
a WeEkly journal 0f practical information, art, science, mechanics, chemistry, and manufactures.

WESTINGHOUSE AUTOMATIC BLOCK SYSTEM RECENTLY INTRODUCED ON THE CENTRAL RAILROAD OF NEW JERSEY.

sorientific Agmericam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 The Sclentific American Supplement
 To foreign countries
Building Edition.

Spanish Edition of the Scientific American.

NEW YORK, SATURDAY, APRIL 5, 1890.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 744.
For the week Ending April 5, 1890.

 VI. Horticulture.Diseases of the Cranberry.-Notes of dis-

 obtained frriman amanem
obtained. -4 illustrations.

 pied to taces. \rightarrow illustrations.

11890

\qquad

never awarded.
Recently the
Recently the Solvay ammonia process has been put into operation. It depends on the following facts. If a solution of sodium chloride (common salt) is mixed
with a solution of ammonium bicarbonate, with a solution of ammonium bicarbonate, most of the
sodium is precipitated as bicarbonate and the ammosodium is precipitated as bicarbonate and the ammonium remains in solution as chloride. The ammonium salt is heated with lime, whereby ammoniacal gas is liberated. This is reconverted into bicarbonate by treatment with carbonic acid gas, and is used again in the process. The sodium bicarbonate is converted into the carbonate by heating, and the gas evolved is used in the conversion of the ammoniacal gas into ammonium bicarbonate. Thus the lost product, irrespective of waste, is the lime.

The Solvay process has been introduced into this country, but still we are dependent on Europe for mos of our soda. The imports for the year ending June, 1889, were $308,990,773 \mathrm{lb}$. About one-half of this amount was used in the glass houses alone. Great Britain remains the largest producer, her output

The industry uses immense quantities of sulphuri acid. Pyrites are now used to a greatextent for mak ing the acid. These pyrites often contain smal amounts of copper. The ash or clinker from the py
rites furnace, where the sulphur is burned out in the rites furnace, where the sulphur is burned out in the sulphuric acid process, is treated for the saving of thi copper, and the residual iron oxide is used in the manufacture of iron and steel. So important are these without direct profit, it is said, the copper and iron
being depended on to make it pay. The absence of any side products tells heavily against the Solvay process.

Honoring an Inventor.

Captain Joseph Francis, the veteran life-saving appliance inventor of this city, is the recipient of the largest and most expensive gold medal ever presented to any citizen of this country by Congress in recognition of valuable services rendered.
The actual cost of the medal is several thousand dollars, some of the items of which areas follows : Cost of dies, $\$ 1,500$; model, $\$ 700$; gold used, $\$ 760$; striking medal, $\$ 30$; cost of case, $\$ 18$. Other medals of value that have been presented by Congress are as follows : U. S. Grant's, complete, cost $\$ 594.79$; Capt. Ingram's, complete, cost $\$ 546.50$; Cyrus W. Field's, complete, cost $\$ 562.88$.
In the Francis medal over three pounds of gold were used, and the medal is very handsomely engraved on both sides. On one side is the head of the inventor and the inscription stating the purpose for which the medal is given. On the reverse is a representation of the saving of 360 souls by means of the Francis life-car from the British ship Ayrshire, which went ashore of the New Jersey coast. The life-car which rendered this valuable service is now numbered among the most interesting relics at the Smithsonian Institution in Washington. A movement is on foot by members of the Chamber of Commerce to tender to the aged inventor a rousing reception on his return from Wash ington with his newly acquired and well deserved trophy of the government's esteem.

The western cyclone.
A storm which started eastward from the Rocky Mountains, March 29, and that had its origin near Great Salt Lake, Utah, caused wide devastation over a great tract of country. It took a violent form through the States of Kansas, Missouri, Kentucky, Tennessee, and the southern part of Illinois, Indiana, and Ohio, on its southern boundary, while the storm drew its northern limit through the States of Nebraska, Iowa, Minnesota Wisconsin, Michigan, and the northern portions of II linois and Indiana. Through most of this great re gion the winds were very high, and on the northern boundary there was heavy snow in sections, while the rain fell copiously along its southerly line. There was also, however, on the south and southwest edge of the storm, a series of disastrous tornadoes on the afternoon and evening of March 27, the most destructive of these, both as to life and property, having occurred at Louisville, Ky_{y}, about 8 o'clock in the evening of March 27 , Metropolis, Ill., and Bowling Green, Ky., at about the Metropolis, Ill., and Bowling Green, Ky., at about the
same time having a like terrible visitation. It is said same time having a like terrible visitation. It is said
that scarcely a town on the border line of Kentucky, Illinois, and Indiana escaped the ravages of these torna does. At Louisville the storm entered the southwestern portion of the city, and swept a path through it in a northeasterly direction about five blocks wide, leveling every building, tree, and telegraph pole in its course. The district thus laid waste comprises an area about three miles long and nearly half a mile wide. The inhabitants were all attending to their usual avo cations, although warning of an exceptionally severe storm had been given by the Signal Service Bureau, and in one large building a ball was in progress and two or three meetings. The collapse of this structure is said to have buried two or three hundred persons in the ruins. The total loss of life in the city cannot be known for several days, but it is estimated at about two hundred, while many hundreds are wounded.
The reports indicate that the wind throughout the storm-visited section averaged from forty-five to sixty miles an hour, the tornadoes along the southern por ion of the great storm heing caused by the coming to ether of the cold air drawn in from the north by the uction of the storm center with the uprushing warm air from the south. The local tornado thus formed, of which there were many along the southern side of the storm center, consisted in general of "an immense unnel of whirling air, having its upper base among the clouds, and perhaps of a diameter of four or five miles, while its mouth or lower sharp end had a diameter of only a few city blocks." As such tornadoes rush over the country, however, this lower sharp end of the funnel is constantly being lifted from the ground, and withdrawing itself into the storm cloud, which accounts for the varying degrees of intensity of the storm at different places along the line of its course.
This cyclone, with the attendant heavy rains through the Mississippi Valley, cannot fail to have a most disastrous effect along the whole lower portion of that river. Already great districts have been flooded, including some of the largest and finest cotton plantations of Mississippi and Louisiana, and the river is yet full to overflowing, with many crevasses in its banks which it has been found impossible thus far to close p. It is feared that this new influx of water will so raise the height of the Mississippi, from the Ohio to the Gulf, as to cause an unprecedented overflow and im. mense destruction of property, although such thorough warning has been given that there should not be any accompanying great loss of life.

The Calcutta Statesman, of December 14, in the course of a long article on the uses of the pineapple fiber, says: "It is almost a truism to say that no new or untried natural product, however useful, or even valuable, in an economic point of view, can ever stand a chance of becoming an article of commerce, unless it is put into the market in a form that admits of an easy test of its fitness and capabilities for practical purposes. The rapid popularity attained by jute as a textile material was owing largely to the care with which the finest qualities of the fiber were developed in the samples shipped for trial in Dundee and Glasgow.

That the undoubtedly superior fiber of the pine apple plant is not in such general nequest as it ought to be, and might be, is, we fear, due entirely to a neglect of the conditions which would have adapted it for ready experiment. In a note in the last issue of the Calcutta Agricultural Society's Journal, Mr. R. Ble chynden has collected and set out such information as he has been able to gather from books and other publications regarding the uses to which the leaves of the pineapple plant are known to have been applied in India and in other countries.

As this knowledge is calculated to open out a new and remunerative industry, we think, says the Journal of Fabrics, it is very desirable that a systematic effort should be made for the development and utilization of what Mr. Blechynden describes as 'one of the most interesting, promising, and valuable fibers of India.' In order to awaken public interest to the economic value of this fiber, we shall draw upon Mr. Blechynden's note for such information as may give some idea whether its preparation for textile purposes is likely to be a source of profit to the agricultural classes of this country. The industry would appear to be not altogether new.
" The pineapple haslong been cultivated for its fiber in India, having been introduced into Hindostan from Malacca, during the reign of the Emperior Ak bar. Indeed, it is still an article of trade in the Eastern Islands, and in the Philippines it is manufactured into a cloth (pina), 'well known to be of great strength, dura bility, and beauty.' The fiber is also largely exported to China, where it is woven into linen. As regards India, we find that it was in 1834 that Col. C. T. Watson brought to the notice of the Asiatic Society of Bengal that the people of the Khasya Hills utilized the pineapple fiber for the net pouches or bags which general ly formed a part of their equipment. Two years later Dr. Wallich saw it applied to the same purpose, and in Dr. Wallich saw it applied to the same purpose, and in
writing to the Agricultural and Horticultural Society, writing to the Agricultural and Horticultural Society,
said : 'Considering the enormous quantity of pines grown in that range (Khasya Hills), the plant appear ing as if it were quite a natural production, the fiber of it. is worthy of attention.' No action, however, was taken on Dr. Wallich's hint. As a fact, the pineapple plant grows, and can be made to grow, in almost every
part of India. It has hitherto, without much trouble, part of India. It has hitherto, without much trouble, for the fiber will be no less simple. The production of fruit and of leaves, it is generally admitted, 'in no manner interferes with each other, the leaves being fittest for fiber after the fruit has ripened.'

The largest and most mature leaves aresaid to yield
finest fiber. The cheapest and most thor the finest fiber. The cheapest and most thorough process of extracting it in a way to exhibit its best qualities is, therefore, all that is wanted to place it in its proper position among the most valuable fibers suited for textile fabrics of the higher class. In the Khasya
Hills, we are told, the leaves are gathered before the Hills, we are told, the they have been soaked in water for some time (not specified), they are beaten out in order to separate the fiber. The Chinese process, as followed in Singapore, is as follows :
"'The leaves, recently gathered, are laid upon a board, and the epidermis is removed by a broad knife, not unlike in form to a shoemaker's paring knife. Upon its removal from the upper surface of the leaf, the long and beautiful fibers were seen lying upon the lower and denser epidermis running in a longitudinal direceither by hand or by being raised by the broad knife

The first appearance of the pineapple fiber would not cause one to suppose it to be so remarkably fine as it really is; but, by taking one coarse fiber, it i found capable of being subdivided into threads of such delicacy as to be barely perceptible, and yet sufficiently strong for any purpose.
'Experiments recently made with the leaf in the Seebpore Engineering College showed that steeping de stroyed the fiber. The Agri-Horticultural Society, however. have since made up a sample of fiber prepared by hand and heckled, and it is believed that this fiber, if properly prepared, could be mixed with cotton or wool as a substitute for silk. Indeed, we are told that some thread was made out of it by a Miss Davy so far back
as 1839, and, under ber direction, it was subsequently manufactured into cloth, which might, with more ex perience of the fiber, have been made equal to the fine fabric of Manila. Mr. Blechynden notes that a Mr. Zincke has taken out a patent for the manufacture o thread from this fiber. as he is satisfied that, by sub-
jecting it to the process of bleaching, it becomes pliant enough to be spun in the manner now adopted with
flax, and by the same machinery. Here, surely, is a fit opportunity for the Agricultural Department of the Government of India to step in and direct experiments to be prosecuted on some prescribed system, in district where the pineapple plant is found already growing in abundance. When the most suitable methods and conditions for the extraction and preparation of the fiber ditions for the extraction and preparation of the fiber
have been thoroughly ascertained and made known, have been thoroughly ascertained and made known,
we have no doubt that private enterprise will take up the new industry with the same vigor as was manifested in the manufacture of jute, especially as, like jute, the pineapple plant can be raised at little costand trouble and, still better, as a subsidiary cultivation."

Wonderful News about Mercury.

The Italian astronomer Schiaparelli, who has become famous in recent years for his discoveries on the planet Mars, has lately surprised his fellow savants by the an nouncernent of equally remarkable discoveries about the planet Mercury. The reader will remember tha Mercury is the planet nearest to the sun, so that, on account of its proximity to the solar orb, it can never be seen except low down in the evening or morning sky. On this account comparatively few persons ever see it. It is, however, a very brilliant object when well the Greeks named it the "Sparkling One:" Mercury is very much smaller than the earth, being only 3,000 miles in diameter, but it is composed of far heavie materials, and, according to recent investigations, it weighs almost as much as a globe of real mercury o the same size would weigh. In fact, it is not improba ble that the planet is very largely, if not chiefly, com posed of metallic matter.
It has long been known to astronomers that there are permanent markings visible on the surface of Mer cury, but it requires a sharp eye, a fine telescope, and exceptional conditions of atmospheric purity and steadiness to enable one to detect these delicate shadings on the planet's disk, and so not much has hereto fore been known about them. As Mercury is nearer to the sun than the earth is, it presents to us in the cours of its revolution around the sun all the phases that w see in the moon.
Schiaparelli, after studying Mercury for seven years, makes the surprising-assertion that Mercury, instead of turning on its axis once in twenty-four hours, turns only once in the course of a revolution around the sun. In other words, it always presents the same face toward the sun, behaving in this respect just as the moon does toward the earth. Moreover, Schiaparell has discovered many marks upon the disk of the planet
which had not been noticed before, and he has made a little map or diagram which shows that these mark strikingly resemble some of the features discovered in recent years on Mars. They are elongated streaks run-
ning in various directions, and frequently presentin ning in various directions, and frequently presenting ment or knot. Similar streaks on Mars have been as sumed to be long narrow seas or water courses. The geometrical figures formed by the intersection of these streaks on Mercury strikingly resemble those on Mars. In one place there is a shape of this kind that roughly resembles a huge figure 5, covering a quarter of one hemisphere of the planet.
It has long been known that evidences of an atmosphere are perceptible on Mercury, and the spectro scope has shown that watery vapor probably exists in this atmosphere. But if some of the phenomena observed by Schiaparelli are correctly interpreted, he ha actually beheld clonds floating in the planet's air, and the indistinctness of the spots on the disk, when see
near its edge, is ascribed to the effects of the amospher near its edge, is ascribed to the effects of the amosphere
absorbing the light. These supposed clouds, which, reflecting the sunlight from their upper surfaces. ap pear as white patches, are more numerous, according
to Schiaparelli, in the northern than in the souther hemisphere of the planet. In fact, they are so numer ous near the north pole that they produce an apparent elongation of the northern horn of the crescen when Mercury appears in that form, and Schröter's supposed shortening of the southern horn has accord ingly been ascribed, not to the shadow of great moun tains, but to the effect of contrast with the extraordi nary lengthening of the northern horn caused b Schiaparelli's clouds.
There is really nothing to cause astonishment in Schiaparelli's announcement that Mercury makes only one rotation on its axis in going once around the sun for it is so near the sun that the tidal influence of the latter might readily have reduced its rotational velocity to coincidence with its period of revolution, just as ha occurred in the case of the earth and the moon. Never theless the fact is exceedingly interesting and it become guch more so when considered in connection with th question whether Mercury is habitable. It has gener is an inhabited globe, yet so long as it presents evi dences of the presence of air and water on its surface, it is impossible to deny the possibility of the existence
selves in the position of an inhabitant of Mercury. I we dwelt on the sunward side of the globe, we should have perpetual day, and, of course, on the other side we should be plunged in perpetual night, since the sun can never shine on that side. Still, owing to the great eccentricity of Mercury's orbit, the planet undergoes a large libration in longitude as it journeys around the sun, and the result of this is to produce the same effec sun, and the result of this is to produce the same effect nearly 24° on each side of a median line, making one complete swing in the course of a single revolution around the sun. Consequently there are regions along the eastern and western edges of the sunward side o the planet which are alternately brought into the sunshine and plunged back again into darkness. Th dwellers within these lune-shaped regions, each of which attains a width of 24° at the equator and diminishes to nothing at the poles, would therefore be he only inhabitants of Mercury who could enjoy the alternation of day and night. Those living at the inne dge of one of the lunes would see the sun slowly ris o a height of 24° above the horizon, and then sink gain in a period of six weeks; those living at its oute dge would catch only a brief glimpse of the sun jus peeping above the hill tops once in every year, or 88 ays, that being the time required by the planet to complete a revolution in its orbit.
An inhabitant dwelling near the center of the sun ward side of the planet would have the sun directly ver his head twice in a year, and from that position t would appear to oscillate 24° on each side of the enith, moving first to one side and then to the other As Mercury has also a small libration in latitude, this apparent swinging of the sun to and fro in the sky would not be performed in a straight line, but in a very long and narrow ellipse.
The inhabitants of Mercury, if any there are, have something besides these curious oscillations to make them take a particular interest in the sun. We have already referred to the great eccentricity of the planet's orbit. This, in fact, is sufficient to cause the distance of Mercury from the sun to vary to the extent of some ourteen million miles in the course of a revolu tion, its greatest distance being about $43,000,000$ miles, and its least distance in the neighborhood o $29,000,000$ miles. At its perihelion, under the tremen dous impulse of solar attraction, the planet darts ahead in its orbit at the rate of $3,000,000$ miles a day in aphelion this daily motion is reduced to $2,000,000$ niles. This variation of orbital velocity however is sim ply interesting in itself, and probably has no bearin pon the question of life on Mercury. But the change in the amount of radiation received from the sun has a most decided bearing upon that question. When Mer ury is at perihelion, the sun pours down upon the sur ace of that devoted planet more than twice as much light and heat as it does at the time of aphelion. Making a comparison with the earth, we find that the amount of solar light and heat received upon the sunward side of Mercury varies from four times the amount that the earth gets to nine times that amount. Such alternations as these would certainly prove fatal to any of the higher forms of life that exist ponour globe, but it would be presumptuous to at empt to set bounds to the power of the Creator to fit His creatures to the varying circumstances of their en vironment. Even the comparatively narrow limits of life upon the earth supply us with many astonishing nstances of adaptation.
If we cannot accept as a proper residence for intelligent beings either the sunward hemisphere of Mercury mitten with so fierce a gust of solar heat and subjected o such violent alterations of temperature, or its un illuminated hemisphere plunged in perpetual darkness and frozen with a cold more than Arctic, perhaps we can urn with better success to those lune-shaped region that we have described, in the search for some spot on this strange planet where creatures not utterly unlike ourselves might dwell. In those regions, as we have seen, there are alternations of light and darkness. In them, too, the sun cannot smite so cruelly, for its rays must there fall robbed of their worst effects on account of the great inclination at which they meet the surface. The effect is the same as that produced upon the arth by the difference in the inclination of the sun's rays in winter and in summer.
How strange and wonderful is the globe that is thus presented to the imagination, with a desert of heat on the one side and a wilderness of cold on the other, but possessing between these two frightful expanses narrow regions in which it is possible to live! Truly before our eyes!-N. Y. Sun.

A new alloy has been discovered by Herr Reith, of Bockenheim, Germany, which is said to practically resist the attack of most acid and alkaline solutions. Its composition is as follows: Copper, 15 parts; tin, 2.34 parts; lead, 182 parts; antimony, 1 part. This alloy is, therefore, a bronze, with the addition of lead and antimony. The inventor claims that it can be very adantageously used in the laboratory to replace vessels or fittings of ebonite, vulcanite, or porcelain.

an Improved alarm lock

The accompanying illustrations represent an alarm lock patented by Mr. Carlos A. De A. Basto (address in care of Jules Geraud, No 43 Rua do Rozario), of Rio Janeiro, Brazil. Fig. 1 presents face and seetiona views, and in Fig. 2 is shown the inner face of the look,

Fig. 1.-DE basto's alarm lock.

Fig. 2.-DE basto's alarm lock.
the guard or shield plate being removed and the part represented as they appear when the locking bolt is thrown to the locking position. On the lock plate, 10, is mounted a locking bolt, 11 , in connection with which is arranged a series of tumblers, 12 , the key engaging a post, 14, which is in position to bear against the tum blers. The post carries a ratchet, 20 , and on the post is loosely mounted a gear, 21, carrying pawls arranged to engage the ratchets, so that when the key is turned in one direction the gear will be advanced, and when turned in the other direction the gear will remain stationary. The gear, 21, engages a gear, 22a, carried by a shaft, on which is mounted a spring barrel, 24, carrying a gear, 25, that engages a pinion, 26 , carried by a shaft, on which there is a ratchet or scape wheel 28. In connection with the latter wheel is arranged an escapement lever, e, carried by a shaft, which also carries a hammer arm, with a hammer, 31 , arranged to strike against a gong, 32, as the ratchet operates the escapement lever. There is also a special arrangement by which the ratchet will be held from vibration at all times except when the bolt is moved partially downward. In the construction shown, the alarm mechanism is inclosed in a case, 50 , and it requires three turns of the key to carry the bolt home.

THE VICTOR SAFETY BICYCLE.
In the Victor safety bicycle, illustrated herewith, is shown a very perfect machine in respect to strength
ral inches of play, that is of even flexibility throughout its entire length, that permits up and down as well as front and rear motion, and that avoids the disagreeable vibration of the front wheel. In its construction eight and one-half feet of rod are used.
The wheels are built with tangent spokes and are practically everlasting. The spokes at the points of intersection are wound with wire, so that the whole wheel is a unit, and a single spoke never has more than its own share of work to do. The rims of the wheels are hollow, and are rolled from weldless steel tubing. They are of great strength, and the spokes are secured by threaded nipples to the rim. Gounterboring is used to prevent wear upon the screw threads. The India rubber tires are compressed into the wheel by a chemical process without cement. If the tire is cut by a stone or other substance, the cut tends to close instead of open.
The sprocket wheel on the driving axle comes be tween the bearings, saving the rear forks and bearing from injurious and destructive side strains.
Dustproof ball bearings are used throughout. The machine contains the surprisingly large number of 176 balls. They are the Æolus balls, and are the best known.
The above is a resume of some only of the salien points of the Victor.

Articles Found in Cotton Bales.
According to the Providence (R. I.) Journal, at the Wampanoag Mills, Fall River, Mass., not long ago, the workmen in the picker room stopped a package of matches just as the bundle was disappearing into the picker. It had come out of a cotton bale the men had just opened. Had they gone into the machine, there would have been a lively blaze. Speaking of this incident, a man who has tended a picker for several years said that the things which come out of a cotton bale, and evidently grow on bushes, would astonish one One day he heard something grind inside the picker, and, stopping the machine, found a silver spoon. Liz ards and small snakes were common. A set of fals teeth, small coins, knives, tobacco, and occasionally articles of more value have been found. These things undoubtedly get inside the bales accidentally, bu there are other things which evidently get inside in accordance with a fixed purpose, and by strange coincidences they are found to weigh more than cotton and not to be worth as much per pound on the market Sand, scraps of iron, and dirt are often found wrapped nside a cotton bale for ballast

OW WATER ALARM AND FLUE CLEANING DEVIC

 FOR STEAM BOILERS.The accompanying illustrations represent three pat ented improvements in steam boilers made by Mr. Cor nelius J. Cronin, of Findlay, Ohio. Fig. 1 is a view from the rear of a portion of a locomotive type of boil er, so constructed that the flues may be expeditiousl freed from scale, and having a low water alarm de signed also tofextinguish the fire before the crown shee of the firebox is exposed. Fig. 3 is a sectional view of he aiam device, and Fig. 4 represents differ herm form of low war lues. The low water alarm is made by producing cen trally in the crown sheet of the firebox an upwardly extending inverted cup-shaped offset, in the center o which is a threaded aperture for a hollow plug or car rier, from the bottom of which is an opening into the firebox, this plug or carrier to be filled with lead or an equivalent soft material capable of melting at a low temperature. When the water falls sufficiently to expose the upper surface of the plug the lead is melt and runs down into the frebox, followed by the steam, which gives an alarm and extinguishes the fire. The device not only gives timely warning, but is preferably so arranged as to always leave a reserve of an inch of water upon the top of the crown sheet.
To facilitate the cleaning of the flues, the boiler shell has a transverse slot in its top at the rear of the tube sheet of the firebox. The walls of this opening are preferably strengthened by re-enforcing strips, and the cover, shown in section in Fig. 2, is bolted to the outer face of the shell with a washer or packing of asbestos or equivalent material. Near the bottom of the casing or shell, at each side, is a hand hole, closed by a steam-tight plate, through which the scale may be removed after it has dropped to the bottom of the casing. In the construction hown in Fig. 4, the boiler shell has a series f holes near the sides of the front wall, so arranged that the scraper may be introduced
and lightness, as well as in ease of running. It is manufactured by the Overman Wheel Co., Chicopee Falls, Mass. Two prominent features of construction especially characterize the machine, namely, the diamond frame and spring fork for the front wheel, the former possessing some of the elements of the bridge truss.
The spring forks are composed of four curved steel rods, made of the finest spring steel, of the same grade used in swords. These serve as a spring that has seve-
to the inside of the side wall at any height up to the water level, whereby the side walls and stay bolts may be readily cleaned. These holes are closed by tightly fitting screw plugs and at the bottom are the customary hand holes through which the sediment is removed.

Note.-The lister and drill illustrated and described on page 181, issue of March 22, was patented by William A. Loughry, of Odessa, Nebraska.

AN IMPROVED MEANS OF CHANNEL PROTECTION. The accompanying illustration represents a means of permanently maintaining a navigable channel across a bar or bank, patented by Mr. Albert J. Mauermann, of Houston, Texas, and especially adapted for localitie not favored by swift-running rivers or streams, wherein jetties may be used to advantage. Fig. 1 is a plan view of water courses having such a channel protector, Figs. 2 and 3 being vertical sectional views, and Fig. 4 a plan view at one end. The ocean, or deep water, being at B, and the adjacent harbor at C, the sand bar between represented by A A, transversely across which the channel protector ranges, D D representing islands a each side which naturally promote accumulations tend ing to close the channel to the harbor. Two parallel walls or dams, E E, are built at suitable distances apart across the bar, to provide a permanent channel, and at their seaward end is constructed a submarine barrier G, having two relatively inclined faces or wings meet ing at the center and front of the channel. This barrier may be constructed of piles driven into the bottom

MAUERMANN'S PROTECTOR FOR SUBMARINE

 CHANNELS.or other material, backed with a filling or otherwise ; but the top of the barrier must never be so high as to prevent the passage of a vessel through the channel at low water, and it must be built out sufficiently far into deep water to have its top range from ten to fifteen feet above the bottom, as shown in Figs. 2 and 3, to prevent the sand from outside washing over its top and facilite it rolling down its natural slope. When desir tate later F^{\prime} of the built to an adje built to an adjacent piece of land, to prevent sand being washed into the harbor by water currents from the wall, \mathbf{E}. The outline of the bar or bank cut away to make the channel is indicated by the dotted line, a a, in Fig. 2, the sand excavated being most conveniently dumped over the side walls.

Thirty-seven Millions of Cubic Feet of Gas per Day from a Single Gas Well.
A dispatch from Fostoria, O., January 10, says an attempt was made to pack the Northwestern Ohio Natural Gas Company's gas well on the Huston farm, but the packers were immediately blown out. Another attempt will be made to pack this monster well. It has increased $2,000,000$ feet since it was drilled, and is now a $37,000,000$ feet per day well, the largest and best well ever drilled.

CRONIN'S IMPROVEMENTS IN STEAM BOILERS,

an Improved atomizer.

A convenient spraying device, designed to force a continuous stream, has been patented by Mr. J, Fred Windolph, of No. 128 Flatbush Avenue, Brooklyn, N. Y., and is represented in the accompanying illustration,

WINDOLPH'S ATOMIZER.

a portion being broken out to show the interior. The flexible receptacle has a stopper, from which leads an air pipe bent in the usual manner, and having an outlet opening at its outer contracted end. The liquid pipe is within the air pipe and extends from near its outer end through the stopper and into the liquid. A valve is arranged in one side of the receptacle to close outward and open inward, there being also a similar valve opening inward on a cup-shaped bulb depending from the stopper, and through the bottom of which the liquid pipe extends. As the operator presses upon the outer receptacle, air is forced into the interior bulb at the same time that the liquid is being sprayed in consequence of such pressure. With the release of the pressure on the outer receptacle its valve opens to admit air, while the valve of the interior bulb closes, and the compressed air in the bulb continues to flow out through the discharge pipe, whereby the spray is made continuous.

AN IMPROVED KEY FASTENER

A guard to prevent a key from being turned from the outside, and also to keep a key from falling out of the door when the latter is unlocked, is shown below, and has been patented by Mr. Taswill B. Armstead, of No. 345 East Forty-third Street, Chicago, Ill. The guard consists of a shank with spring metal

armstead's key fastener.
members bulged in the middle, its straight ends being adapted for insertion in the key hole, and having one of its members bent at the opposite end and returned on itself, terminating in one arm of a spring clasp lying at a right angle toward the key hole, in position to em brace the ring of the key. The other arm of the clasp is attached to the first arm by lugs and a pivot pin, around which is a coiled spring to hold the jaws nor mally closed, although they may be readily opened for the insertion of the key ring. In using the device, the key in the lock is turned to move its bit away from the key hole, when the ends of the shank are inserted and the jaws of the clasp are caused to grasp the ring of the key, thus preventing the turning of the key or the picking of the lock from the outside.
"We have enough gas to burn up the world," said Harvey Hardy, of the Midland Investment Company "In drilling for water we struck it, at from 150 feet to 200 feet from the surface, and the wells roar like an en gine blowing off steam. The driller, not knowing much about natural gas, struck a match, when it shot up 35 feet and made a flame as big as this building, nearly scaring the life out of the poor fellow. An expert familiar with the gas fields of Pennsylvania on seeing it pronounced it the right thing and to exist in sufficient abundance to pipe for fuel."-Salt Lake City Herald.

Those Who Will Follow Us.

I imagine that, when we look back from our home in the unseen universe ages hence, we shall see, without much doubt, a race of men differing from those of to-day as much as the man of to-day differs from his simious, perhaps simian, ancestors, writes Professor Thurston in the North American Review. The brain will be developed to meet the more complex and serious taxation of a wore complex and trying civilization, the vital powers will be intensified, the man, reducing the powers of nature still more completely to his service, powers of nature still more completely to his service,
will depend less on the exertions of his muscles, and they will be correspondingly and comparatively less powerful, though they will probably nevertheless, I imagine, continue to grow somewhat in size, as they unquestionahly have grown since the middle ages; the lungs must supply aeration to a larger and more rapidly circulated volume of blood richer in the phosphatic elements especially needed for the building up of brain and nerve, the digestion must supply its nutri ment in similarly increased amount and altered char acter and composition, the whole system must be caacter and composition, the whole system must be ca-
pable of more rapid, more thorough, and more manpable of more rapid, more thorough, and more man-
ageable conversion of the energies of the natural forces to the uses of the intellect and the soul which inhabits it.

The Need of Good Country Roads.
College professors, civil engineers, and magazine writers are directing public attention to the subject of country highways, and the Vanderbilt University, Tennessee, has gone so far as to provide for the free instruction in road engineering of one person from each county in that State. The Baltimore Sun, which is agitating the question in Maryland, points out that the power required to draw a wagon weighing, with its load, one ton on a level, macadamized road of broken stone is sixty-five pounds, which is increased to two hundred pounds on a common dirt road. Prof. Ely, of Johns Hopkins University, estimates that poor roads cost the farmer, on an average, $\$ 15$ per horse, and Prof Jenks, of Knox College, Illinois, argues that with good perrranent roads freight could of ten be hauled ten wiles on wagons cheaper than it could be taken on mile on a dirt road to a railroad station, unloaded, put on the cars, and carried to its destination. Of the so cial influences of good roads, he says that 'a large part of the mental inspiration of the farmers depends on their ability to attend church lectures, concerts, and social gatherings at a distance ; and really good roads, by enabling them to go so much more easily would doubtless raise the whole intellectual tone of the farm ing community, besides keeping within the healthfu influence of the farm many who are now forced into the towns."

AN IMPROVED END GATE FOR WAGONS

An end gate especially designed for farm wagons, and adapted to be easily converted into a chute or shoveling board, has been patented by Messrs. Philip Steuerwald and Albert Cording, of Saunemin, Ill., the illustrations herewith showing different positions of the gate applied to a wagon box. The upper and lower parts of the gate are so hinged together as to be readily unhinged, and each part has a wide flange at each end to overlap the sides of the wagon body. The lower side of the end gate is held closed by two pivoted but tons, each having an inwardly extending hook on its upper end engaging a recessed plate in the lower edge of the gate, the lower ends of the buttons being connected by a rod, so that both may be turned at once. On each side of the upper portion of the wagon box is a plate to which is pivoted one end of an extensible lever, in the other end of which is an eye, each such lever engaging a hook on each side of the upper flange of the end gate. The parts of this lever are so pivoted together that they may be folded one upon the other and locked closely to the wagon box, as shown in one of the views, or the lever may readily be entirely removed from the wagon. The lower flange of the lower end gate has on its inner side a slotted adjustable slide having an eye adapted to engage a pin on the wagon box, whereby the lower part of the end gate may be fastened to the wagon box when the upper part is re moved. One of the views represents the end gate in position as a chute or shoveling board, and the dotted lines in the other view show how, by swinging outwardly he lower portion of the gate, grain or other materia may be easily unloaded. If the lower part only of the gate is to be used, its upper portion may be readily re moved, or the whole may be swung bodily to the top of the wagon box for a seat.

A PORTABLE LEMONADE HOLDER AND GLASS W ASHER.

A compact, convenient, and cleanly portable recep tacle for lemonade, with glass washer attached, is re presented herewith, and has been patented by Mr Stillman Wilkins, of Albia, Iowa. The two vessels are united by a vertical web, and each have depending concentric flanges around the edges of their partially closed upper ends as splash guards. The beverag compartment is a smaller cylindrical chamber in one
vessel, the dead air space thus provided being designed to retain the properly prepared lemonade in a cold con dition. Within the other vessel is a bracket plate to retain glasses or drinking cups in upright position there being sufficient rinsing water in this vessel to keep the glasses cool, as well as to clean them, while

WILKINS' LEMONADE HOLDER AND GLASS WASHER.
dust and flies or other insects are excluded. The lid is preferably made of sheet metal in plug form.

A NUT AND WASHER FOR VEHICLE AXLES.
A device designed to prevent the unscrewing of nuts on vehicle axles when the wheels are moved rearwardly, and also applicable to other mechanism where nuts are hable to be loosened by frictional contact, is represent ed herewith, and has been patented by Mr. Jonathan L. Sullivan, of No. 1209 Canterbury Street, Austin, Texas. Fig. 1 shows the application of the nut, with its loosely attached washer bearing against the wheel hub, and Fig. 2 is sectional view The threaded end of the axle spindle has two opposite longitudinal shallow grooves, and the nut has an integral radi al flange on its inner end, a cap ring being adapted to be secur ed on this flange by rivets. In the side of the cap ring next the flange is pro duced an annular cess, adapted to gage inturned ears of a cylindrical shell washer, loosely fit ting around the cap ring and nut flange. The ears are bent to place in the cap ring fter the latter is eated in the shell and these ears are adapted to engage the longitudinal

SULLIVAN'S NUT AND WASHER FOR VEHICLE AXLES. grooves in the hreaded end of the axle spindle, whereby the shell and attached ring will slide in wardly until the threads of the nut engage the mating threads of the spindle end, when the nut may be revolved to screw it to place and the compound washer will slide before it, held from rotation. When the washer shell is in contact with the shoulder of the pindle, it receives the frictional action of the hub and permits the nut to remain as it was adjusted.

By orders issued by both the Minister of War and the Minister of the Navy, army and navy physicians have been forbidden to use hypnotism in the French services

STEUERWALD \& CORDING'S END GATE FOR WAGONS

Experimental Lectures on Chemistry. The Four So-called Elements of the Ancients: Fire, Air, Water, and Earth.-Introductory remarks. Contrast limited knowledge of ancients, who knew only these four elements, with chemical science of present date. 1. Fire. - The heat given off when bodies burn or combine chemically. Explain chemical union of parts
of burning body with O of the air, such as coals in a of burning body with O of the air, such as coals in a
fire being converted into C and O . Burn taper in fire being converted into C and O . Burn taper in $\mathrm{H}_{2} \mathrm{O}$ produced by holding glass over flame. 2. Air.Composition of atmosphere ; use of N in the air. Explain what goes on when we inhale and exhale air also action of plants and animals on the air. Remarrss on density of atmosphere, winds, explosions, etc. 3. Water.-Its composition, which show, and explain properties of H and O . Short notes on various waters -spring, salt, rain, distilled, hard, soft, etc. 4. Earth. -A solid. Its composition; metallic and non-metallic elements, of which name a few familiar ones. Coal, its properties; coal gas, etc. Concluding remarks. A few remarks on chemical combinations in definite proportions, which might be illustrated by one or two simple chemical equations.-Samuel Lawrence.
Something about Elements.-Materials required : Fe, C, Pt, glass, brass, bone, gold, O, H, N, S, P, aq. calcis. Define element, atom, molecule. Show Fe, C, Pt, and contrast with glass, brass, bone. Gaseous elements : Show O, H, Cl, N, just as much elements (though invisible) as $\mathrm{S}, \mathrm{Au}, \mathrm{Fe}$. Describe their wonderful power. C and O would suffocate; H and O fired together would shatter this room $; \mathrm{Cl}$ would stop our breath. Bullet: Pb fired from rifle by gaseous element, or by compressed air, how fatal. Explain mining accidents, earthquakes, thunder. Explain composition of air we breathe, with use of each element. O keeps us alive. Show supporter of combustion, O, and the lime light. S in O on spiral wire; Fe in combination with O ; put P in $\mathrm{O}=\mathrm{PO}_{5}$. Say how this is all constantly going on silently and unnoticed around and within us. The process going on in our lungs; N, very inert, does not support respiration; does not burn. Aq. vapor CO_{3}; make some. In our breath; blow in aq. calcis. Need of ventilation.-Charles Wilson.
Glimpses in Chemistry.-1. Explain uses of sympathetic inks. Have a drawing (landscape) in $\mathrm{CoN}_{2} \mathrm{O}$, and heat it, and letter written in same. Milk, lime juice, and $\mathrm{H}_{2} \mathrm{SO}_{4}$; similar, except latter being permanent. 2. Show action of HCl on bone, and explain use of lime salts in food, lime water, etc., for children, for rigidity of bone material, etc. 3. Bismuth (and lead carbonate in common). Face powders: show action of
$\mathrm{H}_{2} \mathrm{~S}$ on face mask covered with PbCO_{3} face powder. $\mathrm{H}_{2} \mathrm{~S}$ on face mask covered with PbCO_{3} face powder.
Relate experience of Professor Black lecturing to a fashionable audience on "Harrogate Water;" it being handed round in a bowl, came to a lady, who, smelling it, went black in the face. 4. Bleach a red cabbage (moist with $\mathrm{H}_{2} \mathrm{O}$) with SO_{2}. State use of SO_{2} in bleaching feathers, straw, etc. 5. Exhibit De la Rue's floating battery, with an explanation. 6. Show action of mordants in dyeing, and dye several pieces of cloth various colors. ${ }^{7}$. Show how primitive torpedoes were
made by action of 1 or 2 drops strong $\mathrm{H}_{2} \mathrm{SO}_{4}$ on dried made by action of 1 or 2 drops strong $\mathrm{H}_{2} \mathrm{SO}_{4}$ on dried
mixture pot. chlor. and sacch. alb. (in fume cupboard) mixture pot. chlor. and sacch. alb. (in fume cupboard) -flash, bang, and a smell-experiment; exhibit draw-
ing of torpedo. 8. Show how to produce a white solid from two liquids (strong sol. alum. + strong sol. sod. phos.), vel. $\mathrm{MgSO}_{4}+$ sod. phos. 9. Show effect of light on Ag salts (AgI or AgCl), previously exposed for time, or use rough negative; hence use of Ag salts in photography. 10. Show action of $\mathrm{H}_{2} \mathrm{O}_{2}$ in arts as bleaching agent, for hair, picture cleaning, etc., and show its difference from water by collecting evolved oxygen when heated (by incandescent taper).-Cotopaxi.
Chemical Chats.-First, show the burning qualitie of alcohol by igniting some in a saucer. Now saturate some with NaCl , boracic acid, stront. nit., in separate dishes; apply a light ; result, three differently colored flames. Show the carbon in sugar by mixing with it some pot. chlor., place in dish, add few drops $\mathrm{H}_{2} \mathrm{SO}_{4}$ on glass rod; result, takes fire; carbon left. Make hydrogen, apply a light to it; also from another appara tus collect some $\mathrm{H}_{2} \mathrm{O}$; ignite; result, explosion. Oxygen: collect three bottles full, place in one a piece o lighted sulphur, in the second a piece of glowing car bon, and in the third a coil of iron wire with a lighted
match attached; result, wire burns in the O. Wind match attached; result, wire burns in the 0 . Wind
up with the following experiment: Take an ordinary up with the following experiment: Take an ordinary
flask, fit it with a long glass tube, say 18 inches, through a cork, insert it through the mouth, expel the air by adding 3 j . AmHO, heatover spirit lamp for a few seconds, place finger over the mouth of the tube; now turn it upside down, the tube into a glass of water tinted red with litmus, take away the finger then the water will ascend into the inverted
and by the fumes of ammonia left it will turn blue. and by the fumes of ammonia left it will turn blue.
This experiment will show how alcohol alters the This experiment will show how alcohol alters the
color of blood and destroys its vitality. I have given this lecture on more than one occasion, and it has given great satisfaction. Of course there is a lot of
detail which cannot be given on a post card. $-R$. H. detail which cannot be given on a post card. $-R$. H. Richards.
Chemical Curiosities. - Experiment 1. - Lighting
candle by touch.-Candle, chlor. potass. powdered, sugar powdered, aa. Spread out candle wick, dress with a few grains of powder, have small pot containing acid. sulph. behind the candle. After introducing the subject, make the remark that a chemist is nothing at all if he cannot at all times get a light. Dip the point of finger into the acid, bring it down on the chlor. potass. and sugar. Flame will at once light candle. potass. and sugar. Flame will at once light candle.
Have a wet rag ready to wipe finger. Experiment 2 . Hllustrating the power of oxygen in supporting flame and animal life.-Have a 30 oz. or 40 oz. stoppered bottle filled with oxygen. Take a splinter of wood, light it at the candle, plunge it into the bottle of oxy gen, remove, blow out the flame, and repeat this till the oxygen is exhausted. Experiment 3.-Follow up by showing that, although the oxygen has been removed, it has been replaced by carbonic acid. Pour an ounce or two of lime water into the oxygen bottle, and shake. Result: Lime, carbonate, chalk. Show that oxygen forins $\frac{1}{8}$ of our atmosphere. Experiment that oxygen forins $\frac{1}{8}$ of our atmosphere. Experiment
4.-Take a soup plate, fill with colored water, also a 4.-Take a soup plate, fill with colored water, also a
wide-mouthed bottle; have a piece of sponge fixed to a piece of bent wire, dip the sponge in spirit, light it, invert the bottle over the flame into the plate; as the oxygen burns, the water fills its space. Follow up the hint on atmospheric pressure given in the last experiment with a few remarks about its power- 15 lb . to every square inch. Explain that it caused the water to rise in last experiment. Experiment 5.-Have a hard-boiled egg, with the shell off, placed on top of a W. M. bottle (not wide enough to let the egg in) in full view of the audience; light a piece of paper, put it into the bottle, and replace the egg on the mouth of bottle. The egg at once elongates itself, and drops into the bottle. Experiment 6.-Take a small tumbler, goblet shape (with foot), so small that the naked hand can easily cover it; light a piece of paper, place it in the tumbler, and immediately cover with the right hand. The tumbler becomes fixed to the hand, and requires considerable force to remove it. This experiment may be repeated several times, by allowing the chairman, a lady, or child to pull it off, which they are always very pleased to do. Experiment 7.-Select a large seidlitz tumbler, place it on an empty soup plate, fill it with
water ; place a piece of ordinary writing paper over it, so as to cover without a large margin; place the left hand on the paper, lift and invert the tumbler with right hand, the water remains suspended in tumbler. Draw attention to the fact that the paper is pressed into the tumbler instead of out, which we would expect the water would do. A few nice effects may now be shown with chemical reactions. Experiment 8.-Make iodide of lead, red iodide of mercury, etc. Mix infus galls and sol. sulph. iron-ink; mix sol. yellow pruss. potash, and iron-Prussian blue. Make saturated solutions of carbonate of potash and muriate of lime, half fill a tumbler with each, pour one solution into the other; keep pouring them backward and forward from tumbler to tumbler-it gradually gets thicker and thicker, until it becomes solid and will not pour. Mix
sol. nit., baryta, and acid. sulph. Mix acid mur. solu tion with a few drops of solution nit. silver. Mix sol of sulphate iron with sulphocyanide of potassium. Produces a red. Make a few general remarkson metals, their weight, etc.; show a metal that is so soft that it can be moulded between the finger and the thumb, so light that it floats on water, and has the wonderful property of going on fire when it touches water. Experiment 9.-Burn potassium. Draw attention to the flames and their use in analysis, fireworks, etc. Show copper, soda, strontium, baryta, in flame of burning spirit. Experiment 10.-Burn a piece of magnesium wire. Experiment 11.-Have a small kettle or flask of wire. Experiment 11 . - Have a small kettle or flask of
water boiling, $\frac{1.2}{} \mathrm{lb}$. of lump sugar, a soup plate, a glass rod, and a $1 / 2$ pint tumbler. Place the tumble on the plate, fill it with sugar, throwing a few lumps among the juvenile part of the audience to show that there is no deception ; now pour the hot water over the sugar, stirring till a thick sirup is formed; pour sulphuric acid steadily into the sirup; it will first ge
brown, and then become black, will then foam up and overflow the tumbler, and fill the plate with charcoal because the sulphuric acid takes the water from the charcoal; a splinter of clean wood shows the same re sult if put for a moment in the acid. The lecturer's watch will now inform him that time is up; but to make sure of a grand finish, let the gas be lowered and a 2 oz . box of red flame burned on a shovel. When the
gas is turned up again, let him remark that he had cas is turned up again, let him remark that he had
commenced by lighting the candle by chemistry ; he would now extinguish it by another experiment. Let him pour a quantity of carbonic acid over the flame which will at once putit out. Finis.-Archd. Paterson
Chemistry of a Candle.-(1) Early history of candle manufacture and materials used. (2) Materials used at the present time, their chemical composition, and their elation to one another. (3) The mechanical formation of a candle, the structure of the flame, and the natura laws involved. (4) The theory of combustion, the pro-
ducts of combustion, and the similitude of this com bustion with our own respiration. (5) The laws which preserve the equilibrium of the atmosphere through
the action of the vegetable kingdom, in the presence of sunlight. (6) A general summary of the foregoing outline, and a caution in the matter of ventilation in shops and factories, and the value of green leaves in the preservation of our lives. (7) Experiments with lime water, proving the above, both from the candle and the lungs, and also an experiment on the balance, showing from these data the indestructibility of mat-er.-Walter E. Martin.
Chemical Affinity.-Introduction: Elementary substances held together by a force-chemical affinity-of which nothing is known. Contact of certain substances with each other. New substances appear which differ more or less in properties from original substances Composition of elements. Difference between molecules and atoms. Disposition of atoms to form substances which go to compose universe, controlled by forces such as gravity, cohesion, heat, light, electricity, chemical affinity, pressure, violent concussion. Chemical affinity the foundation of the whole science of chemistry. Mutual affinity of substances differs very greatly Experiment.-Chlorine and turps: Explain action by simple chemical equation. Description of carbonvarious forms, diamond, coal, etc. Carbonaceous ma terials used as fuel derived from organic structures. Power of sunbeam one of the great mysteries of nature. CO_{2} decomposed in a leaf-carbon retained and oxygen given off. Relation of carbon to organic structures Oxygen, \mathbf{H}, and \mathbf{N}; briefly describe, etc. Series of changes in which CO_{2} plays an important part. Experiment with marble, HCl , and gasogene. Soda water. Hard water "killing" soap. Properties of CO_{2}. Ex-periment.-Pour gas upon lighted candle. Example of chemical affinity-Iodine and phosphorus. Ferri sulph., acid tannic, oxalic acid. Water and wine trick. Po tassium thrown upon water. Influence of cohesion on chemical affinity. Experiment with antimony in lump and powder upon chlorine gas-terchloride of antimony result. No mechanical process of subdivision will break up a chemical compound. Experiment.-Triturate lump sugar. Experiment.-Action of $\mathrm{H}_{2} \mathrm{SO}_{4}$ upon sugar solution. Power of adhesion in chemical affinity. Experiment.-Seidlitz powder. Difference between a chemical compound and mechanical mixture. Gunpowder a mechanical mixture, etc. Affinity of one sub stance for another under adverse circumstances. Ex periment.-Phosphorus, chlorate of potash; under
water addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ per funnel tube. Appropri ate quotation from Huxley.-FF. Jardine.-Chemist and Druggist.

The Masses in India.
The Indian peasantry has changed in no characteris ic features from what it was in the early periods of the Aryan age. In those days the tillage of the soil went on in the presence of contending armies. It was understood that the cultivators were not to be molested by either party, and thus they were at liberty to cultivate relations of benevolent neutrality, that is, of indifference with regard to both. Nowhere in their history is recorded that they ever spontaneously took up sword and buckler in defense of their immediate lord, or more distant overlord. They could fight when forced to do so, but it had to be in a cause that concerned hemselves, without reference to any quarrel that migh be going on between their own chief and those of any outsider. In what respect have they changed since those remote times? So long as they are not harassed or plundered in the cultivation of their Liliputian farms, they little care as to the form of government under which they lead their laborious existence. The salt duty affects them very slightly. If the price of that universal condiment be low, they may indulge in its use a little more freely; if it be high, they deny themelves, or pay their money with grumbling. It is imply a bazar commodity, and is liable to fluctua tions like any other form of seasoning. They buy it from day to day with the other materials of their
simple meal, and scarcely know if the pinch they receive be a little greater or a little less than usual. They do not trouble themselves to inquire into the causes of the variation of its amount. Cheap salt means health for their children and cattle, and a larger preservation of fish, but they never pause to ask if it would be more plentiful under Home Rule.-Madras Mail.

Buffalo Bill's Cowboys in Rome

Since the closing of the French exposition, Buffalo Bill has gone to the Eternal City, and is astonishing the old and young Romans by his exploits.
The Duke di Sermoneta had assured Buffalo Bill that he had horses on the Campagna at his estate of Cisterna which he defied the cowboys to ride. It was mpossible even to put a halter on them, and they had to be left wild, although they were valuable animals. The challenge being accepted, three horses were, with nuch difficulty, driven into the city, and after a most exciting struggle, two of the most powerful were lassoed, saddled, bridled, and ridden by the cowboys, in the presence of about fifteen thousand people Prince Napoleon was among the audience. The excite ment ran so high because the famous herdsmen of the Campagna are supposed to be able to ride anything.

Sorrespondence.

Abstract

Discovery of Comet Brooks a of 1890 To the Editor of the Scientific American: I have the pleasure to announce my discovery of a new comet-the first one of the present year-on March 1s, 16 hours. It is situated in the eastern morning sky, right ascension at discovery 21 hours 9 minutes; declination north, 5 degrees 35 minutes. Clouds prevented any observations of the new object until this morning, when I found it less than one and one-half degrees to the north of the place of discovery. Its daily motion is therefore quite slow, amounting to only 22 seconds of time east and 25 minutes of arc north. The comet is rather bright telescopic, and has a stel lar nucleus and a short, broad tail. From its apparently slow motion it is probably at a great distance from the earth, and is either receding or approaching quite rapidly. Further observations will be needed to definitely settle these points, and hence the future developments of the comet. William R. Brooks.

Smith Observatory, Geneva, N. Y., March 24, 1890.

The Trouble with the Vesuvius Explained. To the Editor of the Scientific American:
In your valuable journal of March 22,1890 , you say under the heading of "Trying the Air Guns on the Vesuvius," "Can anybody tell us what is the real trouble?" The facts are that the dynamite gun has been tried with wooden pegs, and on March 13 with gun cotton, but not with dynamite. The gun is made in sections, and that section nearest the breech is opened and lowered to receive the charge, and when it is shut and fastened in position, it does not come up true and wake a perfect fit with the balance of the barrel, the consequence being that the charge, when fired, tears through the balance of the barrel; and if dynamite were fired, the gun would be exploded, and the person firing it, together with the Vesuvius, in all probability would not be heard from, but with a wooden peg nothing happens other than the tearing out of the barrel, which has taken place on more than one occasion.

New York, March 26, 1890.
A Subscriber.

Aristol-A New Antiseptic.
The combinations of iodine with phenols led to the production of a series of new compounds, many of which possessed striking antiseptic properties. The abovenamed "aristol" is one of these, which is the product of reaction between thymol and iodine. More than one of such combinations can be formed, which were tried against skin diseases, and in a large number of cases produced extraordinarily beneficial effects. Of these new bodies it has been said that they ought to replace iodoform on account of the absence of toxic properties and of all odor, while it is not improbable that even iodol and sozoiodol salts will also have to give way before them. Monoiodthymol has the iodine substituted in the "ring," while in aristol it substitute the hydrogen of hydroxyl. From this circumstance it derives its greater instability and probably also its greater activity.
Aristol is a reddish-brown amorphous body, which may be obtained by precipitating a solution of thymol in aqueous soda-lye by a solution of iodine in iodide of potassium. The reaction may be expressed by the following equation :
$\underset{\text { Thymol }}{2 \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{HO}}+3 \mathrm{I}_{2}=\underset{\text { Aristol }}{2 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{IO}}+4 \mathrm{HI}$
though there seems to be some doubt about the real constitution of the body. By distillation with chalk, dithymol is obtained. The proportion of iodine present is stated as 45.8 per cent, but it is added that care has to be taken in the process of manufacture, or else a product of inconstant composition is formed. According to Messinger and Vortmann, by the reaction of iodine and thymol in alkaline solution, first mono iodthymol is formed, which then condenses to a dithy mol, in each thymol molecule of which the hydrogen o the hydroxyl group is displaced by iodine.

Aristol is insoluble in water and glycerine, slightly soluble in alcohol, and freely in ether. It also dissolve when rubbed with fatty oils (if warmed together, decomposition occurs), a property which facilitates its medical application; it adheres lightly to the skin, and can be with equal benefit used as a dusting powder on the surface of wounds. In cases of mycosis it produced the most favorable results, and for lupus is believed to be the best remedy hitherto tried.

The only really active agent at present known as useful in psoriasis is chrysarobin, which colors the skin and induces conjunctivitis; aristol was therefore tried also in this direction, and was found to be equally effective as chrysarobin, and quite free from its irritating and staining properties. On the whole, considering the activity, the non-poisonousness, and the freedom from odor of the new compound, there seems to be reason to believe that we have in aristol a most valu able antiseptic.-Monthly Mag,

Tin in Ancient and Modern Times

Among metals, tin is no doubt one of the earlies that has been in use, as we learn from a highly interesting, if somewhat discursive, article which appears in the Revue Scientifique, from the pen of M. Brau de St. Pol Lias, of which we give an abstract. It is one of the most precious and interesting of metals. It ranks next to gold and silver for intrinsic value among ordinary metals. It has the color and nearly the brilliancy of silver when pure, but it is less resisting and more malleable. Tin heated by rubbing has a very pungent odor and taste. When bent, the disaggregation of the crystals forming its mass, without any breakage being produced, makes a peculiar noise which metallurgists call the crackling of tin, and which enables a practiced ear to form a fairly accurate idea of its degree of purity. Tin is not found in many places, being thinly sprinkled over the surface of the globe. It is not found everywhere, like gold for exam ple, and it lies hidden under the form of a blackish ple, and it lies hidden under the form of a blackish
mineral, which, to a profane eye, has not the least ap pearance of being the receptacle of a metal.
The Malay Peninsula, the Golden Chersoneses of the ancients, may be considered its natal land, and it still remains the true country of tin. It is contiguous to the equator, at the southeast extremity of Asia, sepa rated from Sumatra by the Straits of Malacca. It is reached from Europe by the well known ,
the Mediterranean, Suez Canal, Red Sea, and the ln dian Ocean-about one month by steamer-disembarking either at Penang or Singapore. Penang at the entrance, and Singapore at the head of the Straits of Malacca, are two islands and two English towns. The Peninsula of Malacca at the present day, moreover, is English from one end to the other, or tends to become so. Perak, in Malay, signifies silver. It is the name of the tin district par excellence. The manner in which a tin mine is attacked and worked at Perak is of the greatest simplicity. After having cleared the land of the brushwood, the vegetable soil and the unproductive layers, ranging from 3 to 10 feet in depth, are taken away, in order to lay bare the ore, the stanniferous stratum, which has sometimes a thickness of 10 feet. The washing of stanniferous soils is done by coolies provided with rakes, who take away the pebbles, and mix the materials so as to eliminate the light sands mingled with oxide of tin, until at last there does not remain more than from 25 to 35 per cent of foreign sub stances. The ore thus selected is smelted in small brick furnaces from 5 feet to 6 feet 6 inches high, blast being supplied by a bamboo bellows, a coolie moving a horizontal piston backward and forward. A bright white metal is obtained, cast in moulds which give it the well known form of the cubic ingots called block tin, with an elongated face and projecting on both sides so as to form ears, which enable the ingots to be more easily handled. The ore is very rich, the metal pure, but the way in which the Chinese work it is ridiculous, and the quantity of metal wasted great. A fresh washing of The Chinese and Malays call that "tima monda" young tin, and they restore it to the earth, doubtless in order that it may ripen, the metal being considered by them not old enough to remain in their primitive machines. It is only now that a beginning has been made to work these Perak mines in a rational way, yet for many cen turies tin has been known and worked in the Malay Peninsula.
The use of tin goes back to the highest antiquity Homer mentions tin, "kassiteros,'" in describing the arms of his heroes. Herodotus, the father of historians, calls the British Isles "Kassiterides." The Phonicians in effect found it in these isles, a little also in Gaul and the Iberian Peninsula, the tin which they spread through the ancient European world. But before the Phœnicians and the Greeks, the Chaldeans were ac quainted with tin under the name of " kastira." Tin 5,000 years ago was designated by the word "anaku."
The text of the Bible where Moses mentions tin is in The text of the Bible where Moses mentions tin is in
the Book of Numbers. In ancient Egypt bronze statuettes of a tin alloy have been found which date from the epoch of the Pyramids, 3600 B.C.
In a recent work (La Nêerlande Industrielle, Bru sels, 1887), M. De Ramaix gives these statistics

Dutch I
Cornwal
Cornwall. 8,000
7,000

Total

$\stackrel{5,000}{ }$
The Malay states of the isthmus of Malacca exported to Penang in 1877, in round numbers, 2,500 tons of tin and the Siamese states of the same country 7,000 tons, being over 9,000 tons. Personal information permits us to establish that the exports from Perak in 1881 amounted to 6,139 tons. At the present day the tota production of the world may be estimated annually at nearly 45,000 tons.
There is scarcely a household, however humble, in which some article in the manufacture of which tin enters is not met with. The amalgam of tin applied to glass is so common that there is hardly any un civilized country into which mirrors have not found their way with European glassware. Soldering, which
is employed in innumerable ways, requires tin chiefly. Tin foil makes good wrappers for food. Type metal used by type founders, has tin in its composition.
In the middle ages tin passed from the Gauls to the Merovingians. Even the roofs of basilicas were formed of it, according to Gregory of Tours, and coverings for tombs. It was much used in convents, where it was wrought for a long time, and in churches, where it was made into religious objects of all kinds-crosses, can dlesticks, holy water founts, basins, jugs, cruets, organ pipes, ampullæ, pilgrims' badges, etc. It has been pipes, ampullæ, pilgrims with gold and silver for the making of sacred vessels, when wood, lead, copper, and bronze were interdicted as common or insalubrious, and glass on account of its fragility. Bishops and priests were buried with their emblems, crosiers, and chalices represented in tin.
It is chiefly in the fourteenth and fifteenth centuries that the use of tin became popular in Europe. Tin plate became common in every-day use, even with the peasant and the workman, extending even to the ani peasa

The most wonderful works of art which have remain ed from that age were produced in France and Ger many, chiefly at Nuremberg. Tin has had all the honors of the precious metals. It shares with them yet another advantage, that of perfect salubrity. On that account, medicaments which might be spoiled by contact with other metals were preserved in tin boxes. Tin is a wholesome metal par excellence, and it owes to this quality, besides the numerous uses already men tioned, an application of a most important kind-tin ning, which was invented, as Pliny attests, by the Gauls. If the Auvergnois were the first tinkers, it is consoling to meet at length, what is so rare, inventor who have not allowed themselves to be robbed of the benefit of their invention, and have enjoyed it for a long time.
Again, to-day, after twenty centuries, traveling work men who traverse all the villages of France, and per haps those beyond her frontiers, making the well-known cry heard, "Spoons, forks, saucepans to tin," and working in the open air, to the infinite glee of children, are the tinkers of Auvergne. It is by tinning that tinplate is obtained, which is merely sheet iron inned.
We shall have passed in review all the chief uses to which tin is devoted when we recall to mind the cast ing of bells, statues, and all the bronze or brass objects in the alloy of which we find tin at every age, and even with the ancient Egyptians, the date of which has al ready been fixed at the thirty-sixth century before our era. But from where could the tin come at so remote an epoch ?
Which was the country, producing tin, sufficiently advanced in civilization more than fifty centuries ago for its inhabitants to have had sufficient knowledge to enable them to recognize the metal in this oxide, with blackish grains of sand, which is its ore, and a socia organization such as to enable them to undertake and successfully conduct the long operations of extraction, washing, and metallurgic treatment demanded in the exploitation?
In one of the most remarkable and most interesting works written on this subject ("L'Etain," by Germain Bapst ; Paris, E. Masson, 1884), the author is inclined to think that it was the Malay Peninsula. A curious comparison has been made between the names whic the Malays of the Peninsula give to tin and lead "tima poute," white tima (tin) " tima itam," black tima (lead), and the names given to them by Pliny, "plumbum candidum," white lead (tin), "plumbum nigrum," black lead (lead), and also between this Malay name "tima" and the English, Dutch, Danish tin," German "Zinn," Swedish "tenn."
Etymologists, doubtless, ask themselves whether this Malay appellation of tin-at a time when the Kassiter ides, yet nameless, lay in the solitude of their dense forests, like Gaul and Iberia, in the pre-historic epoch of our countries, when the primitive populations of Switzerland, who also used tin for ornamenting thei earthen vases, had not yet built their lake dwellingsdid not leave Malacca, and arrive, much later no doubt, borne through slow migrations, but directly, and over the heads of the Assyrians and Greeks, as far as the extremities of Europe. Thus it would be the Malay Peninsula, covered at the present day with virgin for ests, which at that time was at the head of the civi lized world, possessing everything which constitutes the last expression of progress, without doubt, under very different forms.

Preserve for Binding.

The publishers of the Scifntific American would advise all subscribers to preserve their numbers for binding. One year's issue (52 numbers) contains over 800 pages of illustrations and reading matter. The practical receipts and information contained in the Notes and Queries column alone make the numbers worth preserving. Persons who have subscribed since the commencement of this year can have the back numbers sent them on signifying such wish Their subscription will then expire with the year.

ELECTRO-PNEUMATIC BLOCK SIGNAL SYSTEM

 (Continued from first page.)the counterpoise weight into the "Safety" position The object to be attained, therefore, is this : When the train is on the block in advance of a set of signals, it must automatically cut off the current of electricity from both, so that they will both be drawn into "Dan ger" position. When the train is on the next block, the current of electricity must be again permitted to pass through the upper semaphore magnet, forcing it into "Safety" position; but no current must be admitted to the lower semaphore magnet until the second block has been passed.
Assuming, therefore, a supply of compressed air with battery to be given, the connections are carried out on the following basis: The rails for one block are insu lated from the rails of the preceding and following blocks. At one end the right and left hand rails are connected by a wire containing in its circuit two cells of gravity battery. At the other end the same rails are connected through an ordinary relay. The battery is placed upon the end of the block first, touched by the train. As long as no train is on the block, a current will pass through the relay, whose armature will be at tracted, making a constant contact for the current of a local battery. When a train enters upon the track, its wheels and axles short-circuit the battery, so that the relay is thrown out of action and the circuit of the loca battery is broken. To simplify the matter we will as sume, first, that only one set of signals, the "Home" semaphores, are to be worked. The arrangements fo this are shown in the diagram, Fig. 5. A local battery of eight cells is arranged in circuit with the magnet of the semaphore and with the relay, so that when the latter is excited a current passes through the semaphore magnet, the local battery circuit being closed by the relay
When no train is on the block, it will be seen that the relay is in action; it closes the local battery circuit. The current from the local battery going to the semaphore magnet forces open the valve, com pressed air is admitted into the semaphore cylinder and the piston is driven down and the semaphore is forced into the "Safety" position. When a train en ters on the block, the relay being thrown out of action as described, the local battery ceases to act upon the semaphore magnet, and the semaphore is drawn by the weight into "Danger position.
Where the "Home" and "Distant" signals have both to be operated under the con ditions described as in use upon the railroad we are describing, a somewhat more complicated arrangement of circuits is required, which is shown in the diagram, Fig. 6.
 The line battery and relay
are identical with what has been described. The local battery circuit includes, as shown in the diagram, with in its circuit a "Distant" signal at the commence ment of one block, and the "Home" signal at the commencement of the next block in advance. To save wire a ground circuit is used as the return. Thus, when a block is occupied by a train, it sets, by th action just described, the "Distant" signal one block behind it at "Caution," and the "Home" signal directly behind it at "Danger" by short-circuiting the single relay. The lower end of the piston rod of the "Home" semaphore is provided with a cir-cuit-closing switch, indicated conventionally in Fig. 6, under each upper signal. One terminal of this switch is connected to ground, the other terminal is connected to the wire leading to the magnet of the "Distant" signal below it. The circuit closer. closes the circuit when the piston is in the upward position or when the "Home" semaphore is at "Danger." This establishes a ground connection for the line leading to the "Distant" semaphore magnet below it, which connection is of zero resistance. This operates as a shunt to the "Distant" semaphore magnet, so as to throw it out of action. It will be remembered that when a magnet is out of action its semaphore is set at "Danger." Therefore when a "Home" signal is set at "Danger" by the passage of a train, the "Distant" signal below it is set at "Caution" by this action of the circuitclosing switch, and the "Distant" signal one block in its rear is also set at "Caution," because it is in circuit with the "Home" signal magnet in question.
It is obvious that where electricity and compressed air are depended on as the agents for the working of an automatic system, failures in their action are to be anticipated. In the pre sent system, should electricity or pneumatic action fail, the signals affected would at once rise into the "Danger "position. It is here that its peculiar safety ap-
pears. The signals are only maintained at safety by phore board nearest the advancing engine. The other the perfect working of the.apparatus. The instant sides are painted white.
anything happens, the semaphores disclose it to the runner of the first train passing, by the signals assuming the "Danger" position
As regards the details of its installation, the batterie

MECHANISM FOR MOVING SEMAPHORE, ETC.
are established in underground structures, a sectiona view of one of which we show in the cut, Fig. 8. The same cut shows the relay pole, upon which the relay boxes are placed. In order to supply compressed air, a plant of compressors is established which communicate by pipes with a series of reservoirs placed along the ine at the foot of the signal poles, and pipes are carried from these to the semaphore signals. The ordinary sleepers are found to give sufficient insulation to the rails; the fish plates, however, do not form adequate

SINGLE SIGNAL BLOCKING.
Enough has been shown to indicate the possibilities of the pneumatic system. It is applied also to moving switches, and a full interlocking switch and signal sys tem utilizing electricity, hydraulic and pneumatic pressure, is now in use in track yards, which plant is in stalled by the same company. This system we shal probably illustrate in our next issue.

Contributions of Raphael and of Albrecht Dure

It may not be known to all that Raphael's Madonna di Foligno has a special interest to astronomers. It is, I believe, the only painting of any note which com memorates an astronomical event. This picture wa painted by Raphael in 1511, and placed in the Church of Ara-Cœli, as a votive offering from Sigismund Conti secretary to Pope Julius II., for his miraculous escape from death by an aerolite. The picture was removed to the Convent of Foligno in 1565 by a niece of Conti's, and was carried off by the French in 1792. It was re turned in 1815 and is now in the Vatican. Such is a brief sketch of the wanderings of this exquisite painting. Its purely astronomical interest is in the portraya of the fall of the aerolite itself, which occupies the center of the picture. The drawing must have been made by Raphael from the personal account of Cont (who was living in 1512), and, therefore, it has even a certain scientific value.
It does not seem to be superfluous to call attention to this item of history, which lends a slight additional interest to one of the world's great pictures. I have presented a good photograph of this painting to the Astronomical Society's library.
The contribution of Albrecht Durer to astronomy is even more pronounced and permanent, though it is un known, I believe, to all of his biographers.
Hipparchus (B. C. 127) and Ptolemy (A. D. 136) fixed the positions of stars by celestial latitudes and longitudes, and named the stars so fixed, by describing their situation in some constellation figure. The celestial globes of that day have all disappeared, and we have only a few Arabian copies of them, not more ancient than the XIIIth century, so that we may say that the original constellation figures are entirely lost. The situations of the principal stars in each one of the orty-eight classic constella tions are verbally described by Ptolemy. In Lalande's Bibliographie Astronomique we find that in A. D. 1515 Albrecht Durer published two star maps, one of each hemisphere, engraved on wood; in which the stars of Ptolemy were laid down by Heinfogel, a mathematician of Nuremberg. The stars connection between the rails, so that iron wire is themselves were connected by constellation figures,
fastened by iron pins driven into the foot of the rails across each joint of a block. Between the blocks the rail ends are insulated as shown in Fig. 4. For ground or return circuit, the pneumatic air pipes are used. For uight work powerful white lanterns are arranged on the uprights, which, in the danger position of the sig-

3. RELAY POLE aND battery. 4. INSULATION OF RAIL ENDS. drawn by Durer. 'These constellation figures of Durer, with but few. changes, have been copied by Bayer in his Uranometria (A. D. 1603); by Flamsteed in Atlas Colestis (1729); by Argetander in Uranometria Nova (1843), and by Heis in Atlas Coelestis Novus (1872), and have thus become classic. It is a matter of congratulation that designs which are destined to be so permanent should have come down to us from the hands of so consummate a master. -E.S. H., in Astronomical Society of the Pacific.

Sulphur not Effective for Fumigation. It appears that the prevailing method of disinfection by means of burning sulphur is considered by some of the leading bacteriologists as of less value than it has heretofore been considered, though Dr. Edson strenuously maintains the contrary. Dr. J. G. Johnson, on the other hand, read a paper before the Kings County Medical Society recently in which he stated that he had proved the present system of fumigation as worthless for the destruction of disease germs; that the fumes of burning sulphur do not penetrate woolens as disease germs do. He also stated that he had propagated diphtheria from the clippings of blankets after they had undergone a thorough process of fumigation by burning sulphur. Dr. Prudden, of the New York City Board of Health, appears to have come to the same conclusion, and in both New York and Brooklyn currents of steam are to be recommended for disinfecting purposes instead of burning sulphur.-Medical Record.

The large mortars now being made for the nals, are masked by colored glass carried by the rear government, the details as to which were given in the end of the semaphore. For the "Home" signal the Scientific American of March 15, are cast at the glass is red, for the "Distant" signal it is green The Builders' Iron Foundry, of Providence, R. I., and not same colors are used to paint the sides of the sema- of Boston, as stated in our number of March 15 last.

MOUNTAINS OF THE MOON,

The geographical discoveries made by Mr. H. M. Stanley's expedition in its route, accompanied by Emin Pasha, to the south of Lake Albert Nyanza and west of Victoria Nyanza, through a region previously unexplored, are the latest additions to our knowledge of the wonderful interior of what has been called the "Dark Continent." They are of much scientific interest, apparently solving the question of the true source of the Upper White Nile, or rather of its western branch flowing through the Albert Nyanza-the eastern branch coming from the Victoria Nyanza-while they reveal also the position of the southern lake hitherto vaguely spoken of as the "Muta Nzige," but henceforth named Lake Albert Edward Nyanza, in honor of the Prince of Wales. The land between the Albert Edward Nyanza and the Victoria Nyanza, with a central line from north to south about the 31st degree of east longitude, rises into lofty mountain ranges. A few of their high summits, which had been only seen at a distance by Mr. Stanley in December, 1887, and May, 1888, were then named Mount Gordon Bennett, Mount Edwin Arnold, aud Mount Lawson; and these are marked in the map of Central Africa published by Messrs. W. \&

ing comment or description is written by Lieutenant

 Stairs:"For centuries the sources of the Nile have been wrapped in mystery. Many attempts to reach the southernmost fountains have failed. We have been able to add a great deal to our knowledge of the Nile sources, and have discovered a range of mountains to the S.S.E. of the Albert Nyanza Lake stretching away to the southward and westward, and then east again in a decidedly crescent-like form. The name given to the highest points of the range is Ruwenzori, though by different tribes it goes by different names.
-The scenery afforded by these mountains, as one passes by their feet, is most splendid. Deep valleys o an intense darkness run up from the forest beneath A distinguishing feature of the range is the clear and well defined character of the hill tops. Almost invariably on the southern side these are of a conical shape, with extremely steep slopes, some of them being quite 45 deg . in steepness. The lower spurs and gullies are covered with ordinary forest growth up to a height of some 6,000 or 7,000 feet ; above this there is generally a forest of bamboo going up to 9,500 or 10,000 feet; above this, again, for another 1,500 feet of altitude, the hill-

An Experiment in Preventing the Injuries of Potato Rot (Phytophtiora in festans) by clarence a weed
The experiment was undertaken to determine what effect the application of a solution of sulphate of cop per and lime (known as the Bordeaux mixture) to the foliage of potatoes would have in preventing the inju ries of the potato rot, and was conducted on the grounds of the Ohio Agricultural Experiment Station. Fifteen feet at the end of each of twenty rows of po tatoes were sprayed with the Bordeaux mixture four times, viz., May 28, June 6, June 29, and July 16. Four varieties were included in the experiment, viz., Early Ohio, Early Oxford, Puritan, and Lee's Favorite.
The season proved favorable for the development of the blight, which appeared in the experimental field about the middle of June, and did serious damage for the next six weeks.
The sprayed vines showed much less injury than their unsprayed companions, remaining green after he others were dead
The crop was harvested August 22, and the product of $121 / 2$ feet of the sprayed part of each row was compared with the product of an equal distance of the un

"THE MOUNTAINS OF THE MOON," DISCOVERED BY MR. STANLEY.
A. K. Johnston in 1888. In June last year, many|sides are covered with tree heath, and all above this is sprayed portion of the same row. The results have months after his distant sight of those mountains from the southern extremity of Lake Albert Nyanza, Mr. Stanley, with his second in command, Lieutenant Stairs, R.E., the expedition having traveled south ward through the Unyoro country, crossing the Semliki River, and approaching the mountains through the valley of Awamba, were enabled to gain nearer acquaintance with this remarkable feature of a region hitherto unknown.

Mr. Stanley's letter of August 17, 1889, to the Royal Geographical Society clearly describes the physical conformation of the vast trough, or subsidence of the earth's surface, 230 miles long, containing the Albert Edward Nyanza, with the plains on its shores, the Semliki River valley, and the Albert Nyanza; he also describes the Ruwenzori range of mountains, rising above the Semliki valley; and he considers them identical with what the ancients called "The Mountains of the Moon." This name is mentioned by Scheabed din, an Arab geographer of the fifteenth century, who says that the Nile takes its rise from those mountains, a little south of the equator; which is now proved to be the fact, so far as the western branch of the Upper White Nile is concerned.
Lieutenant Stairs, the only member of the Emin Pasha Relief Expedition who actually ascended Ruwenzori to the height of 10,677 feet, on June 6,1889 has favored us with the sketch of "The Mountains of the Moon," represented in the engraving. The follow-
bare are covered with tree heath, and all above this is
barth to the summits. A peculiarity to be observed in this range is the intense depth of the ravines or gullies between the spurs of the hills. Though the streams start from almost the summit, still they have very little fall, comparatively, as their channels appear to be cut right into the heart of the mountains. In some places the ravines down which these streams flow are quite 6,000 or 7,000 feet deep The height of the highest point of the range is about 17,000 feet, with about 2,000 feet above the snow line.

The country at the foot of the range is among the most fertile passed through by us. Bananas, Indian corn, beans, and matama are the chief products of the atives."
The position of Ruwenzori, as shown in Mr. E. G. Ravenstein's new map, "Stanley in Africa." published by Messrs. G. Phillip \& Son, is within less than one degree north of the equator, and in the thirtieth degree of east longitude. The mountain range to which it beongs, parallel with the Semliki River, which is the outlet of Lake Albert Edward Nyanza and the most southerly feeder of the Nile, extends in a southwest direction from a point of the Unyoro table land opposite the south und of Lake Albert Nyanza, and is about ninety miles in length. It is remarkable that these mountains, nearly $18,000 \mathrm{ft}$. high, with snow-covered peaks, were not visible to Sir Samuel Baker, who sup posed the Albert Nyanza to extend hundreds of miles farther south.-Illustrated London News.
sprayed portion of the same row. The results have
been summarized as follows: The treated
The treated portions of the twenty rows yielded a grand total of 2,471 potatoes, weighing 320 pounds 7 ounces, and 1,128 of these were of marketable size, and weighed 244 pounds 2 ounces, while the untreated portions of the same rows yielded a grand total of 2,771 potatoes, weighing 274 pounds 4 ounces, of which 948 were of marketable size, and weighed 180 pounds 1 ounce. There was, consequently, a grand total increase in favor of the treated hills of 46 pounds 3 ounces total product, and 64 pounds 1 ounce marketable product or an increase from the treatment of $62 \cdot 2$ bushels to the acre.
There was in nearly every case a marked difference in the amount of scab on the treated and untreated tubers, the former being much more free from the disease.
So far as a single experiment can be relied upon, the results here reported seem to indicate the correctness of the following provisional conclusions :

1. That a large proportion of the injury done by the potato rot can be prevented by spraying the vines with the Bordeaux mixture.
2. That this treatment apparently diminishes the amount of scab affecting the tubers.
3. That by adding London purple to the mixture the same treatment may be made effective in preventing the injuries of both the rot and Colorado potato beetle. -Jour. of Mycology.

Japanese Camphor.
The following particulars regarding the preparation of Japan camphor are furnished by a firm of exporters of Japanese products at Hiogo:
The camphor forests in Southern Japan are divided into two categories, which furnish the bulk of the world's camphor supplies.
In the first category are the forests which are the property of the government, and kept under the strict property of the government, and kept under the strict
supervision of the forest department. They contain a considerable number of trees, but as far as the supply of camphor is concerned, these forests can only be counted upon to a limited extent. At the discretion of the authorities, permits are given at irregular intervals to cut down old trees in certain districts, and the production of the government forests depends on the relative liberality with which permits are issued. On the a verage, the government forests furnish about one-fifth of the total quantity exported, and cannot be depended on as a regular source of supplies. On the other hand, the forests or trees belonging to private individuals are the base of the supply of the trade. That a considerable decrease of these camphor trees has taken place is beyond doubt. The provinces of Tosa and Satsuma, in former years the only source of supply, are very nearly exhausted; but in distant parts, beyond the mountains and remote from water, camphor trees are still to be found. This is of importance, as the present high price of camphor on the spot is further enhanced by transportation through pathless regions before water, for the distillation of the gum, can be reached. The production has, under these circumstances, and in spite of the abnormally high prices now ruling, not experienced any material increase. At the same time it must be stated that there is now proceeding an extension of the distilling area over new districts, $i . e$., in provinces comparatively bare of trees, and which up to now gave no camphor. These fucts confirm the view that, however high prices may go, the average supplies will not only not experience any essential in crease, but, on the contrary, become less and less in future years.
The camphor tree, like the oak, grows very slowly, and it takes several hundred years before the full size has been attained; there is, therefore, no chance for the present generation to derive any benefit from the trees now in course of being planted. The present prices stimulate the production to the utmost, and the fresh gum is being hurried upon the market. The opinion that native speculators store the camphor in order to raise prices is totally wrong.
The largest yield of gum from the trees is obtained during the cold season; first on account of the sap or essential oil contained in the tree then being concentrated in the big roots and the lower part of the stem, and secondly, as the distillation can be done more effi ciently by using cold water. This process is performed in a most primitive way on the banks of the nearest brook, as follows
A hearth or circular wall of stones is constructed, 5 to 7 feet high; on this is placed an iron pan, and thereon a tub about 3 feet high, the perforated bottom of which rests on the pan. Then the tub is wrapped up in a layer of clay, into which the roots and stem wood, cut into small chips, are placed. Water is now poured into the pan, the cover of the tub closed airtight by clay, and fire kindled on the hearth. The steam rising from the pan pervades the chips and extracts from them the essential oil, leading it through a bamboo tube into the refrigerator, which consists of two wooden boxes, through the larger one of which, having no cover, a continuous stream of water is flow ing, while the smaller one, being without a bottom, is placed on the water in the larger box, and serves as an air-tight receptacle for the steam saturated with the essential oil, which after the lapse of twelve hours i thoroughly extracted from the chips. In the mean while camphor and camphor oil have deposited on the inside of the smaller box above the water; they are scraped off, and, by pressing them, the camphor crystais and oil are separated. The camphor thus obtained is in a very wet condition, and loses up to 30 per cent more of oil and water until it is put on board a vessel The camphor oil is valuable, and carefully collected to be refined thus yielding more camphor while th refined oil is sold for exportation as camphor oil.
Hiogo is by far the most important place in Japan for the exportation of camphor, but the gum is exten sively dealt in at Nagasaki also, chiefly for the want of Hong Kong. There are no available returns for thi latter port, and it is probable that its trade is gradu ally more or less being absorbed by Hiogo. The appa rent scarcity of camphor in Satsuma and the southern provinces generally accounts for this fact, while the distilling area has extended further north, i. e., into closer proximity to Hiogo. It should also be borne in mind that the camphor which is now shipped loses about 5 per cent more weight during the voyage than formerly, when the cargo was delivered by the native in a drier condition.

[^0]
AN IMPROVED BRIDGE FLOORING

A bridge flooring especially adapted to be laid as an auxiliary flooring on the main floor of a bridge or similarstructure when the original flooring has become decayed or injured, and also adapted to be laid when a bridge is first constructed, is represented in the accompanying illustration, and has been patented by Mr. Charles W. Carman, of Hamburg, Iowa. Upon the main flooring two spaced side strips are securely at tached at each side of the road bed to be laid, the in-

CARMAN'S BRIDGE Flooring.

ner face of each strip being beveled upward and down ward from its center. The blocks employed in mak ing the flooring are square upon their upper and lower faces, the upper faces being smailer than the lower faces, and the four sides of the block beveled downward. In connection with the side strips and blocks, cross strips are used, having a double bevel on both longitudinal faces, while their ends are recessed to receive the beveled surfaces of the side strips, where by both may be effectually wedged to place. The main floor is first preferably coated with pitch, and the blocks are laid to break joints and nailed in position, when the cavities between the opposed edges of the blocks, and also those along the side and cross strips, are filled with pitch or any desirable form of cement the whole being effectually tied in position and form ing an even upper surface.

AN IMPROVED CAMERA.

The accompanying illustration represents a camera patented by Mr. Henry W. Hales, designed to render the lens movable in every direction, and obviate all danger of sticking in bad weather. The lens tube is attached to an apertured plate made universally adjustable by a rotating connection or coupling with the camera front, in which connection it is also adapted to slide. The connection shown consists of a circular netallic rim fitted in a circular opening in the camera ront, and having side cleats or holders for the plate, the rim being held and made tight in the opening to
exclude light by clinching its inner edge. The holding cleats are preferably made integral with the rim, and

HALES' CAMERA.
shaped to grasp the beveled side edges of the lens plate. The small figure shows the invention applied to the permanent front of the camera.
For further information relative to this invention apply to Mr. E. I. Horsman, Nos. 80 and 82 William Street, New York City.
The open winter in the vicinity of New York has prevented the gathering of the usual quantity of ice, consequently there is an unusual demand for artificial ice machinery. One day's mail last week brought to this office sixteen letters of inquiry about machinery for the manufacture of ico.

Messrs. Hughes \& Lancaster, whose works are at Chester, England, have been for some time steadily working to improve the low pressure compressed air system which they have introduced. Engineering says they have taken one of the ordinary Chester horse cars, and by means of a certain amount of cutting and contriving have managed to produce a fair example of their invention, at any rate sufficient to give a working example of the device. Underneath the car cylindrical reservoirs have been placed and a motor has been introduced. In other respects the vehicle has not been altered to any noticeable extentin fact, it is only on close inspection that one realizes that the car carries its own motive power. The re servoirs contained air compressed to a tension of about 170 pounds to the square inch, at least that is the initial pressure when the car is first started after hav ing been charged; but as the total storage capacity of the car in question is but 50 cubic feet, it will be easily understood that the pressure falls with considerable rapidity as the journey is made, more especially if the car has to climb a fairly steep gradient, as was th case during some runs we recently made. It may be as well to state at once that there is ample space under seats and elsewhere to place other cylinders, so as to very greatly increase the storage capacity.
The motor on this car is a Rigg engine, but unfortunately this has not been found so far very suitable for the conditions of driving tramcars. At any rate the leakage is very great, as was shown by the way the pressure gauge fell when the car was standing.
As the car will travel but a short distance-we be lieve about two miles on the level-upon its initial store of energy, special arrangements have to be made to recharge the storage cylinders. To effect this there is an air-compressing plant erected at a central station, and this supplies an air main which is laid along the entire route. At convenient intervals, greater or les according to the gradient and storage capacity of the car-probably two miles would be the maximum distance of any two from each other-there are special valves attached to the main. These are placed in pits lose to the outside of one rail, the pits being covered by iron lids level with the roadway and causing no ob struction to traffic. The car has to lift this lid in orde that connection may be made between the air reser voirs of the car and the supply pipes. In order to per orm this opening operation, there is a bent lever on the lower part of the car
When it is required to recharge the reservoirs, the lever is lowered by the attendant and the lid is raised there is a stud on the end of each arm of the car valve. As the car passes on, it causes the car valve to make a quarter turn on its center, that center being the end of the air pipe in connection with the reservoirs. The valves are brought into their open positions, and ai flows freely from the street main to the car reservoirs When the latter are charged the car is started, both valves make a part of a revolution, until they are brought to the closed position, and the operation is completed by the lid of the pit closing by its own weight.
The attendant having gone through the extremely imple operations of lowering the lever, the rest of the operations are purely automatic, and the practical sucess of the device naturally greatly depends on th rapidity with which the reservoirs are charged. In the car we have described, to raise the reservoir pressur from 60 pounds to 165 pounds per square inch took te seconds, or about one-sixth the time generally required to get an elderly lady or stout gentleman off the pave ment on the footboard
We had recently an opportunity of inspecting at Chester this car and the air main connections, through the courtesy of Professor Henry Robinson, M. Inst. C.E., who is consulting engineer to the promoters o the system. The short runs we made were conducted without a hitch, and enough was shown to prove that this system is quite practicable in its working, and that many of the objections to a steam motor are en tirely absent.
The total weight of the car and machinery is 3 tons 14 cwt., and the resistance has been estimated at not less than 27 pounds per ton by Professor W. C. Unwir who made some trials with this car.

New Warship Hurts Herselif

The Army and Navy Register, of Washington, state that information has been received at the Navy De partment that the Chicago was recently considerably injured by reason of the command to start the vesse having been given before the anchor was hoisted. The plates are said to have been torn down almost to the water line. When the fleet was sailing out of the port of Toulon, signals were hoisted on the flagship ordering he commanding officer of the Atlanta under arrest and directing the executive officer, Lieutenant-Commander Couden, to take command. It seems that for some reason or other the Atlanta had gone out of her cours and broken up the sailing formation. It is understood that Captain Howell has asked for a court martial.

AUTOMATIC RECORDING SIGNAL FOR RAILROADS. A signal for automatically recording the time of passage of a train past a station, and delivering any desired message or orders for station agents or employes, is illustrated herewith, and forms the subject of a patent issued to Mr. James B. Ivey, of Macon, Ha A carrier is connected to the engine caboose, or one of the cars, and a receiver located on one of the cars, and a receiver located on the road bed at the side of the track, into
which signal balls are automatically dropped which signal balls are automatically dropped
by the carrier, the balls being marked with by the carrier, the balls being marked with
or containing the instructionsor messages to or containing the instructionsor messages to
be delivered. A face plate carried by the truck frame, or by a frame carried by the axle boxes of the engine, is provided with lugs having vertical grooves in which the side flanges or wings of a barrel may slide up and down, and into the top of this barre is fitted an upper pipe or tube passing through a cap or head plate. 'The upper through a cap or head plate. The upper above the floor of the car to permit signal balls to be conveniently dropped into it by a conductor or trainman, and the arrange ment is such that the barrel may be held at various heights to keep a swinging striker and valve device on its lower end at any re quired distance above the trip plate of the signal ball receiver. This striker and valve device is designed to operate by the striker being moved either forward or backward but in any case drops only the lowest bal from the carrier barrel into the receiver The latter has a ball-catching trough of considerable length, aud a shorter and deeper box into which the balls pass from the trough, there being in this box a clockwork mechanism by means of which the exact time of the dropping of each ball is marked by a prick, punch, or stamp on a ribbon or band. The signal ball may be made hollow, with one or more holes communicating with its interior, or in two detachable parts, to contain reports, orders, etc., or it may be made solid and marked on its exterior with the desired information, but the ball receiver is designed to be locked, so that only authorized persons having a key shall have access thereto.

QUEEN'S NEW TRIPLE PLATE TOEPLER-HOLTZ

 MACHINE.On this page we print a cut showing some of the details of the new Toepler-Holtz machine which has just been patented by Jas. W. Queen \& Co., the well known manufacturers of philosophical apparatus and electrical test instruments, of Philadelphia, Pa. This machine, unlike very many that have appeared from time to time, is not simply a modification of the orthodox model, embodying certain conveniences, but is an entirely new thing, owing its efficiency to novel and, we feel assured, valuable ideas of construction and action
This machine, as its name indicates, is a three-plate machine; it is not, however, the same thing as the machine usually spoken of as the "double revolving plate machine," although it does have two revolving plates. The latter machine is simply an ordinary Toepler-Holtz machine doubled, i.e., with a revolving plate behind the fixed plate, exactly like the front one and acting in ex actly the same manner. In this new form the additional plate is not like the front revolving plate, nor does it act in the same way. The third and additional plate is here a perfectly plain glass plate, mounted upon the same axis as the usual re volving plate and placed behind the fixed plate. Its modus operandi is, like many other points in the theory of the Holtz machines, not entirely understood, although ther is no doubt but that much of the increased efficiency obtained by its use is due to the screening effect it has upon the other plates, i. e., to the leakage that is prevented by its presence; there is also supposed to be a considerable generation of electricity by friction of the plain plate and the air. Undoubtedly, many other causes also tend to in creased effects of, possibly, even greater importance than those just mentioned. The advantage of this new form of machine bece or newill pecially marked during moist weather. At such time ordinary frictional machines will not work at all, and all older text books direct that electrical experiments must be performed during January and February, when the weather is clear and dry. With the Toepler-Holtz machine as now known this requirement has not been so rigid, although such machines are not to be always trusted during damp seasons, as lecturers have found out to their sorrow. This difficulty it has been desired

IVEY'S AUTOMATIC RECORDING SIGNAL FOR RAILROADS.

These new machines are being sold by Messrs. Queen \& Co. at the same price as the ordinary form hereto fore used, and are gotten up in the finest possible manner. It inay be mentioned also that the plates used in Messrs. Queen \& Co.'s machines are manufactured and prepared by Voss himself, the inventor of what ed and prepared by Voss himself, the inventor of what nown as the Toepler-Holtz machine, and are guaranteed to give much finer and more eliable results than any plate made in the American market. There are certain little tricks of the manufacturer and application of the insulating shellac which Americans have not yet mastered, pursued by the Ger mans to perfection, and which add greatly to the efficiency of the machine.
It may not be generally known that Messrs. Queen \& Co. were the first to introduce the Toepler-Holtz machine into this country.
In 1880, the manager of their physical department, Joseph J. Walton, while on a business trip abroad, accidentally learned of the existence of this machine, examined it, and was so favorably impressed by it that he purchased a number for introduction into this country. This was the first appearance of the now well known.Toepler-Holtz ma chine in the United States. It was exhibite soon after ward by the before mentioned gentleman before the meeting of the American Association for the Advancement of Science and attracted much attention. It immedi ately became popular, and had such a large sale that it was straightway copied by vari ous American makers, and patents secured upon modified forms.

The Forth Bridge Again.

All classes of English newspapers and periodicals, since the completion the othe day of the wonderful Forth bridge, which whether the extra plate gave any increased effect to has been so fully illustrated in the Scientific Ameri
the machine, I set up both machines and arranged CAN SUPPLEMENT, have published descriptions, and them so that they both could be revolved by means of one crank, and so that they would both run at the same speed, and then adjusted the terminals until the sparks occurred with about the same frequency in both. Then I removed the combs from one of them, so that the third plate would have no effect in the development of electricity, and found that the frequency of sparks on that machine was very much less than on the other. I repeated this several times with the same result, and tried the same experiment on the other machine; that is, leaving the combs on the first machine, I removed them from the second, when that one was found to give considerably less electricity than the first. I can say unhesitatingly, therefore, that the ad dition of the third plate does very much increase the rate of discharge, and, as nearly as I could tell by this rough experiment, about double the rate." Prof Anthony also speaks of the slight effects produced by dampness upon this machine.
Another great improvement that is made in this ma chine is the form of the electrode which is used. This is made of a metallic disk two inches or more in dia meter, and hollow, so as to have very gradually rounded edges, this preventing any leakage at the can Supplement, have published descriptions, and
in most cases engravings, of this remarkable engineering structure.
Still, persons have got it in their heads, says the Building News, that the Forth bridge is on the canti lever principle, and if they proudly proclaim to us the fact, and we strive to point out that the cantilever has nothing to do with the integral calculus, but is twin brother to the hat peg behind the door, they smile blandly, as though to say, "We know all about that." This, the editor adds, is exasperating to a degree. But it is a state of things that may be expected to continue for some time in spite of sentences such a that in the London Times, explaining that "in architecture the cantilever is merely a bracket," and all the information which the engineers of the bridge have been at some pains to convey to the popular mind through the medium of magazines, etc. A canti lever bridge it is, and a cantilever bridge it will remain and there is no reason why things should not be known by their right names, but it seems a pity that ignor ance should be so rife as to the meaning of a simple word, and that a principle old as the hills should be believed by the public to be some new patent automati compound, double-acting, triple-expanding system o construction.
As for the Forth bridge itself, the world should be pretty familiar with its general appearance. It is evidently a structure that will give no swall pleasure to the engineer and architect to behold. "For my own part, I am anxious to see it in the flesh-or rather the steel-be lieving it to be the most creditabl piece of engineering of its kind ever brought to a successful issue.' That it will greatly influence the future of bridge building there can be no doubt. It will probably lead to a still further abandonment of close web iron construction in favo of open steel work
Irrespective of the employment of the cantilever principle, which will be a factor to influence future bridge designing, the Forth bridge should induce engineers to still further throw off the bonds of tra ditionary construction and make further progress in a knowledge of the true principles to be observed in the use of steel and iron edges. Over this disk, separated from it by about an for constructive purposes. eighth of an inch, and nearer the other electrode, is astened a thin disk of vulcanized rubber about one half an inch less in diameter. This rubber disk plays the part of the rubber sheet sometimes held between the electrodes and compels a much higher potential to be established between the two electrodes before a park can pass. It can be used upon either one or both electrodes, as desired.

The Inyo (Cal.) Independent says: There are five teams engaged in hauling borax from the works in Saline Valley to the railroad. In this newly discovered borax field lies the greatest natural deposit of borax now known to exist in any part of the world. It is only necessary to dig up the mineral and shovel it into wagons.

RECENTLY PATENTED INVENTIONS.

Engineering.

Steam Boller.-William J. Kennedy Jersey City. K J. This boiler is made with hemsphericai ends and exposes a large surface to the pro-
ducts of combustion, which are retained or held for a considerable time in contact with the heating surfaces contact with the pipes leading to the steam drum superheat and dry the steam as it rises from the boile

Electrical.

Dentists' Electrical appliances -Charles w. Manker, Nebraska City, Neb., and George
F. Manker, Bedford, Iowa. This invention covere a combination of a battery, an induction coil, a vibrato
dappted to rapidly interrupt the primary circuit of the adapted to rapidly interrupt the primary circuit of tha
coil, and a finger piece to be worn by the opertor dapted to close the secondary circuit, for sending urrent through the tooth oi a paient while the too 18 beirg extracted, to lessen the pain. Another
patent has been issued to the same inventors, consistpatent has been issued to the same inventors, consist.
ing of a battery and induction coii, combined with an ing of a battery and induction coil, combined with an
interrupter operated by two electro-magnets and provided with two sets of contact points, the arrangeme hands of the pattent through rings on the hand the operator, and the foroeps in contact with the rimg to the patient's teeth.

Miscellaneous.

Tipe Writing Machine.-James A. Wallace, Alexis, Ill. This invention covers a nove combination and arrangement of parts for a manchine
designed to be simple and inexpensive in tos construcior and easily operated, while producing writing havin perfect alignment.
Record Sheet. - James J. Barnard deceased, Passaic, N. J. (John Adams, administrator). This is a sheet supplementary to the usual books of record on which the sales are entered in brief economize the time and labor usually required in re-
cording and journalizing, to insure the sompletion of the entire course of the same at the clompe of eact ness day.

Harmonica. - John F. Stratton Brooklyn, N. Y. This is a mouth instrument in whic reed board having cells aud reeds hela thereon is com bined with a covering plate arranged over the reeds and
forming at its rear eud an ennarged deflecting and orming at its rear end an eniarged ceflecting an
resonating chamber, to produce very rich and full tone

Catch for Chatelatne Bags, etc Louis B. Prahar Brooklyn. N. Y. Combined with hember of the frame and having a latch hearn ad on to engage the other member of the frame, with a
spring for controlling the movement of the stud, so spring for controlling the movement of the stud, so
that the latch cannot be accidentally manipulated and that the latch cannot be accidentally manipulated
Acid Bottle.-Edward Hart, Easton Pa. This bottle is made entirely of wax, paraftine, or mixtures of these substances, the stopper being mad f like material with the body
Filter.-William Mailler. St. Joseph Mo. This is a filter capable of being attached to fancect, and consists of a tubular booy having a screen
or ieve secured near one end, upon which a body of or sieve secured near one end, upon which a body ieves and an interposed apertured corked disk place in the opposite end of the body, a screw being arranged in connection with the bail to bear upon the upper disk nd compress the sand
Cap for Cruets. - Simon B. Simon New York City. This cap consists of an attaching ring aving a transverse round bar across its upper edge, a cover plate with a circular flange, and a transverse guide plate, whereby the mouth of a cruet or simiar uickly closed.
Egg Tester.-Frank Herrick, Rhine eck, N. Y. This is a device with a box-like body having an opening in one side and means for supportga amp, a strip of pliable and a sliding damper dapted to close one or more of the apertures, hereby eggs may be tested accurately and conveniently a lighted room.
Automatic Gill Net Puller. Robert O'Neill, Charlevoix, Mich. The entire mechanrotating driving shaft, which may be driven by a small ngine, being an efficient and labor-saving apparatu or pulling or hauling gill nets or set lines from the water, and intended more especially for use on ship
board.
Water Level Indicator and Alarm ra A. Fuller, Pepin, Wis. This is a peculiar construc tion and arrangement of a float with indicator gauge
and an electric circuit with contact closer, battery, and bell, all worked by the float, for automatically givin notice of the amount o
nto the hold of a vessel.
Wagon Seat Lock.-David W. Glidden, Montrose, Pa. A bed plate is arranged for engagement with the seat riser and to extend below the sea rail, in connection with a slide held to the base plate, and carrying a hinged catch with a lockirg device, the lock being easily manipulated and the parts so arranged that the seat may be readily moved from place
to place upon the seat rail.
Truck:-William A. Clark, Crisp, Ga. This is a truck with centrally arranged wheels adapted io run on a single rail, and mainly carry the weight, but with lateral supporting wheels running on the ground, ngs in the truck to accommodate itself to the unevenness of the ground the end wheels pass over.

Fence Post.-Silas J. Saxon and Wilam H. James, Colfax, Washington. This post has a with a wooden part driven down upon the extension, o that no water can settle in any portion of the post to reeze or ca
of the iron.
Horse Collar fastener. - John H merson, st. Joseph, Mo. This is an improvem astenings to be applied to horse collars which open at heir lower ends, and consists in the novel constructio and arrangement of two metal plates adapted to be ap plied to collars of any size,
and efficient locking device.

NEW BOOKS AND PUBLICATIONS

and General Horticulture. By
and
Peter Henderson. New edition. New 1890. Pp. 526. Price $\$ 3$.

The writer of this work is equally well known as ability in both lines of work has contributed largely to he value of the present book. It is in the form of dictionary, and almost every item of horticulture and plant information is given, each word being followed by a definition and, where required, by a short reatise. The different plants are given very full notes, and illustrations are used profusely throughout the
book. It forms an admirable addition to the general library, and is one which, by its authortative position and wide scope, should be in every one's hands. The principal text is followed by a glossary of botanical no-
menclature, giving the meaning of all the Latin word menclature, giving the meaning of all the Latin word
ingeneral nse by horticulturists, and at the end some in general nse by hortical information, with tables of work for the difrent months in the garden, etc., is give

Chicken Fixings.-This is the title of curious specimen of periodical literature, published by Richard H. Young, Westboro, Mass. He seems to ing to the rearing, feeding, cooping, etc. In the copy efore us the editor says: "I present you my Thirteent essly and withoue, 'Chicken Fixings' for 1890, work of art, science, literature, religion, or anything of that sort. It is simply a trade circular of my poultry which I am simply and humbly endeavoring to float ufficient margin to keep the wolf away from the hedge.'
SCIENTIFIC AMERICAN
buILDING EDITION

MARCH NUMBER.-(No. 53.

table of contents.

Elegant plate in colors of a dwelling for $\$ 3,200$. Perspective elevation, floor plans and detaiis. Plate in colors of a residence lately erected at
Newark, N. J., from plans and specifications by Munn \& Co. Elevation, floor plans, and details
3. Persp

Residence of Mr. Woodruffe, Tompkinsville, N. Y
Perspective and floor plans.
cottage at Stuyvesant Place, Staten Island. Cost $\$ 11,000$. Plans and perspective elevation.
Views showing the burning of the Palace of the
King of the Belgians at Laeken, near BrusselsThe Conservatory-The Royal Palace of Laeken. n which Beethoven was bor
A residence at South Bend, Ind.; built at a cost of $\$ 7,500$. Perspectuve elevation and floor plans. A residence at' Elm Hill, Boston, Mass. Perspe tive view.
10. A cottage at Ludlow, N. Y., erected at a cost 11. A residence at Binghamton, N. Y.., erected at a
11. of $\$ 7,800$. Plans and perspective.
11.
12. Cottage at Binghamton, N. Y., erected at a cost of
$\$ 1,100$ complete. Floor plans and perspective elevation.
13. A Binghamton, N. Y., cottage recently erected at cost of $\$ 2,600$ complete. Perspective elevation and loor plans.
14. Drawing of a porch at Zutphen
16. A model farm house.
. Mustration of climbing plants for a covered
17. A $\$ 2,500$ cottage erected at Binghamton, N. Y., for

Mr. W. A. Sanford. Plans and perepective.
18. Design for a Congregational church of moderate
18. cost.
liscellaneous Contents: Errors in architectural design. - Sandy foundations.-The "Auditori-
um," Chicago.--Improved interior finish. - Adobe houses in Louisiana. - Drives and walks.-To take grease from marble.-Hydraulic passenger elevators, illustrated.-Slow burning buildings.Hill's solid steel anvil, illustrated.-Sliding door
blinds.-Improved wood working machinery, il-work-An untomatic pump operated water pressure, illustrated. - Increased use of water filtering appliances.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages : forming, practi cally, a large and splendid Magazine of architec TURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Lararst Criculation any architectural pubication in the word. Sold
alders.

MUNN \& CO., Publishere,

Dusiness and ゆersomal.
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line Adverlisements must be recived at pubication ofice

English tanned walrus, hippopotamus, giraffe,elephan and buffalo leather for polishing metals. All kinds mfrs.'
supplies. Greene, Tweed \& Co, 83 Chambers St. N. Y.

For Sale-A recent patent for an excellent straw cut
er. Address Hirsh \& Rasquin, 16 Court St.., Brooklyn N. Y.
Wanted Immediately-Two Fox lathe hands at Far

Wanted Immediately-Two Fox lathe hands at Fa nan's Brass Works, 23 Center
but first-class men need apply
The locomotive "Onward," illustrated in Scientifi American of March 8, is drawing the Philadelphia e nation respecting this lo ton, president, at hyfth Avenue Hotel, New York
Chain Factory for Sale.-Owing to the death of the proprietor, the StarChain Works at Trenton, New Jersey
are offered at private sale. This is an old established oncern now in full operation, it has good trade conne Reading P B so that With a moderate outlay the capacity of the work can be doubled. Inquire of H. L. Shippy, No. 117 Liberty S^{\prime}
The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co.. publishers, 361 Broadway, N. Y. Wanted-A thoroughly competent designer of woodight party a first-class opening. Address P. O. box 1001 New York, N. Y.
Best Ice and Refrigerating Machines made by David Boyle, Chicago, 1 ll . 140 machines in satisfactory use Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air Presees \& Dies. Ferracute Mach. Co., Bridgeton, N. The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses. The The Improved Hydraulic Jacks, Punches, and Tube Hoisting Engines. The D. Frisbie Co., New York city Tight and Slack Barrel Machinery a specialty. John For steel castings of best quality, write the Buffalo Steel Foundry, Buffalo, N. Y.
Send for new and comule
Send for new and complete catalogue of Scientitic ath other Books for sale by Munn \& Co., 361 Broadway.
New York. Free on application.

Handes Ruries

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information, and not for publication.
Reererences to former articles or answers should give date of paper and page or number of question.
InquIren not anser in reasonale time shold
be repeated; correspondents will bear in mind that some answers require no no will bear in in mind the rearch an
somough ae endeavor to reply to thl either by, lett
though this department, each must take his turn.

Scientitic American Supplementan referred
tomay be had at the oftice. Price 10 cents each
Books referred to promptly supplied on receipt of
price.
Winer. in sent for examination should be distinctly
marked or labeled.
(2066) R. B. C. asks for the best cement for patching rubber boots. A. Soften pure India rub2. And also leather boots. A. Use a solution of gutta percha in bisulphide of carbon. Pour upon the perfectly clean leather, and after it has dried apply the patch with a burnisher. The sides of the patch should (2067) H.
(2067) H. F. asks (1) the best kind of a battery to use for an incandescent light requiring 20
volts and 180 amperes to light it. A. Large size bichromate or Bunsen battery. 2. Is the Edison-Lalande cell good for lighting electric lights? A. Not as a general thing, as it is of too low E. M. F. 3. How many cell giving 15 amperes and seven tenths of a volt? A Thirty cells. 4. Please state whether a converter wil light when the current from an induction coil is sen hrough it. A. No.
(2068) N. A. D. asks for the size of car bon used in electric light described and illustrated in Supplement, No. 149. A. Use carbons p.
your current, $1 / 6$ to $3 / 8$ inches in diameter.
(2069) T. D. B. asks: Can you recom mend anything that will remove a dark stain from
mother of pearl knife handles? The knives were stored in boxes for some months, and the stain is probably the result of dampness. A. Expose to strong sunlight. Try
washing with a solution of binoxide of hydrogen and mmonia.
(2070) P. J. N. asks how to get silver from plated ware. A. Immerse in dilute nitric acid This will remove some. Then apply the acid to the spots where silver is left, with a sponge, to remove the
last traces. It should be done with a battery by stripping. This gives a solution of nitrate of silver. Add excess of zinc, to separate silver, and purify by washing
with sulphuric acid.
(2071) H. F. K. asks how to make a preplossy white, that is to make white frames and also have an enameled effect. A. Cover your frames with two dry hard, and read paint, each coat being allowed to fine sandpaper. As a final coat to give it a glossy finish, apply zinc white with dammar varnish as a vehicle. Use (2072) B C. H
ic mot R. C. H. asks if the simple elecAmerican Supplement, No. 641, will be large enough run a screw propeller boat 16 feet long, 4 feet beam, and 14 inches draught. Or if it can be made strong enough, and how many cell battery it will take to run the motor referred to will be large enough to run your boat at a fair speed, provided you gear back so as to allow the motor to run very fast. You can operate it with six cells of a large plunging bichromate battery. (2073) Old be abou 8 inches in diamete
(2073) Old Reader asks for a method of preparing a waterprooing composition for a folding
canvas canoe. It requires to dry without becoming stiff or hard, at the same time must not be sticky. A. We generally recommend painting or treatment with
melted paraffin. To carry out your requirements send nelted parafin. To carry out your requirements, send
the cloth to a rubber factory and have it coated with rubber, like a gossamer cloak.
(2074) X. Y. Z. writes : Given an ordinary solution in good order: 1 . What is the proper
voltage of the electric current to produce the best result in plating? A. Too rapid deposition gives a granular deposit that does not adhere. The rapidity of deposition may be made to vary by changing the voltage of the battery or by working at a constant voltage with
varying resistance. Hence no fixed rule for voltage can be given; eight or ten volts are ample. A counter-elec tromotive force is sometimes to be overcome in the
bath, but this is rarely more than one volt. 2. To caseharden wrought iron, we are told to use prussiate of potash; which is the proper kind to use, the red or the yellow? A. Yellow prussiate (potassium ferrocyanide). 3. With an average quality of illuminating gas, abont vield: A. Twelve to fifteen candles, if burning four per hour
(2075) R. R. M. asks : Will you kindly make a fine light cast, and how to prevent its adhering the mould? A. In our Supplement, Nos. 249, 251 India rubbe fill the whole subject or thould use pure rubber mixed with sulphur. It should be preesed into the mould while warm, and while so pressed should be heated for some hours, in order to vulcanize it.
You will not succeed in working with a solution, except for thin articles like gloves.
(2076) H. 'I'. U. asks (1) some tests by which I can detect the presence of alum in baking pow-
ders. A. Dissolve in water and add some muriatic acid ders. A. Dissolve in water and add some muriatic acid
and chloride of barium. A precipitate indicates sul and chloride of barium. A precipitate indicates sul.
phuric acid, and probably alum. 2. The presence of phuric acid, and probably alum. 2. The presence of
ammonia in baking powders. A. Heat in tube, and a white sublimate will indicate ammonia. 3. The presence of aniline coloring matter in tomato catsup. A. Shake with alcohol, and the coloration wil
test should be made by a chemist.
(2077) J. E. P. writes: We notice in your Scientific American edition of the 8th instant a remark on Japanese lacquer. Can you advise us how
this article is made, and whether the materials for it this article is made, and whether the materials for it
can be had in this country? A. Japanese lacquer is can be had in this country? A. Japanese lacquer is
prepared from a Japanese gum. We hope soon to pub. prepared from a Japanese gum.
ish an article on the subject.
(2078) A. L. E. asks : 1. How does the graphophone differ from the phonograph? A. The graphophoe
vol. 59 , No. 2; the phonograph in vol. 57 , No. 27 . Also in our SUPPLEMENTS, 632-669. The latter describes both. 2. What is the meaning of a magnifying power of so many dameters, as applied to the microscope? A. That.
the object forms an image so much wider and longer the object forms an image so much wider and longe
than if seen with the naked eye at the distance of the than if seen with the naked eye at the distance of the
eye piece from the slide. 3. Please give a receipt for a eye piece from the slide. 3. Please give a receipt for
nickel-plating solution, for use with battery. A. Use double sulphate of nickel and ammonium, 1 part to 250
(2079) W. D. H. asks : Can a spring with proper gearing, fly wheel, etc., be successfully used not, why? A. As a rule, spring motors are too heavy and bulky for application to work requiring the ex and bulky for application
penditure of much energy.
(2080) O. R. writes: 1. I have about 300 fints or Indian darts. Will you give some hints how to arrange them or what to use ? A. Arrange in a taste-
fuldesign on a plush or cloth covered board, securing uldesign on a plush or cloth covered board, securing
them with fine wire. 2 . How to constructa small turn ing lathe for foot power. A. We recommend "A Manual of Turning Lathes for Technical Schools and
Apprentices," by James Lukin, $\$ 1$.
(2081) I. C. B. writes: Can you give me an application to remove an ink stain from a linen shirt
bosom? A. The best rule in these cases is to apply the bosom? A. The best rule in these cases is to apply the
mildest remedy first. Try soaking in very dilute solution of oxalic acid with a little muriatic acid added. This in the course of a day will probably bleach it. If not add more oza
without soap.
(2082) H. J. A. asks whether or not he can copper-plate a piece of lead, by means of, or with-
out, an electric current. A. You can by means of a battery : without a battery you can get a thin coating, by tery : without a battery you can get a thin coating, by
simple immersion in nitrate of copper in solution in
(2083) M. S., La Grange, asks : Will you kindly answer me what makes the electricity in the dy namo? A. We refer you to Thompson's "Dynamo
Machinery," $\$ 5$, and Hering's "Principles of Dynam Machines." $\$ 2.50$. It is the conversion of mechanica Machines," $\$.50$. It is the
energy into electrical energy
(2084) N. W. W.-We recommend and can supply you with Byrnes, "Hand Book for the Artisan, Mechanic, and lenginer, price $\$ 5$, whic
information on polishing stones, agates, etc.
(2085) S. S. D. asks: Could the simple storage battery described in the SCIENTIFIC AmERICA chine described in SUPPIEMENT, No. 161? How many die lamp? A. This machine may be used for charging a storage battery, but it will be impracticable to run by hand. One or ten Edison 16 candle low voltag lamps can be run by ten cells of storage battery. It re
quires this number to produce the E.M. F. necessar quires this number to pr
for a single 20 volt lamp.

TO INVENTOR

An experience of forty years, and the preparation
more than one hundred thousand applications for pa more than one hundred thousand applications for pa
tents at home and sbroad, enable us to understand the aws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and al
foreign foreign countries may be had on application, and person abroad, are invited to write to this office for prices帾 are low. in accordance with the times and our ex MUNN \& CO.. office SCIENTIFIC AM RRICAN, 361 Broad way, New York

INDEX OF INVENTIONS

Tor which Letters Patent of the United States were Granted

March 18, 1890.
AND EACH BEARING THAT DATE.

Account and record holding case and correlative sheet. card, or ticket. C. M. Wilson 423.850	
alarm.	
Annunciator, C. E. Scribner.	
Automatic sprinkler	
xle bo	
Axle, wagno, J. F. Stevens......................... 423,881	
B	
Bar. See Grate bar.	
Barley fork, J. P. R	
Barrel filler, M. Sie	
Barrel heater, L. Sher	
Basket, berry, G. H. Brown........................ 423Bathing apparatus, E. Nolden............... 423.8	
ttery	
Beads of enamel, apparatus for of, D. Swarovski. .	
Bell, electric. A.F.S	
Belt. napkid, E. M	
Blower, pump, engine, and meter, H.Board. See Shoveling board.	
Boiler.	
Bolst.er, Bolt. ing bolt.	
ttle	
Bottle stopper, w. B	
Box. See Journal box	
Boxlifter, F. P. Morrison 423.621 Bracelet, J. C. Harrington............................. 423,605	
Brake. See Car brake. Wagon brake.	
Brake shoe, C. W. Roepper.	
Broom head clamp, S. R. Edney...................... 42, 4 ,44	
Brush, M. Brush machine, M. Young.....................423,507, 423,5	
Brushes, fountain attachment for blacking, T. J. Ream 423,443	
ckle, back-b	
Burglar and fire alarm, electBurner. See Gas burner.	
Butter mould, P. L.	
tton, collar or cuff	
Button fastener, F. A. Smith. Jr.................. 423	
Cabinet, W. I. Ohmer 423,625	
Cable gripping mechanis	
Camera, H. W. Hal	
an. Se	
brake, J. Hahn.	n holder, oil, H.
Car coupling, S. Seay, Jr......Car coupling, B. A. Shields..	
Car coupling. C. Whitus.................................... 423,46	
Car heating apparatus, D. J. Timlin........423:837, 42,	
Car running gear, street, A. V	
Car, stock, W. H. H. SisumCar tracks, electrical connection wth. G. G. Camp-bell.	
Cars, means for supplying electricity to tram, A	
Cars, pin pulling machine for, coal, G. G. Townsend.	
Cars, running board for fre	
Carbon rod for are lamps, c. E. Seribner........... 423,6	
Carriage bow, I. N. Topliff...Carrier.	
,	
se. See Account and record holding case. Packing case. Razor strop ease. Type transterring case.	

Cash recording and indicating machine, C. H. L.
Pillsbury.. 423,628 asks or barrels, machine for making. A. Dunbar ing, L. Girdler.
entrifugal bolt.
entrifugal machine schulz
Chan drive, A. F. Kull.
man.......................
hair. See Window chair. Checkrein holder, scott, Jr.. \& Wehrmeyer
Chemical feeder. O. H. \& W. M. Jewell
hurn, J. A. Adams
Churns, motor for operating, J. Pekgs
Clawp. See Broom hat Claup. See Broom head clamp. Clock leveling device, J. R.
Clothes slide. H. C. Durler Coffee pot, J. A. Hadley Coffee roasting apparatus, H. Stollwerc ollar fastener, horse, M. W. Bach. . Collar. horse, A. Mendel
Commode. J. A. Bell.
Concrete pavements, forming. E. F. Murdock. Conver letters, producing
 orset. G. H. Colley
orst and making the same........................ Counting device, R. Hundhausen
Counting register, K. H. Schaper.
coupling. Thill coupling.

cultivator, cotton, W. W. Baile
${ }_{423,7}$ Catter. See Band cutte
Cutting tool, T. Carroll.
Damper reguator, L. Copleston....
Dental operations, electrical device for use in,
Dental surgery, galvanic apparatus for, c. w. G. F. Manker.
Desk, etc., music.

Die. See Pipe die. Weber..
Dish cover. V. P. Tommins..
 Disinfectant, J. M. Raymond.
Disinfant w. P. Tageart.
 Display apparatus, coin-operated, E. H. Amet.
Door hanger wheel, w. J. Lane............... Door hanger wheel, W.J. Lane..................
Doubling machine, triea, A. M. White....
Drawer guide and runner, Mayhew \& Branda redger, grab or clam shell, E. Y. Harrison Drier, J. M. Charnock
Drier for drying sugar, grain, etc., J. M. Cha
Dock............... Drink mixer, o.
Dye, azo, P. Ott.
Dyes, making blue, C. Duisbe
Dynamometer, J. Emerson...
Egg tester, F. Herrick.
Elastic endless band, covered.................
Electric asparth. Electric apparatus switch, S. L. Barriet Electric lights, elevating and lowering, Kinney \& Hebendagl................................... mann
Electric switch, T. F. McEvoy.
Electric switch, G. H. Whittingham
Electric wire moulding. J. A. Seely
Electric wire supporter, W. F. Rothenber
Electrical conductor, G. E. Miller Electrical conductor, G. E. Miller.....
Electrical machine, static, H. Tirman Electrical machine, static, H. .
Elecmana........... Elevator, M. T. Kenney...
Elevator and conveyer, C. J. Seymour...............
Engine. See Rotary steam engine. Steam engine Envelope machine, R. G. Ward Eraser, noiseless blackboard, Smith \& \boldsymbol{E} Wri...........
Extracts, apparatus for making fluid, J. W. Hyat Extracts, apparatus for making fluid, J. W. Hyatt 423,699
Eyeleting machine, L. C. Emerson. Fabric. See Piled fabric. Tufted fabric. Fan, F. W. Tuerk, Jr.......
Fare register. J. W. Meaker

 Feed water heater and puriter.................... Felting boots, etc., composition for, A. D. Kize Fence, \mathbf{W}. Longden...
Fence making

```
Fence post, Price & Gallup,..............
```

Fence reel, wire, J. A. \& J. D.
Fence tightener, F.
Fence tightener, F. . . Coffee
Fender.
Fender. See Grate fender.
Fertilizer distributer and mixer, J. Walter.
Fifth wheel. vehicle,
File, bill, A. J. Wells.

Filter, W. M. Hough
Fitter, o. . Jewell.
Filter,
Filter, w. Mailler..
Firearm, magazine. M. Spore
Fireplace, G. w. Lonholdt
Fireplace, G. W. Lonholdt.............
Fire sprinkler, automatlc, A. Blauvelt
Fires, telescopic stand pipe for extinguishi
Fires, telescopic
Brown \& Wiles
Fork. See Barley fork
Fork. See Barley fork.
Fruit jar, Schlichting \&
Fuse for projectiles, base, T. Nordenfelt
Galvanic battery, M,
Galvanic battery, M. M. Clark.
Garden implement. A. W. Stiles...................
Gas, apparatus for manufacturing oil, H.
Engleman...............................
Gas burner, self-lighting, J. W. l yon....
Gas, production of chlorine. C. Hornbost
Gate. See Railway kate. Swinging gate.
Gate. See Railway rate. Swingin
Generator. See Steam generator. 23,628

423,639

Glass beveling machine, R. R. Newton
Glass polisher
 Brown................ Grain dumping machine
Grapple, A. H. Geer.....
Grate bar, J. Ashcroft.. Grate bar, J. Asheroft....
Grate bar, C. E. Getchell. Grave fender, open free, D. S. Watson
Grivering and a devinee, A. W. Anderson......
Denamating machine, Watson Denny Grinding mill, o. Simpson. Grooving head, adjustable, Matthews \& Quinlean
Guard. See Railway foot guard. Stovepipe guard.
Guns or rifles, ejec
w Smallm
holder. Lemonade holder. Music holder. Paper holder.
Hook. See Meat, hammock, or other hook. Hor
Hor
Hor
detacher, J. E. McCray
Hot water heater. J. J. Graves.
Hydraulic motor, J. Kennedy ...
Hydrocarbon burner, C. H. Land
Hydrocarbon burner, C. H. Land..
Ice cutting machine, D. Williamson
Inclinometer. W. Martin...............................
Indicator. See Low water indicator. Water leve
 Jar. See Fruit jar.
Jib hank, D. Crowell
Joint. See Universal..... joint.
Journal box, E. Verry......
Keg, metallic, A. O. \& M. A. Stiveson................ 423,83, 43,
Kneading machine, dough, B. H. Melendy.
Knitting machine, warp, c. H. Landenberger......
Ladders, hydraulic device for elevating, C. Win-
Lamp. arc, H. Pieper, Fils.
Lamps, cut-out for electric arc, C. E. Scribner....
Lamps, etc., extension fxture for, L. F. Gri
Lamps, etr., ext...
wom,
Lamps, globe for regenerativg gas, B. . Denn
Lasting jack support, F. Wood................
Latch, L. Scoffeld..
Latch for elevator gates, F.
Lawn sprinkler. A. A. Kent
Leather stretching machine, West \& Sinning.......
Lemonade holder and glass washer combined,
portable, S. Wilkins.
Letters and canceling stamps thereon, apparatu for handling, J. S. Fielding.
Level, spirit, J. A. Byrne............................
Lifter. See Box lifter. Transom lifter.
Lightning arrester, G. S. Maxwell...................
Lock. See Floating lock. Nut lock. Wagon seat
lock.
Locomotive boiler. M. Atock...
Locomotive frompare, MacKenzie-Hughes
Lounge. G. $\&$ G. Stock
Low water indicator, W. I. Pare
Lubricant, J. Lewandowski.
Lubricator, G. W. Brown.
Lubricator, G. Warrington
Manhole for sewers or cesspools, J. Wallace
Measure, automatic grain, J. H. Magard
Measure, automatic grain, J. H. Maggard...
Meat, hammock, or other hook, w. B. Charl
Meat, hammock, or other hook, W. B.
Mechanical motion, B. F. Stewart....
Mechanical movement, H. E. Harbau
Mechanical movement, H. \mathbf{E}.
Meter. See Ampere meter
Meter. See Ampere meter.
Mill. See Grinding mill. Ore crushing mill.
Mirror, window, A. J. Lotto
Mould. See Butter mould.
Mouldings, machine for polishing or smoothing,
J. Fleischmann...................................

Motor. See Hydraulic motor.
Motors, brake operating mechanism for, J. Hahn.
Mower, J. Macphail....,
Mower and hay teder, combined, D. F. Saurer

Net puller, automatic gill, R. O'Neil
Nut lock. F. W. Collins
Nut lock, J. Putman
Nut lock, J. Putman...
Nut lock, J. H. William
Oil can, J. Rau...............
Ore crushing mill, W. .
Organ stop action. reed. A. F.
Orkan stop action. reed. A. F
Oven shelf, outside, E. Kuhn
Packing case, G. W. Banker.
Pad. See Harness pad.
Paint, Baker \& Thorkelson.
Paper box making machin
Paper box making machine. S. G.
Paper cutter, , larke \& Robinson
Paper cutter, roll. C. K. Pickon
Paper holder and cutter, roll, L. Ehrlich.....
Paper holder and cutter, roll. J. B. Lawton.
Paper holder and cutter, roll, J. H. Nentrup
Paper holder and cutter, roll \mathbf{w}. Rabich
Paper holder and cutter, roll. W. Kabich
Paper holder and cutter, roll, G. Rein....
Paper, etc., machine for applying adh
rial to the surface of, J. M. Carew
Paper winding device. T. H. Savery.
Parcel carrier, D. A. Phelps
Pen, fountain, F. S. Heath.
Pen, fountain, G. S. Parker...
Pen, fountain, f.
Penantain, L. A. Shattuck
Pen holders, thumb and finger guide for, J. Bar
Pencil sharpener, e. H. Lyon................................
Pencil sharpener, B. Wesselmann.
Pencil sharpener, B. Wesselmann...
Pencil sharpener and pencil holder,
Fancourt

423,799
423,49
423,666
423,26
423
42324
423828
423,54
423,465
423,603
423,843
423,546
423,502
423,512
423,704
423,618

Post. See Fence post.
Pot. See Coffee pot.
Power or strength testing machine, coin-operat
ed, A. W. \& A. H. Roovers......................... 423,702
Preserving flsh or meat, . Ams............ 42345
Press or ironing board, combination, E B. Burk-

Printing plates, bed for zinc, E. Jaeck 423,691
Printing presses, registering gauge for. J. Brook 423661
Printing presses, set-off mechanism for, J. Brooks ${ }^{423,}$
Puller. See Nut puller.
Pulp digester, E. A. D. Reynolds.................... 423,531
Pumping apparatus, air, s. E. Hughes........... 423,768
Pumping apparatus, air, s. E. Hughes................ 423,768
Punch, bank, A. . Lane. L.................... 423
Punch, bank, A. V. Lane.
Punch. glove. J. Matejec.
Quill and bobbin supporter, A. J. Milstead...
Rudiator, w. G. Cannon..................
Railway apparatus, cable, L. Parker.
Railway cross tie, J. M. Bailey..................... 423,4456
Railway fog signals, safeguard for, Parsons \&
Railway foot guard, A. G. Campbell.................... 42
Railuay gate, electric. M. Toulmin........... 423,
Railway joints, bolt lock for, Hutchinson \&
Mitchell... 423,
Railway signal device, o. M. Williams........... 423,
Railway signal, pneumatic, A. G. Inghram.....
Railway signal, pneumatic, A. G. Inghram 423,477
Railway signals and switches, apparatus for work-
in z, J. P. O'Donnell.................... . 423.87 s

Railway transfer table, C. Hathaway................ 423.762
Razor strop case. J. H. Loback.784
Record sheet, J. J. Barnard 427
Reel. See Fence reel.
Reel guide and reel, P. L. Day.
423,674
423.675
Refrigerator, W. L. Everit. Jr.......................... 423
Refrikerator car, . Whittaker............ 42
Register
Register. See Counting register. Fare resister.
Regulator. See Damper regulator. Electric regu-
lator.
Riveting machines, mechanism for supporting

Rod. See Carbon rod.
Rod mills, apparatus for driving, Smith \& Garrett 423,82
Rods, wire, wire rods
Rod mins, apparatus,
Rods, wire, rodse, apparatus for heating
coutinuous lengths of, H. Roberts............ 423,445
Roof covering, fire and waterproof, J. G. Woil.................3.353
Roofing composition, M. W. Powell........... 42,699
Roofing composition, M. W. Powell
Rotary steam engine, T. R. Almond
Rules, machine for lining, W. R. Root...
Ruling parallel lines, device for, W. A. Shaw......
Saddle, harness, E. G. Robertson...
Safety attachment. G. L. Hohnsted
Safety attachment. G. L. Hohnstedt................ 423,688
Sash balance, H. Schmasen............... 42381
Sash fastener, J. J. Cowell.

Sash fastener, G. Hase
Satchel, o. Zimmer.
Satchel, O. Zimmer.................
Saw knockdown device, C. H. Weston
Saw knockdown device, C. H. Weston......
Screw locking device, W. M. Jenne............
Screw threads. device for cutting. Chapman \&
Newburg... 42
Sewing machine, D. H. Coles...................................
Sewing machine, c. Robinsn.....
Sewing machine feeding mechanism, T. c. Robin-
son.. 423,81
ment, D. Snyder...... 423,452
Sewing machine take-up device, G. A. Stiles..... 423,457
Sewing machine thread measuring attachment,
Sewing machine thread measuring attachment,
M. Lowenthal.........
Sewing machine, wax thread, G. A. stiles
Shafting key, J. Roemmele....................
Shaking and revolving bolt. combined, J. T. Lee..
Sheet metal vessel. F. A. Walsh.................... 433,88
Shoe fastener. A.S. French...................... 423,60
Shovel. See Cu.tivator shovel.
Shoveling board, $\mathrm{G} . \mathrm{Gei}$............... 423,425
Sifter, ash, Moore $\&$ Hill... 223,485
Signal.
23,658
Sink strainer and trap, W. Bechtold........ 423,658
Sopa, J. A. Gunn.......................... 433,86i
Spoke socket. U. M. Haskin s................... 433,4i

Ler. Lawn sprinkler.
Stand. See Camera stand
Stave cutting machine, G. A. Oncken................ 423,626
Stave jointer, O. P. Sowers................ 423,498

Steam enkine, J. H. Dales.. 4233
Steam enkine, . H. Taylor
Stean
Steam generator, w. M. Brown....................... 42
Steam generator, w. Snee................. 42
Steam generator and furnace, D. Hurst........... ${ }^{42}$
Steam, heat, and light by electricity, apparatus
Steam, heat, and light by electricity, apparatus
for producing, T. D. Farrall.................... 423,4
Steerer for inclined rudder posts, w. McBride.... 423,42
Stopper. See Bottle stopper.
Stove grate, C. L. Beers........................ 423,72
Stove grate. C. L. Beers...
Stove or range, J. F. MacK Kee
Stovep
Stovepipe guard and register, Newman \& Ozmun. 423,43
Stovepipe shelf, ,. M. Longear.................. 423,61
Strainer, fruit, M. J. Delmage................. 423,59
Street sweeper, W. H. Barrows............................
Supporter. See Electric wre supporter. Quill
Swinging gate, , . B. Wible........................ 42
Switch. See Electric switch. Electric apparatus

Switch operatinal setting apparatus, J. Hahn........ 423,556 42,54
Tuble. see Railwas transfer table.

Tap，adjustable，H．C．Bradford
Tapplng sheet metal vessels， James．
Telegraph，fre or police，G．C．McCullough
Telephone call，individual，J．Sack． Thermostat，J．Wach．
Thill coupling，w．M．Edelin
Thill coupling，M G．Hawke．
Thill coupling，A．W．Hollingsworth
Thill coupling．E．M．Howenstein
Thill coupling．E．M．Howenste
Thrashing machine．Wemple \＆Smith
Thrashing machines，band cutter and feeder fo
A．A．Naylor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 Tool，combination，A．\＆J．F．Clar Tooth crown，artiticial，E．P．Brown
Toy，puzzle，S．P．Baldwin．．．． Toy，puzzle，S．P．Baldwin
Toy savings bank or safe

Transom lifter，O．H．Taylor
Transplanter，F．A．Bemis．
Transplanter，F．A．Bemis．． Transplanting trees，apparatus for，w．A．．．．．．．23，723
Trough．See Feed trough． Truck，W．A．Clark
Truck，barrel，L．Rawdon
Tube or case for holdinn drawings，B．Arnold．．
Type impressions，apparatus for producing in
dented，W．J．Howell ，w．J．Howell．． Type transferring case，E．E．Baker．
Typewriting machine，D．A．Murras Typewriting machine，J．W．Schucker Typewriting machine，J．A．Wallace． Umbrella or parasol，H．A．Fleuss
Universal joint，w．L．Judson． Universal joint，w．L．Judson．．．． Valve，straight－way，J．Giles．．． Vapor burner，P．J．Fitzgerald Vehicle，two－wheeled，w．N．Sterner Velocipedede A．Aaddle，Nodd Vertical anti friction engine， 0 ．Colbo Violins，tuning peg for，s．w．Wilcox Vise，adjustable，G．H．Cole．．．
Vise，door supporting，w．Bate Vise，door supporting，W．Bateson
Voting boorh， Wagon，w．w．Haupt
Wakon bed raiser，H．E．Jackson．
Wagon brake，F．W．Oebur
Wagon brake，W．E．Steven
Wagon seat lock，D．W．Glidde
Wakon skein．G．J．Larson．
Walls and chimney，flashing for，J．w
Warp beaming machine， Warp beaming machine，E．H．Taylor Water level indicator and alarm，I．A．Fuller． Weatherboardink machine．Dunn \＆Paschal．．
Weather strip for windows，Fowler \＆Ulmal Weather strip for windows，Fowler \＆Ulm
Welding metals by electricity， \mathbf{c} L．Coffin Welding metals electrically，c．I．Confini．．．．．．．．．
Welding，method
\qquad Whiffetree．A．S．Johnston
Whip，C．J．Bradley．
Whip socket attachment
Windmill，J．J．Gardner．．．．．．
Window chair，H．D．Plimsol
Wire rope grip，A．H．Mathesius，
Wrench，F．F．Asmus．
Wrench，E．H．G．Brinser
TRADE MARKS．

Baseballs，J．C．Richard．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Waters \＆Havens
andles，F．Baumer．
Cocoa，E．Galer
xercising machine．．．．．．．．．．．．．．． ace bleach or wash，M．Merberg Fishing tackle，A．G．Spalding \＆Bros．
\qquad
burn＇s Flouring Mills Company．．．．．．．．．．．．．．．．
Flour，C．C．Washburn＇s Flouring Mills Compan
lour，wheat，Sweet Water Mill Company $\quad 17,693,1$
Hats and caps，Young Brothers．
Leather and leather worked up ing．
cut，Pfister \＆Vogel Leather Company．．．
oil，medicinal quality of castor，Red Seal Cas
Oils，lubricating，W．T．O＇Mar
Perfumes，toilet soaps，and preparations for the
Pickled meats，L．G．Davalos \＆Co．．．．．．．．．．．．．．．．．．．．．
Salve for the cure of skin diseases，Schneider \＆
Bisdorf．．．．．．．．．．．．．．．．．．．．．．
Saws．．e．．Atkins \＆Company
stoves and ranges，ventilating，H．Howe

Typewriting m
Company．．．
DESIGNS．
Brushes，mirrors，etc，back for．H．Berry．．．．．19，702，19，703
Com receptacle，w．Monteith
Combs，brushes，etc．，handle for，H．Berr
Babbitt．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Spoon or simiar article，Myrick \＆Roller
Stove，gas，Adams \＆Rivett．
Toilet stand for babies， \mathbf{C} ．
Tray，wash，F．J．Torranc \qquad
Type，font of printing，E．C．Ruthven
A Printed copy of the specifflcation and drawing of
any patent in the foregoing list will be furnished from this office for 25 cents．In ordering please state the name and number of the patent des．
Col
and Broadway．New York．
$\underset{\text { inventors for Patents may now be obtained by the }}{\text { Can }}$ going list，provided they are simple，at a cost of $\$ 40$ each．If complicated，the cost will be a little more．For
call instructions address Munn \＆Co．．． 361 Broadwas New York．Other foreign patents may also be obrained．

HDertisements．

USE ADAMANT WALL PLASTER

THE PHONOGRAPH－A DETAILED

\qquad L LATHE

SEBASTIAN，MAY\＆CO＇S里先等 fatiaties 580

BEST SHORT TELEPHONES Unevelod
Theclied in Tone and Quallt
Thounas in Dill Use． Satisfaction nuaranteed．

T．G．ELLSW WOTFT，
ELLSWORTH，
${ }_{7} 7$ West St．，N．Y．

Steam！Steam！
Quality Higher，Price Lower． 2－Horse Eureka Boiler and Engine，$\$ \$ 135$

B．W．PAYNE \＆SONS，

ICE－HOUSE AND REFRIGERATOR．

OIL WELL SUPPLY CO．Ltd．

ARTESIAN

 SWIFT RUNNING MACHINERY．
CHAS．A．SCHIEREN \＆CO．
 EVERY CSER OF MACHINERY How to Use Loose Palleys．
 VAN D DZZNA δ Trrr，Cinelinat， 0 ．
HE PENNA．DIAMOND DRILL \＆MFG．CO

MAGICLANTERNS

STEREOPTICONS SCHOOLS\＆PUBLIC SANTERNSLIDER COLORTERTAINMENTS
 2nd ${ }^{2} \sim 3$ MACHINERY TO BUSINESS MEN

STEEL TYPE for TYPEWRITERS， Stencils，Steel Stamps，Rubber and Metal Type Wheels． Yoik Stencil Works，Mfrs．
100 Nassau Street，New York．

RESSES．${ }^{50} \mathbf{0}$ Ha ${ }^{\text {500 }}$ ToNs，

P
 tising medium cannot be overestimated．Its is arcuaver
is many times greater than that of any similar journal

THE PUBLIC WANT their seed fresh
 JVageables J. H. GREGORY, Marblehead, Mass.

Do Your Trousers Bag at the Knees?

PRDPDSALS.

FAMILYICE MACHINE Eo in fex minut

INYALUABLE BOOKS

Mechanic, Engineer, and Scientist. nystromg pock ict ino
 MARKS ON THE STEAM ENGINE.
 elements of modirn chemistiv.
 THE CHEMICAL ANA, XSIS OF IRON.

 Browbi Aarriri Axy Soni To mich are addein

 are, j. Bromplisp il reaint of top priee

THE AMERICAN RAILWAY
With 225 Illustrations 8 vo . 66.00 net.
$* * *$ *** Send to publishers for full descriptive circular.

THE EACLE Con in The worlo. peed, Comfort and Safety. ge Illustrated Catalogue sent Free to any Address. THE EAGLE BICYCLE MFG. CO.,

PPOKANE FALLS Is the most rapidy grow-|RAILWAY AND STEAM FITTERS' SUPPLIES

 some book "Spokane Falls illustrated," to CLOUGH
GLA VES Financial Agents, Spokane Falls, Washing
ton. Bank references given,

SEATTLE Caufordaconover
Excursion Chattanooga
ers and others an ne the property Ohattanooga Land Oo., at ave been made with Messrs. Raymond $\&$ Whir comb, the popular excursion managers, to con-
duct personally, at an early day, excursions from duct personally, at an early day, excursions from
Boston, Chicago, New York, Philadelphia, and Boston, Chicago, New York, Philadelphia, an
Cleveland to Chattanooga. Full details will be announced later.

 THE GIRARD HYDRAULIC RALLWAY

WEITMYER PATENT FURNACE. BOLLERS OF EVERY DESCRIPTION IDE AUTOMATIC ENGINES. Traction and Portable Engines. STIRAM ROOAD ROIITHRE. Manufactured by FOUNDRY \& MACHINE DEPT., Harrisburg, Pa., U. S. A.

Cheap
Do it fourself. C Printting THE BEST LIME KILN KNOWN
 THE HAMMOND TYPEWRITER CO. 447,449 East 52d street,
New vork, u. s. A.

TINTEINTORES

 TO INVENTORS I--PATENTS, $\underset{\text { Mrafe }}{\text { Marks }}$

 Wiruars sen. ABLER PATENT FOR SALE.

The Scientric $A=$ merican PUBLICATIONS FOR 1890.
She prices of the didferen onplications in the United
 The Scientitc American Supplement (weekly), one
year.
5.00 The Scientiflc American, Spanish Edition (monthly) ${ }_{3.00}$ The Scientitlc American, A Achitects and Builders
Edition (monthy), one vear.
2.50 The Screntiffc American and Supplement,
The Scientific American and Architects and BuildThe Scientitic A merican and Architects and Build-
ers Edition,
The Scientifice American, Supplement, and Archi-
tectsund Builders Edition. Proportionate. Rates for six Months.
This includes postage, which ee pay. Remit by postal
or express mone order, or drait to order of epress money order, or draft to order of it by postal

Proverisements．

Wheeling is Better than Walking． Victor Bicycles

opee Falls，Mass． nd how to use；with an engraving．Practical direction entained in pad；how to tare off copies of the lette NEW KODAKS

You press the button

Seven New Styles and Sizes
Transparent THE EASTMAN COMPANY，

MODTETES！

THEAMERCANBELL THEPHONECO．
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

REMINGTON

STANDARD TYPEWRITER．
Wyckoff，Seamans \＆Benedict

PATENTS！

VAIN DUZEIN GAS \＆GASOLINE ENGINE
 OPERATED with COAL
and．OTHER MANUFAC－ and．OTHER MANUFAC－
TURED GASES AND rellable and ECONOMICAL． Fully War rartod Gas \＆\＆Gasoline Engine Co．
E． 2 d St．，Cincinnation
HOME－MADE INCUBATOR．－PRACTI cal directions for the manufacture of an effective tincu－
bator that has been carefuly tested and found to per
torn

Shipman AutomaticSteam Engine
 \＆ORE BREAKER
 CATES IRON WORKS $50 \mathrm{CSo.clinton}$ seris
 77 Franklln St，BOSTON． 2914 watan

ROOFING

We are now reay to supply the product of entire－
1y new machinery and processes just completed，by the strength and durablity have of our welli－known
 form of the portable Rooting which we have manu－
factured with continued improvements durng the
past hirty years and as the most desirable Rooting
for general purposes as past eneral perposes．
for ghe important features of our recent improve－
Tents．for $\begin{aligned} & \text { inhich } \\ & \text { matents } \\ & \text { have been allower and }\end{aligned}$
and others applied for in this Country and in Europe，
are described in our new circular，which，with sam－ are described in our new circ，
ples，will be sent free by mail．

It is adapted for steep or flat roofs in all climates，
and can be readily applied by unskilled workmen． THere are Inferior Imitations of our Asbestos
Roofing．Purchasers are cautioned． Exclusive sale of our IMPPoved AsBESTOS
Roortst wil be given to reliable dealers in in
portant towns where we have not already made
arrangements． H．W．JOHNS MANUFACTURING CO． H．W．Johns＇Fire nnd Water Proof A sbestos Boiler Coverings，Steam Packings， Fire－Proof Paints，etc．
87 Maiden Lane，New York CHicago．PHILADELPHIA．BOSTON．

JENKINS BROS．VALVES！

ICE MACHINES，

 Sevi 5 Rev

THREE ELEVATORS

OTIS BROTHERS \＆CO．＇S Passenger and Freight Elevator Works， General Office， 38 Park Bow Now York
THE OTIS ELEVATOR GRAVESELEVATORS．

ELECTRO MOTOR．SIMPLE．HOW TO

COMPTOMETER

ALL ARITMETHICAL Solved rapidy and accurately
by us ing the complometer． by using the Complometer．
Sa ves 40 ner cent．of time．
Entire relief from mental strain Adapted to all commercial and
scientific computations．Send
Sor FELT \＆TARRANT MFG．CO．， $52-56$ Illinois St．，Chicaro．工 工玱
Srixutific Smarican
ESTABLISHED． 1846.
The Most Popular Scientific Paper in the World． Only 83.00 a fent including iontage．Weekly．
This widely ci rculated and splendidy illustrated een pages of usef ul information and a large number of original engravings of new inventions and discoveries． representing Engineering Works，Steam Machinerg，
New Inventions．Novelties in Mechanics，Manuf New Inventions．Novelties in Mechanics，Manufactures，
Chemistry，Electricity，Te egraphy，Photography．Archi－ Chemistry，Electricity，Te egraphy，Photography，Archi－
tecture，Agriculture．Horticulture，Natural History，etc． Complete List of Patents each week．
Torms or Subscription．－One copy of the Scien－
TIFIC ANERICAN will be sent for TIFIC AmERICAN will be sent for one year－52 numbers－
postage prepaid，to any subscriber in the United States Canada or Mexico，on receipt of three dolitars by the
Canal publishers；six monttis，\＄1．50 ；three months，\＆1．00． Clubs．－Special rates for several namen，and to Pout
M aste s．Write for particulars． Maste s．Write for particulars．
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk seldom goes astray，but is at the sender＇s risk．．Ad
dress all letters and make all orders，drafts，etc．，puy．

MIUININ \＆CO．
361 Broadway，New York． TIE
Scientific American Supplement． This is a separate and distinct publication from
THE SCIENTIFIC AMERICAN．but is uniform therewith In size，every number containiug sixteen large pagew fult of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions． The Scientific american supplement is published
weekly，and includes a very wide range of contents．It weekly，and includes a very wide range of contents．It
presents the most recent papers by eminent writers in
all all the principal departments of Science and the Useful Arts，embracing Biology，Geclogy，Mineralogy，
Natural History，Geouraphy，A rehæology Astronomy， Natural History，Georraphy，A rchæology．Astronomy．
Chemistry，Electricity，Light．Heat，Mechanical Engi－ Ceering．Steam and Railway Engineering，Mining，
Suip Building，Marine Engineering，Photogriphy， Ship Building，Marine Engineering，Photogriphy，
Technology，Manufacturing Industries，Sanitary En－ gineering，Agriculture，Horticulture，Domestlc Econo－
my，Biography，Medicine，etc．A vast amount of fresh
and lication．
The most important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated Price for the Supplement for the United States and Canada．$\$ 5.00$ a year，or one copy of the SCIENTIFIC AM－
EHICAN and one copy of the SUPPLEMICNT，both mailed or one year for \＄i．0．Single copies 10 cents．Address MUNN \＆CO．
361 Broadway，N．Y．．

Building Edition．

The Scientific American Archirects＇and
Builders＇Edition is issued monthly． 82.50 a year． Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of A Archit ecture，rich－ If adorned with elegant plates in colors．and with othe
fine engravings；illustrating the most interesting ex－ allied subjects．
A special feature is the presentation in each numbe of a variety of the latest and best plans for private resi－
dences，city and country．including those of very mod erate cost as well as the more expensive．Drawings in perspective and in color are g1ven，together with full
Plans，Spec fications，Sheets of Detailo Plans，Spec fications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this have won for it the Largest Circulation of an Architecural publication in the world．Sold by all MUNN \＆CO．，Publishers， 361 Broadway，New York．

PRINTINTG INKS．

[^0]: ALL of the bank note currency of the Italian gover ment is engraved and printed in the United States.

