A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

climbing the great chimney of the clark thread works at harrison, N. J.-[See page 246.]

צrimutifir ghmxicau.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH

NEW YORK, SATURDAY, APRIL 19, 1890.

Contente.	
(Illuntrated articles are marked with an asterisk.)	
	Light, are, suunderson's.
shand publications. new.....	
erpetual...........	
ney, Clark Thread Wörkil	Mir
pling, thill, Schoch's*........ ${ }_{2}^{245}$	
genol	h, sciestif
, ee seets	Pha
	Pomer, distributing, mea
Sest oid and damp.:	
ns, reeently pat	
Sesene as a medicine.	Thenemiter, urrin \& Sheldon
Lard, preservation of.	Wheel, per forating, Jensik

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 746.
For the week Ending April 19, 1890. Price 10 cente. For sale by all newedcalers

 a second-A camera of probable user in military operations for
photomraphing the infirerent phases of a bitle or in ordinary iff
of a man speaking an oration, and of similar subjects.- 3 illustra-

 $\mathrm{yz}=2=$ $3 \pm=2=$

THE MAJESTIC.

Another new and magnificent ocean steamer, the Majestic, of the White Star line, arrived in New York from Liverpool on the 9 th inst., after a fast passage6 days and 18 hours. This ship, like the Teutonic of the same line, is 582 ft . long, $571 / 2 \mathrm{ft}$. wide, 39 ft .4 in . depth, 9,685 tons tonnage, built of steel, two independent sets of triple expansion engines, twin screws, engines of 17,000 horse power, 12 boilers, 72 furnaces. This vessel and also the Teutonic have been built under an arrangement with the British Admiralty whereby the ships are to be taken into the naval service whenever required
The ships are so arranged that twelve guns can be mounted on each ship forty-eight hours after arrival in port, and it is believed that, with their attributes of twin screws, high speed, and great strength and coal endurance, these two steamers will play an important part in realizing the hope of many in times past of see ing the royal navy and the merchant service bound together in one common scheme for the national protection.
It is a question worthy of serious consideration whether our government might not, with great ad vantage, offer liberal inducements to our own ship builders to put afloat a class of vessels like these. Not one of our new unarmored cruisers can compete in them could beat her when she is armed for a fight

ACCIDENT TO A GREAT STEAMER.

On the 25th ult., at 5:30 P. M., on her outward pas sage from New York to Liverpool, when about 75 miles off the coast of Ireland, driving along at full speed, the machinery of the steamer City of Paris suddenly broke down, both engines stopped, and the vessel was drifted helpless on the waves. To add to the danger of the situation, the water came pouring into both engine compartments. The accident appears to have been so serious, and the ship so inadequately supplied with steam pumping machinery, that during the four days that elapsed before reaching port the vessel gradually settled deep in the water by the stern, though it is claimed by interested people she was never in any danger of sinking. Two days after the accident she was mot by the steamer Aldersgate and towed into Queenstown, where steam pumps were obtained, the leak stopped, the water pumped out, and the vessel proceeded with her one uninjured engine to Liverpool. The captain's telegraphic report to the owners was to the effect that the cylinder of the star tween the two engine compartments, and broke the injection pipe connections, thus letting water into both compartments. Passengers on board report that a cloud of steam suddenly rose from the engine room, followed by a terrific grinding noise, all of which lasted for a minute, then all was silent. One passenger says a portion of the machinery was thrown up and fell upon the deck. The ship was amply supplied with boats, the weather was fine, there was little or no panic among the people on board, 1,000 in number, bu all were subjected to a strain of anxiety and dr hich was not relieved until they stepped ashore
After ansil Liverpool the vessel was docked, and as she rose out of the water her starboard propelle dropped off, revealing a broken shaft, which at once explains the cause of the accident to the engine, name ing of the shaft.
The City of Paris is one of the noblest specimens of marine architecture now afloat. She is 560 feet long 10,500 tons burden, $63 \frac{1}{4}$ feet width, 42 feet depth. She has twin screws, worked by two independent engine of the three-crank triple-expansion type, both togethe having 20,000 horse power. There are 9 steel boilers 54 furnaces, and 12 fans for supplying air to boilers.
The vessel is supplied with no less than thirty-seve
auxiliary engines, most of them operated by hydrauli auxiliary engines, most of them operated by hydraulic power, and used all kinds of work in all parts of th vessel. The ship is supplied in each engine room with two fire and two bilge pumps of the most powerful description, so arranged as to be available for pumping the compartments between the double bottoms of the ship, and also emptying any of the compartment should water come in. The duplicate electric light en gines were located in the main engine rooms.
It seems never to have been anticipated that both engines and both engine compartments could ever be simultaneously damaged so that all the steam pump and electric light engines would be rendered useless. It appears to have been believed that if one engine or one set of pumps broke down, there would alway be another engine and pumps in readiness for any emergency, and capable of propelling the vesssel almos at usual speed. Just here was the apparent miscalcu-
lation. It only took one minute of time to render all the double engine power and double main pumps of the City of Paris useless and inoperative.
In all first-class American steamers there is an am ple supply of independent steam donkey pumps and boilers arranged above the water line. In case of dam
age to the main engines and pumps, the donkey boiler can be fired and the pumps worked. In the City of Paris this arrangement was done away with in order to make the ship quiet and relieve passengers from the disagreeable sizzling of steam, rattling, and the noises attendant upon the use of a number of donkey engines. It is probable in view of this mishap the City of Paris will now be provided with additional pumps and boilers to meet any such occurrence as the present. The flotation of the City of Paris for four days at sea with two great compartments filled, and all her ma chinery disabled, shows that progress has been made and that the time is approaching when we may expect to have really unsinkable ships.

CAMPHOR.

The retail price of camphor has recently advanced from thirty to sixty cents a pound. This will no doub occasion surprise to many persons, and especially to those who will soon require to make small purchases of the drug for the purpose of protecting fur and woolen garments from moths during the summer seaTh
The scarcity and consequent high price of camphor is caused by the large quantities of it which have been taken by European governments for the manufacture of smokeless powder and also by the increasing demand or celluloid goods both in Europe and in this country
Previous to the invention of celluloid, about all the uses to which camphor was put were for preserving clothing and fur goods against moths and in medicine Now the two great inventions above alluded to are using such large quantities of this article that the sup ply will probably prove to be entirely inadequate. The principal source of this supply in southern Japan wa fully described in the last issue of this journal, and on April 3 a plant built in this country for extracting th gum from the wood by improved processes was shipped to Hiogo, Japan, which some think may institute revolution in preparing the drug for commerce. This plant is composed of stills, engines, and boilers, and when shipped at Pittsburg, Pa., weighed fifty-fiv tons and occupied two cars. It has been erroneously stated that the object of sending this machinery to Japan is to obviate the necessity of bringing the wood or fiber here, thus paying freight on much useless ma terial and incurring loss by evaporation. The truth is however, that the camphor wood has never to any ex tent been brought to this country, the work of extract ing the gum being done in Japan, but it is put through a refining process after arrival here. As described in the article above referred to, the processes in Japan are very primitive indeed, and it is possible that the ma hinery now going forward may be so great an im provement that the supply of camphor will be in creased by its use. It is the opinion of those who have given thought to the subject, however, that some substitute will have to be found for camphor in the manufacture of smokeless powder, if not in the pro duction of celluloid, as it will be impossible to pay the high prices which the unusual demand creates.

IMPROVEMENT OF THE ARC LIGHT

On page 243 we give at some length the details of an mprovement in the arc light which, according to the statement of Dr. John Hopkinson, has yielded results of a very important and valuable nature. The lumin ous power of the ordinary light is asserted to be nearly doubled, less energy is consumed, increased steadines is gained, the quality of light improved, and other ad vantages gained. The improvement is effected in a very simple manner, to wit, by feeding to the lower carbon a minute quantity of hydrocarbon, in the form of an oil or grease. The further particulars given wil no doubt be read with interest.

Substitute for Sulphate of Quinine.
At a recent meeting of the French Academy of Medi ine, Professor Dujardin-Beaumetz stated that he had received from M. Valude, of Vierzon, a paper relating to a new specific for the fever and other symptoms of paludism. This medicament consists of the bark of the panbotano, which is a leguminous tree (suborder Mimosa) of Mexico, isolated plants being cultivated in some parts of Europe. M. Villejean has studied the bark, and found fatty matters, tannin, etc., but no alka loid or glucoside. M. Valude administered panbotan bark to his patients in form of an alcoholic tincture nd also gave a preparation made by maceration. He preferred the latter, which he made by putting 70 gm of bruised bark into a quart of water and boiling down to a pint, this being the quantity to be taken in twenty our hours. In the eight paludic cases described by M Valude a single dose, or, at most, two doses, caused the disappearance of well-defined tertian fevers.-Bull. ned. ; Nouveaux Rem.

To make waterproof writing ink, an ink which will not blur if the writing is exposed to rain: Dissolv two ounces shellac in one pint alcohol (ninety-five per cent), filter through chalk, and mix with best lampblack.

Saunderson's improved Are Light.
For many years there have been efforts made for the improvement of carbons for electric arc lamps with some measure of success, also for introducing various materials into the arc, but in no case has any important advantage been gained. In many cases certain substances have been ground up and incorporated with the carbon, with the result that ashes or clinkers have been formed to such an extent as to render the light of less rather than greater intensity. The most successful carbons have been those made up with finely powdered soft carbon dust, compacted together by well known methods, which we need not now discuss. A very remarkable discovery has been made which will certainly give an enormous impetus to electric lighting. The inventor, Mr. Llewellyn Saunderson, of Kingstown, county Dublin, while experimenting with the arc lamp in his endeavors to improve its powers to pierce fog, so as to minimize loss of life at sea, determined upon introducing into the are minute quantities of intensely heated hydrocarbon vapor so as to enrich the light with the well known fog-piercing rays, viz., yellow and red. Having succeeded by this means in producing a beautiful sunshine yellow, he discovered that at the same time the intensity of the light was enormously increased. A plant was put down consisting of gas engine, dynamo, and electric arc lamps, and the question was followed up by introducing various gases into the are in a number of curious ways, only a few of which can now be described. The first consisted of a jet through which the vapor was projected into the are; then two jets, and so with a number of other contrivances. The hydrocarbon was vaporized in the tube leading to the jet, and retarded in its passage by asbestos, etc., to give the carbon time to bring the vapor up to an intense heat, and a wick was employed to prevent the vapor from going back, as well as to
supply fresh fluid by capillary action. Having thoroughly convinced himself that a substantial improvement of the light could be produced without requiring additional power from his gas engine and dynamo, the inventor now contemplated bringing his new light forward for actual tests against the best light that could be produced by the carbons now universally employed in are lighting. He made inquiries as to who he should ask to assist him, and Lord Crawford very kindly allowed some temporary tests to be made at the store
of the London Electric Supply Corporation in the Adelphi Terrace, but the exigences of the business of the corporation were such that the long and laborious investigations required could not be continued. Subsequently the inventor was recommended to apply to Mr. Apps, 433 Strand, London, so well known for his work in connection with physical science, and after careful consultation it was decided to put down a plant consisting of gas engine, dynamo, storage cells, and two large Brockie-Pell are lamps, each taking about
45 volts and 12 amperes. This plant began running in 45 volts and 12 amperes. This plant began running in
May, last year, and was designed and fitted up by Mr. Apps with a full complement of testing instruments of the most approved design. The two lamps were arranged at the ends of a long photometer scale, the photometer being in the center and the lamps vertically placed at each end. The exact candle power of either lamp was not thought to be important, but the precise relation of the lights of the two lamps was the point to be ascertained, the energy to each being indicated by the sets of instruments placed on the walls opposite. At this stage the experiments were greatly extended, and many thousand observations taken, with a general mean result agreeing with that separately and after ward determined by Dr. Hopkinson. It was found, however, that for very exact measurement now pro-
steadiness was absolutely necessary. Having now cured readings of a reliable nature, and of the most extraordinary character, the inventor was advised to call in Dr. John Hopkinson, M.A., D.Sc., F.R.S., etc., to report to him on the power of the new light as compared with the old are light. A pair of black velvet screens were ordered to be placed behind the lamps,
and the whole of the framework also was colored a dull and the whole of the framework also was colored a dull black. The tubes of the photometers were also lined
with black velvet, and special arrangements were contrived to get the maximum steadiness of light from the lamps. At this point some measurements were taken which were fully verified subsequently, but the unsteadiness of the light was still a serious source of diffi culty. The lamps were now made to rotate in their own frames and to be inclinable at any angle also-the automatic regulating mechanism being entirely re-
moved, and a screw arrangement added for hand regulation. By this means the possible errors due to crater were almost entirely eliminated, and, after taking a great number of readings, Dr. Hopkinson decided to make his report, which is as follows
the report of dr. John hopkinson, m.a., d.sc. .R.S., ETC

Arc Lamp with Hydrocarbon.

The peculiar feature of this invention is, that the
wer or negative carbon is hollow, and is connected lower or negative carbon is hollow, and is connected
with a reservoir of hydrocarbon, as tried by me, with a reservoir of hydrocarbon, as tried by me,
Young's paraffin, density 0.865 , this oil passes up the hollow carbon into the arc.
advantage, if any, resulted from the presence of the
hydrocarbon. Two arc lawps were provided, identical in all respects, with the exception that to one of them in al iespects, with the exception that to one of them
the invention was applied. The electromotive force and current supplied to each arc were measured by voltmeters and amperemeters, which were afterward compared with each other, and were found to give the
same indications for the same currents The lights same indications for the same currents. The lights
given by the two arcs were compared by a photometer given by the two arcs were compared by a photometer
generally of the ordinary construction. In a part of the experiments the ordinary Bunsen grease spot was replaced by the so-called Joel's photometer, consisting of two pieces of obscured glass; the results with the wo instruments are in fair accord.
In order to diminish the very considerable variation
dependent upon the position of the crater the lamps dependent upon the position of the crater, the lamps
were inclined so that the axes of the carbons made an were inclined so that the axes of the carbons made an
angle of 45° with the horizontal, the craters in the two upper carbons facing each other. Between successive observations the lamps were turned through an angle of 180° about the axes of the carbons, so as to reverse the ifavorable or unfavorable position of the craters. As might be expected, the observations varied very given here. In obtaining this mean the whole of the observations are included with the exception of sixthree extremely favorable to the new lamp; three, on The other hand, unfavorable.
The final result which I find is this : Mean potential ordinary lamp, $39 \cdot 8$ volts; of new lamp, 41.4 volts; mean current of ordinary lamp, $12 \cdot 4$ amperes; mean ordinary lamp, 493.5 watts; mean energy of new lamp ordinary lamp, 493.5 watts; mean energy of new lamp,
459.5 watts; mean ratio of the light given by the new amp to the light given by the old lamp, $1 \cdot 88$. Thus,
in these experiments, while consuming somewhat less in these experiments, while consuming somewhat less energy, the new lamp gave nearly double as much
light as the old lamp. There is, therefore, in an arc of this size a substantial advantage from the use of the nvention.

Among the great advantages of this discovery we may mention increased steadiness, and, instead of the bluish tint always present in the ordinary arc, a fine rich yellowish-white color, very agreeable to the human eye, is produced, being almost exactly the same as sunight, and having an enormously increased power of penetrating fog, so important for lighthouse purposes, and for use in the military and naval electric light pro jectors; the actual amount of light, as reported by Dr.
Hopkinson, being nearly double that of the old arc light, and more than double, if we allow for the differ ence in energy taken by the two lamps tested against
each other. The item of expense in applying the new system is so small that it may be neglected altogether, and very little or no alteration of the present arc lamps is required. The simplicity and cheapness of manufacture is, in fact, so great that it is probable not more than 20 per cent or 30 per cent in total cost need be added to the present cost of the carbons against the diminution of the general cost.

It may well be asked how these results are attained. Up to this moment there is, perhaps, no sufficient ex planation; but it is highly probable that the exceed ingly fine particles introduced into the arc, fand im pinging against the upper carbon by the ascent of the hydrocarbon vapor, are acted upon with great advan tage by the electrical energy, whereas the harder par of cohesion, greatly reduced in size, and even then only a small percentage are found suitable for the higher incandescence (from which most of the light is derived), the grosser particles falling in dust, found after the lamp has gone out; while portions more refractory are
discharged at all angles, and sometimes with considerable force. For instance, such particles have been found embedded in the surface of massive glass lense placed some 4 or 5 inches distant from the are flame in a horizontal direction. The work done in heating a re fractory and unsuitable body for the production of of energy. On the other hand, the hydrocarbon vapor
ond is (by means of the waste heat of the carbon, at a point not far from its lower end) obtained from the absorbent wick, from which it ascends, being lighter than the sur rounding air, and after being raised to an intense hea as it passes upward, and having enormously expanded passes into the arc
The quantity of vapor required is astonishingly small ; that which can be produced from a drop of oil lasting, with ordinary carbons, nearly a minute. It is however, not necessary to employ oil, but almost any ubstance or semi-liquid which, on being heated, give off the vapor will answer well. For example, vaseline
inclosed in a small capsule of the same size as the rod of carbon, and not more than about one-half inch long, will hold sufficient for the burning of the carbon down to the usual length at which it is generally taken out and thrown away. It is probable that the minate that in its turn the incandescent gas or particles of vapor assist largely in effecting the separation of the particles of the carbon electrodes; for the consumption of carbon is increased by about one-seventh part. The light is said to be far more agreeable to the eye, and o much greater steadiness; while as to economy, arc
lighting with this improvement, it is contended, is equal to gas at about 1 s . per 1,000 cubic feet. With reference to search lights, it is evident that by adopt ing the invention the illumining power, and generally
which may be an important factor in some not very distant naval action. These lights would also be found much better able to pierce the fog and haze so often found on the surface of the sea, and most important in finding coast lines and "rocks ahead."

Cold and Damp Houses.

A large proportion of the colds and ailments of the espiratory organs suffered during this season of the year are attributable to the want of proper measures being taken by builders in laying foundations and in executing the basements of our houses. Hundreds of he houses let in the suburban districts of London ar built upon clay and marshy ground, of ten of "made earth" and rubbish. The present by-laws as to founda tions and building sites have been in operation only a few years; but previous to that time houses were built upon decaying matter deposited by dust contractors the foundations of walls were laid on the damp soil without concrete or proper courses to prevent the rising of damp in them, and damp earth was allowed to ex tend above the basement floor level. By the legislation of recent years, these matters have been more looked after by the district surveyor. We may point now to a few of the causes which contribute to cold and uncomfortable houses. First and foremost is the imperfect arrest of dampness from the soil. The only way of securing a healthful house is to cutit of as much as possible from the soil on which it stands. Ideally, one may imagine a house standing on stilts or piers, having a free current of air below, and a stair up to the floor; but this would be unattainable under existing arrangements. The next best thing is to ob tain a well ventilated cellar, or, what is almost as good, a sufficient air space between the ground and the floor this space being well ventilated by bricks, and the ground covered with asphalt lor concrete. Neither o these essentials is found. There is an air space below the floor; but it is generally a rough and unleveled surface of rubbish, with the air bricks so scantily intro duced, and they often clogged up by earth or dirt, that the air is in a state of stagnation, and the emanation from the soil are sucked up into the house by the warmth and fires. Another danger is added if a dis used cesspool or a drain is beneath the house, and who knows how many of our houses are built over thes receptacles of a past civilization? The many houses and tenements built almost level with the ground ar particularly open to suspicion. A fast decaying floo or a mildewed appearance of dampness, or a musty smell under oilcloth or linoleum in the hall or passage will reveal the evil. On examination it is found, on taking the rotten boards up, that the joists are close to or rest on the ground, that the bond timber is rotten or no damp proof course inserted. Hundreds of smal houses are found yearly in this condition of incipient decay, which often begins under the passage floor near the staircase or back door. The only remedy i to excavate the soil, underpin the walls, and lay damp course over soil, replacing the timber on sleepe walls of proper construction. The want of ventilation is usually found to be the cause.
Houses having half basements or parlors below the ground floor are very common in the metropolis; but these as living rooms are highly objectionable, with the exception of those which have not been excavated, and are built up from a lower natural level in the rear in which case the lower story becomes the ground floo story of the house behind. Then it becomes necessary to form a good area or retaining wall in front to give light to the front room, or, if there is no front room to well line the wall forming the back of the room in the rear with some bituminous compound. It is bet ter, perhaps, to make it thick and hollow, ventilatine the space. And speaking of half basements leads us to well on one or two points connected with dry areas Walls built against earth ought to have an area form ed along it of its whole height. On the return side of semi-detached houses the side wall must be built often without any area, and in this case the space next th wall for a foot or more should be filled in with broke stone, and a drain be placed at bottom just below the level of footing. An asphalt coat on the outer face o wall returning in the joint at the floor level should in variably be put. A more efficient protection would be n area covered over next the outer wall, called a "French intercepting drain," or a concealed area Sometimes an impervious tile facing has been placed against the outer face of a wall so built; but of al hese plans the open ventilated area is the best. W have here referred chiefly to foundation and basement measures; but the dry wall and the well protected oof are other necessaries of warm and healthful dwell ing houses.-The Building News.

Lack of Symmetry in the Eyes

When the average man or woman comes to be fitted with the first pair of glasses, some curious discoveries are made. Seven out of ten have stronger sight in one eye than the other. In two cases out of five, one eye i out of line. Nearly one-half the people are colo blind to some extent, and only one pair of eyes out of every fifteen are all right in all respects.
an improved spring motor.
The accompanying illustrations show a side elevation and sectional plan view of a spring motor patented by Mr. J. G. Ernst Reichard, of Borna, near Leipsic, Saxony, Germany. On the bed plate is a vertical spindle carrying a fixed pinion, C , into which mesh gear wheels, D and D^{\prime}, mounted in a frame, E , turning on the fixed

REICHARD'S SPRING MOTOR.
the main driving shaft, H. The springs, Q and Q^{\prime}, as sist in re-enforcing the power derived by the rotation of the frame, G.

The Electrical Transmission of Power
A remarkable electrical transmission plant has re cently been put down in the State of Nevada, in the world famous Comstock Lode, and the almost equally famous Sutro Tunnel. At the Nevada Mill there is a 10 ft . Pelton water wheel, which receives water through a pipe line delivering water from the side of Mount Davidson under a head of 460 ft ., giving 200 horse power. Here the water is again caught up, delivered into two heavy iron pipes and conducted down the vertical shaft and incline of the Chollar Mine to the Sutro Tunnel level, where it is again delivered to six Pelton water wheels, this time running under a head of $1,680 \mathrm{ft}$. Each of the six wheels is but 40 in . in diameter, weighing 225 pounds; but with a jet of water less than $5 / 8 \mathrm{in}$. in diameter, they develop 125 horse power each. On the same shafts, which revolve 900 times minute, are coupled six Brush dynamos, which gene rate the current for the elec tric motors that drive the tamps in the mill above ground. The result is that where it formerly took 312 miners' inches of water to perate 35 stamps, but 72 nches are now required to un 60 stamps. This is th reatest head of wat is the used by any wheel, and by tself constitutes an era in hydraulic engineering. A solid bar of iron thrown forcibly against this tremendous jet rebounds as though it had truck against a solid body nstead of a mobile fluid. Th peed of this jet where it im pinges against the buckets of the wheel, is two miles a minute -176 ft . a second. Th
spindle, B^{\prime}. Into these gear wheels mesh pinions on the frames, F and F^{\prime}, turning in the frame, E. On the latter frame is a pulley rotating loosely on the shaft, B^{\prime}, and connected by a chain with a pulley on a shaft turning in suitable bearings on the main frame. On the latter shaft is a pulley connected by a chain, q with a pulley on the shaft, C^{\prime}, the latter pulley carrying a supplemental frame, G. The frames, F and F^{\prime}, carry spring barrels, g and g^{\prime}, and the shaft, H, turns loosely in the frame, G, the shaft, H, transmitting the powe of the motor to other machinery to be driven. When the springs in the barrels, g and g^{\prime}, are wound up they exert a tension at both ends. When the frame, G, ro tates, motion is imparted to the several devices in the frame, so that a rotary motion is finally imparted to

DURRIN \& SHELDON'S TYPE-WRITER ATTACHMENT. of order

Perpetual Carnations.

John Thorpe, than whom there is no better authority says, in Garden and Forest, that carnations to flower in the open ground this summer should be planted early in this latitude-any time after the 10th of April if they have been growing in a cool place. Carnations are better without fire heat at this season. It is im portant that the soil in which they are to be planted be rich in potash, and a liberal dressing of wood ashes s, perhaps, the best means of supplying this element. If the plants are ordinary spring-struck cuttings, they hould be planted about a foot apart each way ; plant hat have been wintered over in five inch pots require wore room, and, of course, give more flowers; yet, i he same amount of money is expended in small plants, the additional number should produce the same mount of bloom. The varieties of carnations are so numerous, and so large a proportion of them are ex cellent, that it is hardly worth while to name a select list. Unfortunately there are but very few thoroughly ardy varieties of the class known as border carnations. Seedling plants will go through the first winter safely, as a rule; afterward, however, whether the plants are layered or stock is obtained by cuttings, the losses are heavy and the plants badly crippled. Unfortunately we cannot grow the clove carnation here as they ar grown in England, and where they are among the most satisfactory of garden plants.

AN IMPROVED WEEDER

The engraving herewith shows a very cheap and convenient tool, which has been patented by Mr. Albert W. Stiles, of Rock Creek, Ohio. This implement is made rom a single piece of wire rod having an ovate handle ormed by bending the wire, when the strands are wisted to make a shank and the two limbs are made

STILES' GARDEN TOOL
with hook-shaped ends, thus constituting a simple and inexpensive tool for removing weeds, etc.

AN IMPROVED PERMUTATION LOCK

The lock shown in the accompanying illustration is designed more especially for money drawers, and to be operated only by authorized persons knowing the proper order in which the levers or parts must be worked to allow withdrawal of the bolt. It has been patented by Mr. Alfred C. Lawrence, Toronto, Ontario, Canada. In this lock the latch bolt, B, has a slot on which the bolt plate, C, loosely fits, the bolt also having an independent vertical movement on the plate. In thus making the bolt independently movable on the bolt plate the drawer may be closed without workng the permutation disks after the levers, I, have been released. When the drawer is open and the arm, D, is up, the levers, I, being down, the drawer may be closed in the ordinary way, but when strongly pushed home the spring, F, lifts the bolt behind the catch plate and the spring, F, lifts the bolt behind
For further information in reference to this invenion address Mr. James M. Shannon, No. 50 Willoughby Street, Brooklyn, N. Y.

LAWRENCE'S LOCK.

AN IMPROVED PERFORATING WHEEL

A wheel for perforating paper, as checks, drafts, etc., to be separated from duplicates or stubs, is shown herewith and has been patented by Messes. Joseph Jensik and Charles Stroll, of Chicago, Ill. This wheel is mainly designed for use in paper-ruling machines, the small figure being a transverse section of the wheel in operation on the paper. The wheel is carried by a holder, to be attached to a clamp, as ruling pens are

JENSIK \& STOLL'S PERFORATING WHEEL.

secured, and is designed to be very serviceable in small binderies, where it would not be profitable to have a binderies, where it would not
separate perforating machine.

AN IMPROVED THILL COUPLING

The coupling shown in the engraving herewith has been patented by Mr. Martin L. Schoch, of New Berlin, Pa. Fig. 1 represents a portion of the thill iron, with knuckle and hooks thereon, Fig. 2 partly showing the key with locking lever, while Fig. 3 represents the whole device in perspective. Attached to the axle clip in the usual way are two forwardly projecting lugs or ears, with a cross bolt adapted to be engaged by hooks in the slotted end of a thill iron,

schoch's thill coupling.
there being a raised knuckle near the end of the thill and a peculiarly formed key adapted to enter the slot of the thill iron, to engage its knuckle and overlap the cross bolt, thus holding the parts together, the key having a depending lever by which the parts may be locked in position.

THE NONPAREIL PIPE PLUG.

Here is something that will be appreciated by plumbers at the first glance. It is a calked plug for soil pipes and other pipes, that can be quickly put in and quickly removed, without the necessity of chipping out the packing with chisel, and danger of injury to pipes. It consists substantially in providing the ordi-

the nonpareil pipe plug,
nary plug with a head and with coarse screw thread, as shown in our engraving. The plug is applied as usual, an oakum packing being first put in, then the lead balking. This makes a perfectly strong and tight al. To remove it is only necessary to apply a wrench and unscrew the plug. When the plug is removed and the fixtures put in, there is just sufficient lead and oakum present to recall the joint. Among other advantages of this plug are the following: It is inexpendive. It is perfectly tight. It is durable. It is easily removed. If used in new buildings and placed in posiion as the plumbing work advances, these plugs will preclude the possibility of obstructions of any kind getting into the pipe, which often happens. If any fixture should be abandoned, the outlet furnished with this plug is sure to be properly closed. This plug has been tested up to between 80 and 90 pounds pressure per square inch. Several hundreds of them were used in the great World building, New York, where there are 25 lines of soil pipes, some of them 200 feet in length. The use of these plugs saved a great amount of time, and stood the inspection pressure with complate success. Further information may be had by addressing the J. L. Mott Iron Works, 88 Beekman Street, New York.

CARTERS DITCHING AND EXCAVATING MACHINE

The accompanying illustration represents a ditching and excavating machine designed to dig from two to four hundred rods of ditch 3 feet in depth, 14 inches wide on top and 10 inches in bottom. It is the invenion of Mr. Henry Carter, of Albion, N. Y. The machine consists of an elevating wheel with buckets, which chop into the earth in the bottom of the drain, and thus prevent the elevating wheel from slipping in tough, sticky clay, at the same time giving it power to raise the earth up through a flexible back, which yields to allow a stone or other obstruction to pass freely up through the throat to the discharge chute. These buckets are so arranged that a cam roller raises them as they approach the discharge chute to pass over a scraper, which clears the elevating wheel of all the earth, forcing it down the chute to either side of the ditch. After passing this chute another roller adjusts the buckets to their original position, where they are held by a brake attached to each journal, which is pro vided with a spring and set nuts which will adjust them to any desired tension. The plow is so arranged that the operator can, with a hand wheel, raise or lower it to take any desired depth of cut. The tilt on the front of the machine allows the plow to be raised or lowered ten inches without changing the poritimon of the elevating wheel, thereby permitting the operator to set the plow to any desired depth of cut for either hard or soft soil. The plow is so attached that it will, when coming in contact with a large stone or rock, rise up and pass over without danger of breaking the machine; while at the same time, if it passes under a small stone, which is too large to get up through the throat, it automatically yields back, making the throat twice the original size, allowing the stone to pass freely through to the discharge chute.

For Getting Rid of Mosquitoes.
Robert H. Lamborn has placed in the hands of the managers of the American Museum of Natural History, New York, the sum of $\$ 200$, to be paid in three prizes of $\$ 150, \$ 30$, and $\$ 20$, for the three best essays on the destruction of mosquitoes and flies by other insects. It is suggested that the dragon fly is an active, voracious, and harmless " mosquito hawk," and that it might, if artificially multiplied, diminish the nom-
bers of the smaller insects. A practical plan is called for in the breeding of the dragon fly or other such destroyer in large numbers, and its use in the larva pupa, or perfect state, for the destruction of mosqui toes and flies in houses, cities, and neighborhoods.

Preservation of Lard

James L. Demoville, Ph.G., finds the alum process for purifying lard all that can be desired. The lard is melted, a little powdered alum being stirred in; then strained, cooled, and upon an inclined slab rubbed briskly with a muller, while a stream of water is al lowed to trickle over it.
For preserving the lard, experiments were made be sides with benzoin, with balm of Gilead buds, storax salicylic acid, turpentine, and tolu. The best result were obtained by using one per cent of balsam of tolu ; the lard was white, kept well, and had its peculiar odor well masked by the slight but pleasant odor of the balsam.

and nuts or similar fastenings. This is a patented in vention of Mr. Neil Campbell, of No. 231 East Ninety sixth Street, New York City. Fig. 1 shows a transverse section through a supporting bar and two lights, Figs. 2 and 3 showing roof sections. In this construction the light or glass is formed with a gutter on its upper edge and a rib on its under side to serve as a stop or rest for the edge of the adjacent light, this rib project ing into an adjacent gutter, while flanges on its side engage grooves, forming a lock joint. In this way seams are avoided likely to occasion leakage and breaking of the glass.

Phosphorescence.
A French naturalist, M. Giard, has just made known the results of some experiments he has been making with Talitrus and other crustaceæ. On microscopically examing a brightly phosphorescent specimen he found walking slowly on the beach instead of leaping, as it habit usually is, he traced the phosphorescent light to the presence of bacteria in its muscles, which were greatly altered. On inoculating other and healthy in
-

The accompanying illustration represents a glazed structure designed to entirely prevent leakage, the bars and lights being secured together without bolts

CAMPBELL'S SKYLIGHT

[^0]

CARTERS DITCHING AND EXCAVATING MACHINE.

dividuals of this and other species the same disease was dividuals of this and other species the same disease was
produced among them, and M. Giard says that his laboratory was quite lit up at night with these diseased laboratory was quite lit up at night with these diseased
but luminous crustaceans. The inoculation was continued to the sixth generation, apparently without any attenuation of the microbic action. The disease seems to follow a regular course, and the crustaceans died in three or four days. The phosphorescence, however, always lingered a few hours after death. Crabs were insulated in the same way.-Science Gossip.

PRESERVE FOR BINDING.

The publishers of the ${ }^{6 /}$ Scientific American", would advise all subscribers to preserve their numbers for 800 pages of illustrations and reading matter. The practical receipts and information contained in the Notes and Queries column alone make the numbers worth preserving. Persons who have subscribed since the commencement of this year can have the back numbers sent them on signifying such wish
Their subscription will then expire with the year.
climbing the great chimney of the clark THREAD WORKS, AT HARRISON, N. J On the morning of Friday, March 28, the great chimney in the Clark Thread Works, Harrison, N. J., was struck by lightning. There were two discharges, one at 8 A . M., the other fifteen seconds later. The first threw down bricks from two spots; the other, more severe, attacked it in eight or nine spots more. Altogether, from fifty to seventy-five cartload of bricks fell, cattering widely in their descent, the outer surface beang stripped in places to the depth of three courses of mbrick, or about twelve inches. The occurrence excited much alarmamong the operatives. The works were at once shut down, pending an examination of the chimney for stability.
The shaft is unprovided with any ladder or other means of ascent. The original idea was that if it should become necessary to reach its top, a balloon would be sent up in the interior, carrying a line. The cast iron cap which surmounts it has an edge at the top so thin that any method which involved the use of a line reaching over this edge was rejected as unsafe, owing to the danger from chafing. This precluded the balloon method. Eventually the services of a prothe balloon method. Eventually the services of a pro-
fessional chimney and steeple climber were secured, and fessional chimney and steeple climber were secured, and
within a week, with about three and a half days' of within a week, with about three and a half days' of
work, he reached the top by ladders fastened to the exterior. The method he adopted is one which is used in England and Scotland. We illustrate in the present issue the general course of his operations.
The side of the chimney opposite to that which was struck by lightning was selected as the scene ot operations. This insured a sound base for the work and avoided any danger from falling bricks. A ladder was first placed against the shaft. A block of wood was inserted between the chimney and the upper end of the ladder. The block was a little longer than the ladder was wide, and held it about seven inches out. Next two straight-shanked hooks of seven eighths round steel, with wedge-shaped points, were driven into the joints between two courses of brick just outside of the sides of the ladder, and as near the block as possible. The bent ends of these projected horizontally inward and gripped the sides of the ladder. The hooks were driven in until they drew the ladder and block strongdriven in until they drew
ly against the brickwork.
y against the brickwork. tackle. The end of the fall was caught over the sixth rung or thereabout, and the fall itself was lashed to the top rung. A steel hook was driven into the chimney above the top of the ladder already fixed. To this the pulley block was fastened. The ladder was drawn up from the ground and as its top reached the chimney climber, he cut the lashing of the top rung and guided it by hand as it rose above him. When it was so far up as to lap over the lower ladder by about five feet, the lower end of the fall was secured to a hook driven into the base of the chimney and placed there for the purpose of belaying it. The ladders were now
lashed together. Going up a little further, a hook was lashed together. Going up a little further, a hook was driven outside and to the right of the upper ladder, about half way up. To this it was lashed. Next, a second hook, placed with its bend vertical, was driven a couple of rungs higher up to the left and inside the ladder, so as to catch under a rung. It was lashed to this. Then climbing up still further, the upper this. Then climbing up still further, the upper
hooks were driven so as to grasp the ladder and cross hooks were driven so as to grasp the ladder and cross
block exactly as below. All this while the tackle was kept belayed. To make the ends lie snug a cross piece of board was secured across between the lower end of one ladder and the one beneath it. The tackle was now cast off, and the operation was repeated with a third ladder. In this way the string of ladders shown in our cut quickly rose until the projecting bell was reached, when a variation in the progress became one, the length of the ladders had been 17, 20, and 22 feet. Twenty-four ladders had reached the end of the plain shaft. Near the top of the upper ladder two holes were drilled in the brickwork. In these expansion bolts were introduced. They consisted of a twelve inch length of gas pipe split for a few inches at the inner end. A piece of iron with expanded or pear shaped end was introduced from the split end, and a nut was fitted near its other end, on which a thread into a ring or eye. When this was put into the hole, into a ring or eye. When this was put into the hole, and the nut screwed up, the pear-shaped end was
drawn into the pipe, opening the split end against the drawn into the pipe, opening the split end against the
sides of the hole and dovetailing it firmly in place. Next, a third hole was drilled as high up as possible, and in the prolongation of the line of the ladders.
A thirty-foot ladder was now drawn up until its end projected two feet above the lower edge of the iron cap Its lower end was lashed to the lower expansion bolts. By the block and fall it was drawn in toward the up per expansion bolt until it bent into a cur
train, and it was then lashed fast there.
A short iron ladder, with hooks upon its upper end was drawn up and placed upon the upper slope of the iron cap, and the work was achieved.
The operations were in charge of the firm of Suith \& The operations were in charge of the firm of Smith \&
Phillips, slate and felt roofers, of Newark, N. J. Mr.

John Phillips did the climbing, being an expert in this work and familiar with it from his experience in Scotland. He is a slight-built man of Scotch birth, and seems to treat his achievement as an ordinary affair. Our drawings give an excellent idea of his appearance. He has done one of the finest pieces of chimney climb ing ever executed, and deserves great credit for bringing it to a termination without accident of any description. In performing his work he relied partly on a hook attached to a piece of rope which was fastened around his waist. The hook he caught in the rungs of the ladders, so as to leave both hands free. In going up and descending, he attached the end of the fall to this hook and had about half his weight taken by his men working the rope from the ground. It took him about ten minutes to make the complete ascent after all the ladders were in place.
An examination of the interior of the chimney, made from a boatswain's chair suspended as shown in our cut, showed that it was perfect, and the thread works were started into operation.
Six hooks of heavy steel had first been fastened over the edge of the cap, and chains attached thereto that hung down from the lower edge of the iron. Four blocks and falls were attached to these, by which a scaffold was hoisted that surrounded the chimney. The other hooks and chains were for the attachment blocks and falls for hoisting brick and mortar with which to execute the repairs. By the use of iron hooks and chains it became possible to go on with the repair of the exterior of the chimney while the factory was in operation. The scaffold, when hoisted to the proper level, was reached by the long string of ladders. As the loose material was removed and replaced by new, the scaffold was raised or lowered as necessary.
The protection of chimneys from lightning has been the subject of recent investigation. In the Scientific american Supplement of the present week, No. 746, will be found an article giving the details of the latest conclusions reached by experts on this subject. Had this chimney been properly protected by rods, it doubt less would have escaped injury.

The Highest Chimney in the United States Damaged by Lightning.

A correspondent writes as follows : At eight o'clock in the morning, March 28, 1890, the many hundreds of employes of the great establishment known as the
Clark Thread Works, opposite Newark, N. J., were startled by a tremendous crash of thunder, and at the same instant beheld a ball of fire, estimated to be two feet in diameter, gliding down one side of the great chimney, throwing into the air a cloud of bricks and debris. Fifteen seconds later came a second ter rific crash, caused by the fall of another stroke of light rific crash, caused by the fall of another stroke of light ning upon the chimney. Here is an exam
ing striking twice almost in the same spot.
The apex of the chimney is covered by a massive cap of iron of 6 tons in weight. The first stroke tore out a few bricks under the bell-shaped top of the chimney, then skipped over portions about twenty feet long and made four ugly-looking, ragged-shaped gashes in the exterior wall of the chimney, two and three bricks deep inward, two feet wide and several feet long, down the north side. Below these a serious crack, perhaps fifty feet long, was made. The second stroke tore out a few bricks on the bell portion

As a precaution it was deemed best to shut dow the mill until the interior wall could be examined, al though it is believed to have sustained no injury. Th chimney was also kept warm to prevent contraction As no means had been provided at the time of erection to reach the top of the chimney in case of accident, the interesting question arose as to how this could be quickly done. After discussing the matter thoroughly, the proprietors accepted the offer of Mr. John Phillips, commonly called in Newark "Steeple Jack," to scale the outside of the chimney, a task which he success fully accomplished in three working days by means of adders, which he placed one above the other, securing them firmly to the chimney as he went up, by means of strong steel hooks driven into the brickwork. Subsequently, by means of ropes and slings let down within the chimney, the interior walls were carefully examined and found to be uninjured.
It seems strange that in this age of electrical enlightnment the owners of this fine chimney should have neglected to protect it by ample conductors which might easily have been connected underground directly to the extensive series of underground irou pres
pertaining to the establishment. These would have afforded excellent grounding for the electrical conduc tors.
The Clark chimney was completed in September, 1888, and is a most graceful structure, as well as a fine must be considered as proved after having thus with stood the assaults of the twin lightning strokes.
The shaft is circular, and rises with a perfectly uniform batter from the bottom to the neck below the cap. Its diameter at the base is 28 feet 6 inches, and at the neck is 14 feet. This gives a batter of 7 feet 3
inches, or 2.85 inches for every ten feet. Its total
height is 335 feet. Its internal diameter is 11 feet, giving one circular flue. At the summit it expands giving one circular flue. At the summit it expands iron coping. The latter weighs six tons, and is couposed of thirty-two sections. Theÿ are bolted together by inside flanges, so as to present a smooth exterior.

The foundation is in concrete, composed of crushed limestone 6 parts, sand 3 parts, and Portland cement 1 part. It is 40 feet square and 5 feet deep, forming a block of 8,000 cubic feet volume, and weighing about one million pounds.

On this the base was started, composed, like the shaft proper, of brick laid in cement mortar. Two qualities of brick were used. The outer portions were of the first quality North River, and the backing up was of good quality New Jersey brick.
Every twenty feet in vertical measurement an iron ring, 4 inches wide and $3 / 4$ to $1 / 2$ inch thick, placed edge wise, was built into the walls, about 8 inches from the outer circle.
As it starts from the base the chimney is double. The outer wall is 5 feet 2 inches in thickness, and inside of this is a second wall 20 inches thick and spaced off about 20 inches from main wall, and, of course, con centric with it. From the interior surface of the main wall eight buttresses are carried, nearly touching this inner or main flue wall, in order to keep it in line should it sag. The interior wall, starting with the thicknes described, is gradually reduced until a height of about 90 feet is reached, when it is diminished to 8 inches. At 165 feet it ceases, and the rest of the chimney is without lining; no fire bricks in the lining.
The total weight of the chimney and foundation is 5,000 tons.

Eugenol or Sodium Silico-Fluoride.
The first statement in regard to the medicinal properties of this salt was made before the British Medical Association, in September, 1887, by Mr. Wm. Thomson, F.B.F.C., F.C.S., of the Royal Institution, Manchester, England, at the conclusion of a series of experiments to determine the disinfectant properties of different substances. By these he found that the compounds of fluorine were the most powerful, and of these the sodium silico-fluoride was probably the most serviceable. Because of these statements work was begun in the clinic room of the Philadelphia Dental College with this medicament during the session of 1888-89, hopin to find in it a substitute for hydrogen peroxide, that being objectionable on account of its changeable character and the occasional pain from its use.
The preparation of sodium silico-fluoride is very simple. A mixture of flour-spar and any siliceous substance, as sand, is heated in a retort with $\mathrm{H}_{2} \mathrm{SO}_{4}$, the resulting gas being distilled over through mercury into water, which holds it in solution, and which is then filtered to remove the free silicon which precipitates The filtered solution is then carefully tested and the acidity neutralized by carbonate of sodium when the sodium silico-fluoride or fluosilicate of sodium precipi tates. Properly prepared, this should give a perfectly neutral reaction to litmus paper.
From five to seven grains are dissolved per ounce of water.
Several experiments were made with a solution of two grains to the fluid ounce, this strength having been found both by experiment and by clinical experience to be one well suited to most purposes. The pulp cham bers and canals of teeth were successfully treated with it, and proved it to be efficient as a disinfectant, even where only very slight care was given to the cana work.
One application, either by syringing or by wiping out with cotton, is sufficient, generally, to neutralize the odor of the most offensive putrescent pulp, a quality not by any means to be despised. Being inodorous, t acts not by substituting a less offensive odor, but by destroying the putrescent material by taking away its hydrogen.
Sodium silico-fluoride is, when properly used, capable of becoming one of the most useful salts in the dental pharmacopœia. As a disinfectant it has been shown to be powerful enough, even in weak solution, to markedly antagonize the germs of putrefaction; as a coagulant, to be non-escharotic; as a deodorant, strong enough to destroy the most penetrating of putrefactive odors; as a stimulant, strong enough in full solutionto cause new tissue to form and yet not act as an irritant to surrounding tissue. It is practically unchangeable, the only change being that noted regarding its solubility, which is not of the slightest practical import-

Such being the case, it would seem to be the best medicament of.its class as yet known, and to be at least xperimor H. E. Vaughan, in Dental Cosmos.

Telegraphers have ways of communicating to each ther unknown to comwon folks. Said one of them : If I am sitting next to an associate in an audience $\left\{\begin{array}{l}\text { room, I never speak. I simply tap out my message on } \\ \text { the hand of my friend." }\end{array}\right.$

Gorrespondence.

A Kite as Life-saving Apparatus.

To the Editor of the Scientific American:
Twenty years ago a Dutch carpenter, named Sluik, and living at Harlingen, Netherlands, invented a sort of kite, intended to serve as means of communication with the shore in case of shipwreck.
This kite, consisting of canvas and stretched out on a couple of laths, is held by a strong rope. At some fathoms distance from the kite is a loop to which a fathoms distance from the kite is a loop to which a
belt is attached and in which a man places himself belt is attached and in which a man places himself
when jumping into the water, and then by veering out the kite the man is carried to the shore.
Some time ago a man was experimented with, and with the best results. On Monday morning, March 10, 1890, while a strong breeze was blowing from the southwest, another experiment was performed in presence of some captains of the mercantile fleet. This time, however, a bag filled with straw and sand, and having the shape of a man, was put in the belt.
Within five minutes this object was carried from the one pier of the "new harbor," at Harlingen, to the other, a distance of 200 meters. The kite held the supposed man very well above the water.
The above was published in different newspapers of this city.
G. Vander Meulen.

Amsterdam (Netherlands).

The Whistling well.

To the Editor of the Scientific American :
I have read Mr. F. S. Oakes' description of the whistling well, in your issue of the 22d ult., and it seems to me that the varying pressure of the atmosphere as indicated by the barometer would account for the phenomena described.
The well diggers may have penetrated an impervious stratum into the bed of gravel, which formed a reservoir for the air, which would rush in or out of the aperture with a change of pressure of the atmosphere, until an equilibrium was established.
I have noticed a similar action in connection with a gas well of very low pressure which supplies my house with natural gas, and of which I am the only user.
I burn this gas in our cook stove and several burners for light, under a pressure of 4 to 8 inches of water, as measured by a gauge attached. With a low barome ter we get a much greater flow, and less with a high barometer.
There is sometimes a difference of over an inch in the reading of the barometer, which would represent a difference in pressure of nearly half a pound to the square inch and would account for the phenomena in square inch
If there is any other explanation of the matter, I If there is any other explanation of the matter,
would like to hear it.
E. R. Carpenter. would like to hear it.
Collingwood, Ontario

Natural Gas in Indiana.
 To the Editor of the Scientific American.

Some time since I noticed an article, purporting to come from your paper, under the caption of "Natural Gas in Indiana.'
In that article you say: "The big wells in the upper portion of the Indiana belt, like the 'Jumbo,' at Fairmount, in Grant County, which furnishes $11,500,000$ feet daily, and which has transformed that town into a manufacturing center with a doubled population, show no appreciable diminution of the flow since they were struck, more than two years ago."
In the main, the above quotation is correct, excepting the flow. "Jumbo" was tested about one year ago by experts from the Pennsylvania gas fields, and by permission the writer was permitted to a place on the derrick. After the test was completed the figures showed a flow of, in round numbers, $14,500,000$ feet every twenty-four hours. As regards the diminution of gas wells, probably the following facts would be of some interest to you, if not now, possibly in the future: The Fairmount Mining Co. drilled the Jumbo well three years ago, and shortly after it was drilled sold it, presumably to a Fort Wayne (Ind.) man. They then went one-half mile west of the Jumbo site and drilled another well, from which the town (including factories, mills, etc.) used up until last fall, when the company repurchased "Jumbo," in order to have plenty of gas for all the factories that might locate here. When the valve was opened, allowing the gas to rush into the mains, it was a self-evident fact that "Jumbo" had lost none of its mighty power. The second well has been regulated by the same weights since it has been in use, save in summer time, when more weights are used to lower the pressure, owing to the removal of extra heaters.

As I write this the Citizens' Mining Co. are drilling a well within hailing distance of the Fairmount Co.'s well No. 2, and could you hear the roar of the gas as it escapes from the casing, with the drill still at work, you would have no concern, were you interested, as to the staying qualities of Indiana's natural gas.

I have been in the gas territory two years, and there have been thirty or more wells drilled in this and im-
mediate townships in that time. Every one of them have proved "gushers," as we call them here, and none have ever failed.
There are a great many things connected with the development of natural gas that have never appeared in print. These papers that pretend to tell what they know about it usually commence and wind up an article by "booming" the town that has it, and the patient seekers after plain facts are never enlightened.
Pardon me for intruding on your time, but reading your article suggested this letter.
E. A. Morgan.

Fairmount, Ind., April 5, 1890.

ECONOMY OF BELTING AND PULLEYS.

The power transmitted by a belt over flat-faced or slightly crowned pulleys can be increased (the nature and condition of the surface in contact remaining the same) by increasing the tension, the arc of contact, the width of surface of contact, or the speed of belt.
Greater tension increases the power transmitted, but mpairs the durability of a belt.
There are numerous rules, and rules combined with tables, for computing the horse power transmitted by a given belt, but all of these assume a certain tension, corresponding to thickness of belt. And one of the most common rules (a single leather belt one inch wide, traveling at a speed of 1,000 feet per minute, will trans mit one horse power) disregards everything but speed as the width of belt is only one factor in determining the area of surface of contact. This rule, however, is the area of surface of contact. This rule, however, is
easy to remember, and is a safe one, in ordinary cases, where the difference between the diameters of the two pulleys connected is not very great.
When one pulley is very much larger in diamete than the other, and the distance between the center of the pulleys small, the arc of contact of small pulley will be much less than that of large one (see Fig. 1), and

- 8

(b)

unless some judgment is used after computing the width of belt by the above rule, the belt may cause trouble by slipping.
To prevent this, millwrights commonly resort to long belts (when horizontal or nearly so, and the lower side can be made the driving side) in order to increase the arc of contact.
The contact will not be increased, however, by a long belt, in case it is impossible to make the lower side the driving side (see Fig. 3).
Remember, now, I am comparing cases where the length of belt depends only upon the discretion of the person making the plans. Of course there are numerous cases where space and convenience determine, to a large degree, the length of belt used.
In the case shown in Fig. 2, it is a good plan to make the diameter of pulleys as large as can be, conveniently, and then calculate width of belt as above. Then de termine the actual area, in square inches, of surface of contact on smaller pulley, and then the area, if the are of contact were 180°. Subtract one from the other and divide this area by the length of actual are of contact
in inches. Add this quotient to width of belt computed by foregoing rule. This will give all the advanages of the long belt.
Now let us take an example: Let the pulley, A, Fig. 1, be 30 inches diameter ; let the pulley, B, Fig. 1, be 6 inches diameter. Let the number of revolutions A be 200 per minute. Let the lower side of belt be he driving side. Now it is desired to connect these two pulleys by a flat, open leather belt to transmit $91 / 2$ orse power According to rule, a belt 6 inches wide will be required. In order to preclude any possibility of slipping, under ordinary circumstances, suppose we attempt to make arc of contact on smaller pulley 180° By making the distance between centers 15 feet we can obtain this, approximately
Let us see what this will cost, according to average

list prices :

Now suppose we place the centers 6 feet apart. The arc of contact on small pulley will then be only about 157°; but we will make pulleys and belting one inch wider. We will then get a little more surface of contact
belt, and the cost according to list prices will be as follows :

One pulley $30 \mathrm{in}$. by 7 in.
One pulley 6 in. by 7 in.
17 ft .7 in. belting at 90 c
Compare the two costs.
When renewal is necessary, it is the belt that has to be renewed. Notice the difference in cost of renewing the two belts. In actual practice, however, net prices should be used in comparing two cases, and then, of course, the actual difference in dollars and cents would not be so great. Another advantage of the short belt is that it will run much more steadily than the long one, especially at high speed and when overcoming a fluctuating resistance.
The above example may not be, in all respects, a fair one, but it is given as an illustration and a basis for thought.
W. E. Parsons, M.E.

332 Clinton St., Brooklyn.

The Sugar Maple.

The sugar maple is one of the finest of the deciduous leaved trees of North America. It is by far the noblest of the American maples, although the silver maple develops occasionally a greater trunk girth, and it is perhaps the noblest of all the maples, although the sycamore maple of Europe in the mountain valleys of the Tyrol is, when at its best, a tree second to none of its class in spread of branches and dignity of port. But the European maple lacks the lightness and brightness of foliage and the gracefulness of inflorescence peculiar to the sugar maple, while it assumes in autumn none of the brilliant colors which our American tree takes on at that season of the year and which make it then the most conspicuous feature of the landscape wherever it abounds.
The elm, to many people, is the characteristic tree of New England, because, perhaps, more than other trees, it was selected by the early settlers to stand sentinel over their homesteads; but the sugar maple is hardly less characteristic of New England, and of all the Northern States, where it is almost everywhere a very common tree, growing on hillsides and in valleys, and of late years so generally planted by the roadside that it is now more often seen than the elm, which is a more fastidious tree than the maple about its nourishment more easily affected by drought, and a far more inviting prey to noxious insects.
The sugar maple economically is one of the most valuable American trees. The wood it produces is valuable American trees. The wood it produces is
heavy and hard, close-grained, tough and strong. It heavy and hard, close-grained, tough and strong. It
has a surface which can be highly polished, so that it is an excellent and much esteemed furniture wood, especially those peculiar forms with twisted and con torted grain known as bird's-eye maple. It is from the wood of this tree that American shoe lasts are made in preference to that of any other, and it is used in the manufacture of hundreds of other objects, great and small, from the keel of a boat to a shoe peg. The New Englander who wants to burn better fuel than that afforded by the sugar maple must use hickory. The Indians knew the value of the sap of this tree, and soon taught Europeans how to convert it into sugar The production of maple sugar was once a far more important industry comparatively than it is now, al though the crop is steadily increasing in bulk and i_{1} money value.
The sugar maple has one characteristic which very few American trees, except some of the oaks, share with it to the same degree, and one which, when American forests are managed with the view of getting rom them all they can be made to produce, will make t one of the trees most generally employed in the op erations of scientific silviculture. It has the capacity to germinate and grow to a considerable size under the nore or less dense shade of other trees. Young sugar maples form sometimes in the northern counties of this State, in northern Michigan and other parts of the country where this tree is common, the larger part of the undergrowth which has sprung up in the deciduous forests. These self-sown plants, in spite of the shade which, of course, checkstheirgrowth, grow with a good deal of vigor and reach a considerable height. The beech in Europe possesses the same power of rrowing for many years under and among other trees and it is for this reason that the beech is one of the most valuable subjects in all European deciduous orest operations looking to natural forest successionthe prime motive of modern scientific forestry. The sugar maple is a far more valuable tree in the material which it produces than the European beech, and American foresters, when we have them, will have good cause for congratulating themselves in the posses sion of a subject so valuable and so easily managed.Garden and Forest.

Kerosene as a therapeutic agent is highly spoken f by Dr. H. A. Gross in the Medical World. It cures almost all pains, from toothache to gout and rheuma tism. It is deodorized in this manner: Take of coal oil, 1 pint ; nitric acid, 1 ounce. Mix. Let stand for a week and pour off the supernatant oil. It does not in the least smell like coal oil.

THE SCIENTIFIC USE OF THE PHONOGRAPH. bY GEO. M. Hopirins

II.-THE PHONOGRAPH AS A ChRONOGRAPH.

In the first article of this series, it was stated that the utility of the phonograph as a scientific instrument was to a great extent due to the perfection of the motor by which the record cylinder is revolved
upper part, and on opposite sides of the spindle, are secured two springs which extend downward. Their lower ends are secured to the flanged sleeve, a. To the iron frame of the governor is secured a brush, b which bears continually on the sleeve, a. The regulat ing device, H, consists of a curved spring supporting the brush, c. Above this brush is arranged a spring arm which is made to bear upon and change the position of the brush, c, by turning the milled nut, d.
When the flange on the sleeve, a, touches the brush, c, the entire current of the battery flows unimpeded through the motor, but when the speed of the governor increases in the slightest degree, the balls are thrown out ward by centrifugal force, thus bowing the springs outwardly and lifting the flanged sleeve, a, from the brush, c, causing the current to flow through a small resistance arranged underneath the base of the governor, thus diminishing the current, consequently preventing any increase of speed in the motor. Usually this sensitive governor keeps up an incessant shifting of the current, giving the armature a succession of little impulses whose aggregate and average effect is to maintain an almost absolute rotation of the governor and phonograph cylinder connected therewith.
With a motor having a governor of this character it is a matter of little consequence whether the battery used
Among the different motors applied to the phonograph, the water motor and the electric motor seem preferable for scientific use.
The electric motor is represented in Fig. 1, removed from the case, a part of the plate by which it is supported being broken away to show the commutator. The field magnet, A, is formed with four polar extremities alternating as to polarity, and the armature consists of a ring, B, of the Pacinotti type, with a laminated core. The armature shaft is journaled at the bottom in a step formed in the yoke of the field magnet, and at the top on a point, C, supported by an arm projecting upward from the base plate of the instrument. The ring and the commutator are divided into twenty-four sections, the connections of which are arranged to produce four poles in the armature. The commutator brushes are held 90° apart by a curved vulcanite bar, D, supported by an adjustable arm.
is constant, provided it has a surplus of power. To utilize the phonograph for the purpose of measuring different intervals of time, it is not only necessary to provide means for controlling the velocity of the record cylinder, but also to have a ready means of standardizing the phonograph, and checking its motion at every revolution, or at least frequently, and means for producing impressions at minute intervals for comparison with the records to be measured.
All these results are secured by the apparatus figured in Figs. 3, 4, and 5. Fig. 3 shows the general arrangement of the phonograph, and Fig. 4 is a plan view, showing the circuit closer of the phonographic cylinder. In the background of Fig. 3 is shown a pendulum beating seconds, and provided at the bottom with a mercurial contact for closing the circuit every time the pendulum swings. The phonograph cylinder is sur rounded by a vulcanite ring, a, at its larger end, which

Fig. 3.-THE PHONOGRAPH AS A CHRONOGRAPH. carries a metalli bar arranged par allel with the axis of $t h e$ cylinder. Two contac springs, b, b^{\prime}, ar ranged to press upon the ring, a, are secured to the phonograph frame, but insu lated therefrom These springs are in parallel circuit with the pendu lum, and in the conductor leading from the pendu lum and the springs to the zinc pole of the battery is inserted a bell, c. A key, d, is included in a branch circuit parallel with the circuits of $t h e$ pendulum and the springs, so that The motor is shunt-wound, and adapted to a two- thecircuit may be closed upon the bell by the pendulum ampere current having a pressure of two volts. It may be operated by a primary or a secondary battery ; the latter is preferred for use in places affording facilities for recharging, although the primary battery furnished with the instrument is easily mounted, and yields sufficient current for about thirty hours' use with one charge.
The armature shaft is provided with a pulley, E , which drives the governor, F, and with a small pulley arranged below the pulley, E , and connected with the pulley, G, on the horizontal phonograph shaft by means of a belt whose direction is changed by two guide pulleys.

The governor is shown on an enlarged scale in Fig 2. It is remarkable both for its simplicity and the ac curacy with which it controls the speed of the motor. On the wooden base is mounted the vertical frame of the governor, in which is journaled a spindle, having near its lower extremity a pulley for receiving the belt from the pulley, E, on the motor shaft. To the
ecircuit may be closed upon the bell by the pendulum der, or the key, and these may be made to act simultaneously or at different times. As the phonograph cylinder revolves ordinarily at the rate of two revolutions per second, thus closing the circuit of the bel twice each second, and as the pendulum closes the cir cuit once each second, it is necessary to cause these two contacts to produce but a single stroke upon the bell If, at every alternate revolution of the phonograph cylinder, the circuit is not closed simultaneously by the prings, b, b^{\prime}, and the pendulum, and the phonograph cylinder falls behind or gains upon the pendulum, it will be indicated by a double stroke of the bell. Per fect synchronism can be secured by regulating the pho nograph governor
Between the bell, c, and the diaphragm cell of the phonograph is suspended a funnel. To allow the arm of the phonograph to move freely, it is connected with the phonograph cell by a flexible tube. In front of the funnel, and at the side of the bell, c, is
arranged a pair of whistles tuned so as to give beats 10 , 50 , or 100 to the second, so that while the bell records the half second, the beats of the whistle will make impressions upon the cylinder representing tenths. fiftieths or hundredths of a second. To prevent a prolonged sound from the bell, it is damped by stretching over it a rubber band.
Personal equation is determined by means of a key which closes the circuit on the bell independently of the phonograph or pendulum, and any of the various known methods of determining personal equation may be adapted to the phonograph. By employing visible signals, the visual perception may be tested. In a

Fig. 2.-PHONOGRAPH GOVERNOR.
similar way, by means of audible signals, the activity of the auditory apparatus may be ascertained. By suitable appliances the sense of touch can also be tested. Other measurements may be made by means of a bell or other equivalent device detached from the phonograph and connected with the apparatus by which the circuit is controlled, as for example the grating used in testing the velocity of a bullet.
It is obvious that for very high speeds, as in the case of a bullet, it is necessary to have two different magnets for making the record, one for the start and the other for the stop, so that if a bell were used there would be two magnets, two armatures, and two bel hammers. It is obvious that most, if not all, of the measurements possible with the ordinary chronograph may be carried on in connection with the phonograph The record can be easily
read so as to interpret the measurement, by cylinder very slowly. In case of very high velociies, it is of course necessary to run the phonoraph as rapidly as possible, and to provide a pair of whistles of higher pitch, so that the

Fig. 4.-CIRCUIT CLOSER. sounds will be percepti
ble when the speed of the phonograph cylinder is reduced for the purpose of reading the record.

How to Fix Magnetic Curves.

In M. Korobow's process a plate of glass is warmed and covered with paraffin in a thin layer. The image is formed with iron filings, in the usual manner, on the cooled paraffin. To fix the curves, the plate of glass is again warmed. Finally, the surface of the paraffin is covered with white paint, so that the curves appear black on a white ground. Very well defined figures may thus be obtained. A similar and simpler process consists in covering one surface of stiff white paper with a layer of paraffin, by warming, spreading the fil ngs over the cooled surface, and fixing them with heat

Fig. 5. - WHISTLES FOR PRODUCING BEATS

AN IMPROVED MITERING MACHINE.

The mitering machine shown in the accompanying illustration has been patented by Mr. Williain Murphy, of Union Street, St. John, New Brunswick, Canada. The frame has vertical guideways in which move up and down a rear gauge and the carriage for the knife. This carriage consists of a horizontal part and a vertical part, the latter sliding up and down in supplemental guides. The vertical part of the carriage has two forwardly converging walls of V-shaped cross section to which the knife is attached, its lower edge being adapted to give a shearing cut when it descends. Be hind and below the knife a V -shaped gauge is supported on the carriage, the gauge being movable horizontally toward or from the knife, and being adjustable by means of a horizontal screw-threaded shaft having its bearing in the upright part of the carriage, and having a pinion which engages a oothed hand wheel. A connecting bar ex tends from a bifurcated link from the carriage to the treadle, which is pivoted to a transverse rod rigid with the frame, and when the free forward end of the lever is depressed, the carriage, hand wheel, shaft, gauge, and knife are drawn down. They are restored to their former position by a weight on the rear end of a lever attached to the connecting rod. On the feed table in front of the knife is a gauge having a fixed middle part and hinged wings, all parts of the gauge being adjustable as desired toward and from the knife.

FLUORINE.

We have already given an account of some experiments of Mr. Moissan that permitted experiments

MURPHY'S MITERING MACHINE.
ence between these figures well shows that pure fluorine has a normal density
Mr. Moissan next determined the color of the gas. For this he used a platinum tube closed by transparent plates of fluorspar. Two platinum ajutages allowed the gas to enter and make its exit. When the tube was well filled with fluorine, the gas, on escaping through one of the ajutages, ignited crystallized silicium at the ordinary temperature.
Observing thegas, then, through the plates of fluorspar, it was found that it had a greenish-yellow color, and that the latter was paler than that of chlorine seen in the same volume. The color, moreover, differs from that of chlorine in inclining more to yellow.
The spectrum of fluorine also was studied in detail. Upon this subject there had been nothing published except a work by Mr. Salet, who had compared the spectra of chloride and fluoride of silicium. Mr. Moissan caused a very strong induction spark to pass between gold or platinum rods in a small apparatus filled with fluorine. It is unnecessary to add that this small apparatus was itself of platinum, and that the spark could be seen through the transparent fluorspar.
On comparing the results obtained by this new method with those furnished by hydrofluoric acid, fluoride of silicium, trifluoride of phosphorus, and fluoride of carbon, Mr. Moissan has been enabled to demonstrate the existence of thirteen new lines, placed in the red part of the spectrum. These lines are found for the most part in the red por tion comprised between the second line of potassium and the line of lithium, that is to say, in a part where no simple body has him to isolate fluorine. In these experiments he suc- and afterward when full of fluorine. Knowing its vol- hitherto given lines. Finally, Mr. Moissan adds that ceeded in splitting up hydrofluoric acid into hydrogen ume, it is easy to determine the density of the fluorine with hydrofluoric acid he has obtained several bands and fluorine. Having again taken up this stody, he therefrom. Mr. Moissan determined the figure $1 \cdot 26$, in the yellow and the violet; but the position of these has been enabled to determine the constant physical while the theoretical density is 1.31 . The slight differ- bands, which are not very well defined and are very
principles of this new sim
ple gaseous matter.
Mr. Moissan, in the first place, studied the question as to under what condi tions platinum is attacked by fluorine gas. He found that at the ordinary temperature it was possible to preserve fluorine indefi nitely in platinum appara tus without any fear of the metal being attacked. Moreover, he demonstrates that at a temperature of 500° or 600° there forms a bifluoride of platinum analogous to the already known chloride of the same metal. This new com pound is important, since t possesses the curious property of splitting up nto fluorine and platinum through heat. It is likely that when it becomes possible to prepare fluoride of platinum by an indirect way (in starting from hydrofluoric acid, for exam ple), we shall have a chem ical process for obtaining fluorine in large quantity.
After his preliminary ex periments, Mr. Moissan took the density of fluor ine. In order to obtain this gas in abundance, he modified his firstapparatus by giving a much greater capacity (Fig. 2). Beyond the electrolyzing tube h arranged a small platinum spiral, designed to con dense the vapors of hydro fluoric acid carried along and, finally, two platinum tubes filled with fluoride of sodium. This compound in fact, retains the minut est traces of hydrofluoric acid.
The pure gas thus pre pared is led into the density bottle by means o small flexible platinum tubes. This bottle is firs weighed when full of air

Fig. 1.-mr. moissan preparing fluorine gas in his laboratory at the school of pharmacy.

Fig. 2.-APPARATUS FOR PREPARING FLUORINE.
wide, could not be exactly determined.
Comparing these re searches with those undertaken by Mr. Meslans upon the fluorate ethers of the ethyl series, it will be seen that fluorine is clearly placed at the head of the chlorine family. It is col ored the same as all the compounds of this family but not so deeply as chlor ine. Its density is norma and the fluorate ether have a boiling point less by about 50° than the cor responding chlorate ethers
What renders these re searches very curious is no only the interest attached to the isolation of the new simple matter that h as been obstinately sought for for a century, but the fac that this gas is the mos active matter that chemists possess. In fact, it ig nites crystallized silicium which boiling nitric acid does not attack, and which pure oxygen burns with difficulty at a high temperature; and, while chlor ine is incapable of directly combining with carbon fluorine is capable of unit ing with it and forming a gaseous body-fluoride of earbon, which Mr. Moissan will soon describe
Another experiment re cently described furthe demonstrates the chemica activity of fluorine. When into the tube filled with fluorine that served to de termine the color of thi gas a drop of water is al lowed to fall, a decomposi tion of the water occur and hydrofluoric acid forms, with a disengage ment of ozone-the latte being of the characteris tic blue tint that Messrs Hautefeuille and Chapuis have demonstrated to be long to oxygen very rich
in ozone. This is the sole chemical reaction that furoncentrated ozone
Finally, we may add that fluorine and hydrogen combine when cold and in darkness. This is the first example of two simple gaseous matters directly uniting without the intervention of a foreign energy. In fact, chlorine and hydrogen require light, hydrogen and oxygen require an electric spark or a flame, and hydrogen and fluorine combine directly
Moreover, this chemical activity has been very clearly demonstrated by Messrs. Berthelot and Moissan, who have determined the heat of combination of hydrogen and fluorine to be 37.6 calories, that is to say, much greater than that of the other hydracids formed by iodine, bromine, and chlorine. Upon the whole, fluorine is the most active element known up to the present, and on account of this very property, it is certain that it will be called upon to furnish chemists with the most interesting reactions.-La Nature.

IMPROVED MEANS OF DISTRIBUTING POWER. A means of conveying steam or compressed air along a line of road, to be delivered to a motor propelled thereon, is illustrated herewith, and forms the subject of a patent issued to Mr. Victor H. Tomlinson, of Hudson, Col. Fig. 3 is a central longitudinal sectional view of a section of the apparatus, Fig. 2 being a cross sectional view. In the upper face of the pipe or tube to which the motive agent is delivered from a central station are castings with undercut grooves, the cast ings being arranged end to end throughout the length of the tube, and having ports registering with ports in the tube. Within the undercut groove of the casting is a receiver
with grooves to receive any proper packing, the receiver having a flexible pipe leading to the steam chest of the motor or a reservoir carried thereby. The receiver is held to the motor by upwardly extending standards, and as the receiver is forced for ward by the onward movemen of the motor, a forward valve is opened as another at the rear is
closed. The ports in the pipe at the side of the track are controlled by valves engaged by spring-pressed levers, and a pipe leads to the steam chest of the motor, or the reservoir carried thereby, the distance between the ports being about equal to the receiver recess. The way to this recess from the pipe at the side of the track is opened by a lever as the motor woves for ward, one of the valves being opened as another at the rear is closed. The economy of this system of supplying power will be readily appreciated when it is considered that steam can be generated or air compressed at a central station at a rate usually not more than two-fifths of the cost of generating such power on an independent traveling motor. The cleanliness of such a system, and the absence of noise, would also form striking advantages in favor of its adoption for the propelling of street cars, while its cost need not necessarily be higher than that of cable traction or electricity

Interesting Lecture on Japanese Mirrors.
On the evening of April 10th, Prof. Thomas C. Mendenhall, President of the American Association for the Advancement of Science, and Superintendent of the United States Coast and Geodetic Survey, delivered a very interesting lecture on Japanese mirrors, in Brooklyn, N. Y., before a large and appreciative audience, composed mainly of members of the Brooklyn Institute.
Prof. Mendenhall began his lecture by giving the history of mirrors, especially those of Japanese manufacture. He related in brief the myth in which the origin of the Japanese mirror was described, and which also explained how the mirror became an object of worship in Japan.

The sun goddess, who in ancient times lived in Ja pan, had control of various matters ; among others that of sunlight. This goddess had frequent difficulties with her brother, and on one occasion became so enraged that she retired into a cave, and closed the mouth of the cave with a stone; in consequence of this, darkness reigned in Japan. The citizens of the coun try made every effort to induce the goddess to with draw from her hiding place, but to no effect, until a genius of that country conceived the idea.of making a mirror. Heat once attempted the task, and in a short time produced a bronze mirror with a highly polished surface. Thereupon the citizens formed a plan for inducing the fair goddess to leaveher place of seclusion.

tOMLINSON'S APPARATUS FOR SUPPLYING COMPRESSED AIR TO LOCOMOTIVES.

the mirror, undiscoverable by direct inspection. In the manufacture of the mirror, the scraper and burnisher produced the effect of stretching the surface of the thinner portions of the metal, so as to reuder them very slightly convex; while the thicker portions re tained their plane surface, the convex portions of the mirror dispersed the light, while the plane surfaces reflected the light in parallel beams. The Japanese mirrors having magical qualities are always found to be thin.
Professor Mendenhall projected by the aid of an electric light a number of reflections of mirrors having different figures upon their back surfaces. In many of the images on the screen figures like those on the back of the mirrors appeared sharp and clear.
While professor of physics in the Imperial University of Japan, at Tokio, Prof. Mendenhall had every op portunity for studying the manufacture of these curious objects. He succeeded in having a magic mirror made o order, notwithstanding the assurances of the manu facturer that it was impossible. This mirror was pro jected on the screen. The figure consisted of a serie of checks. To show how a slight distortion on the sur face produced a material change in the form of the figace produced a material change in the form of the fig ure on the screen, Prof. Mendenhall heated the center
of this mirror by means of a flame. The distortion of of this mirror by means of a flame. The distortion of
the lines and the enlargement of the central squares of the figure upon the screen showed clearly what had taken place in the mirror. Its central portion had been expanded while bound by its cooler periphery his causing the central portion this causing the central portion to bulge out and pro duce the effect described. He produced similar effects by mere ly touching the back of the mir ror with a pencil. To more clear ly illustrate the effects of bulging in the center of the mirror, piece of plane glass mirror, hav ing upon its surface two black parallel lines, was placed in the beam of the electric light. The bending of the mirror so as to render it very slightly convex caused the lines to separate upon the screen and the light to be perceptibly lessened, while the bending of the mirror in the op posite direction exhibited a con centration of the light and the approach of the black lines to ward each other.
Prof. Mendenhall said that the manufacture of bronze mirror was retained in the families of the mirror makers for genera tions. The magic mirror having the checks was made to order by a member of the seventh genera tion of mirror makers.
Although glass mirrors are being largely introduced into Japan, they have not displaced the bronze mirrors, nor can they do so, so long as the beliefs and practices of the Japanese remain unchanged.
At the close of his lectur Professor Mendenhall mentioned smooth and nearly plane surface. The next operation the fact that the magic mirror involved the prin was that of polishing, which was accomplished by means of ceriain polishing powders. The final finish was given to the mirror by applying to it a very slight coating of mercury by means of a piece of charcoal and a vegetable acid. The fruit acid was prepared from the juice of the plum. It insured a perfect union of It was disoved many years the
it was would reflect trou their polished mirrors would reflect from their polished surface an
image corresponding to the ornamentation on the back of the mirror, while this image could not be discerned upon the reflecting face of the mirrror. These mirrors were known as "magic mirrors." Prof. Mendenhal said that in selecting a magic mirror it was necessary to reflect the sunlight upon a surface from the mirror and he early discovered that it made a remarkable dif ference in the price of a mirror if it was capable of pro ducing an image upon a wall Hetherefore conceived of another plan of selecting magic mirrors, which con sisted in viewing the reflection of a pair of parallel lines, such as two edges of a moulding. If these lines emained parallel when reflected from every portion of the mirror, it had no magic properties; but if, on the other hand, the lines were seen to diverge in different places with the mirror in certain positions, it was laid aside for further examination, and it was generally found to be a true magic mirror.
The explanation of this curious effect has been at tempted by many physicists, some of whom thought the effect was due to the difference in density of the bronze, but a French physicist and our own Professo Charles A. Young, the well known astronomer, discov ered simultaneously the true cause of the magic effects.
ciple which is now being applied in the invention po pularly known as "seeing by electricity." At one end of the line is placed a mirror made up of series of minut strips of steel behind which is arranged a correspond ng series of small electro-magnets. At a distant tation the line was connected with an instrumen ormed of a multitude of selenium cells connected elec rically with the magnets behind the steel mirrors Selenium has the property of having its resistanc changed by the action of light. A strongly illuminated object placed in front of the selenium receiver change the resistance of the instrument at the points of illumin ation, so that currents of different strength are trans mitted to the magnets of the receiving instrument. These magnets bend the steel mirror so as to produce temporary effects similar to those produced perma nently in the magic mirrors. A light reflected from the teel mirror shows an image representing with more or less accuracy the object in front of the selenium trans mitter.

A Steel Flume.
The flume of the Spokane Hydraulic Mining Com pany will be an immense steel pipe four and one-hal miles long, carrying water from the old California ditch, at the head of Pritchard Creek, in the Cour d'Alene nining district, above Murray, to the Old Wash gold diggings. When the flume is completed, it will be one f the greatest feats of hydraulic mining engineerin ver attempted. The flume will be made of heavy steel pipe, 22 inches in diameter. It will give a tremendous pressure, and will reopen some of the old placer mines which are the richest in the Cosur d'Alene.

RECENTLY PATENTED INVENTIONS. Engineering
Steam Actuated Valve.-Benjamin R. Patten, Nova Scotia, Canada. This is a valve for steam engines and steam pumps in which a piston valve is held to travel in the steam chest and has two pistons connected with each other by arms, of which which is held a flat auxiliary slide valve, a valve stem to which cylindiary val
from the chiston.
Guard Rail for Locomotives. Joseph A. Woodmansee, New Vienna, Ohio. This is a rail held to slide in suitably arranged keepers on the
sides of the tender in such a manner that it can be quickly drawn forward across the entrance opening be tween the cab and tender, to prevent the freman o
gineer falling off the locomotive while in motion.

Railway Appliances.

Car.-Orlando Harriman, New York City. This car has upper end compartments extending across the car, and upper side galleries extending be
tween them, with other novel features, to increase the sleeping and seating capacity, and so locate the smoking room that smoke will not penetrate the body of the car, while passengers will be provided with a better view from the car than can be had with the ordinary
construction construction
Safety Car.-Jacob W. King, Bowl ing Green, Mo. This is a car with a bullet-proof com-
partment filling one end, the compartment having a partmen front with vertical flutes furnished with knife edges or cutters to receive and cut the bullets, while the compartment
inmate may fire.
Ventilator for Cars. - Orlando Harriman, New York City. This invention covers the construction of a longitudinal opening in the roof of
the car, with a trough-like structure having ventilators on Its sides depending from the roof below the opening making a material increase in the head room of the car, tained by the old form of ventilating dome

Mechanical.

Pulley. - Francis M. Powell, Frederick, South Dakota. The rim of this pulley has
parallel radially sloted flanyes a series of independ parallel radially slotted flanges, a series of independ-
ent blocks forming an expansible working face, while disks on the hub inclose the outers side of the slotted
Alanges and have syiral grooves engaging the ends of the langes and have spiral. grooves engaging the ends of the
blocks, the pulley being easily changed while in motion to increase or decrease its diameter.
Riveting Machine. - Reinhold a Carl, Hearne, Texas. This is a machine for attaching metal rivets to leather or other materials to fasten them
together, the invention covering various novel detail together, the invention covering various novel details fat head, a round stem, and a sharp point.
Combination Gauge. - William B. 1.tute, New York City. This is a wood worker's gauge
in which a tubular longitudinally slotted stock has in which a tubular longitudinally sloted stock has
fixed and adjustable marking points and an adjustable fence on the stock, combined with an external slide having an internal and an external point at its oute
 half-round moulding, and a gauge to go around the in
side of a circle from five eighths of an minch upward.

miscellaneous.

Suspenders. - Adam Schieffer, New York City. This invention is desigued to provide sus penders of a simple and durable construction, wherein
the elastic portion will not be injured by coutact with the body of the wearer.
Musical Toy. - Reinhold Handel, Leipsic, Saxony, Germany. This is a deviee wherein,
apon the rotation of a series of wings, as the toy is apon the rotation of a series of wings, as the toy
moved about in the air, a striking arrangement con nected with the wings is made to successively raise and release a series of metal reeds and cause a melody to be
played.
Bagatelle Board. - Jasper H. Singer, New York City. This is an inclined board
having a revoluble pointer, with means for shooting having a revoluble pointer, with means for shooting
the ball about the board, the pointer being arranged betwenthe mouth of a side alley and the foot pockets, whereby the aliey ball during its gravitation down the
face of the board toward the foot pockets may collide with the pointer, causing it to point to a designated with the pointer,
number or space.
Trap.-Henry B. Eareckson, New York City. This is a trap for sinks, laundry tubs, bath tubs,
etc., the inventiou covering a novel construction and combination of parts designed to prevent any foul air and gas from entering the building, while the working
of the valves can at all times be conveniently observed of the valves can at all times
through glassocovered caps.
Uterine Repositor. - Murdoch Chisholm, Halifax, Nova Scotia, Canada. This instru-
ment is formed of two pivotally connected levers, one ment is formed of two pivotally connected levers, one
having a slot near its free end, while a sound is pivoted to the end of one of the levers and adapted to be swung by the other lever.
Blasting Cartridge.-Albert Palle, Paris, France. This cartridge is made with a paper shell containing a slow explosive and an inner metallic
shell of tin or lead embedded in the outer explosive, and containing glycerine or other matter, not explosive by itself, but which will unite with the slow-burning ex plosive when the latter is ignited and form a rapid ex-

Pnevatitic Telephone.- Joseph G. indicator having a bell attachment capable of elgnaling
for a length of time to one quite remote, and means stopped, the sound being confined to the tubes connect ing the mouth piece to the indicator and receiver, the clock work ringing the alarm being automatically
Fan Blower. - Martin Williams, St Johnsville, N. Y. This invention covers a novel con struction of the fan casing and the radial wings or blades of the fan proper, to provide a copious supply of
air at one or more points between the ends of the blower shaft, to re-enforce the usual supply afforded a
Adding Machine. - James F. Mays, sirmingham, Ala. This is an improvement on that in a circle from 1 to 100 , each number having a hole to receive a pencil point, the disk having ong a hole t a spiral groove which, as the disk is rotated by succes sive additions, causes an indicator traveling in the groove to move up and register on a scale the amount dded.
Paddle Wheel. - James Cobban, Brooklyn, N. Y. This wheel has buckets between
which plungers are mounted, with mechanisin to force he plungers outward, so that their peripheral faces will be in alignment with the general peripheral face o beneath the surface of the water either at the side the stern of a vessel.
Machine for Packing Shingles. Herman L. Fehlberg, La Crosse, Wis. This is an auto as they are fed in after being jointed, the machine beln easy to manipulate and the invention covering variou novel features and combinations of parts.
Brake for Vehicles. - Winfield S Jobes, West Leisenring, Pa. This invention covers a sides or one end of a car or wagon, a bail-shaped leve being pivoted by the ends of its limbs to the sides of the body, in combination with a rock shaft having two rank arms to which inclined shoe-supporting arms ar the bail-shaped lever
Tire Adjuster. - George Surratt Gainesville, Texas. Combined with terminal tir right and left screw stem, a turning block of the same cross section as the rim of the wheel, connected to the screw stem, to slide thereon, for locking the turning
block to the terminal lugs, the device tightening th ire when it becomes too loose and expanding it whe becomes too tight.
Filter.--Ferdinand Lasear, New York City. This invention provides an apparatus from which the filtered water will pass off with the sam
mount of air as when admitted, and has au accumulat ing chamber in which the gross impurities will be left, the water passing therefrom to the main filtering mass the construction being designed to furnish a sparklin potable water of the highest purity.
Valve. - Charles H. Shepherd, New York City. Combined with a valve having a convex nnular ledge extending toward the face of the valve without touching it, the valve being especially designed for use in connection with the outlet of a house pipe

Automatic Plug Feeder. - James
Automatic Plug Feeder. - Jame which liquid is permitted to rise and fall, and an elewhich liquid is permitted to rise and fall, and an ele-
vated tank, is a cock having a rotating plug fitted in a pipe leading into the tank, a float lever being applied to
the cock to turn the plug as the float lever descends, the invention being an improvement on a former patented nvention of the same inventor, for use particularly i eeding chemical disinfectants to sewage vats.
Stove Caster. - William H. Vance, Little Britain, N. Y. This caster has a bracket frame formed from elastic metal and with depending perforated flanges, a pintle bolt passing through the
flanges and having a nut, the boit being adapted to compress the flanges and clamp the caster wheel, whereby the stove may be firmly held in the place where it is located.
Liquid Atomizer. - Lucien P. Las nolles and Jean E. Frechon, Nerac, France. This is liquid chamber and other parts of an atomizer es pecially designed for use in atomizing liquids for de

Coffee Pot. - Harry B. Cornish, Jackson, Tenn. This pot has an open-ended tapering
infusion vessel, with an upwardly arched frame in its lower end, with a tapering clamping ring to clamp the straining cloth around the arched frame, the strainer
supporting the ground coffee so that the water will percolate through it.
Producing Tucks on Fabrics. Louis Loeb, Jr., Rorschach, Switzerland. This invention covers an improved method of producing tacks
straight, scalloped, angular, circular or other form, without requiring the main fabric to be be made longer or wider than the fiuished tucked plece, the tucks being washing the fabric.
Mucilage Botylf.-William R. Cole, Pottsville, Pa. This bottle has a cup stopper with a
slotted lip or cap for the brush, the whole device forming a cleanly, convenient and economical receptacle for Game Board.-Gideon Bixler, Wooster, Ohio. This is a box-like structure having its bottom inclined from the ceuter in opposite directions, and provided with a shoulder or stop at the junction of the
inclines, the board to be used with two sets of balls of inclines, the board to be used with
different sizes, the object, being to cause all of oue set
to occupy the space at one side of the ridge and these of the other set at the opposite side.

Toy. - James D. Fahnestock, Cincin nati, Ohio. This is a board with side flanges an within which are other pookets, the board to be used in connection with a series of balls and an inclosing casing the pockets being numbered, and the player getting the balls in the pockets adding up the highest total winnin he game.
Hair Pin. - Michael Cashin, Rifton Glen, N. Y. This is a tubular pin having a wire rod ar head, by come thod having a spirally coiled globuthe rod will engage the hair and retain the pin in place Obstetrical Forceps. - John N Reimers, Calumet, Iowa. These forceps have their eeth projected from theinner side of the ring surround ing the opening.
Obstetrical Forceps. - James R. Brown, Springfield, Mass. These forceps have two nembers pivotally connected between their ends and point the rear ends of the members having hand pieces extending downwardly to the longitudinal plane of the blade.

NEW BOOKS AND PUBLICATIONS.
Practical Notes for Electrical
Students. Vol. 1. By A. A. Ken nelly and H. D. Wilkinson. London lishing Company, Limited. 1890 Pp. xii, 308.
This work is an eminently practical one, and, althoug it is only the first volume, yet, as far as it goes, it re-
resents a complete treatise. It aims at the simplification of the subject of electrical measurements, and by the use of diagrams and illustrations, with as little ma-
thematics as possible, it fairly attains its ends. diamatics as possible, it fairly attains its ends. The
diagrams of the lines of force, and the illustrations in general, appear fresh and new, and little is to be recog. nized in it of the old type of illustration to whose use the writers of text books are so addicted. The work is well worthy of the perusal of all interested in the sub-
ject.
G. Brinton. Philadelphia: Porter \&

Coates. Pp. 489. Cloth. Price $\$ 3$.
Ethnology and Archaeology, Mythology and Folls
Lore, Graphic Systems and Literature, Linguistics, ar he subjects of the very interesting monographs contained in the present work. It is to be highly recomand anthropology, and its very elegant printing and popular style make it a work which will be widely a, preciated. The author has been very successful in
avoiding anything like a dry style in the treatment of his subject, and the interest is thoroughly maintained hroughout.
Practical Bhacksmithing. Compiled
and edited by M. T. Richardson. Vol. and edited by M. T. Richardson. Vol
II. New York: M. T. Richardson publisher. 1889. Pp. 262. Price $\$ 1$.
The first volume of "Practical Blacksmithing" haveng exhausted the generalities of the subject, the secon olume is devoted more especially to the consideration
of the implements. The tools used in the shop are, herefore, given a very full and exhastive treatment. Besides this, all other classes of instruments are illustrated, and the shapes of points of cutting tools are considered, all classes of cutting tools being included. A good deal of practical information, such as the method
of mounting a grindstone, is to be found in its pages of mounting a grindstone, is to be found in its pages.
The third volume, which is yet to appear, is to be deThe third volume, which is yet to appear,
Gibb's Route and Reference Book of THE UNITED STA'TES AND CANADA.
New York: Bibb Bros. \& Moran. 1890. Pp. 251. Price $\$ 5$

The shortest rontes from place to place are marked in the present volume upon a large series of maps. Tables gaged in the different classes of trades in the principal cities, while a list of hotels in the largest cities, with their rates for board, forms another series of tables. The book is of very great use for all who have to travel, but it is compiled especially for the use of commercial

Diseases ow Plants. By H. Marshall Ward. London : Society for PromotNew York. Pp. 296. Price \$1.
A popular account of about twelve prominent disease affecting plants forms the basis of this treatise. They are treated very interestingly from the biological stand point, and numerous illustrations make their presenta lished as a contribution to the "Romance of Science, series, and in spite of tis comparatively dry title it really does fall under the category claimed. It is indexed so that this essentiul feature is supplied to the reader
Electric Light Installations and THE MANAGFMENT OF ACCUMULA-
TORS. By Sir David Salomons.
London: Whittaker \& London : Whittaker \& Co. New York:
D. Van Nostrand Company. 1890 .
Pp. 334 . Price $\$ 1.50$.
Mr. Salomons‘ hand book is too well known for this new edition to require any notice from us. It is revised
and enlarged and presents an eminently practical view and enlarged and presents an eminently practical view
of its subject. Practical Trpewriting by the AllInger Method, Which lieads to Operation BY Touch. By Bates
Torrey. New York: Fowler \& Wells Co. 1889. Pp. 64. Price 50 cents. The present book is by a disciple of the all-finger method of typewriting. It 18 prepared especially as a
guide for the operator of the Kemington machine, but,

As a systematic study of the science of typewriting it
will have a very wide interest. A feature of special in. terest are some diagrams for the headings of documents and for ornamental effects to be produced on typeand for
writers.
The Locomotive. Hartford, Conn. This is a bound volume of the journal published by the Hartford Steam Boiler Inspection and Insurance index thereto. A number of illustrations and the de scriptions of boiler explosions make it of value to e Traite Theorique et Practique D'Electrochime. B y Donat o
Tommasi. Paris: E. Bernard \& Co.
$1889 . \quad$ Pp. 240 .
The much neglected subject of electro-chemistry in all its details is treated of by the author. This is the frst part only of the work, which is to be completed in
three parts. The subject 18 excellently treated, and its fullness gives the work standard value for the scienific library. The thoroughness of the work is evident on the most cursory inspection, and too much cannot be said in commendation of its printing and general ap-

AlGEbRA. AN ELEMENTARY TEXT Book for the Higher Classes of SECONDARY SChools AND FOR COLLeges. By G. Chrystal. Edinburgh: Adam and Charles Black. 1886 and
1889. Volumes I. and II. Pp. xx, 542 and xxii, 588.
An algebra such as the present one is so complete, and all its parts are worked out in such great detail, that it author is the best. proof of its value. As it stands, it may be considered one of the leading algebras of the day,
Jenkins Bros., 71 John Street, New York, have issued a new and attractive catalogue and "Jenkin"" valves, gauge cocks, the well known them. A large variety of valves and other of their $\mathrm{p}^{\mathrm{m},}$, ducts are illustrated in the catalogue.

Any of the above books may be purchased through :shed. Send for new book catalogue just pub-
Address Munn \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION.

APRIL NUMBER. - (No. 54.)

TABLE OF CONTENTS

1. Elegant plate in colors of a residence on Lous \& Co. Cost about $\$ 6,500$. Perspective elevation, floor plans, details, etc.
Colored plates, details, and suggestive floor plans $\$ 7,000$.
Illustrations of an attractive cottage at Excelsior
Springs, Mo, erected at a cost of $\$ 1,300$ comSpring
plete.
A residence at Park Hill, South Yonkers, N. Y..
erected at a cost of $\$ 8,500$. Perspective and floor erected
plans.
Perspective elevation and floor plans of a residence recently erected at Belle Haven, Conn., at a cost of $\$ 11.000$. McKim, Mead \& White, New York
Engraving of a Binghamton, N. Y., cottage. Cosi
$\$ 4,950$ complete. Floor plans and perspective. $\$ 4,950$ complete. Floor plans a and perspective.
Elevation and floor plans of a brick cottage. Cost about $\$ 5,000$.
A double dwelling costing $\$ 5,200$, built at Port chester, N. Y. Perspective and plans.
Park, South Yonkers water tower at Hill View Park, South Yonkers, N. Y.
A cottage at Mountain Station, N. J., from designs by F. W. Beall, architect, New York. Cost com
plete $\$ 8,000$. Plans and perspective. 11. Two carriage houses. Cost about $\$ 1,500$.
2. Two pages of illustrations showing in general view and detail the wreck of the tower of the Church of the Covenant, at Washirgton, D. C., whic
fell when nearly completed on August $22,1888$.
3. A Crescent Place, South Yonkers, N. Y.,residence,
recently erected at a cost of $\boldsymbol{\$ 7}, 500$. Plans and perspective view.
4. Miscellaneous Contents: Concrete arches.-Dwarf cannas.-Water works for small towns. - Soft
stone.-Brick pavements.-Fall of the tower of the Church of the Covenant, Washington, D. C. -Improved duplex plumb and level, llustrated. etc.,illustrated.-Wood's pedal valve for radiators, illustrated.-An improved turnbuckle, illustrated. disk fans, etc.-Mortising and Tenoning machine illustrated.
The Scientific American Architects and Builders Edition is issued monthly. \$2.50 a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practi two hundred ordinary book pages; forming, practi-
cally, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with ine engravings, illustrating the most interesting
examples of Modern Architectural Construction and axamples of subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laraest Circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. Publishers,
301 Broadwas, Now York.

ƏBusiness and Personal.
The charge for Insertion under thes head is one Dollar a line jor each insertion under about tight head words to on line. Advertisements must be received at publication office
as early as Thurrsayy morning to appear in next issue.

Veneer machines, with latest improvements. Farrel colors. J. P. Kid glove gloss patent for sale. Se
O., box 415, Inersoll, Ontario, Cana da.
For Sale-Patent for feed bag for horses. Issued four months. Best thing out. Price low. C. R. Monfort, 212
St. Nicholas Ave., New York City. Wanted-To buy the right to manufacture some article of merit, of recent invention, and covered by U. s .
patents. Address lock box 680 , Duluth. Minn The best book for electricins ${ }^{2}$ thein The best book for electricians and beginners in elec.
tricity is ". Experimental Science." by Geo. M. Hopkins. tricity is. .Experimental Science," by Geo. M. Hopkins.
By mail, 44 ; Munn $\&$ Co., publishers, 361 Broadway, N. Y.
Wanted-A thoroughly competent designer of wood
working machinery by a well estabished house.

New York, N. Y.
Best Ice end Refrigerating Machines made by David
Boyle, Chicago, ill. 140 machines in satisfactory use. Boyle, Chicago. IIl. 140 machines in satisfactory use. Guild \& Garrison, Brooklyn, N. Y., manufacture
steam pumps, vacuum pumps, vacuum apparatus, atr steam pumps, vacuum pumps, vacuum a
pumps, acid blowers, fliter press pumps, ete.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma-
chinerg, and containing reports of tests, on application Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and CanalSts., New York. Billings' Double-acting Ratchet Drills. Drop Forgings
Bronze Forgings. Billings \& Spencer Co., Hartford Bronze
Conn.
The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Expanders. R. Dudgeon, 24 Columbia St., New York.
Friction Clutch Pulleys. The D. Frisbie Co., N.Y.city Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co... Rochester, N.Y. See illus. adv., p. 173 . Blake's improved belt studs are the best fastening for
leather and rubber belts. Rexistered trademark and picture on every box. None other genuine. Greene, Twee Acme engine, 1 to 5 N. Y. City
A. v. next issue Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway

HINTS TO CORRESPONDENTS.

(2096) H. H. L. writes : 1. Can I make a porous cup of plaster of Paris? A. As a temporary
affair you can. It is well to use drilling or heavy muslin as a basis for the sides. 2. How is the porous
cup of a Leclanche battery fixed inside? A. It contains cup of a Leclanche battery fixed inside? A. It contains
a plate of carbon surrounded by a mixture of graphite a plate of carbon surrounded by a mixture of graphite
and pyrolusite sifted free from dust. 3. Will a bi-
chromate of potash battery work, if the chromate of potass battery work, if the zinc is not amal
gamated? A. Very porry and wastefully. 4. What size
wire showd be used for an electric bell magnet? wire ehonla be used for an electric bell magnet? A.
No. 22 to 24 are good sizes. (2097) J. S. C. asks : 1. Will you please tell me in your query column the exact weight and
value of one cubicic inch of pure gold? A. 0.6965 to 0 -7003 lb. avds. or 10.16 to 10.21 troy oz. It is worth
$\$ 20.671$ Itom an oz. 2 . Also, what is a simple method to prevent the sheets of paper, as they are thrown from a
press. from clinging to aech other by electricity, which makes it difitcult to "jog" or straighten them? A.
No effectual way is known. Dampness of the air or No efiectual way is known. Dampness of the air or
papertens to prevent it. 3. Can the electricity generated
by a heavy moving belt be used to illuminate an incan. by a heavy moving belt be used to illuminate an incan-
descent lamp? A. No.
(2098) A. M. K. asks for (1) the process of obtaning stereotypes from printed pages without the
use of type. A. It is done by a photographic process. such as described in our Supplement, No. 344, and many others. .2. Give me formula for the best binder's glue, which is used in binding books. A. Use hest
carpenter's or white glue, to which, after soaking and carpenter's or white glue, to which, after soaking and
heating, one-twentieth its weight of glycerine is added.
(2099) J. H. asks the directions for skeletonizing leaves and flowever. A. The leaves are soaked
in water until the cuticle loosens. .t it is stripped off in water until the cuticle loosens.
with a brush on one side. The leaf is then turned over
nd and the other side freed. By proper manipulation the pulp is pushed out by or plates of clase or on cards on which they are floated. To reverse them they are
placed again in water and turned over. Javelle water placed again in water and turned over. Javelle water
may be esed to bleach the.. . Why is it a profes. sional rat catcher can put his hand in a trap or sack full
of rats and they will not bite, and what kind of oil does of rats and they will not bite, and what kind of oil does
he use that draws them? used by professional rat catchers. Gonfidence proba-
bly accounts for much of thir success
(2100) G. H. L. asks: 1. How many cells of Leclanche battery (Sampson, Gonda, etc.) wil one, and will use it only at intervals for light work, such as polishing, drilling, grinding, etc., probably not over half hour at any one time. How long will above bat tery run full force, and how long rest required before
using again? A. Noue of the batteries referred to are using again? A. Noue of the batteries referred to are
adapted to runing the simple electric motor. It requires a large current, such as you can get from a arge
plunging battery or a a nickel-plating battery. a cell of 8 or 10 carbon pencils $1 / 2$ in., surrounded by cylinder of sheet zinc in sal-ammoniac solution, give good results? A. No. 3. How to ascertain the resist-
ance of a battery or coil of wire? ance of a battery or coil of wire? A. For methods o
measuring resistance we refer you to electrical books measuring resistance we refer you to electrical books.
4. What rule is there for number and arrangement of batteries to give maximum power to motor or magne, resistance of coil and batteries being known? A. Se
Electrical Calculations,", Electrical Calculations," page 179, current volum
(2101) R. G. B. says : I am making photo camera, in the interior of which brass work and
mirror are to be used. What must I use to give the rass a dull jet black, and what can I paint the inside of camera with. Would black walnut be a good idea? A. For blacking the interior of the camera for both wood and brass use fine lampblack ground with alco
hol to the consistency of very thin paint. Then add a few drops of shellac varnish, mix well, and try it on a plece of metal; if right it should not wipe off no have a shining or reflecting surface, which will guld
you as to adding more shellac or alcohol black. 2 . require a small mirror which must be light, and not to exceed $1-64$ inch to $1-32$ inch in thickness. Is there any
substitute for glass, and if not how could I make one of substitute for glass, and if not how could I make one of very thin glass? A. You can obtain thin glass from the
opticians ard can silver it by sliding it upon a piece of pure tin foil covered with mercury, or by the chemica method as described in Scientific American Supple
(2102) L.
(2102) L. P. S. asks : 1. What is the or motor? A. It is due to the extra current discharged rom the coils of the armature and field magnet. 2 Does it injure the armature? A. It gradually burns out
the commutator and the brushes. 3. How can the the commutator and the brushes. 3. How can the
sparking be stopped? A. Sparking does not occur to any appreciable extent in a well built dynamo or mo-
tor, provided the brushes are properly adjusted. The tor, provided the brushes are properly adjusted. The
brushes should be at diametrically opposite points on
(2103) W. H. S. asks why, in making permanent horseshoe magnet of a piece of steel, the cu
rent is shut off several tmes during the operation. Several applications of the current, especially if it is not sufficient to readily saturate the magnet, are more
efficient than one application. If the current is so strong as to magnetize the bar to saturation, one ap
plication is sufficient. 2. Books of instruction tell u that in order to make a permanent magnet, a steel o
horseshoe shape is wound with an insulated wire then charged. Now if such be the case, how can the wire, being insulated, affect electrically the steel within its folds? A. Magnetism is produced by induction from
the current passing through the wires. There is no in sulator that will shut off the magnetizing effect of the
(2104) Bicycle asks: Can you tell me how to make a good black enamel to put on to a bicy-
cle when the original enamel has worn off, something that will finish hard and smooth? A. Bicycles are japanned and baked in an oven to about 500° Fah. You
can best repair by patching with japan varnish and can best repair by patching with japan varnish and
baking hard, then smoothing the surface with sand form finish and bake in an oven as before. Purchase the japan varnish through the varnish trade; you will fail in trying to make it.
(2105) W. S. T. says : Please inform me what the matter is with a water glass; it is mounted on let the steam out the water in the glass will show the water in the boiler, and in half a minute or so will go
up to the top, and the glass is full when there is up to the top, and the glass is full when there is
but one gauge of water in the boiler. A. The exit of but one gauge of water in the boiler. A. The exit of
steam through the gauge cock lessens the pressure in the column, which causes the water to rise, to balance
the difference in pressure between the boiler and
(2106) G. B. writes: Suppose a given quantity of hydrogen below its critical temperature
were to be liquefied by pressure. Further suppose twice this quantity of hydrogen, kept above its critical temperature, were to be subjected to a sufficient number on
atmospheres to reduce it to the same volume occupied by the liquid in the first supposition. In this case than the liquid, i. e., if you disregard the difference in the conditions of each? A. The gas would be of dou-
ble the specific gravity of the liquid. The conditions of each have nothing to do with the question as put.
(2107) G. H. asks: Will you inform me how to trisect any incommensurable arc? A. It can
only be done by tentative methods or by a protractor.
(2108) W. W. V. asks : 1. Will amylic or methylic alcohol answer for blowpipe work? A. We
recommend for analysis au oil lamp burning sweet almond, colza, or cotton seed oil. For mechanical
work either of the alcohols mentioned will answer, but will be very disagreeable. Inhalation of amylic alcoho vapor is injurious.
porization of the above? A. For the latter, $263 \% 0$ gramme degrees Centigrade. 3. In the telephone dif ference if the magnets are not very strong? A. The magnets should be strong. 4. Please give some means
for testing the purity of sweet oil. A. There is no simple test, and even those performed by a chemist are not always reliable. 5. Is the African explorer's name
Henry M. Stanley, or is that his nom de plumes a His parents were named Rowlands. He took the His parents were named Rowlands. He took the
name of an adopting parent. See Scientific Ameri-
can, December 21, 1889.6. Will common sewing
needles do for an astatic needle galvanometer? A. Yes
7. If I make the bobbin 2 inches long and $1 \not 16$ inch wide with three-sixteenth inch between the wire, and use No 22 or 23 wire, will it be all right? A. The galvanometer should be wound for the work it has to do. In gen eral use finer wire, No. 30 to 36 , and a number of layers. . Has anything of any value been done toward pro
ducing electricity by direct combustion? A. No; ex ucing electricity by direct combustion? A. No; es
cept for laboratory purposes by thermo-piles. An
Electrical Fuel " is described " g," $\$ 3.50$ by mail.
(2109) G. A. asks : Would it be wrong speak of platinum wire as a poor conductor of heat
a. Yes. Platinum is far from being this, although othe
(2110) B. B. asks the heat conductivity $(2110) \mathrm{B}$. B . asks the heat conductivity
hrough tubes of equal thickness of copper, brass, iron through tubes of equal thickness of copper, brass, iron,
steel, zinc. Do you know if there ever have been made thorough comparative tests in this regard. If so, by whom? A. The conductivity of the metala is given
only by experimenters. The figures given by Desprez only by
are for

 The experiments of Wiedemann \& Franz give for

 ther authorities make-
 Copper.
 $.89^{\circ} 0$. .76 .0 .44 .0
 Wrought iron.
 .44 .0 $36^{\circ} 0$

(2111) W. H. S. asks: 1. Why, in re E. M. F. of so many volts? If I am correctly informed,
E. hould out or volume proceeding from a cell or dynam hould be measured in amperes, not in volts, and it sured by the amount of electricity it could produce in a given time. A. Volts express the electromotive force, or the relative producing cause of the current. The latter, measured in amperes, is determined by Ohm's law:
current $=$ Electromotive force $\quad\left(C=\frac{E}{D}\right)$ Resistance Resistance
ncludes all the resistance of the ciircuit, including that of the battery. A maker should always state this latter, as it is of equal importance in many cases to that of the
electromotive force. It is stated generally in ohms. 2. What does the internal resistance of a cell mean? It means the resistance offered to the passage of a current from plate to plate, irrespective of any work the
cell may be doing in maintaining a difference of poential. It may be expressed in ohms.
(2112) W. H. S. asks : When a cell or battery is short-circuited, what becomes of the electricity that flows through the battery or cell? A. The current expends itself on heating the wire battery solution. You
must not attach too material a conception to electricity must not attach too material a conception to electricity,
It is not a substance. 2. Also what is the effect upon a dynamo to short-circuit same; is this the way it becomes saturateds A. It tends to the production of a very intense current, which heats all parts of the circuit more than the normal current does. It is a good way
of starting a dynamo which has lost most of its residual of starting a dynamo which has lost most of its residual
magnetism. 3. Why are telegraph wires not protected magnetism. 3. Why are telegraph wires not protected
with au insulated covering? Are telegraph wires kept charged or saturated with electricity at all times, or only when the in is a tricity. Whether wires are kept charged or not depends on the system; ordinarily they are not. 4. How many cells would it require to keep in readiness for a message
a wire 100 mile a wire 100 miles long? A. It depends on the system; om ten gravity cells upward wonl do it.
(2113) E. E. writes: In the Scientific American of March 8, 1890, page 148, is mentioned a with 12 gravity cells in 24 hours; please answer following queries regarding the same. 1. Will 2 gravity cells be sufficient to charge this storage battery if given
onger time? A. The E. M. F. would not be high longer tie? A. The E. M. F. would not be high
enough with two cells: better use four. 2. What length of time would it require with 2 gravity cells to charge the storage battery to its full capacity? A. It would take almost two days with four cells. 3. If charged by 12 gravities or by dynamo, would 2 gravity cells running constantly be sufficient to keep it stored, provided
that It was only drawn upon for from 3 to 5 minutes that it was only drawn upon for from 3 t t
(2114) A. E. W. asks : 1. What is the resistance of a coil 3 inches long wound with No. 30 sllk
covered magnet wire? Core $3 / 8$ inch thick, winding covered magnet wire? Core $3 / 8$ inch thick, winding
wire $3 / 2$ inch deep. A. The resistance of No. 30 wire is $0 \cdot 107$ ohm per foot, $353 \cdot 742$ ohms per pound. From thes data you can calculate the resistance of your coll. 2
How is the resistance arrived at? A. The resistance is How is the resistance arrived at? A. The resistance is
generally determined hy comparing the unknown resist ance with a standard resistance by the aid of a galvano
(2115) C. C. S. asks : What will retard the setting of calcined plaster? I want something to
make it set slowly. A. Mix with it, before adding water, from 10 per cent upward of powdered marsh-mal (2116) E. R. C. asks for a formula for making tooth powder or paste. A. Use best quality (2117) Zisca writes : I have a gold ring that has come in contact with mercury and has been
thickly covered with it. How can I treat it so as to F. Cautious heating in a candle flame or alcohol lamp
(2118) G. H. V. asks : 1. Can you tell me what is thought of Graham or whole-meai bread by the
best modern American medical men? A. It is thonght well of as an article of diet. 2. Is it right to introduce the insolnble bran into the stomach of a dyspeptic, al though it may relieve constipation, and does it cause
reat part of other food to be passed away undigested? A. The insoluble or indigestible portions of food play
n important role, and their introduction into the system is often advantageous. No evil effects should be an-
ticipated from the eating of the bran in Graham flour ticipated from the eating of the bran in Graham flour.
3. Would it be likely to do good or harm in a case of . Would it be likely to do good or harm in a case of
debility and non-assimilation of food? A. For non-as ebility and non-assimilation of food? A. For non-asoncentrated liquid food and tonics, such as beef tea, pation. If this appeared, Graham flour and similar diet might be adopted as a panacea
(2119) J. S. S. asks why a ship is called she. A. It is impossible to say. There seems to be a
tendency to personify as female an object characterized tendency to
by motion.
(2120) V. A. H. asks : Can I buy or can easily make an indelible ink suitable for marking mmend white oil paint.
(2121) C. J. W. asks : How much cork ing 190 pounds? How should the cork come in contact with the water to give the most support? Will cork chips in canvas bags answer the purpose as well as solid pleces? A. Properly used, a very small piece is enough.
In many cases none is required, because by proper manIn many cases none is required, because by proper man-
agement of the lungs one can float unassisted. Eight agement of the lungs one can float unassisted. Eight
or nine hundred cubic inches would give very high buoyancy ; half that amount would answer. The solid cork is rather the best, and has the advantage that if a
(2122) S. E. H. writes : What can be When with a brush, what will prevent the little bubbles which remain till dry, and leave a rough surface? A. Pour
ether vapor over the surface, by inclining over it ether vapor over the surface, by inclining over it a
wide-mouthed bottle with a little ether in the bottom.
(2123) S. W. asks what proportions of sulphuric acid and mercury to use in an amalgamating zinc for a battery. A. Use 1 part sulphuric acld to 20 parts water and a very little mercury. Rub the meror simply rub the plates together with a little mercury between them.
(2124) J. P. W. asks : To what process is milk subjected, to produce what is termed sterilizing? boiling water may be used for 30 to 45 minutes, the latter time in hot weather.
(2125) L. F. P. asks: 1. What form of a cheap and simple primary battery would you recomfive or six candle power, one battery to a lamp? How many cells of the battery would be needed to operate a
six candle power lamp? A. For temporary use six small cells of plunging bichromate battery will answer. 2 . Would one six candle power give light enough to illuminate a room 9×12 sufficiently for ordinary purwould not be too large for a room of this size. 3. Can electric light carbons be used to advantage
in a bichromate of potash battery for the carbon element? A. Yes, if freed from the copper coating.
(2126) L. O. asks: How many and what are the notes of the perfect or natural musical scale,
and what are the vibrations of each, per second? A. Seven, as follows:
$\begin{array}{llllllllllll}\text { Name: } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { A } & \text { B } \\ \text { Number of vibrations: } & 128 & 144 & 160 & 1702 / 3 & 192 & 2131 / 3 & 240\end{array}$
 (2127) J. H. J. asks : 1. What are harmonic curves, and is there an instrument for represent-
ing them? A. The curve of sines; its construction and the apparatus for drawing it mechanically, are described and illustrated in our Supplement, No. 703. 2. Th speciric gravity of cast copper is 879 , and that of cop
per wire being 8.88 , what change of volume does a kilogramme of cast copper undergo in being drawn int wire? A. It is reduced by 102-10,000 of its original volume, one hundred volumes of cast copper giving $98 \cdot 98$ volumes of wire. Or taking one kilogramme as
representing $11: 37$ cubic centimeters, the wire would rerepresenting $11 \cdot 37$ cubic centimeters, the wire would re-
present 1126 cubic centimeters. 3. On what basis present 1126 cubic centimeters. 3. On what basis is
the musical scale constructed, and how are the propor tional numbers $\frac{9}{8}, \frac{5}{4} \frac{4}{3}$, etc., deterinined? Is it by experiment and trial, or is it by numerical calculations? They bear the ratios to each other disclosed in the pre-
ceding answer. The scale was fixed by ear; its ratoos
(2128) W. McC., E. D. B. \& D. S. D. as bout papier mache, its manufacture, etc. A. Four parts of paper clippings may be boiled in water and
mixed with 6 parts of whiting. This mass, after pounding, kneadıng, and rolling, can be made into objects by pressing and moulding. Sometimes flat articles are made by pasting together a large number of sheets of pum arabic is ding them to pressure. Often giae or pulp. To render it fireproof 10 per cent of tungstate of
soda may be added to the water, but it is hardly needed. soda may be added to the water. but it is hardly needed.
To make it waterproof, varuish when thoroughly dry To make it waterproof, varuish when thoroughly dry
and heat in an oven. Where moulds are used they should be oiled. Pulp from the paper maker is a good bod for papier mache
(2129) F. H. N. \& S. A. Z. ask (1) how to make printing ink of different colors. A. As a
medium, use linseed oil 6 quarts, heat until the vapor which can be ignited is given off, when remove at once from fire and stir. At intervals cover the vessel, with raw samples, uncover and light again. When of proong, it is extinguished and 6 pounds of resin and nex $13 / 4$ pounds of soap are dissolved in it. The opera ion is dangerous and should be performed by an ex
pert, and out of doors or in a shed. With this a pro pert, and out of doors or in a shed. With this a pro per pigment is ground, lampblack with 3 ounces Prus-
sian blue or indigo for black. Instead of above the folwing may be used: Balsam of copaiba 9 ounces, lamp turpentine soap 3 ounces, For other colors use other
pigments. 2. How to tell the positive and negative of the copper wires in dilute sulphuric acid. Gas will be given off from the wire corresponding to the con ficen to the zinc pole of a battery. 3. How to mak 15 grains of magnesium powder on a layer of gun cot ton about a quarter of an inch thick and twice as large as a silver dollar. Set it on a dust pan. Place the pan on a step ladder about five feet from the floor. Con nect a strip of gun cotton to the main bulk and ignite
with a match. For further information on printer's ink wherer you to Wokshop Receipts, 1st and $2 d$ series,
(2130) E. D. B. asks: What cohesiv ehicle is put in emery wheels that run in water? A lac, and other resins, etc.
(2131) G. L. asks for the latest formula for developing dry plates. Also for a formula for fixin

Developer. No. 1.
 Eikonogen...

Sodium sulphite.
1 oz.
2
32 "
Carbonate of potash.... .
${ }_{3}^{1}{ }^{\mathrm{oz}}$.
To two ounces of No. 1 add one ounce of water, im merse the plate in this, and should it develop too slowly
add one or two drops of No. 2, continuing the addition a little at a time until the negative acquires the ful amount of detail and density.

Toning Bath for Silver Prints.
Chloride of gold
Acetate of soda...
Warm wate it add 1 grain of gold and twenty-four grains acetate soda. Fixing Bath. Hyposulphite of soda.
Carbonate of ammonia
(2132) H. W. H. writes: Would you outline in Notes and Queries process of manufacture
of oil of cedar, give commercial value and also direct me to where I could obtain a work giving detailed description of plant and process of manufacture? A cedar (Juniperus Virginiana), the shavings from lead talline substance, as thick as butter. By pressing, the volatile oil is extracted, which is a thin limpid fluid, congealing at a low temperature, but rapidly drying by oxiation (resinifying), sp. gr. $0^{\circ} 9622$ at $59^{\circ} \mathrm{Fah}$., boiling point $519^{\circ} 8^{\circ}$ Fah., freezing point $6^{\circ} \mathrm{Fah}$. The subject treated in a general way in Brantt's "Animal and Vege
able Fats and Oils." It is worth 75 cents a pound.

TO INVENTORS

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and a
foreign countries may be had on application, and person contemplating the securing of patents, either at home o
abroad, are invited to write to this office for prices which are low, in accordance with the times and our exmunN \& Co.. oftice Scientific American, 361 Broad New Yor

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were Granted
April 1, 1890.

AND EACH BEARING THAT DATE

dding machine, J. F. Mays.
dvertisements, J. F. Mays.........................
Hamilton...............................
ir ship, J. J. Pokorny.
larm. See Fire alarm
Animal trap, , H. E. K
Arc light, J. Dulait...
Artillery, mounting for field, T. Nordenfelt
Auger, P. Miller.
Axle check for vehicles, D. C. Funcheon
Axle, self-oiling car, R. P. Sholl
Axle, vehicle, F. Ulrich
Baling press, A. Wickey
Bar. See Crow bar.
Philp
Pasin, settling, c. Delafeld
Beehive, U. Baird
Belt, electro-medical, w. J. Shelton
Berth guard, J. A. Green.
sicycle, S. M. Fa
Blower. fan. M. William
Blower for stoves, adjustable, F. Keife
oard. See Game boar
Boiler. See Steam boil
Boiler furnace, steam, M. V. Smith..
Book, manifolding blank, G. H. Randall...
Bottle, mucilage, W. R. Cole........... Day........ 424,862
Bottle washer. C. II. Murphey
racket. See Clothes bracket.
brake

Brick kiln, H.S. Hallw
Bride bit. C. C. Cole ... Brush, tooth, I. Lichtenstein.
Buckle, belt. C. \& E. J. Deitsch
Buggy boort, Woodmansee \&
Burner. See Lamp burner
Burning fuel and utilizing the heat and gases,
v. Smith....... Button, J. R. Smith.
Cable grip, E. S. Reid
Cable lifting device, J. Volk............
Calculator, tabular, E. J. F. Quirin.
alculator, tabular, E. J. F. Quirin.......
Camera. See Photographic camera.
Camphor, apparatus for reflning. W. v. McK
zie
andle for killing insects, R.
Canopy holder, R. F. Painter
Car brake, G. L. Fowler.
Car coupling, J. Haish...
Car coupling,, . H. Olds
Car coupling, H.
Car coupling, H. Small....
Car coupling, w. L. Smith
Car couping,
Car coupling, H. Sommerfeld
Car, freight, P. D. Whitehead
ar heating apparatus, w. Buchana
Car motor, electric, E. M. Bentley
Car, railway, O. Harrima
Car, safety, J. W. King..
Car sock, G. D. Burton.
ar, stock, G. D. Burton..............................
Car ventilator, railway, o. Harriman.............
Cars, means for releasing grips on cabe,

Card clothing, grinder for, H. E. Cunningham Carpet fastener. O. D. Southw
Carpet stretcher, F. B. Noble.
Carpet sweeper, W. J. Drew..
Carriage, folding, T. M. McCarty

Carver...
case. Watch case.
Case lock, extension, H. F. Lane
Case lock, extension, H. F.
Cash carrier, A. \& A. .ske....
Caster, ball, H. A. Dalrymple.
 from, G. Hoffman..
Chair, H. A. Dalrymple
Chairs, fan attachment for rocking, Arthur
Bamberger Checkrein hook, o. Taber....
Christmas tree ornament, B. Wilmsen............
Chuck jaw, E. B. Bailey.... Chuck jaw, E.
Churn, A. Daul
Churn dasher, B. F. Carson
Chute, coal, D. H. Henkel
Cigar wrapping machine, G. M. Hathaway.
Clasp, J. A. Turnbull...
Clock, alarm, A. M. Lane........................
lock key, R. Ueltzen.
lock striking mechanism, A. M. Lane
Closet. See Water closet.
Cloth marking apparatus. Main \& Wilson
Clothes bracket. folding, G. R. Mor
Cothes pounder, E. B. Dreifoos..
Clothes pounder, E. B. Dreifo
lutch, friction, J. Walk
lutch, rope, w. Leiter
lutch, stop, H. V. Hart
Strom
Coal conveyer gate, c. s. Sche ncl
Coal conveyer gate, c.s. Sche nclk.......
Coffee pot, H. B. Cornish
Coffee pot, two-part. Munger \& Cornell
Coffin fastener, C. E. Richards. Coin-operated fastener. horse, T. B. \& W. A. Boma Colter, plow, J. Newmo
Comb, C. Felder....................
Concrete continuously, mould for moulding, E L. Ransome................................ Copying pad, P. E. Loree ..

Oupling. See C Union coupling

Crab and fish trap, R. M. Franklin
Crowbar, H. Bowman.....
Cuff retainer or holder. W. L. Fullaway
cultivator, H. Carrier.
Cuspidor, J.J. Parsons................................... 424,815
Cutter. See Harvester cutter.
Cutter. See Harvester cutter. Meat cutter. Pip
cutter.
Dental bridge, G. L. Curtis...........
Dental matrix retainer, J. W. Ivory.
Arden Arden........................
Digger. See Potato digger.
Dish rinsing and drying crate, w. o. Demorest.. Disinfectant cover for dry closets, etc.,
Display frames, shoe rest for, J. Hoffman.
Door mat, G. E. Eggert
Dropper. See Medicine dropper.
Drying starch or other solid matter, apparatus
for, F. M. F. Cazin.........
Dust pan, G. A. W. Cage. J
lectric call, F. B. Wood
Electric call, F. B. Wood
Electric circuits, safety device for, C. G. Young.
Electric indicato
Electric indicator, M. D. Porter.............44,722
Electric light, marine, A. G. Donnelly.... Leectric hight, marine, A.
Electric motor, L. Bock, Jr
Electric motor, T. T. Smith
Electric motor regulation, Bergmann \& Scott Electric switch, C. S. Van Nu
Electric trap. F. Scherer.
Electrical conductor, J. A. Bar
Electrical heater. J.V. Capek. Electrode, secondary battery, J. F. McLaughl
Elevator. See Ice elevator. Water er Elevator. See Ice eleva
Eievator, W. A. Sawyer.
Elevator gate, J. G. Zelle
Embroidering machine, Birks \& Cropper Engine. See Gas en.....
Eye bars, manufacture of, G. M. Heller
Eyelet setting machine, E. D. Welton.
Fabrics, producing tucks on, L. Loeb,

424,444
424,538
424,716

Fau
Fee
Felt Faucet, measuring, C. Skinner..
Feedwater heater, J. c. c. Davol ley
Fence, $\mathrm{H} . \mathrm{C}$. Pratt..
 Filter, W. D. Cummings..
Filter, F. Lascar
Filter. F. Lascar..................
Filter, rain water, N. H. Long..
Filtering machine, J.

Fire alarm system, T. Johnson.

Fire escape, J. Burt.
Fire extinguisher for car stoves, S. S. Weinberg.
Fire indicator or alarm, spring-actuated, S. D.

Folding table, E. R. Golde
Folding table, R. Smith...
Force feeder, J. C. Riley............................
Frame. See Saw frame. Sewing machine fram
Fruit gatherer, C. J. Bloom ..
Fruit gatherer, w. w. Hays.

ing et al..

Furnace firepot, C. H. White Fuse, safety, A. F. Andrews.	

Gauge. See Combination gauge.
Game board, G. Bixler.
Game counter, F. J. Hal
Gas burning and heating apparatus, w. H. Brad
ley
Gas engine, D.s. Regan (r)....
Gas mains, cut-off and relief
Conroy.....................
Gas trap for sinks, sewer, F. Henkel................
Gate. See Coal conveyer gate. Elevator gate.
Farm gate.
Generator. See Steam generator.
Generator. See Steam generato

S. Washington...................................
Glass, means for transferring molten, F. Sche
fold............
fold..
Glass, means for transferring pots containin
molten, F . Schefold
molten, F. Schefold ..
Grain binder, P. Hanson
Grain binder,. R. Sverance...............
Grain conveyer, pneumatic, Barclay \& Walker.

Graphophone, J. H. White...
Grating, J. B. West.................
Grinding machine, G. W. Brown.
Grip carrier or hanger, J. Vols...
Guard. See Berth guard. Buckle guard.
Gun sight, J. W. Carver
Hairpin, M. Cashin..............
Hame fastener, J. H. D. Everett
Hammer, power, F. W. Taylo
Harness pad, W. A. Bates...

Hats, machine for attaching sweats and bands to,
G. E. Brush
Heater. See Electrical heater. Feed water
heater.

Morris.................
Hoine, coach, L. Ruel...
Hoisting bucket, C. Pay.
Hoisting bucket, C. Pay.
Holder. See Canopg holder. Horse tail holder.
Opera alass holder. Paper holder. Parcel or
bundle holder. Parcel strap holder. Pen
holder. Photographic plate holder. Sewing
machine spool holder. Ticket holder.
Hook. See Checkrein hook. Snap hook.

Hose reet, S. .F. Reynolds.
Hydraulic cylinder lubricator, J. H. Brookm
Ice elevator and snow remover, J. S. Field .
Ie or retrigerating wachine, F. W. Wolf.
Ice elevator and snow remover, J. S. Field
Incor refrizerating 1uachine, F. W. Wolf. 4 ...746,
Incubator. B. W.S. Clark.......................
Indicator. See Electric indicator. Fire in
cator.
Ingot manipulator, Hemphill \& Fawell

Insulation, electrical, T. S. Reed 444.575
Interchangeable die, H. B. Anable............. 424,636
rron. See Sad iron. Wagon bed iron.
ron. See Sad iron.
Jack. See Saddle jack.
Jar. See Sirre
Jar. See Sirup jar.
Jar cover fastening, F. \& E. Monier.
Jewelry. F. X. Zirnkilton Adams.................. 424, 424.599
Jewelry, hlnge joint for, D. F. Ad
Joint. See Pipe joint.
Key. See Clock key.
Knitting machine, circular, J. E. Gearhart.......
Knitting machine, circular, Holt \& Wrightson.
Knitting machine, circular, W. H. Pepper
Ladder, step. E. Harter
Lamp burner, L. Zander........
Lamp, hanying, J. I. Johnson. .
Lamp, hanging, A. H. Jones....
Lamp standard, w. C. Homan...
Lasting machine, P. Cunninghan
Lasting machine, P. Cunni
Latch. E. Richardson et al.
Letters, etc., receptacle for gummed, H. Willson. 424,526
Light. See Arc.light. Electric light.
Lightning arrester, 0. P. Loomis..........424,562, 424,563
Liquids, apparatus for testing, T. Clement....... 424,643 Liquis, apparatus for testing, T. Clement.........
Lock. See Alarm lock. Case lock. Nut lock. Locomotive, electric, J. F. McLaughlin
Locomotive engines and railway rails, devi
drive wheels of, A. P. Tallmadge...
ocomotives, guard rail for, J. A. Wo.
ocomotives, guard rail for, J. A. Woodmansee..........

Sash balance，G．E．Taylor
Sash fastener，J．．．Biery．
Saw fling machine w． Saw fling machine，W．H．Penroses
Saw frame，adjustable， S Heale Saw frame，adjustable，S．Ha
Sawmill dog，D．C．Prescott Sawmills，variable feed for，M．I．Welch Scales or other coin－actuated mechanism，coin School seat，J．R．Johnson． scraper，road，M．S．Rexford
Screw machine，metal，S．L．Worsley． F．F．Voigt．
Seal，L．A．Foote
Seal，L．A．Foote．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Seat．SSe Bath tub seat．School seat．vehicle
Seeds，compound for treating，J．M．Youn
Sewer sheaihing diver，N．
Sewiug machine，L．I．Miller Sewing machine buttonhole attachment，D．．．．．．．．．．．．．．．．
Sewing machine frame，J．M．Brosius
Sewing machine spool holder，J．H．Fletcher．．．．．．
Shafts in soft earth，means for sinking，T．J．Phil

Shafts in soft earth，sinking．T．J．Phillip Shell，dynamite，E．Stern

 Shell，dynamite．E．SternShingles automatically，machine for packing， H L．Fehlberg．．
Stoe or glove fas
Shoe case corner，J．Hofman．．．．．．．．．
Signal．See Railway Signals，interlocking ap Koenig \＆Stupako
Singletree，P Fisher
Sirup jar，E．Haas
Sled，coasting．C．H．Dickso
Snap hook，J．P．Ander
Snow plow．I．Osgood
Soda recovering furnace，H ． Soles or like fo
Spike machine，A．Wel．．．．．．．．
Spoons and forks，making
Spring．See
Spur．F．Monier
Stairway，spiral．．R．．o．Belle Stand．See Tub stand． Steam boiler，J．L．Heald Steam boiler，A．Worthington Steam engine，G．H．Adam Steam generator，N．H．Tenne Steam trap．E．E．Gold． McAllister．．．．．．．．．
Stone，composition of
ficial，T．H．Mooney ficial，T．H．Mooney．．．．．．．． Stove，electrical cooking，J．V．Cape
Stove，vapor，McClelland $\&$ Ruppel．

```
Stoves, adjustable fire box for, J.
```

Switch. See Electric switch.
Table. See Folding table.
Table, J. B. Bigelow.
Tablet, stenographer's, A. R.
Target traps, apparatus for springing, C. Swan
Telephone, pneumatic. J. G. Noreau.....
Telescopic press, horizontal, A. A. Diffey
Thermostat. W. P. Powers
Tide power, mechanism for utilizing, A. Mills.
Tie. See Rallway tie.
Toilet case and bath, infant's, R. \& Stratton
oy, M. E. Whitney
!rack brake, J. T. Le
rap. See Animal trap. Crab and fish trap. Elec
Target trap.
Trap for sanitary purposes, G. H. Garrett...
Traveling, toilet, or other
Trimmer. See Hedge trimme
Truck, baggage, E. H. Norris.
Truck, car, E. Peckham.
Tub stand, folding, M. Gindorff
Union coupling. A. E. Dar
Valve, J. Knickerbacker
Valve, C. H. Shepher
Valve for engines, exhaust,
Valve for motors, R . Solano
alve, hydraulic, Miller \& Brya
alve, steam-actuated, B. R. Patten
Vaporizer and burner, hydrocarbon, J. D. Blake
\checkmark ault or strong room, A. S. Wile
Vehicle brake, W. S. Jobes.
ehicle seat, adjustable, J. Heilrath
Vehicle, spring propelled, J. M. Rogers
Vehicle, two-wheeled, D. Lippy.
Vehicle wheel, A. Rowan.
Vehicle wheel, J. H. Rowland..
elocimeter, recording. H.
Vending apparatus, coin-operated, C. S. Batdorf.
ending machine, coin-operated, C. s. Batdorf..
eneering, King \& Jennings,
Ventilator. See Car ventilator. Window ve
tilator.
ines, apparatus for atomizing liquids for de
stroying disease in grape. Lasmolles $\&$ Fre
ulcanizing apparatus, Woodard \& Barne
Wagon, bed iron, F. Herman ...
Wagon spring, W. H. Williscraft
ano spench Eberhad
Washer. See Bottle washer.
Watch case. F. Mink.
Water closet, A. J. Finnegan.
Water elevator, G. W. Campbell.......
Water elevator, compressed air, H. J. Freude
Water motor, G. W. Brown....................
Weather strip, A. C. Sims.

	Wells，apparatus for removing paraffine from the pipes of oil，M．Turton
	Wells，implement for recoving lost pipe from tubuiar，S．Maxfleld．
	Wheel．See Paddlewheel．Perforating wheel． Rubber tired wheel．Vehicie wheel．
	eel，
	eel rim，vehicle，H．M．Du
	Wick adjuster and trimmer for lanterns，Marks \＆ Lea
	Winding machines，take－up and brake attachment for supply of spools of，V．Royle．
	Windlass，T．H．Bridges
Wi	
	Window screen，extension，D．Lim Window ventilator，N．McDonald．
	Wood bending form，A．Walbrunn．．

Canned foods and relishes, w. B. Timm

movale men, M. Bradley Company
ard, J. H. Michener \& Co..
Malt, hops, and beer. E. F. Hoppe

extracts, Creelman, McCormick \& C
DESIGNS.
Bottle, J. A. W. Fernow

Button, etc., sleeve, E. P.
Can. F. A. Monahan....
Desk, cabinet, J. Roberts......
Dish, E. Pouyat....................
Piche, draina, or other, E. W.
Radiator, C.R. Nelson.
Range, gas. W. W. Good w
Suspenders, back piece for, E.
Thimble, H. A. Weinman
Vhicle spring, ©. E. Chadwick.
mann .
Thimble, H. A. Weihman
Vehicle spring, ©. E. Chad
Violin case. H. Kleineick.
\&POLISHING MATERIALS.
ZUGKER \& IEVET
CHEMICAL CO NEW YORKU.S.A
大电新
大电新 NICKEL ANODES， NICKEL SALTS ROUGES，
COMPOSITION， BUFFING WHEELS，
ELECTRO \＆NICKEL
$\$ 3$ PRINTING PRESS．

Experimental X cience，
Experimental X cience，
Kxperimental $\&$ cience，

By Geo．M．Hopkins．
740 Pages． 680 Illustrations．
PRICE，by mail，postpaid，．．．．$\$ 4.00$ SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents．

MUNN \＆CO．，Publishers，
 361 Broadway，New York．

HOME－MADE INCUBATOR．－PRACTI－

 STEEL TYPE for TYPEWRITERS， Stencils，Steel Stamps，Rubber and Metal Type Wheels．
100 Nassau Street，New York．
ICE－H OUSE AND REFRIGERATOR． Directions and Dimensions for construction，with one
illestration of coll house for preserving frit from
season to season．The air is kopt try
dry and pur pure through－

 Naiate Funvars． ane ind imititivet REMINGTON

STANDARD TYPEWRITER． Wyckoff，Seamans \＆Benedict FORLINING WALLSOOLS

NOW READY．

 Table of Contents．

ARTESIAN
Vavez

FAMILYICE MACHIIEE Lion fof minut
THE PHONOGRAPH．－A DETAILED

TO BUSINESS MEN

Hluminium!

 CONTENTS. - CHAPTER 1. History of Aluminium
II. Ocurrence of Alumimium in Nature. AII. Physical
Properties of Al

 HENRY CAREY BAIRD \& CO., MAECLANIERNS

SEVENTEENTH TRIENNIAL EXHIBITION MASSACHUSETTS Maritable Memamic Asmodicion (PEINE OCTO BER 1, 1S90,
Closing Nov. 29. chanies in every line of Industry, Masters and Students
in e fery department of Science and Art, are invited to applications will be forwarded and all desired informa JAMES G. HAYNES,

Useful, Beautiful, and Cheap.

THE "ALLAARD", SPIRAL SCREW DREIVER
Screws are turned in by pushing the driver.

ON MECHANICAL ENGINEERING

2nd ©NO MACHINERY
ATENTEES
 EXCELLLENT BLACK Cophes, on equed by Lith

Do Your Trousers Bag at the Knees?

 SCIENTIFIC SUSPENDER CO., CAUSEWAY, BOSTON, MASS.

THE PENNA. DIAMOND DRILL $\&$ MFG. CO.
BIRD Steam Enzines. Diamond Driling and General
THE BEST LIME KILN KNOWN
SEATTLE
Oauford\&Conover

Factories

Wanted

nooga, a djoining
CHATTANOOGA TENN., the Hub of
 13,000; 1885, 25,000 . 1880 ,
wood, and labor. Low taxes. $\begin{aligned} & \text { 55,00. Cheap iron, coal. } \\ & \text { River front, } \\ & \text { Nine }\end{aligned}$ railroads, more building, giving cheap railroad and
water transportation in all directions. Climate water supply, and drainage unsurpassed. Free
sites and other inducements to manufacturers. For full partieulars, adress EAST CHATTA
NOOGA LAND CO.. Chattanouga, NOOGA LaND CO.. Chattanouga, Tenn.,
RUSSELL, Sec ${ }^{2}$, 96 Summer St., Boston, Mass.

Directory of Patent Solicitors, Model Makers, Novelty Mfg. Concerns, JUST OUT.

TYPEWRITRRSWM:

IDE AUTOMATIC ENGINES. TRACTION AND PORTABLE ENGINES

PROPOSALS.

TENDERS WANTED.

CHICAGO NICKEL WORKS.

MINERARINSULATION, FIRE

FOR SALE.

C. H. DE LAMATER \& CO.

 foot of West 13th Street, New York, disposed ofHot Air Pumping Engine and Steam Pump business to the DE LAMATER IION WORES (incorpo-
rated 1889), and to close out the remainder, offer for sale a very desirable lot of
Lathes, Planers, Drilling, Shaping, Slot ting, Boring, Cutting Offf, Nut Tapping, Bolt Cutting, and Milling Ma-
chines, Gear Cutters, Emery Tool chines. Gear Cutters, Emery Tool
Grinders, Screw Machines, Grinders, Screw Machines,
Vises, Lathe and Planer Tools, Drills, Taps,
Small Tools, Boiler Punching and Shearing Machines, with lot of Small Tools, Alocks, Rope, Bolts, Nuts, Washers, Packing, Pipe Fittings, Brass Valves, Bar Iron and Steel, steam Hammers, and three Rider
 Requs

FOR SALEE.-Patent 409949, Aus. 27, 88, Transplanter.

The Scientıfic 1 merican PUBLICATIOFiS FOR 1890.
The prices of the diferent publications in the United
The Scientiflc A merican (weekly one year . $\$ 3.00$
The Scientiflc American Supplement (weekly), one 5.00
The scientinic American, spanisli Edition (monthy) ${ }^{5} .00$
The Sceientigic American, Architects and Builders
Edition (monthly) one year.
The Scientitic American and Suppleme
The Scientittc A American and Architeects and Build-
The Scientific American, Supplement, and Archi-
tects and Buiders Edition
This neludes postaee, which we peay Remit by postal
MUN

NEW KODAKS
 Y ou press the button,
we do we do the rest." Styles and
Sizes
Transparent Films.
For sale by all Photo stock Dealers.
THE EASTMAN COMPANY,
Send for Catalogue. rochester, N. I SPBING SCREW THREAD CALIPEBS \cap

Is YOUR LIFE SAFE AT HOME?

 dangerous to the thos
ty of out oto or are
thr

SHERMAN "KING" VAPORIZER CO., Chicopee Falls, Mass ELECTRO MOTOR. SIMPLE. HOW TO

 Barrel, Keg, Hogshead
 E. \& B. HOLMES Bur aull ine No. Y.
Moo
Werking Maehinery.
ICE MACHINES,

\Rightarrow with oil lamps have no equal VIEWS Ofall SUbJELTE

PATENTS!

 them is done with
ceasonable terms.

 MUNN \& CO., Solleitors of Patents,

485 Lovell Diamonid Saitiy

Diamond Frame, steel Drop Forgings, Steel Tubing Adjustable Ball Bearings to all Runniug Par
Including Pedals. Suspension Saddle. Finest aterial money can buy, finished in STRICTLY HIGH GRADE IN EVERY PARTICULAR No wetce madine mado at any price. bycle catalogue free JOHN P. LOVELL ARMS CO., 147 Washington St.,

Boston, Mass. en rrat nationai game of the Unitect sion OF

 7 Franklin St., BOSTON. $\quad{ }_{2} 291$ Wabash Ave., CHICAGO.
15 Firpwivin Catalogue free. Address Typewriter Department
POPE MFG. CO., Boston, New York, Chicago.
 INATIOINAT HITTHR.

BRIGHT SPARKMING WATER LARGE SIZES FOR MILLS AND WATER WORKS. NATIONAL WATER PURIFYING CO.

RHE TEACHING OF SCIENCE.--

WORKING MODELS $\frac{\text { and Experimentar }}{\text { Witr }}$

NUT TAPPINC DURRELL'S PATENT. No. Machine in prif spindes.

 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

FIORDA
 STEAM ANDHOT WATER

SYAACISE WALIEABE RROWWORTS

0TIS ELEVATORS
THE STANDARD OF THE WORLD For all kinds of PASSENGER and FREIGHT OTIS BROTHERS \& CO.

GRAVESELEVATORS.

JENKINS BROS. VALVES!

RADII OF CURVATURE GEOMETRI-
 OUMPTOMETER т玒曰
ฐricutific American
The Most Popalar Selentific Paper in the World. Onis 83.00 a Year, includ ina Poastage. Weekis.

This widely circulated and splendidy yllustrated paper is published weekly. Every number contains six-
teen pages of useful informatiton and a large number of teen pages of usefulinformation and a a arge number of
original engravings of new inventions and d discovertis, origina engravings of new inventions and Mscoveres,
representina Engineering Works, steam Machinery,
New liventions Noueties in Meeh New Inventions. Novelties in Mechanics, Manufuctures. Chemistry, Elecetricity, Te:egraphy. Photography, ArchiComplete List of Patents each week
Torms of Subscription.-One copy of the scirv-
TIFIC AMERICAN will be sent for one year-52 numberspostage prepaid. to any subseriber in the United States, canaia or Mexico, on receelp of three dollars by the
publishers; six montse, q1.50; three months, 91.00 . Clubr.- -special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully plicer ins of envelopes, securelys sealed, and correctils addressed seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, dratts, etco, puty. able to MIUTVN \& CO

361 Broadway, New York. T EX
Scientific American Supplement.
This is a sepacate and distinct publication from
THE SCIENTIFIC AMERICAN. but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. The Scientific american Supplemicnt is published
weekly, and inicludes a very wide range of contents. It weeki, and iucludes a very wide range of contents.
presents the most recent papers by eminent writers in
all the principal deoartments of science and the Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geography, Archæology. Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical EngiChemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary En. Technology, Kanufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Econogineering, Agriculture, Horticulture, Domeste
my, Biography, Medicine, etc. A vast amount of fresh and valua
lication.
The most important Engineering Works, Mechaniems,
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated Price for the SUPPıEMENT for Canada. $\$ 5.00$ a year, or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEM LNT, both mailed
for one year for $\$ 7.00$. Single copies 10 cents. Addres tor one year for $\% .00$. Single copies 1 1ceents. Address
and remit by postal order, express money order, or check, Publishers ScIentiric American

Building Edition.

THE SCIENTIFIC American Architects' AND Builders' Edition is issued monthly. $\$ 2.50$ a year.
Single copies, 25 cents. Forty large quarto pages, equal Single copies, 25 cents. Forty large quarto pages, equa
to about two bundred ordinary book pages forming a large and splendid Magazine of Architecture, rich ly adorned with elegant plates in colors. and with other the engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and amples of mod
A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country, including those of very dences, city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in perspective and in color are given, togetber with full Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this inagnificent work
have won for it the Larest Circulaition of any Architectural publication in the worla. sold MUNN \& CO., Publishers,

361 Broadway, New York.
PRINTING INKS:
TEE "Scientific American", is printed with. CHAS,
ENEU JONSON CO.S NK. Tenth and Lom
bard Sts.. Phila.. and tr Rose St., opp. Dane St., N. X.

[^0]:

