A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

BIRD'S EYE VIEW SHOWING A PORTION OF THE TORNADO TRACK, LOUISVILLE.-[See p. 232.]

Šrientific Agmericam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year. for the U. S. Sanada or Mexico.. Cat.
One copys, six months, for the U. Canad or Mexico
One copy, one year, to any foreign country belonging to

The Scientific American Supplement

Building Edition.

Spanish Edition of the Scientific American

JA AMERICA CIENTIFICA E INDUSTRIAL Spanish trade edition of the SCIENTIIC AMERICAN) is published monthly uniform in in ize and typo graphy with the SCIENTIFIC AMEHICAN. Every number of La America is

NEW YORK, SATURDAY, APRIL 12, 1390.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 745 .
For the Week Ending April 12, 1890.
Price 10 cents. For sale by all newsdealers.

 lilum rapor.

 GORE, F.R.S..

SMORELESS GUNPOWDER

In our paper of March 22 we gave illustrations show ing the comparative optical results of firing with ordi nary black powder and the new smokeless powder by squads of troops in the French army. On the 1st inst a further test of the new explosive took place near Paris, under the auspices of Gen. Saussier, on which occasion some regiments of infantry riflemen and bat teries of artillery took part. This is believed to be the most extensive field trial of the new powder that has so far occurred, and appears to have been attended with much success. The firing frow cannon and small arms was continuous, but without smoke, and the military people were greatly surprised. It is said it will now be necessary to change the uniform of the French soldiery, to substitute subdued colors for their red pantaloons and other bright accouterments, as the ab sence of smoke renders the gay figures of the men very conspicuous when in action
One of the earliest forms of smokeless explosives is the well known guncotton. Then came dynamite and other explosives, such as blasting gelatine, the bases of which are nitro-glycerine, from which the present smokeless powder is directly produced. The improve ment by which the nitro-glycerine compound or ex plosive gelatine is made serviceable for military pur poses is by Col. Hess, and consists in incorporating with nitro-glycerine a larger proportion of nitro-cotton than is used in making the blasting gelatine, then adding camphor, which latter ingredient serves to promote the union of the two explosives, and at the same time dead-
ens the violence or reduces the rapidity of the explosion of the substance. In appearance the substance called smokeless powder is horn-like. It can be rolled into sheets, pellets, or any desired form. It, in fact, resenbles in many respects those well known forms of col lodion or dissolved nitro-cottons popularly termed xylonite and celluloid; both of which, although highly inflammable, are not in the ordinary sense explosives Those who desire to gain an authoritative knowledge of the nature and production of smokeless powder and other high explosives of the same family will be inter ested in the excellent paper on the subject by Sir Frederick Abel, given in full in our this week's Sup PLEMENT.

A NEW DECISION BY THE SUPREME COURT RELAT

ING TO FOREIGN AND AMERICAN PATENTS
An important decision has lately been rendered by the Supreme Court of the United States, touching the valdity of American patents in their relation to prior foreign patents. The American law provides that where a foreign patent has been granted for an inven tion, the subsequent American patent for the same, in stead of running for 17 years, shall expire wheneve the foreign patent expires. Heretofore, the American courts have interpreted this law to mean that whenever for any reason the prior foreign patent became dead, the American patent shared the same fate. This proved to be a most disastrous decision for American patentees. Nearly all European patents are granted on the install ment plant ; that is to say, the patent is issued for th term of 14 or 15 years, subject to the payment of an annual installment; subject also to working within a
year or two years, subject to the continuance of the year or two years, subject to the continuance of the working, and other inconvenient conditions. Failure to make one of the payments terminates the patent at once, and under the American decisions such termin ation of the foreign patent also terminated the life o the American patent.
The injustice of such laws and the hardships thu inflicted upon American patentees are apparent Owing to long delays in our Patent Office by Interferences or by accumulation of business, the issue of the American patent is in some cases so greatly delayed that it becomes necessary to take the foreign patents before the American patent is allowed ; and heretofore, when this has been done, the patentee has subjected himself to the risk of losing his American patent, in the manner above described. Several very valuable patents have been so lost.
The Supreme Court has now corrected this obnox ious interpretation. In the case of Pohl v. the Anchor Brewing Company, decided March 24, 1890, the court holds as follows

There is nothing in the statute (Revised Statutes section 4,887) which admits of the view that the dura tion of the United States patent is to be limited by anything but the duration of the legal term of the foreign patent in force at the time of the issuing of the United States patent, or that it is to be limited by any lapsing or forfeiture of any portion of the term of such foreign patent, by means of the operation of a co
"Section 4887, Re is statute
id that the United States patent is to be so limit as to expire at the same time with the expiration of the term of the foreign patent, or, if there be more than one, at the same time with the expiration of the term of the one having the shortest term."
This decision will be hailed with satisfaction by American inventors, as it will enable them to apply for
foreign patents, in cases where they are obliged to do
so, before the issue of the American patent, without risk of altogether losing their American patents.

STOCKING THE HUDSON WITH SALMON

The success which has attended the efforts of the United States Fish Commission, co-operating with the commissioners of the State of New York, to increas the number of shad in the Hudson, gives good ground or the belief that their efforts to make the Hudson a salmon river will be equally successful.
Owing to the great increase in the population of the country and the rapid extension of railroads, there has been a broadening of the market for fish, so that pro ducts of the Hudson, for instance, are being served on the tables of consumers as far west as Omaha, and probably beyond that point. The entire exhaustion of many streams would have undoubtedly resulted from this increased demand had it not been for the equally rapid growth of methods for the artificial propagation of fish and the restocking of the streams. One result of his work is shown in the case of the shad, which wa becoming very scarce in the Hudson River when the work of the fish commissioners was commenced, but which last season showed the largest catch in many years, $1,508,548$ being taken.
The Hudson is about the most southerly river in which it can be hoped to successfully propagate salmon Salmo salar), though they have been caught in the Delaware. When Hendrick Hudson ascended the rive which bears his name, he wrote in his journal : "Many salmon, and rays very great;" and when he had got beyond the Highlands he wrote again, "Great store of salmon in the river." The rustics along the bank of the river objected to ine introduction of Robert Fulton's steamboat because it would scare away all the fish, and there may be found those who will cite the improvements of modern times as the principal caus for the entire absence of salmon in the river when the commissioners commenced their labors. Col. Marshal McDonald, who is now at the head of the United States Commission, however, says there is no evidence going to show that the Hudson was ever a salmon river.
That salmon have heretofore been unfamiliar to the fishermen along the Hudson is indicated by the fact that it is only a few years ago that one was caught a Yonkers, and the captor upon cutting it open and find ing it red inside, threw it a way as being uneatable.
Some fish culturists have been very skeptical in r gard to the success of the attempt to make the salmon thrive in the Hudson, but the plan of restocking the stream has been resolutely followed by the presen commissioners, the work being under the special car of Mr. Fred. Mather, the supeintendent of the State hatchery at Cold Spring Harbor, L. I. In 1880, Mr. Mather suggested to Professor Spencer F. Baird, the United States Comwissioner of Fisheries, that the Hudson was well adapted for the salmon, and the lat ter determined that the attempt should be made to tock the stream with this delicious fish. A hatcher was finally located on Long Island, and the plantings of fry (small fish) in the tributaries on the Hudson have been as follows

1882.	225,000
1883.	245.000
1884.	425,000
1885.	320,000
1886.	300,000
1887.	140,500
1888.	440,000
1889.	568,188
1890, about.	500,000
Total.	3,163,688

In January eggs are sent to the Cold Spring hatch ery from the Penobscot River, Maine, by the United States Fish Commission The Penobscot, by the way had become nearly depleted of salmon, but owing to efforts similar to those which are being pursued on the Hudson, it now abounds with these fish.
To avoid being obliged to take the chances of cap turing fish with the spawn in just the right condition, Mr. Charles G. Atkins found that he could keep the fish in pens until their spawn ripened, and thus obtain much larger quantities of it. The spawn is stripped from the female fish and the impregnation with the nilt of the male is effected simultaneously. The first sign of development in the egg is the appearance of a distinct line, which is what afterward becomes the vertebra of the fish. Then the eye appears, and this soon becomes the most prominent feature, and indicates that the eggs are ready for transportation. They are packed in spagnum moss and shipped in boxes with very little loss or damage. When the boxes are opened the temperature is tested, and by sprinkling the eggs with water they are gradually brought to the temperature of the breeding troughs, into which they are placed. These troughs are supplied with water which comes from inexhaustible springs in the immediate vicinity of the hatchery. When the egg hatches, the yolk is seen to be attached to the abdomen of the embryo fish, which lies on its side and shows great weakness. Gradually the yolk is absorbed into the body, which furnishes substance until this has entirely disappeared. ifty the fish begins to seek for itself. From forty to
from the fish to the reception of the eggs at the hatchery, and a little longer period is consumed in the process of hatching. The young fish, or fry as they are called, are placed in tin cans protected by wooden jackets and sent, during the latter part of April and up to the middle of May, to their places of destination. Tributary streams of the Hudson which are thought to be best adapted to the growth of fry are selected, and much planting has been done about North Creek, at the terminus of the Adirondack railroad.
In Prof. Baird's report on the "Sea Fisheries of Eastern North America," the artificial propagation of fish is referred to as follows
"According to reliable estimates not more than 1 egg in 200 hatched naturally in the waters produces a fish capable of feeding itself, this representing by far the greatest expectancy of destruction in the number of eggs laid by the female. On the other hand, artificial impregnation and propagation should give us not less than 175 , or even more yet, of the 200 -a vast difference, which could not fail to tell in the result. In other words, the proportional result of artificial hatching is
175 fold that by the natural spawning of the same fish. A part of the loss of eggs by the natural process is due to imperfect fertilization, and it is here that artificial propagation has the advantage in securing the contact of the milt with all the ripe eggs, leaving an insignificant fraction not fertilized."
The eggs, as well as the young fish, have to encounter a whole host of enemies, the dragon fly in the larva and pupa state, for instance, destroying great numbers of them. Sawdust, which is allowed to pass into the streams, is very injurious, as it covers the spawning beds and the turpentine poisons the fish. In the hatcheries the breeding troughs are covered with a coating of coal tar to prevent the exudation from the pine, which causes a blue swelling in the yolk and
finally the death of the fish. A law was passed imposfinally the death of the fish. A law was passed imposing a penalty for throwing sawdust into fish streams, letter.
It is thought that the salmon, in seeking the sea, do It is thought that the salmon, in seeking the sea, do
not proceed beyond the same latitude as the river down not proceed beyond the same latitude as the river down
which they came. The first migration takes place when the males are three years of age and the females four, and they unfailingly seek the same stream in which they were reared. The fish of one river differ slightly in appearance from those of another river in the same vicinity.
In regard to the wonderful migratory instinct of salmon, Lord Dunmore says that he caught on his property in the Isle of Harris, in the Hebrides, some twenty or thirty salmon. These he marked and carried alive in his yacht to the opposite side of the island, where they were all turned into a lake. In the course of the same season in which they were transported it was ascertained that some of these same fish had come back again, all the way home, a circuit of forty miles at least through the pathless waters of the great Atlantic, passing several rivers in their journey, up which they might have gone had they not preferred their native stream.

Very little is known of the salmon for a large portion of the year, but the impulse to seek the spawning beds at the head waters of the rivers brings them for a com paratively brief season within reach of man.
This reproductive instinct is so
This reproductive instinct is so strong in this fish that it will pass seemingly insurmountable barriers to reach the spawning grounds. Statements more or less exaggerated are made as to how high the salmon will
jump in attempts to passdams and waterfalls; but Mr. jump in attempts to passdams and waterfalls; but Mr. pool from which to start, the salmon will jump from six to eight feet. In order to permit the fish to pass the dams, fishways have been built at Troy and Schenectady, and the Legislature of New York has provided for the building of two more, one at Mechanicville and
the other at Northumberland. This will allow the fish the other at Northumberland. This will allow the fish to run 45 miles above Troy. There is a bill now before the Legislature requiring all new dams erected within the State to be provided with fishways, of which there are a number of designs, but all of which have the same purpo
dam.

As to the results of the efforts so far made toward the propagation of salmon in the Hudson, it may be said that while it is too early to expect any large catch of fish, the number taken each year has been increasing. There is a law against catching the fish in nets, but they may be taken with hook and line, and one was thus caught at the Troy dam in 1886 which weighed $141 / 2$ pounds. There is a record of 134 being caught in 1888, from four to five hundred in 1889, while the season fruitful of all. The gentlemen who have in charge the work of stocking the Hudson River with salmon are emphatically of the opinion that the results so far are entirely satisfactory, and that there is no doubt what ever that the salmon will in time be abundant.

Electricity moves 288,000 miles per second; light moves 192,000 miles per second ; a riffe ball moves 1,460 feet per second.

PATENT OFFICE SALARIES

During several years past we have repeatedly called attention to the extremely inadequate salaries paid to important officials of the Patent Office. The necessity of increasing the wages in order to secure and retain in the bureau the services of skilled and experienced individuals is self-evident. At the present time the salaries are so low that the business of the Patent Office greatly suffers by the frequent withdrawal of efficient helpers, who would not think of leaving if adequate compensation were given. The interior working of the Patent Office is about as follows: When a man succeeds
in passing the required preliminary examination in the sciences and enters upon an employment at the bottom of the ladder, that is to say, as third assistant examiner, he receives a salary of $\$ 1,400$. If, on further examination, by good conduct and success in aquiring useful experience, he rises a notch to the post of second assistant examiner, he gets $\$ 1,600$, then as first assistant $\$ 1,800$; finally, when by extended experience and long study he reaches the highest round in the ladder, that of principal examiner, he is paid $\$ 2,500$ a year. His responsibilities are now greatly increased, he is in fact,
under the law, constituted both judge and jury, in respect to the grant of patents and the allowance of pat ent claims. There are few positions in the range of government service wherein scientific ability, know and the abilities promptly to exercise these qualities is so necessary as in the office of examiner. Every consideration of policy and justice requires that the salary should be generous and adequate. The bill now before Congress (H. R. 8,632) proposes to give principal exa-
miners $\$ 3,000$, first assistants $\$ 2,400$, second assistants miners $\$ 3,000$, first assistants $\$ 2,400$, second assistants
$\$ 2,000$, third assistants $\$ 1,600$, and fourth assistants $\$ 2,000$, third assistants $\$ 1,600$, and fourth assistants upon Congress the immediate passage of the bill.

Astronomical Notes.

The Eclipse of the Eighth Satellite of Saturn as Seen at the Lick Observatory on November 1, 1889.-The eclipe of Japetus, the eighth satellite of the plane Saturn, was observed at the Lick Observatory on
November 1, 1889 . Its course was through the shadow of the outer ring, through the Cassini division, into the semi-shadow of the Crape Ring, into the deep shadow of the Crape Ring, and thence into that of the globe. During each interval of its progression through the rings, the satellite shone brightly in the sunlight. Owing to the short interval of time between the rising of Saturn and daylight, only a portion of the rare phe nomenon was visible, when the satellite reappeared shadow of the inner bright ring, into which it disappeared. When it first emerged from the shadow of the ball, it appeared near the satellites Tethys and
Enceladus, and grew brighter and brighter. After Enceladus, and grew brighter and brighter. After
fifteen minutes it passed into the shadow of the Crape Ring, and decreased in brilliancy until it en tered the shadow of the inner bright ring, into which it vanished. Mr. Barnard, who observed the eclipse or series of eclipses, deduces the following conclusions "These observations, therefore, tell us that the Crape Ring is truly transparent, the sunlight sifting through it, that the particles composing the Crape Ring cut off an appreciable quantity of sunlight, that these parti cles cluster more thickly, or, in other words, the Crap Ring is denser, as it approaches the bright rings."
New Double Stars. - Among the double star discoveries at the Lick Observatory within the last year is a star of the seventh magnitude (D. M. $30^{\circ}, 4,809$ near 7 Pegasus; 28 Andromedæ; the fifth magnitude tar 2 Andromedæ, a close pair, the components un equal and the distance only $0^{\prime \prime} .8$; 2 Piscium ; W XXII 03 ; a star of the sixth magnitude, 44 Cassiopeiæ, dis tance of the small companion $1^{\prime \prime} .7 ; \Sigma 2,824$, small sta $1^{\prime \prime}$ distant ; the star D. M. $63^{\circ}, 1,618$, companion at a distance of $4^{\prime \prime} .3$; Herschel's companion to φ Aquari proves to be a close double star, distance of attendan $0^{\prime \prime} .15$; several new pairs of double stars in the Pleiades, ncluding one near Alcyone, the two companions being separated by a distance of $0 " .3$, and of the ninth magnitude; and another pair of the $111 / 2$ magnitude, distance $0 " .4$, following Pleione (28 Tauri). Many stars supposed to be double are found to have minute companions. These include: Herschel's double star in the cluste and nebula Messier 8. The 36 inch telescope has shown
that the largest star of Herschel's pair is a close pair 67 Ophiuchi, known as a wide double star (54"), found to have a faint companion at a distance of $6^{\prime \prime} .8$ the principal star (of the sixth magnitude) of the double star $\Sigma 2,816$ is seen through the large refractor with a minute companion at a distance of $1^{\prime \prime} .5$; and the $\operatorname{tar} \alpha$ Cassiopeiæ, to which Herschel ascribed a companion of the ninth magnitude at a distance of $63^{\prime \prime}$, is seen with a faint star at $17^{\prime \prime} .5$.
The double star γ Andromedæ and the binary star 7 Tauri are seen to be rapidly changing their compa nions approaching each other.
Photograph and Spectrum of Davidson's Comet.The comet which was discovered by Mr. Davidson at Queensland on July 21, 1889, was photographed at the
Lick Observatory by Mr. Edward E. Barnard, on July

30, with the new Willard lens, after an exposure of 90 minutes. The comet presents a round head and a fan shaped tail, growing narrow toward the root. The photographic brilliancy of the comet was calculated and found to be $10,000,000$ times fainter than the ful moon. This is the first time that the light of a comet has been measured with accuracy. The total amount of light given out from a comet may, therefore, be determined by frequent photographs, which will show its variations in brilliancy from day to day, and through this method a means may be found to discover the en rgy of the forces which cause the comets to emit more light as they approach the sun.
The spectrum observed with the 12 inch equatorial and the 36 inch refractor was found to be fainter than the pectrum of a star of the same relative size-the sixth magnitude-owing to the wide diffusion of light from the comet instead of its concentration into a single point. The coma resolved itself into three bright bands, resembling the carbon in the blue flame of a spirit lamp, while the nucleus presented a continuous spectrum.
The Markings on the Planet Mars.-M. Flammarion has recently contributed to the Bulletin de la Societe Astronomique de France two long articles on the markings of the planet Mars, which are accompanied by a number of drawings of the planet, dating from 1659 to 1888. He attributes the changes which have taken place on the surface of Mars to the planet itself, after making allowances for variations in the methods of different observations, atmospheric influences on Mars and on the earth, and variations in instruments and in he position of the axis of the planet. His conclusions are based on the probable, but not yet proved, hypothesis that the dark markings on Mars represent bodies of water. He says :
"There are permanent markings on the surface of Mars, which in all probability represent seas, lakes, regions of water of various kinds, etc. (It has long been known that on this planet there are polar snows which melt in summer, clouds, and the vapor of water, shown by spectroscopic observations.) These markings are permanent; they are seen to-day in the same regions where they were observed in the seventeenth and eighteenth centuries. They are not atmospheric products, then, such as are shown, for example, on Tupiter. However, while they are permanent, they are not invariable. They change both in extent and in depth of tone, in different years, and, without doubt, during different seasons of Mars. There are some regions which are specially variable. These appear to hold a middle place between continents and seas, and to be marshy lands, which are in turn elevated above and submerged below a thin layer of water. The continents of Mars appear to be flat, and subject to inundations in nearly all their extent. The northern hemisphere is more elevated than the southern; the seas are chiefly in the southern hemisphere, and they do not appear to be deep. The evaporation on Mars is without doubt rapid and considerable. Millions of cubic yards of water pass readily from the state of vapor to the state of liquid, and millions of acres pass from the continental to the maritime aspect. Water is, perhaps, not the only agent concerned in these changes. The general order of things is very different on Mars and on the earth.'

the New York City Term Hudson River Tunnel.

Early on the morning of Sunday, March 30, the caisson at the foot of Morton Street, which is the eastern starting point of operations on the Hudson River tunnel, was found to be on fire. It is supposed that a workman searching for leaks with a candle lighted some oakum used for calking the joints. The caisson was at once flooded to prevent its destruction. But after the fire was extinguished, it was found impossible to get it clear again. It was evident that the fire had caused a leak in the caisson, so that the water could not be expelled. Attempts were made to find the leak by sending down a diver, and much trouble was experienced, owing to the difficulty of access. It is hoped, however, that the damage will soon be repaired, and that operations will be again in full progress. The work is now in the hands of the English contractors, who are prosecuting it by means of a shield differing from anything hitherto employed on the work, and which is said to be new to American practice.

Instruction of the blind in China

Rev. W. H. Murray, a missionary at Peking, has devised a system for teaching the blind, and has reduced the Chinese language to 408 syllables. By this system the blind have been enabled to learn to read with marvelous facility. The blind themselves are employed in the stereotyping and printing of books, which are produced at an amazingly low rate, compared with books embossed for the blind in this country. Among the Chinese the blind are regarded with great consideration, and they are watched with intense interest when they read with their fingers from the books which they carry in their hands.

AN IMPROVED PRINTER'S GALLEY
A printer's galley constructed to dispense with the ordinary beveled locking strip and quoins is shown in the cut, and has been patented by Messrs. Leonidas R. and Abraham D. Hoss, of Deer Lodge City, Montana. In one side flange of the galley are formed recesses in which are hinged the outer members of toggle levers,

HOSS' PRINTER'S GALLEY.
the inner members of such levers being hinged to a strip adapted to bear against the type, this strip at one end being fitted to ride in a dovetail groove in the end flange of the galley. The toggle levers mounted in the recesses at the side of the galley are preferably connected to heavy springs, as shown in the plan views, where they are represented in both folded and open position, thus pressing the type-holding strip in yielding contact with the column of type placed in the galley.

AN IMPROVED DOUGH KNEADER

The device to facilitate the kneading of dough shown in the accompanying illustration represents an im-

melendy's dough kneading machine.
provement on a formerly patented invention of the same inventor, Mr. Bryant H. Melendy, of No. 44 Grant Street, Battle Creek, Mich. A metallic plate is held in place by a screw on the transverse inclined partition at the rear of the trough, in the sides of which are suitable recesses for the trunnions of a roller, on one of which fits a crank arm. The upper ends of the recesses in which the trunnions are journaled connect with outwardly extending slots in which are held blocks fulcrumed on pins or screws in the side edges of a transversely extending front board, the latter being pivoted near its upper edge on screws in the sides of the trough, whereby the blocks and front board may be swung outwardly a way from the roller, and the latter lifted out, when desired. Hooks on the outside lock the blocks and front board in place, the lower edge of the latter resting on the top of the roller. On a transverse support on the under side of the roller a scraper is adjustably secured, as shown in the small sectional view. The crank handle has a cross-shaped off set with different slots, whereby provision is made for readily lengthening or shortening the handle in relation to the trunnion. The kneader is secured to a table by means of a bracket with inwardly extending projections and a thumb screw.

Once more has the greatest natural gas well been struck. This time it is in Ohio, between Stuartville and Van Buren. The gauge shows over $35,000,000$ fee of gas per day.

The Bailey Disinfectant.

A very simple method of continuously disinfecting sanitary fixtures is being introduced under the above name. A very efficacious agent fills solidly a tin box with perforated cover. When placed in water the contents slowly dissolve, the perforated cover preventing escape of the solid. The water in which this is im mersed is turned pink, and acquires strong deodorizing and disinfecting properties. A half-pound can will make over one hundred gallons of disinfecting fluid, and when placed in the tank of an ordinary water closet will, it is said, last from eight to twelve weeks. For use in flush tanks, the box is thrown into the water and left there, the string which is attached to the box being fastened to a nail or elsewhere, so as to prevent the box from interfering with the outlet valve. The Bailey disinfectant has been used in the office of this paper for some time past, with satisfactory results, and being non-poisonous and non-odorous, it can be used liberally in preparing water for flushing vessels, washing ice chests, and in warm weather its many uses will be obvious wherever a disinfectant is needed. It is prepared and furnished by the Bailey Disinfectant Co., of Boston, Mass., who will be pleased to furnish any further information.

Power Looms for weaving velvet.
French improvements consist in a device for working the healds. Instead of having cams of different forms, arranged as usual on an ordinary shaft, according as wanted, a single drum is used, and on this, at required points, segments cut in a uniform manner at both extremities are brought-the only difference between them being the length of the circumference they occupy on the drum. The drum is channeled with circular grooves, into which the segments adjust, and in which they are fastened by small bolts. The holes receiving these are arranged on the drum at irregular intervals, each corresponding to a passage of the tram. A second improvement relates to the knife, which, in the double looms, may separate the two tissues by cutting the nap which unites them. The knife, mounted on a runner, which is transverse to the loom, is generally worked by a string passing on return pulleys, and the ends of which are attached to one of the two necks of the pulley; this latter has a circular to and fro movement which is sufficient to make the knife pass from one side to the other of the loom. This to and fro motion is obtained by means of a cam acting on a slide, this latter acting in turn on a pinion which transmits its alternate motion to the pulley.

AN IMPROVED DRAINAGE AND SEWERAGE SYSTEM
In the system herewith represented, which has been patented by Mr. William Hallock, of Middletown, N. Y., the manholes are arranged on levels and connected so as to seal the pipes to prevent emptying, except as to the surplus entering the reservoir or manholes, the first illustration showing the system applied to lowlevel lands or lands flowed by tide water, and the second illustrating another arrangement for sewerage. In the first case the tide water is confined by means of embankments, etc., and a small reservoir is constructed at a proper distance back from the river or other body of water, to receive any remaining tide water, and al water from ditches, small streams, etc. A pipe leads from this reservoir to a deeper manhole, and from a lower level in this manhole a pipe leads to a discharge point below the low-water mark, there being fitted in the latter pipe a cut-off gate to be closed during the in flow of the tide and open after the tide has receded be low the level of the water in the manhole, and this be ing repeated with each tide until the drainage is com plete. In draining a long distance from the low lands to the iver, a succession of manholes should be employed between the reservoir and the river, the discharge rom the last one being above the enrance of the inflow pipe. In the second gure is shown a resrvoir or cesspool located on a rise of round, the pipe leading therefrom to uccessive manholes and thence to a dis charge point in the main sewer, there being a cut-off for
use when desirable
between the last manhole and the sewer. In operation the flow must first be started throughout the whole sys tem, by pumps or other means, to fill all the pipes and manholes, the latter being filled above the entrance of full, forming of the whole system a perpetual siphon.

HALLOCK'S DRAINAGE AND SEWERAGE SYSTEM.

the rear of the vertical recess in the drawhead, and near its base, is a shoulder adapted to engage a knob on the end of the coupling bar, by which the latter is supported in the position shown in Fig. 3. This projection is of such shape that the jar ordinarily produced by the coming together of two cars will release the coup ling bar, when, as it drops, the arms on its outer end will engage the hooks on the opposing drawhead. Un coupling is effected by means of an arm pivoted at the rear of the vertical recess in the drawhead, and having a forwardly and upwardly extending portion adapted to engage the under side of the coupling bar and raise it vertically, this arm being operated by means of a shaft extending to the sides of the car, where it is provided with crank handles.
This invention has been patented by Mr. Samuel Seay, Jr., of the U. S. Army, Willetts Point, L. I., N. Y.

Red Glass.
A new red glass in Germany appears to be attracting a good deal of attention. Besides its use for the manu facture of bottles, goblets, and vases of various kinds, it will be found applicable in photography and in chemists' and opticians'laboratories. This glass is produced by melting in an open crucible the following ingredients : Fine sand, 2,000 parts; red oxide of lead (minium) 400 ; carbonate of potash, 600 ; lime, 100 phosphate of lime, 20 ; cream of tartar, 20 ; borax, 20 ;
red oxide of copper (protoxide), 9 ; and bioxide of tin, 13 parts. By a single melting a transparent red glass is thus obtained of a very fine quality, of which various objects can be manufactured directly, without it being necessary to submit the glass to a second heating with the view of intensifying the color.

AN IMPROVED COTTON CULTIVATOR.
An implement designed to effectually scrape the surface of the ground between rows of cotton plants at each side of the center, and throw the dirt upward over the roots, is shown in the accompanying illustration,

bailey's cotton cultivator.

and has been patented by Mr. William W. Bailey, of Altus, Ark. The stock of the implement is made in two sections, each consisting of a straight metal bar or beam, the forward ends being bolted to the clevis and the rear ends curved downwardly and forwardly, and twisted to give the proper incline to the front scrapers, which are attached thereto. The right hand section of the stock is shorter than the left hand section, the foot of one being about six inches in advance of the other. The inner edge of each scraper is turned up at the bottom to throw the grass and dirt in the direction of the center of the rows. The foot of each stock section has a shoe, rigidly attached at its forward end to the extremity of the curved portion of the stock, a brace rod being bolted to the rear end of the shoe and to the outer face of the stock. The handles of the implement are in the shape of ordinary plow handles, their forward ends being secured to the rod connecting

THE LOVELL DIAMOND SAFETY BICYCLE

the rear horizontal portions of the stock sections. This rod allows the stock sections to be drawn close together or carried quite a distance apart. Attached to each of the sections, on its curved portion, is a rearwardly projecting curved arm, adapted to form auxiliary
stocks, to which any approved form of shovel plow may be attached, these plows coming immediately behind the front scrapers and breaking the ground at or about the center of the scraper track, while throwing the dirt previously scraped upward and outward to the roots of the plants. If it is desired to simply scrape the ground between the rows of plants, the auxiliary stocks car rying the shovel plows may be readily detached.

Progress of Ramie.

In the treatment of fibers, such as ramie, hemp, flax etc., in which the fibrous is cemented to the liqueous portion of the stem, and the separate fibers cemented to each other, decorticating machinery alone, it is stated, is never likely to be entirely satisfactory. The solution of the problem is likely to be found in a combination of mechanical and chemical methods. Mr. Dezwarte, an eminent French chemist, has dis covered such a process, by which he claims to be able to decorticate and degum ramie in any quantity, without injury to the fiber, in about two hours. Beautiful specimens of various fibers treated by his process have been prepared as substitutes for silk, cotton, woolen, etc. M. Hermant, C.E., Professeur et Chef des Travaux Chimiques à l'Institut Industriel du Nord, has tested this process, and certified that the cost of treating 100 kilogrammes of ramie will be from 6 to 8 francs, and, if treated on a large scale, much less; that the time required for decorticating is about one hour, and for degumming about the same length of time; that the process is not only very practical and economical, but must be a great success, and that the materials thus prepared can be spun on flax ma-
chinery, dry or wet (cold). John Ronald Shearer, of London, thinks the ramie field of the future will, undoubtedly, resemble the sugar cane field of to-day, light tram lines serving to carry the stems to the central depot for treaiment in the cheapest and most expeditious manner.

THE LOVELL DIAMOND SAFETY BICYCLE. This bicycle combines all the features and improvements of the modern safety. The frame is of the popular diamond shape, is cold-drawn of weldless steel tubing: and steel drop-forged parts. The tubing used is imported from the Credena Iron and Steel Works, of England. The wheels are 30 inches, with $7 / 8$ inch crescent-shaped rims. Each wheel has 40 direct spokes of No. 11 steel wire. The hubs are drop-forged, of steel, and the tires of the best quality of Para gum rubber. Special attention has been given by the makers to the chain, and they have adopted an entirely new and original method for adjusting it, which does not in any way affect the strength of the chain or the bracket any way affect the strength of the chain or the bracket.
The chain is of English pattern, and has been used in The chain is of English pattern, and has been used in
England with much success. It is so constructed that England with much success. It is so constructed that
its bearing surface is so small that it reduces the friction to a minimum. Each chain is run on a testing machine before leaving the factory, and is practically non-stretching and needs but little adjustment. To obviate the trouble and inconvenience of oiling the chain when new, each one is boiled in a preparation of oil, which thoroughly lubricates all joints and produces an easy-working chain. The device for adjusting the chain is original and effective. The drop-forged steel bracket, the crank shaft, and ball bearings swing on a separate steel axle, which has a long parallel bearing between the heavy forked-shaped section in the frame. This forked-shaped forging is brazed solidly to the frame, and is a permanent fixture. The motion of the bracket being fore and aft in the solid section of the frame, does not admit of any lateral motion. This bracket is adjusted by a nickeled rod with nut and set nut. The main feature of this adjustment is that the bracket is held stationary, while on other front chain adjustments there is a tendency, when the power is applied, to spring the front bracket sideways. The saddle, which is of the suspension pattern, is another novel feature, and has a combination front and rear spring, which makes riding easier, and also an are adjustment allowing the saddle to be placed at any angle at the wish of the rider. The brake, which is very powerful, is of the direct plunger pattern. Ball bearings are used with every running part of the machine. The front wheel runs on 18 balls $\frac{5}{16}$ of an inch diameter. The crank shaft bearings contain 24 balls of same size. Each pedal bearing has $22 \frac{3}{16}$ inch balls. Owing to the great strain on the rear wheel, owing to three fourths of the weight of the rider being placed on it, a separate set of bearing cases of special design has been made, which is bolted in the section of the frame in such a manner that no matter what weight or strain is brought upon the wheel, it does not cramp the bearings or interfere with ease of running. The machine is finely finished, each enameled portion of the wheel receiving three coats of enamel, thoroughly baked on the frame, wheels, mud and chain guards being similarly treated. The handle bars, brake and brake lever, nuts, bolt ends, and stay rod are handsomely nickel plated The weight of the cycle is 49 pounds.
This machine is manufactured by the John P. Lovell Arms Co., Boston, Mass.

Luminous Fountains.

For several months past the Grand Hotel at Paris has transformed its fountain in the courtyard, where celebrities of all nations are wont to congregate, into a luminous fountain, flashing at night with all sorts of varied colors. A rich Parisian, M. Gaston Menier, has fitted up one of these fountains on his dining table the works of which are smothered in a huge bouquet a tasteful and novel addition to the enjoyment of dinner.

IMPROVED COMPRESSED AIR PASSENGER CAR.

MACHINE FOR DISTRIBUTING POISON ON PLANTS The accompanying illustration represents a machine for dusting poisonous powders on growing plants, such as cotton or potatoes, to rid them of insects. It has been patented by Messrs. George R. and John W Brown, of Pledger, Texas. The axle of the sulky which supports the operating parts is bent upward or arched at the center to pass over the plants, and a main countershaft operated from one of the ground wheels imparts motion to a fan blast and poison agitator mechanisms. The hopper containing the poison is supported at the rear end of the machine, its tapering

BROWN'S POISON DISTRIBUTOR

bottom opening into a discharge pipe which enters the top of an air blast pipe connected with the casing of a fan, the poison discharge nozzle being fixed in the position shown, or adapted for adjustment to allow of the discharge of the poison downward to either side. The discharge of the poison is controlled by a valve actuated by a rod connected to a lever fulcrumed to the machine frame, and in reach of the attendant on the seat, there being a catch plate with a series of holes o receive a pin, by which the valve may be locked at the required adjustment. Within the hopper is an gitator rotated by bevel gears from a shaft at its top receiving its motion through a sprocket chain from the main countershaft, the air blast fan being also driven by a chain belt from the same shaft. By the disengagement of a clutch, by means of a lever within convenient reach of the driver, the machine is allowed to travel forward or backward without operating the main countershaft and its connected poison-distributng mechanisms.
The machine is being manufactured for the inventors by Messrs. Avery \& Son, agricultural implement manufacturers, of Louisville, Ky.

COMPRESSED AIR PASSENGER CARS

The use of compressed air as a motor power for street cars has heretofore not proved commercially successful, owing chiefly to the very high pressure employed. These conditions entailed a great addition to the amount of dead weight that had to be moved. We need hardly point out that the loss in compressing air increases rapidly, the higher the pressure goes. In the systems to which we refer, the stored pressure varied from 450 pounds to 1,500 pounds per square inch, although a pressure of but little over 10 pounds was sufficient to propel the car. To further spin out the air supply, heating apparatus was applied, involving a still further load of dead weight. These arrangements necessitated the use of a separate locomotive, or an addition to the car equivalent to a separate locomotive, besides entailing the excessive cost of compressing the air to such high pressures. With these drawbacks it is not surprising that the application of compressed air in this manner did not work out with satisfactory economy in actual practice. We have, however, recently investigated the working of a highly ingenious system of tram car propulsion by means of compressed air, which promises to solve the problem. This is Hughes \& Lancaster's low pressure compressed air system, which we have had the opportunity
of examining at Chester. In this system the motive power is compressed air stored in the car itself at the comparatively low pressure of from 150 to 170 pounds. The air reservoirs on the car, when exhausted, can be recharged with a fresh supply of compressed air automatically, at frequent points along the route. The motor, which is one of Rigg's rotary engines, is also carried on the car, thereby a voiding the necessity of a carried on the car, thereby avoiding the necessity of a
separate locomotive engine. The car moves along withseparate locomotive engine. The car moves along with-
out any visible agency, the machinery being all covout any visible agency, the machinery being all cov-
ered in and out of sight underneath it. The air need only be compressed to one-third or even one-tenth of the pressure previously used, and is stored in light receivers which can be made to form portions of the main framework of the car itself.
In carrying out this system, a compressed air pipe is laid under the road or footway along the tram route, and is kept charged with compressed air by means of air compressors at a central depot, and branches are led air compressors at a central depot, and branches are led
off at suitable points to valves fixed under the roadoff at suitable points to valves fixed under the road-
way, close to the tram rail. Each valve is inclosed in way, close to the tram rail. Each valve is inclosed in
an iron box, covered with a lid level with the roadway, like an ordinary street manhole cover. A short piece of grooved rail, about 15 or 20 feet long, is laid alongside the tram rail at each side of the box. When the driver wishes to take up a fresh charge of air, on approaching one of these valve boxes he lowers a plowshaped scoop into the groove, the point of which inserts itself under the front edge of the lid, which it gradually turns back upon its hinges, as the car moves along, until full open. This arrangement will be seen on reference to our engraving, which shows the tram car we recently saw tried at Chester. The car being then over the open valve box, a valve which is carried on the horn plate is free to ergage with the valve in the street box. The car valve is guided into the right position for passing on to the arm of the street valve by means of a projection which passes into a guide formed on the inside of the cover. The car valve is double-ended, so that one end is always left in position for entering, whatever direction the car may be going, and the street valve is provided with four arms, so that and the street valve is provided with four arms, so that
it is always left with its arms at the right entering angle for either direction when the car leaves it. As soon as the car passes clear of the valve box, the lid closes of itself, leaving the roadway free from any obstruction. Generally the passage of the car through the recharg ing valve at reduced speed suffices to refill the receivers with pressure sufficient to carry on to the next recharging valve, but the driver may pull up at the valve, and stand until the full pressure is reached, which occupies but a very few seconds. On single lines the street valves would be placed at the passing places where the cars frequently have to stop, and in all cases at the regular stopping places. On heavy gradients the street valves would be placed at more frequent intervals than on the level. It is these arrangements, exceedingly simple and effective as they have been proved to be in actual practice, which enable the car to be worked with low pressure air, and the separate locomotive and heavy receivers to be dispensed with.

We append the particulars of a careful series of experiments made by Professor Unwin, F.R.S., on the Chester tramways with the Hughes \& Lancaster system, to ascertain the consumption of air on the dif ferent inclines. Some of the trials were made during wet, greasy weather, and the results necessarily varied from sundry other causes, such as interruptions, unexpected stoppages and startings, etc. The foot pounds of work done per pound of air used were found to vary from 5,456 foot pounds to 28,048 foot pounds, including all losses from leakage, etc. Taking 14,000 foot pounds as a fair average, and calculating the consumption of air on the Chester line as a representative one, upon this basis, we have the following results for the cost of motive power : Weight of 28 passenger car, including engine, air receivers, and full load of passengers=5 tons 9 cwt. Length of line $=3$ miles nearly. Gradient varying from 0 up to 1 in 18.5 . Consumption of free air -Outward journey 1,984 cubic feet, return journey 2,523 cubic feet $=2,255$ cubic feet free air average per journey. Say 2,300 cubic feet free air on the average run. Car ran 309 yards up City Road incline in 1 minute 10 seconds =a speed of 9 miles per hour. Average duration of journey one way = say 20 minutes on consumption of 2,300 cubic feet of free air. The air will be compressed to 170 pounds to insure the rapid filling of the car receivers up to 150 pounds. Power required to compress 1 cubic foot of free air to 170 pounds above atmospheric pressure in full adiabatic compression, including engine friction, leakage, clearances, etc. $=9,800$ foot pounds ; $9,800 \times 2,300=22,540,000$ foot pounds to compress the whole volume of air used during the 20 minutes' run : $22,540,000 \div 20=1,127,000$ foot pounds $=34$ gross horse power at central compressing station for onecar. Coal consumption =say 3 pounds per horse power per hour $=102$ pounds, or say 1 cwt . per hour, say at 10 s . per ton, or at 6 d . per cwt. $=6 \mathrm{~d}$. per hour, i. e., for 9 miles. Hence cost of fuel $=2 / 3 \mathrm{~d}$. per car mile. With triple expansion compressing engines concost would of course be only $1 / 3 \mathrm{~d}$. per car mile.

Examinations in the Revenue-Marine Service.
The following is the present standard of examinatio The following is the present standard of examination
or promotion in the Revenue-Marine as ordered by the Secretary of the Treasury :
FOR PROMOTION OF THIRD LIEUTENANT TO THE GRADE OF SECOND LIEUTENANT
Navigation.-Day's work; course and distance by usual methods. Latitude by meridian altitude of the sun. Latitude by one altitude of the sun near noon. (Cir. mer. alt.) Latitude by polaris. Longitude by chronometer. Rating chronometer by equal altitudes. Variation of compass by amp. and azimuths. Application of local deviation of compass. Use of charts. Ad justment and use of quadrant and sextant. Methods justment and use of quadrant and sextant. Methods
of determining errors of compass. Marking and use of of determining errors of compass. Marking and use of
hand and deep-sea lead lines. Marking and using log line. Lights, buoys, and day marks of station where candidate last served.
Seamanship.-Rigging shears and stepping masts. Rigging ship, hemp or iron rigging. Bending and un bending sails. Various evolutions of a vessel, and management in bad weather. Coasting and "Rules of the Road."
Revenue Law.-Forms and usages under the revenue la ws of the United States, and duties in boarding and xamining vessels.
Gunnery.-The general exercise of broadside and pivot guns, and small arms, as provided in the Revenue Marine.
Miscellaneous.-English composition as evinced in letter writing and formulating official reports. Signal ing.

FOR PROMOTION OF SECOND LIEUTENANT TO GRADE OF FIRST LIEUTENANT.
In addition to a general review of the foregoing opics :
Navigation.-Latitude by meridian altitude of a star Polaris or other. Time at sea by a planet's altitude General knowledge of the use of coast survey tide tables. Causes of tides as given in standard epitome of navigation.
Seamanship.-Various dimensions of standing rigging, hemp or iron, for vessels of the Revenue-Marine Service. Dimensions of spars for revenue vessels. Service. Dimensions of spars for revenue vessels.
Rigging purchases for taking in heavy weights. Sails, Rigging purchases for taking in heavy weights. Sails,
kinds and nuwbers of canvas for various purposes. Anchors and chains, kinds and sizes, for vessels of th Revenue-Marine Service.
Revenue Law.-General knowledge of revenue laws and navigation laws.
Miscellaneous.-Stationing crew: general, and fire quarters. Police and discipline on shipboard revenue marine.

FOR PROMOTION OF FIRST LIEUTENANT TO THE GRADE OF CAPTAIN.
Revenue law and navigation laws-good general knowledge. International law-a general knowledge as embraced in Woolsey's Treatise. Method of harbor surveying, as given in standard epitomes. Method of determining the seaworthiness of a vessel. Conditions necessary to make a vessel seaworthy. Stowage and trim. A general knowledge of the principles of steam ngines, and the proper care of engines and boilers of vessels when laid up or in commission. Nomenclature of the parts of vessels, wooden or iron.

FOR PROMOTION OF FIRST AND SECOND ASSISTAN ENGINEERS.

Elementary Branches.-Composition, orthography and penmanship as shown in a draft of an officia report. Arithmetic, including percentage, cube root rithmetical and geometrical progression. Elementar examples in algebra, and application of logarithms Mensuration : Capacities of the principal solids and of spaces of irregular section in all directions. Practical examples: Relative consumption of fuel at different speeds. Different sizes of engine to produce the same power. Loss by blowing. Saving by heating. Quan tity of condensing water. Time required to raise satur ation of water in boiler. Mechanics and physics. Application to safety-valve with simple and
levers. Friction. Laws of falling bodies.
Steam.-Definitions in respect to heat and steam. Methods of utilizing heat for producing motive force. Mechanical equivalent. Properties of steam. Theory of expansion, with illustrative examples.
Indicator Diagrams.-General features in relation to set of valves and efficiency of steam. Typical forms. Calculation of power and evaporations.
Boilers.-Different types, with advantages and disadvantages. Details of management and repair. Customary proportions. Composition of sea water, scale, coal, and products of combustion. Corrosion and methods of prevention. Salinometer.
Engines.-Types. Advantages and disadvantages. Features of management. Action in case of accident. Tests. Repair. Preservation.
Valves.-Poppet and slide valves. Details of construction. Method of setting. Forms of cut-off. Link motion and equivalents. Limits of expansion.
Engine Details.-Different types of condensers. Precautions in management. Air, feed, and bilge pumps. Steam gauges and principles involved.

Inspection.-Strength and properties of different grades of boiler plate, of bar iron, cast iron, brass copper, andiprincipal woods. Strength of riveted joints. Rules of Supervising Inspectors as to thickness of boiler shells and circular furnace tubes, also as to size and spacing of braces. Methods of testing iron and steel. Construction of built-up cranks. Methods of lining the different parts of engines.
Propellers.-General principles of reaction. Efficiency of paddle-wheels and screw propellers. Propor tions relative to the work to be done. Mechanical con struction of different paddle-wheels. Relation of pitch surface, and angle to diameter of screw propellers Methods of moulding, boring, and securing same.

1. Candidates will be required during the examination to make a statement of the general courses of study and reading which they have pursued since the previous examination, and are to present letters from the commanding officers and chief engineers of vessel with which they have been connected for three years previously.
2. All examinations will be conducted in writing, and the name of the candidate signed to his work.
3. A physical examination will precede the profes sional one, and if the candidate is found to be permanently physically disqualified for duty, the examination will proceed no further.
4. The official records of officers will be considered by the department before final action is had on the result of their examination.
5. No officer will be permitted to waive examination and failure to appear and undergo examination, after and failure to appear and undergo examination, after
being ordered, will be considered as equivalent to resignation, and be so treated
6. Any officer failing to pass the standard required for promotion will be given a second examination, when, if he shall again fail, he will be considered "out of the line of promotion."

Mel Rosox.-E. Daenen, a Brussels pharmacist, states that by the following method he obtains a bright rose colored, transparent, and delightfully odorous pre paration. Infuse 100 grammes of bruised red rose petals with 400 c. c. boiling distilled water for six hours. Strain, again infuse for six hours in 200 c . c. of boiling distilled water, and repeat, if necessary, with another 200 c. c. Mix the infusions, and evaporate to 170 grammes, filter, and in the filtrate dissolve 500 grammes of clarified honey and 330 grammes of white sugar.
Insect Powder is, according to a Continental house, adulterated sometimes with the flowers of Chrysan themum leucanthemum, but this should not be difficult of detection, as, according to Unger, true insect powder yields 6.9 per cent of ash, whereas the powder of Ceucanthemum flowers yields as much as $10 \cdot 1$ per cent of ash containing manganese, a constituent which is not found in the other.
Heliotrope Perfume.-Mr. E. Campe proposes the following formula in the Chemiker und Drogist for a perfume for retail sale

Oil of bergamot	11/2 oz.
Vanillin	grs.
Tincture of benz	drm
Rectified spirit.	60

Depilatory.-According to Pharm. Centralhalle, an effective depilatory is made by mixing 2 parts of barium sulphide with 1 part of starch and 1 part of oxide of zinc. The barium sulphide can be made fresh, as required, by mixing powdered barium sulphate with its own weight of charcoal, making into a stiff paste with linseed oil, and forming the mass into a roll like a sausage, which is to be placed in the fire until deflagration is complete. After cooling the mass is to be powdered, and mixed with the starch and oxide of zinc. The depilatory is to be made into a paste with water before use, spread on the skin, and allowed to remain for ten minutes. The success of depilatories greatly depends upon the freshness of the sulphide employed.
Preparation of Oxygen.-According to Volhard, small quantities of oxygen can be prepared in a Kipp's apparatus by the action of hydrogen peroxide on bleaching powder. Nitric acid is added in sufficient quantity to neutralize the lime in the bleaching powder. The oxygen contains a trace of chlorine. Quinine Pills.-M. Edmond Sohet recommends in Bull. Soc. Roy. Phar. Brux. the use of 3 drops of lactic acid to 16 grains of quinine sulphate. This, he says, makes an excellent pill mass, and the excipient is equally suitable when other ingredients than quinine form part of the pill mass.-Chem. and Drug.

Chevreul's Succession.

The chair of chemistry at the French Museum, one f the places occupied by Chevreul to his death, will soon have an official occupant. On March 3 the Academy of Sciences selected as its first choice for the position M. Arnaud, second M. Maquenne, and sent the names to the minister for his decision. The nomination is equivalent to the appointment of M. Arnaud, who at one time was an aid to Chevreul.

AN IMPROVED PENCIL SHARPENER AND HOLDER. The accompanying illustration represents a device es pecially designed for connection with school slates, to hold the pencil when not in use and afford ready means for sharpening it. It has been patented by Mr. Henry Fancourt, of Opoho, Dunedin, Otago, New Zealand. The device consists of a plate, preferably of steel or other suitable metal, adapted to be secured on the wooden frame of the slate, and having curved projections extending over one edge to form a convenient holder for the pencil. The plate has a roughened surface on which to sharpen the pencil, and several such

fancourt's pencil sharpener and holder.
plates may be employed, each having a differently shaped roughened surface, for sharpening, pointing, and smoothing the surface.

AN IMPROVED CHECK PUNCH.

A punch for cutting figures and characters out of a check or other paper, mainly designed to prevent the changing or "raising" of the sums which may be called for by such paper, is represented in the accompanying illustration and has been patented by Mr. Alvin V. Lane, of the Dallas Savings Bank Safe Deposit, Dallas, Texas. The clamping plate to hold the check in position has a central aperture coinciding with a similar opening in the table below, the plate being hinged at its rear and having a rearwardly extending arm, a spring bearing on which holds the plate normally pressed down. In standards arranged in a circle in the casing are pi voted a series of top and bottom levers, the free ends of which are adapted to pass through the openings in the center of the table and the clamping plate each top lever carrying a punch and the bottom one a die, the die and punch of each lever of a pair being a counterpart of the other. These levers are preferably arranged in the order of the figures from 1 to 0 , except that the central one is made to cut a star, a dollar mark, or other character. Each pair of top and bottom levers representing the figures is connected together, so that the levers thereof will approach each other simulta-
the cutting of each following figure. To remove the check, the hand lever at the end of the casing is turned backward, when it first cuts the star, dollar mark, or other character, at the end of the row of figures, and then raises the clamping plate to release the paper.

Coffee as an Antiseptic.

Dr. Luderitz has recently made a number of observations on the destructive power of coffee upon various microbes. He found that the organisms all died in a longer or shorter period-e. g., in one series of experiments anthrax bacilli were destroyed in three hours, anthrax spores in four weeks, cholera bacilli in four hours, and the streptococcus of erysipelas in one day. It was, however, remarkable that good coffee and bad coffee produced precisely similar effects. He believes that, as previous observers have suggested, the antiseptic effect of coffee does not depend on the caffeine it contains, but on the empyreumatic oils developed by roasting.-Lancet.

Germs

The following are abstracts from a paper by A Arnold Clark, Lansing, Mich., as reported in The Sani tary News:
"The germs of cholera and typhoid fever enter the body through the water we drink and seek the intes tinal tract. It is probable that typhoid fever cannot be communicated through the air which we breathe unless the germs in some way find their way into the stomach.
"Typhoid fever is not always spread by the drinking water. There was a severe outbreak of the disease at the State prison in 1888. The State board of health went to investigate. A bottle was exposed over the entrance to the sewer, and Dr. Vaughn afterward found the germs of typhoid fever in the sewer air collected in this bottle. Dr. Baker also carried away some germs, but his were collected in his mouth and as a result he had typhoid fever, though he did not eat or drink at the prison. It is probable, however, that the germs in some way found their way into his stomach The germs of diphtheria, scarlet fever, and consump tion, on the other hand, enter the body through the air which we breathe, the germs of diphtheria finding a favorite soil in the membrane of the throat, the germs of consumption in the lungs.

These little rod-shaped germs which cause typhoid fever have been found in the water by typhoid patients. These germs have been made to grow in beef broth, and inoculated in dogs, a regular run of typhoid fever has been produced the same as in man. The other lit tle rod-shaped germs which cause consumption have been found in the sputa from consumptive patientsyes, on the walls of rooms inhabited by consumptive patients; these germs have been sprayed into the air, dogs have been placed in the inhaling room and com pelled to breathe these germs and they have afterward died of consumption.
"In other diseases animals have not been inoculated with the germ, indeed the germ has not been iso lated with certainty, and yet we know that these diseases are caused by a living germ which multipiies and reproduces after its own kind.
"Two or three years ago a Pullman car conductor came in contact with the germs of small-pox in his car near Chicago-passed through on the Grand Trunk to Montrealand was taken sick with the disease. No pains were taken to kill the germs, the ignorant inhabit ants refused to vaccinate, declar ing it a ' wicked attempt to thwart the will of the Almighty,' and in a few months over 3,000 people in Montreal died of small-pox as a result of the one case.
"It was carried to different parts of the United States; Michigan,
neously on the pressing of the finger piece at the top the levers being immediately returned to their normal position by the action of a spring after the character has been cut in the paper. The central pair of levers, carrying a punch and die for cutting a star or dollar mark, is also connected to a bar adapted to be engaged by an arm on a shaft journaled transversely in the casing, and having at its outer end a hand lever. On this shaft is also another arm engaging the rearwardly extending arm of the clamping plate, which is raised to receive and clamp the check or paper to be stamped by slightly turning the lever, while a further turn of the lever causes the dollar mark or star to be cut in the paper. Following this, the figures representing any desired sum are cut in their proper order by pressing on the different finger pieces at the top. The lower one of the two feed rollers, through which the paper is passed, is operated by a feeding wheel to move the paper forward one notch for each complete motion of either pair of levers, thus presenting a new space for
the most exposed of any State, escaped, because Michi ban had at her great ports inspectors of travel who vaccinated all who came through, and disinfected all clothing, thus killing the germs.
"Every day in the week there are cases of diphtheria and scarlet fever in this State where the germs have been carried in the hair or clothing, where they have been carried long distances by letter, where they have ingered in the bedding or carpet, or have been hiding or years in the rubbish of the garret, as vigorous and vicious to-day as when they first emanated from the body of the infected person."

The great chimney of the Clark Thread Works, Newark, N. J., was struck by lightning twice, the trokes being 15 seconds apart, on the morning of March 28 last. The exterior of the structure was badly damaged, but it is believed the inner walls are unin jured. Repairs are now in progress. The chimney had no lightning rod.

AN IMPROVED STOVE-PIPE SHELF.

An adjustable stove-pipe clamping collar, having bracket arms with detachable shelves, and arms ad justably connected to the bracket arms, for conveni ence in household use, is shown in the accompanying illustration, and has been patented by Mr. Edward M. Longyear, of Fly Mountain, N. Y. The collar has two hinged sections, in which slide other adjustably connected sections, to enlarge or diminish the circum ference of the collar, whereby it may be secured on any sized pipe by means of a bolt and wing nut, the collar itself being formed of a flexible malleable metal, ena bling it to conform to the shape of the pipe. Each bracket arm has a narrowed portiou terminating in an upturned hook, which, with shoulders, curved recesses and grooves in the arm, facilitate the quick attachment thereto of the suitably formed shank of a stove-pipe shelf, which may thus be supported in horizontal po

LONGYEAR'S STOVE-PIPE SHELF

sition or held suspended from the shelf as shown in the illustration. This shelf has legs, so that when de tached from the bracket arm it may be used as a sad ron holder, or to support various articles, its shank then serving as a handle. One or more detachable arms are also provided for the support of towels and imilar articles, each having a shank similar to that of the shelf, whereby they may be readily attached to or detached from the bracket arms.

The Australian Rabbit Pest.
A good deal of interest is being centered in the colossal efforts made by the Victorian government for the suppression of the rabbit pest in that colony. In upward of 100 shires in the northern and western dis tricts of the colony simultaneous action is to be taken for the destruction of the rabbits, in accordance with the Rabbit Suppression Act, recently adopted by the Legislature. Poisoned grain is to be largely used, and it is estimated that fully 75 per cent of the rabbits will be killed. - Pall Mall Gazette.

A DEVICE FOR ATTACHING COST OR PRICE

 TICKETS.A simple and convenient safety pin wherewith cost or price marked tickets may be readily attached to goods is shown in the cut, and has been patented by

Bintuny
SAFETY PIN FOR ATTACHING COST OR PRICE TICRETS.

Mr. George L. Hohnstedt, of Urbana, Ohio. It is pre ferably made of a single piece of non-oxidizable wire, pointed at the ends, and bent in the manner shown, o facilitate the insertion and disposing of the wire limbs, so that the points may be made to approach each other and the loop portion folded down upon them.

THE CYCLONE OF MARCH 26, 27, AND 28.
Kentucky and in the southern portion of Illinois and
One of these tornadoes, by far the most violent of Starting eastward from the neighborhood of the Indiana, where rain fell abundantly and the wind was all thathave been reported, passed through a portion Great Salt Lake, in Utah, on March 26, a storm of rain, very high. The Signal Service office reports that the of the city of Louisville, Ky., between 7:15 and 7:30 snow, and wind, of almost unprecedented magnitude, storm traveled at a speed varying from thirty to sixty P. M., causing great destruction of property and loss swept over the country, occupying three days in its miles an hour. During the afternoon and night of of life, those who were killed outright numbering, un

MAP OF LOUISVILLE, SHOWING PATH OF STORM. (The V-shaped figure near middle of map includes the district shown on the front page.)
passage, and stretching from the Rocky Mountains to \mid March 27, when the storm had crossed the Mississippi \mid doubtedly, over one hundred, while more than that the western base of the Alleghanies and the basin of River, there were developed a large number of severe number were wounded. Our illustrations, from drawthe St. Lawrence. The northern limit of its force was and very destructive tornadoes, a good many of them ings made by our own artist and photographs, bring in the States of Nebraska, Iowa, Minnesota, Wisconsin, in Tennessee and in southern Illinois and Indiana, vividly before the mind the extent of the ruin effected and Illinois, where the snow-fall was heavy, but the but the greater portion, and those of the most violent and the terrible power manifested by the tornado, all

DESTRUCTION AT ST. JOHN'S EPISCOPAL CHURCH, FRONTING BAXTER PARK.-(From a Photograph by Elrod.)
period all accounts agree in limiting the time of its illustrations. Thesite of the building is also indicated Market, Jefferson, Walnut, Madison, and Chestnut
passage through the city. hustrations. The site of the building is also indicated Market, Jefferson, Walnut, Madison, and Chestnut The tornado entered the city from the southwest tions were holding meetings in the building at the completely demolished, its steeple being lifted bodily through the suburb of Parkland, around which the time, and none had an opportunity to escape, so sud- and carried diagonally across the street, where it was

LOUISVILLE-WRECK OF THE UNION DEPOT.-(From a Photograph by Klauber.)

Ohio River bends to the southward, and thence passed diagonally in a northeast direction, cutting a path nearly two miles long, as indicated on the accompanying map, along which everything centrally in its line

TORNADO CLOUD SEEN NEAR GARNETT, KANSAS, 1884
was demolished, while structures fringing the course were unroofed and twisted or shattered so as to be left in a dangerous condition. The most complete destruction was at the Falls City Hall, a representation of the ruins there, consisting of a compact mass of rubbish, bricks, and mortar, forming the subject of one of our
nas the collapse of the structure. One who was dropped upon and carried down a two-story grocery present, but escaped from the ruins, after describing store. In a building adjoining the Louisville Hotel a his apprehensions from the rising fury of the storm, number of lives were lost, several hours being required says: "Then the windows blew in, the plaster com- to dig out the dead and wounded from the ruins. In a menced falling, the lights went out, and the floor be- few places fires started in the fallen buildings, and gan to sink; it sank slowly, and it seemed to be several although these were quickly put out, so that there was

TORNADO CLOUD SEEN AT HOWARD, DAKOTA, 1884.
econds before it struck, with a jar, and joists, beams, plastering, and everything came falling down upon us." Of the total number of lives lost in the city, the great majority were killed at this point.
The streets wherein the greatest damage was done re Eleventh to

TORNADO AT ERCILDOUN, PA., 1874.
no large conflagration, there were several instances where those pinned down by the debris of demolished buildings were burned to death before they could be dug out.
The Rev. Stephen E. Barnwell, rector of St. John's Episcopal Church, and a young son, were mangled to

THE TORNADO AT LOUISVILLE-DEBRIS OF THE FALLS CITY HALL.-(From a Photograph by Elrod.)
death, the father evidently having been reading with his family when the crash came which shattered the rectory and the church next to it. The ruined condition of both buildings is shown in one of the photographic views, and also in the first page illustration, as they front on Baxter Park, seen in the foreground. The force of the storm, as well as some of its curious freaks, were well illustrated here. A long row of large trees at one side was torn up by the roots and laid down in order with a good deal of evenness and regularity, smaller trees being splintered or having branches torn off, while the iron work in the central fountain was torn out and deposited near one of the gates, yet a light frame music stand near by was uninjured. In one portion of the first page view is also seen a tall chimney left standing, although all about it is in ruins.
In the wreck of a portion of the Union Depot, at the foot of Seventh Street, a number of people were injured, but it seems almost miraculous that none were killed. A train was about ready to leave, and many passengers were waiting, but as the noise of the approaching storm increased, they had generally gathered about the offices, where it finally proved that there was the least offices, where it finally proved that there was the least
danger. The different phases in which the tornado cloud pre
the depot is indicated at B in
of devastation for many miles in the same line any where, but the special places where great damage was done were separated from each other in many cases by distances of fifty or a hundred miles, although all within and upon the southern edge of the great conti ental cyclone.
It is only within a few years that the conditions under which tornadoes are formed have been syste matically noted. Their tremendous power, however as compared with that of the highest winds of which we have accurate knowledge, may be judged by the fact that meteurologists estimate the velocity of the current within the whirling funnel-shaped cloud of a tornado to be many times that of the cyclone of which it is the accompaniment, and on the edges of which it hangs. The lower part of the cloud-funnel, as it approaches or strikes the earth, as it were with an im mense flail, may be but a few yards wide, but with a base in the upper clouds which is miles in diameter and extending to a height to which we can assign no imit, except as that is defined by the height of th cean of resting upon the th'

Atlantic seaboard, we trust there is no ground, on this account, for the assumption recently advanced in the columns of a Western newspaper, that the dwellers upon the sea coast are the more likely to be the recipients of the next earthquake visitation.

"Death Gulch," Yellowstone Park.

Mr. W. H. Weed, of the U. S. Geological Survey, has described in Science, the "Death Gulch" in the exreme northeastern portion of Yellowstone Park on Cache Creek, two miles above its confluence with Lamar River, five miles from the mail station of Soda Butte In an opening bordering on Cache Creek occur evidences of former hot springs in geyser-like deposits, a hot spring cone half washed away, a mound of travertine, and a little tepid sulphurous water at the edge of the stream. Besides, there are copious gaseousemana tions rising through the waters of the creek "mainly no doubt, carbonic acid, although containing some sulphureted hydrogen." Above these is altered and rystalline travertine, besides a bank of sulphur and gravel cemented by travertine. In a lateral gully, the waters of its small stream, sour with sulphuric acid, flow in a channel cut through beds of dark gray vol-

THE DEMOLISHED STANDPIPE AT THE WATER WORKS.-(From a Photograph by Klauber).
our first page picture. One of the photographic views represents it as seen the day after, with one car of a train pinned down by the wreckage.
Grave apprehensions were felt for several days of the cutting off of the city's water supply, on account of the destruction of the stand-pipe at the pumping station, which forms the subject of one of the photegraphic views. The reservoir, however, held a five days' supply, which proved to be sufficient until tem porary measures could be taken to furnish water whil the tower was being rebuilt.
As to the total damage to property in the city there are no trustworthy figures obtainable. It has been estimated that the losses to small householders and those of limited means generally would foot up to nearly half a million dollars, but losses from such a cause are not generally covered by insurance poli cies, and therefore the reports made fail to give suff cient facts on which to make a close approximation of the value of the property destroyed.
The little town of Jeffersonville, Ind., immediately across the river from Louisville, was somewhat dam aged, but the visitation of the storm there was espe cially remarkable from the fact that a church in which a meeting was being held was unroofed without any attendant loss of life. In numerous other places, embracing some twenty counties in Kentucky and ten counties in Tennessee, as well as at various localities just on the north side of the Ohio River, there was great destruction of property, and in some cases considerable loss of life. There was no continued course
the cloud stretching toward the earth in the form of an elephant's trunk. In the case of the tornado cloud seen in Dakota, there was ample time to fully observe it, as it remained in sight over two hours. Several peo ple were killed by this tornado, and much property destroyed.
The tornado at Ercildoun, Pa., in 1877, traversed the country for twenty miles, the width of its track vary ing from 150 to 300 feet, many people being injured, and wuch property destroyed. Observers who have witnessed tornadoes have described the cloud as " bounding over the ground like a ball," "lashing the earth in terrinc fury with its huge tail," etc., and of one tornado cloud it is said that, "rising up like the uncoiling of a huge rope, it cut loose from the earth and passed over us with a horrible whizzing sound." The state of excitement or terror of the observer may well be deemed to have some effect influencing such descriptions, but they quite accord with what is now conceived to be the nature and operation of the forces producing the tornado cloud.
The United States, east of the Rocky Mountains, is conceded to be particularly subject to tornado storms from the large extent it presents of comparatively level territory, unbroken by high mountains, to present barriers to its surface currents. Kansas, Missouri, and Iowa have had very many of these storms, which have also been numerous in the whole region north of the Ohio, and in northern Alabama, Georgia, and the Carolinas they have likewise been frequent. Although they have not been so numerous immediately upon the
canic tufa. The only springs now flowing are oozes of water, forming a creamy white deposit about the vents, which is largely an alum (alumina sulphate). The od or of sulphur is strong. The bears and other wild arimi ls of the region are often killed by the gases. Dead bears were found in all stages, from skeletons to freshly killed, and with them were remains of an elk, squirrels, rock-hares, etc., and many dead butterflies and other insects.

Variegated Colors for Show Bottles

Take equal volumes of chloroform, glycerine, a mixture of one volume stronger ether and three volumes carbon disulphide, water, cotton seed oil, and alcohol. Shake the chloroform with a little water, then separate the excess. To the chloroform thussaturated with water add a little Bengal red, shake well a few minutes, and filter. In the ether and carbon disulphide dissolve a little iodine. In the alcohol dissolve a little Bengal green or chlorophyl from fresh green leaves. Now pour these various colored fluids into a clear flint glass bottle or other similar container just large enough to hold them all, beginning with the chloroform and following with each in succession down to the alcohol. They should all be added carefully down the side of the container and without agitation, and, lastly, enough more alcohol should be added to completely fill the container after the insertiou of the cork. This will and bottle with six separate layers of colored fluids and presents a very pretty sight.-The New Idea.

Natural Gas in Indiana and Ohio
 Nothing like the Consumers' Gas Trust Plant, of In-

 dianapolis, was ever devised in the West.The company has 55 wells now in use. A low estimate of the open output of the 55 wells would now be $350,000,000$ feet daily, with a maximum delivery in Indianapolis of $90,000,000$ feet in 12 hours. The Trust has a total of 34 miles of main lines and connections. has a total of 34 miles of main lines and connections.
The company is drawing its gas supply from a total The company is drawing its gas supply
area of about 60 square miles of territory.
area of about 60 square miles of territory.
Speaking of the growth of the Ohio natural gas industry, Professor Edward Orton, in the American Manufacturer, says :
The use of gas has probably been more than doubled in 1889. Manufactures, based on a cheap and abundant supply, have been greatly multiplied at all the leading centers, but, more than all, new towns have been attached to the fields by the dozen. Leaving out of the account a large number of villages coning out of the account a large number of villages con-
tiguous to the gas fields, of less than 1,000 population, many of which now avail themselves of the pipe lines that are laid through their streets on the way to larger markets, we find that 1889 has given the great boon of Trenton limestone gas to these among other Ohio towns, viz.: Dayton, Springficld, Greenville, Wapakoneta,
Van Wert, Delphos, Sandusky, and Bellevue, Findlay, Van Wert, Delphos, Sandusky, and Bellevue, Findlay, Kenton, St. Mary's, Troy, Piqua, Sidney, Celina, and other towns had been previously supplied. The Northother towns had been previously supplied. The North-
western Ohio Gas Company has also laid a large line western Ohio Gas Company has also laid a large line
to the Michigan boundary, designed to furnish doto the Michigan boun
mestic fuel to Detroit.
In the way of utilization in manufactures, the increase has been equally marked. Findlay now has 154 glass pots, nearly half of them added in.1889. A large volume of manufacturing interests has also been brought in. An equal or, at least, a similar enlargement has gone forward in Tiffin and Fremont. Fostoria is also to the front in this remarkable expansion. toria is also to the front in this remarkable expansion.
Bowling Green has also made some noteworthy adBowling
vances.
Fostoria and Tiffin both own pipe lines to the great gas fields, built by public funds. The gas that they obtain from wells of their own drilling, on lands that they have leased for this purpose, they turn over at either nominal or very low rates to the manufacturing companies, counting on the growth of the town for their returns. The gas furnished on these terms is naturally used in a lavish way.
Toledo is supplied by two pipe lines, owned by the Northwestern Ohio Company, and in addition the city is preparing, at great outlay of funds, to be raised by bonding the town, to build a line for itself from the Hancock county field, where it has leased gas lands and drilled wells on a large scale.
The largest gas wells yet struck in Ohio belong to the last year, one of them to a very recent date. The
Mellott well, near Stuartsville, six miles north of FindMellott well, near Stuartsville, six miles north of Find-
lay, has an open pressure in the casing of 28 pounds. This stands for a daily production of about $28,000,000$ feet. A new well recently drilled by the Northwestern Company, near Bairdstown, Wood county, is reported to have shown the amazing open pressure of 45 pounds in the casing. This stands for about $33,000,000$ feet
per day. The Karg well was long counted the wonder per day. The Karg well was long counted the wonder
of the world. Its daily volume at its best was about $14,000,000$ feet.

An Alleged New Vegetable Raw Material.

We have received specimens of a vegetable fiber, introduced by the "New Textile Syndicate," limited, of London, whose works are at Popeley Mills, Gomersal, near Leeds. In the treatment of the fibers it is claimed the vegetable properties are eliminated, and what may betermed animal properties aregiven to them, the treat-
ment being carried out in such a manner that the raw ment being carried out in such a manner that the raw
material has become possessed of milling or felting properties, and, further, by subdividing, opening, softening, and extracting all impurities therefrom, a material is produced that can be spun alone, or in combination with any animal fibers. The specimens of the raw mahave are practical demonstrations of their utility, and the prices annexed show that they are really marketthe prices annexed show that they are really market-
able. Any shade of dye can be given to either the raw material or to the yarns, and the glossy and brilliant colors are guaranteed to be as fast as those on any other similar fibers when produced in a like manner, and the fiber so treated can be used for all purposes where cotton waste and cotton of a superior quality are invariably used; and as it is said to excel these in milling properties, as well as in strength and durability, and also in cheapness, it is likely to meet with a favorable demand as a substitute for these
fibers. In an unmixed state, it can be spun into a fine fibers. In an unmixed state, it can be spun into a fine
and very even yarn, which is especially suitable for and very even yarn, which is especially suitable for
weft, in the manufacture of linen and cotton fabrics, hosiery, etc.. for it has been proved that it can be produced cheaper than the cotton yarns generally used for these purposes. The Journal of Fabrics says The new material has already been tried, thoroughly tested, and most favorably reported upon, by large and well known firms.

Exhibition of Horseshoes.

At the Animals Institute, Kinneston Street, just of Wilton Place, Belgravia, London, there is an interesting display of horseshoes, cowprising about one thousand different patterns. Included in the collection, of which have been dug up in the neighborhood of London. The oldest, however, was found at Tenbury, Worcestershire, under what is known as the "Mound of Caractacus," from which fact it is believed that the
shoe was made about A. D. 50 . The other antiquities shoe was made about A. D. 50. The other antiquities
are traced to the period of the Roman occupation of this country, and the patterns indicate that in those days quantity, at all events, was firmly believed in, whatever the quality may have been. But, judging from the present condition of the articles, the quality must have been of superlative order, for, beyond a cer tain amount of corrosion, the preserved state of the iron is very remarkable. It is not, however, in these antiquities that the main interest of the exhibition is found. There are several collections of modern shoes
which cannot fail to prove attractive to all concerned with horses. Yet, before referring to them, it may be observed that there is a number of shoes which repre sent types in use during the last three hundred years. A display which will repay inspection is made by Mr Wheatley, Reading. It is impossible in a brief report like this to even indicate the chief features of the collection, for the valid reason that so many shapes and sizes are contained in it, some of them being peculiar to a degree. Another contribution worthy of close
inspection is that sent by Mr. Welsby, a veterinary surgeon of Liverpool. Here, also, are some odd shapes but all of them are of everyday requirement, in conse quence of the many and strange diseases and deformities of the feet of horses. Noticeable among them is a three-quarter shoe for animals having one bad quarter, and a T or anchor-like shoe for a foot with two bad quarters. Another design embodies a high heel for the purpose of throwing the weight on the horse's heel, and for a like purpose, but suitable for horses for which a high heel would be no good, there is a bar shoe, minus, of course, the heel. Then for horses which are difficult to suit there are "Rocker" shoes, the object of which is to cause the weight to fall just on that part of the foot most comfortable to the horse,
according to the load behind it. A ininged shoe, also included in this collection, and suitable for hunters, is one which cannot escape attention. The object of the hinge is to admit of the shoe being fitted to any foot, and, being lightly and elegantly constructed, it can be con veniently carried in the pocket of the rider, with a few nails, so that, should the horse throw one of its shoes, it can be reshod in a few minutes. By way of
contrast, Mr. Welsby shows a self-fitting shoe for a similar purpose, made and in use not so very long ago, although the design of it suggests an antedituvian ori gin. It is not only a clumsy thing, but it is cumbersome, and must have caused considerable inconve nienceld.
the field.
Apropos of light shoes, mention must be made of some racing tips manufactured and exhibited by the Alliance Aluminum Company (Limited). The usual weight of racing tips, it is stated, is about 13 oz . per set, but these tips weigh only 5 oz. per set. A breaking bit, likewise made of aluminum, is also shown, its extraordinary lightness combined with all requisite strength being its special feature.
Coming to anti-slipping shoes, Mr. H. T. Pearce is howing a patent pattern made of \mathbf{T} steel, the chie point of which is that the surface coming in contact with the ground is about $3 / 8$ inch thick, and has an elliptically shaped notch made in it at intervals of about $11 / 2$ inches. Another pattern is that styled Kennedy's patent safety "All Weather" shoe. In this
design rubber pads are used at the toe and at the end of the two points, while also at the toe and round the sides are angular notches for the purpose of giving the animal a firm grip upon all kinds of roads, wet or dry The pads are so placed that they can be readily re newed. Rubber pads are also the leading point of the anti-slipping shoes shown by Ball \& Farmer, although heir application is somewhat different. In this latter ase the shoe is notched after the fashion of a dovetail, and the pads are, of course, made in the same style. It is obvious, therefore, that the pads can be easily slipped in and out sideways, although it is not likely that in ordinary work a horse would kick them out. There are a number of ideas demonstrated, some in leathe many of which involve points which concern the vet erinary surgeon more than the horsekeeper, and there ore it would be absurd to dilate upon them here ; but passing reference may be made to one peculiar thing viz., a shoe of rubber which entirely covers the whole of the foot and hoof. The information afforded about
this type of shoe is that 500 miles have been traveled by horses wearing it ; but whether the sample displayed is one of the set used is not clear.
A good show is made by John George \& Sons, who make a special feature of shoes, pads, nails, etc. Thei
latest improvement in pads is the "Weldon Non-slip,
made of pure India-rubber cemented on a leather sole. In this arrangement it is said rubber takes the pressure he horse of the slipping. They wear well, the same pads being generally used for two and three sets of shoes. Heavy draught shoes of improved type, cab horse hind shoes, and light concave hind for hacks and hunters are also shown, and beside them the "Star" horsenail, for which the firm are agents.
The various types of machine-made shoes, nails, etc. are displayed by the United Horse Shoe and Nail Company (Limited) in an interesting manner, and the "Capewell" horseshoe nails are shown by the Cape well Horsenail Company (Limited). Frost cogs, made according to a suggestion of Mr. George Fleming, are shown by Arnold \& Sons, the points of which are that they are splendidly made, suitable for all classes of work, and very durable. One other special shoe may be briefly mentioned, for, whatever its merits may be, it possesses the feature of absolute novelty. From the back part of the shoe on each side rise two bands of metal which meet and interlock at the top of and in ront of the hoof. Then from the toe point rises an other piece of metal, and in the middle of it is carried a slight projection through which a screw hole is made. To cause the shoe to be securely fitted to the foot, a screw passes through the point at which the two bauds meet into the screw hole on the front of the hoof, and is tightened as may be necessary. The shoe is made in various weights for hunters and carriage or cart horses.

Chemical Examination of an Ancient Scepter.
M. Berthelot has recently discussed the question of the manufacture of bronze by ancient peoples. As copper is widely distributed in nature, the use of that metal might have been expected. Tin, the other constituent of bronze, is, on the contrary, found in but few localities, and even these are of comparatively difficult access. The positive statements, therefore, which have hitherto been made concerning the general use of bronze by prehistoric peoples have for a long time uzzled those who have given the matter attention Archæologists agree that the use of unalloyed coppe or arms and utensils preceded that of bronze, but the date of the introduction of the alloy of copper and tin has never been satisfactorily settled. Among the many so-called bronze implements contained in collections of Egyptian antiquities, one, the scepter of Pepi I., a king of the sixth dynasty, archæologists have agreed belongs to an age between thirty-five and forty cen turies before the Christian era. From the interior of this scepter some small fragments of the metal were dislodged, and sent by the director of the British Museum to M. Berthelot. An analysis of these particles failed to indicate the presence of even a trace of tin or of zinc. From this M. Berthelot argues that bronze was unknown at this epoch, as otherwise it would have been used in this instance instead of the softer copper. He comes finally to the conclusion, based upon this and other proof, that the art of bronze nanufacture has not been known at any rate for more han from fifty to sixty centuries.-Ann. Chim. Phys.; W. W. Randali, Amer. Chem. Jour.

Jamaica International Exhibition, 1891
An international exhibition will be held in the island of Jamaica, B. W. I., in January, 1891, under the auspices of the government of Jamaica.
In view of the very considerable and increasing trade between the United States and the West Indies, the committee have appropriated a large space for American exhibits.
No charge will be made for space in the exhibition buildings, nor will duties be levied on any of the exhibits unless sold in the island.
The geographical position of the island and the salu brity of the climate will undoubtedly attract a large number of visitors from the neighboring islands and South and Central America, as well as from the United States.
There is constant and regular communication by steam between New York and Jamaica, and the island is also connected with the United States by cable.
In addition to the present accommodations for visitors, a large hotel has been recently erected and opened, near the exhibition grounds, under American manacement.
The railroad system of the island, which has been recently taken over by an American company, is rapidly being extended.
All particulars as to the scope and object of the exhibition will be cheerfully furnished by the secretary, Mr. Thomas Amor, 280 Broadway, New York.

True Genius.-"Men give me some credit for genius. All the genius I have lies in this: When I have a subject in hand, I study it profoundly Day and night it is before me. I explore it in all its bearings. My
mind becomes pervaded with it. Then the effort mind becomes pervaded with it. Then the effort which I make the people are pleased to call the fruit of genius. It is the fruit of labor and thought." Alesander Hamilton.

RECENTLY PATENTED INVENTIONS. Railway Appliances.
Car Coupling.-George A. La Fever elkirk, N. Y. This coupler has a pneumatic cylinde hrough its sides, a piston head being adapted to enter he cylinder, and its rod carrying a spring-actuated disk, the device being adapted to deaden the effect o collisions and pr
Car Coupling. - Simon J. Freeman Bradford, Pa. In this coupling a horizontal hoo adapted to swing vertically is pivoted on the drawbar wainst and is pivoted a locking plate adapted to abu device being adapted for use with the ordinary link and pin coupling, the hook being so locked when the ca are coupled as to prevent accidental uncoupling, and the invention being an improvement on a former pa

Rail Joint Support.-Phillip Riley Marion, Iowa. By this invention opposed inclined rail braces are used having flanges on their lower ends
fitting in a longitudinally slotted plate, to make the joints of ordinary rails abut in such a manner that they cannot spread and get out of placa, while the weigh號
Dust Guard for Car Windows.Joseph B. Ballard, Ballardsville, Mo. This isan attach ment embracing a novel construction and combination ing smoke, dust, cinders, etc., from the car while bein entilated, and designed also to prevent the passage very strong currents of air into the car when the indows are raised wile the car is in motio

Miscellaneous.

Pulley.-Joseph T. Mitchell, Shelby ille, Tenn. This pulley has arms or spokes with a U hese spokes being preferably formed of wrought iron with their ends fitted to receive apertured patterns, which form cavities in the mould for bosses on a cas rim and cast hub, the pulley being made according to a method patented by the same inventor, and
the Scientific American of March 22, 1890 .
Electric Circuit Closer. - Joseph . Dempf, Washington, D. C. In this device a nononducting block of wood or similar material is used, hollow metal stem surronded by connection with a permit the closing of an electric circuit by pulling on aspended tassel instead of by pressing on a pu button, as is the ordinary custom.
Loom Mechanism.-Peter C. Stadler, n, N.J. This is cloth beams, serving to regulate the movement of the cloth beam in relation to the picks to compensate for he enlargement of the beam when the cloth is wound p , the device being

Wire Twister. - Joseph S. Locke, partanburg, Ind. This is a device for twisting o wrenching the wires of combined wire and picke fences, there being combined with the handle bar a
twister bar formed with an open slot and pivoted to the handle bar, so that the latter when turned preeses on the wires in a straight direction toward the head of the

Glass Wash Boards. - Charles Cornelius and Henry Schildhauer, Nellsville, Wis. This nvention provides a press or apparatus for making
glass plates corrugated on both sides, and with plais nargins, with special features whereby an extended the glass made to readily free itself from the surface on the glass made to readily free itself from the surface on
which it is pressed.
Metallic Shingle. - Thomas Toner and John E. Carroll, Philadelphia. Pa. This is a shingle having at either side a doubled-up ridge extendthe doubled-up ridge the shingle being easily and the doubled-up ridge, the shingle being easily and
securely interlocked, and permitting of being shifted sidewise at one or both ends, to facilitate laying on onical roofs, towers, etc.
Spike Finishing Machine.-Wilhelm Soecker, Schalke, Prussia, Germany. This machine consists of a rotary wheel having outwardly tapering or spike blanks, an eccentric disk in the wheel acting on the rear of the matrices, while there is a die with operating mechanism and a catch for holding the rotary
Door Hanger Track. - Henry P. Talbot, Portland, Oregon. This track consists essen-
tially of a trussed bar to which a track or way is rigidly connected, the door hanger trucks being arranged means of which either end of the track may be adjusted to the required height.
Eyeglasses. - Herbert D. Martin, yeglass frames fortably upon and conform to the contour of the nose, causing the bridge of the nose to sustain most of the weight of the lenses, and is designed under all condi-
tions to retain the lenses in a proper horizontal plane.
Pendant Set Watch. - Frank G. Faxon, Mount Morris, N. Y. In this set a loose collar is bored centrally to receive the winding bar, with one or more arms acted upon by the periphery of and engaging in slots or recesses in the ends of the bow, an
armed collar regulating the outward movement of the winding bar, to permit the setting of the watch only when desired, and render it impossible to pull out the winding stem inadvertently.
Watch Winding Mechanism.-Lewis
provides an improved motive power for watches and
clocks, permitting of the use of a long and broad main clocks, permitting of the use of a long and broad main
spring, the winding up and unwinding of which are ecorded, the mechanism being arranged on the top apart and connected with each other by posts.
Ring. - William M. Kaas, Newark, nd Paul Jeanne, Jersey City, N. J. This is a ring made in two sections, each having a shank and a crown, and one crown being adapted to receive the other, the
wo sections when connected together being worn and having the appearance of a single ring, and the construction be
Stock Tablet. - Joseph Dick, New York City. This is an improved or memorandu tablet for storekeepers and others, divided into wan nd provided with slides for exposing the opening rticles of merchandise either in the column, thus giving a ready view at all times of the state of the stock.
Sealing Gummed Paper. - Thomas H. Hathaway, New Bedford, Mass. This invention covers an apparatus for moistening and sealing gummed articles, consisting of a suitable frame carryng an the roller, and a sealing roller, making a convenien
Window.-John P. Clark, Jr., Jack n, Mich. This invention provides means for adjus ng, sealing, and securing the sashes of a window heir casement or frame, the window frame having op their edges hinged to permit inward folding of either links adapted to make sliding engagements.
Jack for Supporting Clapboards. -Edwin W. Brown, Vining, Kansas. This is a devic on the side of a house, consisting of a block with an ace, and an upper shoulder on which the clapoos rests, combined with a thin metallic plate perforated to

Wagon End Gate. - Lewis Brodsky Samuel A. Ott, Plove, Iowa. This Brodion designed to provide an end gate that can be quickly nserted in or removed from the wagon box, and in get out of repair, the invention covering novel feature解
Harness. - Thomas Rosekrans, Esopus, N. Y. This harness consists of a pair of rig the hames, a short neck yokeeonnecting the ends of the races with each other, and a belly band connecting the rear ends of the rigid traces with each other, whereby
the animal will not be burdened with numerous straps, the animal will not be burdened with numerous straps,
and the power is applied in front of the animal in pullg the wagon.
Horse Checking Device. - Joseph Darling, Baldwin, Pa. Combined with the saddle or apport receiving the check hook bar is a dog for en gaging the bar and a laterally moving detent for secur may uncheck the horse and check him up again without leaving his seat in the vehicle
Thread Case.-Charles Cobb, Albion Idaho Ter. This is a case having a series of compartments especially adapted to hold spools of thread of different sizes, and so made that a spool may be quickly and conveniently drawn from any of the compartmen by the simple pressure of a knob located on the exte
Corset. - Milton J. Roberts, New York City. This is a braided wire corset made in to the shape of the bust, when the interlacing wire re caught by solder or molten metal where they inersect or cross each other to hold the corset in form. Key.-Hermann C. Fischer, New York City. This key consists of a blade made of two or more
piral flanges standing at angles to each other and provided with bittings in their edges for engagement with the pins or tumblers, the flanges being beveled at
their front ends, the key fitting a slot whose shape their front ends, the key fitting a slot whose shape

Retaining Pin for Neck Wear. Gustave Selowsky, New York Cly. This pin his head provided with an inverted U-shaped slot, open one end and closed at the other, and with an open loop quickly applied without sewing, interlocking with the
place.
B OоT. - James F. Shaw, Jackson, Mich. This boot has a felt foot piece formed of side sections having their meeting edges arranged close to-
gether at the front and rear, the leather leg piece being fitted over the leg portion of the foot piece and having its rear portion extended down and secured under the heel of the foot piece, the leather thus strengthening
and protecting the felt around the heel and ankle. Leaf Turner. - Edmund Wilkoshesky and Lee Van Orton, Butte City, Montana. In centrally journaled shaft upon the upper end of which are loosely pivoted arms having clips at their of which for engaging the sheets, there being a carrier adapted to engage the several arms in succession, for turning the leaves of hooks, music, etc., on instruments, and
Crate. - James W. Brook, Lynchburg, Va. This is a crate to facilitate the transportation of fruit and vegetables, eggs, live and dressed
chickens, etc., the invention covering a novel construcchickens, etc., the invention covering a novel construc-
tion and combination of parts making it strong and rigid, while insuring the access of air to the contents, and-allowing for its being readily put together, taken
apart, and used again.

NEW BOOKS AND PUBLICATIONS

 A Handbook of Engine and Boiler Trials and of the Indicator andProny Brake. By R. H. Thurston.
New York: John Wiley \& Sons. i890. New York: John Wile
Pp. xii, 514. Price $\$ 5$.
The title of this book expresses its contents. It forms a very full treatise on tests of all kinds of engines, gas
and steam, and boilers. The different instruments used or the purpose, planimeters, speed indicators, dynamometers, etc., are all treated. Even the chemical nalysis of furnace gases is included, and all that
will make the treatment of the subject a complete one is to be found in the book. Illustrations are used wherever needed, and. a very complete table of logarithms and other factors is given at the back. It makes
a most valuable contribution to science, and one fully of its eminent author.
A Treatise on the Arc Indicator. nal of Commerce Publishing Company. 1890. Pp. 88 . Price 25 cents. What Professor Thurston's work just noticed does in detail, this work does in the abstract. lit simply treats merous illustrations are given, and it forms a good compendium for the engine room.
A Text Book on Roofs and Bridges. Part II. Graphic Statics. By Mansfield Merriman and Henry S. Jacoby.
New York: John Wiley \& Sons. 1890. Pp. vii, 124. Price $\$ 2.50$.
All that is to be said of this book is that, while it is designed to cover the course of instruction given to the classes in civil engineering in Lehigh University, it is cealy a manual of general utility, as embodying the re-
cent methods of determining the strength of trusses Interleaved blank pages are given to contain the personal notes of the reader or student.
The Science of Metrology, or Natural Weights and Measures. A challenge to the metric system. By
the Hon. E. Noel. London : Edward Stanford. 1890. Pp. 83.
The author of this work endeavors to substitute the semi-diameter of the earth for the quadrant as a basis of measurement. It enters a protest against the metric system, and one which, for the sake of science, it is to
be hoped, wili not have much force, and which will probe hoped, wili not have much force, and which will pro
bably be without effect in preventing the rapid spread
of the recognized system of scientific measurement.

SCIENTIFIC AMERICAN

BUILDING EDITION
APRIL NUMBER.-(NO. 54.)

TABLE OF CONTENTS

1. Elegant plate in colors of a residence on Long

Isgant plate in colors of a residence on Long
N., built from plans prepared by Munn Island, N. Y., built from
$\&$ Co. Cost about $\$ 6,500$.
floor plans, details, etc.
Colored plates, details, and suggestive floor plans $\$ 7,000$.
Ilustrations of an attractive cottage at Excelsior Springs, Mo., erected at a cost of $\$ 1,300 \mathrm{com}$ plete.
A residence at Park Hill, South Yonkers, N. Y. erected
plans.
plan
recently erected at Belle Haven, Conn at a cost of $\$ 11,000$. McKim, Mead \& White, New York, architects.
6. Engraving of a Binghamton, N. Y., cottage. Cos $\$ 4,950$ complete. Floor plans and perspective.
Elevation and floor plans of a brick cottage. Cost Elevation and floor plans of a brick cottage. Cost
about $\$ 5,000$. A double dwelling costing $\$ 5,200$, built at Port chester, N. Y. Perspective and plan.
View of an economical water tower at Hill View Park, Sou
10. A cottage at Mountain Station, N. J., from designs by F. W. Beall, architect, New York.
plete $\$ 8,000$. Ylans and perspective.
11. Two carriage houses. Cost about $\$ 1,500$
12. Two pages of illustrations showing in general view
and detail the wreck of the tower of the Church of the Covil the wreck of he howon, D. fell when nearly completed on August $22,1888$.
13. A Crescent Place, South Yonkers, N. Y., residence recently erected
perspective view.
14. Miscellaneous Contents: Concrete arches.-Dwarf cannas.-Water works for emall towns..- Soft
stone.-Brick pavements.-Fall of the tower of stone.-Brick pavements.-Fall of the tower of
the Church of the Covenant, Washington, D. C. -Improved duplex plumb and level, illustrated. etc., illustrated. - Wood's pedal valve for radiators,
-etc..,illustrated.-Wood's pedal valve for radiators,
illustrated.-An improved turn buckle, illustrated -Improved copying press, illustrated.-The Wing disk fans, etc.-Mortising and Tenoning machine, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architecwith fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and

The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. Publishere,

Bussiness and Personal.
arge for Insertion under thes head is One Dollar a ine jor each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Belting.-A good lot of second hand belting for sale cheap. Samuel Roberts, 369 Pearl st., New York. Prevention for electric light fires. Interest
B. Hempstead, 2621 Pine Street, St. Louis, Mo. Apparatus for laying underground conductors pneuInventors wishing their patents sold or introduced, For Photographs of the damage caused by the Louis, Thinado, address E. Klauber, Louisville, Ky.
The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. Wanted-A thoroughly competent designer of wood. ight party a first-class opening. Address P. O. box 1001, New York, N . \mathbf{y}.
Best Ice and Refrigerating Machines made by David
Boyle, Chicago, ill. 140 machines in satisfactory use. Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap.
pumps, acid blowers, fllter press pumps, etc.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maTuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses. Iron, Steel, Copper, and Bronze Drop Forgings of
very description. Billings \& Spencer Co, Hartford Conn
For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings. and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St., New York. Steam Hammers, Improved Hydraulic Jacks, and Tube ixpanders. R. Dudgeon, 24 Columbia St., New York.
Safety Elevators, steam and belt power ; quick and Safety Elevators, steam and belt power ; quick and Tight and Slack Barrel Machinery a specialty. John "How to Keep Boilers Clean." Send your address For best hoisting engine. J.S. Mundy, Newark, N.J. For the original Bogardus Universal Eccentric Mill, oot and Power Presses, Drills, Shears, etc.. address J,
\& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting

Hints to correspondents.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
infor Rererences to former articles or answers should
give date of paper and page or number of question.
Inquiries not answered in reasonable time should
some answers require not a little research, tad
though we endeavor to reply to all. either by letter
or in this department, each must take his turn.
Special Writen Information on matters of
personal rather than general interest cannot be
 Mrice.
minerale sent for examination should be distinctly
marked or labeled.
(2086) H. W. M. writes : I have some printed brown paper that I wish to turn to a yellow. What kind of chemicals shall I use to effect this? A. You may succeed by bleaching with javelle water or
o:alic acid, and then dyeing with picric acid or turmeric. o:alic acia, and then dyeing with picric acid or turmeric.
Or saturate with indigo in solution in sulphuric acid after bleaching and then treat with nitric acid
(2087) G. F. D. asks : 1. What distance should be between the diaphragm and magnet core of a
telephone receiver? A. The distance should be as small as possible without permitting the diaphragm to come in contact with the pole of the magnet when the your paper published January 25, you stated that the wire on bell magnets should have a depth equal to the core. Does this rule hold good for all magnets? A Yes. 3. Are the alternations of the secondary in an in-
duction coil of equal strength? A. No; the impulse duction coil of equal strength? A. No; the impulse closing. 4. Which is the more dangerous to life-th direct or alternating current of equal strength? A This matter has not been determined as yet.
(2088) J. C. writes: Is there a law in the United States regulating the use of wine measure? If so, what does the act demand in order to make such measures thoroughly legal? A. The legal liquid
measure is the gallon of 231 cubic inches, by congres sional enactment of 1824, subsequently ratified by the
(2089) F. B. M. asks : Can an electrical current be said to have a taste? A. No; it may pro
duce a taste by decomposing the fluids of the mouth.
(2090) F. M. writes: In using the ordinary commercial glue for fastening metals to gether, will it in the case of zinc foil and copper act as an insulator between the two, when used to hold them together? A. It will be a very poor insulator, and wil be worse in damp air than in dry air. Shellac is the
(2091) W. S. H. says: The use of ben zine for cleaning iron and steel and for other metal.
working purposes has come into zeneral uee in large manufactories whereon are policies of insurance which have clauses prohibiting speciifially among other inpremmabeses the use or posession of benzine on the
prious buiness aspect of the dilemma leads me to inquire if any non-inflammable substitute for benzine adapted to the purposes named has been discovered. If a manufacturer of small tools or other
products in steel such as steel pens, watches, clocks, products in steel, such as steel pens, watches, clocks,
surgical instruments, etc., has found a substitute for benzine, he would be doing a great service to a very large number of people by making the fact known. A. We recommend the use of caustic soda solution for cleaning, then rinsing in hot water and quick drying, as
(2092) F. A. J. - We can supply you with "House Painting, Graining, Marbling, and Sign Writing,", by Davidson, $\$ 2$. Also Roseiter an Wright's " Modern House Painting," \$3.
(2093) V. E. S. asks : Is there anything that I can use to keep gum tragacanth in liquud form from
souring used in marbling? A. Add a few drops of oil f cloves ; enough to be barely perceptible
(2094) J. Z. K. asks : Does snow on ice prevent it from freezing? A. Yes; snow is a non-con-
ductor and prevents the cold of the air reaching the ice below, and also prevents radiation from the ice.
(2095) J. F. writes: What will render common muslin comparatively fireproof? It is much used on the frontiers for lining log houses, and is often such as sulphate of soda, tend to make fabrics fireprof. ungstate of soda is considered about the best.
solve in water, and dip the goods and dry them.
solve in water, and dip the goods and dry them.

TO INVENTORS.

more than one hundred thousand applications for paents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un synopsis of the patent laws of the United States and all foreign countries may be had on application, and person abroad, are invited to write to this office for prices, which are low, in accordance with the times and our exMensive facilities for conducting the business. Address Tay, New York.

INDEX OF INVENTIONS
United Staters Patent of the

March 25, 1890

AND EACH BEARING THAT DATE
[See note at end of list about copies of these patents.]
Advertising a
Pursell....
Aerostat, M. H. Bald........
ir, machine for separating solid particles from,
R. R. Watters
R. R. Watters............................... cooling, R. Lofthouse.
ratus, R. Lofthouse.
Alarm. See Burglar alar...................... Elecric alarm.
Automatic lubricator, Nottberg \& Schmitt. Automatic lubricator, Nottberg \& Schmitt...
Awning operating mechanism, M. Chalupsky Awning operating mechanism, M. Chalupsk
Ax head. F. L. Hufford.................. xle and spring clip, co
Axle box. O. C. Knipe.....
Axle, carriage. A. G. Hill
 Axle, vehicle A. Grant.
Bag. See Saddle bag.
Bagatelle board. J. H. Sing
Baking pan, E. R. Stasch..
Baling press, w. Bullar

Graham
Barrel washer, W. T. Edds.
sedery. See Secondary battery.
Belt coupling, A. Post...........
Belt, ore separator,
Bit. See Bridle bit.
Blank and fle
Blank and flle for placing it thereon, Jandus \&
McCarthy......
McCarthy..
Blast cupola fu
Block. See Building block. Choci block..................
Blocks, tiles. etc., machine for ornamenting,
locks, tiles. etc., machine for ornamenting, e.
G. Durant.......... 423,
Board. See Bagatelle board. Multiple switch board.
Boat. See Stone boat. Torpedo and gun boat.
Boiler. See Hot water boiler
Boiler header, steama, w. E. Kelly..
Bolt heading dies, C. S. Seaton ..
Bolting reel, J. B. Dobson
Book, guide and route, o. E. Melichar.
Boot, J. F. Shaw.......
Bottle stopper. E. W. Abbe...........
Box. See Axle box, Signaing box
Brake shoe, C. Herron......
Brake shoe, C. Herron........
Brake shoe, N. . Pearson
Brick, burning, J. C. Anders
Brick, composition, composition for ornamental Brick kiln, J. C. Anderson..........424,24.5, 424,248 to Brick, method of and apparatus for burning, J. C.
Brick pressing machine. W. Homes
Bridge construction, H. E. Mertens
Bridge, continuous girder,
Bridge, truss, D. F. Lane.

	Bridle bit, G. A. Belknap.... Brine purifying, C C Peck
	Broom hanger, R. D. Markham
	Building block, J. C. Anderson
	Building block, e. G.

burner
Burglar al Burglar alarm, A. A brahams. Burr remover, Anderson \& Tregoning Butter jar, T. B. Howe.
Button, Chapman \& ingram.........
Butud. Whitney $\&$ Howard
 Camera. See Photographic camera.
Can. See Gunpowder can. Shi.......................
Chiping can.

Cans, machine for crimping the heads of meta
F. A. Robbins.......................................
Cane. etc., diffusion for sorghum, H. A. Hughes.
Cannon, breech-loading, J. B. C. A. Canet.......
Canvas stretching device, G. Cope..........424,095,
Car-brake actuating device, W. S. Adams........
Car brake actuating device, J. A. Brill Car coupling, F. A. Fox....
ar coupling, S. S. Freeman
Car coupling, E. W. Knapp.
Car coupling, G. A. La
Car door, J. C. Wands
Car, electric rallway, …........
Car, transferring, J. H. Welcker
Car windows, combined dust guard and ventilat fors, trolley arm for
Depoele.... for electric railway, c. J. V
Carburetor, air, R................. Brade.
Card case and game counter. J. W. W. Palmer........
Carpet fabric, ingrain, w. B. Keefer Carpet fabric, ingrain, W. B. K
Carpet sweeper, G. W. Kelley.
Carrier. See Cash and parcel carrier.
case. See Card case. Thread case. Watch cas

terson ..
Ceiling, metallic, w. R. Kinnear........44,312 Chatr. See Electro-medical chair. Revolvin
himney or ventilator cap
Chock block on for logging cat, D. Scott............ Churn, M. M. McDill:

Cigar wrapper rolling machine. G. M. Hathaway. for. O. W. Allison.........
Circuit closer, J. A. Dempf
Clamp. See Rope clamp. Sewing c
Clamping mechanism, J. G. Froelic
Clamping mechanism, J. G. Froelich.............. 423,923
Clapboard supporting jack, E. W. Brown...
Clasp. See Sash clasp.
Clay building blocks in imitation of stone mat...424,17
ing, J. C. Anderson.......
Cleaner. See Boiler cleaner
Clock, electro-magnetic watch, R. B. C
Clock striking mechanism, R. B. Carr.
Clock winding mechanism,
Clothes line fastener, J. B. Mayer
Clothes line reel, F. R. French..
Clutch, friction, J. F. McLaughlin..
Coal brick, combustible, J. J. Hiertz
Coal tipple, T. B. De Armit
offee mill, M. L. Means...
Coffee or tea pot, E. Shobe
Cofin fastener, A. E. Palmer....
Collar for animals, w. H. Harris
Commutator, W.F. D. Crane.

Cooler, A. McDowell..........
Copy holder. O. C. Blackmer
Counting device, envelope and card, R. W. Pitt-
man...
Coupling. See Belt coupling. Car coupling. Pipe
coupling. Trolley wire coupling.
oupon cutter, Phippen \& Browne.
Cow tail holder, , F. B. Bi Hibbard
Cow tail holder, s. J. Morgan
hine, Smith \& Bright..
Cultivator. M. L. Kissell.
Cultivator, sulky, W. E. Taft
Cup. See Umbrella drip cup.
Current motor, constant. W. Baxter, Jr..... Curtain fixture, F. Root ...
Curtain holder, A. D. Field Curtain holder, A. D. Field...
Cut-off, pipe, Smith \& Dutton Cutter. See Band cutter. Cigar cutter. Coupo.............424, cutter. Feed cutter. Sausage meat cutter.
Cutting fabrics, machine for, W. W. Macfarlane Cutting tools, machine for sharpening. A. Dial, electric time, Colby \& Strong....
Diger. See Potato digger.
Dirt loading machine, E. T. Hoffman. Dirt oading machine, E. R. Horfman.............
Display frame for dress goods, folding extension
$\xrightarrow{\text { H. S. Bogy }}$
Door check, J. D. Barber.
Door check, J. A. Hoffman
Door hanger, E. T. Prindle
Door hanger, track, adjustable, H. P. Talbot
Door indicator, H. Hinckles.
Door opener, D. Hawksworth
Drainage and sewerage system, W. Hallock
Dress form, G. R. Sherman...................
Dust collector, J. A. \& E.F. Woodbury...
Dye, blue carbon, M. Ulrich.
Dye, brown carbon, R . Nietz
Dyeing machine, yarn. J. J. Fearon
Dynamo regulator, H. W. Cooley
Egg beater, \mathbf{F}. Hallam.
Egg tray machine, W. S. Lowe
Electric alarm for letter boxes, W. G. Reed.
Electric lighting, isolated system for.
McLaughlin.
Electric machine. dynamo. S. z. De Ferranti Electric machine. dynamo, c.
Electric meter, w. J. Bagby.
Electric meter, W. McKinnes
Electric motor controller, M. J. Wightman.
Electro-magnetic motor. N. Tesla
Electro-magnetic motor. N. 'T'esl
Electro-medical chair, M. A. Ma
End gate. w
Engine. Se
engine.

423,950
$.423,999$

. 423,999
$.424,016$

424,057
 Filler, transparent, Skerry \& Derosier
Filtering apparatus. H. J. E. Jensen.. Filtering apparatus, T. Stewart.
 Flat iron, electric, Butterfiseld Flexible tube, T. R. Almond....
Floor for buildings. F. Furness. Flour safe, C. s. Rogers........
Folding table, M. . Warner Foot power, D. D. Weisell....
Forge, blacksmith's, J. Malon

 Frut gatherer, J. A. Chapma
Fruit grader, D. D. Jones..... Fruit jar, G. C. Sawyer........................
Funnel, measuring. F. S. Richardson. n...................... vinace. See Blast cupola f
furnace. Hot air furnace. furnace. Hot air fu
Furnace, J. W. Hatch..
Furnace, G. H. Taylor..

Fuse plug, J. A. Seely.
Game, J. F. Fields......
Game and appliance therefor, Malings \& Muckle Game apparatus, H. R. Bender......
Game apparatus, Ludlum \& Steven s.
 Game table, H. Ganss et al
Gas engine, rotary, G. E. Hibbard Gas engines, Igniting ap aratus for, E. F. Roberts Gas or air pipes, safety device for, E. C. Jones....
Gas or oil motor engines igniting apparatus for,

Gate, G. W. Sanor..............................
Generator. See Steam generator.
Glass washboards, press for making. Cornelius
Schildhauer........
Glory-hole furnace. G. Warner......................
Governor for gas engines and other like moto
Delamare-Deboutteville \& Malandin.............
Grate. J. P. Thomas................................
Guard. See Fork guard. Watch guard. Wind guard.
Gun, H. S. Maxim..

Hair curler and frizzer, Walbridge \& Step
Haiter, W. H. Wheeier..........
Hame, adjustable, A. V. Cronk.

H
H
H
H
\mathbf{H}

Hatch operating mechanism, automatic, J. Stone-
ham................................$~$
Hay press. W. H. Adams
Hay stacker. C. W. Post.
Heating and conking device, electric, H. R. But
Heating apparatus, H. D. Justi.
Heel nail, H. R He
Heel nail, H. R. Packard....
Hoe, ditening. F. H. Adsit.
tain holder. Line holder tail holder. Cur-
holder.
Hook. See Wardrobe hook. Whiffletree hook. Horse checking and unchecking device, J. Dar
 Hot water boiler, R. F. Brown..................
Hydraulic cylinder lubricator, c. M. Dreyer Hydrocarbon burner for heaters, Ewert \& Meh ing......
Hydrostati
H. Vaile
H. Vaile.................
Iee machine, J. C. Kitton.
Ice plow, C. Van Hoesen...

Iee plow, C. Van Hoesen....
Ink well or stand, c. Reinise
Inking pad, J. B. Laughton..........................
Indicator. See Cash indicator. Door indicator

Power indicator Insole, F. Haag....

Iron. See Flat iron.
Jack. See Clapboard supporting jack.
Jar. See Butter jar. Fruit jar.
Jaw tool, parallel, J. L. \& D. H. Coles
Jug lid, G. Sutton.
Kep, H. C. Fischer.
Knitting machine,

the operation of, W. H. Stewart
Laboratory burner. specially useful with gasoline
gas, J. F. Barker.......
Ladder, step, C. L. Smith
Lamp filler, H. C. Beman
Iantern, E. E. Glidden...............
Lasting machine, Gooding \& Ladd.
Latch, W. S. Merritt...

Leather skiving machine, A. D. Worthen Level, spirit, J. A. Traut Light globes, device for operating elevated, J. F. Barker		
	Line tightener,	
uid shake		
	Locomotive, ele	
Log canter, It s.		
Lubricator. See Automatic lubricator. Hydraulic cylinder lubricator.		
Mail bap fastener. F. W. Hofele................ 424		
Medicine, remedy for toothache, E. J. L. Lung....... $24 / 4$		
Metal into irregular shapes, machine for spinning,		
Metals, uniting, R. J. Tilfor Meter See Electric meter.		
	quito canopies, folding frame	
Motor. See Current motor. Electro-magnetic motor. Hydraulic motor. Railway motor. Spring motor.		
Multiple switch boa Nail. See Heel nail.		
	ar reta	
	${ }_{\text {Opera g alass }}^{\text {Paterson. }}$	
Ordnance and projectile for throwing high explosives, S. H. Emmens............................ 4 Ore roasting furnaces, feeding device for, I. B.		
	Packing, piston, F. D. Pad. See Inking pad.	
Pan. see Baking pan.Paper bag fastening. J. s		
per fastener,		
Paper m		
	Paper makin Paper or	
Pegzing machine, ${ }^{\text {G }}$		
Photographic apparatus		
Photographic ca		
	Pip.	
	Planter, corn, J.Plow. C. Hansen.	
	P1	
	reversible	
	ve	
	Pole, vehicle, Post. See Renc	
	Pata din	
	Potato digr	
	${ }^{\text {Powder. }}$ Power. See	
	drer	
	Press. See Balinn press. Hay p	
	Printing machinery J. J. Derries.	
	Prating mache	
	Printing pa	
	nı pre	
	M. Wood.	
	Prop	
	Propeller, screw, J. A. y Gibert	
	Propelling	
	Protector.	
	Pulp articles, mould	
	Pumps, steam motor for, H. O. Beatty.............	
	Punching and shearing curved plates, machine for F. Rittenhouse	
	F. Rittenhouse........................	
	Punching holes. machine	
	Pu	
	Rail joint support, . P . Riley	
	Railmay, E. M. Boynton.	
	Railway chairs, machine for	
	Railway, elecrric, J. C. Henry	
	${ }^{\text {Rail may, eleet }}$	
	Railmay, elect	
	Railma Railwa	
	Rail	
	Ra	
	Railmay	
	Railmay switch, C. H.	
	ay tie, F.J. Hoyt	
	ars, ce	
	Rake. See Hay rake.	
	Recording measurements of tity, apparatus for, E. M.	
	,	
	Register. See Cash register	
	Regulator. See Dynamo regulator. lator.	
	ay, quadr	
	Rock, etco., driling. J. L. Bu	
	Rocking chair. Kindahl \& H Roller. See Shade roller.	
	Rolling seamless tubes. m	

Sash clasp. E. W. Whittaker
Sash fastener, H. D. Janes
Sash fastener P. . W. Whiter
Sausage meat cutter 1 M. Brigg
Saw. J. Guedel.
Saw. G. C. Iles.
Sawmill carriage, E. J. Muller.
Scaffold, R. J. Crump
Scaffold bracket, R. Wegg
Scraper, earth. S. W. Hall.
Screen. See Window scree

russ, L. Munson.
ype, relief, Taylor \& Welma ypewriting machine, B. A. Brooks..
ypewritıng machine, J. H .
ypewriting machine attachment, Durrin \& She
Umbrella attachment, M. Dattlebaum
mbrella drip cup, S. B. Minnich
mbrella holder, F. F. Ward....
Valve controller, electric, E. Thomson
alve for steam engines, reversing, Dennis
Shoemaker........ .i..
alve gear, H. F. Gaskill.
alve, safety, G. Spence
ehicle, T. Slevin................................
Vehicle seat shade, Letchworth \& Bessesen.
Vehicle, two-wheeled, G. M. Cox.
Vehicle. two-wheeled. C. C . Hayes
Vehicle wheel, Millen \& Milburn.
Vehicles, especially for street
gearing for spring, o. Turcke..
Vending apparatus for liquids. Moulton \& Boyle.
Ventilator. See Window ventilator.
Veterinary remedy, J. R. Anderson.
Voting machine. J. H. Myers.
Washer. See Barrel washer.
Wardrobe hook. Williams \& Hackett.
Watch case, r.Mink.................
Watch cases, manufacture of, S. T. J. Byam.
Watch diuls, applying designs to, Schmalz \& Fir
batch guard, I. Siff.
Watch, pendant set, F.G. Faxon
Watch winding mechanism, I. \& M. Donn
Water purifying apparatus, F. H. Moore
Water wheel. C. Le Duc..
Weather strip, J. T. Hart
Weather strip, J. T. Hart.
Weather strip and thresbold, combined, J. L. Stev
ens...................................
wheel. Supporting wheel. Vehicle wheel.
Water wheel.
Whifletree, W. E. Jacobs...
Whiffletree hook, H. Bodenstein
Whiffletree hook, H. Bode
Window guard, J. Keane.
Window, J. P. Clark, Jr
Window, F. H. Jury...
Window, f. H. Jury
Window fastening, storm, C. R. Moore........
Window screen, rolling and adjustable, J. I. W
Doering.......................
Window ventilator, E. L. Howe
Wire galvanizing apparatus, B. A.
Wirat.
Wire, implement for tyin
Lanpher..............
Wire twister. J. S. Locke.
Woodworking machinery, .T. G. Bug.........
Wool scouring machine, Clark \& Taft.
Wool scouring machine, Clark \& Taft.............
Wort and yeast, apparatus for mixing and aera
ing, J. Meier...........
Woven fabric. A. Heald
Woven fabric. A. Heald.
Wrench, Schlesinger \& B
Wrench, Schlesinger \& Bowmann.
DESIGNS
Bottle, E. J. N. Stent.......19,725, 19,
Brooch or similar article, E.
Combs, etc., handle for, H. Berry.
Combs, etc., hande for, H. B
Cultivator blade, S. L. Allen.
cultivator rake, S. L. Allen...............
Electric meter box, O. B. Shallenberger
Galloon, C . Weinber
Lamp, G. W. Blair..
Lathing, metallic. I...................
Pagendorph
Paving block or brick, . V. Bartels
Paving block or brick, C. V. Bartels
Photographic album, N. Lochbaum
Photographic a bum, N. Lochbaum
Sash cord fastener, G. W. Leee....
TRADE MARKS.
Anodyne, Lee, Johnson \& Co.....................
Antiseptic material in dolid form, \mathbf{c}. J. Bailey.
Brandy. H. W. McIntyre.

$\&$ Kirchmaier..................................... 17,688
Cotton or wool and cotton and wool fabrics, Smith,
Hog \& Gardner..............................7,714,
Cotton or wool and cotton and wool fabrics, except
pile fabrics, Smith, Hogg \& Gardner......
pile fabrics, Smith, Hogg \&
Cuff fasteners, H. R. Wade...
Disinfectants, A, J. Conner............................
Emulsifled preparations, throat and lung tablets,
cough mixtures, and lotions for the skin, Dia
couyh mixtures, and lotions for the skin, Dia-
mond Laboratory Company.
mood for stock, medicated ve
Anglo-American Food Co
Glue and muclage, liquid, Russia Cement Com-
pany...................................
pase and machine belting. hydraul...
Spring and Rubber Comany.
innives and steel implements, b
Knives and steel implements, butchers', Cattarau
$\underset{\text { Medicines, certain named, J. L. L. Reed. }}{\text { gus }}$
Medicines compounded by prescription and offici-i-
nal and pharmaceutical preparations, except
nal and pharmaceutical preparations, except
bitters and an herb tea, J. F. Broderick
bitters and an herb tea, J. F. Broderick..........
17,699
Paper, writing, w. w. White
Porcelain, crockery, earthenware. faien
glass, Societe Anonyme la Ceramique
glass, Societe Anonyme la Ceramique...........
Sirup for soda fountains, flavoring, Wills \& Mac
donald.........
Tea, H. C. Fisher
Tea, H. C. Fisher..
Tinware, certain named Cliften
turing Company.
Wire used in electri
Supply Company
Wood, packages and b
facturing Company
.............................
A printed copy of the spectifcation and drawing of
any patent in the foregoing list will be furnished from
this office for 25 cents. In or
this office for 25 cents. In ordering please state the
name and number of the patent
this office for 25 cents. In ordering please state the
name and number of the patent desired, and remit to
Munn $\&$ Co., 361 Broadway, New York.
Canadian Patents may now be obtained by the
going list, provided they are simple, at a cost of $\$ 40$
going list, provided they are simple, at a cost of $\$ 40$
each. If complicated the cost will be a little more. For
full instructions address Munn \& Co., 361 Broadway
full instructions address Munn \& Co., 361 Broadway,
New York. Other foreign patents mal also be obtained

Fiperinemal $S_{\text {dieme }}$

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, $\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Tabie of Contents.

MUNN \& CO., Publishers

ICE-HOUSE AND REFRIGERATOR.

STEEL TYPE for TYPEWRITERS, tencils, Steel Stamps, Rubber and Metal Type Wheels. Yowk Stenin Works. Mrrs.
100 Nassau Street, New York.

HOME-MADE INCUBATOR.-PRACTI

OTTO GAS ENGINES. Horizontal......Otto ...Gas Engines.
Vertical
Twin Cylinder...Otto... Gas Engines bine Gas Engines OTTO GAS ENGINE WORKS, CHICAGO, New York Agency,

RRAYS harBor

 THE BEST HARBOR

SEATTLE

Waufouds Gnouect
Excursion Chattanooga

To give manufacturers and others an
opportunity to examine the proper of the East
Ohattanooga Land Co., at

have been made with Messrs. Raymond \& Whim comb, the popular excursion managers, to conBoston, Chicago, New York, Philadelphia, and announced later

Manufacturers de

 Technical \ddagger Treatises

1ROCK BREAKERS AND ORE CRUSFERS

GRGRRVINGS FOTROOK5, NEWSPAPERS and YIACULARS

After being on the Market Four Years The "ACME" sill Ladas!
 rochester machine tool woris, brown's Race, rochester, n. y.

TOLNEI W. MASON \& CO. FRICTION PULLEFS CLDTCHES and ELEVATORS
$\$ 10.00$ to $\$ 50.00$ futatit

THE "FISHKILL" CORLISS ENGINE Fishkiill Landing Machine Co., Fishkill-on-Hudson, in. Y.

PROPOSALS.

$\$ 500.00$ PREMIUM
TENDERS WANTED.
Tenders will bereceivenby the clity of Brandon Man,
not

 ON MECHANICAL ENGINEERING

Barrel, Keg, Hogshead $\underset{\text { Over } 50 \text { varieties manvo }}{\text { STA MAD }}$ E. \& B. Holmes Truss Hoop Driving. E. \& B. Holme THE BEST LIME KILN KNOWN TO INVENTORS I-PATENTS, Trade

 SOL AGENG Wanted for the Eale in Germany
The Ccientific a merican

The Scientific 1 merican

 PUBLICATIONS FOR 1890.The priees of the different publications in the Unitea The Scientifc American (weekly one year $\quad * 3.00$ year. ${ }_{\text {s.00 }}$ The Scientitic American, Spanish. Edition (monthif) ${ }_{3.00}$
The scientite American, Architects and Builders
Edition (monthy $)$ ane year
The Scientifce A merican and Supplement, . . 8 R.00

55 MILK ST, BOSTON MASS

This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465. and January 30th, 1877, No. 186,787.
The transmission of Speech by all known orms of Electric Speaking Telephones inringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences HW.JOHIS Asemstos STEAM PACKING
Building Felt, Liquid Paints, Etc.
Her
Bing JESCRIPTIVE PRICE LIST AND SAMPLES SENT FRER
H. W. JOHNS MFG. CO., 87 Maiden Lane, N. Y.

STEAM ENGINES
Stationory,
Ontal,
Ortable and Semi-Portable Portable and Semi-Portable.
$\mathbf{3}$ to 16 Horse Power. Inustrated Pamphlet Free. Address
AMES LEFFEL \& CO. SPRINGFIELD, OHIO,
Or 110 Lberty St, New York

ICE MACHINES,

each to make 700 pounds ice per day. Inquire at The
De Lamater Iron Works, Foot West 13 th Street, New
York.
BASE BALL. - A DESCRIPTION OF

PATENTS!
 amine improvements, and to act as Solicitors of Patents
forl nventors.of business they have had forty-one years,
In this ineos
experience, and now have unequaled facilities for the
 for Books, Labels, Reissues, Assignments, and reports
on Intringeementor or Patents. All busines intrusted to
them is done with special care and promptness, on very reasonamphetermen. free of charge, on application, con-
tainnom fullininormation about ratentsand how to pro
cure them; directions concerning Labels Copro

 Paterit Rivited Monared Rinber Belting,
 the gutta percha and rubber mpg. co. 35 Warren Street, New York.
Chicago,
San Francisco, Boston, Mass.

POPE MFG. CO, 12 branch houses :

The International Cyclopedia

 SALESMEN WANTED. SOLD FOR CASH OR ON EASY PAYMENTS. DODD, MEAD \& COMPANY, sussoription 753 \& 755 Broadway, N. Y.

WORKING MODELS And Ryperimental

HAVE MANY PATENTED IMPROVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION BY THOSE WHO THE BEST SAFE MARVIN SAFECO. NEW YORK, PHILADELPHIA, LONDÓN. ENGLAND.

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York n CUTLER DESK

SYARCLIVE MALLEABIE PROWWOKKS THREE ELEVATORS

OTIS ${ }^{\wedge}$ BROTHERS $\&$
Pasenger and Frieight Elevator worss,

THE OTIS ELEVATOR GRAVESELEVATORS.

JEMKIISS stamparp packima

MIRE ROPE

Address JOHN A. ROEBLING'S SONS, Manufacturers, Trenton, N. J., or 117 Liberty Street. New York,
Whesk and
Senope for conveying power long distances.
ideal musical box Is the Latent Tnvention in Swiss Musical Boxes
It is the Sweetest and Most Perfect Instrument
for the parlore Any number of funes can be obJACOT \& SON 300 BRONDAY ฐcientific American

The Most Popalar Selentific Paper in the World.

This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sirpaper is published weekly. Every number contains sixteen pages of useful information and a large number of
original engravings of new inventions and discoveries representing Engineering Works, Steam Machinery New Inventions. Novelties in Mechanics, Manufactures, Chemistry, Electricity, Tel\&graphy, Photography, Archi-
tecture, Agriculture. Hortreulture, Natural History, etc. tecture, Agriculture. Hort toulture, Na
Complete List of Patents each week.
Terms of Subscription.-One copy of the Scien tific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States, Canada or Mexico, on recelpt of three dolinrs by the Clubs.-Special rates for several names and.to Post Master. Wite for pertriculars.
The safest way to remit is by
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Crder. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed sendom geos ascray, but is at the sendert's risk. Ad-
seld
dress all letters and make all orders, drafts, etc., paydress all letters and make all orders, drafts,
able to
MIUIN \&
OO.,

361 Broadway, New York. TIEI
Scientific American Supplement.
This is a separate and distinct publication from
Thuc Scientifio American. but is uniform therewith In size, every number containiug sixteen large pages full
of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. The Sciinntific American SUPPLimment is published
weekly, and includea a very wide range of contents. weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writersin
all the principal departments of science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geology, Mineralogy,
Natural History, Geography, Archæology. Astronomy. Cbemistry, Electricity, Light, Heat, Mechanical Engi-
neering. Steam and Railway Engineering. Mining, neering, Steam and Railway Engineering, Minigg,
Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Engineering. Agriculture, Horticulture, Domestic Econo-
my, Biography, Medicine, etc. A vast amunnt of fresh my, Biography, Medicine, etc. A vast amunnt of fresh
and valuable information obtatnable in no other pub.
lication.
The most important Engineering Works, Mechanisms and Manufactures at home and abrosd are illustrated Price for the SUPPIEMENT for
Canada. $\$ 5.10$ a year, or one copy of the SCIENTIFIC AM ELICAN and one copy of the SUPPLEMLINT, both mailed
tor one year for $\$ 7.00$. Single copies 10 cent. tor one year for $\$ i .00$. Single copies 10 cents. Address
and remit by postal order, express money order, or check MUNN \& CO., $\mathbf{3 6 1}$ Broadway, N. Y..
Building Edition.
THE SCIENTIFIC American Architects' \triangle ND BuILDERS EDITION is issued monthly. $\$ 2.50$ a year
Single copie, 25 cents. Forty large quarto pages, equal Single copie 8,25 cents. Forty large quarto pages, equa
to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richIy adorned with elegant plates in colors. and with othe fine engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number
of a variety of the latest and best plans for privete of a variety of the latest and best plans for private resi-
dences, city ard country, including those of very moddences, city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in erate cost as well as
perspective and in color are given, together with full
Plen Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of this inapnifcent work The elegance and cheapness of this inapnifteent work
have won for it the Largest Circulation of any
Archivecural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to
MUN N \& CO., Publishers,

$$
361 \text { Broadway, New York. }
$$

PRINTING INESS

