

a WeEkly journal 0f practical information, art, ScIENCE, mechanics, chemistry, and manufactures.

	NEW YORK, MAY 17, 1890.	Ear.

A NEW SUBMARINE BOAT.

The submarine boat Goubet (so called from its inventor), the adventures of which are already celebrated, has just entered upon a new phase. It has, in fact, left the Napoleon basin, where it has been stored for fifteen months in an unoccupied corner of the Cherbourg Military Arsenal, in order to proceed to definite experi-ments-a trial in diving in the Commerce basin.
It was six weeks ago that these curious experiments took place before the eyes of hundreds and thousands
of witnesses, and, if we are to believe the accounts that of witnesses, and, if we
our correspondents our correspondents
have transmitted to have transmitted to
us, they were all wonderfully successwond
ful.
Th
Thus, on the 31st of January, the Goubet started all alone. without guide or tow boat, from the maritime arsenal, and, after a few evolutions in the roadstead, that lasted less than an hour and a half, entered $t h e$ Commerce basin without hesitation, and withhesitation, and without turn or zigzag,
in spite of the difficulties and obstacles without number in this place in the way of buoys, dead bodies, ships at anchor, and intercrossed mooring chains. This mooring chains. This little promenade took place on the
surface without surface without
doubt, but it was doubt, but it was
none the less a penone the less a peremptory demonstration of the manageableness of the Gouhet, and its capability of steering straight. There was no lack of persons, in fact, to believe and say that if the Goubet resembled a fish it was a "drunken" one, and that it would never be capable of traversing a channel ever so narrow and variable row and variable without bumpi against the walls. To the honor of the new torpedo boat, it is well to add that the currents are at times very strong at the entrance of the port of Cherbourg, and that upon this day the sea was very rough.
Two days afterward $t h e$ Goubet proceeded to new experiments. Without any fastenings, and consequently given up to its own forces and resources, the strange boat sank several times to dif several times to different depths, with
its two navigators its two navigators
hermetically immersed within its sides of bronze. It remained stationary for four hours successively at

Fig. 1.-THE GOUBET SUSPENDED FROM A CRANE.

Fig. 2.-EXPERIMENT IN STABILITY. \begin{tabular}{l|l}
one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& $\begin{array}{l}\text { We know that at the time of the first official experi- } \\
\text { remaining immovable beneath the water as long as it }\end{array}$

ment, the two navigators of the Goubet remained

pleases and at a definite depth. \& $\begin{array}{l}\text { might full hours under water without any other com- } \\
\text { During this immersion, the navigators passed away }\end{array}$

enunication with the outside world than the telephone

their time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was

one meter and three and a half meters, thus proving \& the gaseous residue, it is as easy to breathe in the boat

its perfect stability, its habitability, and its curious \& as it is in the open air.

faculty, apparently contrary to all physical laws, of \& We know that at the time of the first official experi-

remaining immovable beneath the water as long as it \& $\begin{array}{l}\text { Went, the two navigators of the Goubet remained } \\
\text { mleases and at a definite depth. }\end{array}$

During this immersion, the navigators passed away \& eight full hours under water without any other com-

munication with the outside world than the telephone

Dheir time in playing numerous games of piquet and in \& wire that they used to give their impressions, which,

breakfasting. Owing, in fact, to a supply of oxygenated \& by the way, were of a cheerful character. When they

gas strongly compressed in tight tubes, and which an \& made their appearance, they were fresh, well, and

ingenious arrangement automatically distributes at the \& lively, having been able to attend to all the functions

ordinary atmospheric pressure, while a pump expels \& of life, and being ready to begin again. There was
\end{tabular} still in the $t u b e s$ enough oxygen to last twenty hours.

It has been said of the Goubet that it is a realization of the dream conceived by Jules Verne in his "Twenty Thousand Leagues under the Sea;" but the Goubet is better than that. It is not only one romance, but it is rather two of the great amuser's romances amalgamat ed. It is both "Twenty Thousand Leagues under the Sea" and "Doctor Ox" in ac tion!

It is well to note by the way, that the Goubet is not only the sole submarine boat thathas re mained for eight hours under water with men inside, but also the sole one from which a like power has been required. The conditions imposed upon the inventor by the contract were, in fact exceptionally hard But, in the serenity of his assurance, and with $t h a t$ superb faith that mocks at the worst difficulties, Mr . Goubet accepted all.
Figs. 3 and 4 represent two of the phases of the dramatic eight hour experiment. In Fig. 3 the Gou bet is preparing to disappear, in Fig. 4 it has come to a rest at a depth of one meter, to remain there for twenty min utes. How the Goubet realizes this par adox it is impossible adox it is impossibl to say. That is a secret between the inventor andthe government.
As may be seen from Fig. 1, where it is represented suspended by the chains of a crane, the Goubet has the form of a stubby cigar, or rather of an elongated egg. It was cast in bronze in a single piece. It is 5.6 meters (18 ft .) in length, and 1.53 meters (5 ft .) (Continued onp.310.)

Snientific Ammerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERIS FOR THE SCIENTIFIC AMERICAN

 One copy, one sear. for the U. S., Canada or Mexico.One cops. six month. for the U.'. Canada Mr Mexico
One copy. one ear.
 The Scientific American Supplement

NEW YORK, SATURDAY, MAY 17, 1890.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 750
For the Week Ending May 17, 1890. Price 10 cents. For sale by all newedealere

the copyright bill fails to pass.

The defeat of the copyright bill in the House of Representatives by a vote of 126 to 98 disproves the asser tion so often made in certain quarters that the sentiment of the public is growing more and more favorably disposed to the measure, for, remembering that the vote on the measure last session was almost a tie, it would seem that longer consideration of its merits has increased rather than lessened the opposition to it passage. Nor will the fate of this bill appear undeserved, when its characteristics and intent are criti-
cally examined. It purported to be an "authors'" bill. In their name it was drawn up, in their name Congres was asked to make it a law.
On examination it proved, instead of an authors', to be a publishers' bill, and to be strongly opposed to the interest of the general public, giving the publishers the right to increase the cost of foreign books-a virtual monopoly or patent for 42 years; indeed, the foreign author being left to accept whatever terms were offered him or be debarred from publishing on this side the ocean at all.
The promotors of the bill seem agreed that its defeat was due to the action of Mr. Payson, of Illinois, by which was struck out the provision that foreign books should be printed in the United States to obtain a copyright.
But was it not logical and reasonable to divest it of this clause, its passage being asked on the plea that it was to benefit authors?
The promoters of the measure have all along main tained that the author has as clear a right to the pos session and free disposal of the work of his brain as the producer of any other kind of marketable merchandise. They insisted that it was dishonest to take a foreign author's works without compensation. Yet the law they recommended, instead of opening a free market, would hav given him leave only on condition that he accepted the terms of publishers on this side the water. How he would be in any wise bettered by such an arrangement it is hard to see; how the cause of that international honesty of which so much has been said would be advanced by such an arrangement, is equally obscure.
To the ordinary mind the bill which has been de feated looked simply to self-interest, to the interest of a small class of the community, to wit, to the publishers, as against the many. It would, in fact, have tended to raise the price and consequently restrict the sale of the reprint, that boon to hungry readers. If that was not the aim of the promoters of international copyright, it would assuredly have been the result of the measure they sought to have made a law.

a fiber from cotton stales.

The result of the formation of the jute bagging trust has been to array against it the powerful Farmers Alliance, now num bering, it is claimed, over two million members in the South and West. When the trust was first formed, the price for bagging was advanced from seven to twelve and fourteen cents a yard, though the price since then has faren very much from the laters requiring bagging for
figures. The Southern plater figures. The Southern planters requiring bagging for
their cotton made up their minds on no account to their cotton made up their minds on no account to
make any purchases from the jute bagging trust, and some of them, in order to keep this vow, have used other bagging which entailed a net loss of a dollar on
every bale sent to market. The high price of jute every bale sent to market. The high price of jute and the trust, have greatly stimulated the production of substitutes. Pine needles, bear grass, palmetto, and Spanish bayonet fibers have all been employed, but ging made from pine needles has been more extensively used, perhaps, than any other, but it is apt to stain the cotton, and it tears easily. Cotton sheeting is used, but this also is not strong enough, and the insurance companies object to it as not offering sufficient protection to the cotton in case of fire. As a further indication of the desperate shifts to which planters have resorted rather than use jute bagging. it may be said that cotton has been received in New York baled with willow sticks and iron hoops, so that it was necessary to open the bales with an ax.
Reliable advices from Augusta, Ga., recently received seem to indicate that the want of a satisfactory substi tue for jute bagging has been met by producing a fiber from cotton stalks. Mr. William E. Jackson, a lawyer of Augusta, has given a good deal of time and attention to developing the process. He commenced experimenting with a machine patented to produce certain South American fibers by running cotton stalk through it and then submitted the fiber to a cardin machine, and the result was an article which closely resembles what is known as jute butt yanks. Mr
Jackson then sent a bale of this material to a bagging factory at Paterson, N. J., and proceeded thither himself, and the bagging which was produced under his direction has been declared to be an excellent article.
A detailed description of the process by which the fiber has been obtained cannot be given at this time,
but it is known that the bark is removed from the
stalks by means of a breaker. It is said, however, that the bark can also be stripped off by hand, or the stalks may go through the machine in their natural state, and the rollers will do the work just as thoroughly. The main feature of the fiber-producing machine consists in the forward and backward movement of the rollers, which action separates the fiber while the water underneath washes out the glue. The advocates of the new process claim that they can pay $\$ 2$ a ton for cotton stalks delivered at railroad stations, and make from them a bagging which can be sold at $71 / 2$ cents a yard, a price at which they claim jute bagging cannot be manufactured at a profit. The article produced from cotton fiber weighs about two and a quarter pounds to the yard, and the average requirement for a bale is seven yards.
A cotton exporter recently stated that the bagging made from cotton stalks which he had examined re sembled jute so closely that even a person who was accustomed to handling cotton would not readily detect the difference. It will not stain the cotton, and will show marks easily. It is said that the annual yield of stalks will produce bagging sufficient to bale three yearly crops of cotton.
Should the new fiber stand the test of general use, it is easy to see that a new and extensive industry has been opened up. Cotton stalks have heretofore been considered a nuisance by planters, but if they can be made into a bagging for the baling of cotton, a great step in advance will be made. No one dreamed a few years ago that oil as well as other valuable product could be produced in paying quantities from cotton seed, but this utilization of the seed forms one of the most striking as well as one of the most important of recent advances in manufacturing. The public wil doubtless watch with much interest, to see if still an other new and important product is to be developed from the already fruitful cotton plant.

Opening of the New Dry Dock at the Brooklyn Navy Yar

The Simpson dry dock, which has already been de scribed and illustrated by us (see Scientific Ameri can, November 30, 1889) was formally opened on Friday May 9 , in the presence of a number of spectators, in cluding many visitors and invited guests from Wash ington, Baltimore, and Philadelphia, as well as rep resentative naval officers, engincers, and others of the vicinity. Promptly at $10: 30$ A. M. the dock wa flooded, and in one hour and five minutes was full. The caisson was then lightened by the ejection of some of its water ballast and floated to onc side. The U.S monitor Puritan was next placed in the dock, tho caisson was replaced and the large pumps started emptying the dock and leaving the ship upon the kee and bilge blocks. A very elegant collation was then tendered the visitors. In all respects the occasion may be termed a success, and the officials of the Brooklyn Navy Yard are to be congratulated on this last addi tion to their plant

Keeping at it.

It is a great mistake to suppose that the best work of the world is done by people of great strength and reat opportunities. It is unquestionably an advan tage to have both these things, but neither of them, quoting from the Manufacturer and Builder, is necessity to thc man who has the spirit and the pluck to achieve great results. Some of the greates work of our time has been done by men of physical eebleness. No man has left a more distinct impression of himself on this generation than Charles Darwin and there have been few men who have had to strug gle against such prostrating ill health. Darwin was rarely able to work long at a time. He accomplished his great work by having a single aim, and putting every ounce of his force and every hour of his time into the task which he had set before him. He never sattered his energy, he never wasted an hour, and by steadily keeping at it, in spite of continual ill health and of long intervals of semi-in validism, he did a great work, and has left the impression upon the world of a man of extraordinary energy and working capacity. Success is rarely a matter of accident; al ways a matter of character. The reason why so many wen fail is that so few men are willing to pay the pric of self-denial and hard work which success exacts.

Burning of the Great Singer Sewing Machine

The great works of the Singer Sewing Machine Co at Elizabethport, N. J., were seriously damaged by fire on the 6th of May. The main building, with its valuable contents, including millions of needles, several thousand finished sewing machines, and an immense stock of partly finished machines, tools, etc., were destroyed. The loss is estimated at $\$ 750,000$. Rebuilding will be at once commenced, and temporary structures erected for the immediate resumption of regular work. The entire area occupied by the company is 32 acres. The main building was 230 feet long, 60 feet wide, with aunex 800 feet long, 50 feet wide, 4 stories high.

Microscopical Reception

The annual reception of the Department of Micro copy of the Brooklyn Institute took place on the 8 th inst. The occasion was one of considerable interest. There were 72 exhibits shown under as many microcopes. The number of guests present exceeded 1,000 the array of instruments was very fine indeed, and the interest manifested in the exhibits was very gratifyin to the members of the department.
The following list of exhibits is so long as to preclude the possibility of giving a description of each one.
Volcanic dust from Java eruption. Fell on the bark Arabella, August 28, 1883, 1,000 miles from Java. Lat. $5^{\circ} 37^{\prime \prime}$ S. ; long. $88^{\circ} 58^{\prime \prime}$ E. Ringworm of scalp, prepared to show its effect on the hair. Foot of silkworm. Callimome regius, a parasitic fly, exhibited by Mr. Henry Fincke. Peptic glands from the cardiac region of the stomach of the frog, Dr. Heber N. Hoople. Skin of stomach of the frog, Dr. Heber N. Hoople. Skin of eel, scales in situ, shown by polarized light, by Mr.
William Finney. Micro-photograph, Declaration of William Finney. Micro-photograph, Dec
Independence, Prof. W. Le Conte Stevens.
Section of pallasite (meteorite), from Kiowa County, Kansas, shown by Mr. George F. Kunz. The Kiowa County meteorites numbered twelve in all, of which six were pallasites (a spongy iron filled with olivine).
Pollen of the century plant, from a plant in the conservatory of the late Wm. Darlington, Pittsburg, Pa. Age at bloom fifty-one years. Was shown by Mr. W. G. Bowdoin. One hundred and twelve different varieties and species of diatoms arranged on one slide were shown by Mr. G. D. Hiscox.
Dr. Herbert Fearn exhibited a section of human kidney. Double injected. Arteries and malphigian tufts injected red, and veins injected blue. In the lighter portions were seen the uriniferous tubules. A section of melaphyre from Bas Matachin, Isthmus of Panama, was shown by Mr. Thomas B. Briggs. This is one of the very hard rocks encountered in the excavation of the proposed Panama canal. Melaphyre was described as a fine-grained brownish-black aggregate of plagioclase, augite, olivine, magnetite, and degate of plagioclase, augite, olivine, magnetite, and de-
lessite or chlorophocite. Mr. James Walker exhibited lessite or chlorophocite. Mr. James Walker exhibited
a section of prehnite, from the glacial drift of Brooka section of prehnite, from the glacial drift of Brook-
lyn. A vertical section of human scalp, showing hairs, etc., in situ, was shown by Dr. C. K. Beldin. The exhibits of Mr. George E. Ashby consisted of a transverse section of leaf (pine needle) of Scotch fir and spiracles (breathing pores) and tracheæ (air tubes) of silk worm. The aeration of the blood in insects is provided for by the introduction of air into every part of the body through a system of minutely distributed air tubes.
Transverse section of peduncle of yellow water lily was shown by Mr. Joseph Ketchum. Rutile crystals in quartz, from North Carolina, and artificial crystals of cadmium, constituted the exhibit of Mr. George M. Mather. Mr. Frank Healy presented polycystina from Springfield, Barbados, and butterfly scales arranged to form a bouquet of flowers. Quartz crystals, from Herkimer Co., New York, were shown by Mr. Charles Ronfeldt. Pond life formed the exhibits of Mr. Stephen Helm and Mr. C. H. Taylor. Spore cases of fern from New Zealand were shown by Walter H. Kent, Ph.D. Transverse section of petiole (leaf stalk) of carrot, by Mr . William W. Laing. Pollen of moon flower, by Mr. William Lowey. Mr. Edward C. Chapman exhibited a transverse section of stem of beech. A beautiful cluster of gold artificial prisms, and aurified cloth were shown by Dr. A. J. Watts. The cotton fiber of the latter specimen has been replaced by gold, a substitution similar to that which has taken place in petrified wood.

Crystals of proustite, " ruby silver," from Chili, S. A. were shown by Dr. Joseph H. Hunt. This silver ore contains 65 per cent of the metal. The illumination was effected by means of a paraboloid condenser Ancient iridescent glass from Cyprus was shown by reflected and polarized light, by Mr. Geo. M. Hopkins. Foraminifera, the skeleton remains of a low order of animal life, chiefly marine, formed the exhibit of Mr. Williaw Potts. Section of granite, by polarized light, and cyclosis (circulation) of protoplasm in cell of chara, one of the fresh water algæ, were shown by Prof. Franklin W. Hooper. A transverse section through head of larva of newt, showing cerebrum, eyes with lens and retina, tongue and lower jaws, cartilaginous bones and blood vessels, was exhibited by Mr. Ludwig Riederer
Rev. J. L. Zabriskie's exhibit consisted of : Teeth of mosquito, showing eleven teeth at the extremity and upon the thin edge of each flattened, bristle-like mandible; the ovipositor of the narrow winged katydid, polarized, showing; two saws, two sheaths, and two stylets. A section ot ineteoric stone from Segowlee,
India, which fell March, 1853, shown by polarized light; and meteoric iron from Toluca, Mexico, etched light ; and meteoric iron from Toluca, Mexico, etched
to show the Widmanstattian and Nauman lines, formto show the Widmanstattian and Nauman
ed the exhibit of Mr. Albert A. Hopkins.
ed the exhibit of Mr. Albert A. Hopkins.
Stinging hairs of nettle were shown by Prof. W. C. Peckham. The tip of the sting is broken off on enter ing the skin, and the poison from the gland below is pressed through the tube of the sting into the flesh. Scales of thirty varieties of South American lepidoptera, opaque; shown by automatic revolving stage
by Mr. J. D. Mallonee. Iron sand from Shel ter Island; opaque; Mr. George A. Street. A section of opal from
Honduras was shown by H. Hensoldt, Ph.D. The beautiful diplay of colors for which these gems are noted was here exhibited in a section of the thinness of tissue paper. Foot of the emerald spider, by the same exhibitor. In the latter object the two combs used by the spider in arranging the lines of his web are seen in rare perfection. Mr. Henry S. Gibson showed the eggs of bot fly. A transverse section of ovary of Rhododendron pontium was shown by Dr. Hugh M. Smith. Torbernite crystals, a cupreous phosphate of uranium, from Cornwall, England, was exhibited by Mr. J. W. Freckelton. Dr. S. E. Stilesshowed a trans verse section of spines of echinus. The saws of saw-fly formed the exhibit of Mr. H. S. Woodman. These appendages are used by the insect to saw a fine slit in a leaf, in which the eggs are deposited.
Dr. J. M. Van Cott, Jr., exhibited a large number of sections illustrating human tissue. Elytron (wing cover) of jewel snout beetle, from Brazil, S. A., by Mr. Artis H. Ehrman. Sulphide of nickel, from Chili, S. A., by Mr. F. L. Lathrop. Crystals of oxalate of lime. Shown by polarized light. The blood of snake, double stained, showing the corpuscles and their nuclei, by Frederick J. Wuling, Ph.G., and the seed of gentian, by Mr. John H. Royael, complete the list of very interesting objects shown on this occasion.
The officers of the department, under whose administration the preparations were made for the reception, were Rev. J. L. Zabriskie, president; Mr. Geo. M. Ma ther, vice-president; Mr. George E. Ashby, secretary Mr. Edward C. Chapman, treasurer ; Mr. J. D. Mallo nee, curator.
The newly elected officers are: Mr. H. S. Woodman president ; Dr. S. E. Stiles, vice-president ; the othe officers having been re-elected.

Progress of the Chicago world's Fair.
The officers' salaries have been fixed. The president is to receive $\$ 6,000$ annually; vice-presid ent, $\$ 12,000$ treasurer, $\$ 5,000$; and auditor, $\$ 5,000$. Vice-President Bryan receives a larger salary because it is expected that he will relieve President Gage of most of the work Second Vice-President Potter Palmer declined any compensation. The Hon. A. F. Zeberger, ex-collector of customs, has been made treasurer, and W. K. Acker man, formerly President of the Illinois Central Rail road, auditor.
The members of the ten standing committees met and elected the following chairmen: Finance, Ferd W. Peck; grounds and buildings, De Witt C. Cregier ; legislation, Edwin Walker; foreign exhibits, W. T Baker ; catalogues and printing, Rollin A. Keys;
transportation, Stuyvesant Fish; fine arts, C. L. Hutchinson; machinery and electric appliances, De Witt C. Cregier ; ways and means, Otto Young.
The president, first and second vice-presidents, and chairmen of the standing committees constitute the executive committee.
A meeting of stockholders has been called to vote an assessment of 18 per cent on the stock, payable the first Monday in June, 1890, and on the proposition to change the name of the fair to "'The World's Columbian Exposition."

Letter Postage Principle for Railroad Fares. At a recent meeting of the American Academy of
Political and Social Science, held in Philadelphia, Prof. E. J. James, of the University of Pennsylvania said :
For the last nine months a most interesting experiment in railroad management has been going on in Hungary. As a result, a new system of passenger ariffs was worked out and put into operation on the first of August, 1889. The method adopted was that commonly known as the zone-tariff system, in which the rates are fixed, not according to the number of miles traveled by the passenger, but according to the number of zones traversed or entered upon during the journey Starting from a given center, the railroads are divided into fourteen zones or stretches. The first zone includes all stations within 25 kilometers of the center; the sec ond, all more than 25 and less than 40 , etc.; each zone after the first up to the twelfth being 15 kilometers long or, as we should perhaps better say, wide. Tickets are sold by zones, being good for all stations within the zone.
How

How radical a change this system implies for a large part of the traffic can be seen in the extreme cases, $i . e$., in those in which the reduction has been the greatest. includes all stations more than 225 kilometers from the capital, are $8,5 \cdot 80$, and 4 gulden respectively for the three classes, corresponding to $\$ 2.88, \$ 2.08$, and $\$ 1.44$. If we had the same rate in this country, it would be possible to buy a railroad ticket to Chicago from New
York for $\$ 2.92$. The fare to Philadelphia would be 29 York for
cents.

The simplification of the tariff is very great. Under he old system, the number of distinct tickets which had to be kept in every large office was nearly 700 . It is now only 92.

The railroad tickets are now placed on sale like post ge stamps at the post offices, hotels, cigar shops, and other convenient places. The public is greatly pleased at the discarding of the complicated machinery of ticket selling as practiced under the old system.
The most interesting thing, however, in this experi ment is the way in which the passenger traffic has in creased under the stimulus of the new rates. The num ber of passengers during the last five months of 1887 was $2,389,400$; during the same period of 1888 it was $2,381,200$; while for the same period of $1889-$ the first period under the new system-it was $5,584,600$, an in crease of over 133 per cent. The receipts from the traffic under the new system were over 18 per cent greater than under the old. In other words, passenger traffic will respond to lower rates, a thing which some railroad managers have denied.
It would be well for our own railroad managers who complain that passenger traffic is not profitable to look into the matter. The American people, reputed to be the most restless in the world, do not have nearly as nany passengers per head of the population as Eng and, and it is far exceeded in the number of passenger o miles of rail way by half a dozen countries of Europe.

Shell Mounds of Florida.

Colonel Joseph Wilcox, one of the managers of the Archæological Museum of the University of Pennsyl vania, recently gave a short account of his explorations in the Florida shell heaps. He said he had never traveled in any part of the United States that presented so many remains of the former race as Florida. The mounds were of two classes. Along the coast and the banks of the rivers they were composed of shells, while those away from the rivers and the sea are made of sand. These mounds are of prodigious size, some of the largest being twenty to thirty acres in extent, and twenty to forty feet in height. The shell mounds are composed almost exclusively of oyster shells, a large conch, which was evidently eaten, being the next mos plentiful. Many of the latter have a hole broken in the top, through which it is probable the animal wa drawn. The shells in one of the mounds he examined varied from those of the present day, partaking of the character of those of the Pliocene fossils, and indicate that the mound was made a very long time ago. He exhibited a collection of objects from Florida, including two gold beads, and a superb fragment of pottery that was thought to be of Georgia manufacture. In com menting upon this piece, which he presented to the nuseum, he said that the Greek fret, the scroll work, and many forms of classical decoration are to be dis covered on the American pottery, and if we want to study the beginning of classic art, we should study the aboriginal art of America, an art that was nipped in the bud by the terrible Spanish invasion.
The museum, although only organized last year, is so well cared for by its friends that its collection is now second to none in the country

Ether.

The so-called pure commercial article always con tains various impurities which, on spontaneous evapo ration, remain behind as an ill-smelling residue. Sulphur is detected by shaking up the sample in question in a test tube with a drop of pure bright mercury. If the quantity of sulphur is very small the surface of the mercury is merely rendered dull and gray. If there is much sulphur, the entire liquid turns gray or black. Pure chloroform does not reduce alkaline permangan ate unless a trace of alcohol is present. Bertram Blount Analyst) describes a series of impurities in so-called pure reagents. P. Lohman (Pharm. Zeitung and Chemiker Zeitung) discusses the purity of commercial reagents required in chemico-legal investigations. Zinc and sulphuric acid can easily be obtained free from arsenic. Hydrochłoric acid which fulfills the requirements of the Pharmacopaia may contain traces of arsenic. Hydrochloric acid freed from arsenic by means of tin is usually stanniferous. Chloric acid may contain arsenic, and usually contains baryta.

Achievements of Surgery.

At the Surgical Congress at Berlin, Professor Gluck, of Berlin, gave (says Dalziel) an exhibition showing a nost valuable advance in surgery, namely, the success ul substitution of catgut, ivory, and bone freed from chalk, for defects in bones, muscles, and nerve sinews. The juices of the body are sucked up in the inserted material, thereby establishing the junction of the sepa rated ends, without any shortening of the part. He presented the cases of patients in whom there had been an insertion of from six to ten centineters of catgut to supply defects in the leaders of the hands, to which complete mobility had been restored. This case has previously been impossible. In the case of another patient Professor Gluck removed a tumor from the thigh, causing a considerable defect in the bone. He inserted ivory, and no shortening ensued. In another case he removed a large piece of nerve in the groin and
inserted catgut, and the functions remained completely satisfactory.

AN IMPROVED VENTILATOR FOR RAILWAY CARS. The illustration shows a device for attachment to car windows, whereby air may be allowed to enter from either side without creating a draught, and dust and.cinders will be effectually excluded. It has been patented by Mr. Robert E. Burke, of Phillipsburg, N. J. Fig. 2 is an inside view of the device applied to the lower rail of the window frame, Fig. 3 showing one of the shutters open, and Fig. 1 being a horizontal sectional view. The ventilators are preferably located in the bottom rail of the window frame, side recesses separated by a central rib being formed in the outer face of the rail, and a shutter being hinged to the outer end of each recess. In each recess are openings communicating with the interior of the car, and in the sash rail near the shutter hinge is a recess covered by

burke's ventilator for railway cars.

a plate having a horizontal and a vertical slot, in which operate a pin and a latch. The pin passes at an incline into the hinged end of the shutter from the rear so that the force applied in opening the shutter will be exerted in the line of its direction of movement. When the device is applied to railway cars, the sliutter at the forward side of the window only is opened, the cinders, dust, etc., being then deflected from the open ing. This device can be readily attached to a car after it has been built, and can be conveniently manipulated from the inside without raising the window. It is also adapted for attachment to the windows of dwelling houses, etc.

AN ANVIL ATTACHMENT

The invention illustrated herewith provides means whereby metal may be quickly and easily bent and cut off upon the anvil, and forms the subject of a patent issued to Mr. Charles M. King, of Downieville, Cal Figs. 3 and 4 are side and end views of an anvil having such an attachment. A U-shaped lever having a treadle at one side is pivoted to the sides of the anvil

king's anvil attachment.

block in a cut-away portion near its base, a chain from this lever extending upward to a grooved disk on the end of an arm pivoted in a bracket. Fig. 1 shows the pivot end of this arm, and Fig. 2 the manner in which it is held and pivoted to the anvil block. The arm has at its free end a rectangular-shaped grip large enough to clasp the end of the anvil and admit a fair sized strip or bar of metal between it and the face of the anvil, and is capable of vertical movement in slots in slide flanges of the bracket in which it is pivoted. Springs at the side of the bracket hold the grip above the face of the anvil, to allow room for the insertion of the metal, until the treadle is depressed. When the foot is placed upon the treadle, the arm is raised to bring the grip into position above the face of the anvil, and by further
pressure upon the treadle the grip is brought firmly down upon any metal which may be between it and the anvil, or, if there is no metal there, the grip may be brought down to a solid bearing upon the anvil, so that the triangular upper face of the grip may be used to cut the metal upon. When the grip is not in use for either of these purposes, its arm is tipped down out of the way, at the end of the anvil block.

Brittle Bodies.

Under the head, "What are brittle bodies?" Prof Frederick Kick recently communicated the preliminary results of some very interesting experiments in Dingl Polytech. Journal, 274, 405. He starts with two theses -(1) Those bodies of substances are brittle which, in order to become ductile or plastic, must be subjected to a high pressure, acting uniformly from all directions (2) the hardness of a substance may be determined with numerical accuracy by means of its shearing stress if every bending and every fluxion of the material particles be excluded. To substantiate the first thesis the following experiments were made with pieces of gypsum, steatite, rock salt, and calcite, all of which are, under ordinary conditions, very brittle. The test materials were cut and ground into prismatic shape A suitable piece of ordinary iron gas pipe was closed a one end with a well-fitting plug, and filled with molten shellac, avoiding carefully any formation of bubbles. Into this were immersed the test prisms, which had previously been coated with shellac solution, and afte filling up the remaining space with shellac, the top wa flosed by a second plug. The pipe was allowed to cool
clow slowly for several hours, and then bent into U-shape In dilute nitric acid the iron pipe was dissolved, leavIn dilute nitric acid the iron pipe was dissolved, leav-
ing the shellac core unaffected. This was dissolved in ing the shellac core unaffected. This was dissolved in
alcohol, leaving the bent prism of rock salt, steatite alcohol, leaving the bent prism of rock salt, steatite
etc., in perfectly coherent shape. The softer the en veloping material, the better the results. The autho constructed then a simple but effective apparatus, in which oil was the enveloping medium instead of shellac, and succeeded in altering the shape of the most brittle substances without affecting transparency or coherence. In regard to the second thesis, the author's experi ments are yet few in number. It seems true that the hardness and shearing stress are directly proportional but more experiments are necessary to establish th thesis as a law of nature. Shellac and tin are sub stances of widely differing nature and composition Their hardness, however, is equal, and Professor Kick finds for both the same shearing stress, i. e., 2.6 kilo grammes to the square centimeter.

AN IMPROVED ADJUSTABLE LADDER.

A ladder which may be conveniently adjusted to the inequalities of the ground or other support, and which may be compactly and readily folded when not in use is represented in the accompanying illustration, and has been patented by Mr. Pierre F. M. Burrows. The body of the ladder has four standards arranged in pairs to form the sides, and the front and rear stand ards of each side are filled in at their bottom ends by a block, rigidly attached to the rear standard and adapted to slide in a longitudinal groove in the front standard. The steps and the front and rear standards are held in position by bearing rods attached to the standards by a bolt or screw passed through eyes in the ends of the rods. The under surface of the steps have a transverse groove near each end adapted to receiv the bearing rods, to which they are held by staples, and on the under side of the upper
step is a longitudinal attached brace. 'The steps being thus pivotally attached to the bearing rods, the standards and steps may be readily folded close together, and when the ladder is set up the pivoted steps and rods give ad justing movements to the standards. The back stays or braces are each com posed of two parallel and spaced strips, the limbs being made to interlock or cross each other, and each limb having near the top an adjusting stop, the stops being fixtures adjustable by thumb nuts according to the surface of the ground. The upper ends of the limbs are connected to the rear standards by a swivel or universal joint, and the stays are limited in their move ment by a length of chain connecting them with the standards. When the ladder is to be used, it is set up per pendicularly to be opened out from its closed position, and the back stays spread from the bottom as far as allowed by the stops, the latter being adjusted accordingly when the ground

BURROWS' FOLDING ADJUSTABLE LADDER. is rough. When such adjustment ha been properly effected, the ladder is designed to be lime, 20 ; cream of tartar, 20 ; borax, 20 ; red oxide of more safe and rigid, the greater the weight of the per- copper-protoxide- 9 ; and bioxide of tin, 13 parts. son ascending it and the higher the ladder is mounted.
For further information relative to this invention, address Mr. P. F. M. Burrows, No. 317 Victoria Arcade, Auckland, New Zealand. By a single melting a transparent red glass is said to be obtained of a very fine quality, of which various
objects can be manufactured directly, without the necessity of a second heating to intensify the color.

AN IMPROVED PIPE CLAMP.

This pipe clamp is designed for pipes through which a fluid passes under high pressure, serving forstrength ning parts of the pipe that have become weak and for mending ruptured and broken pipes. It has been patented by Messrs. William Walker and John B. Davis, of Jermyn, Pa. The sections of pipe are united at their ends in the usual way by a socket, and a clamp to surround the joined ends is formed of two semi-cylindrical sections, with flanges adapted to receive bolt to fasten the two sections together, a packing being placed between the flanges. Each of the clamp sections has on each end a semi-annular flange, and when the pipe line extends horizontally the upper sec tion has a conical aperture through which the molten calking material is introduced. When the pipe line is vertical, the calking material is poured through the upper end of the pipe clamp. In applying the clamp over a weak spot or disconnected sections of pipe the openings at the ends of the inclined flanges are closed by clay or other suitable packing, when the molten metal is poured to fill the interior space formed round the pipe by the clamp sections. When the molten metal has hardened, the clay or packing is re-

WALKER \& DAVIS' PIPE CLAMP.
moved and the operator calks the edges in the flanges with suitable tools.

Naval Armaments.

It appears from the British navy estimates that the present Board of Admiralty have substituted as the main armament of all the battleships they have laid down guns of a smaller caliber, for they consider the 10 ton gun too large and weighty for general use although, so far as penetration and destruction are concerned, it is the most powerful weapon in the world. Three ships only will be armed with them.
The 67 ton gun carries an armor-piercing projectile of $1,250 \mathrm{lb}$. weight, capable of penetrating at 1,000 yards a steel plate of 24.3 in . in thickness, with a bursting charge of 85 lb . in the common shell. The 110 ton gun carries an armor-piercing projectile of $1,800 \mathrm{lb}$., capable at 1,000 yards of penetrating 27.4 in . of steel, with a bursting charge of 180 lb . in the common shell.

Red Glass.
A new red glass has been recently produced in Germany. Besides its use for the manufacture of bottles, roblets, and vases of various kinds, it will be found pplicable in photography and in chemists' and opticians' laboratories. This glass is produced by melting in an open crucible the following ingredients : -Fine sand, 2,000 parts; red oxide of lead-minium400 ; carbonate of potash, 600 ; lime, 100 ; phosphate of

AN IMPROVED CURTAIN POLE FIXTURE. A simple and convenient means of sliding a curtain upon the pole from which it is suspended, in such a way that the curtain will not be worn or torn, is shown herewith, and forms the subject of a patent issued to Mr. Charles H. Morgan, of West Chester, Pa. A case carrying spring rollers is attached centrally to the curtain pole, and a cord connected therewith passes over

MORGAN'S CURTAIN POLE FIXTURE

a pulley and out through the stem of the case, the cord being attached to the first curtain ring, and passing thence through a retaining piece at the end of the pole and falling at the side of the curtain, where it may be easily grasped by the hand. The curtain rings are fastened together by a separate cord, so that they will be spaced regularly upon the pole, and will all be moved by the cord connected with the spring rollers. The retaining piece at the end of the pole has a spring held pivoted pawl adapted to hold the operating cord in any position in which it may be left at rest, with the curtains wholly or partly opened, while allowing them to be fully moved in either direction, at the will of the operator.

AN IMPROVED WIRE STRETCHER.

The illustration shows a light and conveniently ma nipulated device for stretching fence wires, which has been patented by Mr. John W. King, of Buena Vista Tenn. Near the outer end of a hand lever are triangu lar recesses, in which is pivoted a yoke, the member of which are connected by a bar to which an out wardly extending twin hook is secured. In the rounded end of the lever are one or more teeth or pins, and a U-bar is pivoted near its end having hook-like teeth extending beyond the end of the lever, this bar being normally held folded back upon the lever. A small cutter pro jects from the back of the lever, and a hand bar is also hinged thereto. When a barbed wire is to be stretched it is passed through only one of the hooks, but a tape wire is to be passed through both hooks to give suffici ent gripping surface. The wire being brought into en gagement with the hooks, the teeth on the ends of the lever are placed in contact with the side of the post and the lever is swung around until the wire is brought up against the post, when the teeth of the U-bar, being made to engage the opposite face of the post, will hold

the lever parallel with the line of stretched wire, which may be nailed or clamped to the post in the usual way.

The Penberthy Automatic Injector Co., of Detroit, Mich., exhibited their injector at the Detroit exposition of 1889 , and were awarded therefor the only medal given in this line.

While reading of " Instances of the Effects of Musical Sounds on Animals," by Mr. Stearns, in which I have been much interested, it recalled to my mind apparently similar effects produced upon seals, which I often noticed during a prolonged stay in Hudson's Strait. Here the Eskimo might of ten be seen lying at full length at the edge of an ice floe, and, although no full length at the edge of an ice floe, and, although no
seals could be seen, they persistently whistled in a low note similar to that of ten used in calling tame pigeons, note similar to that often used in calling tame pigeons,
or, if words can express my meaning, like a plaintive phe-ew, few-few, the first note being prolonged at least three seconds. If there were any seals within hearing distance, they were invariably attracted to the spot and it was amusing to see them lifting themselves a high as possible out of the water, and slowly shaking their heads, as though highly delighted with the music.
Here they would remain for some time, until one, perhaps more venturesome than the rest, would come within striking distance of the Eskimo, who, starting to his feet with gun or harpoon, would often change the seal's tune of joy to one of sorrow, the others mak ing off as fast as possible.
The whistling had to be continuous, and was more effective if performed by another Eskimo a short distance back from the one lying motionless at the edge of the ice.
I may add that the experiment was often tried by myself with the same result.-F. F. Payne, in Ameri can Naturalist.

AN IMPROVED LEDGER INDEX.

A device designed especially for the convenience of bookkeepers is illustrated herewith, and has been pat ented by Mr. George A. Pratt, of Brownsville, Cal. To he inside of the cover of the ledger or other large book aving an index is secured a suitable casing with an pening in which operates a drawer, to be held in plac by a knob and catch or lock. Within this drawer is placed a separate index book, so that the bookkeeper on pulling out the drawer, will have the index continu ally before him while posting, and be saved the neces

PRATT'S BOOK INDEX AND CASING.
sity of having constantly to turn to the front of the book to find the folio for each account. The drawer is o attached to the ledger by means of catches on each side that there is no liability of their becoming sepa rated.

Effect of Small Bore Bullets on the Body
The adoption of small bore rifles by most Europea countries-Switzerland now employing $7 \cdot 5$ and 6 milli meters (25 mm . being very nearly an inch), France 8 , Belgium 7•6, instead of the hitherto universally used 11 mm .-leads to the consideration of what the effect on the human body will be of the increased penetration of these bullets, which can pass through iron plates of 12 mm . (nearly half an inch), and deal planks of $1 \cdot 1$ meter (about a yard) in thickness-a penetration five or six times as great as that of the projectiles hitherto em ployed in the German army. Professor Paul Bruns the well known surgeon of Tubingen, has published a work which attempts to give an experimentally scien tific answer to this important question. His exper ments were made with the Belgian Mauser rifle, and the conclusions he has come to must be considered in all respects satisfactory from a humane point of view He asserts that the hydraulic pressure in the wound is much diminished, partly on account of the smaller diameter of the bullet and partly on account of the spring action of the thin steel coating which surrounds the soft lead core of the new projectile, so that the extensive tearing of the soft tissues of the body, such as the old lead bullets used to cause-and which often gave rise to the erroneous idea that explosive bullets were employed-will not occur.
The new projectile, which, at 100 meters, passes through four or five limbs and smashes up three thigh bones, placed one behind the other, makes a smooth cylindrical opening, of less diameter than itself, through flesh. The wound made where the bullet enters is generally of less diameter than itself. The exit is a slit or a star-shaped opening, with torn edges, about 6 to 8 mm . wide. At longer ranges, 400 to 1,500 yards, the bones are not shattered, but bored through in a clean hole or channel. Hence, according to Dr. Bruns, the
chances of healing bullet wounds will, notwithstanding the much greater efficiency of the new rifle, be much more favorable than in the case of the larger bores. So it would appear that in all cases progress in the art of war leads to the diminution of human suffering!Ueber Land und Meer.

AN IMPROVED CLOTHES LINE ADJUSTER.
The device shown is designed to be applied to traveling clothes lines, for readily drawing the line aut, and to automatically relieve the strain inci lent to shrinkage after wet weather. It has been pa tented by Mr. Henry F. Metzler, of No. 603 Carrol Street, Brooklyn, N. Y. Fig. 1 shows the device in

METZLER'S CLOTHES LINE ADJUSTER.

use, Fig. 2 being a plan view thereof, and Fig. 3 a side view. One end of the rope is passed through the aperture, a, in the holder, and knotted, the other end being passed through the jaws, $b b$, and around the bolt, F^{\prime}, as around a pulley. The body of the holder may be of wood or metal, but is preferably of wood, and is slotted, as at c, to form the jaws, and recessed at $d d$, to allow space for the rope to pass. A screw-threaded common bolt may be passed through the jaws, with a thumb nut for tightening the jaws upon the rope, the grip upon the rope being made firm enough to hold it ordinarily taut, but not so close as to prevent a slight drawing of the line through the jaws to allow for shrinkage without injurious strain.

A WATER SHIELD FOR WINDOW BRUSHES. The device shown in the illustration is adapted for convenient and expeditious attachment to the handle of any brush or window-cleaning implement, to prevent the water from passing down the handle to the hands of the operator. It has been patented by Mr. Isaac Stiner, of No. 248 East Seventy-eighth Street, New York City. The device consists of an elastic cup, preferably formed of rubber, and having an upwardly extending central conical portion, through which is an opening for the passage of the handle, there being also

Stiner's water shield for window brushes.
an annular flange integral with the outer side face of the cup, and an aperture or opening on one side forming a spout for the delivery of water from the cup.

THE military commission of the Austrian army have established a law that the offense of intoxication should be punished the first time by a public reprimand. The second offense by several days' imprisonment in the guard house. The third offense is evidence that the victir is suffering from a chronic disease, and he is placed under constant surveillance. His pay is taken out of his hands, and every means used to prevent him from getting money to secure spirits.

A NEW SUBMARINE BOAT
(Continued from first page.)
In diameter, and weighs, all armed, 6,000 kilogrammes (13,200 pounds), thus permitting of its being carried from one end of the world to the other, like a package or a ship's launch, upon a railway truck or on board of an ironclad.
This relative lightness does not prevent its having, by reason of its lines, a wonderful trim, and of being remarkably seaworthy. When it is floating on the surface, even during a rough sea, it carries two or three men very well upon top (Fig. 2) without rocking.
The Goubet is provided underneath with a mass of lead of 900 kilogrammes (1,980 pounds), which may be freed by turning a bolt. This is termed the safety weight.
It remains to state that the boat is capable of being steered under water, in spite of the opacity of the medium and of the disturbance of the compass near the dynamo that furnishes the motive power. The Goubet can run by oar, but its submarine paddles can be used only for running forward. It is not possible with their aid to back water. Mr. Goubet, therefore, had to remove the rudder helix, movable in all directions, which he uses both for running and steering, and to replace it by a provisional apparatus which will permit him to perform all the evolutions desirable, without the help of electricity, for the entire time of the experiments. This change had to be made because the administration of bridges and highways would not allow Mr. Goubet to run his boat by electricity in the Commerce basin.
Mr. Goubet is studying a play of mirrors that will permit him, when immersed, to perceive, within a certain radius, all the objects rising above the surface of the water, and also a combination designed to protect his compass against the disturbing influence of the electric motor.-Abstract from Le Monde Illustre.

Optical Illusions.*

If any one wishes to make an emphatic statement about an occurrence or thing, and says, "It must be so, I saw it myself," he considers the matter is settled. To-night I shall try to show that seeing is not always believing, and that many things we see are merely optical illusions and not to be entirely depended on as facts.
I use the term as a title in the widest possible sense, and intend including in the subject any case in which we see, or think we see, anything differently from what it is in reality. My paper will be divided, more for convenience than with scientific accuracy, into three parts. First, illusions depending on optical contrivances-reflection and refraction being the chief causes of deception; secondly, illusions depending on the structure of the eye-here we shall dis cuss color, irradiation, and binocular phe nomena; and thirdly, optical illusions depending on the brain, or the interpretations of the sensations received by the eye. In this section I shall give instances in which the judgment is misled, and conclude with a few words on apparitions.
I.-Illusions Depending on Optical Con-trivances.-Probably the best known optical illusion is Pepper's ghost. Here a plate of plane glass is placed at an angle of 45° near the front of the stage, before it the stage floor is some feet lower, and any strongly illuminated object, on the floor in a hori zontal position appears upright and on the stage. One of my friends recently showed me a device depend ing on the same principle, by which a photograph on glass is superposed on an ordinary carte.
Reflection is responsible for some of the tricks of the Davenport Brothers and for the curiosities known as living heads without bodies, etc. The converse of this may be seen in the palace of Versailles, where a combination of mirrors makes spectators appear headless.
The "optical paradox" enables one apparently to see through a brick, but really four plane mirrors carry the light round the obstacle.
In the "phantom bouquet" concealed flowers are made by a concave mirror to appear in a vase. Concave and convex cylindrical mirrors cause strange and amusing distortions of the faces of those looking at them.
Refraction makes a pond appear shallower than it is and a stick put in water appears bent. By refraction of light through layers of air of different densities, the strange illusions known as mirages are produced.
If a wine glass is partly filled with water and inverted on a plate with a coin on it, refraction causes the coin to appear on the surface of the water, and it is also seen directly, but enlarged. By means of the double refraction of Iceland spar, a dot placed under it appears as two.
II -Ilusions De pending on the Structure of the Eye.
*Estracts from a paper read at a meeting of the Midland Counties Chemists' Association, February 18, 1890. By J. F. Liverseege, A.I.C. M.P.s.
-Several interesting illusions depend on the fact that an image on the retina lasts about an eighth of a second. In the thaumatrope a card has an object drawn on each side, say a bird on one side and a cage on the other; if the card is rotated, the images are superposed and the bird appears in the cage. In the zoetrope and the phantascope a moving object, as a swinging pendulum, is drawn in successive stages, and while the series is rotated and viewed through slits,

Fig. 4.-THE GOUBET COMPLETELY SUBMERGED
the pendulum appears to be swinging backward and forward. For the same reason a vibrating string appears as a flat plate, and we think lightning lasts much longer than it actually does, while without this "persistence" fireworks would lose most of their beauty. The rotating vacuum bulbs form a very pretty illustration of this, but as the illumination is intermittent, the tube appears as a rayed star and not as a continuous circle.
That white light is composed of all colors may be shown by rotating a disk with segments, colored in proper proportions, when the colors are blended, and it appears white, or more correctly gray.
Physiologically, white light is made up of the three colors, red, green, and violet, which we probably perceive by three sets of nerve fibers of the retina. On the border of the retina the red-perceiving nerve fibers are absent. We can see this by holding a red pencil in front of the eye at arm's length, and while keeping the eye fixed moving the pencil round sideways, until we

Fig. 3.-THE GOUBET PARTIALLY SUBMERGED

reach a point at which the pencil is visible but appear black. If the eye has an excess of one color presented to it for some time, the nerve fibers corresponding to that color are incapable of acting for a short period and a white surface appears tinged with the comple mentary color. This effect has been largely used by a certain firm for advertising purposes. Similarly a strip of white paper on a piece of bright green covered with white tissue paper appears pink.
An ingenious advertisement has blue figures on red ground. When these are viewed in the shadow and slightly moved, the blue marks appear to dance about the paper, for when the eyes are in focus for the red, an image for the blue is formed in front of the re tina, and is therefore indistinct; when the blue is right, the red is indistinct; as the red rays converge to a point behind the retina, the rapid changing of the focus of the eye from one to the other position makes the dges indistinct, and gives the idea of motion.
If santonin is taken, white appears yellow, as this ing fibers.
If a thin platinum wire is made incandescent with an electric current, its apparent thickness is greatly increased; this is due to "irradiation," or the encroaching of bright parts on darker ones; similarly, any one looks larger in light than in dark clothes, and a white wafer on a black ground looks larger than a black wafer on a white ground. The effect of background may be noticed in a snow storm; the snow looks black against the light sky, but white against the dark earth. Irradiation also explains the appearance of a
pole with the sun as background, when the pole appears narrower, or even discontinuous, where in front of the sun's disk. A piece of black thread held in front of the gas shows the same phenomenon.
A defect of the eye, known as spherical aberration, causes the eye to see a bright point as a star. Gas lamps in foggy weather show this well.
Milk looks white and blood red because the eye has not sufficient magnifying power to perceive that colored or opaque particles are floating in a colorless liquid.
The part of the retina where the optic nerve enters the eye is quite blind; to observe this, put a dot and a cross on a piece of paper about three inches apart, close the left eye, and fix the right eye on the cross to the left of the paper, and at a certain distance (about nine inches) the dot entirely disappears.
If a pin be held by the point quite close to the eye, and a pin hole in a card be held between the eye and a light, the pin will appear head downward, owing to the upright shadow being inverted by the judgment, as if it were the inverted image usually received on the retina.
The experiment known as Scheiner's is curious. By looking at a pin through two holes very close together two pins are seen, as an image on the retina is produced by the rays of light passing through each of the holes.
Our having two eyes make some strange illusions possible. Let a paper tube be placed to the left eye and the hand be placed by the right side of it, when a hole will appear in the middle of the hand. This property of the brain of combining the images of the tworetina is occasionally of use in tracing the form of an object under the microscope without the aid of a drawing prism.
The stereoscope gives the appearance of solidity by combining two slightly different views by means of prismatic eyepieces. Two somewhat similar "cartes" placed under it are blended to a curious composite por trait. If two banknotes are observed in it, and there is any appearance of solidity, they are not identical and therefore one is forged.

That our judgment of distance largely depends on having two eyes, may be amusingly shown by trying to thread a needle with one eye closed.
The pseudoscope is a combination of prisms which inverts the normal relation, and makes near objects appear distant, and vice versa, in a most bewildering way.
The curious rotation of "strobic circles" partly depersistence and partly on the fact that the curvature of the eye is not exactly the sam in the vertical and horizontal direction.
Pictures must be classed as optical illu sions, for all artists attempt to make objects on a flat surface appear to have three dimen sions. So well is this done at times that we think the eyes of a picture follow us as we move about a room.
The effect of neighboring forms in misleading the judgment may be shown by placing two exactly equal somewhat horse shoe-shaped pieces of cardboard with the narrow part of the one opposed to the broad part of the other, when the latter will always look larger.
How big does the sun look? is a question which would get various answers; or, to put it more definitely, what is the diameter of a sphere which just hides the sun's disk at a certain distance, say ten feet? As far as I can answer the question, I should say between three and four inches. This is an example of the difficulty of estimating the size of an object with nothing to compare it with; when on the horizon, the sun appears larger, for there we may have comparison objects When we see people walking on the top of a small hill, the summit of which is sharply defined against the sky they appear gigantic. The "Specter of the Brocken," shadow cast by the rising sun, may also be mentioned An amusing error of judgment is of ten made when one attempts to show the distance from the floor a hat on a gentleman's head would reach.
If a square is divided in one direction by paralle ines, it appears elongated in the direction of the lines; n dress this is useful, for vertical stripes make a lady ook taller and thinner.
Illusions of motion are common. We may watch a waterfall till the water appears to stand still, and the rocks behind it move up. While sitting in a train and watching another train passing, it is impossible, if the latter be of closed coaches (like a mail train), to say which of four things is happening. The other train may be at rest, or we may be at rest, both trains may be moving in the same direction, but ours quicker, or in contrary directions. We can only settle the question by looking out of the other window
On looking at a bright sky I can see spots moving up and down, and looking like snakes. These are known as muscæ volitantes, and are due to moving opaque particles in the vitreous humor of the eye throwing shadow on the retina.
[The lecturer introduced other examples of optical
illusions which one frequently observes, the cause of which is a mystery to him; but the above selections are among the best examples produced.--Ed.]

A Balloon Ascent.

Great excitement was caused at Croydon, England, on a recent Saturday afternoon in connection with the ascent of Professor Higgins, the parachutist, and for several hours doubts were entertained as to his safety. The balloon, which had that day been named "The Duke's Motto," and which was of the capacity of 12,000 cubic feet, was fully charged by five o'clock. Higgins said the direction of the wind, which was northeast, would necessitate his traveling a considerable height, but he hoped to return to the field in about half an hour. When he gave the signal to the attendants to "let go," the balloon gradually rose and appeared to go in the direction of Norwood. Upon reaching an altitude of something like 4,000 feet, the parachute became detached from the net of the balloon, which was rising at a great rate. It was evident that something had gone wrong. The balloon rapidly disappeared in the clouds. When darkness set in and no news had been received of the parachutist, much anxiety was evinced as to his fate. Shortly after eight o'clock, however, all fear was dispelled by the receipt of a telegram stating that Higgins had landed safely near Tonbridge. Higgins returned to East Croydon by the $9: 20$ train. In an interview with a correspondent, Higgins stated that he had experienced the most wonderful of all his aerial voyages. When he had reached a height of 4,000 feet he began to get into a strong current, and the balloon twisted right round. The current then caught his parachute, causing the wooden ring of it to catch him very tightly under the arms. The test cord which held the parachute then broke. Directly that happened he saw that the parachute was hanging below him fully inflated, and the pressure on him was so great that it was impossible for him to descend into the middle of the town with anything like safety. He thereupon opened his penknife with his teeth and cut the parachute away. This caused the balloon to shoot up 6,000 feet higher, and, on reaching that altitude, he met another current which brought him back, and he saw nothing until he passed through some sleet and snow. He could hear, however, the sound of trains. He was in this snow storm for at least ten minutes, and when he had passed through it the sun was shining beautifully. He could see the sun glistening on the water at Brighton. He found the air getting very sharp and keen; icicles were hanging from his mustache. For a few minutes he was quite deaf. He now seemed to be descending and he thought he was getting near Hastings or Brighton. He could smell the sea. When he was 2,000 feet from the earth, he prepared to descend by hang ing by one arm on to his trapeze rope as if he were using his parachute. When his feet touched the ground the balloon, which was in front of him, dragged him for ten yards, and then rebounded some sixty feet in the air, between two trees. Two laborers, in response to his signals, arrived just as he came down a second time, and held the balloon until he let out the gas. He found that he had landed on a farm in the occupation of Mr. Nash, at Penshurst, about thirty miles from Croydon. In reply to questions, Higgins said that at one time he must have been five miles above the earth -the highest he had ever been. He added that the balloon had no escape valve.

The Farmers' Trust.

At last the farmers have a sure remedy for depressed prices. A company has been incorporated in Illinois, with headquarters at Chicago, under the awe-inspiring title of the Farmers' Co-operative Brotherhood of the United States. The incorporators propose to do busi ness with $\$ 50,000,000$, which will be subscribed by the farmers. When the stock is all taken, the brotherhood will be informed by the farmers what price they desire for their grain, and the brotherhood will go into the market and push the price up to the desired point. Thus farmers can sell their grain, and buy more stock in the brotherhood, and in a short time the brother hood will have the grain and the farmers will have the stock. The scheme is very simple and will undoubt edly prove a howling success-that is, the farmers will howl for their grain, which the promoters have success fully made away with. The Farmers' Brotherhood are to get rich by buying their own grain. The "farmers" who are in the scheme probably all live in Chicago. The curious part of this and all similar plans for increasing the price of the farmers' produce is that it utterly loses sight of the fact that the farmers of the United States do not raise all the grain in the world. In fact, any very great advance in the price of wheat, or instance, would be almost certain to bring Russian wheat to our shores, in spite of the tariff. The farmer has not had a very good time of it of late years; but his redemption will not be brought about by any such scheme as the brotherhood proposes, or the equally orilliant plan of the Detroit gentlemen who proposed that farmers could instantly double the price of wheat by burning half of their crop.-American Miller.

©rrespondence.

Cedar Oil.

To the Editor of the Scientific American
Noticing your reply to H. W. H., in the Scientific American of the 19th inst., I wish to say that cedar oil is made in this vicinity by distillation, the smal branches being used. As the branches can be obtained wherever the cedar grows, and as the shavings cannot be easily obtained, this may be of value to your corre pondent.
Lyndon, Vt., April 21, 1890.

Pittsburg a Great City.

The Editor of the Scientific American

In a late issue of your paper you published a table iving the estimated comparative rank of the cities of the United States in 1890, in which you rank Pittsburg as the fifteenth in population.
To persons familiar with the Pittsburg of to-day this eems a guess without knowledge of the facts. Intelli gent estimates of the present population of Pittsburg put it at about 450,000 , which would entitle it to rank about eighth, or above Cincinnati, San Francisco, or New Orleans.
The clearing house statements for the week ending 26 th inst., now before me, seem to conclusively prove this. In this statement Pittsburg ranks the sixth city being about 25 per cent above San Francisco, 35 per cent above Baltimore, 50 per cent above Cincinnati 100 per cent above Kansas City and New Orleans, etc It seems to us inexplainable that a city should rank sixth in business transacted and only fifteenth in popu lation.
Pittsburg, April 29, 1890.

Tin Roof Painting.

To the Editor of the Scientific American
To allow a new tin roof to become rusty before being painted is like closing up the bunghole of a barrel and letting the liquid flow from the spigot. A rough sur face secures the paint better, but gives the tin a star toward rusting, and the rust will sooner or later destroy it. This is based on the fact, and proved by experience, that iron once started to rust will continue on to rust, when water or dampness is present, until in time it is entirely destroyed, even though the best of paint is laid on to protect it. In these days, when the lowest and most unscrupulous bidder usually receives the contract to build, the painter can hardly be blamed for "closing the bunghole" by means of cheap iron ore paint, and allowing the tin, that should be protected, to waste through the spigot by rust. It is by far the better way to repaint the roof when the paint is too much flaked off, than to permit the tin roof to rust The main cause of paint flaking or peeling off tin is owing to the polished surface, as no polished metal will properly hold paint. This accounts for painters preferring a slightly rusted roof to work upon, because it fastens the paint better, although it at the same time damages the tin. When iron ore paint hardens, it con tracts, cracks, and loses its hold on polished surfaces, which increases to an astonishing degree in cold weather, where the least vibration will loosen its hold Some of the finest and most costly Chinese painting on polished metal have been instantaneously destroyed by that means. No competent carriage builder will allow any polished iron, axles, springs, hub bands, etc. to pass into the paint shop without previously roughing their surfaces, either by filing, grinding, or sand paper ing, to prepare them for adhesion for paint. This plan is also observed by the sign painter when using shee tect tin on roofs? I have answered this repeatedly in former communications, and still know of nothing bet er than red lead ground in raw, cold-pressed linseed oil, applied the same day it is mixed, which forms the nost tenacious and weather-resisting paint of all paint known to me. I treated the roofs of my factory, eighteen years ago, with two coats of red lead on both sides of the tin, having since repeated the painting o the upper side every three or four years (through per suasion) with iron ore paint. The result is, there from the iron ore paint, which in some places peels off from the red lead in large patches, leaving the red lead on the tin. I close with the remark, "All paints not poisonous, and requiring driers to insure hardening re unfit for durable painting.' Bloomington, Illinois.

The survey of the mouth of the Columbia River, re ently made under authority of the Secretary of War shows that great and beneficial changes have taken place upon the bar since the survey of 1885 , about the time of the commencement of the construction of the jetty. The same channel depth over the bar which was available for a width of $11 / 2$ miles in 1885 is now a vailable for a width of 5 miles, with indications that a much deeper ohannel is forming through ahout the middle of the bar.

An Ingenious Device for Lighting the Bottom of

In the investigations that were undertaken by the Prince of Monaco in deep-sea soundings, an ingeniou method was adopted to obtain specimens of the living creatures existing at the bottom of the ocean. The apparatus used was shown at the Paris exhibition The cage in which the submarine animals were caught according to Le Genie Civil, consisted of a cylinder of wire having three conical entrances, like those of a lobster pot, and weighted for submersion with detach able weights. It was, however, very unlikely that at these immense depths, where the darkness is practi cally total, any fish would voluntarily find their way into the trap, and steps were taken to attract them by a light placed inside it. Obviously, no light was avail able but an electric light, but to get an electric light to burn a mile or two under water was not easy.
The only resource was to supply the incandescent wire from a battery in the trap. Here, however, another difficulty occurred. It was necessary to inclose the battery, which had to be of considerable power, in a box of some kind, and as the hydrostatic pressure at such depths was six or seven hundred pounds to the square inch, it was found impossible to make a box which was not crushed before it reached its destina tion. At last, however, this trouble was overcome by the curious device of connecting the box with a bal loon. The balloon was made of cloth dipped in India rubber, and so arranged that the air in it was in communication with that in the battery box.
On sinking the apparatus, the hydrostatic pressure being virtually uniform all round the balloon, com pressed it equally on all sides, forcing the air out of it pressed it equally on all sides, forcing the air out of it
into the battery box, until the pressure inside the box into the battery box, until the pressure inside the box
and balloon exactly balanced the pressure outside. This process went on to any extent, so that at the bot tom of the sea, although the balloon was reduced b. the enormous force exerted on it to a small fraction o its original size, it still kept the internal and external pressure equal. On raising the apparatus again it expanded as the pressure diminished, and brought the battery box to the surface uninjured. So successfu was this device that, not content with capturing deep sea fish, the prince and his assistants propose on their next expedition to send down a photographic appara us and bring back negatives of the bottom of the ocean, as seen by the electric light.-Gas Light Jour.

Export of American Machinery.

American trade journals take it as an unquestionable fact that the export of American machinery is increas ing. The demand from abroad, they say, for American extile machinery has of late been more active than ver before, and is undoubtedly to be attributed to he numerous patented improvements that have been and are constantly being added to American machines or cotton and woolen manufacturing, and which are now bringing them prominently to the front. Thes devices, the result of American ingenuity and inven tion, have been patented both in America and foreign countries, thus fully protecting the rights of inventors and manufacturers, and foreigners are not slow to recognize their merits. In the case of the American oom this is especially true, for it is generally though hat for speed and good workmanship combined it superior to all its foreign rivals. As a result it is being gradually introduced in many English factories, wher practical test has clearly demonstrated its uses. In the United States the ring spinning frames are largely taking the place of mules in many of the mills, and they are now beginning to force themselves upon the attention of foreign manufacturers, who, though slow to adopt new methods, and conservative in the extreme, cannot afford to neglect any improvements, from what ever source they may come, which will give them any dvantage, however slight, over their competitors. The same is true with regard to many other machines used in the textile industry, in which the inventive genius of the New World has suggested valuable improve ments over existing methods, and which are certain to come to the front in foreign countries as soon as their value is appreciated. During the past twelve months the value of cotton and woolen machinery exported from Boston alone has amounted to nearly $\$ 325,000$, which shows an increase of almost $\$ 100,000$ in compari son with the year previous.-London Engineering.

Electricity in the Home.

Prof. R. H. Thurston, in a recent article, gives a graphic description of what electricity will do in the near future. He says it will break up the present factory system and enable the home worker once more to compete on living terms with great aggregations of capital in unscrupulous hands. Great steam engines will undoubtedly become generally the sources of power in large cities, and will send out the electric wire in every corner of the town, helping the sewing woman at her machine, the weaver at his pattern loom, the mechanic at his engine lathe, giving every house the mechanical aids needed in the kitchen, the laundry, the elevator, and at the same time giving light, and possibly heat, in liberal quantity and intensity.

THE ACCIDENT TO THE STEAMER CITY OF PARIS The accident to the machinery of the great steamer City of Paris, which took place on March 25 last at sea, off the coast of Ireland, on her outward voyage from New York, has occasioned much comment and inquiry in engineering circles. The wreck of the great engine, $10,000 \mathrm{~h}$. p., was complete. Almost in an instant it was transformed from an organized and beautifully working system into a chaotic jumble of bent and distorted fragments.
The first and apparently most correct reason given for the accident was the breaking of the propeller shaft, the sudden fracture of which was supposed to have produced a racing of the engine, by which it was torn to flinders. The cause of the breaking of the shaft was said to be due to the wearing of its outer bearings. Engineering gives a detailed explanation, from which we give a few brief extracts, with an en graving:
Each of the twin shafts passes through the ship's side through a stern tube in the usual manner. Immediately outside there is a flange coupling of the ordinary description, by which attachment is made to the outboard length of shafting. It was immediately on the forward part of this coupling, and therefore directly outside the stern tube, that the starboard shaft was broken square across. The position of this fracture is not shown in our engraving, it being some what forward of the part illus trated. The diameter of this part of the shafting is $201 / 4$ in The fracture was thick with rus on both faces, but there wa every appearance of the meta being sound throughout and of excellent quality. On the whole we should judge the shaft to be an excellent job, and the fracture to be entirely unconnected with any fault in the material. The outboard portion of the shaft abaft the coupling just referred to consists, we may say, of on length of hollow shafting 42 ft long, and one length of solid shaft 15 ft . long, this latte length carrying the propeller The total length of shafting abaft of the point of fractur was thus some 58 ft . or so

This breakage of the shaft will of course fully account for the racing of the engine, while the subsequent damage done thereby can, we think, also be fully accounted for by causes we shal explain. Proceeding aft in our examination of the vessel, we found the two arms of the stern bracket intact, their attachmen to the vessel being undisturbed At their outer ends they are, or rather were, connected by a cyl indrical boss which forms the support in which the propelle shaft revolves as shown. Thi boss, with the two arms and thei palms by which they are attach ed to the hull, form one steel casting in the usual way. The thickness of metal in the cylin drical part is $31 / 2$ in. This boss
was fitted with the usual gun metal bush and lignum vitæ bearing strips. The cylindrical part of the cast ing was split clean across the top in a line with the axis. The reason of this was obvious; when the for ward eud of the broken shaft had commenced to fall, owing to losing the support of the casing, a twisting moment of cousiderable force was naturally exerted and this the casting was unable to sustain. The length of the celindrical part of the bracket is about 6 ft .
The top part of the bracket was split across when the twisting strain was brought upon it by the release of the forward end of the outside shafting when the casing was cast adrift in the dock. It should be stated that the fracture was quite bright and free from rust, showing that it had receutly been made. It will be further evident that the cylindrical part of the casting could not be intact on its bottom side, or the shaft would not be released. There was, however, no ocea son for any fracture to oceur here throughout, and this brings us to the most interesting part of our re port. The bottom part of the casting was wor through for nearly the whole of its lenerth and mued reduced in thickne where ot worn throurh. The educhin 1 in. thick, toge wetal liner, 1 in . thick, together with its end flanges was also worn through, and was lying in the bottom of the dock. The brass sleeve of the propeller shaft had entirely disappeared, with the exception of two rings, presumably the collars at the end. The propeller shaft itself was practically umbamaged, but the metal stud. which attached the sleeve to the shaft were worn down

level with the shaft, and the shaft was slightly worn

This wearing away and consequent dropping of the end of the outer shafting we take to be the obvious primary cause of the whole mischief.
We will now proceed to give some detailed account of the damage done inside the vessel, as revealed during our examination. Passing through the starboard engine room-not without risk of broken limbs as we scramble over the debris of the low pressure enginewe enter the dynamo room, which is placed immediately abaft the engine rooms, and thence proceed to the starboard tunnel. Here we find the shafting supported by four bearings, and in each case the caps have been broken off; but, so far as we could perceive by aid of a dim light, no damage had been done to the shaft. The brake strap lugs had been broken off, but there was no sign of more than ordinary wear upon the flange on which the strap engages. The journals o the shafting were also in good condition. At the transverse partition forming the forward end of the tunnel, the plating was torn and doubled up to a height of about 6 in . above the shafting. In the dynamo room, through which both port and starboard shafts pass, there are two bearings to each shaft ; both of those belonging to the starboard shaft have their

STERN AND SCREW OF THE S.S. CITY OF PARIS. ision with some obstacle
that for the moment it was several inches higher in the engine room than it was at the stern tube. How, it will be asked, was it possible that the shaft could be so lifted while the crank shaft to which it was secured remained tied down? The answer is curious, and yet simple The crank shaft is built up. Let us suppose that while the low pressure crank was descending, which would be the case when it was pointing to the ship's side, the screws revolving outboard at the top, some obstruc tion got under it and stopped it suddenly. The momentum of the heavy screw would tend to cause the shaft to revolve round the crank pin. This it could not do without bursting up the keeps, and even then either the web must slip round on the crank pin or it must twist the pin. Now, in point of fact, the pin has not been twisted, but the crank web has slipped round on the pin, and the screw shaft center is no longer in ine with the crank shaft center. It is abundantly clear that something occurred to stop the revolution of the shaft; but further evidence is supplied by a great score in the crank web, due, apparently, to col

But it may be said all this is no doubt true, butthe obstacle was something which fell into the crank pit after the engine broke down from racing. A little re-
flection will show that this proposition is, standing alone, untenable. The screw shaft must have had some pow erful twisting force acting on it from the after end, and tha could only have been supplied by the momentum of the pro peller. Nothing forward of the after crank shaft bearing could have ripped up the screw shaf all along the alley. That result ed from the effort made by the shaft t or revolve about a new cen ter when the crank was suddenl stopped; but no rotative effor forward of the after crank shaft bearing could, as we have said, have brought about a lifting effort of the kind wanted. This seems to us to be almost conclu sive evidence that the screw shaft did not break until after the engine gave way.

We are now in a position to advance an explanation which, though not complete, goes some little way toward completeness The screw shaft was no doubt injured by bending, as we ex plained last week. The break down was brought about by some obstruction which prevent ed the rotation of the crank shaft. The screw then ripped up the shaft out of its bearings and the weakened tail end, being unable to bear the strain, broke The sudden jerk on the guide was, of course, tremendous. The connecting rod was bent, and the steel frames were, by the side effort, snapped off short at the bed plate.
"The question remaining for solution is, What caused the obstruction to the rotation of the crank? This is a point which may or may not be cleared up in the caps split. From what has been said it will be future. We have no certain solution to offer, nothing,
gathered that the shafting must have risen bodily when the accident occurred; but, as the stern tube is intact in its position, so far as our observation went, there must have been some bending of the shafting. The couplings of the various lengths have, however, tood the test.
The London Engineer gives a different theory respecting the cause of the accident, namely, it was due to the lifting of the screw shaft out of its bearings in he engine room ; and the breaking of the shaft, which took place afterward, was occasioned by the momentum of the great propeller, on the sudden stoppage of the engine.
"We find," says the Engineer, " that the screw shaft was lifted up out of its bearings from end to end, and the lifting up has been of such a character as to prove that the lifting effort occurred in the engine room. The screw shaft is secured to the end of the crank shaft in the usual way by a cheese coupling and bolts. The crank and screw shafts were virtually all one from the forward end of the engine room to the stern tube. The cap bolts of the after bearings on the crank shaft, although 5 in. in diameter, are broken off short, but the cap bolts of the other bearings are intact. Proceeding aft, we find that the cap was torn off the thrust block and the horseshots scattered about the engine room. Frow this, back to the stern tube, all the keeps were torm of, sive the lant. It is perfectly clear that the screw shaft was lifted up in the engine room, and
in fact, more than a guess, which must be taken for what it is worth. The low pressure piston was a steel casting, with a thin coned body and a heavy rim to take the packing. In such a casting it is almost impossible to eliminate severe initial stresses, set up during cooling. The cracking of large pistons is an exceedingly common occurrence, and we could cite more than one recent case where a thin conical piston has parted from the rod. If the piston broke, and a large portion of it fell to the bottom of the cylinder, the renaining portion coming down on this would cause just such a jar as was needed for the lifting of the screw shaft in the way we have described. The bursting of the cylinder would take place at the same instant.

Regulation of College Athletics.

The University of Pennsylvania authorities have at last taken a hand in college athletics, and hereafter the students will be more restricted in the various sports. A set of rules, drawn up by a committee consisting of several of the faculty and representative undergraduates, will in the future govern all college contests :
Among the rules is this : No student whose general average in the midterm or term report is below "medium" shall be permitted to engage in any university athletic contests or match rowing races, or play in any match games of base ball, foot ball, cricket, tennis, lacrosse, etc.

The City of Paris.

Iron concludes that, whatever may have been the immediate cause of the breakdown of the starboard engine of the City of Paris, considerable may be learned from the accident. In the first place, the transverse bulkheads have proved their ability to keep the vessel

ETCHING.

ETCHING METALS

There are two ways of etching metals, which produce different effects. According to one method, the design is cut, while the ground remains bright. According to the other method, the ground is etched, while the de sign remains bright.
Lines may be formed on any of the base metals iby coating the surface thinly with beeswax, scratching the design through the wax by means of a needle or any sharp instrument, finally applying to the surface a solution formed of 1 part of nitric acid, 1 part of sulphuric acid, and 8 parts of water.
Usually a rim of wax is placed around the surface to be etched, to confine the acid. After the surface has been sufficiently etched, the acid solution is poured off, the surface is washed with water, and dried, when the wax is removed by a cloth after the metal has been heated sufficiently to soften or melt the wax.
To produce an etched ground with a bright figure, this method is reversed, i. e., the design is drawn with asphaltum varnish, and the ground is exposed to the action of the acid.
In Fig. 1 is represented the end of an etched iron casket of the sixteenth century, which is an example of this kind of work. After the etching is complete the work is washed as in the other case, and the asphaltum is dissolved off by means of a cloth wet with turpentine, leaving the design bright.
afloat, although both engine rooms were filled with water. Secondly, the longitudinal bulkhead between the port and starboard engine rooms was not strong enough to prevent an accident to one from rendering the other engine useless. This bulkhead should be strengthened, so that each engine room should be practically bomb-proof against the other. Finally, there should have been valves in the circulating pipes between the engine room and the hull, which could be shut from the upper deck in case of the breakage of these pipes in the engine room. This would perhaps have prevented the filling of the engine rooms with water. It is a great satisfaction to know that the accident was not attended with loss of life, and that the vessel did not go to the bottom even after it reached Queenstown harbor.

AN IMPROVED VALVE.

The illustration shows an oscillating valve, patented by Mr. John C. Wood and Caleb F. Houston, designed to permit the easy reversing of the engine and obviate the wearing of a hollow seat when set to cut off at short stroke. Fig. 1 represents the valve in perspective, Fig. 2 being a sectional side elevation of the improvement as applied, and Fig. 3 showing the cylinder. The engine cylinder has the usual inlet and outlet ports opposite each other, over which operates the circular valve, turning in the steam chest, and in the valve, at angles to each other, are ports adapted to connect alternately with the live steam ports, and extending through the rim of the valve, as shown in Fig. 1 , so as to lead into a circular steam space in the steam chest. In the under side of the valve is an exhaust cavity adapted to alternately connect the inlet ports with one of the exhaust ports, according to the direction in which the engine is running. The valve has a central spindle carrying a slotted link pivotally connected

WOOD \& HOUSTON'S VALVE.
with a rod connected with the engine-driving shaft, to impart an oscillating motion to the valve, the pivot of the rod on the link being adjustable for governing the cut-off. The motion of the valve can be reversed by connecting the rod to the other end of the link. In the top of the valve is an annular groove in which fit a number of split rings forming a packing.
For further information relative to this invention address Mr. Caleb F. Houston, Albuquerque, New Mexico.

glass Etching.

Glass may be etched as readily as iron or steel. The wethod is about the same the only difference bein in the kind of acid employed.
The glass to be etched is completely coated with

Fig. 2.-ETCHED GLASS.
beeswax or paraffine, and the design is traced thereon by means of a needle or narrow scraper, which cuts through the wax, and exposes the surface of the glass The next step in the process is to prepare the hydro fluoric acid for use. A gutta-percha or lead bottle is required for containing this acid. It may be bought in the concentrated form, or it, may be purchased in a dilute state ready for use. The strong acid should be diluted with 8 or 10 parts of water. The article may be dipped in the acid, or the acid may be applied by means of a brush, as shown in Fig. 3.
The surface will be sufficiently etched in four or five minutes. After etching, the glass is washed in water and dried, when the wax coating is melted, and removed by means of a cloth. The design will appear a a dull or frosty surface.
The operator should be very careful to avoid inhal ing the fumes of the acid, and also to avoid touching the skin with it, as it produces painful ulcers, which are long in healing.
It is obvious that beautiful designs may be made in this manner upon window screens, lamp shades, mirror borders, etc.

Laying Pipes under Water.

Mr. F. S. Pecke, a civil engineer at Watertown, N. Y. lately accomplished in a very simple, cheap, and expeditious way what is usually a difficult and expensive operation-the laying of a long line of pipe in deep water. He had occasion to lay nearly 1,000 feet of suction pipe at Rouse's Point. The water was needed or manufacturing purposes, and as it was found that water near the shore was more or less roily and impure t was necessary to place the inlet a considerable dis tance out in the lake. He purchased for the purpose a steel pressure pipe of 8 in . diameter, manufactured by the Spiral Weld Tube Co., at East Orange, N. J. and used for couplings castiron flanges, weighing, with bolts and gaskets, about 65 lb . to the pair. Plugging
the end of the first length, he pushed it out on the sur face of Lake Champlain, and connected the second length, pushing this out in turn, until the whole line was coupled. It then presented the unusual spectacle of a line of 8 in . pressure pipe nearly $1,000 \mathrm{ft}$. long floating with a displacement of only $31 / 2 \mathrm{in}$. of its

Fig. 3.-ETCHING GLASS
diameter. When the requisite length had been connected the line was towed to position, the plug at the end removed, and the pipe sank easily in $16 \frac{1}{2} \mathrm{ft}$. of water without breaking a joint or receiving any injury. No buoys or floats were used in the operation, and no apparatus of any kind. The pipe is now in use as the suction of a steam pump, and gives perfect satisfac tion. Work of this kind usually involves the use of expensive and troublesome flexible joints, and Mr. Pecke's neat and ingenious expedient is worthy of record and of imitation under like conditions.
It is obvious, says Engineering News, that this could hardly have been done with cast iron pipe, on account of its rigidity and liability to fracture.

AN IMPROVED FURNACE DOOR OPENER

A device designed to facilitate the opening and clos ing of furnace doors, and especially adapted for application to the doors of locomotive furnaces without any alteration in the present ordinary forms of construc tion, is shown in the accompanying illustration, and has been patented by Mr. George F. Moors, of Owensborough, Ky. Beneath the floor in front of the furnace is pivoted a lever, one end of which terminates in a treadle extending above the floor, while the other end has horizontal aligning rollers adapted to engage the twisted lower end of a vertical shaft with which the rear end of the furnace door is rigidly connected, whereby pressure on the treadle end of the lever moving the rollers up on the spiral of the shaft, will swing open the furnace door. When the pressure on the treadle is removed, a spring returns the lever to its normal position and thus closes the door. Another ever is also so pivoted that the pressing down of the

MOORS' FURNACE DOOR OPENER.
readle gives vertical movement to a rod on the upper end of which is a shoulder normally resting in the bottom of the latch catch, whereby the latch bar is released simultaneously with the movement of the lever for opening the door. The latch bar extends all the way across the furnace door and has on its rear end a catch adapted to engage a similar catch projecting from the wall of the furnace at the rear end of the door, whereby the door may be held open when desired after the pressure has been removed from the treadle.

A GIGANTIC PLANT FROM SUMATRA
 \section*{(Amornhophallus Titanum.)}

In the year 1878 the well known Italian botanist and explorer, Beccari, discovered, on the island of Sumatra, a gigantic plant belonging to the Arum family, and which attains a height of about 10 feet there. From seeds which Beccari brought back to Europe, some young specimens were raised in the Botanical Garden at Florence, one of which was sent to England and was cultivated in the celebrated Botanical Garden at Kew. In the course of the year thisexotic reached a remarkable size, being nearly 6 feet high. Our illustration gives a correct idea of the immense plant, which, as the reader will see, has a spathe similar to that of the wake robbin and our so-called leaf plants. From the spathe rises the great spadix bearing the flowers. On Sumatra, another gigantic plant (Rafflesia Arnoldi) also grows, the open flower of which measures fully three feet in diameter. These plants are parasites growing on the roots of wild vines in places where the ground is enriched by elephant manure. When the buds break through the wood of the vine roots they are no larger than a walnut, giving no hint of the great are no larger than a walnut, giving no hint of the great
size of the future flower. Gradually, however, these size of the future flower. Gradually, however, these
buds attain the appearance and size of a head of white cabbage. About this time the outer leaves, which envelop the flower, turn back, and the latter appears. It has five large holes which surs ound the middle cup-shaped part. The Rafflesia described has not been found outside of Sumatra. On Java, Borneo, and the Philippine Islands there certainly are Raffiesias, but they do not attain the size of the plant which is a native of Sumatra.lllustrirte Zeitung.

The Smallest American Railway. The most diminutive railroad in all Down East, according to a newspaper exchange, is that owned and operated by the Monson, Maine, Slate Co., running frow the company's quarries to Monson Junction, on the Bangor and Piscataquis. This little road has a 2 ft . gauge, is about 6 miles in length, and is thoroughly equipped with locomotives, passenger, baggage, and freight cars, has several stations, regular time tables, and a superintendent. The superintendent is also conductor, baggage master, mail agent, passenger and freight brakeman, news agent, and director-a regular Pooh Bahand for performing all these offices he gets $\$ 900$ a year. Ten men constitute the entire force of the road. The trains average about 50 miles a day in summer and 25 miles in winter. The road is all down hill one way, so that a car will run from the quarries to the junction without the assistance of a locomotive. If a passenger misses the regular train, $\$ 5$ will secure regular train, $\$ 5$ will secure a special to carry him over the line. Last year this toy road carried 9,000 tons of the
company's freight to Monson Junction company's freight to Monson Junction
(6 tons to a car) for transshipwent over the Bangor and Piscataquis to Bangor and points west, and 4,200 passengers, who paid $\$ 12,000$ in fares, were transported at a cost of $\$ 9,000$. This little road has been in operation six years, and in all that time no accident of any kind has occurred on its line We judge it to be the smallest independent line run ning regular trains for both freight and passengers in America.

Artificial Musk.

The first French journal which gives any particulars of the artificial musk is the Journal de Pharmacie d'Alsace-Lorraine. In a recent issue this paper says Artificial musk is a chemical product appearing in crystals of a yellowish white color and of a strong musk odor. For perfumery purposes the crystals should be dissolved in alcohol, with the addition of a trace of ammonia or carbonate of ammonia. This solution, which may be compared to tincture of musk, surpasses the latter in the intensity and penetrating power of its odor. The product to be used in perfumery must previously be diluted in a homeopathic manner. The following are the rather loose details of the manufacture of the article which have been deposited with the German Patent Office: "Boil in a reflux condenser toluol or toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, with one of the following halogen compounds of butyl, viz., chloride, bromide, or iodide of butyl, along with chloride or bromide of aluminum. The resulting product falls back into the water in the still, where it is decomposed and is distilled in a current of water vapor. The parts which distill between 170° and 200° are collected separately and treated with a mixture of nitric and fuming sul phuric acid. The product obtained from this procese
is washed in water and redistilled in alcohol, from is washed in water and redistilled in alcohol, from
which the 'artificial musk' crystallizes out." The patent rights for France and abroad have been disposed of to a syndicate of manufacturing perfumers There is no doubt that the trade in natural musk, so far as the perfumery branch is concerned, is threatened with a very serious crisis. The use of musk in medicine is very restricted, the article being now only employed in certain cases of typhus.-Chemist and Druggist.

The Speed of Vessels in the British Navy. In recent years naval officers have made themselve heard as regards the constructive details of our war ships viewed as fighting machines, and in none have they been more emphatic than in that relating to speed. The purport of their argument has been that, if a vessel has not a preponderating influence in armor and guns to enable her to give battle with some chance of success, she should certainly be provided with a high speed to show a clean pair of heels if desirable It was no easy task to move aside the antiquated notions of the Admiralty in this respect. Other powers were, however, so pronounceably ahead of us on this question, that example and argument at length prevailed. Fast cruisers of 18 knots and higher speeds

THE GREAT LILY OF SUMATRA.

were built, and have met with all the success that was to be expected from them. Why this important factor f naval construction was neglected for so long was, and is still, a mystery to outsiders. Yet, when put to the test, we out-distance our competitors, and probably possess to-day the fastest ships of any navy. Premising, then, that speed is the first element of safety that an unarmored man-of-war can possess in a critica moment, and ranks befci θ ronminess, sail carrying power, or handiness, of which we used to hear so much in the past, how comes it that several small vessel have been built lately to crawl along at a top rate of 2 knots on a trial trip? True, these vessels are small -800 to 1,000 tons only ; but they would seem to havt been designed for peace purposes, fishery duties, river work, and for being kept on show instead of use were war to break out. Do the responsible authorities think nough has been done for the national honor, with al the confidence reposed in them, when attention is paid only to the leviathans in the service, and are the smal craft beneath their notice? The great success that orpedo boats have had proves that moderate sized essels may be made to travel at a pace unknown to us wenty years ago. There is, therefore, no doubt that vessels of say 180 ft . long can be driven at much higher peeds than that quoted-in fact, there are examples to prove this in foreign navies. How comes this apparent retrograde step, then, at a time when the country has been so lavish in its expenditure on its fighting tleet? We are very much afraid the answer is the old one for which public departments are noted in every
country-viz., red tape. This word may be said to mbrace everything that may be included with love of radition, circumlocution, and general desire how not to achieve results. Perhaps the British government excels all others in the capacity of requiring to be oaded before it can make perceptible progress.
Let us consider for a moment what low speed in an unarmored man-of-war really signifies. Take, as an extreme case, an ordinary cargo boat, with no protec tion and no propelling power. In the presence of an enemy's cruiser she would be inevitably captured at once. It would seem to the uninitiated mind that a ship without armor is very much in the same category as the merchantman, and to be of any value as a guard she ought to have the power for a surplus speed and the latest ordnance. It will be seen that this rule applies more to the cruiser type than to line-of-battle ships. In the former case we have a class that would be employed in time of necessity as patrols and convoys, and thus our merchant navy would be relying on a myth were the question of speed left out of consideration. That swiftness in a scout is a sine qua non goes without saying. What, then, with no want of funds t our disposal, can be the object of putting our officer and men at a disadvantage if they should be called upon to do their duty to the country? It is difficult to find any answer except the one w have given. To attack or defend at will, to keep the sea for a length o time, to overcome bad weather, and be an efficient protection to commerce means, in a few words, large engine power; but our board of Admiralty reverses the ruling of the saying that ' to be at peace we must be prepared for war," and sends to sea war ship prepared for peace only, as far as speed is concerned. Officialdom reigns su preme, and the public is hoodwinked Even a tyro at marine design will know that, as we have torpedo boat of 120 ft . long steaming at over 20 knots, vessels of a substantial build may be propelled at more than 11 to 12 knots with ordinary draught. If the type taken be that which has ob tained in the service in the past, the result is inevitable; but, with the ex perience that has come to us during recent years, most of the shipbuilding firms of the country would readily make themselves answerable, on a dis placement of 1,000 tons, for a speed o 16 or 18 knots. The remark that such a vessel would be all engines and ord nance is beside the mark, for a vesse of this kind is a weapon of offense and defense, and it is absurd, if nothing else, to furnish a war ship worthy of the name with anything short in either of these necessary vital elements. It may be said that our constructors do not have the direction of the leading features of a design in their hands. If this be the case, why does not a protest go forth against unnecessary interference? The public look to be well served, and will, if a catastrophe occur, not be slow to fix the responsibility on the shoulders of individuals. It can be easily understood that a catastrophe is within the bounds of probability if, in the present state of marine engineering, a man-ofwar can only take her place in the line of battle having a speed of 12 knots as developed on a trial trip.Industries.

Nevada', Salt Mountains.

The salt mountains located on the banks of the Rio Virgin, an affluent of the Colorado River in Lincoln County, Nev., cover an area of twenty-five miles, extending to within seven miles of the juuction of that stream with the Colorado. The salt they contain is pure and white and clearer than glass, and it is said that a piece seven or eight inches thick is sometimes clear enough to see through to read a newspaper. Over the salt is a layer of sandstone from two to eight feet thick, and when this is torn away the salt appears like a huge snowdrift. How deep it is has not yet been ascertained, but a single blast of giant powder will blow out tons of it. Under the cap rock have been discovered charred wood and charcoal, and matting made of cedar bark, which the salt has preserved, evidently the camp of prehistoric man.

A fatal explosion of an oxygen cylinder occurred on the 23d January at the Rosehill works of the Scotch and Irish Oxygen Company, Polmadie. While the foreman was in the act of carrying a cylinder, it unaccountably exploded with great force, injuring him fatally. Portions of the cylinder were afterward found a quarter of a mile off, although fences had to be penetrated in their flight.

The Strength of the Limpet

Some interesting results of a naturalist's inquiries are sent to the London Daily News by Mr. J. LawrenceHamilton, who says that, in proportion to its size, the limpet is probably the strongest of known animals, excepting the Mediterranean Venus verrucosa, a cocklelike creature, which pulls 2,071 times its own weight when out of its shell. "At Folkestone, by means of accurate appliances," says Mr. Lawrence-Hamilton, " I found that the common seashore limpet, which, defound that the common seashore limpet, which, de-
prived of its shell, weighed a minute fraction less than prived of its shell, weighed a minute fraction less than
half an ounce, required, when pulled according to its half an ounce, required, when pulled according
plane of adhesion, a force exceeding 62 lb . to remove it from its powerful grip upon the local littoral low tide rock, or upward of 1,984 times its own dead weight. The super ficial area of the base of this individual lim pet measured $2 \cdot 4$ square inches. Taking the atmospheric pressure at 14.7 lb . to the square inch, this would even then only account for 35.28 lb ., or little more than half the powe exercised in the air by this sea snail, which, acting upon immersed objects in the water, would, of course, have pulled a much greater weight than that of 62 lb . Thus, in the air a limpet pulled up to 32 lb , , but subse quently, in spite of its previous fatigue, when covered by the incoming tide, it then took upward of 54 lb . to remove it. I doubt whether the limpet's adhesive force has anything to do with the question of atmospheric pressure. In other experiments, even bits of rock came away sticking to the limpet's embrace. An ancient Greek author com pared this animal's adhesion to the ardent attachment of an ugly old woman to a handsome youth. In carrying out my experiments upon the limpets, I was ably assisted by the eminent practical scientific naturalist, the Hon. Walter Rothschild." The same correspondent says: "The force required to open an oyster appears to be $1,3191 / 2$ times the weight of the shell-less creature.'

A NEW GUN FOR FIRING HIGH EXPLOSIVES

We give an illustration of a new method of loading and constructing ordnance, lately patented by Mr. L. Gathmann, a Chicago manufacturer. The object of this invention is to facilitate the throwing of large masses of high explosives a long distance, to effect which highly compressed carbonic acid gas is placed in a cylindrical case, A between the projectile, B and the powder charge, C, this non-combustible gas being designed to protect the shell from heat and also act as a cushion, thereby protecting the projectile filled with high explosives frow any severe shock. The invention further consists in placing a ring, D, against a specially constructed shoulder in an enlarged powder chamber. This ring, D, is made of celluloid and has a center opening considerably smaller than the inner bore of the cannon. In discharging such ordnance the ring, D, is designed to retard, in the first moment, a great amount of the powder pressure, so that the full force cannot act at once upon the projectile, but will give a slowly starting and gradually accelerating propulsion. The opening of the ring quickly enlarges, being made of strong but very inflammable material, and before the projectile leaves the muzzle of the gun the ring almost entirely disappears. By this method the action of the gunpowder is converted in the first moment into a pushing power on the projectile, without, however, losing any of its force, it being designed that the shell or projectile shall get as much pressure before leaving the muzzle of the gun as if the ring, D, and case, A, were not inserted. The shell of the projectile or torpedo can be made very light, as it is thus protected from shock and heat, thereby giving room for large quantities of high explosives. By this method it is claimed that eight inch ordnance can throw a shell containing over one hundred pounds of the most powerful explosives a further distance than has heretofore been possible, so that one shot properly directed would sink any ironclad afloat. During the last few years large sums of years have been expended by foreign powers in perfecting torpedo boat service, but the most perfect torpedo
of to-day yet leaves much to be desired. By this invention it is claimed that a torpedo containing almost any desired amount of explosives can be thrown several miles. Pneumatic guns have heretofore taken the lead in this field, but they have thus far been adapted for only a short range fire, while, if this invention fulfills the requirements claimed by the inventor, all modern ordnance can be converted into guns for firing high explosives.

SECTION OF GATHMANN'S GUN FOR FIRING HIGH EXPLOSIVES

Valuable Instructions for Engineers.
The Eclipse Pump Manufacturing Co., Cincinnati, have published the following valuable instructions to engineers. To young and inexperienced persons the directions given are of practical value and should be heeded.

1. 'The first duty of an engineer, when he enters his boiler room in the morning, is to ascertain how many gauges of water there are in his boilers. Never unbank or replenish the fires until this is done. Accident have occurred, and many boilers have been entirely have occurred, and many boilers hav
ruined from neglect of this precaution.
2. In case of low water, immediately cove the fire with ashes, or, if no ashes are at hand, use fresh coal. Do not turn on the feed under the circumstances, nor tampe with or open the safety valve. Let the steam outlets remain as they are
3. In case of foaming, close the throttle and keep closed long enough to show true level of water. If that level is sufficiently high, feeding and blowing will usually suf fice to correct the evil. In the case of violent foaming, caused by dirty water, or change from salt to fresh, or vice versa, in addition to the action above stated, check draugh and cover fires with fresh coal.
4. When leaks are discovered, they should be repaired as soon as possible
5. Blow down under a pressure not exceed ing twenty pounds, at least once in two weeks-every Saturday night would be bet ter. In case the feed becomes muddy, blow out six or eight inches every day. When surface blow cocks are used, they should be of ten opened for a few minutes at a time.
6. After blowing down, allow the boiler to become cool before filling again. Cold wate pumped into hot boilers is very injurious from sudden contraction.
7. Care should be taken that no water comes in con act with the exterior of the boiler, either from leaky joints or other causes
8. In tubular boilers the hand holes should be often opened, and all collections removed from over the fire Also, when boilers are fed in front and blow off through the same pipe, the collection of mud or sediment in th rear end should be often removed
9. Raise the safety valve cautiously and frequently, as they are liable to become fast in their seats and use less for the purpose intended.
10. Should the gauge at any time indicate the limit of pressure allowed by the inspector, see that the safety valves are blowing off. In case of difference notify the inspector.
11. Keep gauge cocks clear and in constant use Glass gauges should not be relied on altogether
12. Under all circuinstances keep the gauges, cocks, etc., clean and in good order, and things generally in and about the engine and boiler room in a neat con dition.

Blowing up a Masonry wall.

At a recent meeting of the Institute of Marine Engi neers, Mr. Joseph Thomas described the method used in removing the old dock wall at the new entrance of the Royal Albert Dock. The basin, which it was found necessary to enlarge, was surrounded on all sides by walls 38 feet deep, 20 feet wide at the bottom, and 5 feet at the top, made of concrete, composed of six part gravel and one part Portland cement, equal to granit in hardness and strength. The ground was made up to the level of these walls and quays, and warehouse formed thereon
Several schemes were proposed for carrying out the undertaking, which were explained by Mr. Thomas but the plan adopted and carried out with every suc cess consisted in using explosives fired by electricity The effect of closing the circuit was remarkable. Th entire visible length of wall was instantaneously lifted in the air in a per fect line about 6 feet a crackling roar, a cloud of brownish smoke, and a violent surface displacement of the water in th immediate neighbor hood of the wall wa the only visible effec of the vast forces le oose below. So in stantaneous was th
storm, and look at me. One hundred and eighty ickuess the appetite

The first canal grain receipts of the season arrived at New York May 6, in the steam canal boat William Spencer. She had 7,100 bushels of wheat, and made the passage from Buffalo in seven days and five
hours.
ffect that the chair man of the dock company, who closed the circuit declared the wall fell to pieces before his hand struck the switch.

Poison in Cflery.-Dr. Charles M. Cresson, of Philadelphia, states that he has more than once found the typhoid bacilli in the juice that he has squeezed out of celery grown near Philadelphia.-Annals of Hygiene.

RECENTLY PATENTED INVENTIONS.

Mechanical.

Hand Planer. - Samuel M. Neely, Smith's Turn Out., S. C. This is a machine with frame in which a carriage is adapted to travel, there
being attached thereto saw or planer bits, the carriage being conveniently and expeditiously manipulated and the knives being
varied thickness.
Die for Making Rock Drills. John Cahill, Tarrytown, N. Y. Combined with hinged die sections oppositely and longitudinally channeled to produce a circular aperture are four spaced guides, wit
die keys made to features, whereby a steam hammer may be utilized to rapidly and perfectly form the wings and cutting edge on a rock drill.

Agricultural

Harrow. - Niels L. Beck, Brayton, Iowa. The frame of this harrow is preferably made of iron or steel, broad at the rear and narrow in front, and
having forwardly projecting teeth attached to the bars having forwardly projecting teeth attached to the bars
of the frame in such a manner that they will be held and firmly braced therein, while the construction is designed to be simple, durable and cheap.
Portable Corn Crib. - Charles I. ook and Henry M. Briton, Odebolt, Mowa. The bod twisted wire bands, the body having a side door, and there being a detachable chain for connecting the edges
of the body, the whole having a conical top and removable cover, making a cheap and strong crib to bunld
Rice Machine. - Squire A. Pickett, Crowley, La. This machine consists of a drum or
casing having its lower portion divided into compartments and its upper portion provided with partition plates with depending stop ribs, and a shaft havin
arms or beaters, the machine being adapted for both hulling and scouring rice.

Miscellaneous.
Gate, - William H. Clay, Paris, Ky This invention relates to road or farm gates designed t open in either direction by a traveler on horseback or one sitting in a vehicle, the gate being operated by
simply pulling on one end or the other of a rocking simply pulling on one end or the other of a rocking will be tilted out of the perpendicular, swinging open by its ow
facility.
Indicator for Dumb Waiters.pouis Friess, New York City. This is a device to cate the location of a dumb waiter or elevator at any
point from the bottom to the top of the building, the point from the bottom to the top of the bullding, the
invention covering various novel features of construc ions and combinations of parts.
Spirally Crimped Hoop.-Leonard L. Frost, Barada, Neb. This hoop is formed with a piral groove which extends in an unbroken or in broken sections from end to end of the band from which the hoop 18 formed, the crimp preferably com ing below the center, the object being to prevent the displacement of the hoop in case of the shrinkage of the staves.
Fire Escape. - Adolph Boettcher South Stillwater, Minn. Combined with a truc mounted on inclined ways, and carrying a drum, is
ladder arranged to pass over the drum, a reel to whic he ladder extends, and or ther novel features, the ap paratus being designed to facilitate escape from burning building, while the parts are so arranged that
they will be concealed when not in use.
Portable Chute.-James Musgrave nd Joseph P. Clarke, Buenos Ayres, Argentine Re public, S. A. The chute sections are combined with he irons being arranged to engage the cables, makin readily movable and very flexible chute, which ma be adjusted with facility to deliver the material wit which a vessel is loaded to any one of the hatches.
Pulp Machine.-Charles S. Bucklin Keyport, N. J. This is a machine with curved and channeled ribs and fine and coarse sieves, to facilitate the reduction to pulp of tomatoes, pumpkins, and
other vegetables, and also grapes, currants, berries, and other fruits, and separate the pulp from the seeds
skins, etc.
Portable Blacking Stand.-Georg W. Browne, Brooklyn, N. Y. This device has a fold ing casing, with a base having a back and hinged top
and sides, wheels being secured to the rear face of the nack with other novel features, whereby the stand may e readily set up or closed and moved from place to place on the wheels.
Retaining Device for Overshoes. ists of an S-shaped strip’of spring metal, adapted be readily applied to the top rear part of the oversho and afford means for convenient attachment thereto o cord to be passed around over the instep, whereb he shoe will be prevented from belng drawn from the
Cornet.-John F. Stratton, Brooklyn N. Y. This is a French or Pyreuet piston valve
cornet, the mouth piece being of uniform diameter and cornet, the mouth piece being of uniform diameter and
leading to the first one of the valves, while an end pipe aving a bell leads from the third of the valves, grad rovement being designed to increase and beautify th prove
Vehicle Seat Top.-Henry McCurry, Chicago, Ill. This is a top which may be adjusted orward or backward to shield the driver from rain or
un, and in which the bows may be folded to not in-
overing various nove
combinations of parts.
Lumber Measuring Device. Thomas Newnham, Columbia, Fla. This is a machine hey are passed through an edger or planing machine and consists of a roll mounted to turn in a slotted box, with longitudinally extending graduations indicating oard measure appearing through the slot in the box.
Composition for Razor Strops.Henry A. Parker, Shiloh, Tenn. This is a composition o be applied with a sponge or otherwise to cypress wood or other material of an absorbent character, he compound soaking in so that it will not need re- and being designed to put a very fine cutting edge upon a razor or other edged tool or piece of cutlery.
Breech Loading Ordnance. Anthony Victorin, Troy, N. Y. This invention covers or rotating the breech block and locking the crank handle, an improved rotatable translating roller fo orcing in and withdrawing the breech block, automatic secures the swinging breech block, and an improved automatic cover or guard for the vent that prevents premature insertion of the primer, with other novel

Padlock. - William M. Brooke, New York City. This is a permutation lock so made that
he shackles may be engaged and locked without adjust ing the rings to form the combination, the means no being apparent to the ordinary observer, the lock con isting of flanged rings with registering notches in the phery the rings arraued to rotate abouta vertical port, in connection with a shackle with double arms, one of which has locking teeth, and other novel

Lamp Shade. - James P. Boesen Hoboken, N. J. This is a translucent shade, made with series of vertical single folds and a series of intersect ing transverse double folds, giving the shade a conical
shape, slightly curved inward in the direction of its shape, slightly curved inward in the direction of its
lower edge, the shade being constructed of a single plece and designed to show upon its outer and inner aces an alternate dark and light tint.
Gate. - Philip O. Hirsch, Grand to what are This invention relates more particularly designed to be readily opened by a person approaching on horseback or in a vehicle, without dismounting, and mintly closed after passing through.

SCIENTIFIC AMERICAN

BUILDING EDITION

MAY NUMBER. -(No. ${ }^{\text {55 }}$)

TABLE OF CONTENTS.

1. Elegant plate in colors representing a tasteful cot tage of moderate cost at Buffalo, N. Y. Perspe
tive elevation, floor plans, sheet of details, etc.
2. Colored view of a residence at St. George. Staten Island, N. Y. Estimated cost $\$ 20,000$. Floo 150 th Street, New York city. S. Burrage Reed architect.
New buildings at Eastgate and Bridge Streets,
graving
Binghamton, N. Y. Perspective elevations and Perspective view of the office buildings of the Gotthard Railroad in Lucerne
An English cottage. Perspective and floor plan A cottage recently erected at Binghamton, N. Y
cost complete $\$ \$ 800$. Plans and perspective.
A residence in the Gothic style erected at N
Brighton, S. I. Floor plans and perspective.
xcellent design of a country house recen erected at Belle Haven, Conn. Cost $\$ 14,250$. scar S. Teale of New York, architect. Perspe tive views and floor plans.
3. A double dwelling at Yonkers, N. Y., erected at coss of $\$ 8,000$. Plans and perspective.
4. Residence of Chas. Kappes, Esq., at Stapleton,
Staten Island, N. Y. Cost complete $\$ 4,000$. PerStaten Island, N. Y. Cost complete $\$ 4,000$. Per pective elevation and floor plan
$\$ 7,250$ complete. Floor plans and perspective. 14. Miscellaneous Contents: High buildings. - Bad flues.-Imitation ebony.-Destruction of asphalt pavement by gas.-Art of building.-Improved
dumb waiters, illustrated.-An improved skylight, illustrated.-Rogers miter planer, illustrated.Dumb waiters and hand power elevators.-A fine window in the Convent of the Sacred Heart, illus rated.-Improved sash pulleys, illustrated.hot air and hot water heater, illustrated.-Color llustrated.-An improved window screen frame illustrated.-An i Scientific
The Scientific American Architects and Builder 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of architec URE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and examples of M
allied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largest Circulatio of any Architectu
newsdealers.
$\underset{361 \text { Broadway, }}{\text { MUNN } \& \text { New York }}$
$\mathfrak{B u}^{2}$ uness and Personal.
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

For Sale-New and second hand iron-working ma hinery. Prompt dellvery. W. P. Davis, hochester, Acme engine, 1 to 5 H. P. See adv. next issue
Tuerk water motors at 12 Cortlandt St., New York. Hoisting Engines. The D. Frisbie Co., New York cit Preses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Platinum scrap, old wire, etc., bought, Willis \& Cle ents, 39 S. 10th St. Philadelphia
Best Ice and Refrigerating Machines made by David Boyle, Chicago, m. The Improved Hydraulic Jacks, Punches, and Tube Veneer machines, with latest improvements. Farr dry. and Mach. Co., Ansonia, Conn. Send for circular. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 173. Screw machines, milling machines, and drill presses. Billings' Patent Adjustable Tap and Reamer Wrenches. Br.
Conn.
Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum apparatas. al Wanted-Two first class instrument makers. Apply by letter to T. C. Mendenhall, Superintendent Unit Manhattan packing is self-lubricating. It keeps th piston rods bright and smooth. Send for sample an
price list to Greene, Tweed $\&$ Co.. 83 Chambers St., N. Y. The Holly Manufacturing Co., of Lockport, N. Y Will send their pamphlet, describing water works ma-
hinery, and containing reports of tests, on application. The best book for electricians and beginners in elecBy mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. Wanted-Foreman for machine shop in large city in Cisconsin, employing about 100 men . One posted o
Corliss engines and ice machines and who understan German preferred. Address Foreman, care Scientiflc merican, New York
Wanted, mechanic or designer of machinery, familiar with wire bending and paper bagmachines, to design and
make an attachment to latter, to make and attach wire fasteners to paper bags. For particulars address A. G. Blincoe, Loretto, Ky.
nd other Books for and conte catalogue of Scienticic

numatum

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information, and not for publication. Rererences to former articles or answers should
give date of paper and page or number of question.
In quires not answered in reasonable time should
be repeated; correspondents will bear in mind that
ent be repeated; correspondents will bear in mind that
some answers require not alittle research, and,
though we endeavor to reply to all aither by letter
or in this department, each must hake his turn.

price.
Minerala sent for examination should be distinctly
marked or labeled.
(2172) T. H. B. asks (1) how to make an electric deposit of gold, silver, nickel,"copper, etc., directly on a plaster of Paris cast. A. Coat the image with plumbago, brushed on with a hard brush; sprinkle
with a little metallic iron in powder (iron reduced by with a little metallic iron in powder (iron reduced by hydrogen) before putting in bath, then plate by hattery. . What is the most fusible metal at the lowest fusible cadmium 13 parts. This is about the most fusible of alloys without mercury 3. Will copper plate deposit on any metal? A. With enough battery it will on all the common metals. 4. Does the lowest fusible metal
shrink in cooling? A. Yes; as it cools it contracts, though with enough bismuth it will tend to expand as
(2173) Mrs. W. E. asks : Can I, through the aid of your most valuable paper, find out whether cyclones, or such storms as visited our northwest during the last days of March, occur in Europe? And if not, and whirlwinds seem to be located in or near the me ridians of greatest magnetic intensity, which may be drawn from the American magnetic pole through the Mississippi valley and Gulf of Mexico, and appearing on the opposite side of the globe from the Siberian pole hrough Thibet, Hindostan, and the Indian Ocean, the home of the simoons. The intermediate meridians of
Europeand America,although not free from hurricanes, are less afflicted than regions on or near the meridians
(2174) Tattoo asks : 1. What kind of ink (2174) Tattoo asks : 1. What kind of ink
is used in tattooing? A. India ink. 2. How can tattoo (2175) G nimals prepared for museums are kept from shriveling or puckering up while drying. A. For preventing
shrinkage remove all glatinous matter by curing in a bath of 1 part salt, $⿻$ 为 part alum, in a barrel of water (salinometer 30°), soak and cleanse skin of all adherent fleshy matter. In the use of this prescription experi-
(2176) R. B. asks for something which will be likely to prove effective in removing from a
rather light-colored carpet the stain of red ink? The nk does not appear to be an aniline ink. A. Possibly alcohol with some oxgall may prove of use, but success in removing it is very doubtful.
(2177) W. W. J. writes : Can you tell me how long it will take a current of electricity of 50 heated by the process? Can you tell where I can get information to perform the experiment? A. An elecric current is not measurable polk. See Scientic American, February 8, 1890 , page 91 . The water is
not sensibly heated. The rapidity depends partly on the size of electrodes and connections, partly on the electromotive force. A difference of potential of two volts is sufficient. For illustrations and descriptions of apparatus, see the Scientific American, May 12, 1888, page 295.
(2178) F. M. N. writes: 1. Can you give ne the formula for a good and durable violn varnish?
A. The true Cremona varnish is of unknown formula; its preparation is a lost art. Varnishes in general are trade
Amber fused
Oil of turpentine.
The following is for a spirit varnish
Mastic ..
Sandarac.
Sandarac
Lac......
Alcohol.
.
To tinge with yellow, annatto, Aloes, gamboge, or turmeric may be used; for red, dragon's blood or red
sanders wood. By mixug the above, intermediate sanders wood. By mixing the above, intermediate
shades may be obtained. The formula is only half the art; much depends on the application, treatment be-
ween coats, etc. It should be done by an expert. . Can the pinhole be substituted for the ordinary lens photographing machine by removing the lens? A. Yes; but it needs an exposure of several minutes. 3.
How can I make a piece of How can I make a piece of ground glass for a camera
obscura? A. Rub with a cork, water, and sand, or better, grindstone grit from the trough under a grindstone. 4 Are the photographs taken on a pinhole camera of any value? Also please give names of chemicals for either pinhole or other cameras, their proportions and how to use them. A. Treat pinhole exposed plates as you
would others. Many formule are given in our back would others. Many formule are given in our back numbers for developers, etc. 5. Is the lens used in a The lens varies according to its work, whether view, portrait, wide angle, etc. 6. Would like to have instructions as to how to make a good frictional electrical machine? A. Induction machines are now universally
used. See our SUPPLEMENT, Nos. 278 and 584. 7 Would like to be infermed if I could make concave and convex mirrors for reflection of light or heat. A. It depends on your mechanical ability. Ccnsult Sup-
PLEmENTs 139 and 318, Lens Grinding. 8. Would like to have the formula for a good liquid glue, to be used on wood and the like. A. Mix good giue with water.
heat until dissolved, and add half its volume of acetic acid. 9. What kind of wire would you advise for making a spiral spring for an air gun. It requires a good spring.
A. Steel is the best, next comes spring-tempered brass (2179) J. L. S. writes: How can I remove stains of smoke and soot from granite? Of
course I could do it by chiseling over the surface, but course could do it by chiseling over the surface, but
that would not be convenient. What acid or wash would answer the purpose? A. You may have much
trouble in doing this. Try the following on a portion where the stain is bad. Mix 14 pound of soft sortion pound whiting, 1 ounce of washing soda, and a piece of sulphate of copper as big as a walnut. Rub it over the
surface and let it stand 24 hours, and then wash off. surface and let it stand 24 hours, and then wash offr.
This and similar compounds are recommended for marThis and similar compounds are recommended for mar-
ble, and may effect a cure in your case. Thus a paste of ble, and may effect a cure in your case. Thus a paste of
1 ounce ox gall, 1 gill of lye (caustic soda solution, 1 ounce ox gall, 1 gill of lye (caustic soda solution,
stroug), $1 \not / 8$ tablespeonfuls of turpentine, with enough pipe clay to make it of thick consistency, may be ap-
(2180) T. H. writes: 1. Natural carbonic acid gas will settle in the bottom of a well and re have seen it stated also that it could be poured from one vessel to another, same as water, displacing the air.
I filled a tin can with artificial gas,and it disappeared in 3 minutes. Is there a difference between artificial or 3 minutes. Is there a difference between artifcial or
marufactured gas and the natural? A. Both are identineither will remain in an open vessel indef nitely. Artificial gas can be poured as described, but wood a ways a loss. 2. Fine furniture is made with wood as dry as it can possibly be made, yet in a room
where natural gas is used as fuel it will still shrink. Can this be explained? A. What you see is due to deterioration of the glue rather than shrinkage of the wood.
When glue becomes perfectly dry, it loses its strength When glue becomes perfectly dry, it loses its strength
Glycerine might improve it in this regard.
(2181) J. S. F. asks: 1. Is there a patented device whereby the engine of a factory can be immediately stopped by electricity from any floor, in tion of pure oxygen mixed with air, or with nitrous oxide, be of probable benefit in chronic disorders of the nervous system, where a general condition of de bility is the main trouble? A. Oxygen inhalation is now a part of regular medical practice. Nitrous oxide plication. It is used principally as an anæsthetic, but
(2182) W. E. A. asks : 1. What fraction of horse power would be required to properly run a propeller six inches in diameter? A. One-eighth horse power. 2. What size shoubd an aggregate of say eight
electro-magnets be to attract with a force equal to onefifth horse power, i. e., what length and diameter the cores and number aud length of wire? A. Magnets do not attract with horse power; the weight sustained va
ries with the current. 3. Can an ordinary bolt be soft ened sufficiently to be used in the construction of elec tro-magnets? If so, by what process? A. Yes. Heat to white heat and bury over night in forge cinders to a
good depth. 4. How many hours will a chloride of good depth. 4. How many hours will a chloride of
silver battery last on a closed circuit, having about
eight dwt. of chloride of silver?
pends on reesistance of circuit. Not long; 5 . At de-
pout what part of pends on resistance of circuit. 5. About what part of
a horse power is 25 volts and 4 amperes equal to? a horse power is 22
Nearly one-seventh.
(2183) Sydney asks: 1. If sirup for cordial be made with cold water, is it more likely to
ferment than if it were boiled? A. Yes. 2 . The best way to prepare charcoal for refining spirit, and whether
any particular wood should be used. If the charcoal were merely placed in a cask of spirit, would it absor the iniurious matter and have the same effect as if
were filtered? A. Animal charcoal is most efficient. were filtered? A. Animal charcoal is most efficient. The best mode for filtration of small quantities
spirits of abont 30 gallons at a time. A. Use a perco spirits of about 30 gallons at a time. A. Use a perco
lator, and pack in the charcoal solidly. 4. The best lator, and pack in the charcoal solidaly. 4. The bes and price, including postage to Sydney? A. Jerry
Thomas' "How to Mix Drinks, or the Bartender's Guide," 75 cents. 5 . Has the aerating of wines been tried in America,and with what success,also the price of such aerating machine? A. Not to any extent with fine wines.
Cider can be thus treated. 6. Best mode of preparation of raisin wine. A. We refer you to the Scientific American, December 8, 1888, page 356, for an article on nany.
(2184) H. C. K. asks: 1. What is the theory of the Tesla motor, and what is gained by the
two, independent circuits as shown in your Supplement two,independent circuits as shown in your Supplement,
No. 692? A. The two independent coils are connected No. 692? A. The two independent coils are connected
in series. The whole is so proportioned that there is a constant difference of one-quarter phase between the causes the axis of north and south polarity to constantly vary, rotating always in the same direction. The armature induced itself keeps trying to "keep up." and
hence rotates. 2. In Supplement, No. 718 or 734 , what hence rotates. 2. In SUPPLEMENT, No. 718 or 734, what
is meant by the Carpentier bobbin (type 600 francs)? Is is meant by the Carpentier bobbin (type 600 francss)?
it an addition to, or is it the Ruhmkorff coil that in meant in the article "On M. H. Hertz' Experiments."
(2185) E. A. C. writes: I have noticed that many brass castings when taken from the sand are
perfectly clean and of a uniform, almost golden color. How is this obtained? A. The golden-cor ounces, $\operatorname{tin} 1$ ounce, zinc 1 ounce. The flasks should be opened quickly, in from 5 to 15 minutes after pouring according to size of pieces, and the gate of work raised sand rapped off, and plunged in water to check oxida-
tion. A little practice will give proper manipulation. Should only have a quick dip, so that the heat of the tery of higher E. M. F. than the gravity battery? tery of higher E. M. F. than the gravity battery? I
so, what and how prepared? A. No practical battery. 3. Why will not the gravity battery run an inductio coil? A. It can be so used.
(2186) V. R. asks: What causes the Are the recoil and report caused by air rushing int the barrel after the bullet has left the muzzle? Is there a vacuum formed in the barrel while the bulle
is leaving it? Has the vacuum (if is leaving it? Has the vacuum (if formed) anything to do with the report and recoil? A. The report is the
vibration of the air, due to the instantaneous explosion. The recoil is the result of the sudden pressure generate within the gun pushing the gun in the opposite direc tion from that of the ball. There is no vacuum formed but a large volume of gas is generated by the combusand ball, sending them in opposite directions
(2187) C. C. asks: Will a piece of timber ready to use in a mechanical way, ordinary dry timber, shrink endways? For instance: A piece of oak tim be crease in length be percert, fed ing, woul the de expression that timber does not shrink endways? A. After it is seasoned, the permanent shrinkage become imperceptible, but changes in temperature, and the dr and wet seasons, may make slight variation in length. In architecture endwise shrinkage is not taken into
(2188) J. S. S. writes: In performing dip and striking it a futting an iron bar in the plane of ticed this phenomenon, viz., both ends of the bar re pelled the north and attracted the south poles of a compoints? Must there not have been one of them missing in the chain? A. You have at least two conequen south poles in the middle portions of your bar.
you saw it in two, you may succeed in finding them. (2189) W. B. J asks : If the governing arrangement of an engine could be made so perfect that the least perceptible change in speed would regulate th supply of steam instantly from 0 to its full capacity or just enough to insure an even and steady speed could the flywheel of the engine be dispensed with Is there a governor in use that regulates the engine in working under a heavy or light load, provided there is steam enough to overcome the load? A. The automatic system of governing engines, as now in use, is probably as nearly perfect as the mechanical difficulties will allow. We see many difficulties in dispensing with the fly
wheel on a reciprocating engine, from the peculiar con ditions of the application of pressure upon the piston Uniform tangential pressure on the crank pin throug flywheel.
(2190) B. H. S. asks: Can you give me a good receipt for waterproofiug canvas, such as is use
for canvas canoes? An elastic coating is preferable, so that the canvas may be folded. A. The best advic we can give is to have your canvas coated with India rubber. You may waterproof it by treating with a solu tion of 1 part gutta percha in 10 parts turpentine mixe ith 10 parts linseed oil, or with 125 parts soluble gu cotton dissolved in 425 parts ether, mixed with 375 part castor oil and 25 parts umber or the pigment. When is the best treatment. For all cases the canvas should be perfectly dry.

to inventors.

Cars, shotproof structure for. E. McLane......
Cars, switch attachment for street railway,
 Carbonized sheet for manifolding, I. H. Rogers.
Carbons, apparatus for manufacturing electr light. H. A. Tremaine............................
Card cloth, tool for use in clothing cylinders and conical bodies with. J. L. Weatherhead
Card grinding apparatus, W. H. Rankin... Carpet fastener, stair, W. G. Collins.
Carrier. See Egt carrier. carrier. See Egg carrier.
Cart, watering, P. B. Don Cart, watering, P. B. Donahoo............
Chair. See Railay rail chair. Reclining chai Rocking and reclining chair. Reclining chair
Theater chair. Chair rest, rocking, E. Muhl. Chimney, A. Gusdorf.
Churn, H. C. Anderson

Churn, Cole \& Kerrihard.

Churns, double-acting bellows for, A. Mearns. circuit closer, h.
Clamp, E. S. Drake.

```
Clasp. See Surgical ins
Clasp, J. R. Macmillan..
Cleaner. See Boiler cle Cleaner. See Boiler cleaner.
Closet. See Earth closet. Folding
``` Cloth piling machine Hazard \& Crain Clothes and dish washer, combined, M. A. Wilco Clothes drier, J. G. Webb............
Clothes line adjuster, H. F. Metzler Clutch, friction, G. Leverich...
Coal drilling machine, M. Hardsocg. Coal screen, H. B. Sackett Coat adjuster. R . Lacourse...............................
Coating metal sheets with tin, etc., automatic m chine for, Rogers \& Player...
Coffee polisher, J. H. Brookmire. Collar fastening, horse, F. Hora Collar sweat pad, horse, C. Mollencoff Commode, M. c. Scherer.......................... Concentrator, E. . . Kidd.
Condenser, F. M. Wheeler Condenser for furnace fumes, R. F. Nenninger Conveyer, H. Birkholz................
Corn crib, portable, Cook \& Britton Corn husker, H. G. Baker.
Cornice machine brake. J. White......................
Cotton openers, dust trunk for, H. C. Perham. Cotton press. F. L. White....
Coupling. See Car coupling. Hose coupling. Crate, D. A. Ross................................ Cultivator and harrow, B.
Curtain ring, D. N. Plume Curtain ring, D. N. Plume.....................
cutter. See Fodder cutter. Harvester cutte tary cutter. Thrashing machine bander cutter
Cutting and conveying machine, wood, w. Mer

chine for, W. Scott.............
Decorticating machine for rame, etc., L Lan
dental grinding and polishing wheel, L. M. Hal
sey....
Dental separator. J. G. More
Desk furniture. v. Munger..
Detonator for flakstarfs, etc., G. D. Adams.
Dish washing machine, T. A. \& H. W. Pudan....
Display stand, traveling. H. Westphal............ Drawer for furniture, G. D. Wait...
Dredging, hydraulic. J. McFarlane Dredging machine, W. B. Pless.........................
Drier. See Clothes drier. Fruit drier. Lumber Drill. See Upright drill.
Drill rods, toolfor, A. Ball.......
Drilling machine, F. H. Richards
Drying fabrics, Stiner \& Darling. Drying fabrics, machine for, stiner \& Darling.. Dyeing and washing machine, pneumatic, Stin
\& Darling...................................
 Earthenware building material, porous, w. Lende
roth
 Electric heater, Drew \& Francis..............
Electric lights, safety hook for. J. Dalton Electric machine, dynamo, J. Wenstrom. Electric motor regulation, w. Stanley, Jr Electrical communication, apparatus for, J.....
Cutler
Electrical machines, brush and holder for, E. W. Rice, Jr..
Electrodes for secondary batteries, making, G. \(\underset{\text { Heyl... }}{\text { Elevator a }}\)
Elevator and hoist, A. Gross
End gate, G. J. Carpenter.....................
Engine. See Electric engine. Rotary engine Engine. See Electric engine. Rotary
Rotary steam engine. Steam engine. Envelope moistener and sealer, J. Maret..
Excavated or other material, apparatus Excavated or other material, apparatus for
charging or throwing, F. Nouailhac-Pioch..
Expansion coil, ammonia, Skinkle \& Westerlin. Expansion coil, ammonia, Skink
Extractor. See Stump extractor. Eyeglasses, S. B. Oydyke
Fare collecting apparatus, R. L. Irvine. Feathers, machine for removing down from, M. Pickering.

Feed bag support. W. Barley
Heed trough, W. S. Barker.....
Feed water heater and cleaner, W. A. Taylor
Feed water heater and filter, J. B. Churchill. eed water purifier, live steam, E. R. Stilwell. lain..
Fence post, Robertson \& Rees
Fence post, w. H. Thomson.
ence staples, tool for pulling, H. Raymond. Fibers, machine for treating textile or other. ibrous materials, device for preventing sing in machines for preparing, etc., T. Bentley.

lass cutting maching glass.
424,820
426,671Glassware, machine for grinding, G. A. Macbeth
Gleaner, binder, and swathing mach ine, cocabs, buckets, etc., appa
closing, J. H. Morgan.
Grain binder, J. F. Seiberling426,585
Grain scalper, sheller. and peeling machine 426,867
426,550
Ground roller, Burr \& Cummings 426,796
426,431
Gun mount, jointed, E.......................
Gun, recoil self-cocking, Cash \& Brace 428,779
\(.424,402\)
.426 .916
468
Quns at any an zle, device for laying, J. Kelly
Gutter section fastener, w. H. Hawkins..... 426,446
426,907
Handle. See Saw handle.
Hanger. See Picture hang
Harness, blanket, J. Grim.....................
Harness pad fastening, F. C. Kimball.......
Harrow, N. . Be. Beck 426,722
426.594
426,704
Harrow and cultivator, J. A. Metza
Harvester, corn, G. H. Spaulding..
Harvester cutter, E. H. Smith.... Harvester cutter, E. H. Smith..Hat support, D. M. Fuller............................ 426,
Hay loaders to vehicles, device for attaching. w.Hearing, device for assisting the, R. M. Mathes.. 426Heater. See Car heater. Electric heater. Feed
water heater. Vault heater.426,0.3
26,508
F. V. Crouch.. 426,926
Heddle machine, B. Saner \({ }^{4266,597}\)
Hinge, spring, H. W. Libbey428,597
427.012
426,639
Hoisting and conveying machines, tub or bucket.
for, A. E. Brown 426.763
\(\begin{aligned} & \text { older. See } \\ & \text { ishing too } \\ & \text { holder. }\end{aligned}\)
Hoof expan
Hop picker, Peterson \& Clark
Horse ciipping machine, E. A 426.831HHorseshoe machine, C. L. Haight..................D.. . Kempster...Hose coupling, brake, E. A.Hose nozzle, D. H. Rice
Hot air furnace, J. H. Nevins
Hub, wheel, H. Huddleston
Hub, wheel, H. Huddleston.
II ydrant, J. F. LingemannHydraulic cylinder lubricHydraunic cylinder lubricator, J. H. Brookmire
Hydrocarbon burner, C. M. Collins.Ice boxes, door or window for, D. Althen...Ice tongs, C. B. McDonough, Sr..426 .101
.426 .464
426.53
M. G. Farmer......
Insect trap, J. Smith \({ }^{426.789}\)
Iron. See Sad iron. Vehicle iron.
Irritants, apparatus for applying, W 426,609
\(.426,579\)
Joint. See Pipe joint. Railway joint.
Kiltche See Tile kill.

An Every-Dary Hand-Book for the Workshop and the
Factory. A grat Labor, Time, and Money

\section*{VAN CLEVE'S}

Engish and American Mechanic

\section*{NOWV FREATE}

 Porice \$1.50, by mail, free of postage to any address in the Among the contents of this valuable and useful book are
Explanation of diagrams for sheet metal work; Contents
in pallons of diferent vessels; Weights of Pipes; Tin-

 ers, Painters, Giaziers. Pavers, and Plumbers; sewers
Arches, and Abutments; Flour Mils, Saw Mils, Word
Working Machiner. Wial of Mateerials; W Wights of Materials, Wheell Gearnn
Gauging; Aliys and Compositions;
Receipts for Mechanical Purposes.

 HENRY CAREY BAIRD \& CO.,

\section*{ELECTRiCAL BOOKS}

RECENTLY PUBLISHED
 Sarged, with 100 illustrations.......................si.50
(.To say that this book st the best of its kind would be
a poor compliment, as it is practically the only work on Eccumulators that has been written."- Electrical Review
Electrical Instrument-Making, for Amateurs.-A
Practical Handbook. By S. R. Bottone, Author o

Electric Bells and All About Them.- A Practic
 Electricity in Our Homes and Workhops.-A Prac-
tical Treatise on Auxiliary
Sylectrical Apparatus. By Electrical Influence Machines.- Containing a ful
account of their historical develoment and their mod

 sity and Resistance Coils, Dynamo Electric Machines,
Fire Risks, Measuring, MMrophos, Morors. Pho
norgaps, Mhotophones, Storage, and Telephones
1889 Practical Electricity-A Laboratory and Leeture
 LTV Sen for Special Electrical Book Catalogue.
MUNV \(\&\) CO., Publishers of the scr. Am.,

FOR SATMF Repistered DUTCH- BELTED COWs and HEIF

\section*{FOR SALE.}
C. H. DE LAMATER \& CO. foot of West 13th Street, New York, disposed Hot Air Pumping Engine and Steam Pump business to the De Lamater Iron Works (incorpo ated 1889), and to close out the remainder, offe
res, Pianes, Drilling
Lathes, Planers, Drilling, Shaping, Slotping, Bolt Cutting, and Milling Ma-
ping, Bolt Cutting, and Milling Ma
Grinders, Screw Machines. Vises, Lathe and Planer Tools, Drills, Taps,
Small Tools, Boiler Punching and Shear ing Machines, with lot of Blocks, Rope, Bolts, Nuts, Washers, Pac

Fittings, Brass Valves, Bar Iron and Steel, Steam Hammers, and three Rider
DEAF
 BASE BALL -A DESCRIPTION OF
 ARTESIAN

Scientific Book Catalogue
Our new catalogue containing over 100 pages, includ-
Ing works on more than tift different subjects. Will be MUNN \& \(\mathbf{C O}\) address on application.

361 Broadway, New York
AS A LININC

Wyckoff, Seamans \& Benedict 327 broadway, NEw Yened

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
NEW EXACT SURFACE GAUGE \\

\end{tabular} \\
\hline
\end{tabular}

 THE BEST LIME KILN KNOWN

I(MANMPNS
Oii. lamps have no equal
VIEWS ofall SUBJE(TS

GREAT FALLS, MOMNANA
 TRADE,' Grreat Falls, Montana.
IDE AUTOMATIC ENGINES. TRACTION AND PORTABLE ENGINES

NOW READY.
3 Xperimental \(\mathcal{\text { cience, }}\)

By Geo. M. Hopkins.
740 Pages. 680 Illustrations
PRICE, by mail, postpaid, \$4.00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,
(1)rfice of ©he Stimititic dmexitaw,

IDEAL MUSICAL BOX
tin he tewe

 "ELECTRIC" SPIRAL SCREW RRIVE \(\$ 1.25\) Hentmocecos \(\$ 1.25\) GATES ROCK \& ORE BREAKER
 Capacty up to 150 yards per hour.
 GATES IRON WORKS \({ }^{50} \mathrm{C}\) so. Clintonstitigo.

IVVENTOR-:-We make anything you want from a The S Sientific \(^{\text {merician }}\) PUBLICATIONS FOR 1890.
sthe prices of the difirent inulivations in the Unites
The Scientifc American weekly one year . \({ }^{83.00}\)

 ombinem Ratrs.

 xpress money order, or draft to order of

FOR SALE AT A BARGAIN!

 NEW KODAKS

Seven New Styles and Sizes
Transparent

THE EASTMAN COMPANY,
\(\xrightarrow[2 \text { to } 40 \mathrm{H} . \mathrm{P} \text {. The M1OTOR of 19th CENTURI. }]{\text { Send for Catalogue. }}\)

TELESCOFES
C CROMATIC OCTVES EQUATORIAL STANDS,
 PATENTS!

\author{

}

 cure them; directions ooncernirig Iabels, Copyrights,
Designs, Patents, Ap peals, Reisssues, Infrinkeenents. As-
signments, Rejected Cases. Hints on the Sale of Pa-

NATIONAT
TUBE CLEANER

EOORDA

"COLUMBIAS"
HIGHEST CRADE ONLY.
POPE MFG. CO BRANCH HOUSES:
12 Warren St., NEW YORE.
291 Wabash \(A\) City 77 Franklin St., BOSTON, 291 Wabash Ave., CHICAGO.

\section*{15TYPEVRIITER}

POPE MFG. CO., Boston, New York, Chicago. ELECTRRO MOTOR. SIMPLE. HOW TO make. ByG.M. Hopkins.-Description of a small electr
motor devised and construcend with a vie wo mossistin

SEVENTEENTH TRIENNIAL EXHIBITION MASSACHUSETTS Mamilaba Memanic Asmadition OPENE
 in every department of Science and Art, are invited to
send their adress. Copies of the regulations and blank send their addre
applications wil
tion furnished.

JAMES G. HA YNES,

THE EACLE THE EASIEST RUNNING BICYCLE
IN THE WORLD. IN THE WORLD. AGENTS WANTED. 95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones in-
fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor. Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, Archæology, Astronomy, Cbemistry, Electricity, Light. Heat, Mechanical EngiShip Building, Marine Engineering, Photogriphy, Technology, Manufacturing Industries, Sanitary EA-
gineering, Agriculture, Horticulture, Domestic Economy, Biograply, Medicine, etc. A vast amosunt of fresh
and valuable information obtainable in no other pub. lication
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated Price for the Supplement for the United States and Canada. \(\$ 5.00\) a year, or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEM ICNT, both mailed for one year for \(\$ \tau .00\). Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y..
Publishers Scientific American.

\section*{Building Edition.}

The Scientific American Architects' and Single copies, 25 cents. Forty large quarto pages, equal
to about two hundred ordinary book pages; forming large and splendid Magazine of Architecture, richly adorned with elegant plates in colors. and with vther
fine engravings; illustrating the most interesting examples of modern Architectural Construction and

A special feature is the presentation in each number
of a variety of the latest and best plans for private resiof a variety of the latest and best plans for private resi-
dences. city and country, including those of very mod erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Specifications, sheets of Details, Estimates, etc. have won for it the Larrest Circulation of any
Archlectural publication in the world. Sold by all MUN N \& CO., Publishers,
\[
361 \text { Broadway, New York. }
\]

\section*{PRINTING INKS.}
```

