a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE ROWELL AUTOMATIC RAILWAY SAFETY STOP. It is a well known fact that the majority of railroad accidents, those that cost the companies large amounts of money, are seldom reported in the papers, and these accidents, while not usually attended with loss of life, are a constant drain upon the railroads. One of the leading railroad men in New England recently told us

Fig. 3.-OPEN SWITCH-SAFETY STOP IN POSITION.

We had the pleasure of attending a thorough test made of the Rowell safety stop, given at Neponsett, Mass., on April 9. A special train of four cars was run from the Old Colony Depot in Boston, and quite a number of prominent railroad officials were among the guests. Several tests were made, all of which were successful, and conclusively showed that with the safety stop in position it was possible to stop a train running at the rate of 40 miles an hour in less than 500 feet.
In the first test the train was stopped in 380 feet, the engineer not shutting off the steam until the train had almost stopped. The second stop was made in 390 feet; and in the third test, made with all the party on board, the train was stopped within 370 feet, and the shock, though plainly felt, when the brakes were applied by the stop, did not inconvenience any one. All present pronounced it an unqualified success, and tests were also made with the portable form of safety stop, which enables the stop, which bsolute conductor to prevent his from either direction.
that it was the accidents that the general public did not hear of that cost the companies so much money. The old saying that switches are the bane of a railroad man's life is exemplified in the following list of 70 railroad accidents that have happened within the last six months, compiled from newspaper accounts by a gentleman in Boston, which shows that open and misplaced switches are directly responsible for a large share of these accidents.

```
Misplaced and open switches
Engine running "wild
Fog, could not sed signais
Snowstorm, could not see signals
OMen drawbridge . 
Not flagged intime
Unlocked switch
Paid no attention to signals, Mud Run
S
        * (ailure of brakes to work. (Cansed by engineer throwing
(
```

The cuts which we publish in this connection show the applications of the safety stop in various conditions. Fig. 2 shows an open drawbridge. The opening of the draw places the safety stop in position, so it would be impossible for the engine to reach the bridge even if the engineer should be asleep at his post, disabled, or fail to see the signals usually displayed. Fig. 3 show the manner of application when a switch is open or misplaced. These two illustrations show the safety stop placed permanently in position at what are considered danger points. In Fig. 1 we have an illustration of how this device works on roads where track walkers are constantly employed, and where many ac cidents happen because the signals are not seen, or, as has happened more than once, the storm has drowned the noise of the torpedoes. A track walker with this device does not have to walk more than 600 or 700 feet, motive, thereby opening the brake valve, which set and by placing one of these stops in position at each the air brake. When the signal is dropped to safety side of the landslide the place is unapproachable. This the shaft is turned in the opposite direction, and $\left|\begin{array}{l}\text { side of the lanuslide the place is unapproachable. This } \\ \text { can also be applied to grade crossings, so that a train }\end{array}\right|$

Fig. 4.-DETAILS OF attachment to locomotive, SHOWING MANNER OF STOPPING TRAIN
cannot crose the grade when the gates are up, raising and lowering the gates controlling the passage of trains.
Fig. 4 shows the invention attached to the locomotive. It is attached to both sides, and consists of a sliding bar located on the pilot of the engine, connected by a pipe with the power brake, in which is placed a valve directly at top of sliding bar. At the lower end of the sliding bar is placed a friction roller to relieve the blow. The sliding bar is 8 inches outside the rail, and the friction roller is 4 inches above the rail. Be side the track on the sleepers, the proper distance from the rail, 8 inches, to come in line with the sliding bar upon the engine, is an incline composed of two bars of iron, one-half inch by three inches, set edgeways, piv oted at the ends and jointed in the center, one side being slotted to allow it to be raised and lowered. Di rectly under the center or slotted end is placed a shaft or cam, so that by turning the shaft the bars of iron are raised four inches. At one end of the shaft is placed a wheel, around which a circuit of wire is run to the signal, so that when the signal is turned to danger the shaft is turned in the direction required to raise the incline, which is thus in position to connect with and

Fig. 2.-OPEN DRAWBRIDGE--SAFETY STOP HOLDING TRAIN.
Y SAFETY STOP.

Srientifit Ammerican.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN One copy, one sear. for the the S., Canada or Mexico.
One copy, six months for the
One coopy, one year. to any foreign country belonginico nemit by postal or express money order, or by bank draft or nion. 450
400 The Sctentific American Supplement

NEW YORK, SATURDAY, MAY 10,1590

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 749.
For the Week Ending May 10, 1890
Price 10 cents. For sale by all newadealers.
 11. BIography--Emile Muller as a Ceramititst-His many attainIII. CIVIL ENGINEERING.-The Inter-Continental Railroad. - A

 traans.-Details of the apparatus.-With numerous illustrations
and diagrams

One of the most satisfactory of the new additions to the United States navy is the torpedo boat Cushing, of which a full description, with illustrations, was giv in the Scientific American of February 1 last.
This boat lately sailed from Rhode Island, where she was built, to Washington. The little ship is satisfactory as a first example, and shows that the government can, and has, after long trial, produced one torpedo boat that is nearly up to the best standards of its class. Other governments have scores of torpedo boats. The United States has now built one. The ice is broken. Let us hope that hundreds of others, even better than the Cushing, will soon be constructed.
They are wanted in all our harbors to assist defense.
The Cushing lately sailed from Newport to New York, driven at the highest speed they could get from her, and made the voyage in three minutes less than seven hours, at an average velocity of $191 / 4$ knots per hour. This is superior performance, and indicates an excellence of construction in the mechanism and ves sel that is very promising for the future.
On her trial trip she developed $221 / 2$ knots per hour. The contract called for 22 knots for three hours.
The Cushing is 138 feet long over all, and she draws five feet three inches of water. Her depth from the crown of the deck amidships to the keelson is ten feet, and her breadth of beam fifteen feet. Her displace ment when loaded with ten tons of coal amounted to 117 tons. She can carry thirty-nine tons of coal, with which she could steam 3,000 miles at ten knots per hour. Economy of space was one of the chief objects in viow on the part of her builders. Every cubic foot is utilized. She has eleven compartments and ten water-tight bulkheads. There are no doors connect ing the compartments. The lower decks fore and aft are entered only by hatchways. She has fuel bunkers all along her sides, abreast of her engines. Her only other protection is her pumping machinery. She can pump 100 tons of water in seven winutes, 870 tons per hour, and her own weight in less than ten minutes. If she should have a shot hole nine inches in diameter through her engine room compartment, her pumping capacity would enable her to keep free from water.
When equipped, she will carry a torpedo tube on each bow and a torpedo gun amidships, and will thus be able to launch three torpedoes at once. She will carry five rapid-fire one-pounder cannons, and will have a search light.
She is built with twin screws and quadruple expan sion engines. There are more than three miles of tubes in her boiler and more than one mile in her condenser. It is estimated that on her official trial trip she develop. ed more than 1,700 horse power. The diameter of her turning circle is only 250 feet. She can be propeiled astern as well as forward, and has madeover seventeen miles an hour while going in that way. The tubular boilers of the Cushing are of English design, such as are used in the fastest British torpedo boats.
The success of the Cushing and her presence in Washington, where members of Congress can witness her maneuvers, will, we hope, lead them to authorize the construction without delay of a better and faste class, such, for example, as the flock of torpedo boat possessed by the Italian government, among which are the Aquila, Sparviero, Nibbio, Falko, Aoltoio, etc. These boats are 13 feet longer than the Cushing and have a little greater engine power. On their three
hours' trials three of them developed respectively $26 \cdot 2$, $26 \cdot 6,26.8$ knots, the fastest being over 4 knots quicker than the Cushing. During some of the trials a speed at the rate of 28 knots per hour was attained. The Italian navy has several torpedo boats of smaller di mensions than the Cushing, some of which run at $221 /$ knots per hour. A guaranteed speed of $261 / 2$ knots i required by the Russian government for torpedo boat lately ordered. These fast boats are built at Elbing, Prussia.

Ships and guns needed for defense.

A recent number of the New York Herald gives a considerable length a showing of the insecure condi tion of the American coast cities in respect to naval at tack by foreign enemies. Reports of opinions by nava and military officers are also given, the general pur port of which is that at present, and for many years to come at the rate of progress now being made, our prin cipal seaport cities are likely to remain exposed to easy capture by any determined enemy having under its control a few superior vessels of war. The Herald gives a pictorial representation showing the helpless
situation the city of New York would be in, supsituation the city of New York would be in, sup metropolis as Flushing Bay, $81 / 2$ miles frow the City Hall and Post Office. The picture represents the ruins of the government edifice, as a result of a hit by a single shell frow a great gun. New York, Brooklyn and adjacent cities would be at the mercy of such fleet. At present there are no forts, no guns, no ships and few a vailable means at command of the govern ment of power sufficient to prevent the coming in o hostile war ships to the position mentioned. What
true of New York is equally true of all the principal
cities on our seaboard. Portland, Me., with its splendid harbor, would be an easy prey to an enemy Modern war ships might lie at anchor, out of range of the present old guns and fortifications, and shell all parts of the city.
Portland is the strategic key to the military occupation of all Maine and the greater part of New Hampshire, and is necessary as a winter port to the Province of Quebec. Between hostile powers, whichever one has Portland has practically all the country between the lower St. Lawrence and the Atlantic seaboard east of Portland as tributary dependencies.
In case of war between the United States and Great Britain, the capture of this city would be amoro the first achievements aimed at. Its capture wou 1 put the in vaders effectually in possession of the whole ter ritory, to use as a base oi operations and supplies.
In the present state of its defenses Portland could easily be captured by an invasion from the sea, but could never be recaptured by forces from the land. The loss of this portion would be well nigh fatal to American supremacy in New England, for with the fall of Portland would fall in due time Boston also.
Boston is equally defenseless. So are Baltimore
Charleston, Savannah, New Orleans.
Colonel J. A. Smith holds that it pays to build forts we do not use, simply because the building of them re moves the need to use them. The nation that is not defended is the one that needs defenses most, and when the need arises, it is most likely to come suddenly. I by building forts and ships of war the country can avoid a war, the money that they cost is well spent. Few will dissent from the correctness of this propo sition.
As to modern fortifications, such as the construction of first-class steel defenses, we believe Congress has so far done nothing. Bnt in rospect to war ships some progress has been made. We have now in the Mediter ranean a fleet of four steamers, not very fast and not formidable, but still creditable ships. Three other bet ter vessels are nearly ready, and a few on the stocks The strongest fighter of these-the Texas-built on English plans, it was found, after construction was wel begun, would probably not float, owing to excessiv weight, and work was stopped. But the most recen conclusion is that she will float, and her completion is advised.
The Board of Bureau Chiefs of the Navy Department have finally recommended a few minor changes in the plans of the vessel, but, on the whole, have made no material reduction in the weights, thus practically ac knowledging that the original calculations were correct The principal changes made are in the location of the heavy guns and a reduction of the space for stores. As originally designed, the guns were raised only eighteen nches above the decks. On account of the liability o injury to the deck when these great guns are fired, the board concluded to raise them to three feet above the deck. It the end it may be found desirable to reduce by an inch or so the thickness of her armor, so as to provide more stores and more men. The work of con struction can continue, however, without further delay.

Future of the Electric Motor.

Joseph Wetzler, in his article in Scribner's on the "Electric Railway of To-day," concludes by making the following prediction: "With the advantages of the electric railway so clearly pointed out, and so un questionably demonstrated in actual practice, it would not be unsafe to hazard the opinion that, in ten years at the farthest, there will not be a horse railway in operation, at least in our own country. The horse will then be once more returned to his legitimate field o labor, and the street car passenger will be transported at an increased speed, and with all the comforts of easy riding, in cars propelled and lighted by electricity ; while it is by no means improbable that, with furthe work on the line indicated, the passenger may step aboard a train in New York at ten in the morning and eat a five o'clock dinner in Chicago on the same day Enough has indeed been accomplished to show that electricity is destined to be one of the most powerfu factors entering into our social conditions, and that the ease of distribution and convenience of powe afforded by it must bring forth changes in the social order which are even now hardly realized."

Good Advice

Don't sign, says a contemporary. But such a caution as this seems hardly necessary to any person in the ful possession of his faculties. Yet it is astonishing how many people there are, including good business men who attach their signature to papers or documents whose contents might have a serious bearing upon hemselves or their affairs, with scarcely a glance at their contents. Carelessness in failing to acquaint themselves with the contents of a paper before signing t has worked incalculable harm to thousands of well intentioned people. Then read all papers carefully be ore you sign them, particularly those that express or mply anything in the nature of a contract or a lega obligation.

New Mode of Mounting Guns

A successful trial of Sir W. G. Armstrong, Mitchell \& Co.'s new mode of mounting guns to be fired en barbette recently took place off the Isle of Wight, on board her Majesty's screw gunboat Handy, a vessel specially appropriated for gun trials. Particular importance attached to the proceedings on this occasion he invention to be tested being designed to meet defect which has been much felt in regard to the exist ing method of mounting heavy guns in barbette ships. Several novel features are found in the principal design, the total result being practically a new depart ture in naval gunnery. The gun not only return automatically into the firing position after each dis charge according to the Vavasseur recoil system, but s capable of being elevated so as to fire at angles up to 40°, or double that allowed by any previous mounting or such a gun, the caliber of the piece in this instance being $9 \cdot 2$ inches, and the weight 22 tons. The carriage on which the gun is mounted is also fitted with a steel shield, 6 inches thick, which is attached to the mount ing and trains with it. The construction is such that the port through which the gun fires is completely filled by the gun at all angles of elevation, thus preventing the entry of projectiles or splinters. The mounting is intended for use in barbette batteries on the upper deck, and no similar carriage has hitherto been provided with any shield or screen capable of resisting the fire of anything more than machine guns, whereas the shield now devised will effectually protect the gun and gurners from all rapid-firing guns at present in use in the service. The elevated fire is valuable as affording the means of attacking coast batteries placed on high ground at short range. At present, elevated land batteries protecting a narrow passage or harbor can fire down on ships attempting to pass them without being open to attack themselves. At the trial which took place on March 29, fifteen rounds were fired at angles ranging up to the maximum of 40 degrees with perfect success in every respect.

Specimens of the Coco-de-mer
Two specimens of Gordon's "forbidden fruit," the urious double cocoanut of the Seychelles, were brought to the Pall Mall Budget office a few days ago by Mr. J. Troubridge Critchell, who had just received the nuts from the Mauritius. The fruit of the coco-de-mer has a peculiar interest to the many admirers of the late General Gordon, who firmly held to the idea that the Seychelles were the Garden of Eden, and that this unique vegetable growth was the cause of the world's depravity, against which Gordon fought so bravely. The nut weighs twenty pounds, and measures twenty-five inches across. The palm on which it grows (Lodoicea Seychellarum) is one hundred feetin height, and is only to be found on this tiny group of islands. Hundreds of years before the Seychelles were discovered, these nuts were washed up on the Maldive Islands, and the wiseacres of those days told the people that this seaborne fruit had grown on a submarine tree, and that it had a mysterious power of counteracting poisons. Hence the name-coco-de-mer. It is probable that Gordon met with allusions to this wonderful nut in Arabic MSS., and afterward visiting the Seychelles, was struck by the beautiful and isolated group of islands and their double cocoanuts.

Tuberculosis in Sleeping Cars.

The plush, velvet, and silk hangings must go. Seats must be covered with smooth leather that can be washed off, carpets give place to rugs, to be shaken in the open air at the end of every trip-better still, abolished for hardwood floors; the curtain abomination must make way for screens of wood or leather, the blankets of invalids' beds be subjected to steam at a high temperature, mattresses covered with oiled silk, or rubber cloth that may be washed off, and, above all things, invalids provided with separate compartments shut off from the rest of the car, with the same care which is taken to exclude the far less offensive or dangerous smoke of tobacco, cuspidors half filled with water, and consumptive travelers provided with sputum cups which may be emptied from the car. It is not necessary to say here that the sole and only danger lies in the sputum. The destruction of the sputum abolishes the disease. When the patient learns that he protects himself in this way as much as others -protects himself from the auto-infection, from the infection of the sound part of his own lungs-he will not protest against such measures.-Dr. I. W. Whitaker, in the American Lancet

Length of Great Bridges.

A comparison between the Forth and other great bridges is as follows :

	Feet.
Forth Bridge.	8,091
Tay Bridge.	.10,780
Niagara Bridge	. 808
Landore Bridge	
Crumlin Bridge	
Britanna Bridg	
Brooklyn Bridg	

gricultural Products of the Philippines
The United States consul at Manila says that the principal products of the Philippines are hemp, coffee, rice, tobacco, corn, and fruits. The cultivation of hemp is a very simple operation, and as it yields a large revenue, it is not surprising that it is a popular occupation among the people. This staple is the product of a species of plantain which grows wild on the Pacific slopes of the volcanic elevations of the Philippine islands, particularly the southern ones. Under cultivation the tree attains a height of 15 or 20 feet, with a trunk from 8 to 12 inches in diameter. In its green state it is crisp and juicy, and can be readily cut down with an ordinary carving knife. The prepara tion of the hemp for market is very simple. When the tree has properly matured, it is cut down and divided into long strips, which are shredded under a large knife kept in the proper position by a rude lever. This separates the juice and the spongy matter from the fiber, and the latter is spread out in the sun to dry, after which it is packed in bales of about 240 lb for shipment. There are a large number of plantations owned by natives, as well as by Spaniards and mestizos, where the trees are set out in regular rows, and well cared for. The cultivation of the coffee tree has been followed to some extent for the past thirty years, but interest in this branch of cultivation has been renewed during the past four or five years, and it is expected that its export will increase annually. There is no way of ascertaining the area of land occupied by coffee trees nor the amount of coffee annually produced, as the trees are scattered in various parts of the archipelago. The largest plantations are in the province of Batangas, in the island of Luzon, but many of the natives have a few trees in their fron yards, under the shade of the plantains, that may
yield four or five bushels of coffee berries. The in yield four or five bushels of coffee berries. The infew years ported in 1888 1887, a little over 5,387 ton native's principal article of food, there is not enough of it produced in the archipelago for local consumption, and more than 70,000 tons are imported annually. The tobacco industry in the Philippines employs a large amount of capital and a vast number of hands. The best tobacco comes from the provinces of Cogayan and Isabella on the island of Luzon, the average an nual yield from these being from 60,000 tons to 100,000 . Tobacco is also grown in the provinces of North and South Ilocos, Abra, Lepanto, Nueva Exija, and Union, all on the island of Luzon, and on the islands of Cebu and Panay. The tobacco produced in the former provinces is called Igorrotes, while that from Cebu and Panay is designated Visayas.
In cultivating, the earth is well plowed and harrowed and the seed sown in September. About six week later the young plants are transplanted about two feet apart, and the field is kept free from weeds, and other wise carefully attended to until February, when the plants are almost ripe. The crop is gathered in March and April. It is then made up into "hands" of one hundred leaves each, the leaves of each hand being fastened together at the stem ends with strips of bamboo fiber These hands are then hung up in rows upon bamboo poles under long sheds, which are open on all sides, and when they are almost dry they are piled up on the ground and allowed to ferment. The leaves are then dried again and packed into bales for shipment to Manila, where they are repacked and pressed into bales for export, or sent to the factories to be converted into cigars and cigarettes. It is not sold by weight a the pla
All the tobacco manufactured in the Philippines is nade into cigars and cigarettes. The tobacco is classi fied at the plantation into first, second, third, fourth fifth, and sixth grades, according to the size and quality of the leaves. In Manila there are twelve large tobace factories, one of which, La Flor de Isabela, the factor of the Compania General, manufactures seventy-fiv brands of cigars, ten brands of cheroots, six grades o cut tobacco, and eight brands of cigarettes. Thes twelve factories give employment to about 11,000 per sons. Besides these there are numerous small factories owned by natives and Chinese. Corn holds a very unimportant place among the agricultural products o the Philippines, although it is cultivated to some ex ent. All the corn produced is that known as maize o Indian corn. The method of cultivation is similar to that followed in more advanced countries, but the implements used are of a very primitive character. As rule, the land is plowed with a sharpened stick drawn by a buffalo, after which a heavy wooden frame, about four feet square, with long wooden teeth on the under side, is drawn over the ground to break the lumps The corn is then hoed by hand, and all that is neces sary thereafter is to keep the weeds down. No manur nor fertilizer of any kind is used.
No attention is given to fruit culture, and mangoes, bananas, apples, guavas, and numerous other nativ fruits grow without cultivaton, and are gathered by the natives in the hills and even within the limits of
the cities and towns, who bring them to Manila and
sell them in the streets and markets. Consul Webb says that no attempt has ever been made to export any of these fruits except a few mangoes, which are sent every year to Hong Kong and other neighboring ports, although it is quite probable that under a proper system of cu tivation, grafting, etc., some remarkably good fruit might be developed that could be preserved or canned, and sold at a great profit in Europe and the United States.

Manufacture of Compressed Yeast"

In a thesis presented to the school of pharmacy of the University of Wisconsin, Mr. Alfred J. M. Lasche describes how compressed yeast is made in various parts of the United States. The thesis is printed in the Pharmaceutische Rundschau of New York. In regard to the preparation of the mash, it is stated that $3,130 \mathrm{lb}$. of ground corn are mixed with $4,500 \mathrm{gallons}$ of water This mixt swell the tarch, and quently cooled to 154 F ., then $1,920 \mathrm{lb}$. of ground rye and 550 lb . of ground malt are added, the malt being specially employed for the amount of diastase it con tains, and is indispensable in the converting process This mixture is then allowed to stand one hour, and is finally cooled to $80^{\circ} \mathrm{F}$. The proportions of the differ ent grains are of course largely a matter of opinion and the various yeast manufacturers have different working formulas.
When the mash has cooled to $80^{\circ} \mathrm{F}$. it is drawn of into another tub, and one gallon of concentrated sul phuric acid is added, in order to dissolve all remaining starch, dextrin, and glutinous matter, and to conver them into grape sugar. Finally, a quantity of com pressed yeast is added to start the fermentation. Thi yeast settles to the bottom of the tub, but as soon a fermentation has started (usually in half an hour), and carbonic acid is being generated, the current of the latter gradually carries the yeast to the top of the liquid. It remains there, covered by a layer of the chaffy parts of the grain, until the yeast has accumu lated in a sufficiently large quantity, and the curren of carbonic acid has become strong enough, when it eventually breaks this film of chaffy particles, and col lects on top of it in the form of foam. This goes on until all the nutritive matter has been assimilated The foam, containing all the yeast, rises about two fee above the top of the liquid, dependent on the size of the tub, and when no more effervescence is noticeable fermentation is complete
Immediately after fermentation has ceased the foam is drawn off by means of troughs, and run, together with a fresh supply of water, into a revolving, six-sided and declining cylinder, lined with a sufficiently fine strainer. During this step of the process nearly all the chaffy remnants of the grain are separated, and the liquid, containing the yeast plant in suspension, is al lowed to flow into a basin, whence, by means of a trough, it finally flows into a large tub.
The product in this tub is prevented from further fermentation by the addition of a sufficient quantity of ice. The yeast is now allowed to settle, the super natant liquid drawn off, and the residue repeatedly washed to free it from all mechanical impurities
When sufficiently cleansed, it is run into a press by means of a steam pump. The press is constructed of olumn of iron frames, both sides of each frame bein covered with a very fine straining cloth, and all th parts fitting tightly into each other. The yeast hav ing been pumped into such a press, the water is sepa rated from it by means of the strainer, and carried of through a waste pipe.
The yeast, now compressed, is taken out in the form of large cakes, and in this condition it is brought int commerce.

Arithmetical.
Briefly stated, the rule of least common multiple is as follows: Continue dividing the numbers in question by the least measure which is common to two or mor of them, until there are left no other two number which are divisible, without a remainder, by a cuantity reater than unity. Then the product of the divisor and the remaining numbers will give the least common multiple, thus :

2) $1,2,3,4,5,6,7,8,9,10$
 2) $1,1,3,2,5,3,7,4,9,5$,
 3) 1, 1, 3, 1, 5, 3, 7, 2, 9, 5,
 5) $1,1,1,1,5,1,7,2,3,5$,

$\times 2 \times 3 \times 5 \times 7 \times 2 \times 3=2520=$ the number which is divisible without a remainder by the first ten nume als.-H. P. Turner, in Eng. Mech.

Mr. Denman Thompson, the father and chief actor in the comedy of the "Old Homestead," which has been played steadily for so many months in this city, is an inventor. He has recently patented a railroad ruck, the object of which is to prevent disaster from derallment or to lessen the peril of railroad travel. He has a handsome model which is on exhibition at the Westminster Hotel, where the inventor resides.

AN IMPROVED HOIST

A hoisting apparatus adapted to raise material from a mine shaft and for other purposes is shown in the accompanying illustration, and forms the subject of a patent issued to Mr. Frank A. Robitaille, of Helena, Montana. Three of the side bars of the drumsupporting frame are held in position by keys, while
a comfortable "last nap" may be taken while the water is being heated for the coffee, or the room warmed. The invention has been patented by Mr. Henry W . Borchers, of Albina, Oregon. Upon the base plate is a post which may be adjusted as to its distance to or from the grate, and on this post an arm is adjustably held by means of a hollow hub and thumb screw, the by means of a hollow hub and thumb screw, the
outer end of the arm having

ROBITAILLE'S HOIST.
the third side bar, in which is journaled one end of the drum shaft, is pivoted in one of the standards of the frame, its other end being capable of a limited vertical movement in the opposite standard. In the lower part of the frame is a countershaft, on one end of which is a driving pulley, receiving power from any convenient source, and near the other end of the shaft is a friction pulley adapted to bear upon the face of a larger pulley directly above on the drum shaft. To one of the top side bars of the frame is pivoted a vertical lever, the lower end of which has a pivotal connection with the outer end of the pivoted side bar in which one end of the drum shaft is journaled, such pivotal connnection being made through a slot in the side bar, so that when the lever is moved forward or backward the side bar, with one end of the drum shaft, will be raised or lowered. To the under side of the top side bar, just above the large pulley on the drum shaft, is attached a curved brake shoe, by raising the pulley against which the rotation of the shaft may be stopped entirely, or its speed regulated as desired. The upper end of the vertical lever is connected by a rod to a lever pivoted at the mouth of the shaft, the latter lever having a suitable latch adapted to engage a notch in a rack. The rope at tached to the drum in the drum-supporting frame passes over a pulley in the top of the frame at the mouth of the shaft, and is then attached to a bucket or cage. With this construction the operator at the mouth of the shaft can, by means of the hand lever, throw the large pulley on one end of the drum shaft into close contact with the friction pulley on the power shaft, to wind the rope upon the drum, or can, by moving the lever in the opposite direction, break such contact, and allow the weight of the bucket as it descends to unwind the rope on the drum, the latter movement being also controlled by pushing the leverstill further, to bring the large wheel into contact with the brake shoe.

A DEVICE FOR AUTOMATICALLY LIGHTING FIRES.

The accompanying illustration represents a portable device, readily attachable to any simall alarm clock, for automatically lighting a fire in a stove or grate at any predetermined moment of time. The dotted lines in the picture show the fire being started at twelve minutes past five in the morning, thus indicating how
supports a rock column nearest the clock ade dapted to depress the locking spring and release the toe of the locking disk, the outer end of the shaft be-
ing slotted to receive a tongue on the outwardly projecting end of the alarm mechanism of the clock, which may be of any approved construction. The tongue and slotted connection of the alarm mechanism of the clock with the rock shaft of the lighter is effected by simply sliding the shafts together, when, the alarm being put in motion, the locking disk will be released, and the arm carrying the match be made to swing around by the tension of the coiled spring, as shown in dotted lines in the iliustration. When the lighter is to be used in the iliustration. When the light
where there is no convenient place where there is no convenient place
on which to rest the bed plate, a stand is provided having an upright rod adapted to engage an upwardly projecting boss on the bed plate, the device being then firmly held at the proper height by a thumb screw.

AN IMPROVED HAT HOLDER

A device for supporting head gear, such as hats and bonnets, whereby they will be firmly held without crushing or injury, while traveling, etc., whether in a trunk, box, or other receptacle, or placed in a show window or on a counter for exhibition, is represented in the accompanying illustration, and is

FULLER'S HAT HOLDER. the invention of Mrs. D. M. Fuller, of No. 104 Vanderbilt Avenue,

Brooklyn, N. Y. The invention has been patented in the United Sates, Canada, England, and France. The various figures illustrate the ready adaptation of the device to use in various positions and adjustment to hats of different sizes and kinds. The body of the device consists of a pedestal having a disk-like cap covered with any soft material, such as velvet, felt, etc., while in the enlarged lower end of the pedestal is a projecting pin or bolt, preferably adapted to receive a nut and washer, for attaching the pedestal to the bot tom wall of a receptacle. To hold a bonnet on this pedestal, as shown in Fig. 1, a spring wire clamp is em ployed, one end of the wire of such clamp being connected with the pedestal just below it cap, while the end of the other arm of the clamp is covered with a cap of sof material. The clamp is formed of a single piece of wire, so bent as to provide a catch facilitating the read engagement or disengagement of the clamp.
The manner of securing a gentle man's high hat on the holder is shown in Fig. 3, spring arms being attached to the pedestal near its lowe end by means of a thumb screw, and the outer ends of the arms being pro vided with a pad of the proper shape to fit over and clasp the edges of the rim on both sides. In Fig. 2 is shown a hat held on the pedestal by means of a spring arim held in a bracket attached to a side support. It will be readily seen that the device may be expedi tiously and conveniently applied to any receptacle, and is capable of adaptation to various positions and adjustment to hats of different sizes.
any size. For further information relative to the in vention address Messrs. Boothby \& Co., Portland, Me

AN IMPROVED LAWN MOWER.

The illustration represents a machine patented by Mr. Louis Meyer, of Utica, N. Y., in which the cutter knives are of the usual twisted form, to give to their beveled cutting edges a shearing action when the cutter head blocks and attached knives are rotated by the gear ing whose prime movers are the ground wheels. Fig. 1 is a sectional view of one of the knife-supporting heads, and Fig. 2 is a side elevation of the machine with the cover of the multiplying gear case broken away, Fig. 3 showing the complete machine in per spective. The trefoil form of the cutter head blocks,

MEYER'S LAWN MOWER
with their equally spaced and similarly shaped limbs, afford efficient means for the accurate and convenient adjustment of the knives, the grass roller being also adjustable and furnished with an adjustable cover to protect the roller from being impeded in its action, while a throat slot is provided in the cover to discharge grass accumulations through it. In the front of the machine, on the cross bar that retains the side pieces, is a protecting guard, preferably of rubber, whereby injurious contact with trees or shrubbery is avoided. There is no cutting action when the machine is moved backward, the cutter knives then being dormant, and injury to their cutting edges is avoided when the machine is drawn by its handle from place to place.

AN IMPROVED SWITCH SIGNAL.

The signal represented in the illustration is adapted to be located between the rails of the track, and is designed, when the switch is open, to be in an upright position. It is counterbalanced, so that the train being switched may readily pass over the track when the signal is displayed, while the signal will immediately return to its upright position after the train has passed. The invention has been patented by Mr. William R. Thomas, of Watertown, Wis. The switch rails are moved in the ordinary way by a switch rod, upon which is rigidly held an arm beveled at its outer end, where there is also a swell or projection on its under face. Near the switch rod, and beneath the track surface, is a box, having on one side a horizontal flanged table, and in this box is pivoted a signal, one end of which is

thomas automatic switch signal

weighted, while the other end presents a broad colored surface or may bear a flag. The entire signal is of such length that when brought to a horizontal position, it will extend from the outer end of the table to the opposite end of the box. To open the main line the switch rod is moved so that the beveled end of the arm secured thereon strikes the weighted section of the signal above its pivot and gradually presses the signal down to hori zontal position, holding it there until it is desired to close the main line and open the switch. As this is done, the arm on the switch rod being carried out of contact with the signal, the latter, by reason of its weighted end, automatically assumes a vertical position, rendering the display or upper section visible from up or down the track.

AN IMPROVED IRRIGATING APPARATUS.

The illustration represents an apparatus patented by Mr. Edward C. Chapwan, of Leadville, Col., designed to distribute water in fine streams or drops upon more or less elevated surfaces. The invention contemplates the furnishing of water under adequate pres-

sure through a main conduit, by a pump or other means, and at different points along the conduit pipe are outlet valves to which a hose or flexible tubing may be attached. Upon the other end of the hose is attached an extended water conductor or pipe, having perforations in its lower semi-circumference, adapting it as a sprinkler. An elongated chamber, filled with any gas lighter than the air, is attached to the water conductor, to hold it , on the principle of a balloon, above the surface of the earth, while guy ropes from the conductor lead to the drums of winches mounted on loaded wagons, by means of which the conductor may be anchored in any desired locality. When the device is in service, it is designed to produce an artificial rain-fall, the area of which is artificial rain-fall, the area of which is
extended by moving the conductor by means of draught animals attached to the wagons, and by connecting the hose to different outlet valves along the main conduit.

AN IMPROVED CHANNEL CLEANER.

An apparatus to be anchored in a channel where there are sand bars, to agitate the water and stir up the sand, so that the current may remove it, is shown in the accompanying illustration. A trunk or large tube, A, with perforations, a, along its bottom, and with a flaring mouth, C, at its up-stream end for concentrating the current, is anchored in a channel where there are sand bars, the down-stream end of the trunk being closed with a perforated cap, B, the apertures having hinged valves which allow the water to pass out of the tube, but close when the flow of water is in the opposite direction. In the trunk is journaled a spiral screw, D , on the lower end of which is mount ed a motor screw, E . The current of water passing through the trunk rotates the spirals and the motor screw, thus communicating motion to the water outside of the trunk in the vi cinity of its bottom perforations, loos ening the sand and causing it to be carried along by the current.
For further information relative to this invention address Mr. William Evans, the patentee, in care of Mr. Marcus Hamer, corner of Twentieth and Mechanic Sts, Galveston, Texas.

Bread Buttering Machine.
One of the latest and most unique inventions is a machine for buttering bread. It is used in connection with a patent bread cutter, and is intended for use in prisons, workhouses, and other reformatory institutions. There is a cylindrical shaped brush which is fed with butter, and lays a thin layer on the bread as it comes from the cutter. The machine can be worked by hand steam, or electricity, and has a capacity of cutting and buttering $75(0$ loaves of bread an hour. The saving of butter and of bread and the decrease in the quantity of crumbs is said to be very large.

Strong Oxygen Cylinders

A test of metallic cylinders for holding oxygen wa lately made at Glasgow. The cylinders were of $1 / 4 \mathrm{inch}$ steel, $61 / 2 \mathrm{ft}$. long, $51 / 2 \mathrm{in}$. diameter, weight 107 lb . They had been subjected twice to the ordinary test pressure of $3,600 \mathrm{lb}$. to the square inch, the practice being to make them more than twice as strong as the normal pressure to which they are regularly charged with the gas, namely, $1,800 \mathrm{lb}$. to the inch. The test in this instance was to try the strength of the cylinder in respect to indentation, breakage by falling, etc Dropped from a height of 35 ft . upon iron blocks, the cylinders were only slightly indented Weights of 600 lb ., dropped from height of 35 ft . in the center of the cylinder, which was supported at the ends, bent and flattened the cylinder somewhat, but caused no leakage of the high pressure gas.

A Court of Patent Appeals. The bill which has been introduced in Congress to establish a court of patent appeals seems to be a step in th right direction. Litigation growing out of patents for inventions is becom ing very voluminous; and, what is more, the cases being generally suits in equity, reach the Supreme Court on voluminous records, presenting questions for decision which depend largely upon the solution of disputed and complicated facts, which facts are again involved in questions of mechan-
ics. It is obvious that a court competent to deal with such questions must be a court composed of experts in that department of the law. Moreover, they should not have too much work to do, in order that they may give the necessary attention to each case. Although, counting the cases, the patent, trade mark, and copyright cases which come before the Supreme Court are not very numerous, yet it is believed that, considering

evans' channel cleansr.
tions involved, they occupy a very large portion of the time of that tribunal. It should not be troubled at all with such questions, except in so far as may be necessary to a proper superintendence of a court of patent appeals.-American Lav Review.

AN IMPROVED DUST GUARD AND VENTILATOR

The accompanying illustration represents an attachment for car windows designed to prevent smoke, dust and cinders passing into the cars while being ventilat ed, and also to prevent the passage of very strong cur rents of air while the car is in motion and the window raised. The invention has been patented by Mr. Joseph B. Ballard, of Ballardsville, Miss. A frame is made to fit the window, extending as high as the bottom of the upper sash, or higher if necessary, the side pieces of the frame being adjusted between cleats of the window frame, and there being an inwardly project ing strip on its upper edge extending close up to the upper sash, to prevent cinders from falling between the frame and the car window. The window portion of the frame is formed of a series of transparent slats, preferably of glass, as shown in the sectional view at the top, all of which except the end slats are pivotally supported in the upper and lower cross pieces. The pivotal slats are of such width that when turned edge wise they permit of convenient attachment to an operating lever, as shown in the small sectional view The pivot plates have extension or winged portions adapted to lap the sides of the slats, thereby making adapted to lap the sides of the slats, thereby making
a strong connection with the glass, and the outer ends a strong connection with the glass, and the outer ends
of the extensions of the lower set of plates have aper tured ears pivotally connected with lugs projected in-

BALLARD'S DUST GUARD AND VENTILATOR FOR CAR WINDOWS.
ward from a reciprocating operating lever. This lever is supported on an inwardly projecting plate secured on the cross piece of the frame, and is capable of being ocked in any portion of its movernent on the plate by a simple locking device. The entire construction is designed to be afforded at a small cost, and to be readily adjusted to car windows of the ordinary description.

THE ROWELL AUTOMATIC RAILWAY SAFETY STOP.

 (Continued from .first page.)brings the incline to the level with the top of the rail, thereby breaking connection with the locomotive.
In Fig. 5 we show the portable device. This is made of hard wood, four feet and four inches long, top edge being inclined both ways from the center, so that it cannot be placed in wrong position, and weighs less than ten pounds. Two steel clamps at the ends hold it the proper distance from the rail and steady it in position. The clamps are of steel, four inches wide and three-sixteenths of an inch at the thickest part, where they go over the rail, and beveled off to a knife edge each way, thus presenting no obstacle in the way of the passing car wheels. At the bottom edge of this board are small spikes, which are crowded into the sleepers and hold the board firmly from slipping. The effectiveness of this device does not depend upon the speed of the train. It stops the train without the aid or knowledge of the engineer, who can by this absolute protection maintain a high rate of speed on the darkest night when it is impossible to see the signals. B. C. Rowell, the inventor, is an old railroad man, having been for many years brakeman and conductor, and thus has a practical knowledge of exactly what is of use in an emergency.
This safety stop, while absolute in the protection This safety stop, while absolute in the protection
afforded, is comparatively inexpensive, certain in acafforded, is comparatively inexpensive, certain in ac-
tion, and easily applied. Its general adoption by the tion, and easily applied. Its general adoption by the entirely do away with nine-tenths of the accidents that

Fig. 5.-PORTABLE SAFETY STOP IN POSITION.
are so costly to the companies. Full particulars can be had by any one interested by addressing the Rowell Automatic Railway Safety Stop Co., No. 620 Atlantic Avenue, Boston, Mass., of which Benj. S. Lovell is president and Irving B. Sayles treasurer.

The Largest wooden vessel Afloat

The Philadelphia Press, reporting the arrival at that port recently of the wooden vessel Rappahannock, says she is the largest wooden vessel afloat. She was 287 feet long, $483 / 4$ feet beam, and her total tonnage is 3,053 net. In the construction of the ship 700 tons of Virginian oak and $1,200,000$ feet of Virginian pine timber were used. The frame is oak, well seasoned when put up, and the first quality of Georgian pine was used in the ceiling, deck, frames, and planking. The main keelson is 3 feet 2 inches in depth; bilge keelsons, 14 inches flush; lower deck beams, 15 inche by 15 inches; between deck beams, 12 inches by 14 inches; upper deck beams, 12 inches by 14 inches; and the spar deck beams at the main hatchway are 18 inches by 18 inches. The decks are of yellow pine, and the quarter deck extends forward to the main mast. The Rappahannock is the heaviest sparred ship that ever carried the stars and stripes. Her mainmast is 89 feet long and $381 / 2$ inches in diameter the foremast is 88 feet long and 38 inches in diameter the maintopmast, 58 feet; maintopgallant mast, 71 feet ; main yard, 95 feet; fore yard, 95 feet; lower maintopsail yard, 87 feet; upper maintopsail yard, 87 feet; lower maintopgallant yard, 70 feet; upper maintopgallant yard, 64 feet; main royal yard, 53 feet; main skysail yard, 43 feet. The lower masts are of Georgian pine, and the other spars of Oregon pine. The ship has a steel bowsprit, which is an innovation. She has no jibboom. Her spread of canvas will be 15,000 yards.

A New Niagara Ship Canal.

The committee on railroads and canals of the House of Representatives has taken favorable action in relation to the bill for the construction by the government of a ship canal around Niagara Falls between Lake Erie and Lake Ontario. The route most favored is 21 uiles long, and an appropriation of $\$ 10,000$ for the ar rangement of the preliminary details is included, together with $\$ 1,000,000$ for beginning the actual work of construction. The proposed canal is to be 100 ft . wide at the bottom, with a minimum depth of 20 ft ., its estimated cost being $\$ 23,000,000$. The consideration of such an outlay is primarily its commercial value, but, in view of our present treaty provisions which allow the maintenance of but one gunboat by this government on the lakes, its value in event of a war with England is apparent.

Storage Battery Electrical Cars.

In this city the Fourth Avenue Street Railway Company is still running a few of its storage battery cars but they have not yet attained that degree of success which is expected.
In Birmingham, England, a line of these cars is now under construction.
In Brussels the Tramways Company has decided to discontinue running the electric tramcars from the 1st of May next and to return to horse traction. The reason for this action is that the service of electric tramears has caused a deficit of $£ 1,144$, and this sum forms the difference between the cost of electric and horse traction.
The company considers, after having had an experience of electric tramcars for four years, that that period has been sufficient to prove that whatever reductions may be made in the maintenance of the accumulators, and whatever the possible improvements in the mechanism of the motors, accumulator traction is not practically applicable to the company's system from a remunerative point of view, bearing in mind the particular conditions of the service. After referring to electric traction in other countries, the company concludes that from the experience at Brussels the most economical system of working tramcars is by animal traction.
La Gazette, in a long article on the subject, states that the adversaries of electric traction affirm that the cost per car kilometer is 4 d ., or $61 / 2 \mathrm{~d}$. per car wile, while the advocates of the system maintain that the cost is only $21 / 2 \mathrm{~d}$. per car kilometer, or 4 d . per car mile. That journal then goes into figures, and endeavors to show that the cost per car mile in the two systems of traction, apart from the maintenance of the accumulators, is slightly less in the case of electric cars.
It must be remembered the cars have been worked under disadvantageous conditions. They are of small capacity, and the line traversed by them has some none too easy gradients. Moreover, although only three cars were provided, the station in the Rue JusteLipse was arranged with machinery sufficient for working eight cars, and this in itself was a disadvantage since the general expenses of eight cars would be about the same as when only three were employed.
In Paris about six months ago the Northern Tramway Company commenced the running of four electric tramcars on the line from Levallois to La Madeleine. The cars are self-contained or accumulator cars, and were originally started as an experiment to see whether accumulators could be satisfactorily employed. The electrical energy is supplied by Faure-Sellon-Volck mar cells having twin plates. The number of cells in each car is 108 , and they are placed in 12 boxes, each
containing 9 cellsin series. Each cell weighs 33 pounds, and the total weight of the battery is nearly $321 \frac{1}{9}$ cwt. The twelve boxes are placed in four lockers, situated at the angles of the car, four carried at the front and eight at the back of the car. The connections are so arranged that on putting the cells in place they are automatically grouped three in series, thus forming four groups of 27 cells each. These groups can for working purposes be coupled in four different ways. They can be arranged in parallel or in two groups parallel ; three groups can be run in series, the fourth being in parallel with one of the three others, or the
four may be connected in series. There is provided a fifth connection, which is obtained by means of an auxiliary commutator, which regulates the inequality of the discharge caused by the third method of coupling up. These connections are effected by means of a commutator in the shape of a wooden cylinder having contacts on its periphery. These contacts are connected to each other by inner pieces insulated from the metal axis of the cylinder. The positive and negative poles of the four groups correspond to eight fixed
brushes. The cylinder is operated by means of a crank.

A Siemens motor, which is placed under the front of the car, runs normally at 1,000 revolutions, but a speed of 1,600 turns can be attained. The power is taken from the motor by an endless rope running over a set of gearing actuating the car, and which reduces the speed of the motor in the proportion of 26 to 1 . The
motor is reversed, and the car backed, by means of a motor is reversed, and the car backed, by means of a
special arrangement, comprising double V-shaped brushes. A single branch of the V of each brush touches the collector, but by causing the brushes to move by means of a lever the branches in contact are raised, and the other two are placed at 90°. Thus the
direction of the current is reversed, and consequently that of the car. The weight of the car is $31 / 2$ tons, making, with accumulators, a total of 5 tons $21 / 2 \mathrm{cwt}$. The cars each carry fifty passengers, and run normally at $63 / 4$ miles an hour. At this speed on the level the power required is $41 / 2$ electrical H . P ., on an incline of per cent 8 H . P., on an incline of 2 per cent $111 / 2 \mathrm{H} . \mathrm{P}$ At $51 / 2$ miles an hour, on a gradient of 3 per cent, $121 / 2$
E. H. P. is required, E. H. P. is required, and $151 / 2$ E. H. P. is necessary on a 4 per cent gradient. When running at 3 miles an
hour on a gradient of 5 per cent, the E. H. P. is $101 / 2$. The French Electric Accumulator Company estimates that the cost of electric traction on the line in ques-

tion amounts to 30 centimes per car kilometer, or about

 $43 / 4 \mathrm{~d}$., or a little less than 10 cents, per car mile.
Let the Government Help Everybody.

The effect of the special legislation and special bounty some of the silver men are asking from Congress is already becoming apparent. The agricultural classes, whose needs of public help are greater than those of any others, are putting forward their claims. Senator Vance has, at the request of the Farmers' Alliance, introduced a bill in Congress which calls for the erection in every county of the United States of a Federal warehouse, in which the owners of agricultural products may deposit the same and receive treasury notes for 80 or 85 per cent of the market value of these products, the notes to become part of the public currency.
Of course every advocate of the silver warehouse scheme will assert that the agricultural warehouse plan is preposterous, and not much better than the plan proposed some time ago by a Chicago paper, that the government purchase all the whisky manufactured, and issue therefor legal tender certificates, somewhat in the manner of the proposed silver certificates; and it is claimed for whisky that, as a basis of currency, it would have the unique advantage of increasing in value with age, thus earning its own interest, and after a certain number of years the government might sell a portion for the cost of the whole, and would thus make a handsome profit. Yet this proposition no doubt appears very absurd to nearly every one. The Farmers' Alliance consider its plan to have government warehouses a very serious one. Next we may reasonably expect the lead melters and the copper producers and iron furnaces to ask the government to indorse their warehouse certificates or to buy their products at some fictitious " market price."
When the government buys what every one produces, and pensions every individual in the nation with the taxes collected from every one, we shall have arrived at Bellamy's ideal state, and the government will, of course, then dictate what shall be produced and who shall produce it. We confess the Bellamy scheme seems to us to be a sensible and practical plan com pared with some of the schemes proposed, and we are accustoming ourselves to "looking forward" to its adoption at an early date if the present craze for government help in every industry and by every individual continues. Before long we may expect every business to draw a bounty in some shape and every in dividual to get a pension.-Eng. and Min. Jour.

Possibilities of the Telephone.

Though the telephone has long since ceased to be a wonder, its great powers and adaptability to various purposes, as yet but hinted at, must still command atention, very much on account of their commercial aspect. This is evident on contemplating the work done by this instrument in the installation at the Lenox Lyceum, by which the "long distance" telephone Lyceum, by which the "long distance" telephone
company has placed before the public an exhibit of superb qualities. It seems strange, indeed, that up to the present time, the telephone companies have not done more toward exploiting a field which could certainly be made a source of considerable revenue by the furnishing of musical and other entertainments by wire at the fireside. But still more impressive than the musical part is the remarkable clearness of the long distance transmission. Although we are all accustomed to ordinary local telephone transmission, the mind can yet,hardly grasp the reality of the enormous progress which permits persons hundreds of miles apart to maintain perfect oral intercourse. Yet we believe the ime is not remote when even this will cease to attract ven passing notice, and when the "long distance" lines, now mostly confined to the Eastern States, will cover the entire conntry with a vast network of "speaking wires." The "long distance" company is to be commended for the liberal policy adopted by it, in educating the public to the proper appreciation of the facilities available for $i t$, and, if we are not mistaken, it will date one of its quickest and longest strides forward from the display at the Lenox.-Electrical Engineer.

Novel Fire Protection.

Seattle, Wash., has a rather novel scheme for utilizing its new fire boat as an aid to the land engines in cases where the burning buildings are too far from the water front to be reached by a stream directly from the boat. Briefly the plan is to provide four or five berths for the boat at different points on the harbor front, and from these points lay an auxiliary system of eight and six inch water mains through the business district of the place. These pipes it is proposed to connect with the hydrants, and through them the boat is to be made to force up salt water for the use of the engines in case of a failure of the fresh supply. The plan is a simple one, and there seems no reason, Fire and Water thinks, why it should not work satisfactorily. And why might not the same plan be advantageously adopted in New York and other Eastern cities? It is certanly worth considering.

Gorrespondence.

A Correction-Eugenol or Sodium Fluoride.

 To the Editor of the Scientific American:In your paper of April 19 you quote from the Dental Cosmos an article on "Sodium Silico-Fluoride." Where do you get your authority for saying eugenol or sodium silico fluoride?
J. D. M.
[Ans.-The use of the term eugenol in the connection
stated was our error, not the Cosmos'.-EDs. S. A.]

Paint Preservations for Iron

Mr. L. Matern, of Bloomington, Ill., writes as follows in the Painters' Magazine concerning an article in the Scientific American, February 22, 1890, by Prof. Lewis:
He quotes boiled linseed oil as unfit for painting iron, because lead is used in boiling and purifying it, but does not seem aware of the fact that through boiling, oil loses its binding quality for forming chemical coubinations with strong base pigments, as red lead, litharge, umber, oxides of manganese, etc., which are of the highest order for preserving iron, wood, etc. Raw linseed oil is deprived of its best binding qualities by boiling, when it loses its gelatinous acid. By extracting linseed oil from linseed meal with benzine (percolation), where the fatty matter of the oil is only obtained, the remainder being left in the meal. By driers, which combine with the oleo acid and separate leaving again the fatty matter to become resinous by exposure to the oxygens of the air. Oil in that condition is chemically neutral, and forms only a mixture with the base pigments. When iron is coated with tar or asphalt it must undergo heat (impracticable most of the time) so as to drive off all except the coal contained in it ; otherwise it gives no protection.
Iron ore, a faint base, has but little affinity to linseed oil, and communicates part of its oxygen in a damp place to the metal iron it is to protect from rusting, thereby causing the iron to rust. This paint is a good "red wash" for wood, as can be noticed on barns painted with it, where any one can observe that the nail heads painted with iron ore paint rust all the same. The chief good of iron ore paint is that it costs little.
Again, the man who can cleanly scrape off rust from iron without resorting to filing, grinding, fire, or acids, is still unborn. The least trace of rust left will start anew corroding it in a damp place in spite of all paint Iron painted while hot, as the professor will have it, is liable to destroy the quality of the oil when heated above $150^{\circ} \mathrm{F}$., and adds nothing for its protection Where durability of paint is required to protect iron, it should have a strong base of a pigment of poisonous quality-a strong base to unite with linseed oil in a chemical combination not soluble in water, and a poison to ward off all animal and plant life. Also the pigment must be such that it does not impart or conduct oxygen to the iron. In all my years of experience nothing has proved better to preserve iron than pure red lead (not white lead) ground in raw, one year old, cold-pressed linseed oil, applied fresh from the mill to unrusted iron. Proofs of this have lain for years in a wagonmaker's yard, deep in the ground, which when dug up were rusted through except where protected by red lead paint.

An old Indian Fort.

A thorough examination has recently been made of Fort Ancient, the old Indian remains in Warren County, near Cincinnati, Ohio. This work has been conducted by Mr. Warren R. Moorehead, who has published a book on the subject. The ruins are very extensive, the whole fort being included within embankments that are 18,712 feet in length. The extreme distance between the outer embankment of the old and new fort is 5.000 feet. The average height of same is $121 / 2$ feet, while in places it reaches a height of 22 feet. Mr. Moorehead states that the fort was a defensive earth work which in time of danger was used as a place of refuge by some large tribe of Indians, and at certain periods a large village was situated within its walls. He believes that the structure was raised by some tribe as a fortification against some hostile nation, and that the natives residing within a large adjacent district were allied and held this structure in common, and fled to it in time of trouble, while in peace the fortification was kept in repair by a certain number who were de-
tailed for that purpose. Over two hundred skeletons tailed for that purpose. Over two hundred skeletons
were exhumed in the excavations. There were two modes of burial; one in a grave of stone, while the more sumple mode consisted in simply piling stones over the remains of the dead. Pieces of pottery and other relics were discovered.

T'He chicken business is a matter of wonderful im portance to the table comfort and the financial outlook of the American farmer. Government statistics show that the annual expenditure in this line is $\$ 560,000,000$; and despite the immense production of eggs, several million dollars' worth are annually 1 mported to meet

Havana's dangerous attitude to commerce is shown by the following communication in the Sanitarian: As the season approaches when the increasing heat produces a corresponding fear of disease, and the time is at hand when health and municipal authorities take special precautions against the outbreak or spread of infectious or contagious diseases, it may not be uninteresting to note down some aspects of the sanitary situation of the cities of the Southern States and o those countries lying adjacent to our southern line. It seems to be fully agreed that from one point comes the
greatest danger to the South and the seaboard cities of greatest danger to the South and the seaboard cities of
the United States-that from Cuba, and especially from the United States-that from Cuba, and especially fro
Havana, those diseases which are most to be dreaded during the heated term are most easily imported.
The inspection of the steamers plying between Ha vana and the ports of the United States is so close and searching, and the penalties for infraction so severe that the great body of the traveling public are fully protected against a possible infection.
The steamers of the Plant line arrive at this port at 6 o'clock in the morning. They lie in the harbor moored to a floating bnoy, not anchoring directly unti 1 o'clock the same day, when they sail for Key West. The five or six hours are spent in discharging by light ers the passengers, their luggage, and the limited amount of cargo, and receiving a like amount on board. The ships Mascotte and Olivette are as clean as constant work and untiring vigilance can make them. It speaks well for the care taken by Dr. Burgess, the rep resentative of the United States Marine Hospital Ser vice, and the officers of the line, when it is asserted that for 300 trips of the steamer Mascotte no case of contagious or infectious disease has been found aboard on arrival, nor has any person not complying with the
regulations ever been permitted to land in the United regulations ever been permitted to land in the United States.
Havana should be a healthful city, and it would be but for the uncleanly habits of the citizens and the total neglect of sanitary laws, which make the name a synonym for the dreaded fever. Swept daily in three directions by the strong winds, and with a natural sur face sloping to the water for all drainage, there is no natural condition why any infectious disease should obtain a foothold in a locality so highly favored; yet the daily health reports show the presence of from five to thirteen cases of yellow fever, besides the usual number of contagious diseases incident to a population of this size.
The reasons for this endemic character of the yellow fever are perfectly clear. Most of the sewers are badly built and serve to collect and retain the sewage rather than discharge it. Some few of the later ones, built under the Spanish engineer officers, aregood specimens of the art and are serviceable, but the irregularities in plan, the worthlessness of material, and, above all, the rascality in construction of those built prior to recent regulations for new ones, make them death traps and worse. The fumes from almost all the manholes and as carbonic acid gas; and as it is now five months since rain has fallen, and there is no provision for flushing the sewers, the poison which flows steadily forth can be easily imagined. The outfall of these sewers is into he harbor, nearly all inside the line from Moro Castle across to the Casa Blanca.
This harbor is like a bottle, the neck or narrowest part being about five hundred feet wide and expanding into an area one by one mile and one half. There is no How of tide of any consequence, the average rise being but two feet.
The sewage outflow falls directly into the still water under the wharves and there accumulates, and the harbor is gradually filling up with the concentrated extract of filth, which is death to disturb and sure dis ease to be in smell of. Vessels lying at the wharves lose their crews, and even when hauled into the stream carry with them the seeds of fever, to be propagated on board other craft which have had no communica tion with the shore. There are many singular examples of communicated contagion by air and wind related by the health officer of the Marine Hospital Service stationed here
Another hardly less deadly source of disease is the filthy condition of the streets. The wind seems to be he only scavenger. In a residence of two weeks I have seen no attempt at cleaning the streets, and the condition of those about the markets surpasses belief. Un der this hot sun vegetable matter begins to decay the instant it is cut. The supplies appear to be brought in from the country in the crude form, with no attempt to prune away the surplus and useless stalks, and the result is a mountain of rotten refuse thrown out at the earest door or window.
The sanitary organization of the city is incomplete and inefficient. There appears to be no chief head or responsible authority with power to make and enforce necessary regulations.
There are too many officials. Each ward has its own alcalde or mayor, with a board of councilmen and staff equipment. All these are subject to the captain-gene ral, but the endless circumlocution and detail of official
redtape defeat any attempt to grasp the subject as a whole. 'There are many highly educated and ad vanced thinkers in all departments of science and the profes sions, men who keep abreast of the advance of sanitary progress in theory, but none who seem confident and competent enough to put theory into action. Hence the special branches which these men devote themselves to flourish, while the general health and educaion retrograde.
The real reason for the low standard of public health is said to be that the Spanish government is in constan financial straits, and has not the money for the sanita tion of the city. The city is practically bankrupt. The paper money in circulation is worth only two and one half dollars for one of gold, and the people are taxed to the utmost limit to maintain life. But this question of finance is aside from my purpose and cannot be here discussed. The facts are simply these: Here is a city situated in one of the most healthful localities in the world, a hotbed of infectious diseases and a plague spot for all its neighbors! Of this the people of the United States have repeatedly had sad experience, and as recently as only two years ago. It remains for us to so protect ourselves, if possible, that by no chance shall it ever again happen that we shall go through a like experience.

Francis.
Havana, Cuba, April 1, 1890.

Nitro-Glycerine in Doses.

The other day a representative of the Star news paper met Dr. H. H. Burchard, one of the clever and famous physiciaias of Philadelphia. In speaking of the rogress of medical science in these later years he said
Have you any idea of how far high explosives are used in medicine? You cannot get your knowledge rom books unless you ransack five hundred volume and pick up the scattered items here and therc. It may surprise you to know that they are in daily us nd of the greatest value in all sorts of diseases and injuries.

There is, for example, guncotton, or, as we call it pyroxylin. It is twice as powerful as gunpowder, but very much inferior to dynamite or nitro-glycerine Dissolved in ether, it makes that wonderful compound we call collodion. In this shape it is employed to pro ect raw or injured surfaces. It dries rapidly-in fact almost as fast as it is employed-and leaves behind a fine, elastic artificial skin, which is air and water proof against microbes and disease germs. Mixed with cantharides, collodion makes the best blistering plaster known to science. Mixed with tannin or tannic acid, it makes a wonderful remedy for stopping the flow of blood from wounds. In cases of sealding and burning collodion enables the profession to cover the exposed lesh in a manner never before possible. No secretion of the human body affects it, nor, on the other hand, does it exert any unpleasant or objectionable influence pon the system.
But of even greater value is nitro-glycerine. When sed in medicine it is largely diluted, one part being mixed with one hundred parts of alcohol, and one drop of the resultant mixture is a dose. In this form it is an admirable antidote in cases of neuralgie of the heart and many cases of nervous disturbances of the human body. Thus it has been used and given wonderful reief in nervous asthma, hiccoughs, headaches, and simi ar disorders. It has repeatedly cut short an attack of the chills and fever, and so eminent an authority as Dr. Robert Bartholow recommends it in certain forms of Bright's disease, and also for that most miserable of arthly ailments, sea sickness.
"Thus far we have only begun to know the medical virtues of guncotton, nitro-glycerine, and amylnitride. Beyond these there are over six high explosives of which we know little or nothing as to their real character, and nothing at all regarding their action upon the physical organization. It does seem curious, however, that substances which in large quantities are destructive of life and property, should, in small ones, be beneficial to the sick and injured. 'Fhe guncotton which blows a man up enables the physician to destroy the pain of his raw members and to heal them in less time than was ever before possible with other remedies."

Varnish for Confectionery

Take half a pound or more of gum benzoine, put it into a bottle and cover it with fourth proof alcohol, cork up tightly and let it digest for at least two weeks, shaking up once or twice a day. After which time you may pour gently off any quantity you may require for present use. It should be the thickness of thin sirup; if used too thick, it is apt to appear in streaks on the work when dry ; if too thick, dilute it with ale hol. This varnish is perfectly harmess and very fragrant, resembling somewhat the odor of vanilla. It will also keep for years, growing better with age. It is a nice varnish for all kinds of chocolate work and candies; pulled and clear. It forms, when dry, a thin, glossy film or skin over them, which prevents the access of the moisture of the surrounding atmosphere, and tends to keep them from becoming sticky for a much longer period of time.-British Confectioner.

new elevated railway.

In all city streets where there are two surface railway thus increasing its cheapness and at the cost In all city streets where there are two surface railway
tracks there is a space between them of little use ex-
strength in resisting longitudinal strain. Who would列 eept for direct crossing. To utilize this space is the have anticipated, a comparatively few years ago, the city for lighting and the distribution of el object of the elevated railway illustrated on this page.
It carries two tracks, supported upon a single line of columns. Taken in combination with street tracks below, it practically solves the question of rapid transit. The upper cars move at high speed, make few stops, and carry people quickly to long distances.
The lower cars move more slowly, stop often, and take local travel chiefly. Long distance passengers can ride on the surface cars to the nearest elevated station and then take an express train.
The drawings will explain the construction. It is not designed to

carry locomotives or such cars as are used on the elevated railways of New York and Brooklyn, but cars not much heavier than street cars, drawn by electrical or cable power.
Single columns, placed between the surface tracks at distances of about 80 feet apart, carry triangular girders, to whose sides are riveted brackets, carrying the tracks, which are made purposely without cross ties and very open, so as to obstruct light and air as little as possible.
These brackets are extended above the tracks and carry longitudinal timbers which form safety guards, entirely preventing cars from falling to the street in case of derailment ; which itself is not liable to occur, as the usual guard timbers are placed on each side of the rails.
The only question that can arise is whether the unbalanced weight of one car or one train of cars, with wind pressure added, can be resisted by a single post. To do this only requires that the post should be stiff enough not to bend, and the foundation large enough not to upset. With the light rolling stock proposed, this is not difficult
The column is embedded in a block of concrete dur ing its construction. This block is all below ground, and can be made as large as necessary. Both calculation and actual experiment show that this is entirely practicable.
The clear space left between street cars is about 28 inches, and an 18 inch wide post can be set between, leaving 5 inches of clearance. This would require wire guards to be placed over the windows and along the inner side of platform, as is done on most cable roads This is the only change necessary.
If the street cars use overhead electric wires, this structure can support them at every five feet if required, and in a position where they cannot be broken or cross other wires.
If the cars above use electric motors, the direct wires can be placed in safe position, and a return wire will keep the current from the structure.

The advantages of this elevated railway, as claimed by the inventor, are: It more than doubles the capacity of existing street lines. It has a graceful appearance and gives the least possible obstruction to light and air. It gives perfectsafety in operation. It carries electric wires in safety. It can be built for less than any other form of elevated railway The inventor. T. C. Clarke, consulting engineer, 1 Broadway, New York, will give estimates of cost and other information.

Wire and its Uses.

Inventive genius is constantly finding new uses for wire and we are quite justified in anticipate that it will be found that in 1890 we had advanced but a little way beyond the threshold in ascertaining its adaptability. Tensile strength and flexibility are qualities that fit it for a great variety of uses, and when we add that it is comparatively fireproof, we have another important property in extending its usefulness. By new processes of manufacture wire can be cold-rolled to almost any degree of the enormous quantity of wire required for the maintenance and natural extension of telegraph systems would be but a fraction of that needed in the whole field of electrical industry.
Then to what diverse and almost contradictory purposes do we find wire applied in modern times. Ex periments in the strengthening of heavy ordnance by wrapping wire while under tension around the steel cylinder are being conducted with reasonable prospect of success, and, if successful, will add to the efficiency of an instrument of de struction, while from the same mil may come the wire which, woven into the form of a mattress, may

TAIL ELEVATION OF CLARKE RAILROAD SYSTEM

THE CLARKE ELEVATED AND SURFACE RAILROAD SYSTEM.
eation of a new industry in the manufacture of bear the weight of some unhappy creature struck barbed wire for fencing, which continues to flourish down by that wire gun of modern warfare. It is

CROSS SECTION SHOWING ELECTRIC CONNECTIONS.
in spite of its many detractors? For electrical pu
poses alone the use of wire, already so extensive, woven into door mats, which are rapidly gaining in popularity by reason of their cleanliness, and this has led to the employment of woven wire as floor covering in other respects, notably in railway car riages, in hallways, and elsewhere where many feet pass. For such homelier purposes we may confidently look for a larger extension of its use, and in ways which we do not anticipate at present. Its advanta fibrous material, in not retaining the dirt falling upon it, must suggest its employment in many ways where now the former is used.
Two very modern uses of wire which are widely dif ferent in their ultimate objects, but closely allied in the means employed to fit the wire for those diverse objects, may be mentioned. One is its use as a roofing material, and the other as the foundation for stage scenery. In both cases its lightness, durability, and safety from fire are elements of distinct advantage. In the one case the meshes are coarse, and in the other very fine, but in each the meshes are filled with a preparation which adheres firmly, making a continuous surface without crack or seam. For the roof, this preparation may be semi-transparent to admit light, or opaque, but for the scenery body it is made opaque, to prevent being seen through. The wire body thus pre pared is the ground upon which the scene painter lays on the colors for the gorgeous spectacle, the beautiful glade, or the interiors which charm the playgoer. It is almost as flexible as canvas, and should greatly decrease the peril of fires in theaters; its use would certainly lessen the awful swiftness with which a theater fire started sweeps through the tinder of the flimsy wings and flies.
Yet another most recent use of wire, which has been exemplified at some of the latest exhibitions in London, is in the construction of collapsing into a very small fraction of its original bulk for return as an "empty." The strength, durability, and convenience of this contrivance should insure it a welcome and an extensive use. We have by no means exhausted the modern uses of wire. Braided or woven it is made into belts for driving the very machinery which produces it. It forms a material part of the dynamo that lights the factory, and it carries the directing voice of the manager from his office to the men who stand at the ponderous rolls and take the product from their jaws. It is used to stiffen the garments we wear, to support the flowers and tiny birds on the hats of women, to cage our singing birds, for the blanks of screws and nails, and, in short, for innumerable purposes we cannot men. tion here and now.-Iron. mongery, London.

A PINT of warm water taken on an empty stomach in the morning is the safest and surest of al! remedies for habitual con. stipation. It dissolves the fecal matter and stimu. lates peristaltic action, thereby giving a normal action without pain. If tongue is coated, squeeze a lemon into the water and drink without sweetening.

ELECTRIC LIGHTING FOR AMATEURS

It is now possible for any one to procure small incandeseent lamps from the Edison Lamp Co. and from most dealers in electrical goods. The prices run as follows: $1 / 2,1,2,3,4$, and 6 candle lamps, one dollar each. These little lamps can be operated quite successfully by means of easily constructed batteries. It is, of course, a little troublesome, and the expense of the electric light produced in this way is somewhat greater than other lights, but amateurs can derive a great deal of satisfaction from these experiments in electric lighting.
The battery may be made at home, from materials

Fig. 1.-ARRANGEMENT OF CARBON AND ZINC PLATES.
that may be purchased from the manufacturers of the lamps or from any dealer in electrical supplies. Each cell of battery consists of two plates of carbon 2 in . wide, $41 / 2 \mathrm{in}$. long, and $1 / 8 \mathrm{in}$. thick, one zinc plate 2 in . wide, 4 in . long, and $1 / 8 \mathrm{in}$. thick, two strips of wood $1 / 2 \mathrm{in}$. wide, $1 / 4 \mathrm{in}$. thick, and 4 in . long, two strong rubber bands, and an ordinary tumbler.
The zinc is amalgamated by dipping it in dilute sulphuric acid (acid one part, water twelve parts), then sprinkling on a few small drops of mercury, rubbing it about with a swab formed of a piece of cotton cloth tied around the end of a stick. Every portion of the surface of the zinc should be covered with mercury. If the amalgamation is perfect, it need not be repeated.
The carbon plates before use should each be heated at one end and saturated with paraffine for a distance of $11 / 4 \mathrm{in}$. from the upper end (and no more) to prevent the solution from ascending the plate by capillarity. This is accomplished by heating the end of the plate over a lamp and applying a piece of paraffine or a paraffine candle until it is filled. No free paraffine should be allowed to remain on the surface of the car bon, as it will interfere with making a good electrical connection with the plate.
The zinc plate is placed between the two wooden strips. The carbon plates are placed outside of the strips and held by the two rubber bands, as shown in Fig. 1.
The connection between the carbon plates and the wire leading away from the carbon pole is made by a doubled strip, a, of copper, the ends of which are in serted between the wooden strips and the carbon

Fig. 2.-Three cells in serifes.
plates. In a similar way a copper strip, b, is inserted between the zinc plate and one of the wooden strips. The tumbler forming the battery jar should be deep enough to allow the wooden strips to rest upon its rim, so as to support the plat bottom of the tumbler.
The ordinary bichromate of potash solution is used in the battery. It is prepared by making a saturated solution of common bichromate of potash in warm water, then, after cooling, adding very slowly a quantity of common sulphuric acid, equal to about onefifth of the bulk of the bichromate solution. It is advisable to add to the solution a very small quantity of bisulphate of mercury, say one-eighth ounce
to the quart of solution, to maintain the amalgamation of the zinc.
The salts known as the C. \& C. battery compound are excellent and very convenient for use in batteries of this class. It is only necessary to dissolve this compound in water to form the exciting solution.
This material is sold in tin cans containing two or three pounds. It absorbs moisture rapidly, so that when it is to be used in small quantities, it should be transferred to a stoppered glass jar.
It is, perhaps, needless to say that great care should be exercised in handling the solution, as it is poisonous and destructive to clothing, carpets, etc. The same remark applies to the battery compound.
One cell of this battery should be allowed for each candle power of the lamp. The zinc of one cell should be connected with the carbon of the next, as shown in Fig. 2. The battery may be arranged as a plunger Directions for making a battery of this kind were given on page 116, of volume 57, of this journal.
In Fig. 3 is shown a convenient bracket for supporting small electric lamps. It consists of two curved wires attached to a small piece of board by means of screws which also serve as binding screws for attach ing the wires. The lamp is suspended from eyes form ed in the ends of the wires. This device may be used as a standard, as shown at 1 , as a hanger, as shown at 2, or as a bracket, as at 3 .
In Fig. 4 is shown a series of three small lamps con nected with three cells of battery.
The lamps in this case are connected in parallel or multiple arc, i.e., one binding screw of each lamp is connected with one wire from the battery. The other binding screws of the lamps are all connected with the remaining pole of the battery.
Copper wire, No. 18 or larger, should be used for making the connections. The battery will run continuously with a single charge of the solution for about three hours. Should the solution become warm and give off hydrogen, the zinc should be reamalgamated at the points where it is violently attacked.

How Prevent the Spontaneous Ignition of Coal in Ships.
In a paper recently read in London before the In stitution of Naval Architects, Professor Vivian B Lewes advocated the ejection of compressed carbonic acid gas, and explained his plan as follows :
If carbonic acid gas is compressed under a pressure of 36 atmospheres at a temperature of 32° Fah., it is condensed to the liquid state, and can be obtained in steel vessels, closed with screw valves. On opening the valve some of the liquid is ejected into the air, and on coming down to the ordinary atmospheric pressure, is in a moment converted into a large volume of gas. Conversion from the liquid to the gaseous state means the absorption of a large amount of heat, and so great is this, that everything near the stream of new-born gas is cooled down, and some of the escaping liquid is frozen to a solid having a temperature of -108.4° Fah. ($-78^{\circ} \mathrm{C}$.). I should suggest its use in the followin way for the checking of ignition in the coal cargo
The nozzle attached to the screw valve on the bottle of condensed gas would have a short metal nose piece screwed on to it, the tube in which would be cast in solid, with an alloy of tin, lead, bismuth, and cadmium which could be so made as to melt at exactly 200° Fah. (93° C.). The valve would then be opened, and the steel bottle buried in the coal during the proces of loading. The temperature at which the fusible which would mean that active heating was going on in the coal. Under these conditions, the pressure in the steel coal. Under these conditions, the pressure in the steel
cylinder would have reached something like 1,700 cylinder would have reached something like 1,700
pounds, and the moment the plug melted, the whole contents of the bottle would be blown out of it into the surrounding coal, producing a large zone of intense cold, and cooling the whole of the surrounding mas to a comparatively low temperature. The action, more over, would not stop here, as the cold, heavy gas would remain for some time in contact with the coal-diffusion taking place but slowly through the small exit pipe.

When coal has absorbed as much oxygen as it can it still retains the power of taking in a considerable volume of carbonic acid gas, and when coal has heated and then been rapidly quenched, the amount of gas so absorbed is very large indeed, and the inert gas so taken up remains in the pores of the coal, and prevent has once heated, if only to a then cooled down, is perfectly harmless, and will not heat a second time. It is not by any means necessary to replace the whole of the air in the interstices of the coal with the gas, as a long series of experiments show that 60 per cent of carbonic acid gas prevents the igniion of the most pyrophoric substances. A hundred cubic feet of gas can be condensed in the liquid state in a steel cylinder 1 foot long and 3 inches in diameter, and it has been shown that a ton of coal contains air paces equal to about 12 cubic feet. One of these cyl inders would therefore have to be put in for every 8
tons of coal, and these would be distributed evenly through the cargo, and near the alarm thermometers which would be set to ring a degree or two below the point at which the fusible plug would melt. The bell ringing in the captain's room would warn him heating was taking place, and the bell would continue to ring until the cylinder had discharged its contents and had cooled down to a safe degree, so that the whole arrangement would be purely automatic, and yet the officers would know if everything was safe. If the pre autions advocated were taken, no danger could aris until the arrival of the ship at her destination, and the commonest precautions would then suffice.

Fig. 3.-LAMP SUPPORT.
In conclusion, Professor Lewes remarked that the question of preventing the heating and ignition of stores of coal on land and ready for use in bunkers could not be met so well by the use of the liquid gas, and in these cases it would be found beneficial to dress the coals with a little tar or tar oil, which would close the pores, and to a great extent prevent oxidation He believed this was advocated by Lachman about 1870. Crude petroleum in small quantities for this purpose would also be found valuable, for it had no tendency to oxidize itself, and lowered the tendency in other bodies, besides coating them and so preventing access of oxygen.

The Plate Glass Industry.

The manufacture of plate glass is evidently one of he most prosperous industries in the United States oo-day. But whether it will continue to be such, in view of the large increase of capacity projected, is a question which time alone can determine. There are already eight great works in operation, viz. : Crystal City, Duquesne, Creighton, Tarentum, Ford City, New Albany, Kokomo, and Butler, capable of making rom $9,000,000$ to $10,000,000$ square feet of glass per annum, according to recent estimates, or almost as much as the present requirements of the country call for. What then is to become of the heavy additional production promised is not known, without lower prices for the article can greatly augment consumption. But the work on new plants and additions to old ones is going on just the same, nevertheless. At Charleroi, the newest industrial city of Pennsylvania, a huge plate glass establishment is being erected, and

Fig. 4.-LAMPS CONNECTED IN PARALLEL.
will be equipped with glass machinery by the Ranken \& Fritsch Foundry and Machine Company, of St. Louis, at a contract cost of $\$ 308,000$. The Diamond Plate Glass Company, of Kokomo, Ind., through a branch $\$ 2,000,000$ incorporation, is putting up a works at Elwood, Ind, to make 20,000 feet of finished glass a day and give employment to about 2,500 men. The Pittsburg Plate Glass Company purpose doubling their present plant at Ford City, at an outlay of $\$ 1,750,000$, so as to surpass all competitors in the matter of output, at home or abroad. Other companies still are enlarging, and entirely new enterprises of the kind are being either actually organized or talked of in various parts of the country.-Age of Steel,

The Care of House Plumbing.

It is not all of life to live, nor all of plumbing to plumb. Simply to live is to fail in all the purposes of life. So the simple fact that a residence has been plumbed does not eternally secure the sanitary drainage of a house. This work, however perfect when placed, may in time get out of order and need repair. The settling of a building may break a joint or otherwise cause defects in the drainage which no foresight of the best plumber in the country could prevent. Decay is written on the face of everything, and plumbDecay is written on the face of everything, and plumb-
ing work forms no exception and should receive the ing work forms no exception and should receive the
best of care, for its perfection is of the highest importance to health. In regard to its care a writer in the Sanitary Era points out the importance of efficient care of plumbing and suggests two annual tests of the safety of the drainage. The water test, as suggested, would probably be disastrous to carpets, etc., in some instances and could be replaced by other tests. The Sanitary News agrees with the Sanitary Era on the importance of inspection, but suggests that it would be to the interest of the householder to have a qualified plumber to do the work. Nooks and corners, fixtures and exposed pipes can be kept clean by any one, but a proper inspection of the plumbing work can best be made by a plumber. The writer referred to says:
"The disease-breeding dangers of house drainage require of the occupant accommodated with water car-
riage of waste a well instructed and perpetual vigilance. riage of waste a well instructed and perpetual vigilance. variety of causes, like everything else, and the worst needs no comment, except that there is enough of it to make expert examination of the system from top to bottom before buying, accepting, or hiring a house, the plainest dictate of prudence. Not only at the beginning, but at least once a year ever after, all the pipes and joints should be tested for leaks by plugging up the mouth of the house sewer or drain, and filling the whole system with water by the ventilating pipe at the roof. Leaks, if any exist, will then manifest themselves by the gradual lowering of the water at the top of the filled ventilator pipe, and will locate themselves by wetting the premises-which should be at all points open to inspection for this purpose. If in that case no leak should appear within the house, and yet the test water should lower, the defect is in the drain, which will rapidly create a pestilent condition in the soil near the house if not remedied. Obstructions, however, may possibly frustrate the water test, or the peppermint test, and this should be guarded against by particular tests from floor to floor. If the pipes are free, the pouring of a little oil of peppermint into the ventilating pipe gives a very delicate test of leaks by its strong essaping odor. But as this may not be definite enough as to the locality, the house cat may be employed as a detective, by using instead the oil of valerian or 'catnip,' which the creature's nose will locate infallibly if the least aroma of her favorite perfume transpires through the joints.
"Constant attention to the nooks and corners about and within the pipes and fixtures is even more necessary to cleanliness and health than in all other parts of the house, and nothing of that sort should be boxed up out of sight. The traps should be occasionally they are full of water at all times, and free from other deposits. The safes, or drip pans, under basins and water closets, as well as the interior of the latter,
should be regularly cleaned, and the waste or soil pipes should be regularly cleaned, and the waste or soil pipes
should be dosed with strong lye to clear out the tenacious slime that adheres to their sides.
"But in the proper sanitary care of the house drainage there is great help to be had from the most improved fixtures. This is a subject well worth thorough study by every householder."

The Inventor of To-day.

A writer in the Boston Herald says: If there is any man to whom the term "self-made" will most truly apply, it is the inventor. He must possess three general characteristics peculiar to all men who achieve success in life, but in more full development than most others, to wit, ingenuity, enthusiasm, and persever his is the poetry of substantial achievement, which gives wealth, as well as happiness, to mankind. If it be desired to harness the forces of nature for human benefit, the inventor devises the harness in the shape
of machinery to operate with. Every comfort which we enjoy in civilization bears the sign manual of the inventor's skill. Our clothing, furniture, the houses we live in, our means of travel, the carriages and ships we own and employ, the books and papers we use, -at least thurirs we can command, allence are-to th genius of the inventor.

The first success of the inventor, no matter how insignificant it may be, is usually the first step in a new life of the most absorbing interest to himself, and satisfaction also; but it is likewise the first step in the treadmill of unceasing effort and thought-a creac...il that never stops for him while life remains. Go where
he will, he caunot escape its operation. Every piece
of machinery he sees suggests something to his busy brain, and, in fact, everything that he observes sug gests an improving device to him. But it is rarely or never plain sailing with him in anything he under takes. One of the things that troubles him a great deal is the improvements he is all the time making of his own work; and often, when he has secured a patent on some machine, his mind has so far advanced in improved devices for it that what he has secured is practically valueless to him.
One of the main things for an inventor to learn in the invention of machinery is to have in every machine as few parts as possible, to make them direct-acting, and have the machine or thing, as a whole, easily ope rated. Mr. Edison once said that very many of the most meritorious inventions that were ever made were not successful, because it required some skill and thing," he added, "you must have it so simple and easy of operation that a mule can operate it. Then you have a thing that will come into general use if it is presented to the world in a business way."
The newer fields of invention are most promising for the young inventor. One of these is electricity. The best in ventions in this field have mostly been made in the last fifteen years-largely, indeed, inside of the past decade. Here the field is opening out and widening all the time, as new applications of the electric current or electric energy are being constantly discovered. Already the inventors in this field can be counted by the hundred, and there are, perhaps, more successful ones among them-that is, the ratio is greater than in any other field of invention. Just for a moment look at the prospect here presented. In the electric current
we have an element of power that is more easily controlled and handled, more easily diffused over large areas, more adaptable to a greater variety of purposes, than any other of the forces of nature within our con-
trol. It will heat our houses, do our cooking, furnish us with light, and convey power anywhere that we may desire it to, and in any proportion we may call for. This covers a wide range of application, but it by no means exhausts the uses and purposes to which electricity can be applied, and this field, it will be seen, is th
inventor.

Mat Manufacture in Cochin

The following account of the history and manufacture of Wadakaucherry mats has recently been given in a report on the Agricultural and Industrial Exhibi tion held at Mysore in October of last year.
The mats are made at Wadakaucherry, a taluk o Cochin. They are known at the place by the simple name of grass mats, and are recognized elsewhere by the name of Palghat and Kavalapasa mats, other
places of manufacture. The industry was introduced places of manufacture. The industry was introduced
into Cochin from Kavalapasa about forty years ago. At first there was but one family engaged in the trade it has now increased to three, consisting in all of twenty souls. Both males and females are employed in the work. The men were originally brought fo with free quarters. Such is the short history of the introduction of the industry into Cochin.
These mats are made, like the Palghat mats, of a kind of sedge (Cyperus Pangorei) grown by the side of swamps and rivers. The sedges grow to a height of six feet by one and a half inches in circumfer ence, and are of a triangular shape. They are collected in the rainy season. The culms or stems are split, and the inside pith removed, and are then dried. Each stem may be split into from four to eight, or even twelve, according to the delicacy of the texture in tended. The strips are then well seasoned and sewn
into mats. Women are mostly employed in the collec into mats. Women are mostly employed in the collec-
tion and splitting of the stems. while the actual weaving is done by men. The loom used for the purpose is of simple construction, consisting of two bamboo pieces at either end, attached to pegs driven in the ground.
The warp consists of twine made of country hemp, and is produced by the wine made of country hemp, and cases cotton thread is also used instead of twine. The process of weaving is done by the strips of sedge being passed to and frocrosswise, by means of a stick with a hole at one end of it to which the sedge is attached The warps are passed through a movable piece of wood with as many holes as there may be warps, and
are tied up to the bamboo pieces at either end. According to the number and nearness of the warps, the greater is the delicacy and strength of the texture. The woof is made compact by means of the piece of wood above described.
The distinguishing peculiarity of the Wadakau cherry mats is their brilliant color. Only four varie ties of it can, however, be had, namely, the white black, red, and yellow; of these the last is the readiest to fade, and is obtained from a peculiar solution of turmeric and cassia leaves. White is the natural color of the strips when properly prepared, red is obtained by boiling the stripsin water containing sappan wood and cassia leaves, black is but a conversion of red by a
peculiar process of boiling the red strips in a solution
of gall nuts and green vitriol, and by subsequent soaking in a preparation of black clay. The difficult and dextrous portion of the work is the splitting and dyeing of the strips; the same have to be colored with different colors, and this has to be done very carefully with reference to the size of ornamental work intended to be produced. When one color is being worked at, the rest of the strip which has to be colored differently will be closely covered with the outer covering of the plantain tree. The process of drying and dyeing the strips may take a fortnight.
Natives use the mats as seats, and also for mattresses in the hot weather. A sort of social distinction is as sociated in the offer of these mats as seats, and among the vulgar, disregard of it on ceremonial occasions tends to foment disputes. These mats are also used for flooring, and are then woven to the size of large halls and rooms. The mats vary in price from 1 to 10 annas, while the superior kinds fetch from 15 to 25 upees, according to quality.
Experiments have been made with other colors besides those just mentioned, but hitherto without suc cess. If the industry were carried on by organized capitalists, these experiments might perhaps be suc cessfully repeated, and many other improvements ef fected, such as facilitating the splitting of the sedge and keeping it compact by means of mechanical aid, and also relieving the weavers from the stooping they have always to assume when engaged in the work.
The mats of Wadakaucherry, compared with those of Tinnevelly, are generally superior in color and or namental work, but are less pliable, though the strips are sometimes more delicate.

Endurance of the odor of Musk.
Many marvelous accounts are related in works on pharmacy and organic chemistry, with regard to the extraordinary duration of the scent of musk, and the extremely small loss of substance which a grain or two of this substance, exposed to the air, has been found to undergo in the course of several months, or even years. But an instance of this endurance of the musk odor has come under our personal observation in the following manner. In 1850, at Brussels, three small volume were presented to us. They were bound in red cloth, and inclosed in a green cardboard case. In this case a very minute quantity of musk mixture, from sachet, was placed in order to scent the volumes. Since the year 1850, these three little red volumes, in their green cardboard case, have been constantly exposed to the air, on the shelves of a library, as well as to daylight. They have been in constant, almost daily use (for they are standard works of reference), and they have traveled with the writer to Ostend to Paris, to Frankfort, to Scotland, to the South of England, to various seaside resorts, to London, and many other places; yet, at the present moment, after a period of forty years, and being exposed to many kinds of climates, these little books retain their odor of musk which is as powerful, especially on warm days, as it was in 1850 when the volumes were received.
A new invention by Messrs. E. Schnauffer and H. Hupfel, of Frankfort, for the manufacture of a substi tute for musk, is an imitation of the old method of mak ing artificial musk by treating oil of amber with nitric acid ; only the authors above named use other hydro carbons, namely, benzene, toluene, or xylene, which also belong to the aromatic series. But these are firs converted into isopropyl, isobutyl, or isoamyl deriva tives, and then nitrated. The products of this reaction are thrown into water, whereupon a reddish brown oil separates; this is washed several times with alkaline water to withdraw all residue of nitric acid. In the concentrated condition this oil has a sweet odor, and when diluted in alcohol it gives off a penetrating, en during odor of musk. Here is an example of the opration in question with xylene. Metaxylene, as it is called, is heated with isobenzyl, alcohol, and chloride of zinc, under pressure, and the resulting compound, known as dimethylisopropylbenzene, subsequently treated with nitric acid yields the oil $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$, which is the musk odor inquestion. For perfumery purposes would be used in the form of a dilute alcoholic solu tion.-Monthly Magazine.

George W. Carter, who discovered natural gas in Indiana, and to whose pluck and energy its success in that State is due, recently died at Eaton, Ind., from paralysis. Several years ago, at Muncie, he sunk a well several hundred feet deep, on the banks of the Mississinewa River, after coal, which was supposed to be there. On striking the Trenton rock, the gas odor frightened away the diggers, who did not know what it was that they had found. The well was filled up and the coal search abandoned, no one knowing the usefulness of the new discovery. When gas was found at Findlay, Mr. Carter was one of the passengers on an excursion train run over to see the wonder. He found the great new fuel to be nothing more than what he had abandoned. He went home and sunk a well where he had filled the one up before, and got the first gusher in Indiana. There is now talk of erecting him a monument.

AN IMPROVED COMPOUND ENGINE.

The engine herewith illustrated has been patented by Mr. John Riekie, of Saharanpur, India. It has t wo high pressure cylinders, and between them a low pressure cylinder, all in line with each other, and their pistons secured to a common piston rod connected in the usual way with the driving shaft. Into the inner ends of the high pressure cylinders as shown in Fig. 2, lead live steam ports opening into the ends of the steam chest which is preferably of cylindrical form, and contains a hollow cylindrical valve, shown contains a hollow cylindrical valve, shown
in Fig. 1, connected with a valve rod ope rated in the usual manner from the main shaft. Into the ends of the steam chest lead pipes connected with the boiler, and from the top of the steam chest in the middle extends the exhaust pipe, channels there from leading to the interior. The steam chest is also connected near its middle by ports with the ends of the low pressure cyl inder, and from these ports lead pipes connected with ports leading to the outer ends of the high pressure cylinders. In the periphery of the cylindrical valve are annular grooves connected with the interior of the valve, and grooves adapted to register with the ports connected with the ends of the low pressure cylind ϵ r and with branches of the exhaust pipe. With this construction the boiler pressure of the steam does duty for one stroke in the high pressure cylinder, after which this cylinder is converted into a steam chamber on the return stroke of the piston while the steam is doing a second duty, expanding in another cylinder. In this way equal power is exerted on the crank arms at all stages of expansion, compounding being done on each crank separately.

AN IMPROVED DYNAMOMETER.

A power indicator and recorder designed to accurately measure or weigh the power necessary to operate a machine or a number of machines driven from the same shaft, and automatically record the amount, is shown in the accompanying illustration, and has been patented by Mr. Emery Nixon, of Toronto, Ontario, Canada. The driving pulley is mounted to turn loosely on the driving shaft, and is turned by a pin engaging one of its spokes, the pin being secured near the outer end of one arm of a two-part bar made to loosely clamp the hub of a wheel secured on the driving shaft. The end of the other arm of the bar is held to slide on a segmental guide bar secured in lugs on the inside rim of the wheel, there being on this guide bar a coiled spring, one end of which presses against the arm and the other against the lug farthest from it. In the hub of the two-part bar is a spiral groove, into which fits a pin secured on a dovetailed bar fitted to slide in a groove in the hub of the wheel, the bar extending parallel with the driving shaft, and having on its outer end a lug engaging an annular groove in a ring held concentric with the shaft, and provided with a bar which operates the indicator, suitably mounted in proximity thereto. The bar operating the indicator is pivotally connected by a link with a segmental gear wheel in the indicator casing, this gear wheel operating a pointer which travels over a dial. The indicator-operating bar is also pivotally connected by a link with one end of a lever operating the registering device, provided with a pencil adapted to mark on a graduated card. With this construction all the power used to run the driving pulley is communicated through the dynamometer, one arm of the two-part bar pressing against the spring on the inside of the rim of the wheel fixed on the driving shaft, with a force proportionate to the amount of power used, and, by means of the connections through the spiral groove of the hub with the indicator and recorder, the load carried by the driving shaft is regularly measured and recorded.
For further information relative to this invention address Mr. Spencer Love, No. 101/2 hearers as follows. Attend a meeting where Mr. Adelaide Street East, Toronto, Ontario, Canada.

Window plants may be grown any season of the year in the following manner: Soak a large piece of coarse sponge in water, squeeze half dry, and sprinkle in the openings red clover seed, millet, barley, grass, rice, and oats. Hang it in the window where the sun shines a portion of the day, and sprinkle daily with water. It will soon form a mass of living green wher even the clover will bloom.

NIXON'S POWER INDICATOR AND RECORDER.

RIEKIE'S COMPOUND ENGINE

countered at the start, and the frequently recurring need of going back and beginning all over again. To go to a series of extended tables with multitudinou among many classes, and to take therefrom just what you want no chore, a less, and no other to just what that your parts when put together will form a whole and that no direction conveyed by the heading of a single column has been neglected, is a task for which men wust be trained, and in which they must be practiced, going from simple and easy examples to complex and difficult ones, by patient steps. The great majority of editors and writers for the press, the great majority of legislators and public speakers, either fail on such work, or, as is most likely, judiciously avoid the attempt, even though statistical matter altogether relevant to the subject, and which might be made most interesting to their readers or hearers, lies on every side of them. The learned president illustrate the power a real master of statistics wields over his

David Wells is speaking, and see how he holds the crowded audience in close attention for two hours, with no help from rhetoric, elocution, or gesticulation merely by the strong, vivid, effective way in which he marshals figures. In my long experience in office at Washington, nothing struck me more forcibly than the helplessness of congressmen-even, with few excep tions, the acutest and best trained-to get up the figures for their own speeches. No matter how clear their conception of the positions they wished to
present, few of them could readily and ccnfidently resort to the government publications at hand for the resort the govials with which to illustrate and enforce their views; and the gratitude with which they would accept and acknowledge some trifling assistance from a well trained clerk was almost ludicrous. I do not intend any disparagement by this statement. Statistics have a language of their own, and he who would use them must first learn that language; and this is as yet taught scarcely anywhere.

The Naval Fight of the Future

Each vessel will clear for action as soon as the other is discerned-perhaps five miles away. Each will probably slow down at first, in order to gain time for preparation, and especially for getting the steam pressure up to the highest point. Forced draught will at once be started, and the subdued roar of the air driven through the furnaces, to accelerate combustion, and the whirr of the dynamos, will be added to the clang of the gun breech blocks, as they are swung open to admit the projectile to the breech the hum of the ammunition hoists raising powder and shell to the decks, and the quiet, firm orders of authority. On deck the Gatling guns and revolving cannon, and the rapid-fire guns in the tops, are got noise lessly into readiness, the captain takes his place in the armored conning tower with the chief quartermaster and his aid, the executive officer assumes charge of the bat tery, and remains near at hand to take the captain's place in case of his death or disa bility, the range finders are got into position, and the officer in charge begins to report from time to time the of the enemy, now drawing closer.
Probably not a shot will be fired until this distance reduced to 2,000 yards, and probably both ships will keep pointed toward each other until that time. But now what will the contestants do? It has been held that both will advance steadily toward each other-each commander hoping that some false move on the part of his adversary will enable him to rush forward, dis charge his bow torpedo at 500 yards, and perhaps fol low it up with his ram and end the fight at once-unti hey have approached so close, say 500 yards, tha neither dares to swerve lest he himself be rammed, so hat the ships will at length collide end on, and may be both sink!
The various inventions of the past few years, rapid fire guns, high explosives, torpedoes, submarine boats, dynamite guns, and range finders, the increased powe and perfection of steam and electric machinery, the improvements in powder and in stee for projectiles and for armor, have no revolutionized naval science so much as they have broadened it. The prin ciples of strategy remain the same, and so does the necessity for the seaman' skill. Engineers construct inventor nvent experiments are tried, sham battles fought and herd battles ionnt, and sions agitate the naval mind, but th only thing that can determine the rea conditions of modern naval warfare is a modern naval war.-Lieut. Bradley A. Fiske in the Forum.

Gunboats for Interior Africa.
The British government has re cently intrusted Messrs. Yarrow \& Co., of Poplar, with the construction of two steel shallow draught steamers to serve as gunboats, of special design, for the navigation of the Zambesi and Shire These boats merit attention, owing to the novelty of their construction They are of the stern-wheel type, 90 feet in length by 16 feet beam, and having a draught of from 18 inche to 2 feet, and are of about the same tonnage as the passenger steamers plying between London Bridge and Chelsea. They will be shipped in pieces and put together at their des tination. The most remarkable fea ture of Messrs. Yarrow's contract is that they have undertaken to put them to
gether at the mouth of the river and
have them ready for steaming within 24 hours after arrival without going ashore or having any recourse to the and on either side of the river. At the same works be bing buit, by ide with the Dngish boats, six boats for the Portuguese government, for service in the same district. These were contracted for immediately after the recent expedition up the Zambes in three steamers, also built by Messrs. Yarrow, of which Major Serpa Pinto was in command. The Por tuguese will, therefore, before long, have a small fleet consisting of nine gunboats, on the Zambesi.

RECENTLY PATENTED INVENTIONS. Engineering
Exhaust Nozzle.-Lewis P. Garner Ashland, Pa. This is a device specially adapted fo locomotive engines, and is designed to govern the ex haust by increasingor diminishing the outlet, while it
may also be made to produce back pressure on the piston in the cylinder when it is desired to brake th engine.
Manufacture of Water Gas Charles E. Burdell, New York City. This invention i for an apparatus in which superheated steam and oil
are injected into an incandescent mass of anthracite coal, decomposing the superheated steam and combin ing the oil vapor to form oil and water gas, the appar tus being designed to effect a saving in fuel, time an labor, and afford a gas having but a small portion of
deleterious matter.

Railway Appliance

Grip for Cars.-Jacob M. Isenberg Mines, Pa. Combined with a governor and a latch actuated thereby is a cradle pivoted at one end of the car and terminating in hooks or claws, the cradle being adapted for engagement by the latch, the device being
desigued for use with the cars of inclined roads, and acting automatically when the speed of the car is increased, as by the breaking of a cable, to clamp the ties

Trussing for Cars. - Ferdinand E. Canda, New York city. This invention provides fo
dividing the length into four or more panels by the addition of one or mor cross sills and necessary supporting struts, the auxiliary sills, struts and truss rods being placed below the floo level to allow of supporting the central
car without obstructing the floor space.

Label Holder for Freight Cars. Martin Williams, St. Johnsville, N. Y. This is frame for card labels with an adjustable support
journaled to rock on the frame and release the card journaled to rock on the frame and release the card,
displaying the destination, or for a similar use, to avoid nailing such cards on the side of the car, the device hold'ng the card or label until it is designedly removed

Miscellaneous.

Valve.-Patrick Conway, New York City. In this valve the packing washer is made to bear
against the smooth surface of the seat in the upper part of the bonnet, whereby the packing the stem valve being simple and positive and also applicable fo other uses than with steam.
Straw Burning Stove. - John R. Tacey and John sharkey, Winnipeg, Manitoba, Canada In this stove the fuel chamber is disposed laterally to
the fire box, and connected therewith through a gravity cut-off damper, projections on the doors being adapted to push the fuel block. The stove is designed to bur past the gravity damper.
Dress Steel. - Mary E. Whalen, New York City. This steel has tabs on its outer side
adjacent to its ends carrying rings, providing for the adjacent to its ends carrying rings, provising that of such steels to dress linings, so that will be a flexible connection between the steels and the lining, and the elasiic retaining bands will not cut a the point of connection with the steels.
Axle Nut. - Ole Hansen, Mount Pleasant, Utah Ter. This nut is formed with a projecting flange and thread extending from the flange to the
inner face of the nut, with other novel features, designed to give any desired amount of play to the wheel upon the axle, and to facilitate taking up the w
axle without the use of the ordinary washer.
Harness Saddle.-Marcellus M. Hitt, Sheffield, Ala. This invention provides a detachable and adjustable tug strap loop adapted to clamp the ment to the loop designed to effectually prevent the the skirts. John S. Brown Trace Carrier. - John S. Brown,
Galveston, Texas. This is an improved back band packle with hooks, its body portion formed of a sing bent for the purpose, and the tongues pivoted upon the body portion, forming a cheap construction of great

Hoodwink. - Amaziah B. Grubb Goose Lake, Iowa. This is a device particularly
adapted for use on vicious horned cattle, to hinder adapted for use on vicious horned cattle, to hinder revent their throwing or jumping fences, the shap eing such as to allow free access of air and ligh laterally to the
save in front.
Hose Coupling. - Robert Franken, omona, Cal. This invention provides a novel desig truction, while providing a coupling which may readily coupled and uncoupled, and which will effect vely hold the coupling sections against accidenta displacement.
Assorting Machine. - Samuel B. mallwood, Long Island City, N. Y. This is a machine for conveniently and automatically assorting pickles
and other articles, the invention covering various novel features and details of a machine with which the operator does not touch the prckles directly with the hand, a
Fence.-William G. Frost, Lebanon, nd. This invention covers novel features in a fence made of posts, wire stringers, braces, and pickete, and designed to be inexpensive and durable, easily erected,
moved, or repaired, while making a good barrier against noved, or repaired, while making a
Flower Pot Trellis. - John S Brown, Galveston, Texas. This trellis consists of vertical wires having the loops and horizontal wires
bent into the form of rlngs with lapped and adjustable
ends to increase or diminish the size of the trellis, being
adapted to be applied to fower pots of various sizes to support plants or vines without interfering with thei

Puzzle. - Wofford Brown, Parkers burg. West Va. Combined with a movable board are pins arranged thereon to form end triangles at diaplaced centrally thereto, while there are single corne pins, and removable balls or objects are to be made to hter the different triangles as the board is held at dif
Wind Wheel.-Asa W. Chamberlin, Stratford, Iowa. In this wheel the fans have upper and lower halves with rear projections and connected
by an edge rod having a stop hinged on the fan arm, here being governor balls to attach to the arms by
which the wheel may be gauged so that it above a certain speed, even if the work be light, and the

Centrifugal Cream Separator. Carl A. Hult, Denver, Col., and Oscar W. Hult, New ork City. In this separator the milk is supplied an inner receptacle capable of being rapidly revolved, whereby the milk is thrown in contact with the walls of the receptacle, and escapes by an outer channel,
while the cream, being lighter, collects around the shaft and passes out thence through an undercut recess

NEW BOOKS AND PUBLICATIONS.

Gems and Foreign Stones of North AMERICA. By George Frederick Company, New York. 1890. Large This superb work is worthy of a high place in the This superb work is worthy of a high place in the
iterature of the subject. Its author has heen for years gem expert for Tiffany \& Co,, New York City. He is liso special agent of the United States Geological Sur-
ey and of the 11th United States census, member of he Mineralogical Survey of Great Britain and Ireland, and of the Imperial Mineralogical Society of St. Peters-
burg, the Society Francaise de Mineralogie, etc. The burg, the Society Francaise de Mineralogie, etc. The
book is not only a thorough treatise upon this subject, but it is a work of art as regards both printing and illus. rations. It contains eight very fine colored plates and pearls and remarkable foreign gems owned in the
United States. nited States.

SCIENTIFIC AMERICAN

BUILDING EDITION

TABLE OF CONTENTS.

1. Elegant plate in colore representing a tasteful cot-
tage of moderate cost at Buffalo, N. Y. Perspec tage of moderate cost at Buffalo, N. Y. Perspec Colored view of a residence at St. George, Staten
Island, N. Y. Estimated cost $\$ 20,000$. Floor plans, perspective elevation, sheet of details, etc. Stone residence, corner of St. Nicholas Place and
150th Street, New York city. S. Burrage Reed, arch itect.
2. New buildings at Eastgate and Bridge Streets, Engraving
Engravings of the residence of J. M. Johnson Binghamton, N. Y. Perspective
floor plans. Cost $\$ 19,000$ complete.
3. Perspective view of the office
Gotthard Railroad in Lucerne.

Gotthard Railroad in Lucerne.
8. An enghish cottage. Perspective and floor plans A cottage recently erected at Binghamton, N.
cost complete $\$ 3,800$. Plans and perspective. A residence in the Gothic style erected at Brighton, S.I. Floor plans and perspective.
10. Excellent design of a country house recent
erected at Belle Haven, Conn. Cost $\$ 14,250$ erected at Belle Haven, Conn. Cost $\$ 14,25$
Oscar S. Teale of New York, architect. Perspe tive views and floor plans.
double dwelling at Yonkers, N. Y., erected at coss of $\$ 8,000$. Plans and perspective.
12. Residence of Chas. Kappes, Esq., at Stapleton,
Staten Island, N. Y. Cost complete $\$ 4,000$. Pe Staten Island, N. Y. Cost complete $\$ 4,000$. Per
spective elevation and floor plans. ttage at Greenwich, Conn., erected at a cost of $\$ 7,250$ complete. Floor plans and perspective. Miscellaneous Contents: High buildings. - Bad
flues.-Imitation ebony.-Destruction of asphalt flues.-Imitation ebony.-Destruction of asphalt
pavement by gas.-Art of building.-Improved pavement by gas.-Art of dumb waiters, illustrated.-An improved skylight, illustrated.-Rogers miter planer, illustrated.window in the Convent of the Sacred Heart, illus trated.-Improved sash pulleys, illustrated.-A hot air and hot water heater, illustrated.-Colors for mortar.-Improved adjustable grooving head,
illustrated.-An improved window screen frame, illustrated.-An improved window screen frame, illustrated.
The Scientific American Architects and Builders Edition 1 s issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages : forming, practically, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
any Architectural publication in the world. Sold of any Architectural publiction in the world. Sold by

MUNN \& CO.. PUBLIBEERs, $\underset{361 \text { Broadway, }, ~}{\text { Now }}$

ZBusiness and Personal.
The charge for Insertion under thes head is one Dolla a line jor each insertion: about tight words to a lin as early as Thursday norring to appear in next issuu.

For Sale-New and second hand iron-working ma
Chinery. Prompt delivery. w. P. Davis, Rochester, N. \mathbf{Y}. Tuerk water motors at 12 Cortlandt St., New York. Presees \& Dies. Ferracute Mach. Co., Bridgeton, N. Friction Clutch Pulleys. The D. Frisbie Co., N.Y. cit For best hoisting engine. J. S. Mundy, Newark, N. Inventor wishes help. J., P. O. box 415, Ingersoll

Betting.-A good lot of second hand belting for

 Ael Roberts, 369 Pearl St., New York. Billings' Patent Adjustable Four and Sis Inch PockWrenches.
Billinngs $\&$ Spencer Co.. Harttord, Conn. Best Ice and Refrigerating Machines made by Da ogle, Chicago, ill. 140 machines in satisfactory use Steam Hammers, Improved Hydraulic Jacks, and Tu
Expanders. R. Dudgeon, 24 Columbia St.. New York Screw machines, milling machines, and drill presse The Garvin Mach. Co., Laight and Canal Sts., New York For Sale-A valuable patent feed water heater an "How to Keep Boilers Clean." Send your address
" free 96 p. book. Jas. C. Hotchkiss, 120 Liberty St., N. Y. Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Guild \& Garrison, Brooklyn, N. Y., manufacture pumps, acid blowers, fllter press pumps, etc.
For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 133 and 140 Centre St., New York.
Wanted-Two first class instrument makers. Apply y letter to T. C. Mendenhall, Superintendent Unite
tates Coast and Geodetic Survey, WashIngton, D. C.
For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc.. address J The Holly Manufacturing Co., of Lockport, ill send their pamphlet, describing water works ma The best Ticity is "Experimental Science." by Geo. M. Hopkin By mail 44: Munn \& Co., publishers, 361 Broadway, N Wanted-Foreman for machine shop in large city in Wisconsin, employing about 100 men. One posted on
Corlissengines and ice machines and who understands German preferred. A
American, New York.
Superintendent wanted by a large manufacturing concern in a large center, working iron and wood, chiefly
the former. Must be a thoroughly educated mechanic and a draughtsman, energetic, experienced, and compe-
tent to handle large numbers of men. Young man pretent to handle large numbers of men. Young nan pre-
ferred. Give full experience, references, and age. Ad-
dress "Superintendent," care Scientific American, N.Y.
Send for new andcomplete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway,
New York. Free on application.

hints to correspondents.
Names and Addrese mast accompany all letters,
or no attention will be paid thereto. This is for our
information and not for publication Rererences to former articles or an answers should
give date of paper and page or number of question give date of paper and page or number of question.
In qu Itien not answered in reasonable time should
be repeated; correspondents will bear in mind that some answers require not a little research, and,
though we endeavor to reppy to all, either by letter
or in this department, each must take his turn.

Books referred to promptly supplied on receipt of
price.
Wineran sent for examination should be distinctly
marked or labeled.
(2160) H. C. S. asks : What method is mployed to write on glass under water, by electricity? Is there a solution of chemicals used to put in the
water? A. The plate to be etched is put into a flat vessel connected with the positive pole of a secondary battery. The plate is covered with a saturated solu
tion of saltpeter, and is then written upon with the negative electrode, which is provided with an insulating
handle.
(2161) M. G. H.-The sugar maple could not be confounded with any other species indigenous to
your place. It is a large, handsome tree, with 3 to 5 obed leaves with rounded sinuses and heart-shaped at the base. The common red or swam;) maple is a smaller all the maples.
(2162) N. S. asks: 1. Can you give a recipe for a dip on silver that will give it a good black color, one that will give it a brown color like bronze To intensify the black, dip and wash metal in a solution solution. 2. Can you tell me a good recipe for making neutral silver solution? A. Dissolve in nitric acid,
vaporate to dryness, and fuse at a low heat.
(2163) E. A. E. asks : What is the best treatment to give the front doors of my house? They
are about three years old, and painted in imitation of black walnut. The weather has made the paint run a little, and streaked,
directions. A. There is no good remedy except to burn
(2164) A. E. H. writes: 1. I want to have a lamp to read by, and I want it to be an incanyou tell me the cheapest primary battery to work, fo die power (Edison's) I writng this letter by a $1 / 2$ can sen cells (porous cup $33 / 4 \times 2$), and it is giving fbout candle power, by which I can see very well to write without any other lamp, but this way of illumination of course very expensive. I use about 25 cents' wort which is too expensive. A. A simple plunge battery would be less expensive than the Bunsen, but it would un the lamp only two or three hours without rechar ing. We shall soon publish a description of a battery fficient for a small lamp as mentioned above? A. Ac cumulators would run the lamp. 3. Is there a cheap way of making and using them? A. There is no very lators. 4. What is the advantage of charging accumu ators in different directions at first? A. To secure a deeply oxidized surface. 5 . Could I use a 1 horse power water engine if I were to get the 8 light dynamo described in Supplement, No. 600? A. A 1 horse power
engine will drive the 8 light dynamo. 6. Could I run he water engine by the ordinary pressure in a house armature if I bought the castings? A. The wire would probably cost $\$ 4$ or $\$ 5$. 8. Do you think that this dy namo could be run in an ordinary house with the ordinary water pressure? If so, would it be efficient? I
mean not from a strictly practical point of view, but or using in a laboratory for comparatively strong currents. A. The pressure would be sufficient, provided he service pipe is large enough to keep up the supply. quired to run an electric motor of 1 man power? A. 8 or 10. 10. Is there a cheap way of making the metal aluminum? A. There is no very cheap process for makıng alumınum.
(2165) E. S. B. asks: 1. In making an 60,can I use No. 36 silk-covered wire and wind close to getherinstead of using bare wre and leaving a space between each wire as I wind it? Would I get, as good results by doing it the first way? A. The silk-covered wire will answer every purpose. 2. Will a secondary vided with a polarized magnet wound with yery fine wire. 3. Can the dynamo described in Supplement, No. 161, after being changed into a motor be run by battery
power? If so, how many cells will it take? A. Yes. It will require four or five cells will it take? A. Yes. It with plates 6×8 inches. 4. Would one cell of Leclanche battery run a small 2 inch induction coil? A. Yes; procan I find a description of a lightning arrester? A In any elementary work on electricity or on telegraphy. 6. I have taken a very thin wooden spool, five inches long, and wound on it two layers of No. 16 cotton covered wire, and after placing in the inside a bundle of soft iron wire and passing the current from two Leclanche cells, I cannot magnetize the iron, even when the cur-
rent 18 passing through the coil. What is the trouble ? rent 18 passing through the coil. What is the trouble?
A. Your primary wire is too large and too short for Leclanche cells; try a Grenet bichromate cell. For Leclanche cells you should use 2 layers of No. 24 wire in he primary coil. 7. Please give me the numbers of all
of your papers contaning descriptions of the Blake transmitter. A. SUPPLEMENT, No. 250, contains a description of the Blake transmitter. 8. In the Blake of the platinum button? A. Platinum is preferable; will answer for temporary use
(2166) L. A. C. asks: 1. How is the inulating covering wound and braided on magnet and other insulated wires? A. By special machinery. 2 .
a. What is ebonite? b. What is vulcanite? c. What is vulcanized rubber? A. Vulcanized India rubber, exposed to high pressure in the process. 3. When power miles, is the strength of current very greatly diminished by the resistance of the conducting wires? A. It de pends on the resistance of the wire, and on its relation general rule it is other parts magnets used in any part of a dynamo, and if so where A. The field of a dynamo retains a little residual magnetism, but in the sense of your question there is no
permanent magnet. 5. What can be mixed with whitewash to prevent it from being washed off by the rain? A. See query 977 for government recelpt for whitewash. . What are the principal electrical schools in this counthe best way in which to get an electrical education A. All the leading universities give courses now. A college course followed by practical work is the way to
learn the science. 7 . How can a person obtain information concerning the educational and physical require. ments necessary to enter West Point? Also concerning the appointments? A. Address the superintendent. For appointe. 8. In what way can a compass needle be
sental made to point in a north and south direction after it has been partly demagnetized by the action of a strong horseshoe magnet which has lain near the compass? A. Hold the south pole of a strong magnet as near to the
north pole of the needle as possible. This will improve north pole of the needle as possible. This will improve
it often if you cannot take it out of the case. 9 . Is there a book published which is a dictionary of electrical and ton's "Electrical If so, what 1 . A. Houswork, which we can supply by mail.
(2167) W. H. S. writes: The definition of the term dielectric in Houston's dictionary is a subits mass, and it says further that all dielectrics are nonconductors. Now, unfortunately, Houston has omitted the definition of the term induction in his dictionary. My impression is that induction through a mass is conduction through of an electric current; consequently I cannot reconcile the apparently opposite definition.
A. Induction is a property of electric currents, and re fers to their power of forming a field of force in space. Every current develops lines of force in the space sur-
rounding it, and if these lines pass through a dielectric, vealed by a polarized needle, etc. Your impression is wrong one.
(2168) E. V. N. asks : 1. Has the storage battery proved a success as a motor in aerial navigation, bicycling, carriages, etc.? A. No; it is too heavy. 2
What is the weight of such an apparatus compared with the power developed in horse power? A. A cell weigh ing 125 pounds gives energy at the rate of 70 watts, equa data on the subject be had? A. The in and making accumulators will supply data of differ in and making accumulators will supply data of differ-
ent sized cells. 4. What is the weight of a gas meter compared with the power produced in horse power? A A 1 horse power gas engine will weigh about 1,000 lb.; the large will weigh less in proportion. 5. What is the consumption of gas per horse power?- A. From 25 cubic feet upward. 6. What is the usage in determining the amount of storage necessary in a storage battery to develop a given power for a given length o
time? A. Practical considerations affecting the dura

```
*ion Af the plates are the basis.
```

(2169) G. .J. L. writes : I would like to make a lotion such as the dermatologists use in remov ing freckles or tan.

$$
\begin{aligned}
& \text { Gum mucilage thi } \\
& \text { Finest pale honey }
\end{aligned}
$$

Finest pale honey.
 viously beaten and strained through gauze, add slowly oil of almonds (scented to taste) $21 / 2$ pounds. When peeled nuts and rose water) 14 pint, and rub up until completely mixed. This is corrosive, and acts by re moving the outer cuticle.
(2170) A. P. F. writes: Will you state the ingredients, with their proportion, for forming prckie commonly used in preserving cucumbers,
mixed pickles, etc.? A. Put, after washing and drying, into boiling vinegar, add some salt, a handful to a thre gallon jar, let cool. Boil up the vinegar alone every turn green, then add ginger aud pepper to suit the taste (2171) A. M. G.-The plant sent fo name is the common liver leaf-Hepatica triloba.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere equaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices, tensive facilities for conducting the business. Address MUNN \& CO.. o
way, New York.

INDEX OF INVENTIONS

United States were Granted

April 22, 1890,

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

Air brakes, pressure recorder f Alarm. See Elevator alarm.

Annunciator call, electric, w. S. Paca..
Anvil and vise, combined, w. E. Canedy
Anvil attachment, c.
Arc light. J. J. Wood
Arc light. J. J. Wood.................................

Band cutter and feeder, M. A. Smith.
Bed and dresser, folding, A. $\&$ M. Lain
Bed, spring. D. H. Jeffery
Bed clothes clamp, O. R. Hatght.
Bedstead,
horne.......... Bell and engine indicator for pilot houses o
steam vessels, w. E. Hadock. Bell, call, A.F.E. Rockwell...
Bench clamp, R. H. Strong.
Bench clamp, R. H. Strong..
Bending tool, rail, J. R. James.............................
Bessemer converter nozzles, machine for making
C. W. Vaughan...
Bicycle, Lloyd $\&$ Prie

Bicycle, R. T'. Torkelson.
Binding post, J. F. Munsie
Blacking stand, portable. G. W. Browne Allison
Block. See Fuse block.
Board. See Ironing board. Keyboard.
Boiler. See Tubular boiler
Boiler. cleaner, F. W. Hornish
Boiler cleaner. F. W. Hornish...................
Boiler fltting, kitchen or stand, T. A. Swann
Boiler furnace, C. E. Miles.
Boiler setting, steam, W. U.
Boiler setting, ste
Bolt, G. S. Laces
C. H. Bayley
Bolicles, coin-operated holder for

Boot or shoe soles, machine for laying channe
flaps of. W. Gordon.......................
Boots, device for drying, w. G. Coffin
Boring machine, J. J. Decker
Box. See Cigar box. Knockdown box. Shee Brake. See Car brake.
Brake beam, truss, C. T. Schoen
Brake shoe, C. W. Roepper.....
Brake shoe, W. D. Sargent

rick machine, J \& R. C. Penflel

Rrush, W. A. Quigg.
Buckle, wedge. A. Tehnik.
M. Doersch

Burner. See Hydrocarbon burner.
Button fastener, L. Witkowsky.....
Calendering machine, R. Butterworth
Camera. See Photograp
Can upener, J. C. Myers.
426075
.426 .068

426,213
.4262376
426401

Cans, making lined, M. Ams..........
Cane, device for handing. C. S. Palm.
Car brake, T. S. Shenston................. Car brake, T. S. Shensting...
Car coupling, A. Bow Car coupling, A. Bowron...
Car coupling, H. A. Case... Car coupling, H. H. Hem
Car coupling, G. Mock... Car coupling, G. electric.
Car door, grain, E. A. Hill.... Car, electric railmay, H. . C. Henry.
Car motor, street, w. E. Prall, Jr.
Car, railway, C. W. Jones..........
Car seat, auxiliary, N. Joergensen
Car switch strat,
Car switch, street., J. R. Potte
Car ventilator, A. T. Bemis.
Cars, label holder for freikht, M. Williams. Cars, trussing for railway, F. E. Canda............. revolving, McConnel \& Hi
Carpet stretcher, c. Mabel...
Carpet sweeper, w. J. Drew Carpet sweeper, W. J. Drew.......
Carriage, jump seat, M. Woodhul Carriage wrench, F. A. Wegner. Cart, road, E. W. Doolittle............
Carving machine. wood, A. Dodds. Case. See Blacking case. Thermometer case.
Cash register and indicator, H. A. Herr Caster, H. Howell..................
Cattle guard, surface, \mathbf{P}. Merrill Chain link, J. W. Garland.............................
Chair. See Railway chair. Rocking chair. Rotary chair. Theater chair.
Checking and unchecking device, к. P. Drysdale Churn, c. A. Japhet............
Churn operating mechanism,. . Wright.
hute, portable. Musgrave $\&$ Clark
Cigar branding machine, G. E. Le Clair.........
Circuit closer, magnetic, J. Von der Kammer Circuit closer, magnetic, J. Von der Kammer....
Clamp. See Bed clothes clamp. Bench clamp. Clasp. See Clothes line clasp.
Cleaner. See Boiler cleaner. Channel cleaner.
Clip or paper holder, E. D. Rockwell............ Closet attachment, R. V. Bara
Cloth, ornamented, H. Unger.
Clothes drier, A. N. Paxson...
Clothes line clasp, E. Manser.
Clothes tongs, w. H. Mitchell.
lover feed cutter, I. B. Coleman
Clutch, friction, O. Crosby......
Coal, etc., shift for. T. McCarty
Coat fastener. F. Wolkow........
Coiling metal rods, apparatus for, H. Roberts.
Collar, dog, A. F. Nuttall..
Collar, horse, Deeman \& Meyer
Combing and brushing hatters' furs not on th
Skin, machine for. C. E. Sack
Compound engine, A. H. Eddy .
Cooking utensil, H. Chadwick.........
Condiut, underground, J. . M. Munsie.
Connector, flexible J. F. Munsil
Connector. flexible, J. F. M.
Converter, E. Wagemann
Corn cutter, J. Weber...
Corn shocker, J. Armstro
Corn shocker. J. Armstrong
Corn thinner, J. S. Lewis.
Cornet, J. F. Stratton...
Counterbalance for chu
Coupling. See Car coupling. T. Thill coupli Cream separator, centrifugal, C. A. \& O. W. Hul Cultivator, H. Myers.
Cultivator, wheel, w.
Culvert
Culvert, H. H. Colby........
Current indicaor, ,. B. Ra
Cuspidor, N. Hartmann...
Cutter. See Band cutter. Clover feed cutter
Corn cutter. Lemon cutter Corn cutter. Lemon cer
Pipe cutter. Wire cutter.

Cutting pile fabrics, apparatus for, J. H. Smit
et al......................................
Dental engine, A. Retter
Derailing switch, side track, A. Patton et al
Derrick, cotton loading, E. M. Field et al...
Derrick, cotton loading, E. M. Field et al...........
Dies, method of and apparatus for making. C
Distillation of mineral olls and like products, ap Distilling and concentrating liquids, zpparatu Door check, R. Stevenso
Door hanger, W. J. Lane.
Door hanger, E. Y. Moore
Door or window casing for frame buildings, L
Door support, sliding, ,. R. Payson. Jr..
Hemenway................
Drier for humid materials. Buttner \& Meyer Drilling machine, D. E. \& L. E. Whiton
Drying machine, Proctor \& Knowles.......
Dumbwaiters, etc., indicator for, L. Fries
Dye. red, A. Weinberg
Dynamo safety device. E. P. Clark.....46. Egas, device for opening hot boiled, King.
Electric cables, apparatus for hauling through, F. Munsie...............................
Electric conductors, duct for, J. F. Munsie, Electric machine, dynamo, Wightman \& Thom Electric motor, Davis \& Scott, Jr. Electric motor and dynamo. J. C. Henry...
Electric switch, J. P. Norton. Electrical distribution, system of, C. J. Knitner
Electro-magnetic instrument, P. B. Delaney.... Electro-magnetic instrument, P. B. Delaney....
Electrodes for secondary batteries, manufactu

Envelope, coin, A. F. Rolfe et al...
Exaporating apparatus. C. C. Peck
Exerising machine. J. E. Dowd..
Exhibiting stand for oll cloths, etc., W. Doer

F'an, electric, P. Diehl Feed water heater, C. E. Hudson	
Firearm, H. M. Caldwell.	
Fire escape, A. Boettcher.	
Flashlight, apparatus for producing instantaneous, A. Hemsley \qquad	
Flush tank, automatic. A. Mayer............ 426.03 Forging machine, R. W. Bayley.....................	
Frame. See Mowing machine frame. Slate frame.Vehicle frame.	
Funnel, J. T. Brittin.Furnace. See Boiler	
	rnace,
Fuse block, T. P	
	Fuse block, F. G. Warr
Fuse for shells, G. Phill	
Gang plank, D. C. McI	
Gas, apparatus for the purif drews..	
Gas engine,Gas engine,	
Gas, sovernor for regulating the Shaw.	
Gas manufacturing apparatus, water, C. E. Burdell.	
Gas or lamps, extension fixture for, S. Bergmann. Gas, purifying, w. C. Andrews..	
	Gas scrubber, H. J. Remme
Gas, system for distribu	
	Gas washer, H. J. Rem
Gate, w. H. Clay	
Generator. See Steam generator. Glue compound, R. W. Johnson.	
Grinding mill rollers, machine for, H. N. J. Mansfield.	
Guard. See Cattle guard. Gun, cane, J. Frick.	
n lock, J. Frick.............	
Gun with reversible barrels, E. 1 ,	
	Hammer and distributer, combined tack, J. S. Bailey.....
Hanger. See Door hanger. Insulating hanger. Harness pad. H. B. Piatt	

Harness pad. H. B. Piatt
Harrow, pulverizer, and leveler, combined, c. w
Chase
Harrow truck, adjustable, J. \& A. F. Moser
Hat stiffening machine, Murphy \& Rundle. Head rest, adjustable, c. S. Rogers
Heater. See Feedwater heater. Water heater. Heater for cooperage purposes, I.. M. Reed..
Heating and lighting device, W. Rennyson... Holder. See Lamp holder. Paper holder. Paper
bag holder. Pen holder. Photographtc nega
tive film holder. Sack holder. Spring holder. tive flm holder. Sack holder. Spring holder
Holder or clasp, S. A. Cohen Holder or clasp,
Hook. See Fish hook.
Hoop. See Spirally crimped hoop.
Horses, pad for the backs of, C. Mudford...
Hows. See Smoke house. House. See Smoke house.
Hydrocarbon burner, L. Chandor Hydrocarbon burner, , Feorst......................
Ice roads, machine for making, G. T. Glover. Index, , M. Cott........
Indicator. See Current indicator. Poison ind Indicator, W. R. Bouis....
Indicator lock, J. C. Barr. Insulated joint, E. F. Gennert........
Insulating compound, J. F. Munsie
 Insulating lining, J. F. Munsie
Insulator. J. F. Munsie............
Ironing board, W. A. F. Henrici. Ironing board, W. A. E. Henrici. ..
Irrigating apparatus, E. C. Chapman
Jeweler's stock plate, J. D. Plancham oint. See Insulated joint. Spectacle frame joint.
Joint fasten
ournal bearing, S. A. Bemis... Keyboard, transposing, A. Marcey... Key fastener, W. W. H
Knit fabric, H. Pulster nockdown box, C. F.
Ladder. R. Hammill.
 Lamp hood and support, electric, E. P. Warner Land roller, Horey \& Marsh
Lantern, combined platform and signal, M. Mo Latch, w. H. Stinson.. Lathes, adjustable tool holder for, J. H. Parker.. emon cutter and squeerer s. T. Jull. Life at sea, pillow or bolster for saving. D. Taylor Lightning arrester. A. D. Spear Lock. See Combination lock. Gun lock. Indi-
cator lock. Nut lock. Seal lock cator lock. Nut lock. Seal lock.
Lock, w Hover............. Lock, W Hover.
Lock, F. G. Stark.
G. B. Juckson...............................

Kothe...
Manhole for underground electric conduits,
Munsie...........................
Manometer, registering, Lusuardi \& Falco..
Manometer, registering, Lusuard
Marking instrument, B. Arnold
Match and mode of making, Y. Gonzalez-Gomez..
Measurements according to one system into another system, instrument for transferring,
H. Hagemann............
H. Hagemann

Measuring device, lumber, T. Newnham.
Meat cutter, S. T. Juli.................
Mechanical, movement, J. A. Watson
Metal wheel, M. De Metal wheel. M. De Mars..
Metallic tube, C. L. Betts. Metallic tube, C. L. Betts.
Metallic tube, C. C. Erb... Mill appliance, McCleane \& Faber. Jr..............
Motor. See Car motor. Electric motor. Water motor. Wave motor.
Mowing machine, D. O. Mowing machine frame, R. H. Dixon. Mowing machine frame, R. H. Dixon.
Music leaf turner, C. I. Service........ Musical instrument. Crane \& Withers
Musical scale register, G. B. W. Bliss..

${ }^{425,995}$	
	Howard.
	ock, т. C.
426,271	Nut lock, G. M
426	Nuts for screw bolts, manufac
426	Ibbotson
425,979	
${ }_{422,30}$	Ordnance, breech
${ }_{427,027}$	Ore feeder, L. D. ${ }^{\text {d }}$
426,279	Oven,
	Overshoes
426.41	Packing device,
426,025	Packing, piston rod, A.
42,0,34	Pad. See Harnes
426,099	Padock, permutation, w
	Pawl and ratche
	Paper bag holder, w. B.
426,267	Paper holder
${ }_{422.165}$	Paper making
038	$\underset{\substack{\text { Davis. } \\ \text { Pen, fount }}}{ }$
,057	Pen hold
	Pen holder fo
${ }^{426,210}$	Pencil sharpe
	Photographic camera, M
426,299	Photograp
${ }_{42}^{42.022}$	Photographi
	Photograp
	Jjinst
	Pianos,
	Pla
	Pip
	Plat
	Pla
	Planter,
	M.
${ }_{426,43}$	Plows and listers, open mould board and share for, J. Hammell.
	n ind
	Por
	Printing, plate holder for mechanical, H. H. E. G.
	Propeller,
	Propeling
${ }^{426,239}$	Propelling vessels, means for, J. Protector. See Tree protector.
	Pulley, A
	Pul
	Pulp mach
	Pulp tearing mac
	Pun
	Pump op
	Pun
	Punching and shearing m
426,325	$\xrightarrow[\text { Racking ma }]{\text { mine }}$
	Railmay
	Railway contact
	Railwas
	Ral
	Railway sig
426,012	Railway signaling
	Kryger Railway tr
	Railways, switch
	${ }^{\text {Razor or other }}$
	Reapers and
	Rocking
	Roll
	Ruler
931	Ruler, F. .i. Osborn......
	Saddle, C. K. Marshall.
	Salt, manufactu
	Sash fastener. G. H. Kin
	Sash fastener,
,018	Screen, J. W. Boughton
	Scre
	Screwdr
	Screw nail, S. E .
	Scr
	Seal lock. R. M
	Seat. See Car seat. Wa
, 881	Separator. See Cream separator. Tooth sepa-
	rator.
	Sewing machine
	wing machines, button Mathison.....
(29	wink mach
${ }^{426,124}$	Shears. See
	eta
	et
	Sheet metal folling machine, S. F. F. Woowworti...
	Ga:land......................................
	irt, C. L. C
	\%
426,010	
426,355	\% ap
	Single acting
	${ }_{\text {Sla }}^{\text {Sk }}$
	Smokehouse and meat safe. combined. J. M.
422.046	Badgley.
	Snow from railwas tracks, appar
425,968	Soldering de
	So
426,29	

Spinning machines, yarn separator for, G. W. Knight. Spirally crimped hoop, L. L. Frost. Spoke driver, C. Seymour. Spring. See Vehicle spring. Springs, method and machine for making flat coiled, G. Kelly. Square. level, and surface gauge, combined, H . W. Evans. Stand. See Blacking stand. Exhibitiug stand. Fruit picking stand.	Drdvertisements. dis set inatate type Engravings may head adverent as the ieter press. Advertisements must be ceived at publication omtice as early yas Thursday mornto appear in next issue.	OTTO GAS ENGINES. Over 25,000 Sold. Horizontal......OttoGas Engines. Twin Cylinder. Otto....Gas Engines. Combined.......Otto.. $\left\{\begin{array}{l}\text { Gas Eng Enines } \\ \text { and Pumps. }\end{array}\right.$ Combined.......Otto.. $\left\{\begin{array}{l}\text { Gas Engines } \\ \text { and Dynamos }\end{array}\right.$ OTTO GAS ENGINE WORKS, CHICAGO, PHILADELPHIA. \qquad	For House, Barn, Factory, etc. For Shed or Outbuilding. $\mathbf{\$ 2 . 0 0}$ per 100 Sq. Feet. le free if you state size of roof. 42 West Broadway, New York City.	
	USE ADAMANT WALL PLASTER			
Stove attachment. C. A. A. Pettersen ${ }^{28,3636}$				
tch. See Car switch. Derailing switch. Electric switch				
inge, hypodermic, W. W. Hitchcock 426				
			rom the papers having a small circulation than is allowFor rates see top of drast column of this page, or adC. ${ }_{3}{ }^{\text {P1 }}$ Broadway, New York.	
	shop use, also for Industrial schools, Home Trainng. etc. Catalu 			
	ICE-HOUSE AND REFRIGERATOR Direetions and Dimennions for construction, with one Iltustration of 			
		Barnes' New Sensitive Urill Has These Great Advantages: The speed of the drill spindle can be Inmotion reversed, without stopping the maas the size of the drill or the drature of the W. F. \& JNO. BARNES CO, 1999 Ruby St., Rockford, III.		
Trolley suporort. Y. B. Rease.............................. 426.066				
Truck, car,	Powe		no, cloth, 320 pages. Price	
		entific Book Gatalogue		
			dixitint dimelinall	
	AND LIGHT METAL WORK.		tablished 1846. lar Scientific Paper in the World.	
Vehicle frame, adjustable. W. R. Connor........... 425,985Vehicle gear, H. J. Richardson.................... 426,329Vehicle running gear, T. A. Jones 426,126				
ning gear, I'. A. Jones.. \qquad 426,				
			This widely circtilated and splendialy mustrated	
		ing and General		
Washer. See gas washer.				
			ture, Agriculture. Horticulture, Natural History, etc. mplete List of Patents each week.	
Hapstoz				
420,071	The best practical results obtained by the manufacturers of Steel, Drop Forgings. Brass Works,Bolt and Nut Works, and many other branches of commercial product. We invite proposals and will give estimates for the alteration or constru ction of works under our			
e, A. Sifth wheel. Metal wheel. Toothed wheel. Water wheel. Wind wheel.				
	For Batteries o. Dynamos. 12 to 36 Candle Power. 3 to 40 Volt We will send free, Catalogue E, which pives prices and description of How to Make a Cheap Battery to operate them. EDISON LAMP CO. harrison, \mathbf{N}. J.			
			T EXI	
			Scientific American Supplement.	
Scott, Jr				
Wrench. See Carriage wrench. Pipe wrench. Wrench, C. C. Augustine.			This is a separate and distinct publication from The SCientific American. but is uniform therewith in size, every number containing sixteen large pages full of	
an...711, 19,772	RY BAIPERIES			
			neering. Steam and Railway Engineering, Mining,	
	INCANDESCENT LAMPS,			
	From 25 to 300 hours with ONE change of solution. Send for Circulars and Price List. JAMMES EI. MIABOIN, 118-120 Park Ave., Brooklyn, N. Y.	The best Ore Granulator for leach- Gates Rock and Ore Breakers Adaress for catalogues 50 GATES IRON WORKS. 215 Franklin St., Boston, Mass.	Seenip. Building, Marine Eng Enering, Photogripphy,ShicTechnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of freshand valuable information obtainable in no other pub-	
ware, certain named articles of, Wurner				
			and Manufactures at home and abroad are illustrated	
		蒌。 91 \& 92 WIUATER STREET, Plttsburgh, Pa.,		
	G. Hatelald. With directions for construction. Four 			
aasickness, preventive of, s. Getzier............... 11.7799			g Elition	
Gamble. 17.796, 17,803 to 17,808 Soap, laundry and toilet, B. A. Lynde \& Son Com pany Soap powder, H. S. Griggs \qquad 17.802 Soap, tooth, E. L. Baldwin Wash boards, Fuller Bros. Manufacturing Com- pany....... \qquad 17.797			Builders' Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, rich1y adorned with elegant plates in colors. and with other tine engravings; illustrating the most interesting ex- amples of modern Architectural Construction and allied subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawngs in perspective and in color are kiven, wgether whs etc. Plans, Specifications, Sheets of Details, Estimates, ter The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Archivecural publication in the world. Sold by all MUNN \& CO., Publishers, 361 Broadway, New York.	
any patent in the foresoing ist will be furnised drom this office for 25 conts In ordering please state the name name and number of the patent desired Munn \& Co., 361 Broadwas, New York. Canadian Patents may now be obtained by the tnventors for any of the inventions named in the fore- going list, provided they are simple, at a cost of $\$ 40$ each. If complicated the cost will be a little more. For fuill instructions address Munn $\&$ co., 361 Broadway, Now York. Other foreige patents mas also be obtained.			A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawngs perspective and in color are given, ugether with full Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this mapnificent work have won for it the Largest Circulation of any Archivecural publication in the world. Sold by all newsdealers. 82.50 a year. Remit to MUNN \& CO., Publishers, 361 Broadway, New York.	

HENPY CAREYBAIRD \& CO. Industrial Publishers, Booksellers, and Importers, CFITOur new and Revised Catalogue of Practical and
scientific Books 86 pages, 8 vo and our other Cate

 After being on the Market Four Years The 4 A CME E ${ }^{57}$ Still Leads!
 ROCHESTER MACHINE TOOL WORKS, Brown's Race, ROCHESTER, N. Y.

SCREW PITCH and CENTRE GAUGE.

A Market for West Indian, South \& Central American Buyers --Jamaica International Exhibition, 1891
 Opons 27 th Jankary. PRINCE OF WALES, Patron. Governor Sir HeNR C BLAKEE, K. WM. LANE BOOKER, Esq., C.MI.G.,
H.B.M. Consul General at New Yor C'hairman United States Committee.
 Applications here bJ June 12th.

Goods Shipped from August 20th.

 T. AMOR, Secretary, 280 Broadway, New York.
ELECTRICAL BOOKS

RECENTLY PUBLISHED.

Electric Light Installations and Management of
Accumulators. A Practical Iandook. By Sir David Salomons, Bart. M.A. 5th Edition, Revised and Ei.
large 1, with 100 illustrations....................... "To say that this book is the best of its kind would be
a poor compliment, as it is is pratecically the only work on
accumulators that has been writen,"- Electrical Review

 or A mateurs," etc. $1889 . \$ 1.20$
 Electrical. Influene Machines. Containing a a ful
aecount of their historical cheveropmentand their mod
ern Forms, with instructions for making them. By Practical Electrics. A Universal Handy Book on
Everyday Electrical Matter, including Connections
Ald Alarms, Batterres, Bells, Carbons, Induction, Inten-
sity and Resstance Colils, Dynamo Ellectric Macchines,
Fire Risks, Measuring, Microphones, Motors. Pho nographs, Photophones, Storage, and Telephones Practical Electricity, A Laboratory and Lecture
course for frst ear tuduents of Electrical Engineer
ins based on the ratical
 Send for Special Electrical Book Catalogue.
MUNN \& CO., Publishers of the ScI. AM

FOR SALE.

C. H. DE LAMATER \& CO. have closed their extensive manufactory at the foot of West 13th Street, New York, disposed of
Hot Air Pumping Engine and Steam Pump busi ness to the De lamater iron Works (incorpo for sale a very desirable lot of
Lathes, Planers, Drilling, Shaping, Slotting. Boring, Cutting Off. Nut Tap-
ping, Bolt Cutting, and Milling Ma-
chines Gear Cutters, Emery Tool
Grinders, Screw Machines. Vises, Lathe and Plane Tools, Drills, Taps,

Small Tools, Boiler Punching and Shearing Machines, with lot of Small Tools, Anvils, Sledges, Tongs,
Fittings, Brass Valves, Bar Iron and Steel, Steam Hammers, and three Rider

DERFECTinNSPAPER ILE

 MUNN \& CO... Puther scie

MINERAE

 WOOL

 GTisRUNMG5 Fir

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.
 ROCK BREAKERS AND ORE CRUSHERS
 special newwrix wid amingul Ideal Felt Tooth Polisher.

 2

For Domestic and Foreign Trade.
Containing Names and Addresses of 100,000 Manufac-
turers of
the Uniono Articles in 178 Classified Trades in A complete Reference Book for buyers and sellers in
alt trades, sho wing where any article of American man-
ufacture can be purchased direct. Price, by mail............................. $\$ 15.00$
Send for circular showing classified list of articles and For sale by MUNN \& CO., of Scientific american,
361 Broadway, New York.

NON-IRRITATING TO GUMS OR ENAMEI 122 East DANIEL GREEN \& CO., Now York. BARREL FILTERING WINE-DESCRIPTION

 $\$ 10.00$ to $\$ 50.00$ ficiatiza

BIGYCLES p pirmears,

 CRANESS PERFECT WATER COLOR MEDIUM. This Medium makes all colors How freelv, adds to their brilliancy, makes
them less sensitive to light, fastens the first wash against disturbance in re-
touching, makes colors adhere better to the paer and touching. makes colors adhere better to the thaper, ana the paper needs no pre-
vious wetting. For Architect and Artists. By mail, 25 cents.
 FIRE FELT.

THE NEW NON-CONDUCTING MATERIAL
 to be superior to Harr Felt in Non-Conducting qualities. Made in Nave sectional form
 Building Paper, etc.
THE CHAMLMEERSPENCE CO., 419 to 425 E. Eighth St., New York.
 NOW READY.
Esperimental $X \overline{\text { cienee }}$

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4,00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,
 361 Broadway, New York.
TRIUMPH WATER MOTOR Dayton, Ohio. Best power for Ventilating Fans
and all smali Power Outlits. THE STEAM ENGINE; ITS PRINCI-

NVENTORS:-We make anything You want from a
Serew to Complete Working Model.
Inventions perThe S cientric $A \xlongequal{\underline{\text { merican }}}$ PUBILCATIONS FOR 1890.
The prices of the different publications in the United
States. Canada, and Mexico are as follows: $\begin{gathered}\text { Rates BY MALL. } \\ \text { The Scientific American (weekly one year }\end{gathered} . \quad \$ 3.00$ The Scientittc American Supplement (weekly), one
year. 5.00
 The Scientiftc American, Architects and Builders
Edition (monthly), one year.
COMBINED RATES.
The Scientific American and Supplement, . . $\$ 7.00$ The Scientific American and Architects and Build-
ers Edition, The Scientific A merica., Supplement, and Archi- 9.00
tects and Builders Edition. Proportionate Rates for Six Months.
This includes postage, which we pay. Remit by postal
express money order, or draft to order of

DUDertisements．

Victor Bicycles！

ion pleasure，busmess．recrea
tion，and for anntrin youn
could use a bicscle for．
VICTORS ARE BEST
Jverman Wheel Co．，Illakers，解
THE PHONOGRAPH．－A DETAILED

EVEN THE BROWNIES MAKE PHOTOGRAPHS PHOTOGRAPHIC OUTFITS FOR AMATEURS， Send for our New Illustrated Catalogue and Rochester Optical Co．

Whis fope

 NEW KODAKS

THE EASTMAN COMPANY，
Send for Catalogue．ROCHESTER，N．y
JENKINS STANDARD PACKING：

OV POP SAFETY VALVE
POSBY WATER RELIEF VALVE
UD Improved steam gage Sinte Bell sThim wicine indianto

DEMAND THIS SUMP DOKLARS DEMAND THIS PUMP OR WRITE OF YOUR DEALER．TO US FOR PRICES． －VanDuzen \＆Tift． CNCLINAKERS $O \approx$ PATENTS！

 patentsin all the principal countries of the worid．

 Patarn Ririded Monared Riblore Bliligg BEsT IN Trix WOOR工D． THE GUTTA PERCHA AND RUBBER MFG．CO． Para Building， 35 Warren St．，New York．
Chicago，
Boston，Mass．
FI．W．JOFINS Asbestos Sectional Pipe Covering

A Non－Conducting Covering for Steam and Hot Water Pipes，etc． Asbestos Boiler Coveringe． is for applying Steam Pipe and Boiler Coverings in any part of the United Stuts
FI．UV．Johns Mranufacturing Company，
H．W．Johns＇Asbestos Millboard，Sheathings，Building Felts，Fire－Proof Paints，Liquid 87 Maiden Lane Now York．

CHICAGO．PHILADELPHIA．LONDON．

STEAM ENGINES
pright and Horizontal，
Stationary，
Portable and Semi－Portable， 8 to
Hustrated
Horse
Power． Mustrated Pamphlet Free．Address
AMES LEFFEL \＆CO． AMES LEFFEL \＆CO．
SPRINGFIELD，OHIO， LIME SULPHITE MANUFACTURE

The International Cyclopedia

VITAL STATISTICS．
so．0300 large panjeces．
sreated．
$1500^{25,000}$ cross references．
editions in flve years．

UNDISPUTED CLAIMS．

SUBSCRIPTION DEPT， 953 ntishers

$\$ 85$ Lovell Diamond Safety $\$ 85$
Diamond Frame，Steel Drop Forgings，Steel Tubing，Adjustable Ball Bearings to all Run－
ning Parts，including bedals．Suspension Sadole．Finest material
money can buy．Finished in enamel and nickel Strictly high grade in every particular．No better machine made at any price． JOHN P．LOVELL ARMS CO．， 147 Washington Street，BOSTON，MASS． NATIOINAI HITTHR
BRIGHT SUARARKIING WATER
LARGE SIZES FOR MILLS AND WATER WORKS． NATIONAL WATER PURIFYING CO．，
$\underset{\text { Address for Pamphlet．}}{\text { N ATION }}$
145 Broadway or 86 Liberty St．，
Cl CUTLER DESK BESSTMN THE WORLD．

TIS ELEVATORS

тй sminamo frit woilo II kinds of PASSENGER and FREIGHT
Elevator Service． OTIS BROTHERS \＆CO． General omices，－－NEW YORK． GRAVESELEVATORS． T

＂COLUMBIAS＂ hichest crade only． POPE MFG．CO．${ }^{\text {Cataloge }}$ Reanch hosess： $\xrightarrow{\text { Hranklin St，BOSTON．}}$ THE ONLY PRACTICAL 15iprwivin POPE MFG．CO．，Boston，New York，Chicago．上极
 95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

MARMI＇S SAFES
HAVE MANY PATENTED NOT FQUND IN THAT OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION BY．THOSE WHO TO SECURE THE BEST SAFE MARVIN SAFE CO． NEW YORK，PHILADELPHIA LONDÓN．ENGLAND

The IIOTOR of 19th CDNNUBT．

 Charter Gas Engine Co． TOOL AGENTS WANTED
 PRINTING INKS，

