avenue, Washington, D. C This invention relates mainly to the upper section of a tag ordinarily printed in one piece, on which are also the agent's stub and the passenger's stub, separated by lines of holes to facilitate tearing off. The in provement consists in a tag having a protective flap, beneath which is held a series of similar coupons, each bearing a printed scale of the exces in weight and the date, which may be punched by the agent of the road that receives the trunk, so as to simi larly mark with the weight and date each coupon These coupons are successively torn off by each road

AN IMPROVED LIFE RAFT

The device shown in the illustration has been pat ented by Mr. Mills Edwards, of No. 426 Bergen Avenue Jersey City, N. J. It is a rectangular buoy composed of a canvas covering and a filling of cork or other buoyant material, other similar buoys being fitted between the sides and ends, and the buoys being held between or having lashed on their opposite sides light binder frames of wood. At opposite corners of the main rectangular body is fitted a receptacle for oil

EDWARDS' LIFE RAFT.

with a pipe through which a person with the breath may force oil in small quantities out upon the water to quiet the waves. At the center of the inner buoys are tanks or receptacles for drinking water, with tubes therefrom for the supply of the occupant of the raft, while at each side of the inner buoys is lashed a pouch in which provisions may be carried. There are ropes at the sides and ends of the raft, and oars are lashed thereto, while at one end is a drag rope and drag by which the raft may be kept up in the wind and kept steady in rough weather.

AN IMPROVED REIN GUIDE

The device shown herewith is designed to guide and support the reins so that they will not be liable to en-

STOAKES \& FRITH'S REIN GUIDE.
tanglement with the thills or shafts, and has been patented by Messrs. James W. Stoakes and Thomas F. Frith, of Milan, Ohio. It is made, as shown in the small view, of a single piece of spring wire bent upon itself to form two end loops, through which the reins pass, and a central ring, by which it is suspended from the throat latch of the bridle. The device readily swings into position to allow the reins to be manipulated as desired, without their bearing to any appreciable extent upon it, but when the reins are slack they are held up from being swung by the horse under the ends of the shafts.

WE are accustomed to be told that the most impure water will be rendered pure by boiling, and that in this we have an absolute safeguard against the danger of water containing disease germs. Now while it is true that boiling will kill the germs of disease, yet the fact has been brought to our notice, says Annals of Hygiene, by so high an authority as Dr. Chas. M. Cresson, that while boiling kills the germs of a particular disease, it yet, in reality, renders the water wore impure than it was before, because by the very death of pure than it was hefore, because by the very death of
these germs, dead organic matter is allowed to remain these germs, dead organic matter is allowed to remain
in the water, which is polluted by putrefaction. Hence, while boiling is a most excellent precaution against the occurrence of typhoid fever or similar diseases, when we have occasion to think that the germs of these diseases exist in the water that we drink, yet we must remember that this boiling does not purify the water; it simply removes from it the specific power to produce a specific disease.

AN IMPROVED HYDRAULIC MOTOR.

The motor shown in the cut, patented by Mr. Hans P. Christiansen, utilizes in its operation the principle of a siphon, the valve and pipe shown at the top affording ready means of always keeping the siphon perfect, water being there admitted to fill all the pipes before the motor commences to work. The level of the water, as shown at the left in theillustration, being higher than at the right, the current flows from the left, as shown by the arrows, through the pipesto both ends of the main cylinder. The driving shaft passes centrally through this cylinder, and on it are mounted two turbine wheels, the wings of which are inclined in opposite directions. The wheels divide the interior of the cylinder into three compartments, both of the end compartments receiving a flow of water from the higher level, which, after passing through the wheels, and exerting its force upon the driving shaft, passes out of the central compartment and thence to the lower level. In the horizontal part of the pipes leading to the lower level is arranged a valve casing with valves by means of which the operator can at any time stop or start the motor, in ordinary operation, by simply closing or opening the valves.
For further information relative to this invention

CHRISTIANSEN'S HYDRAULIC MOTOR.

address Messrs. Jens Hansen \& Co., No. 463 B Street, Oakland, Cal.

AN IMPROVED MACHINE FOR HILLING CELERY.
In the machine shown in the illustration the moldboards are adjustable to suit the height of the plants, and laterally to correspond with the width of the rows, the machine being designed to crowd the earth from the bottom of the furrows under the leaves simultane ously upon both sides of the rows. It has been patented by Mr. Maurice M. Ranney, of Comstock, Mich The side beams of the frame are adjustable laterally upon the cross beams, and from the under side of each side beam projects a pedestal with an attached spud axle upon which the drive wheels revolve. A postextends down wardly, from a bracket on the under side of each side beam, through a staple and eye formed on a plate attached to the forward end of the mold-board, each post being stayed by a brace bar, and the eyes and staples being large enough to move freely upon the post. For the vertical adjustment of the moldboards, a link connects the staple on the forward end of each with the forward end of a lever fulcrumed upon an upright of the frame, a rack secured to one of the side beams being provided for each lever, which extends to within easy reach of the driver. A stirrup is bolted upon the outer face of each mold-board at its rear end, a chain from each stirrup passing over a friction pulley journaled on the upper end of a rack secured to the center cross beam, to attachment with a lever pivoted on the forward cross beam, and extending to the driver. The mold-boards are so hung that they

RANNEY'S MACHINE FOR HILLING CELERY.

MCKERAHAN'S CAR COUPLING.
are quite a distance apart at their forward ends, and nearer together at the rear, where the two boards are connected by a spiral spring, which spring is attached through short adjustable arms, whereby the spring may be lengthened when it is desired to only half hill the rows. The driver, by resting his feet in the stir rups of the mold-boards, can adapt them to any crook edness of the rows or irregularities of the surface, the machine being adjustable to rows from three to five feet apart and from sixinches to two and a half feet in height.

AN IMPROVED LIQUID HOLDING VESSEL.
The accompanying illustration represents a vessel to hold oil or other liquids, and permit the contents to be readily and safely decanted into a lamp or other ves sel with a small opening, the receptacle being also adapted to hold liquids for transportation or storage This invention has been patented by Mr. Stewart R Mace, of Moulton, Iowa. The holder consists of a horizontal cylinder pivotally supported in a suitable stand, the points of pivotal support of the vessel being above its axial center, whereby the weight of contained liquid will always retain the vessel in such position that the filler nozzle and discharge spout will be at the that the filler nozzle and discharge spout will be at the
top, except when the vessel is turned in its journaled supports to discharge its contents. The filler nozzle projects from the cylindrical wall of the vessel on one side of the handle, and on the opposite side is the discharge spout, a small orifice from the interior opening into the inner lower portion of the spout, the opening from the interior being considerably less than the outer opening of the spout, so that there will always be an air space above the escaping stream. Intersecting the rear portion of the spout, above the wall of the vessel, is a transverse air passage, produced by the attachment of
an arched piece of sheet metal, as shown in the small

MACE'S LIQUID HOLDING VESSEL.
view, this air passage being in open communication with the vessel near the filler nozzle, so that there is continuous air duct which will only be closed by the insertion of a stopper or cork in the outer end of the discharge spout. As a consequence the stream of oil or discharge spout. As a consequence the stream
other liquid is caused to flow smoothly, and the pout is designed to be entirely free from drip.

AN IMPROVED CAR COUPLING.
The coupling shown in the illustration is designed to be automatic in its operation, and to permit the disconnection of the coupling from either side of the car, while it also possesses a longitudi nally yielding link bar whereby injurious shock is avoided. It has been patented by Mr. Charles McKerahan, of No. 78 Middle Street, Alleghany City, Pa. The drawhead has a rearwardly extending portion of reduced diameter, and the front part of its top wall has a hollow projection or pocket that is longitudinally slotted to permit the vibration of an upright lever. The link bar is pivoted on pins in opposite longitudinal slots in the throat of the drawhead, thus adapting it to be inclined from a horizontal plane and have a sliding movement, and at its rear end is a stout spiral spring extend-

STEPHENSON'S COTTON PICKER.
of unripe cotton or the leaves or limbs of the plant. It has been patented by Mr. Charles R. Stephenson, of Lyon, Miss. In the forward part of the car which carries the mechanism, at one side, is journaled a vertical shaft, upon which is loosely mounted a frame, the top and bottom faces of which are nearly triangular in general outline, these faces being connected by vertical strips. On the vertical shaft, within the frame, is a drum, and in the rearwardly extending portion of the frame is another shaft carrying a drum, an endless apron extending around the two drums. Upon this apron are vertical boxes in which are journaled outwardly projecting spindles that are tapered and have longitudinal grooves. Upon the inner ends of these spindles, within the boxes, are grooved pulleys, the upper pulley having a flange adapted to roll in contact with a track attached to the under surface of the upper part of the frame, and thus communicate a rotary or twisting motion to all the pulleys and their spindles, by means of a belt or cord running over the top and bottom pulleys and alternately behind and outside of the others in the series. A vertical shaft, journaled in the floor and a rear cross bar of the frame, receives its motion through bevel gears from the drive wheel, a clutch mechanism, connected with a lever in easy reach of the driver, allowing the gear to be thrown into and out of engagement, and a belt from this shaft operates the forward drum-carrying shaft. Upon the lower end of this main operating shaft is formed an eccentric adapted to be engaged by the short arm of a forked lever pivoted on the floor in front of it, the long arm of such lever entering a notch in the lower part of the drum-carrying frame, whereby the latter is vibrated, or moved in and out, with the rotation of the shaft In the forward part of the frame, to the left of the drum shaft, is also journaled a vertical drum shaft, belts or cords running horizontally around all three of the shafts journaled in the frame, one such belt or cord passing between each series of outwardy projecting spindles. Behind the latter shaft, and adjoining the wall of the car, is arranged an inclined endless carrier, the lower end of which is placed near the floor while its upper end is near the top of the car at the rear, the drum operating the carrier receiving its motion through a belt from a short shaft connected with the main operating shaft. The upper part of the main drive wheel is incased, and the auxiliary side wheel turns on a stud projecting from an inverted U-shaped bar attached to the side of the car. As the machine is drawn through the cotton field, the drum shafts are revolved to move the spindles rearwardly, while the cotton is wound loosely upon the rotating spindles, as the vibrating frame is alternately projected among and withdrawn from the cotton plants. As the spindle pass into the car at the rear, the cotton is removed from them by the horizontal belts or cords passing around the drum at the foot of the inclined carrier, which takes the cotton up for delivery in bags or to a wagon attending the pickers.

Rich without Money

Many a man is rich without money. Thousands of men with nothing in their pockets, and thousands with out even a pocket, are rich. A man born with a good, sound constitution, a good stomach, a good heart, and good limbs and a pretty good headpiece, is rich. Good bones are better than gold; tough muscles than silver and nerves that flash fire and carry energy to every function are better than houses and land. It is better than a landed estate to have the right kind of a fathe and mother. Good breeds and bad breedsexist among men as really as among herds and horses. Education may do much to check evil tendencies or to develo good ones; but it is a great thing to inherit the righ proportion of faculties to start with. The man is rich who has a good disposition, who is naturally kind, pa tient, cheerful, hopeful, and who has a flavor of wit and fun in his composition.
The hardest thing to get on with in this life is a man's own self. A cross, selfish fellow, a desponding and complaining fellow, a timid and care-burdened man-these are all born deformed on the inside. They do not limp, but their thoughts sometimes do.-Cla Manufacturers' Engineer

The Swedish Cure for Drunkenness.

The habitual drunkard in Norway or Sweden render himself liable to imprisonment for his love of strong drink, and during his incarceration he is required to ubmit to a plan of treatment for the cure of his fail ng which is said to produce marvelous results. The plan consists in making the delinquent subsist entirely on bread and wine. The bread is steeped in a bowl o wine for an hour or more before the meal is served The first day the habitual toper takes his food in this shape without repugnance; the second day he finds it less agreeable to his palate; finally he positively loathes the sight of it. Experience shows that a period from eight to ten days of this regimen is generally more than sufficient to make a man evince the greatest version to anything in the shape of wine. Many me after their incarceration become total abstainers.

THE DEVELOPMENT OF THE CALIPER.

One of the first tools to suggest itself to the mind of the early worker in metals for the measurement of diameters or thicknesses probably was a gauge something like that shown in Fig. 1, which is simply a notched plate of iron, the width of the notch being the measure ment of the diameter or thickness required, and by re peated applications of this gauge to the work, as it neared completion, accurate results were secured; ku

Fig. 1.

Fig. 2.
this tool was what would now be called a special too or gauge designed for measuring fixed diameters. It lacked the adjustable feature which was necessary 10 adapt it to work of different sizes. Of course the too could have been heated and altered, but this would have occasioned considerable labor, as well as the loss of the original gauge. It is, therefore, probable that for an adjustable gauge or caliper, something like that shown in Fig. 2 was employed.
This tool consisted of a curved bar of metal, with the ends approaching each other, and the adjustments were effected by bending the bar. An obvious and early improvement upon this caliper is shown in Fig. 3. The difficulty of bending a bar whenever an adjustment was required suggested the use of a fric ional joint at the center of the bur, which would per mit of swinging the arm of the caliper to adapt it to the measurement of different diameters. From this crude mechanical device have been developed all the modern mproved forms of caliper, one

the latest improvements in this line being what is known as the Stevens caliper, represented! in) Fig. 4, manufactured by the J. Stevens Arms and Tool Co. Chicopee Falls, Mass. In this caliper the jaws are connected together by a fine joint, and a C-shaped pring is applied which tends to separate the free end of the jaws. The adjustment is instantly effected by a simple and durable slip nut, which, together with he joint and spring, forms an ideal arrangement appreciated by every mechanic.

AN IMPROVED METAL CROSS TIE

The cross tie shown in the cut is designed to securely oold the rails in position and be sufficiently eiastic t prevent injurious shocks to the rolling stock. It ha been patented by Mr. James P. Taylor, of No. 315

TAYLOR'S METAL CROSS TIE FOR RAILROADS.

Pecan Street, Fort Worth, Texas. The body of the tie is preferably of wrought iron plate, and bent t nearly triangular shape in cross section. At the proper distances apart to allow for the width of the track ar longitudinal slots, in which are integral lips or flanges adapted to hook over the adjacent edge of the bas flange of the rail when placed on the tie. Within the tie body is located a rod, oppositely threaded at each end, and on these threads are mounted blocks or nuts as shown in the small figure, each block having a lug adapted to fit upon the inner base flange of the track rail. The outer ends of the rod are squared to receiv a wrench, and near its center is a square portion where the rod rests upon a transverse bolt. The squared portion of the rod is designed to retain it from rotation when in place sufficiently to prevent it from relaxing the lugs, the rod yielding when turned by wrench to adjust the parts and draw these lugs agains the flanges on the track rails.

Thinking and Doing

The successful man, as a rule, is that one who knows he trick of doing the right thing at the right time and the trick is not oue which comes from inspiration, but from trained habits and thought. All the un rained genius in the world combined could not have mposed in their present perfect literary form the hirty-nine articles, it was genius schooled and trained wich accomplished them
Attention enough is now given to physical training ut there is still a somewhat common lack of faith in ome parts of the United States with regard to the ad vantages of mental training. A little "schooling," it is considered, is essential, but boys and girls, it is hought, especially in the country, should not be per mitted to waste too much time over their books. The theory was, and, to a lesser degree, is, that good men re best made by beginning their working careers early-the earlier the better. But a change is occur ing in this matter, as in others, and in these days of great enterprises, in which trained thought, science and skill play so large a part, the man of educated mind is likely to be preferred to the man of uneducated mind. The man who has been taught to think accord ing to system and principle is the man who, in the most attractive business pursuits, is sought by em ployers.
The value of such training as enables the man to rise promptly to the requirements of the emergency was very happily illustrated by Mr. Chauncey M Depew the other day in an address he delivered to the boys of St. Paul's school, at Concord. Mr. Depew said :
"In a boat race between a Yale and an outside crew the other day, the oar of the stroke oarsman broke jus at the critical moment. In such cases the great thing is to know just what to do, to be able to call on a your powers of knowledge and skill. The ordinary man knows how to drive, to go to church and sit in his pew, to come in when it rains, but only the wel rained man knows what and how to do in an emerg ncy. An ordinary man would have said: 'Abandon the race.' This fellow made up his mind in a moment and judging just the right moment and just the right place, he leaped from that thin shell of a boat with out disturbing the other rowers. Thus the boat wa elieved of his weight, and Yale won.'
The difference between the ordinary and the extraor dinary man, when it does not arise from extraordinar natural gifts, to quote from the Philadelphia Ledger lies generally in the superior mental training of the latter. The former may have intellect as quick and right, but unless it has been trained to act, he is lik man with all the craftsman's tools, but without th raftsman's trained skill. The hand does the bette work always, the better-schooled the thought behind it is, and this applies not less to the ordinary workman of the anvil, saw, or loom than to the man of affairs The carpenter or mason whose mind has been trained as well as his hand is likely to put aside the plan and the trowel and to become the master builder or architect. It is the mental training that tells oftenes in this world's race, and the man who seizes the ripht moment in it when to stay in or when to leap from th boat is pretty certain to be found at the end upon the winning side.

The Tortoise Market of Philadelphia
The taste for "stewed terrapin " and "snapper soup" has become so general in Philadelphia, that the United States are now ransacked for the reans of supplying it. Within a few years the species sold were the " terrapin," Malacoclemmys palustris; the " red belly," Chelopus insculptus; the "slider," Chrysemys rugosa and the "snapper," Chelydra serpentina. Now large invoices of turtles are sent from Mobile, New Orleans, and St. Louis, which include the following species Chrysemys bellii, C. elegans, C. concinna, and C roostii; Malacoclemmys geographica, and M. leseurii total, exclusive of sea turtles, ten species. All ar abundant in the market except the C. bellii.-E. D Cope.

Natural History Notes.

The Lamp Bird.-An explorer, Dr. H. Labonne, mentions a curious peculiarity of the stormy petrel, which has caused it to be styled the lamp bird by the fishermen of the island of Saint Kilda. The flesh of this bird is very oily, and the inhabitants of the island, who kill it by thousands, utilize this property for dowestic purposes. They insert a wick in the bird's bill, westic purposes. They insert a wick in the bird s bin, to serve their purposes.
Conversion of Sugar into Starch by Plants.-According to the researches of Saposchnikoff, sugar can be turned into starch in the leaves of plants. Plants of various kinds were placed by him in the dark for a time, and then some of the leaves were cut off and divided in halves along the midrib. One half was tested for starch, and the other was allowed to remain for from four to ten days in a 10 to 20 per cent solution of cane sugar, and then tested for starch. The latter was found in abundance, especially along the veins. In variegated leaves, only the chlorophyl cells formed starch.
The Forms of Leaves.-Two papers relating to the The Forms of Leaves.-Two papers relating to the forms of leaves were recently read by Sir John Lubbock before the Linnean Society. The first paper dealt with the form of the oak leaf, which is unequally developed on the two sides of the midrib, and sinuate at the margin. He compared this leaf with that of the beech, and showed that the leaf bud is smaller in the oak than in the beech, although the leaf is larger. For oak than in the beech, although the leaf is larger. For
this reason the oak leaf becomes curved in the bud, this reason the oak leaf becomes curved in the bud,
and this curvature is probably the reason of the sinuand this curvature is probably the reason of the sinu-
ate form of the leaf. The asymmetrical form is due to ate form of the leaf. The asymmetrical form is due to
the leaf being conduplicate, so that one half of the the leaf being conduplicate, so that one half of the
leaf is subject to less pressure than the other during growth. In the beech, the leaf not being subject to the same pressure in the bud, it is not curved, and the development of the parenchyma takes place in the form of plaits. The second paper related to the two British species of Viburnum, in which, although the two species sometimes grow within a few yards of each other, the form and character of the leaf is quite different. In Viburnum lantana the leaves are densely hairy when young, and are not lobed. In V. opulus the leaves have stipuliform appendages and the leaves are lobed and glabrous. In all the species allied to V. opulus the leaves are lobed and these appendages are present. In V. lantana the hairy surface serves as a protection to the young leaves, but in V. opulus the young leaves are protected by thickened scales. The pressure thus exerted throws the leaf into the lobed pressure thus exerted throws the leaf into the lobed
form, and the stipules fill the hollow left at the base of form, and the stipules fill the hollow left at the base of
each folded leaf, just as in the maples, which have oach folded leaf, just as in the maples, which have
leaves similar in shape. The interstices are filled up by the smaller succeeding pair of leaves.
Effect of Light upon Plants-From some experiments by Mr. W. G. Sinith, it seems that the plant commonly called the strawberry geranium (Suxifraga sarruentosa) well serves, when grown with light on one side only, to show heliotropism and negative heliotropism. A small plant placed in a window turned all its leaves to the light, but sent out seven stolons away in a straight line from the light. As these elongated they became line from the light. As these elongated they became
pendulous and formed rosettes of leaves at their tips. pendulous and formed rosettes of leaves at their tips.
The new leaves requiring light, the stolons altered their direction and grew toward the light, until the young plants almost touched the glass. These young plants also sent out stolons, which again grew away from the light, and the same thing happened with a third generation of stolons.
Migrations of Plants as Affecting those of Insects. A correspondent of Insect Life says that when he first went to Kansas, eighteen years ago, two plants were unknown in Geary County which are now very abundant. One of these is the Solanum rostratum. The region for two or three years suffered from the ravages of the Colorado potato beetle, but now, though the beetle is sufficiently abundant every year, the potatoes rarely are damaged. The cause seems to be that $S o$ lunıin rostratum, sometimes called Buffalo nettle, or Buffalo thistle, is the native food plant of this beetle, and where it is scarce Solanum tuberosum is accepted as a substitute. The plant belongs to regions farther
west, and by some means the beetle traveled in abunwest, and by some means the beete traveled in abun-
dance eastward, reaching the other side of the Atlantic dance eastward, reaching the other side of the Atlantic
years ago, where the plant is still unknown. It is said that the prickly seed pods of this plant came on the tails of Texas and other cattle from the Sonthwest, and it is certain that counties remote from the cattle trails and the through lines of railway were the last to have the plant. The flower is bright yellow, and the whole plant not unhandsome, but its prickles make it a very
undesirable weed. Two years ago the writer took par ticular pains to eradieate it in and around his garden patch, killing every young plant of S. rostratum as it patch, killing every young plant of s. rostratum as it
came up. The result was a serious attack on the pocame up. The result was a serious attack on the po-
tatoes, which were only saved by twice going over all the plants and collecting and destroying the beetles. That the plant did not migrate easterly at a greater speed is to be wondered at, as in the region of the one hundred and second meridian on the wide prairies, it has the tumble weed habit. The whole plant is suband goes bowling along beiore the wind at a great rate

The winds there, however, are more north and south than from the west, so that probably has delayed the progress of the plant in longitude. The plant is in all eastern Kansas now, and we rarely hear of the Colorado beetle damaging potatoes.
Effect of Poison on Sponges.-The Biologisches CenEffect of Poison on sponges.-The Biologisches Cen-
ralblatt for April 1 contains a paper by Mr. Ledenfeld rabolatt for April 1 contains a paper by Mr . Ledenfeld
on the action of various nerve poisons on sponges. He finds that curare, strychnine, and cocaine act on living sponges in much the same way as on higher animals, curare relaxing the sphincter muscles surrounding the pores in the external surface, strychnine causing a sharp contraction, and cocaine rendering them less cells which act as muscles are in relation with others that act as sensory nerves, which are in the first place affected and communicate their irritability to the muscle cells.
Animal Coloring Matter.-In the Journal of Marine Biology, Mr. C. A. McMunn briefly discusses the coloring inatter of several invertebrates. Among the inter esting facts are these : Spectroscopic examination fails to show the presence of symbiotic algo in Antedon, it being found that contrary results were due to the presence of plants in the food, and that when the stomach was removed, neither chlorophyl nor chlorofucin occurred in the extract. The digestive glands of echinoderms and crustacea not only form digestive ferments, but exercise a chromatogenic function. Chlorophyl was found in several annelids, while other green worms possessed no chlorophyl. The lipochromes in some cases may act as an absorber of light rays, but its other function is very uncertain. The author shows
that a knowledge of invertebrate coloring matter is that a knowledge of invertebrate coloring matter is
absolutely essential to a clear understanding of the physiological action of the pigmonts of the vertebrata Absorption of Nitrogen by Plants.-Since the apparently conclusive experiments of Boussingault, which ently conclusive experiments of Boussingault, which
were completed as long ago as 1854, it has been acwere completed as long ago as 1854 , it has been ac-
cepted as an axiom in physiological botany that the free nitrogen of the atinosphere is useless to plants for the purpose of assimilation, and that the exclusive source of their nitrogenous compounds is the soluble
nitrates in the soil. But like so many generally accepted beliefs, very grave doubt is now thrown on the correctness of this view by several papers in the "Landwirthschaftliche Jahrbucher," by Dr. B. Frank. In these papers the results are given of a series of experiments which he considers to prove the point that the amount of nitrogen in the tissues of the plant is in excess of that which could possibly be due to the solu ble nitrates absorbed from the soil. The nitrogen, which must thus have been absorbed through the leaves directly from the atmosphere, is perhaps in the tissues in the form of organic nitrogenous compounds, not of nitrates. The nitrates present in the tissues of plants, the amount of which varies greatly with different plants, are entirely absorbed as such through the roots. Dr. Frank believes that the low forms of vegetable life, as Oscillaria, Ulothrix, Pleu rococcus, Chlorococcuni, and the protonemes of mosses, have especially this power of removing free nitrogen
from the atmosphere, and forming therefrom nitrogenfrom the atmosphere, and forming therefrom nitrogen-
ous compounds, but that the property is probably common to all vegetable organisms which contain chlorophyl, and that, like the assinilation of carbon, it is a function of their chlorophyl. Drs. Hellriegel and Willfarth have put forward another view-that there is an essential difference between the way in which Leguminosæ obtain their nitrogen, and that of other plants. They claim to have determined by experiment that the growth of barley and oats is in direct proportion to the amount of nitrates absorbed from the soil, and that they are totally unable to live
in a soil entirely deprived of nitrates. This is not the case, on the other hand, with vetches, which may grow luxuriantly in a soil containing no nitrogen, and which must, therefore, obtain their nutrinuent from some The authors advance the theory that they do not do this directly, but through the instrumentality of the microbes contained in the tubers which occur on the roots of the vetch, bean, and many other plants be longing to the Leguminosa. These microbes, there fore, carry on a symbiotic existence with the host plant,
the microbes contained in the soil not being available for this purpose.
To this Dr. Frank replies, dissenting from the dis tinction drawn by Hellriegel and Willfarth between Leguminose on the one hand and grasses and other orders of plants on the other hand, all of which, he maintains, are, in certain conditions, capable of assimilating directly the free nitrogen of the air. He further points out that there is no single direct observation to connect the "bacteroids" in the root tubers of Leguninose with this supposed function, that the fact o their being living organisms is subject to considerable doubt, and that their structure and mode of life are altogether different from those of "mycorhiza," in
which a true symbiosis between the fungus and the which a true symbiosis between the fungus and the
oot which it envelops has been satisfactorily demonstrated.

As controversies occasionally arise between architects or owners and the health authorities as to the size necessary to the main house drain and sewer, it has been thought worth while to give somewhat in detail the data upon which the regulations of the New York data upon which the reg
Board of Health are based.
About a year ago the health department found that, in several cases, house sewers of the size which they considered essential for large buildings were not per mitted by the co-ordinate department which has it charge the public sewer system. Correspondence followed as to the desirability of reaching a mutual and satisfactory understanding. This resulted in the preparation of a report on the subject by Messrs. Rudolph Hering and Horace Loomis, respectively engineer in charge of sewers and consulting engineer of the decharge of sewers and consulting engineer of the de-
partment of public works. This was accepted by the partment of public works. This was accepted by the
board, and its conclusions made the basis of their future requirements. The main points of the report on the deductions are as follows :
The first consideration is evidently as to the amount of water, per unit of surface, for which provision must be made. Formerly the records kept of rain storms gave merely the total fall per hour, leaving it uncertain whether this was uniform or, as wore generally the case, the greater part had fallen in a comparatively short time. However, the meteorological observatory has obtained for a number of years an automatic record of the rainfall, showing for each storm the maximum rate and its duration, which evidently gives the data required for determining the size of the drains. These records show that, during the eight years from 1880 to 1887 inclusive, there were in all thirty storms with rates greater than one inch per hour :

Number of Storms.	$\begin{aligned} & \text { Rate. } \\ & \text { Inches per hour. } \end{aligned}$	$\underset{\substack{\text { Duration } \\ \text { Dinutes }}}{ }$
12	1 to 2	20 to 60
7	2 to 3	10 to 30
4	3 to 4	8 to 15
1	4 to 5	15
8 2	5 to 6 8 to 7	3 to 10
1	${ }_{7}{ }^{15}$	${ }_{2}^{3 \text { to }} 10$

Thus in the eight years covered by the records there have been three storms with a rainfall of the rate of more than six inches per hour, lasting from two to ten minutes. As a very few moments of such a storm would wet and cool a roof or paved surface sufficiently to check evaporation, nearly the whole amount of water must have reached the house drain. It was therefore considered wise to provide for a maximum fall of six inches per hour, as the damage inflicted by a single storm, when the drains were insufficient, would more than outweigh the additional cost of the larger pipe. At the same time the other and equally important fact was kept in view that the drain should be made, as far as practicable, self-scouring under the ordinary conditions, and to accomplish this the diame ter should be kept as small as may be consistent with safety.
The second consideration in determining the requisite size of the drain is the velocity of the water in the pipe. This should evidently be, not that derived from a theoretic equation, but such as can be attained in practice after making all due allowances for traps, short bends, etc. It was thought doubtful whether a velocity of six, or even five, feet per second could be obtained through a six inch quarter bend, unless the pipe was discharging full and under pressure. A maxi mum velocity of four feet was therefore assumed as safe Again, to prevent the drain running quite full, an available sectional area of 0.18 square foot was assumed for the six inch pipe. This, with a four foot velocity would give a capacity of 0.72 cubic foot per second With a six inch rainfall per hour, one square foot of roof surface would receive about 0000140 cubic foot of water per second. The six inch drain should therefore carry the water from about 5.000 square feet of surface if it have an effective grade of one-quarter inch per foot With a grade of one-half inch per foot, which is of ten practicable, and a fairly straight run of pipe, the velocity may be raised to six feet per second, and therefore the capacity and amount of surface drained ncreased to one-half. In this case the six inch sewer would safely carry the storu' water from 7,500 square feet of roof. The following table gives the size of pipes, with the corresponding area of roof drained when the effective fall is respectively one quarter and one-hal inch per foot
Diamerer
of Drain.
6 inch
7
8
9
9

Roof Area Drained		
5.000	fe	7,50
6.900	"	10,
9.100	"	13,
11,600	"	

For large areas it is always better to use two nore small sewers rather than a single large one. as under the ordinary conditions of sewage flow the mall pipes will be more thoroughly flushed. The effec ive grade of the house drain should also, for safety be measured from above the hydraulic grade line of the public sewer, which, in this city, during the heavi est storms, will be at least as high as the arch of the sewer.-A. H. Napier, in Architecture and Building

SINGER'S GREAT SEWING MACHINE MANUFACTORY AFTER THE FIRE.
We chronicled last month the destruction by fire of the great establishment at Elizabeth, N. J., of the Singer Sewing Machine Company. The ruins presented a remarkable spectacle, that of a great field covered over with a mass of cog wheels, band pulleys, and shafts, bent and distorted into all manner of confused shapes. Our artist has attempted to convey an idea of the scene. It is a difficult subject for the engraver.
Some notion of the large extent of the establishment will be gained when we say that the grounds occupied by the works are 32 acres in extent. The main factory building had a frontage of 230 feet on First Street, with a width of 60 feet. The Trumbull Street annex to this building was 800 feet long and 50 feet wide, the whole being four stories in height. Below this building, on Trumbull Strest, were the cabinet and box factories, each 200 feet long and three stories high. On the north side of the grounds, adjoining the Central Railroad, were the forging and foundry buildings, together makwere the forging and foundry buildings, together mak-
ing one continuous building 1,430 feet in length. The

The Increase of Special Tools.

The fact that machinery specially designed for performing the work required of it can be used to a far greater extent in railroad shops than formerly supposed is now being recognized by progressive men who are superintending the maintenance of rolling stock. The advantages of special machinery in manufacturing establishments where the products turned out are uniform in quantity, size, and design, have long been acknowledged. In such cases the work can be outlined with great exactness, and when it is decided that a cer tain step in the process of manufacture requires a special tool, one can be supplied which will do the work with economy, while the magnitude of the business will generally keep a machine of this kind continually employed on the work it was intended to perform. In recent years it is, therefore, not uncommon to see shops in which two-thirds of the machinery is either special or fitted with special attachments.
The nature of the work done in the average railway repair shop is in such sharp contrast with that just out-
forward to their present state of perfection the excellent tools now found in many railroad shops in this country, it must be acknowledged that they do not always act as though they realized the importance of the present tendency toward special machinery in rail road work. We know of cases where they would not undertake the building of a new tool of special charac ter without charging the cost of all drawings and pat terns to the company desiring the first tool of that kind, even though, as in one case, the possibility of selling more machines from the same patterns was evidenced by the fact that a second and independent re quest was presented for prices on a tool for the same work. To be compelled to pay two prices for a machine worth say $\$ 2,000$, simply because it was the first one, is rather discouraging to the mechanical department of a progressive road, especially when they can see oppor tunities for selling quite a number of them, provided the first is a success. It makes them think that the too builders have in such cases little faith in their own de signs, do not realize the importance of the tool, or are not disposed to take any chances whatever.

singer's sewing machine mandfactory after the great fire
foundry alone has an area of $21 / 2$ acres in one open |tively little special machinery in them; for while it is floor, and the total floor area of the works is 18 acres.

All the works were rapidly rebuilt and are already again in full operation.
Previous to the fire about 3,300 persons were employed.
One thousand five hundred sewing machines per day are turned out. They consume a very large amount of raw material, the daily melt of pig iron alone vary. ing from 75 to 80 tons.
About $\$ 40,000$ in wages is weekly distributed among the employes, the most of whom live in Elizabeth.
The Singer Company have thoroughly systematized the manufacture of sewing machines, introducing and successfully using automatic machinery in every department, and with their large corps of well trained employes, the work in their immense factory goes on with the precision and regularity of clockwork. In the factory everything is scrupulously neat, and every provision is made for the safety, health, and comfort of those who spend their time within its walls.
Through the open portions of the premises are scat tered trees, which overshadow well kept lawns, thickly dotted with flowers, and, indeed, the grounds, on which a force of men is kept continually employed, have more the appearance of a park than a factory yard.
quite evident that the manner in which certain work is performed can be improved upon, one may not be justi fied in obtaining the tool required because it cannot be employed steadily enough to make it pay for the first cost and the floor space which it occupies. This condition of affairs is fast being changed, however, partly from the fact that there is a decided increase in th number of tools which, while deserving the name special, have a sufficient range to permit of their constant employment to good advantage. Another thing which has its influence in bringing about a change is he tendency to do a large amount of heavy repair and new building at one or two points on a system and have the smaller shops take care of light repairs, these calling upon the main shops for many finished articles. This makes no swall portion of the work of the main shops sufficient, both in quantity and quality, to warant the employment of special tools.
For this special machinery the railroads must gene rally look to the machine tool builders. The idea may originate with the railroad and the complete design may come from the same source or be the result of the combined efforts of the road and the tool builder, but the road must finally depend upon the builder for the ork of construction. With all due credit to the en terprising builders who have done so much to bring

The tool builders, however, are generally fully alive to their opportunities, and there can be little doubt but that there will be a more extensive adoption of special machinery in the near future, and to the list of those now in use we may expect to find added a number in which much of the work now done by planing will be accomplished by milling operations. At least one of the leading roads of the country is beginning to use special milling tools quite extensively, buying them in large numbers for the equipment of new shops, and introducing them in their older plants. This has been done after a trial which has demonstrated their value. -The Railway Review.

One Thousand Sheep Killed in a Railroad Accident.

One of the most disastrous wrecks to the Atlantic and Pacific Railroad occurred Friday evening, May 30, two miles west of its junction with the Santa Fe Railroad. A train of double-decked cars, loaded with some five thousand fine merino mutton sheep, on the way from California to the Chicago market, was wrecked by the breaking of a truck. Every car but two was destroyed and about one thousand sheep killed outright. The Indians of the neighborhood worked all night skinning carcasses. They will have mutton for months to come.

a subway manhole explosion followed by a

 gas fire.On Friday, June 13, a gas explosion, followed by a conflagration of many hours' duration, took place on the corner of Broadway and Fulton Street, in this city, which is the worst of the many street explosions which have yet occurred here. For a number of days a gang of men in the service of the New York Steam Heating Company had been at work at this locality excavating the street where one of their manholes is situated. The excavation had been pushed to a considerable depth below the lines of water and gas mains, and the workmen early on Friday morning, having finished their work, were filling the excavation. At about $3: 30 \mathrm{~A} . \mathrm{M}$. a gas explosion occurred. Stones and bricks were sent flying in all directions from the neighborhood of the electric subway manhole across the street. Complaints of gas leakages in the neighborhood have been frequent. After the explosion it was found that there was enough of a leakage to maintain a considerable flame from the neighborhood of the manhole. It seems to have been left to itself, as it continued to burn for some time until it suddenly increased, and for a number of hours a blaze higher than a man was produced, which indicated a consumption of perhaps 5,000 feet an hour. The sudden increase is attributed to the melting of the lead calking of the gas mains The original cause of the fire is supposed to have been an over turned lamp. One of the work men is believed to have upset a lamp, which, falling down into the trench, lighted the gas and caused the original explosion.

As the gas companies' repre sentatives reached the scene they commenced bagging the mains in the vicinity. Small holes were made in the pipes and India rubber bags were in serted, which were then expand ed by air or by water forced into them. In this way the gas was gradually cut off, and the fire was eventually extinguished
The damage done to the ele tric subways and to the wires in them was very great. A quantity of the structure is wrecked Much of the wire is destroyed and the loss is placed as high as $\$ 70,000$. The whole occurrence emphasizes the necessity for some better system of subterranean distribution of light, heat, and electric energy than this city now possesses. The present electric subways with leaky gas mains near them are a constant source of danger. The excavations made by the steam company in the present case undoubtedly disturbed the over lying gas pipes, and caused leaks which were largely responsible for the extent of damage and of risk to life and property.

Uses for coffee.
It is asserted by men of high professional ability that when the system needs a stimulant, nothing equals a cup of fresh coffee. Those who desire to rescue the drunkard from his cups will find no better substitute for spirits than strong new-made coffee, without milk or sugar. Two ounces of coffee, or one-eighth of a pound, to one pint of boiling water makes a first-class beverage, but the water must be boiling, not merely hot. Bitterness comes from boiling too long. If the coffee required for breakfast be put in a granitized ket tle overnight, and a pint of cold water poured over it it can be heated to just the boiling point, and then set back to prevent further ebullition, when it will be found that while the strength is extracted, its delicate aroma is preserved. As our country consumes nearly ten pounds of coffee per capita, it is a pity not to have it made in the best manner. It is asserted by those who have tried it that malaria and epidemics are avoided by those who drink a cup of hot coffee before venturing into the morning air. Burned on hot coals it is a disinfectant for a sick room. By some of our best physicians it is considered a specific in typhoid fever.-The Epicure

In a recent speech Congressman Atkinson, of West Virginia, said : " If all the ports of entry on both ocean were to-day blockaded so that no vessel could enter them bearing the products of othercountries, and war should be declared against us, we could, with our present facilities, produce every munition of war, and every article that we might need for our sustenance for thousand years."

a gas fire in new york.
slands were hotbeds for the growth of tubercle, and hat escape from the British climate was the chief desideratum. A fuller knowledge of the prevalence of phthisis puts an end to such crude notions as these We know that the disease is excessively prevalent in the arge cities alike of temperate, subtropical, and tropica atitudes; that it is as prevalent in the West Indies as in Great Britain, that the West Coast of Africa may compare in this respect with Ireland or Massachusetts and that, in fact, we get involved in hopeless difficul ies when we attempt to trace any regular or direc connection between the meteorological characters of a country and its proneness to tubercle. Yet, withal, it is utterly impossible to question the evidence of the benefit which accrues from a judicious change of climate.
The seeming anomaly begins to become more intelli ible if we distinguish between the direct and the in direct effects of climate. Heat and cold, dryness and moisture, have but a slight, if any, effect upon tuber cle; but a climate that by reason of sunlessness, vari ability, cold winds, or other such characters prevent regular outdoor exercise, and depresses the nervous and digestive systems, may be taken as uniformly injurious o the consumptive; while, on the other hand, a climate that, by reason of its high average of cheer ul, sunny days, without excessive heat or undue ex remes, permits regular outdoor exercises, and acts a general tonic to the system, may be counted upon with considerable confidence to act beneficially. W wink there is strong evidence that no single meteoro
logical feature has any preponderant efficacy, and that we must rather look to the tout ensemble, the general features of a climate, and its net influence upon the system. Thus, a climate, advantageous by reason of possessing a high average of bright, sunny days, nay be spoiled for the purposes of the phthisical by sudden perturbations of temperature, or by high winds, or by dust storms. On the other hand equability, which is so desirable, may be purchased ton dearly if, as for instance in the Hebrides, it is found in conjunction with almost constant rain and a minimum of sunshine. The sufferer from phthisis requires, peaking broadly sunshine fair equability shelte from much wind, especially from cold winds, facilities or spending the maximum of time out of doors withor spending the maximum of time out of doors with out risk of inflammatory complications, good food,
and reasonable comfort. The difficult point is to deand reasonable comfort. The difficult point is to de-
termine what climate and what locality afford these conditions in conjunction one with the other. Nega tively, we may safely lay down the rule that no climate will in the long run benefit if it is sunless or character ized by sudden perturbations of temperature and hygro metric conditions, or if it is very windy, or if its net in luence is to encourage an indoor life and habits of in urage an indoor life and habits of in individual ong a chorce for a from the fact that a climate may act beneficially through one o its characteristics and injurious ly through another, and the diffi culty of striking a balance is often very great. The high altitudes are dry, suuny, and tonic, but the extremes of temperature are great. The interior of some parts of Australia have much to recommend them, but the sum mer heat is too great, and dust storms are frequent. The ocean islands, such as Madeira or Ten eriffe, have much equability and a high average of fine weather but the ${ }^{\text {T}}$ often unduly depress the nervous system or upset the digestion. The problem become more complicated the more fully it is considered. General rule are of little value, and each case must be considered on its merit and in the light of practica experience.
Change of climate is of value to the phthisical, in the nex place, because it usually in volves changes of habit. It helps the invalid to shake off his helps the It tempts him invalidism. It tempts him from his warm chair, an self-centered, self-indulgent life into some participation, how ever slight, in the interests and pursuits of others. The most signal successes in climatic treat ment have been in the cases of patients who have exchanged the invalid's room at home for cattle ranching in Colorado, to bogganing at Davos, treking in the Orange Free State, or sheep farming on the Riverine plains or Darling Downs of Australia Here climate has not been the proximate cause of restoration to hearth, but it has been the condition, without which the other causes ule change of climate without change of life is a fail ure, and can never be recommended with any degre f confidence. It is to the neglect of this rule that many failures may reasonably be attributed
Lastly, we cannot afford to ignore a consideration which the modern advances in the pathology of tubercle force upon our attention-viz., that change of climate may often act beneficially by removing the patient from foci of contagion. Even when the disease has become thoroughly developed, it is reasonable to suppose that those conditions which gave it origin may increase its activity
Change of climate, which a superficial survey of the facts might lead us to regard as likely to be wholly inoperative in phthisis, may in these various ways be theoretically justified, but its chief claim upon our at tention is the practical one. It of ten fails, no doubt, but not seldom it is productive of benefit which we should vainly endeavor to procure by any other means with which we are at present acquainted.-Lancet.

I ALWAYS keep ready for use a six ounce bottle of potassa-alum water, made by adding two or three teaspoonfuls of the potassa-alum to the bottle of fresh water. Use equal quantities of this and fresh water for wixing your plaster. It hardens the plaster and keeps it from shrinking, and after vulcanizing, your plaster will not stick to the rubber.-Dr. Penny, in Archives.

THE - 155th STREET VIADUCT, NEW YORK CITY, N. Y. (Continued from first page.)
special extension of a generally triangular shape effects the junction of viaduct and bridge. When it is considered that it prolongs the ascent of the hill to about three times its present length, the easy grade afforded by it can be realized.
The general appearance of the structure is shown in the cuts. It consists of an elevated roadway fifty feet wide, with granite block pavement. On each side of the roadway are asphalt sidewalks, each ten feet wide. At the junction of 7th Avenue and the McComb's Dam road an abutment of masonry is established. The viaduct starts here on a level of 34.48 feet above the Harlem River. For about one hundred and thirty feet it is level. The up grade then begins, and for a distance of 675 feet the ascent is $4 \cdot 791$ feet in 100 . This brings it to the line of 8th Avenue. An extension is located at this point directly over the elevated railroad station, which extension measures 70 feet on the axis of the bridge, and is 170 feet wide. The surface of this plaza is level, and four flights of steps descend from it to the street, communicating also with the elevated railroad. The up grade recommences, and for 725 feet it rises with a grade of $4 \cdot 695$ feet in 100 .
It then reaches Edgecomb Avenue, attaining an elevation of 105 feet, a total rise of $71 \cdot 48$ feet. At this point an abutment and retaining wall is built. The principal view of the stracture which we present is taken looking down from this point. The 8th Avenue
have their expansion ends up hill. Faced bearings are provided, which rest on turned steel rollers.
The general specifications provide that power riveting is to be used wherever possible. Punched rivet holes are allowed in steel up to $3 / 4$ inch in thickness, but such holes must be $1 / 8$ inch smaller than the rivet and must be reamed out to fit. For greater thicknesses drilled holes are to be adopted. In lattice work the sharp edges left by drilling or reaming must be eased off. For steel portions open hearth metal is prescribed of $36,000 \mathrm{lb}$. elastic limit and 60,000 to $68,000 \mathrm{lb}$. ultimate strength. All the main elements of the superstructure are to be of steel. Wrought iron is permitted for some subsidiary parts.
An ornamental railing and lamp posts are provided. One of the cuts gives a general view of these portions, whose appearance certainly indicates excellent taste on the part of the designer. The time for the completion of the work is placed at five hundred days from July 1 , 1890. When completed it will be a most impressive structure, and one that will by its functions as well as appearance be a great addition to the upper portions of the city.

A Novel Application of Water Powver
One of the best examples of the utilization of wast water is that recently made at Watsonville, in Califor nia. The Corrillitos Water Company, of that place, get their supply from the Corrillitos Creek, at a point $71 / 2$ miles from the town. Their distributing reservoi is located $11 / 2$ miles distant, at an elevation of 90 ft . The water is brought from the Corrillitos Creek, 6 miles above, in a 15 in . pipe, and discharges into the reservoir under a considerable head. It occurred to the water company not long ago that this pressure might be utilized to light the town, and after conference with the Pelton Water Wheel Co., of San Francisco, the scheme was found to be perfectly practicable, and a contract was at once entered into with that company to erect the power plant, and with the Thomson-Houston Co. for the electric installation. The plant consists of a 4 ft . Pelton wheel, which runs under a pressure of 60 pounds, equal to a head of 140 ft ., the water being discharged on to the wheel through a $21 / 4 \mathrm{in}$. nozzle. Close regulation is afforded by a deflecting nozzle and hydraulic governor, which gives perfect steadiness to the lights. The dynamo is a T. \& H. alternating current, which runs three hundred 16 C. P. incandescent lights, the current being carried to the town, $11 / 2$ miles distant.
The power thus furnished, it will be seen, is from the waste water that has been absolutely valueless, and is so much clear gain to the company, the cost of operating the plant being almost nominal. The water after leaving the wheel falls into the reservoir, having been aerated and freshened to as great an extent as though it had been dashed over a cataract, thus incidentally accomplishing without ex-
truck specially devised for the purpose, by which plan the car body can be removed very readily, and the same truck suffice for an open car in summer or closed car in winter. The batteries are arranged under the seats of the car. The motor car weighs, with the truck and all mechanism complete, 14,100 pounds, and has seating capacity for 30 passengers.-Electrical Review.

Cleopatra's Needle.

It was lately stated in the House of Commons that the inscriptions on Cleopatra's Needle are showing signs of decay. Mr. John Dixon, the contractor for conveying the monolith from Egypt, denies this and says:
After making a careful personal examination of the monument, my critical eye fails to detect upon its surface a sign of any decay whatcver. Were there such, there could be no doubt there would be grains of the stone lying on the altar steps and top of the pedestal. I climbed up and could not see one sign of any decay I also could see clittering points on the surface of the solution of silica supplied to me by the skilled chemists of the British Museum, ot the suggestion of my old friends Sir Richard Owen and J'r. Birch, and of which three coats $o r$ washes were given with the greatest care before the trunnions and fastenings for the final lift were placed around j^{\prime}.
There is another reason also in the natural composition of this peculiar bed of syenitic granite that crosses the valley of the Nile at the First Cataracts, and from the quarries at the small village of Syene, from which all the known obelisks were cut, viz., t'le total absence of mica in the stone. In all other granites this readily destructible material exists. Moreover, it must not be orgotten the centuries that have passed away since this ancient monument was erected by the Pharaoh Rameses II. at the main gateway of his great temple a On, the Heliopolis of the Greeks. There it stood for REFERENCE TO HARLEM RIVER.
map showing location of viaduct with

railing and lamp post for 155th st. viadoct.

WALL ORNAMENTS.

There is a great deal of satisfaction in the possession of home-made ornamental objects, because they are the work of one's own hand, and, besides this, they are not obtained by the expenditure of money that might, perhaps, be needed for other purposes.
Ornaments belonging to the wall go a long way in furnishing and beautifying the house. Pictures, care fully selected, are highly effective. Many of the modern photographs, photo-gravures, and photo-engravings which are really meritorious can be obtained for fifty cents or a dollar each. Some fairly good etchings and imitations of water colors are also sold at reasonable prices. The great itew in connection with a lowpriced picture is the frame; but any one with such tools as are commonly found about the house and with a small quantity of material can readily make a variety of frames worthy of any place in the house.
The simplest frame to make is that shown in Fig. 1 This is made from a narrow flat board of chestnut, butternut, or even ash or oak, having its inner edge rabbeted to receive the glass, mat, and backing. This strip is stained and finished before it is mitered. The staining is done by brushing the strip evenly with a thin coating of asphaltum, or with a thin stain of logwood, or with a stain formed of either of the following dry pigments, burnt umber, burnt or raw sienna, mixed with turpentine and a very sinall proportion of boiled linseed oil. Chemical ink or writing fluid, reduced with water so as to produce a greenish-gray tint answers a good purpose.

After the stain is dry, the tint is lightened along the inner or outer edge of the strip, as taste may dictate, by scraping the wood by means of an ordinary wood scraper, or by rubbing the surface down by means of fine sandpaper. It is obvious that the stain may be applied to the wood in such a way as to graduate the tint without the necessity of scraping or sandpaperlng, but this requires practice
The tint should be so graduated as to be very light

Fig. 1.-WOODEN FRAME.
or nearly the natural color of the wood at one edge of the strip, while the other edge should be quite dark The strip may be finished by flowing over it three thin coats of shellac varnish, allowing each coat to dry thor oughly before applying the next. The first two coats should be rubbed down with very fine emery paper after they become thoroughly dry and hard. The last coat may be left bright, or its luster may be toned down by means of the fine emery paper. The mould ing or strip thus prepared is mitered in the usual way by the aid of a miter box, and nailed and glued to gether at the corners.
The mat in this case consists of a piece of thick paste board in which is cut an opening of the desired form The edges of the pasteboard are beveled around the opening, and canvas, crash toweling, or white or tinted cotton velvet is secured to the pasteboard by means of book binder's paste (flour paste with glue added). After the paste becomes dry, if desired, a design may be painted on the mat with water colors.
The frame shown in Fig. 2 is made on a different plan. In this case the wooden moulding is half round on its face. A saw kerf is made at the inner side of the rabbet. The edge of a strip of white or "ivory" zylon ite is inserted in the saw kerf, and held there by a thin strip of wood glued in. A small percentage of glycer ine or even common molasses should be added to the glue used for this purpose. The zylonite is wrapped around the moulding and fastened by means of a thin strip of wood laid over it and secured by small nails or brads. The corners of this frame are formed by means of rectangular blocks of wood painted winite on their sides and furnished on the front with a square of zylon ite held in place by an ornamental brass nail.

If a larger frame is required, that can be made with a single strip of zylonite, the joint may be covered by means of a curved half round strip of brass well polished and lacquered, and applied as shown in the engraving.
This frame may have a gilt lining as well as the mat. It has a very chaste appearance, looking much like a frame of ivory, and it is withal durable.

A very pretty and easily made wall ornament is hown in Fig. 3. It consists of a number of peacock feathers arranged radially or in the form of a fan with the quills attached to an elliptical piece of pasteboard by means of sealing wax. 'The pasteboard is fitted to

Fig. 3.-FEATHER ORNAMENT.

an iridescent shell and fastened in with sealing wax A wire loop inserted in the pasteboard serves for hanging tne ornament. It may be placed between windows, above or below pictures, and in many other places with good effect.
In Fig. 4 is shown a wall cabinet, which is not only highly ornamental, but very useful. The body of the cabinet is of pine or other soft wood. The doors are arranged to receive the beautiful zylonite bass-reliefs sold by the manufacturers of this superb material. In openings in the back of the cabinet are inserted ornaments of the same character. They resemble ivory and are very serviceable.
The body of the cabinet is neatly covered with canvas, toweling, or lightly tinted cotton velvet, on which are painted designs in water or oil colors. The edges of the shelves are preferably covered with sheet zylonite, although they may with good effect be covered zylonite, although they may with good effect be covered
with the material used on other parts of the cabinet Ornamental brass hinges and taimmings should be applied to the doors, as shown in the engraving.

Between England and the Continent
The Building News thinks there won't be any Channel tunnel ready for the holiday exodus of architects and students to the Continent this summer; but since Carlyle's well-known and oft-quoted saying seems wonderfully applicable to a large portion of the English nation, who, having a "right little, tight little island," would literally undermine its tightness and rightness by constructing a dry thoroughfare from it to the Con tinent, there seems some reason to believe that in days that have grown yet more evil, the tunnel will be commenced with serious intentions, be it ultimately inished or left incomplete. Of ideas and schemes there are plenty. What with tunnels and bridges, and a combination of the two means of crossing the silver streak, not to mention the marvelous designs for blowing up or flooding a tunnel at a moment's notice-a fascinating subject to reflect upon, one would think,

Fig. 4.-A wall cabinet.
when in the bowels of the earth, midway between Calais and Dover!
The latest scheme, the details of which have been put before an admiring public, who take it all in for gospel, is that of M. Varilla, a Frenchman, who, ac-
cording to the Daily News correspondent, " singularly resembles Napoleon." M. Varilla's scheme consists of bridges, combined with a tunnel. Piers or "bridges" would run out from the shores of either country, and at their extremities would be lifts to lower the trains into the tunnel. There is no denying the originality of the idea, which, it is to be supposed, was conceived with the object of rendering seizure of the end of a tunnel on the Watkin model impossible. Otherwise it nel on be docketed along with many other schemes as
might be issuing direct from an inventor in Bedlam. The trains on this system would be run some way out to sea, let down 160 feet or 170 feet, run along the tunnel, up the lift in the twinkling of an eye, along the other bridge, or pier, and there you are-if nothing goes wrong with the works.

Electrical Railways.

In a recent lecture at the Franklin Institute, Philadelphia, Capt. Eugene Griffin said: "The success of delphia, Capt. Eugene Grifin said: "The success of
electrical propulsion has been established beyond a question. It is only a matter of time, and that a short time, when it will replace the horses on the majority of our street rail ways. It is only a matter of time, a some what longer time, perhaps, when it will be the propelling power on all our elevated roads, for the elevated roads possess ideal conditions for the application of electricity. It is within the bounds of possibility that our steam roads will be run with electricity; certainly this power offers many advantages for the suburban traffic in the vicinity of the large cities. The possible utilization of hitherto neglected water powers will be one of the factors in determining the extension of electrical propulsion in this direction. Already we see the beginning. The West End Company, of Boston, are building longer cars, with radial and double swiveled trucks. The New York elevated roads are anxiously seeking a solution to the problem of how to enlarge their carrying capacity without rebuilding or materially altering their superstructures. Longer trains

Fig. 2.-ZYLONITE FRAME.

are requisite to meet the increased demands. The imit of the capacity of the present locomotives has been reached. Increased weight in the locomotive means an immense expenditure for strengthening or practically rebuilding the roadway. Cables are not easible, as the strain on the grip would not permit of long trains, and it would be difficult to combine speed and safety with any considerable increase in the number of trains. Cables would not permit of satisfactory switching arrangements at the termini and elsewhere. Electricity offers the best solution. Equip each car with motors. Flexible electrical connections can easily be made from car to car, as is now done on surface roads, to light the tow cars, and the whole train controlled by the driver on the front platform of the leadtrolled by the driver on the front platform of the lead-
ing car. Electric, vacuum, or air brakes can be used ing car. Electric, vacuum, or air brakes can be used
in the same way. It matters not how many cars we in the same way. It matters not how many cars we
have in a train-one or fifty. Each car adds its own power and all work together. There is no dead weight to pull, as in the case of the locomotive. The passengers themselves furnish the weight for traction. The switching arrangements present no difficulties whatever. The motors can be reversed and run equally well in either direction. The train can be controlled from either end and any increase or decrease in the number of cars will not affect the controlling mechanism.
" It is difficult to conceive of a more flexible system. It seems to be the ideal system for the elevated roads, and is bound to be adopted in the near future."

The Detroit International Fair.

Among Western enterprises of large note and importance this year, in which many readers will find departwents of direct interest to their business, is the Detroit International Fair and Exposition, to be held in Detroit, Mich., August 26th to September 5th inclusive. The grounds of this exposition are among the finest, and its buildings among the largest and handsomest of any fair or exposition in the country. It offers a large and costly list of cash premiums. This great fair is continental in its scope, and embraces exhibits from all over the United States and Canada.

RECENTLY PATENTED INVENTIONS．

Railway Appliances．

Car Coupling．－Charles E．Seabury Stony Brook，N．Y．This device is designed to be simple，inexpensive，and automatic，whereby the cars may be coupled without requiring the train men to go
between them，the coupling being also adapted to con－ between them，the coupling being also adapted
nect with the common link and pin drawhead．
Car Coupling．－Albert B．Evenden， Watertown，N．Y．This is a coupling also adapted for use with cars having the ordinary link and pin coupling，
and with cars of different heights，the drawbar head and with cars of different heights，the drawbar head having a hook or hooks upon its top，while there is a
link secured to the head by a pin and slot connection link secured to the head by a pin and slot connection
and a joint in the link intermediate of ite length，with ther novel features．
Car Heater．－Charles O．Newton， Homer，N．Y．In accordance with this invention a hot air chamber extends under the entire floor space of the
car，the steam pipe extending through such chamber car，the ateam pipe extending through such chamber
under the central aisle，the exhaust pipe inclosing the steam pipe，and the invention covering various no

Miscellaneous．

Sand Band．－Humphrey Trembath， Evart，Mich．This is a guard for excluding sand，mud， and dust from the hubs of wheels and the spindles of arles，and has a hood in the form of a truncated cone
with an open lower side，and large enough to allow the with an open lower side，and large enough to allow the
hub to revolve freely within without touching it，the hood
etc．
Vehicle Gearing．－Paris Erb，New－ port，Pa．This is an improvement in fifth wheel con－ struction，the fifth wheel having its lower section pro－
vided with sockets or bearings and the clips having struction，the ifth wheel having
vided with sockets or bearings and the clips having
pivot studs or gudgeons adapted to fit in the bearings， pivot studs or gudgeons adapted to fit in the bearings，
whereby in descendiug a grade the vehicle will push whereby in descendiug a grade the vehicle will push
forward and operate to tilt the azle back，and the shafts forward and operate to tilt the axle back，and the shafts
will be prevented from rising，and on a level or uphill
grade the draught will turn the axle to hold the shafts

Sled Knee．－John Ammon，Stough－ on，Wis．This is a knee formed of plate metal，with apright，side，asd top or crown portions，the upright
portions being curved in cross section while the top or portions being curved in cross section while the top or
crown portion is curved or arched upward from side to side，the construction being designed to increase the Bhand
Bor SLED．－Sven Legreid，Stoughton， Wis．This is an improvement designed to simplify and
strengthen the rave attachment，the attachment having strengthen the rave attachment，the attachment having
its base portion adapted to the upper end of a sled knee， and having its apright portions curved or arched in cross section，the attachment supporting the rave at it
upper end，to which it inclines outward，and the beam teing supported at its end therem．
Nail Keg．－Henry E．Spilman，Spil－ man，West Va．Thiskeg is composed of a transversely
corrugated sheet．metal cylinder，having detachable corrugated sheet．metal cylinder，having detachable
wooden heads made in sections，and adapted to be
locked in end grooves formed by the corrugations，by locked in end grooves formed by the cor
being rotated about the axis of the keg．
Machine for Hooping and Head－ ing Kegs．－Theodore A．Cook，Brooklyn，N．Y．This machine has a header plate and a reciprocating upper
table，in combination with a flange attached to the table to surround the barrel，a plate within the flange and spring－actuated hoop drivers pivoted therein．with other novel features，the macbine bei
designed for hooping paint kegs，etc．
Ventilating Barrel．－John F． Enst，Norfolk，Va．This barrel is composed of a veneer blank cut through its middle，with transverse
parallel slits，leaving the edges of the blank continuous parallel slits，leaving the edges of the blank continuous
or unsevered，while the middle portion is expanded to give the curve to the barrel and form ventilating open－
ings．

Belt Replacer．－Frank Balderson， Oketo，Kansas．This invention consists of a segment adapted to be clamped to the rim of the pulley and to project in line therefrom，a curved arm heing pivoted
to one end of the segment，the device being simple and durable，and calling for but little labor to place the belt on the pulley or whee
Discharge Valve for Sewer Pipes． ${ }^{-}$Charles H．Shepherd，New York City．This is an automatically operating valve designed to open under
a given pressure of water，and close as soon as the water is discharged，the invention covering novel
Grading and Ditching Machine．－ Rector M．Thompson，Crawford，Neb．This is a ma－
chine in which the scoop is designed to be expeditiously chine in which the scoop is designed to be expeditiously ground and readily dumped，there being＇a frame with
an attached custer wheel at the rear of the scoop， an attached custer wheel at the rear of the scoop，
taking the weight off the team and preventing dirt taking the weight off the team and preventing
falling from the scoop when elevated and loaded．
Motor．－Frank L．Gilbert，Conroe， Texas．This is an actuating lever mechanism to be
attached to a loose seat board mounted on an ordinary stool or high chair，and adapted to convert the slow downward movement of the seat when occupied by an operator into a rapid rotary motion for the running of a
sewing machine or similar purpose．
Oven Slide．－Harry T．Gilbert，Phila－ delphia，Pa．This invention consists of a hinged exten sion plate provided with a cam edge，a vertically ar－
ranged shaft having a cam arm adapted to engage the cam edge，and an arm secured on the shaft and operated on by the closing of the stove door．
Scraper for Roller Mills．－John Harvey，Brooklyn，N．Y．This is a device for the re－
moval of crushed grain from the rolls of a roller pro－ moval or crushed grain from the rolls of a roller pro－
cess mill，and is adjustable and non－abrasive in contact while designed to be thorongh in operation and avoid

Horse Power Apparatus．－Oscar Johnson，Lindsborg，and Nels A．Holtman，Smolan， radial arms with tension or lock latches，and a belt or cable，are equalizing links to which draught attachments are pivoted，with other novel features，and whereby the
team may be attached within the circle of the driving team may be attached within the circle of the driving
belt and near the outer end of the lever arm of the ap－ paratus．
Telegraphy．－Shirley M．English， New Orleans，La．This is an invention designed to
overcome the defects of＂light sending．＂and to insare overcome the defects of＂light sending．＂a ad to insure
a good connection at the contact points of the instru－ ment，there being combined with a vertically swinging lever and a second lever actuated therefrom and con－ with opposite poles of a battery，a spring insuring con－ tact of the second lever with the arms．
Vehicle Seat Lock．－Henry A． Lombard，Saco，Me．，and John R．Rankin，Wells，Me． place the device enabling the operator to conveniently wheels，and whereby the seat may be tilted without being disconnected，for convenience in loading the Glazed Structure．－William H． coulsou，Jersey City，N．J．This invention relates to a structural improvement whereby the glass or similar substances may be laid in a metallic frame without the rain and condeneed vapor and the invention covering various novel feacures end combingtions of parts to ac complish desirable results in a simple and practical

Sash Holder．－John Schofield， Holyoke，Mass．This is a sash support having a bracket frame and a curved plate spring coiled at each end into
volute scrolls that are attached to the bracket frame being designed for ready application to new or old sash，and to hold either the apper or lower sash a
desired points of adjustment．
Mosquito Canopy．－Augustus Miller， Hoboken，N．J．This is a device by which the netting to be spread over the bed may be rolled up when not in that when it is drawn out therefrom one section may be folded down at each side of the bed and a third section Sfringe Attachment．－Alfred E． de a simple and convenient attachment． with a peculiar constracion of the various parts and their novel combination．

SCIENTIFIC AMERICAN

BUILDING EDITION．
JUNE NUMBER．－（No．© 6.$)$

TABLE OF CONTENTS

Plate in colors of an elegant residence at Mont clair，N．J．Munn \＆Co．，architects，New York and rear sides，floor plass，sheet of details，etc． ．Elegant colored photographic plate，with floor plans，sheet of details，etc．，of a cottag
bourne，L．I．Estimated cost $\$ 3,200$ ．
3．Residence at Yonkers，N．Y．Perspective view
and floor plans．D．\＆J．Jardine，architects，New and floor plans．D．\＆
York．Cost，$\$ 10,950$ ．
A residence at Orange，N．J．Perspective views， floor plans，etc．Cost about $\$ 12,000$ ．
Perspective view and floor plans of a residence at
Holyoke，Mass．L．B．White，Holyoke，Mass．， architect．Cost complete，$\$ 6,000$ ．
．Sketch of two old Bristol houses．
7．Sketch of hotel and Post Office，Dartmouth．
8．A Casino erected at Springfleld，Mass．Cost co
plete $\$ 12,000$ ．Floor plan and perspective．
．A church recently erected at Greenwich，Conn．，a a cost of $\$ 13,000$ complete．J．C．Cady，architect，
New York．
Ground plan and perspective eleva－ a cost
New Y
tion．
View of

10．View of the entrance to the United States Trus
Company＇s bnilding will Company＇s bulding，Wall Street，New York．
11．A dwelling at Yonkers，N．Y．Cost complete
$\$ 5,000$ ．Floor plans and perspective elevation．
12．Elegant residence at Stamford，Conn．W．R Briggs，architect，Stamford，Conn．Cost $\$ 15,000$ ，
13．View of the iron and wood gate in front of the en
trance to the Press Pavilion at the recent Paris exposition．
14．Miscellaneons Contents：Fireproofing wooden floors．－＂Peach bottom＂slate．－The manufac
ture of granite．－The lien law．－－Combastible architecture．－Variety in Gothic architecture．－ New No． 9 double cylinder planer and smoother illustrated．－A sliding Venetian blind，illustrat－
ed．－The Holmes spur feed sliting machine，illus－ ed．－The Holmes spur feed slitting machine，illus－
trated．－Get sound titles to your real estate．－ trated．－Get sound titles to your rea
Heating apparatus for a wagon factory．
The Scientific American Architects and Builders Edition is issued monthly．$\$ 2.50$ a year．Single copies， 5 cents．Forty large quarto pages，equal to about
two handred ordinary book pages ；forming，practi cally，a large and splendid Magazins or Architrc－ TURE，richly adorned with elegant plates in colors and with fne engravings，illnstrating the most interesting examples of Modern Architectural Construction and allied sabjects．
The Fallness，Richness，Cheapness，and Convenience of any Architectural publication in the world．Sold by all newedealers．

MUNN \＆CO．．PUBlibise
301 Broadwas，Now York．
\mathfrak{Z} Business and Persomal．
The charge for Insertion under thes head is One Dollar a linejor each insertion：about eight words to a line．
Advertisements must be received at publication offic Advertisements must be received at publication offic

For Sale－New and second hand iron－working ma－
hinery．Prompt delivery．w．P．Davis，Rochester，N．Y． hinery．Prompt delivery．W．P．Davs，Rochester，N．Y For Sale at Low Figures－Foundry and general re
pair shops，located in a beautiful，heallthy village，hav ing good railroad facilities．Reasons for selling，sudden
death of former proprietor．For full particulars ad－ death of former proprietor．For full particulars ad
drees Helen I．Woodsworth，administratrix，Nunda．
Tuerk water motors at 12 Cortlandt St．，New York． Fruit Evaporators．Trescott Mfg．Co．，Fairport，N．Y For best hoisting engine．J．S．Mundy，Newark，N．J Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J Friction Clatch Pulleys．The D．Frisbie Co．，N．Y．city Belting．－A good lot of second hand belting for sale Best Ice and Refrigerating Machines made by Da Steam Hammers Improved Hydralic Jacke，and Steam Hammers，Improved Hydranic Jacke，and
xpanders．R．Dudgeon， 24 Columbla St．，New York． Best drying machines for crain，eand，clay，fertilize et feed，etc．Made bs S．E．Worrell．Hannibal，Mo． ＂How to Keep Boilers Clean．＂Send your address p．Book．Jas．C．Hotchises，120Liberty su．，N．Y Gun and Machine Makers＇Screwdrivers，drop forged
best Tool Steel．Billings \＆Spencer Co．，Hartford，Ct． Screw machines，milling machines，and drill presses， e Gairn Mach．Co．，Lais We wish to purchase a 7 H．P．gas engine in first－class
rder．Address with particulars，Wm．E．Gill，Sec＇y， Crider．Address wit．
Split Pulleys at low prices，and of same strength and appearance as Whole Pulleys．Focom \＆Son＇s Shafting
Guild \＆Garrison，Brooklyn，N．Y．，manufacture steam pumps，vacuum pumps，vacuum apparatus，alr
pumps．acid blowers，fllter press pumps，etc． pumps，acid blowers，filter press pumps，etc．
For lowo prices on Ire Pipe Val
For low prices on Iron Pipe，Valves，Gates，Fittings， on and Brass Castings，and Plumbers Supplies，write For the original Bogardus Universal Eccentric Mill \＆G．F．Simpson， 26 to 36 Rodney St．，Brooklyn，N．Y． The Holly Manufacturing Co．，of Lockport，N．Y．， will send their pamphlet，describing water works ma
chinery，and containing reports of tests，on application． The best book for electricians and beginners in elec tricity is＂Experimental Science，＂by Geo．M．Hopkins．
By mail，\＆4；Munn \＆Co．，publishers， 361 Broadway，N．Y． For Sale－Ornamental chimney top patent．Prevent解 bricks．Address for furt
incoln Ave．，Peoria．Ill．
The whole letters patent on the oil can illustrated on page 389 will be for sale，at a reasonable price．for the
next sixty days．If not sold then，will want a reliable next sixty days．If not sold then，will want a rellable
manufacturer to make in large lots，for casb．Address

Pr Send for new and complete catalogue of Scientific nd other Books for sale by Munn \＆Co．， 381 Broadway
ew York．Free on application．

HINTS TO CORRESPONDENTS．
Names and Addrese must accompany．all letters，
or no antention will be paid thereto．This is for our
information，and not for publication
information，and not for publication．This is for ou
int
inerences to former articles or answers should

WIncre．
marked or labeled．
（2272）G．B．asks（1）if there is a differ－ nce between mineral wool and asbeetos．If so，what
a．Mineral wool is made artifcially by blowing melted slag or glass into threads by steam．Asbesto is a natural mineral．2．What is the liqnid used by the
so called＂fire eatere，＂that they nise on their hands so called＂fire eaters，＂that they use on their hands
before handling red hot iron，etc．9 A．Dilute sulphuric acid or very strong solution of alum．Your other query
（2273）C．H．
（2273）C．H．asks（1）if benzoin can be de－ odorized．A．No．2．How can it be reduced？A．It is
soluble in alcohol．
（2274）A．B．S．asks：1．Is there any process by which the strong odor in the spirits of tur pentine can be taken away，and if so，would the strength
of the turpentine be reduced？A．Redistill from a solu－ of the turpentine be reduced？A．Redistill from a solu－
tion of caustic potash；it will not impair its quality． 2 If equal parts of white wine vinegar and alcohol be put together in a bottle，would the alcohol turn to vinegar and if so，how soon？A．Yes，if air is admitted；
the time canuot be stated．3．Is there any difference between the oil and spirits of turpentine？A．No；they re synonyms．
（2275）V．H．asks ：Can cement be soft－ ened or loosened from the joints of terra cotta sewer
pipe，without breaking the pipe？If so．how？A．No 2．What is the average width across the shoulders of a man？A．It depends on the race．3．What is the aver age length of a man＇s arms？A．Aboat 6 feet from hand
to hand when extended．This also depends on the race． 4．Can a person that is deaf in one ear hear a phono
graph And if so，how would you arrange it？A．Yes
no special arrangement is needed．5．How can candle grease spots be taken out of soft woolly cloth？A
Scrape off all that will come．Then place a piece o blotting paper over them and iron with a hot iron． 6. Do you recommend a trade school to learn a trade in，or
the ordinary way of apprenticing，for the time it takes the ordinary way of apprenticing，for the time it take
to learn it？A．The trade school．
（2276）C．S．W．asks ：1．Is aluminum a good conductor of electricity？A．Yes；about half as
good as copper．2．Does a dynamo when running gen－ good as copper．2．Does a dynamo when ranning gen－
erate new electricity，or does it bring under control and erate new electricity，or does it bring under control and
use that which is already in the atmosphere？A．It ase that which is already in the atmosphere？A．It
converts mechanical energy into electrical energy．As we do not know what electricity is，we cannot speak of it in the sense of an entity as you do．We cannot
consider it as being a substance＂present in the atmo－ sphere．＂
（2277）L．B．L．asks（1）where a given day begins，that is，where on the earth＇s surface was it
first May 10，18909 A．At 180° longitude east from Greenwich．This is the best that can be said on the sub ject，as it is not to be regarded as an absolately fixed thing．2．Does the dynamo create electricity？A．The dynamo converts mechanical energy into electric energy
Until it is settled what electricity is，we cannot consider the question of its creation．Your other suggestion are not valid．
（2278）W．F．C．asks：1．B says that gunpowder will not barn in a vacuum．C says that it ises to the is right？A．C is miles with 1,000 poun ballast，and the ballast is then thrown out，will the bal oon rise any higher？A．Yes．
（2279）J．C．O．asks（1）for a non－odorous disinfectant；is there any cheaper or better than com－ mon copperas dissolved in hot water！A．The advan tage of copperas is that it is not highly poisonous；the disadvantage is that it stains tissues，and under some conditions even porcelain．It is very effcacious．Sul
phate of zinc probably surpasses it，butis poisonous． phate of zinc probably surpasses it，butis poisonous．${ }^{2}$
What are the ingredients used in the solution for dip． ping old brass fixtures or ornamental brass work o chandeliers，otc．，to make them look clean？A．Was with beer．Dipping acid is not applicable except where they are to be relacquered，etc．
（2280）W．P．B．asks ：Can you give me a solution for platinum plating（with battery）a pair of
crucible tongs of German silver？A．No really satis－ actory solution for the lery as a solid coating has yet been devised．One formala directs the addiion to a solution of sodio horide of platinum of a little oxalic acid．The Platinum plates may be riveted to the inner faces of the jaws of the tongs，and will make a better job．
（2281）T．M．C．A．asks（1）if a balloon win ascend when fled with compressed air．A．No． 2
Should it be filled with gas？A．It should be filled with gas．
（2282）L．W．T．asks for the construc ENTIFIC AMERICAN Supplemernt，No． 752 ，you will find an account of Mr．Oliver Lodge＇s lightning protectors Ordinarily a metallic comb or plate with edge fled into saw teeth is connected to line wire outside of instru ments，and similar plate with its teeth facing and close
to thoee of the first is connected to a＂ground，＂which to those of the first is con
latter must be very good．
（2283）C．E．L．writes：I have a very ne＂sciopticon，＂but I find it inferior for exhibitions， on account of oil light not being bright enough．Please
say if there is any other fluid that can be used safely in same burner that will give better results，or can I im prove on the old light by adding something？A．The oxyhydrogen or lime light is，probably，all things con－
sidered，the best for ordinary use．The electric light is sidered，the best for ordinary use．The electric light is superior，but is not arways applicable．Portable oxyge generators are now sold by dealers in magic lantern sup
plies．There is no＂fuid＂such as you ask for．A lit plies．There is no＂fluid＂such as you a
tle camphor may be dissolved in the oil．
（2284）J．M．M．writes ：I want a few good formulas to make colognes．Could you furnis in procuring a good cologne．The alcohol shonld b in procuring a good cologne．The alcohol shonld be citron oils to distill，and then to add to the distillate the other oils．The following is a typical formula：
Oil of bergamot．．．．．．．．．．．．． 4 fluid ounces．

Other formulas are given in Cristiani＇s＂Perfumery
nd Kindred Arts，＂which we can supply by mail for
（2285）J．S．N．asks（1）how to make a table relish such as is sold in bottles by grocers．A．
The following is given as the formula for Worcester－ he following is given as the formula for Worcester
shire sance：Mix together $11 /$ gallons white wine vine ar， 1 gallon walnut catsup， 1 gallon mushroom catsup， gallon Madeira wine， $1 / 2$ gallon Canton soy， 21 capsicum， $11 / 2$ ounces each of pimento and coriander $11 / 2$ ounces chutney， $9 / 4$ ounce each of cloves，mace，and innamon，and 6y／2 drackms asarœtica dis8olved in pint brandy 20 above proof．Boil 2 pounds hog＇s liver nired to keep up the quantity，then mix the boiled ver thoroughly with the water，strain it through coarse sieve．Add this to the sance．2．In making flavoring extracts sach as perpermint，checkerberry， etc．，how much coloring is used for the different ex racts，if made by the gallon？A．No coloring whateve hould be used．3．How is ammonia（such as is sold in bottles by grocers，etc．）made－materlals，amount of
A．Sulphate of ammonia is treated with wate and lime in a still and heated．The gas evolved is passed－through water，which absorbs it．A small pased aroanh of a fatty acid or similar compound may be
amount
added．4．Name nf a book（if you tyou of any snch）
treating on laundry blue, blacking, inks, and flavoring extracts. A. We can supply the Techno-Chemical Re-
(2286) S. H. P. writes: Can you tell me what will take the stains made by poison ivy juice out of a handkerchief? I pulled up some sprouts of ivy, and to save my hand from danger, covered it with a night, and the next morning it was covered with black pots, looking likeink or thin tar, and the usual wash ing and boiling didu't move them at all. A. We advise eak solution (1 to 20 or less) of oxalic acid washing out the handkerchief thoroughly between and after both
(2287) A. E. H. asks for a receipt for making a paste or glue that will strougly fasten felt or thick woolen goods to iron or steel. A. Soak pulverized shellac in ten times its welght of strong ammonia. It
will eventually form a transparent liquid. Or to rather thin hot glue solution add tannic acid until sticky and (2288) J. J. Y. asks : What cheap fluid, and one that will mix thoroughly, can be used to thin vegetable tar! A. Benzine or turpentine.
(2289) C. D. asks (1) how butter can be renovated and colored. A. Butter color is sold for the
purpose. Bad butter cannot be renovated. Treatment with lime water and other chemicals has been suggested . How can eggs be packed so they will keep fresh fo winter markets? A. Eggs are preserved by being
dipped in melted paraffin or by being packed in a barre dipped in melted
(2290) G. R. writes : By adding potash ye to flour and water you make a paste the same as by ng? A. Add one part salicylic acid to 1,000 of the (2291) G. M. E.-The sample sent is (2292) O. McN. asks : How are crayons uch as those used in the public schools, made? A. B (2293) W. E. A. asks: 1. What is the best make of dynamo and motor that one could use transmit 40 horse power 200 yards over dikes, etc.
where rope transmission would be impracticable? A Any of the principal makers could supply you with ms chines for this purpose. 2. What power would be re quired to run the dynamo to obtain 40 horse power from motor? A. About 54 horse power. 3. Would a current of 110 volts E. M. F. with the proper strength deelop 40 horse power in a suitable motor? A. Yes. What is the least E. M. F. and amperage practicable to evelop the abo por $746 \times 40=29$ watts constitute of watts required. This amonnt divided by the E. M. F ill give the current in amperes, or if divided by the current in amperes it will give the E. M. F. in volts. 5. Can I build a dynamo and motor of the same pattern as the 8 light dynamo described in Supplement. No. 600 , to obtain the above mentioned power? A. Ye ynamo building to attempt a job of this magnitude It would be better and less expensive for you to pur hase from reliable makers. 6. Are the different field magnets in use patented? Also, has not the patent on eld magnets, but the ones commonly in use are not atented. The Gramme patent is not in force
(2294) J. A. M. asks for a solution of the following questions by algebra: 1 . Says B to A, give me one of your apples and I will have twice as many as you. No, says A to B, give me one of yours, and we will
have both the same. A. The statement gives the following equations: Let A ${ }^{\prime}$ apples $=x$ and B^{\prime} apples $=$ (1) $y+1=2(x-1)$
(2) $x+1=y-1$

Solving by regular process, we find $x=5, y=7$. 2. In ny) and sled 60 feet), to find length of hypotenuse and base respectively. A. Let $=x$ hypotenuse, and $y=$ altitude.
We then have the following equation from the properies of a right-augled triangle
(1) $y^{2}+40^{2}=x^{2}$, or $x^{2}-y^{2}=1,600$

From the statement we have the following equation: Dividing (1) by (2) we have (3) $x-y=26 \cdot 66$. $x=43^{\prime} 333, y=16^{\prime} \cdot 666$
(2295) I. S. asks: Is it possible to succeed in photography with any of the advertised outfits, A. Yes; with a few practical lessons from an experi enced photographer you can succeed. To do satisfac-
(2296) C. E. W. asks for a recipe for making a cement or glue which will stick paper to pol-
libed iron. I wish to use it for covering pulleys. A. Roughen the face of the pulleys with a flle, and use the Roughen the face of the pulleys with a file, and use the
oughest light brown glue that you can find, or fish
(2297) C. F. H. asks for the formula of "paste diamon

	I.	II.	III.
Silica.	100	100	100
Red lead.	. 156	00	164
White lead.........		171	00
Caustic potash (pure)		32	56
Boracic acid..... ..		9	6
Arsenious acld....		${ }^{15}$	180

Melt together to form a glass.

(2298) C. L. asks what country owns the astest and best fighting ship in the world, and what our government is doing in this direction. A. The new British war ship Blake is claimed to be the fastest and ment of 9,000 tons, length 375 feet, beam 65 feet, draught 25 feet 9 inches, twin screws, 20,000 horse power, maxi-
mum speed, 22 knots per hour, or over 25 miles. As a ram, at this high velocity and her great weight of 9,000 ons, it is doubtful if any vessel could withstand the has six inch armored turtle bucted of steel throughout, magazines, torpedo rooms, engines, and boilers. Fuel space, 1,500 tons. She is to carry two 9 inch 22 ton breech loaders and ten 45 pounder quick-firing guns,
each capable of firing 12 times per minute, worked by wo men, and will pierce 12 to 15 inches of armor plate Cost, $\$ 1,840,000$. We have as yet nothing that approachas this ship, but Congress has authorized the construction of one, known as cruiser No. 2, bids for which were recently opened at the Navy Department, Washngton. It will be three yeurs before she can be built, nd the indications are that faster and better example er No. 2 is to be of 8,100 tonnage, and is the largest vessel ever designed for the United States Navy. She will be armed with six 8 -inch, and twelve 4 -inch breech oading rifles, is to develop 16,000 indicated horse-power and a speed of twenty knots. Her dimensions are length, 380 feet ; extreme breadth, 64 feet $21 / 2$ inches. lepth in hold, 41 feet 3 inches. Her armor varies from our to ten inches in thick.
The new Russian torpedo boat Adler, lately bult, Her mean speed during two runs was 26.55 knots hour, or a litle over 30 miles per hour. She is 152 ft . n. long, 17 ft . wide, 150 tons displacement, $2,300 \mathrm{~h}$. p. It would seem as if a much larger vessel having a still higher speed might be designed and constructed. It would be a grand thing for some of our enterprising ountrymen to accomplish.
(2299) W. M. asks for how long copy rights for books run, and whether the copyright is the hey are patent for an invention, and what is the fuss hey are making in Congress about copyrights? A. A of 14 years, moking 42 years in all A copyright similar to and is virtually a patent. That is to say, copyright secures to the holder the exclusive right to reproduce the book, and no one may print it withont becoming liable as an infringer. Copyrights are granted to citizens of the United States, and to foreigners who are resident here , but foreigners who are not in Congress relates to sn effort made to allow forelgne to take these 42 year copyrights or book patents. The bill has been defeated. It is being again urged, chiefly by the wealthy book publishers, as it would facilitate them in forming trusts to put up the prices of all books. One trust already has been formed, namely, the Amen an Book Company, which has a capital of ive milion of most of the leading school books used in this country. It is believed the copyright law can be amended in such way as to benefit foreign authors, and yet prevent publishers from forming combinations to advance the prices of books. The bill lately defeated was obnoxious to the public, but helped the rich publishers to grow icher the expense of the people
(2300) W. M. asks how long a horse can go without food and water? A. We do not know as to horses, but it is stated that after the recent fire in the Neilson 750 ft . shaft of the coal mine at Shamokin, Pa.,
twelve mules were found alive in the mine that welve mules were found alive in the
been without food or water for 26 days.

TO INVENTORS.
An experience of forty years, and the preparation of
more than one hundred thousand applications for more than one hundred chousand applications for paaws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the abroad, are invited to write to this offlce for prices, which are low, in accordance with the times and our ex MUNN \& CO onffice ScIENTIFIC AMERICAN, 361 Broadway. New York.

INDEX OF INVENTIONS

or which Letters Patent of the

 United States were Granted
June 3, 1890,

AND EACH BEARING THAT DATE.

Seenoteat end of list about copies of these patents.]

Air feeding device, J.
Air ship, C. E. Bechtel
Alloy, anti-friction, S.
Animal trap, C. Hall.
Anvil, J. O'Brien...
Autographic register, W.
Axle. car, W. F. Sherman
Axle, wagon H. G Mingale.
Bake pan, W. Wainwright.
Bale press, A. E. Cummins

Belting, manufacturing flat woven gut, J. Griff
Bird cage screenn, M. G. Leonard................
Board. See Drawing board. Game board.
Board. See Drawing bo
Boat. See Tow
Boat. See Tow boat.
Boiler. See Stand boiler. Steam boiler.
Boiler tubes, machine for bending the ends of, H .
Edwards.. 429,
Bolster guide, spring, G. M. Hughes
Bolt. See Shaking bolt.
Bolt cutter, stay, 0 . Johnson
Bolt cutter, stay, O. Johnson
Bolting reel, J. B. Dobson...
Book covers. machine for pasting backing tape
on, e. N. Martineau
Books, suspension link for. J. H. H. Brown.
Boomerang thrower, M. Cummins.
Boring and drilling tool, C. Croll.......
Boring and turning mill, F. W. Faylor

Bottle stopper, Oliver \& Brooks.
Bottle stopper, Roorbach \& Tuck
Bottle wrapper, \mathbf{C}. w. Bell Bottle wrapper, C. W. Bell.......
Box. See Fuse box. Packing b Box fastener, Davy \& Dufau.....................
Brace. See Ratchet brace Railway rail brace Braiding machine. L. w. \& N. Lombard. Brick machine. White \& Boyd........
Broom or whisk, J. H. McEldownes.

Broom or whisk, J. H. Buckle, F. H. Loveless

Bung for pickle barrels, R. Hơtrman

Burner. See Gas burner. Hydrocarbon burner

 Oil burner.Butter, making,
Button, Jackson \& Platt
Butbon setting machine. E. H. Taylor.
Cable covering machine J.
Cable covering machine, J. D.
Cable grip. J. H. Masters.....
Cable, wire link, G. H. O.
Call and voting apparatus, electric, Willinins Reed.
Can head
Can head cutter.....................
Candelabrum, T. McGoverne.gh
Cans, seallock for, w. H. Stoop
Car coupling . . B. Evenden
Car, coupling. A. B. Evend
Car coupling, J. Hughes
Car coupling, A. McDouga
Car coupling, A. C. Merritt..
Car coupling, c. E. Seabury.
Car coupling, J. H. Talpey
Car coupling, A. Wetherell.........
Car coupling, Williams \& Edelston
Car fender attachment, Cas
Car heater, . A. Barnard..
Car heater C.
Car heater, C. O. Newton
Car, railway, J. B. Low...
Car seat lock, C. Parhen
Car seat, railway, H. B. C
Car, stock, , W. . Cushin.
Car wheel H, w, Avery
Car wheel. H. W. Avery.......................
Cars, air brake apparatus for, R. W. Bayle

sky

Carpet fastener, P. Beamish..
Carpet stretcher, F. V. Foster
Carrier. See Cash carrier. Cash and pa
rier. Trace carrier. Trulley carrier.
Carving machine, J. Jacobson.....
Case. See Cell case. Show case.
Cash and parcel carrier, pneumatic, H. Miller..
Cash carrier, A. R. Cory.........
Cash

Cattl
Cell
Chai
Chain, A. B. Hendryx................................494,
Churn. R. F. Collins
Cigar lighter, self. West \& Turner............
Clasp. See Pocketbook clasp. Ticket clasp.
Clevis, T. G. Mand
Clock, advertising, C. A. War
Clock striking mechanism, G. T.il.
Closet. See Water closet.
Closet. G. H. Gnetze
Closet. G. H. Gnetze
Clothes drier, B. F. Fuller.
Clothes pin, M. E. Thrall....
Clothes pounder. N. Propst
Clothes prop, c. L. Burge
Clot:.es wringer, J. A. Russe,
Genin..........................
Clutch, frition,.
Clutch, friction, L. J. Hirt....
Clutch, friction, w. A. Wilkins
Conductors, machine for stripping the lead cove
ing from, D . Thatcher
ing from, D. Thatcher........
Cooking utensil. H. Bodenstein.
Cooking utensil. H. Bodenstein...............
Copying device for manifold, L. H. Clars. Copying pads moist, receptacle for keeping press,
c. L. Wise......... C. L. Wise.
corn or cotto

Corn or cotton thininer.... G. L. Webb.
Corset, G. D. Nichols.
Cotton delivering mac
Cotton kin, J. S. Edgcomb,
Coupling. See Car coupling. Clutch coupling.
Coupling. See Car coupling. Clut
Skatt coupling. Thill coupling.
Cultivator, H. Gale.
Cultivator, H. Gale................
Cultivator lister, Miroy \& Hoak
Cultivator, isting, R. W. Hagel.
Cultivator, listing, R. W.
Curling iron, F. D. Miller.
.................... 4299, 42

Curling iron, F. D. M. W..........................
cutter. See Bolt cutter Can head cutter.
cutter. Thrashing machine band cutter. Feed
cytere handle, H. H. Brown
Cycle handle, H. H. Brown........................... 429,416
Detergent, J. J. Gilbert
Detergent, J. J. Gilbert
Diamond washer, L. W. Levy..
Dish, pie., E. Exbecting device, M. B. Man $\begin{aligned} & \text { aring } \\ & \text { Door closing device }\end{aligned}$
Door closing device, s. Loe..
Door hanger, G. W. Warner.
Draft and land gauge for plows, etc., O. T. Owens

Drerer, See Clotheses...........................
Drier. Lumber drier.
Drill. See Grain drill.
Drilling and reaming machine, w. B. Hughes.
Drist $\begin{aligned} & \text { and ream. } \mathbf{W} \text {. Haskell... } \\ & \text { Dye, red. G. Koerner. }\end{aligned}$.
Dlectric circuits, maintaining a uniform current
in

Anderson...
Electric motor, continuously operated, w. D
Mectric motor, continuously ope
MacQuesten......................
Electric subway cover, S. Slafor..
Electric tramway and car, A. L. Lin

Cobb................................
Electrode, secondary battery, C. Hering
Electrodes, making secondary battery, c. Hering
Ficher
Elevated or bridge structure. I. S. McGiehan.......
Elevator indicator, J. P. Cushing
Enkine. See Hot air ensine.
Ennines, automatic cut-orf for rotary, N. Walle-
rich..

Extractor. See Pen extra
Tack extractor.
Fabric. See Wire fabric.
Fanning mill, R. K. Floetor.
Faucet, vent. Frey $\&$ Loges.
429.579
 Hitching post, E. A. Farish.....
Hoisting apparatus, C. W. Hunt
Hoisting gear, G. Fletcher...... 429,450
42,308
Holder. See Hammock holder. Paper holder.
Sales slip or sheet holder. Sash holder.
Hook. See Hat and garment hook. Snap hook.
Whiffetree hook.
Hoop shaving machine, W. P. Curtiss...............
Horse power apparatus, Johnson \& Holtwan......
Horse tail tie, C. D. Haldemann....................
 Hot air engines, operatin
Hub band, T. J. Reid.....

Indrocarbon burner. H. C. Brill...................
cator. See Cash indicator. Elevator indi-

ten ..
Iron. See Curling iron. Sad iron. Soldering
iron.
iron.
Joint. See Electric conductor joint.
Journal bearing, M. A. Andrews.................... 429,554
Kepboard player, mechanical, E. Capitaine...... 429,419
Kev fastener
Key fastener, G. H. Huttenlocher.................. 4299239
Kitchen utensil handle, F. w. Judd............ 429,453
Knitting machines, intermittent feed mechanism

Lamp, G. w. Woodward... 429
Lamp, portable, electric, J. H. Irwin. 42

Letter sheet, H. N. H. Lur.. 4292.5729
Life-saving garment. J. H. Grady................. 429,269
Liquids, apparatus for decolorizing, filterink, etc.,
B. Lavigne.. ${ }^{429,459}$
hicle seat lock.
Lock, P. McMahon................................... 42
Lock, E. C. Smith..
Locomotive, electro-magnetic, R. N. Allen...
Locomotive, electro-magnetic, R. N. All
Loom let-off mechanism, G. Park........ Loop forning machine, w. O.
Lubricator, J. M. Evans..... 429,361
429,159
499,107
429,581 Lubricator. F. F. Santenard.......................................
Lumber drier. W. McPhersoa............ Machinery, mechanism for driving, A. KleinMagnet for dynamos, field, E. Wakemann...................................... Malt, apparatus for manufacturing, C. Fey........ 429,12
Marker, land, o. B. \& A. E. Rockwell. Matching machine attachment, C. P. Flanders..... 429,
Measuring aud carbureting air or gas, apparatus for. F. H. Hambleton........ 429,211
429,201
4 Measuring vessel, C. Robinson....................... 429,201
Medical batterg. F. P. \& W. A. Hoeneman...... 429,44
Medicine. remedy for diphtheria, L. M. Pierson.. 429,152 Medicine, remedy for diphtheria, L. M. Pierson..
Metal and at the same time pointing and thread-
ing the
ing the adjacent ends thereof, dividing rods
of. c. D. Rogers......................... 429,388

4x3,233	mart		Relief V
Meter. See Gas meter. Grain meter.			
Hee Boring and turning mill. Crushing mill		hing Company	
或, timber structure for, ©. J. Goodhue 429,39	Show case, R. H. \mathbf{V}	Corn, pulp of rreen, Yorestrille Canning Company 17.986	
ror supporting and adjusting device, R. P.			Slngle Bell Chime Whintie, and all instruments used in coneection with Steam, Air and Water.
	Skillet, м. т. Durgy....................................... 429.169	Gin, Union Distilling Company.................... 18.003	
tor. See Electric motor. Rallway motor. Water motor			
Water motor.			$\overline{\mathrm{AN}}$
Mouse trap, II J. Barry	Snap hook. N. Nelson......... 42.969	Ol	
429	so		
Night sill absorbent. C. W. Doughty.......... -.. 429,190			
${ }_{429}^{429}$	${ }^{\text {spik}}$	onl	
burner, fuel, co o. wilder......................... 429	Sp		
Ore, machinery for separatig, R. H. Richards.... 42			
	3 3t		
nter's in	Steam boil	Oreralls, T. . . . O. Oomundro.......... Osters, fruts, and vegetables, M.	
Pan. See Bake pan.			
Paper box making machine, G. M. Griswoid. 4292336			
er hold		Remedy	
eer holder and cutter, roll. Ford $\&$ Jacoobs...... 42,5956	Stov		
兂	Elterich.............. 429.120	Sewing machines, singer Manufacturing Company	
per winding apparatüs, equalizing mechanism for, C. D. Bingham		sh	
429.		s3,	
		Soap. cleaning and	
429,405 429,130		Thermometers, clinical, H. Hirschberg Optical Company	
${ }^{229,192}$	Ta		
no, E. Gabler		aps, table-	
no,		Unde	
phate of lead, J. B. Hannay... .o...e........ 29,523			On Flectrical Industries, An Adaress by Prof Jot
Hent, man			tricians of at thoroukh knowledge of enflinering. Con-
. See Cloth	Telegraphy, multiple, E. N. Dickerson, Jr. 429,233 Telephone, maqneto, N. B. Ginochio. 429,129	Veternarr use, medicated foods and condition powders for, L. Van Norman................	
Pipe rack, C. H. Coit.............................4.439,421			ire
pes, apparatus for detecting leaks in, W. W. Rosentleld.	$\begin{aligned} & \text { Thill coupli } \\ & \text { Thrashing } \\ & \text { stiver... } \end{aligned}$		
Planing machine, pressure bar for, J. R. Thomas. 429.335	15		
Planter, corn, E. A. Johnson.................... 429,533	Thrashing		
Plow, cultivating. . . B. Hart................................ 429.129	Tie	Canadian Patents may now be obtained by the	
Plow, garden, w. C. McT yeire................. 429,219		going list, provided they are simple, at	
	Tires to		
etbook clasp, C. G. PAngsten................ 429,246	Tool, G. B. Durell................................ 429,118		
Poster, appanarus for the transmistion of, E. E.		Dfdvertisement	
Po	Tow boat, steam, A. McDougall................... 429,468		
shaping			JACOT \& SON, Bois
Press for fruit, pulp, or other substances, 1 n. Heaton	Trace carris, G. W. Brooks..................... 429.294	The above are charges per agate line-about eight	
Privy seat, H. J. Mit chell................................ 499.145	Trap. See		
Pules, C. M. Conradson.... ${ }^{\text {P29,007 }}$			
Pulles, wo			Barnes' New Sensitive Drill
Pulp, maehine for	Truck, hand, F. B. Mallory...... 429.140		
E		A ${ }^{\text {a }}$ Hesive Does not check or crack	
42, 464	Typewriting machine, J. F. McL Laughlin........... 42, 3,39		
Pump covernor, steam, E. C. Johnson............. 429 , ${ }^{\text {\% } 0}$		I ${ }^{\text {a }}$	
Punch,	Umbrella frame, J. H. Sorague..................... 429.916		
ack.			
Railmas bedding, H. L. Gillette.................. 429,436	Undergarment, w. A. Harder..................... 429,310		
	V		TEAM ENGINE; ITS PRINCI-
${ }^{429.235}$	Valve eccentrics, device for shifting, G . Browi.... 429	Patent Foo	
	Valve		
Railway signal, Shephard \& Forncrook. 429.3: 4 04 Railway signal. electric, H. A. Parrish 429.582			
Rail way signul flak and staft. J. I.anius............. 429.294	va		all news.ealers.
all way signaling			
	Vehicle seut, T. J. Kerstetter...................... 429.333 vehicle seat lock, Lombard $\&$ Rankin......... 42932	Ho	
Jr, \& weir	Vehicle spring, J. schmidapp.... 4292927		
ailmay track,	Venicle		
429,413 429114 4	Vent for casks and barrels, schutz \& Weber 429.323		NEW CATALOCU
	Vessels, cleaning the bottoms of, W. Freeborn..... 429.1 Walking stick or cane, combination, W. Flumm...429,		
Ratchet brace, J. Herm.......................... 42.5255	Washer. See D		UABLE PAPERS
Rattan construction, J. Ellis.	w		
	Washind		NK \& $20 ., 361$ 13rondway, New York.
el.	Water clo		
Refricerating apparatus, P. J. . Macdonald.......... 429,188	Water closet valve, N. A. Conklin............... 429		
	Water conduits, sand box for, C. N. Earle..... ... 429, ,		
	Water motor,	Drill Presses, ${ }^{\text {che }}$	
	Welding		
${ }^{429,401}$	Wells, ut		
${ }^{42 x, 212}$	whimet		
429,107 29.903			
${ }^{429}$	Window screen, w. H. Flesher... 4992		
${ }_{4}^{429}$	Wire coiling	For Batteries or Dynamos.	
		3	
429,400			ful, Beautiful, and
Saws, adjustuble base for rroving, w. Millard..... 4 4, 1.142	Wrench. See P		
${ }_{4 \times 99}^{42920}$	Wrench, F. M. \& J. Wirtz.		
e beam and weight therefor, I. L. Purdy...... 429,777			
429.217			
Scraper. Wheeled.A. . Rathbun................. 229.38%	DESIGNS.		
,	B		
t. See Car seat. Privy seat. Valve sea.	19.866 19880		$\underbrace{\substack{\text { AMere }}}_{\text {The }}$
ndary battery, C. He	Glasomare, ornamentation of. T. . . H. Hawkes 19.9885	do delive	
			find the work suygestive and most useful. They sontain
Seeder, broadcast, J. A. Callaway................. 429,229	boxes, inside wrapper for, II. J. Crocker.... ${ }^{19.9874}$	sian and side elevation of the appa	
- 423.454			
Jo			
11.061	DE MAR		
	Ar		a volume. sutitched in paper
	17,978		
propulalon, s. B. Goff.	gies and other spring vehicles, J. H. Mahler... 18,00		361 Broadway, New Yor

VALUABLE BOOK8
Sheet Metal Workers.

ICE.HOUSE AND COLD ROOM- BY R

ARTESIAN

 NOTES ON ESSENTIAL OILSS OA A

Blakes Bett Stud	
Bedymma	
≤ 10	
-	83 Chamber

FOREIGN PATENTS their cost reduced.

A!After being on the Market Five Years The ${ }^{6}$ A CM/ E ${ }^{57}$ Still Leads!
 ROCEESTER MACHINE TOOL WORIS, Brown's Race, ROCHESTER, N. Y. Subatitute for Conl or Coke. 100 O
\qquad

EVEN THE BROWNIES MAKE PHOTOGRAPES PHOIOGRAPHIC OUTFITS FOR AMATEURS, Send for our New Illustrated Catalogue and
copy of Modern Photography. Rochester Optical Co. 18 Aqueduct ST., Rochester, N. Y.
 © cientific RoOk Gatalogue Our new catalozue containing over 100
 MUNN \& CO., Publishers Scientific American,
$\mathbf{3 6 1}$ Broadwn, New York.

CRANE'S PERFECT WATER COLOR MEDIUM.

HARRISON CONVEYOR!

THE "FISHKILL" CORLISS ENQINE Fishoikill Lamading Machine Co., Fishkilli-onn-Hudson, iN. Y.

$\underset{\substack{\mathrm{B} \\ \mathrm{S} \\ \mathrm{M} \\ \mathrm{M} \\ \hline \\ \hline \\ \hline}}{ }$
HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Builders of High Class
Steam Engines. Diamond Drilling and General Machinery. Flour Mill Rolls Ground and Grooved. ELECTRO MOTOR. SIMPLE. HOW TO motor devised and con striucted with a vew to assisting
amateurs o make armotor Fich might be driver with
advantage by a current derived from a battery, and
 M/HAT Uncle Sam and Aunt Columbla think, etc., of
WHAT Uncle Sam and Aunt Columbia think, etc., of

 まWw Wtuwiz

ICE and REFRIGERATING MACHINES
 ARE YOU DEAF? Deafness Overcome! MICRO-ANDIPHONE.

TEE PROPELLING MACHINERY OF

TYPEWRITERS.
Claryest like eat b thament in the world Firist

 CELEBRATED SUT TON RING PACKING.

- ORKING ODELS LIGHT

The Pictet Artificial loe Company (Limited), Room 6, Coal \& Iron Exchange, New York.

NOW READY.
F$\frac{\text { xperimental }}{8 \text { cience, }}$

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, $\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.
MUNN \& CO., Publishers,
 361 Broadway, New York.
Gates Cornish Rolls Pulverizer

USEFUL BOOKS.

men, of all clars, men of leisure, and professional their respective callings. Our post office the line of permits the transmission of books through the mails
at very small cost. A comprehensive catalogue of useful books by different authors. on more than fifty difrerent subjects, has recently been published for
free circulation at the office of this classifed with names of author. Persons desiring to thein. Adress,
MINERAE AS A LININC

BARREL
WATER-TUBE BOILERS FOR WAR-Ships.-A paper by J. I. Thorny croft, describing his sys-
tem of tubular steam generator, and discusing ith quas
 Contained in TENTIFIC AMERICAN SUPPLEMENT, No.
ant Pric 10 cents. To be had at this office and from
all newsdealers.
volney w. mason \& co.
FRICTION POLLERS CLDTCEES and ELEVATORS

 ink cutters, chuckss 8 Repecial Thoils

 The focientıfic American PUBLICATIONS FOR 1890.
Sthe prices of the diferent pulingationsin the United
The scientict American (weeklis one year
The Scientitc American (weekly one ear
The scientitit American Supplement (weeklis), one

The Scientiflc American, Architects and Builders
Edition (monthly), one year.
The Scientific American and Supplement, . . 87.00
The Scientific American and Architects and Butld-
The Scientific American, Supplement, and Archi- 9.00
tects and Builders Edition. Proportionate Rates for Six Months.
ncludes postage, which we pay. Remit by postal

Ərdvertisements. Inide Page.ench insertion :-: īs cents inine.

 Wictor Bicyoles I
 tipeasure, business. recrea
tion, and for andthiny fou
could use a bicycle for.
noct VICTORS ARE BEST
Send for catalogue. verman Wheel Co., Makers, Chicovee Falls, Mass. THE COPYING PAD.-HOW TO MAKE

LEFFEL TURBINE WATER WHEELS

 Machine-Molded Gearing. driving plant for cable railiwaysShafting, Pulleys, and Hangers. Mixers and General Outfit for Fertilizer Work B.-Special attention given to Heavy Gearin Robt. Poole \& Son Co., Baltimore, Md.
OTTO GAEFENGINES

 CHICAGO, PNHLADELPHIA, New York Agency,

ON GAS ENGINES. - A VALDABLE

 $\frac{\text { aealers. }}{2 \text { to }} 40$

The MOTOR of 19th CENTURT

 $\underset{\text { O. Boxter Gas }}{\text { Cngine }}$ Co ThE PE PHONOGRAPH.-A DETAILED

NEW KODAKS

You press the button,
we do the rest"" Seven New
Styles and Styles ana
Sizes la loaded with Transparent THE EASTMAN COMPANY

 PATENTS!

FIORDA STEAM ANDHOT WATER

${ }^{1}$$\$ 85$ Lovell Diamond Safety $\$ 85$
 Strictly high grade in every particular. No better machine made at any price john P loyell arms cole catalogue free.

ROOFING

We are now ready to supply the product of entire-
1y new machinery and processes just completedi,

 all parts of the worle

 H.W. JOHNS MANUFACTURING CO.
H. w. Johns' Fire and Water Proof Asbestos

Sheathing, Building Felt, etc. Asbestos
Boiler Coverings, Steam Packings,
 87 Maiden Lane, New York. chicago. phlladelphia. boston.

JENKINS STANDARD PACKING,

 7 FranklinSt St, BOSTON. 291 Warbash Avo., OHICAGO.
15Tppewivit
Catalogue free. Address. Typewriter Department,
POOPE MFG. CO., Boston, New York, Chicazo.
WORKING MODELS $\begin{gathered}\text { add Experimental } \\ \text { machnery } \\ \text { neta }\end{gathered}$

FIRE FELT.
THE NEW NON-CONDUCTING MATERIAL

THE BEST LIME KILN KNOWN
 T. M. $\begin{aligned} & \text { Apply for information to } \\ & \text { FOOTE } \\ & \text { REGULATOR } \\ & \text { CO., }\end{aligned}$ 53 Devonshire Street, Boston, Mass. BASE BALL. - A DESCRIPTION OF

CHEMICAL ICE MACHINES
steam and Belt Machines to make ${ }^{7}$ Oo Pounds

TIS ELEVATORS
 THE STANDARD OF THE WORLD

OTIS BROTHERS \& CO.

G"AVESELEVATORS.

TO BUSINESS MEN

 For rates see top of trat column of this page, or a
dress MUN © Co. Publimhers,
361 Broadway, New York.

马cientific (9merican
The Most Popular Selentific Paper in the World.
Only 83.00 a $\begin{gathered}\text { Yenr, Including Postage. Weekly. } \\ 5 \% \text { Numbers a } \\ \text { Year. }\end{gathered}$
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful infomation and original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions. Novelties in Mechanics, Manufuctures, Chemistry, Llectricity, Te 'egraphy, Photography, ArchiComplete List of Patents each week. Termis of Subscription.-One cons
TIFIC AMERICAN will be sent for one vear-52 numberspostage prepaid. to any subscriber in the United States,
Canada or Mexico, on recelpt of three dollurs by the Canads or Mexico, on receipt of three dolling by the
pubbishers; six montks, $\$ 1.50$; three months, 81.00 . Clubs.-Spectal rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by
The saffest. way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, orenvelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., pay. dress all letters and make all orders, drafts,
able to $M I T$ NTV de CO.,

361 Broadway, New Yor

 T PExScientific American Supplement.
This is a separate and distinct publication from
THK ScIENTIFIC AMERICAN, but is uniform therewith In size, every number containing sixteen large pages full papers, and accompanied with translated descriptions. The Sciintific American SUiplicment is published
weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geovriophy, Natural History, Geokraphy, A rchæology. Astronomy,
Cbenistry, Electricity, Light. Heat, Mechanical Engi, Coemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining,
Ship Building, Maine Engineering Phetoring Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Econo-
my , Biography, Medicine, etc. A vast amount of fresh my, Biography, Medicine, etc. A vastamonnt of fresh
and valuable information obtainable in no other pubIication.
The most important Enjineering Works, Mechanisms, and Manufactures at home and abroad are illustrated
and described in the Suppiement. Price for the SUPPLLEMENT for the United States and
Canada. 55.10 a year, or one copy of the ScIENTIFIC AM Canada. 55.00 a year, or one Copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEM UNT, both mailed ERICAN and one copy of the SUPLLEM Lint, both mailed
tor one year for st.00. Single copies 10 cents. Address and remit by postal order,express money order, or check,
MUNN \& Co., 361 Broadway, N. Y..

Building Edition

The Scientific American architects' and BULDERs EDITIoN is fssued monthly. 2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal
to about two hundred ordinary book pages; forming a large and splendid Magazine of A rchitecture, rich-
ly adorned with elegant plates in colors. and with other ly adorned with elegant plates in colors. and with other
fine engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and amples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number
of a variety of the latest and best plans for private residences. city ard country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, togetber with full
Plans, Spec fications, Sheets of Details, Estimates, etc. Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of this inarniflcent work The elegance and cheapness of this inapnificent work
have won for it the larkest Circulation of any
Architeciural publication in the world. Sold by all MUN 2.0 a year. Remit to

N $\mathbf{3 6 1}$ \& CO., Publishers,
361 Broadway, New York.
PRINTHNG INTKG,

