a Weekly Journal 0f PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, MARCH 8, 1890.

NEW TYPE OF LOCOMOTIVE DRIVING WHEELS. We illustrate in the present issue a locomotive that has recently been placed upon the tracks of the Central R.R. of New Jersey. The engine was built to demonstrate the efficiency of the Swinerton driving wheel. The wheel offers a radical departure from theories hitherto followed. The Swinerton wheel is polygonal. It is claimed that by substituting for the cylindrical surface of the driving wheel a many-sided prism, greater traction is obtained.
The engine was built by the Hinkley Locomotive Company for the Swinerton Locomotive Driving Wheel Company, under instructions to spare neither labor, skill, nor expense, but to make the best engine possible. On the first of December, 1887, the engine was finished. It was built for high speed passenger service. Its general data are as follows: Weight of engine, 45 tons; weight on drivers, $32,000 \mathrm{lb}$.; drivers, 5 ft .6 in .; trailing wheels (self-adjusting for curves), 42 in .; treading truck wheels, 36 in. All wheels except the drivers are of wrought iron. Cylinders (with Richardson slide valve) 18 in . by 24 in . The boiler is of steel with 90 in . by 42 in . grate and $22013 / 4 \mathrm{in}$. tubes. It carries 150 lb . of steam. The engine is fitted with Westinghouse automatic and with vacuum brakes, and has steamheating apparatus for warming the train. It has a water scoop for taking water from a track trough.
The principal feature of interest which the engine was built to illustrate is its driving wheel tires. These are covered by patents of C. E. Swinerton, president of the company. In outline each of these represents a polygon with sides one inch long, giving about 210 sides for the entire circuinference. Looking at the wheel under favorable circumstances, the sides are barely noticeable. If the light shines at the right angle upon the periphery, they can be clearly distinguished. A short straight edge, even a pencil sufficing, discloses the existence of facets by the rocking or oscillation as it passes from face to face. The exact angle of the facets is shown in Fig. 2.
The object of the polygonal wheel is to increase tracThe object of the polygonal wheel is to increase trac-
tion, aid very remarkable results are claimed for it in

DEVICE FOR INCREASING WEIGHT ON DRIVERS,

T||||||||||||||||||||||||||||||||

PERIPHERY OF WHEEL, SHOWING FACETS.

regular work of the "Onward" was in regular service on the Boston and Maine Railroad, where for six month with six to Portland express, a distance of 1.5 miles, the tractive power had been tried, and for several day the tractive power had been tried, and for several day

This went to prove its capacity for handling loads usually pulled by four-driver engines.
After the B. \& M. runs were concluded in July, 1889 some special tests were made. A gradient of 37 feet to the mile was selected, and the number of cars which the engine could pull with and without sand was de the engine could pull with and without sand was determined. Then the tires were turned off round and the same trials were repeated. The results as reported were remarkable, showing a great increase in tractive power from the use of polygonal tires.
The following table gives an abstract of these trials
TRIALS OF ENGINE "ONWARD," FITTED WITH POLYGONAL WHEELS, JULY, $16,1889$.

Method of working.	Gondola	$\begin{gathered} \text { Short } \\ \text { coal } \\ \text { cars } \end{gathered}$	Engineer.	$\begin{gathered} \text { Weight } \\ \text { of cars } \\ \text { and load. } \end{gathered}$	Total $\begin{gathered}\text { Weight, } \\ \text { including } \\ \text { engine } \\ \text { and } \\ \text { tender. }\end{gathered}$
Without sand.. With sand.....	10 10	${ }_{35}^{10}$	F. F. Coggin. L. C. Todd.	$\begin{gathered} \text { Lbs. } \\ 8,59,550 \\ 1,328,346 \end{gathered}$	$\begin{gathered} \text { Lbs. } \\ 1,002,700 \\ 1,471,496 \end{gathered}$

TRIAL OF ENGINE " ONWARD," FITTED WITH ROUND INE "o onWARD," FITTE
WHEELS, JULY $23,1889$.

Method of working.	$\underset{\text { cars. }}{\text { Gondola }}$	$\begin{gathered} \text { Short } \\ \text { coarl } \\ \text { cars. } \end{gathered}$	Engineer.	$\begin{aligned} & \text { Weight } \\ & \text { of cars } \\ & \text { and load. } \end{aligned}$	Total weight, including engine and tender.
Without sand With sand.....	${ }_{11}^{5}$	11	F.S. Saunders F. F. Coggin..	Lbs. 830,870	$\begin{aligned} & \text { Lbs. } \\ & 463,650 \\ & 974,020 \end{aligned}$

The change of engineers was made to avoid any charge of partiality. One very peculiar result is the comparatively little difference in tractile power due to the use of sand in the case of the polygonal wheels. The disproportion in the loads moved by the polygonal and circular wheels is very striking in both cases. As regards practical points, it is found that the en gine ruus quietly as any other. Thedeparture from

HIGH SPEED LOCOMOTIVE WITH SINGLE PAIR OF POLYGONAL DRIVING WHEELS.
the circle is too slight to occasion any rattling. In the first experiments, wheels with 2 inch facets were tried, and even they could not be distinguished in quietuess of running from round wheels. In wearing, the facets do not disappear. It is found that a flat spot upon a tire in ordinary work never wears away. In like manner, the many flat spots on the Swinerton tire are preserved. An engine which ran 60,000 miles upon the Boston and Lowell R.R. with polygonal tires wore down $3 / 8$ in. from their periphery, but the characteristic surface was preserved to the last. Since the engine has been on the Jersey Central R. R. she has been pulling a train of five cars from Jersey City to Easton, Pa ., a distance of 75 miles, with 14 stops, in two hours and two minutes.
There are no equalizing levers between the trailing wheels and drivers in the "Onward," and a special pneumatic cylinder and lever is used for increasing, if necessary, the pressure upon the drivers. Its construcair to the cylinder, about 4,000 pounds additional weight can be placed, and a vertical play of about $7 / 8$ inch is possible
Another special device is the sanding blast. Compressed air from the reservoir is used to drive the sand under the wheels. This is shown in the same cut. Compressed air is also used to ring the bell, a little cylinder arranged at its side operating the crank.
The facets are produced by a milling machine. The wheel or tire under treatment is milled across once for each face, and the operation is quite simple and cheap. The future of the polygonal tire will be watched with much interest by the railroad world.

New System of Butter Shows in Denmark.
The new plan has the support of a large number of
dairies, dairy experts, and leading butter merchants dairies, dairy experts, and leading butter merchants all over the country. It principal features are

1. A continuous butter show at the expense of the State during several months in each year.
2. Here fresh samples of butter will be received every 14 days, the judges' decision to be given on the butter as received and its condition at the end of 14 days. Thus there will be two distinct testings, not only of quality, but also of weight.
3. The samples are to be sent immediately on the receipt of a letter or telegram, so that the dairymen will not be able to make a special cask for exhibition, and the samples are to be repeated as often as required.
4. Competing dairies must send in a return of the feading and system generally followed on the farm, with especial reference to the week during which the samples are sent in. At present the number of dairies entered is 360 . Nine judges have been selected, and these act in groups of three each, each group recording an independent opinion on each sample, which is checked by those of the other two groups. Each group will consist of two butter merchants and one dairy expert. The exhibitors are paid the usual market rate for their exhibits. The shows will be held at intervals of a fortnight during eight months of the year, and the government grant during the current financial year is $£ 1,350$. As the same dairy will send in butter several times in the course of the year, great facilities will be afforded for ascertaining which are the best managed dairies, and it will then be seen where the art of butter making may best be learned. The report concludes by reproducing a series of questions in regard to dairy management put to the managers of competing dairies.

Principal Navies or the world.

The effective force of the United States navy, when all the ships now authorized are completed, excluding those which by the process of decay and the operation of law will by that date have been condemned, will comprise 11 armored vessels, of which only 3 are battle ships, and 31 unarmored vessels, making a total of 42. The following statement shows the number of war vessels on the effective list of the principal foreign powers, built, building, or projected, at the present time, and exclusive of sailing and practice ships :

Country.	Armored.	Unarmored.	Total.
England. 76	291	367
France......	.. 57	203	260
Russia 49	119	168
Germany....	... 40	65	105
Holland.....	... 24	70	94
Spain.......	... 12	78	90
Italy .		67	86
Turkey....		66	81
China....... 7	66	73
Sweden and	... 20	44	64
Austria 12	44	56
United State	11	31	42

The table shows that even when the present building programme is completed the United States cannot tak rank as a naval power.

Avenine, the existence of which in oats was first announced by A. Sanson, has been vainly looked for by Wrampelmeyer ("Landw. Versuch."), who was unable, even by Sanson's published method, to detect such an alkaloid in the oat.

šrientific Ammerian.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUblished weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTUPIC AMELICAN. One copy, one year. for the U. S., Canada or Mexico..
One coopy, six months, for the U.'s., Canada or Mexic ${ }_{8}^{3} 18$ Nomed

Building Edition.

panish Edition of the Scientific American.

NEW YORK, SATURDAY, MARCH 8, 1890.

TABLE OF CONTENTS OF
 SCIENTIFIC AMERICAN SUPPLEMENT

 NO. 740 .For the Week Ending Marcin 8, 1890. Price $\mathbf{1 0}$ cents. For sale by all newsdealers. ARBORICULTURE.-The Growth of Trees.-How trees grow, PAG
sugestions as to best means of planting them
ASTR

THE WORLD'S FAIR OF 1892-CHICAGO FAVORED BY

 THE HOUSE OF REPRESENTATIVES.The contest in the House of Representatives relative to the selection of a place for a world's fair in 1892 was brought to a close on the 24th ult. after eight ballots, and resulted in favor of Chicago. The vote was: For Chicago, 157 ; New York, 107 ; St. Louis, 25 ; Washing ton, 18. Necessary to a choice, 154.
The citizens of New York were chagrined at this result. They had proceeded upon the theory that a successful fair, worthy of the dignity and greatness of the country, implied the necessity of a solid financial basis, an attractive site, and the best conveniences for the largest numbers of visitors. Five millions of dollars were raised by private subscription, ten millions more were provided for by State law, and a magnificent location was chosen in the heart of the metropolis. Thus prepared, the New Yorkers presented themselves before Congress; but a majority of votes were captured by the Chicagoans. Whether the Senate will confirm the choice of the House is yet to be seen. It 'still remains for Chicago to provide a site, to raise the required fifteen willions, and induce the necessary multitudes to come to her display. These are not generally considered easy matters of accomplishment; but if we may judge by the facility with which the Chicago people carried the House and their present glowing enthusiasin, they will encounter no real difficulties. The fair will apparently drop down upon Chicago almost self-inade, under the magic touch of her enterprising people.
Let us hope this may prove true, and that Chicago will show to the world she really deserves the proud distinction she claims, that of being the most liberal, practical, and active city in the world.
In the discussion which took place in Congress, sev eral very forcible and interesting speeches were made. One of the strongest, and which, perhaps, had more influence than any other, was that of the Hon. Wm. M. Springer, of Illinois. It was chiefly devoted to belittling the Empire State and city. His diatribe was ingenious, imposing, and successful, for it carried the votes.
One of the best speeches upon the werits of Chicago was that by the Hon. Abner Taylor, of Illinois. He said :
"A great empire has grown up west of the Allegheny Mountains in the last century that the people of New York seem to know but little about; and I desire that this fair shall be held in the West for the purpose of educating the people of New York to a knowledge of this great empire. [Laughter and applause.] For the last half century this great empire has furnished the cow and the grass and the corn, and New York has done the milking. This empire now desires to do some of the milking herself; and by the noise from New York I should judge that they realize there that the weaning time has come. [Laughter.]
" But, Mr. Speaker, when I rose I did not intend to say anything derogatory to any of these great cities. They are all worthy of a fair, and my great regret is that we cannot locate one in each of them. All fairminded men will admit that New York has many things to commend her as a place for this exhibition, and as for this beautiful city of Washington, I do not ond it in my heart to say aught against her. She is a magnificent city. St. Louis is our neighbor, and if the fair is to be located there, her people will do all that can be done to make it a success.
"But after you have counted the advantages of all these cities, I invite you to go with me to the phenom enal city washed by the waters of Lake Michigan. I say phenomenal, because there has never been in the history of the world another city of twice her age with over a million inhabitants. She is younger than many oî the members of this House. Go with me and look at that city carefully, at her great hotels, her great railroads, her sites for this fair in every quarter of the railroads, her sites for this fair in every quarter of the
city, and I am satisfied that you will agree with me that she embraces all the advantages of the other three cities together.
"I agree with my friend from New York that this fair should be held amidst a dense population and in a great agricultural country. Let us see how Chicago is situated in that respect. She has a million inhabitants She is surrounded by large cities, towns, and villages. She is located in one of the richest agricultural coun tries in the world, which is dotted all over with farms in a high state of cultivation, and inhabited by pros perous and intelligent farmers who have time and money and will to join and make this fair a grand one

The country tributary to her and lying within twelve hours' ride of the city-Illinois, Wisconsin Iowa, Missouri, Kentucky, Ohio, Indiana, Michigan and Minnesota-grows over half of the wheat of this country and more than 60 per cent of the oats and corn. [Applause.] So you can see very readily that the country that produces this much is in a splendid condition to help to make this great show a grand success. Chicago handles more grain than any other city in the world ; Chicago has a larger meat trade than any other two cities in the world; Chicago has more
railroad terminals, greater general facilities for all
classes of railroad business, and more miles of side track than any other city in the world ; she has more acres of public parks connected by more miles of boulevards than any other city in the world; she has a larger inland shipping trade than any other city in the world and larger than any other three cities in the United States. [Applause.]

Chicago is inhabited by a people whose hearts and hands are always open to any great enterprise that serves to develop and build up this country and for the benefit of mankind. Her people have obliterated from their vocabulary the word "fail." They do not understand its meaning. The world-wide reputation of her citizens for ability, energy, and push will assure every one that if the fair is located there, it will be a brilliant success and a celebration in every way fitting as the world's tribute to the noble mariner who discovered our hemisphere."

LEPROSY.

A number of events have recently occurred which indicate that scientists and philanthropists at the centers of civilization are waking up to the necessity of steps being taken for the acquirement of fuller and more correct knowledge of the disease of leprosy, to the end that its victims may be relieved and the further spread of the disease be checked.
On January 13 last a dinner was given in London as a means for promoting the interests of the National Leprosy Fund, which has recently been started in response to a very strong feeling that something should be done to check the spread of leprosy in the British possessions, not only from motives purely humane, but also because the continued increase of the disease is in danger of becoming a national peril.
The Archbishop of Canterbury said in his speech at this dinner that in the old churches in England could still be seen the lepers' side window in the chancel, where in former times the lepers stood to hear the services and to receive alms without coming in contact with those unaffected by the plague. Now, however, the disease is seldom met with in England, but it is more widely diffused through the earth than most people imagine. It prevails, in fact, over more than oneple imagine. It prevails, in fact, over more than one-
half the habitable globe. It is known from the tropics half the habitable globe. It is known from the tropics
to the Arctic regions, embracing almost every variety to the Arctic regions, embracing almost every variety
of soil and climate and the various races of men. Mariof soil and climate and the various races of men. Marithe disease is by no means confined to them. It prevails in marshy as well as mountainuus regions, in the lowlands of Louisiana as well as in the elevated table lands of Mexico. It would be extremely difficult to make a reliable estimate of the number of lepers in the world. The Prince of Wales, who has of late given a great deal of time and thought to the subject of leprosy, and who presided at the recent leprosy fund dinner, said that the wide prevalence of the disease in the Indian empire is an undoubted fact, but that the true extent of it is not really known. The census of 1881 he said gave 131,618 as the number of lepers in all India, 53,886 being credited to the Bengal presidency alone. It is thought that there are now 200,000. lepers in India, while in China, Japan, Africa, and Egypt, which is supposed to have been the starting place of the disease, there are many victims. In Norway and Sweden there are many cases, though the methods adopted by the government for treating persons afflicted with the disease have resulted in checking its progress. It is said that the development of leprosy throughout a great portion of Europe early in our present era may be traced along the routes of the Roman armies, and its general diffusion throughout Christendom in the eleventh, twelfth, and thirteenth centuries was materially influenced by the return of the Crusaders. Leprosy was first introduced into Central and South America by Portuguese traders, in Mexico probably by the Spanish, and into Canada by the French imigres. As regards the United States, it is said to have been carried to Louisiana by the Acadians, and it still exists there. In the winter of 1888 there were 42 cases re ported in New Orleans, and there are two leper settlements in the State, one at La Fourche and the other at St. Martinsville. The disease was planted in Iowa, Illinois, Wisconsin, and Minnesota by the Scandinavian colonists, and this section was visited in 1888 by the distinguished Norwegian physician, G. Armaner Hansen, who for many years was associated with Dr Danielson in the government hospitals for lepers in Bergen, Norway. He gave considerable attention to the disease as it came under his observation. In Minnesota, Wisconsin, and Dakota, Dr. Hansen found that 160 lepers had come there from Norway, of whom thir teen were living, and of all their descendants not one had the taint of leprosy. Along the Pacific in California and Oregon the disease was planted by the Chinese, and on the Southern Atlantic coast it was brought from the West Indies. In Salt Lake City the plague was imported by a colony of Kanaka women brought by the Mormons from the Sandwich Islands. There is a lazaretto for lepers at the village of Tracadie, province of New Brunswick, in which general locality the disease has existed many years. Recently the Canadian government has decided to retain the
services of Dr. A. C. Smith, an expert in leprosy, who, since the discovery last year of three cases on Cape Breton Island, has been making a thorough investigation into the ramifications of the disease.
The lepers forming the settlement at Molokai, in the Sandwich Islands, number upward of eleven hundred, and here it is said all phases of the disease can best be observed. The locality has recently become famous as the scene of Father Damien's self-sacrificing labors and heroic death. Public attention has again been directed to this singular community by the arrival in this country on January 30 of Miss Amy C. Fowler, the daughter of a clergyman of the Church of England, who has embraced the Catholic faith, and is now known as Sister Rose Gertrude. She is en route for Molokai, where she will devote her life to the lepers, taking up and carrying on the work of Father Damien.

It will be seen from the facts here presented that while the disease of leprosy is scattered over a wide extent of territory, it numbers many victims. It is known to be increasing in Cape Colony, and it is said to be spreading in South Africa and the West Indies ; but notwithstanding the fact that the disease is of very ancient origin, and has come under the eye of physicians for ages, comparatively little is actually known about it or the best methods of treatment. On this point Dr. Prince Morrow said, in an address before the New York Academy of Medicine, in June last, that "it is the reproach of medical science that a disease which has been characterized as the most ancien and the most exclusively human of all diseases should, after centuries of observation, be so imperfectly un derstood." This points unmistakably to the fact that a wide field is open to the scientists as well as the philanthropists of the world for the investigation and reief or cure of leprosy.
The National Leprosy Fund, of which upward of $£ 7,000$ has been subscribed, will be used in part for the endowment of two scholarships, the holder of one of which will make it his business to study the disease in the United Kingdom and Europe, while the holder of the other is to go abroad and study leprosy in India, China, and the British colonies. As a proof that there is a good prospect of achieving substantial results from efforts in the direction indicated, it is only necessary to quote the opinion recently expressed by so eminent an authority as Mr. Jonathan Hutchinson, presiden of the Royal College of Surgeons, London, who said that only earnest and steadfast devotion and attention to the disease is needed in order to discover the causes of leprosy and the means of putting an end to it. The discovery of the remedy might not immediately follow that of the cause, but it would follow with sure and certain steps, and he believed that it would not be very far distant. He said that he would be far from doing anything which would reflect on the diligence and zeal of his profession, but he would say that its members were all the better for a good vigorous push from behind occasionally, and if the public should take this question up and feel an interest in it, an increased interest would be taken in it by the medical profession.

As a further outcome of the awakened interest in re gard to the disease of leprosy, a meeting occurred in Brooklyn, N. Y., February 13, when papers were read on the subject, and a meeting took place of the recent ly formed American Leprosy Society. Miss Amy Fowler was present, and it was announced that she would sail from San Francisco for the leper settlement a Molokai on February 28.

POSITION OF THE PLANETS FOR MARCH

 ATURNis evening star, and holds the first place among th planetary brotherhood during the month, on accoun of his brilliancy and the ease with which he may be observed. The chief feature of interest is his change of position in regard to Regulus. He approaches the bright star until the 28th, when planet and star are in conjunction, or in the same right ascension. Saturn then passes west of Regulus and recedes from it, his position at conjunction being about a degree and half north of the star
Saturn sets on the 1st at 6 h .13 m. A. M. On th 31st, he sets at 4 h .9 m . A. M. His diameter on the 1 s is $18^{\prime \prime} .8$, and he is in the constellation Leo

MARS

is morning star, and like Saturn moves in the vicinity of a large star, although the conditions are different Mars is in conjunction with Beta Scorpii on the 4th at 11 h. P. M., being at that time only 8^{\prime} north of the star Planet and star are below the horizon when the con junction occurs, but Mars rises on the morning of the 5th soon after midnight, and will then be east of Beta Scorpii and near it. The ruddy color of the plan
the yellow tint of the star are finely contrasted.

Mars rises on the 1 st at 0 h .19 m . A. M. On the 31st he rises at $11 \mathrm{~h} .12 \mathrm{~m} . \mathrm{P}$. M. His diameter on the 1st i $9^{\prime \prime} .4$, and he is in the constellation Scorpio.

JUPITER
s morning star. Observers who command a view o
the southeastern sky will find the regal planet beautiful to behold in his role of morning star. He rises about an hour and a half before the sun on the first of the month, and about two hours and a half before the sun at its close
Jupiter rises on the 1 st at $4 \mathrm{~h} .46 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he rises at 3 h .5 m. A. M. His diameter on the 1 st is $32^{\prime \prime} .0$, and he is in the constellation Capricornus. venus
is evening star, and is still too close to the sun to be easily seen. The season of her visibility is approach ing, and sharpsighted observers may obtain a glimpse of her at the close of the month, when she sets nearly an hour after the sun. She must be looked for 3° north of the sunset point.
Venus sets on the 1st at $5 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P}$. M. On the 31st she sets at $7 \mathrm{~h} .6 \mathrm{~m} . \mathrm{P}$. M. Her diameter on the 1 st is $10^{\prime \prime} .0$, and she is in the constellation Aquarius.

MERCURY

is morning star. He is traveling from western elongation to superior conjunction and is too near the sun to be visible
Mercury rises on the 1 st at 5 h .31 m . A. M. On the 31st, he rises at 5 h .34 m. A. M. His diameter on the 1 st is $6 " .4$, and he is in the constellation Capricornus.
uranus
is morning star and is in good position for observation with the unaided eye. He may be found about 5° northeast of Spica.
Uranus rises on the 1st at $9 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st, he rises at 7 h .25 m. P. M. His diameter on the 1 st is $3 " .8$, and he is in the constellation Virgo.

NEPTUNE

is evening star. He sets on the 1 st at $0 \mathrm{~h} .30 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st, he sets at 10 h .35 m. P. M. His diameter on the 1st is $2^{\prime \prime} .6$, and he is in the constellation Taurus. Mercury, Jupiter, Mars, and Uranus are morning stars at the close of the month; Venus, Saturn, and Neptune are evening stars.

Glass Colors.

In the Diamant, of Leipzig, an account is given of \mathbf{R} Zsigmondy's experiments in coloring glass with metallic sulphides, such as molybdenite, and sulphurets of antimony, copper, bismuth, and nickel. Tests made with batches of $10-20 \mathrm{~kg} .$, and with a heat not too great gave good results, as follows :
Sand 65 dekagrammes, potash 15 , soda 5 , lime 9 molybdenite 3 , sulphide of sodium 2 , gave a dark red dish-brown ruby glass. In thinver layers this glass ap peared light brownish-yellow. Flashed with opal, it became a smutty black-brown.
Sand 50 dg ., potash 15 , soda 5 , lime 9 , molybdenite 1 , sulphuret of sodium 2, gave a yellow glass.
Sand 10 parts, potash $3 \cdot 3$, soda $0 \cdot 27$, lime $1 \cdot 64$, molyb denite 0.03 , gave a reddish-yellow glass with a fine tinge f red.
Sand 100 parts, potash 26 , soda $1 \cdot 8$, lime 12 , sulphuret of copper $1 \cdot 7$, sulphide of sodium $2 \cdot 3$, gave a dark-brown color, varying from sepia to sienna. In thick layers it was no longer transparent, but stillclearand unclouded When heated, this glass became smutty black-brown and clouded.
A fine copper-red ruby was obtained from a batch of 10 lb . sand, potash 3 lb. , lime $1 \cdot 2 \mathrm{lb}$., soda 0.25 lb , sulphuret of copper 7.5 kg ., sulphide of sodium 10.5 kg ., borax 9.5 kg .
The attempts to color with sulphurets of antimony and bismuth failed. The sulphurets were volatilized, and the resulting glass was almost colorless. But the addition of 5 per cent of sulphuret of nickel to an ordi nary batch gave a glass of fine amethyst violet color.

The Grippe and the Doctors.
Give us a rest, says the Medical Record. Now that the epidemic of influenza is over, we trust that the poor tired doctors will have a rest. It is really too bad to learn that "our doctor made one hundred and forty visits yesterday," also, "our doctor is very busy, and has not slept for fourteen nights." Too busy by far. How do our patients find out all this? But seriously if the grip had lasted much longer, it might have killed off all our best men. We hope this good man who owes himself fourteen nights' sleep will soon catch up, that the poor man who "has not had his clothes off for a week" has had a bath, and that the one hundred and forty daily patients of the other unfortunate over worked man are still alive to appreciate his herculean labors. Take care, doctor! Either a pillar of salt or an obituary is in waiting.

A Centenarian Banker.

In Lansingburg, N. Y., resides Mrs. Deborah Power in her hundredth year, as smart as a cricket. Since the death of her husband she has been the managing head of the Powers Bank, one of the oldest private banking institutions in this section. She also attends to house hold affairs. An afghan, just completed by her busy fingers, is on exhibition at a church fair. Mrs. Powers shows but fev marks of her great age.

AN IMPROVED MAGAZINE HAND CAMERA The accompanying illustrations represent a new hand camera designed to hold a large number of sensitive plates (without metal holding frames or plate holders), and is constructed so that they may be easily, certainly, and quickly changed. The camera is in the form of a box having upper and lower compartments, as in Figs. 1 and 3. The lens and exposing chamber are in lower compartment, while the upper one holds the stock of plates (as many as three and a half dozen, if desired). The division between the two compartments is composed of two sliding boards, one above the other which move in opposite directions and are propelled by pinions on shafts extending across the camera, as shown in Figs. 2 and 3, with their milled heads on the outside, a in Fig. 2. The division boards enter into grooves at each end of the camera, and thu effectually prevent the light in the exposing chamber from striking the stock of plates above. These plates are kept pushed for ward in position by two spring pins, as shown in the right of Fig. 3. The heads of the pins are hook-shaped, and when drawn outward with the fingers and turned to one side, are held by a cam projection in that position, leaving a space behind the plate in which another plate may be inserted. A single spring pin is shown in the lower com partment, Fig. 3.
Pivoted under the center of the lower divi sion board is a leaf-shaped board, the shaft of which projects through the opposite side of the camera box, as observed in Fig. 2 The board is seen in Fig. 1 partly down. Supposing it is desired to bring a plate into position to be exposed, the leaf board is put into the position shown in Fig. 1, then the upper division board holding all the plates is moved backward by rotating the milled head of the shaft outside, which allows the first plate to fall upon the edge of the leaf board as in Fig. 1, guiding it in its fall so that the lower edge will strike the front corner of the bottom of the lower compartment, and lie at angle opposite to that shown. As soon as it has dropped, the sliding division board is pushed back to its original position and the camera is turned with the lens side upward. The back of the plate now rests upon the leaf board, and as the latter is rotated backward or downward, the plate follows it until it lies flat against the back of the exposing chamber; the leaf board is shown up in position after the movement in Fig. 3. The bottom edge of the plate enters a transverse groove in the botiom of the chamber, while the top is clamped by the leaf board, being held out of its recess in the lower division slide by a small flat spring. Before the plate dropped to this position, the single spring pin was withdrawn. Afterward it was released, which pushed
into the focal vertical plane. The camera is now placed in its norma position and the exposure made After exposure the camera is re versed from the position shown in Fig. 1, and like that in Fig. 4, the spring pin back of the single plate is withdrawn, then the bottom divi sion board is pushed forward by its shaft from the outside, which allows the exposed plate to drop into the magazine compartment, as shown and by withdrawing the spring pin respectively, to gradually slide in behind unexposed plates. The low er division slide is pushed back and the spring pins released, which keep the mass of plates compact and in position. Thus each plate may be passed around from one compartment to the other until all are exposed. Suitable means are provided for keeping tally of the number of plates exposed and also for protecting the lens while setting the shutter. The camera has the usual finder in the top, as shown The lens may be provided with a rack and pinion movement for vary ing the focus, but as at present de signed a fixed focus is preferred There is a hinged top lid for open ing the camera in the dark room for removing the exposed and in serting the fresh plates. All the movements are simple, and there is little opportunity for it to get out of order. For further information concerning it, th inventor and patentee, Mr. William A. Brice, care R. C. Poulter, No. 40 Middle Temple Lane, London, Eng land, may be addressed.

The law compels no one to do impossibilities.

Good Material for Good Mechanics.

The Architect and Builder felicitates itself upon the act that the sons of professional men dominate in the Philadelphia Public Manual Training School. While the children of artisans are so largely striving to get into the ranks of the struggling and poorly paid pro-
their hand at it, and more are coming by every steamer Machinery for separating the fiber from the pulp has been put in operation and run by steam, facilitating its preparation greatly. In the beginning it was beaten by hand, making it a slow and expensive way of pre paring it. In a year or two things will be boowing al through this land of the cocoanut and pineapple, and the natives will leave the wrecking busines to cultivate the sisal plant, which will pay them better.
The photograph shows the plant as it looks when ready to cut the outside leaves for use, also the plant gone to seed.
I am told by Captain Lightburn, on whose plantation these pictures were made, that the seedlings on this tree, or stalk, are worth £10, or $\$ 48$ American currency. Every on is talking of the bright prospects for the near future in store for the people of these islands, as soon as a sufficient area has been brought under cultivation. This is bein done as fast as circumstances will admit
The plant is a native here, and has grown wild for ages probably, its worth being un known until recently. They used to try and kill it as a worthless weed. After it once gets a fair start it requires no more atten tion, and will yield its product for from te to fifteen years, then new plants have to b planted, as the old ones die out. The plant er that has a few hundred acres under culti vation can gather the leaves, turn them into cash, collect his royalty from the govern ment, and be as happy as a liberal income, a superb climate, and other favorable sur roundings can make him.
To give an idea of the magnitude thi industry is assuming, I will state that a gen tleman, an Englishman, arrived here a few weeks since and has bought 80,000 acres of land, on three islands of this group, and
aking to mechanical pursuits. Professor William L Sayre, the principal of the school at Seventeenth and Wood Streets, states. "It is a curious fact that of the boys now in the training school and learning the use of chisels and hammers and lathes, fully three-fourths are sons of professional and business men. We have many sons of doctors and ministers and lawyers." Of the seventy-seven occupations recorded of parents of boys now in the middle class, fifty-four are those of pro fessional or business men and twenty-three those of men engaged in other pursuits, of whom only fourteen are artisans.

THE SISAL PLANT at NASSAU, N. P.
To the Editor of the Scientific American
I send you a photograph of the sisal plant, which is now creating a sensation in this region, from the rea son of its being in great demand for the manufacture of cordage and rope of a fine quality. It is said to b

THE SISAL PLANT
superior to that grown in Yucatan, and equal to the best manila. The English government pays a royalty on every pound raised in this colony to encourage its pro duction on an extensive scale, and almost every one is either embarking in the enterprise or is already in it Many strangers from the United States are trying
ropose putting it all into the cultivation of thi plant. He pays $\$ 4$ an acre, $£ 6,000$ down and the bal ance to remain at interest. He wanted to pay for it all at once, but the authorities here would not receive it all, preferring to have it at interest.
Nassau, N. P.
J. F. Coonley.

simple storage Battery

Get two half-round porous cups and a round glas jar large enough for the two porous cups to stand in upright. Get two plates of sheet lead one-sixteenth o an inch thick, wide enough to fit the half-round side of the porous cups and deep enough to cowe an inch or so above the top edge of the cups and jar. Solder a stout copper wire or a screw post to each lead plate a the top. Place the lead plates in the cups and fill the ups nearly full with a paste made of red lead mixed with a solution of sulphate of soda thin enough to run ike a cement. The glass jar containing the two cup should be filled to within half a inch of top of cups with sulphuric acid and water, about one part o acid to eight parts of water. On plate should be marked X, so that in charging, the currents will be correctly connected. This may be charged by attaching to a series o a dozen sulphate of copper cells for twenty-four hours, or from a dyna mo. It should always be charged in same direction, and it will improv by repeated chargings. A wooden cover may be fitted to the glass jar and evaporation of the fluid should be replenished by adding water Two or more cells of this batter will work small motors, lamps, and induction coils, and if thoroughly charged will retain a large volume of electricity for considerable time After once being well charged, fou to six cells of sulphate of coppe battery will recharge it.-Journa of the T'elegraph.

Japanese Lacquer.

Mr. R. Hitchcock says that the use of Japanese lacquer deserves more general attention. "It give a surface to wood much harder than the best copal varnish, withou brittleness. It takes a polish not to be excelled, which lasts for centu ries, as we may see in the old treas ures of Japan. It is proof against boiling water, alcohol, and, indeed, it seems to be insoluble in every agent known. It i it seems to be insoluble in every agent known. It is
the best possible application for laboratory tables. I have a set of photographers' developing trays tha have been in use for more than a year, and I find them excellent and cheap. In Japan it is used for many household articles."

AN IMPROVED ROPE CLAMP AND THIMBLE. The accompanying illustration represents a strong and inexpensive device, which may be quickly connected to the end of a rope, either of hempen or wire strands, and will afferd a thimble or lining ring for the

YOUNG'S THIMBLE AND ROPE CLAMP.
looped end of the rope, with convenient and reliable means for the attachment of the rope thereto. This invention has been patented by Mr. John J. Young, of No. 1162 Erie Avenue, Williamsport, Pa. The main portion of the device is cast in the form of an elongated shell having a rounded channel from the rear to the point where the ovate thimble commences, the latter being an integral extension of the main section. This thimble portion may be made continuous as a solid ring integral with the main section, but is preferably terminated to leave a slit at the apex of the ovate thimble, a clamp section being adapted for adjustment over the

EMERY'S REVOLVING HORSE HOE.
apex of the thimble section. A ring may thus be readily inserted in the ovate portion if desired. Upon the outer surface of the main section, near where the thimble commences, is an inclined projecting boss, that receives a threaded set-screw bolt, the conical point of which is embedded in the rope when the clamp and thimble are made fast thereto. A wedge-shaped loose spreading block is inserted between the lapped portions of the rope, the block having protuberances corresponding with grooves in the clamping sections, whereby, when the sections are clamped together, the rope body is forced into the grooves and securely locked fast to the thimble clamp.

AN IMPROVED TOOL CUTTER.

The accompanying illustration represents a machine intended especially for cutting or dressing the toothed chisels used by marble and stone cutters, etc. It provides, in connection with a punch, a die made in sections and adjustable to suit different sized punches. The invention has been patented by Mr. Floyd G. Smith, of Buckhannon, West Va. Each die section has on its meeting side what may be termed a fulcrum point, and it has a bolt slot preferably curved on an are approximately centering at this fulcrum point. The cutting edges of the sections are arranged to the rear of the fulcrum, and incline outward therefrom, the angle of divergence of the edges of the sections being varied by adjusting the sections on the fulcrum as may be desired. Different punches are used to form the different angles of teeth, the angle of the punch being fixed or invariable; but when the die is adjusted by rocking its edges upon the fulcrum, it is secured in position by screws, and is thus capable of adjustment to fit any sized punch, anil mapted for use in making any sized tooth, from the musi delicate carv-
ing tool to the largest sized cutting tool. The punch is preferably grooved and curved at its cutting end, and works after the plan of a pair of shears, the edges of the punch acting against the edges of the die and operating to cut a clean, smooth tooth, that needs little or no after dressing or filing.

The Farmer a Skilled Laborer
Viewed from the lofty standpoint of the New York Hodcarriers' Union, considered from the hall of the Philadelphia Billposters' Protective Association, the prairie farmer is simply a clodhopper. He is a man who decides to have corn, wheat, and potatoes, instead of wild grass, grow on a certain piece of land, and plants the seed that will produce them. In point of fact, more knowledge and skill are requisite for prosecuting his craft than that of any city artisan. requires more skill to handle a plow than a trowel. It is more difficult to manage a reaping machine than a machine that turns out brick. Greater knowledge is needed to sow grain than to move switches in a freight yard. Much more information, experience, and skill yard. Much more information, experience, and skill are needed to raise tobacco plants, to cultivate them,
and properly to cure the leaves, than to make them into cigars. Laying drain tile is a more difficult art than laying brick. Properly to remove a fleece from a sheep demands as great dexterity as to shave the beard from a face. The successful farmer is necessarily a skilled laborer. He is master, not of one trade, but of many, and a long time is required to learn each of them. He is also a merchant, and to be prosperous he must be a judge of the quality of many things, and know how to buy and sell them to the best advantage. $-R$. Welch, in the Forum.

AN IMPROVED REVOLVING HORSE HOE.

The accompanying illustration represents an imple ment especially adapted for cutting weeds, stubble, etc., and for pulverizing the soil. It has been patented by Mr. Ard G. Emery, of Marydel, Saline County, Kansas. The main axle or drive shaft is journaled at about the center of the main frame, and to the inner face of the road wheel is secured a casing in which are two spring-actuated dogs adapted to engage a ratchet wheel on the main axle when the implement is drawn for ward. Centrally upon the axle is secured a box, and upon this box is mounted the hub of a master wheel, provided with internal teeth. Forward of the main axle are two transverse shafts, each having a rigidly attached pinion adapted to mesh with the internal gear of the master wheel. Upon each of the transverse shafts, near their outer ends, is secured a downwardly curved rod or bar, the hoe shaft being journaled in the lower ends of these rods, the hoe shaft having, near each end, a small sprocket wheel connected by chain belts with larger sprocket wheels on the trans verse shafts in advance of the main axle. The hoe shaft is normally held at a distance above the ground which is regulated by a standard attached to each end of the shaft, and project ng upward through an eye on an end bar o rod of the frame. The hoes consist of polygona metal plates, there being upon four or more opposed edges of each plate an angled digging blade, and above each digging blade a cutting blade, the latter severing any weeds and the digging blades turning up the soil as though a regular hoe were employed. The hoe-carrying shaft can be readily raised and lowered at will by means of a lever within easy reach from the driver's seat.

To Abort a Boil.

A writer in the Wien. Med. Wochenschr. states that a boil may be aborted by simply scraping the skin over the threatened seat of invasion with a scalpel un til a drop or two of blood exudes on pressure.-Colleg und Clinical Record, October, 1889.

SMITH'S TOOL CUTTER.

A REMOVABLE SIDING FOR BEDSTEADS.

The accompanying illustration represents a means of providing ordinary beds with padded sides that are removable when not required for use, the bed being readily accessible when the sides are in position. The in-

BLANKEN'S REMOVABLE SIDING FOR BEDSTEADS.
vention has been patented by Mr. Claus H. Blanken, f No. 71 Washington Street, Charleston, S. C. Fig. 2 represents the application of the device, Fig. 1 being a sectional view. The main portion of the side frame, which is a rectangular slatted structure formed of wooden strips, is hinged to a pendent clamping frame intended to bear against the bed rail, its lower longiudinal bar being padded to prevent injury to the rail. Upwardly projecting arms with spring hinges are at tached to the clamping bar, and upon the inner edge of the lower rail of the slatted frame are depending finger pieces, having a bearing upon the inner surface of the side rail of the bed. The slatted frame is up holstered and padded, to afford a neat finish and cushioned surface. Near the head of the bed a shor section of the removable siding is hinged to the main portion, the swinging open of the short section afford ing an opening for the ingress and egress of the occu pants of the bed. By means of its spring-actuated clamping frames, the device can be quickly adjusted in place, and readily removed by a lifting movement while a secure adjustment is afforded

AN IMPROVED CULTIVATOR.
A cultivator especially adapted to the cultivation of oung cotton plants, and also designed for use with

HENRY'S CULTIVATOR

other crops, such as cane, beans, peas, and potatoes, is illustrated herewith, and has been patented by Mr Leroy Bell Henry, of Austin, Texas. There is bolted to the beam a vertical blade, with a sharpened forward and bottom edge, and to this blade is rigidly connected a laterally extending wing having a forward cutting edge, as shown in Fig. 1, the wing being secured to the blade so that the latter extends some distance below the wing. Fig. 2 illustrates modifications in the form of the wing and blade, which may ve made of differ ent sizes for one or two draught animals, and may be either right or left handed. As the implement is drawn forward, as shown in Fig. 3, the blade is guided closely to the plants being cultivated, the cutting edges of the blade and wing removing the weeds and loosening the earth without disturbing the roots of the plants. The inventor claims that the use of this implement in the cultivation of cotton plants will obviate the necessity of two-thirds of the amount of hoeing ordinarily neces sary, the only work left to be done by the hoe being the thinning of the plants.

Th: Care of the Teeth in Childhood.
The importance of attention to the teeth of children, not only for their immediate comfort, but in view of their future benefit-an importance we have repeatedly urged-was again emphasized in a valuable paper read by Mr. Francisco Fox at a meeting of the Medical Officers of Schools Association. He said that doubtless many of the dental troubles of adult life are due to a careless disregard of the teeth when first erupted and during the earlier years of life, and that much might be done to combat deleterious influences, especially at that important epoch, the time of second dentition. Caries of the deciduous teeth, the deposition of tartar, which has a particularly destructive power, forming a nidus for the growth of bacilli and leptothrix, and rapidly disintegrating the enamel, and alveolar abscess of the temporary teeth, should each be carefully treated. A point which Mr. Fox especially insisted upon was the too frequent neglect of irregularities of the permanent teeth, which are not only disfiguring, but from the increased and continuous pressure upon
contiguous teeth, and the difficulty of keeping their contiguous teeth, and the difficulty of keeping their
snrfaces clean, constitute a most frequent cause of decay and early loss of teeth.

AN IMPROVED GAME APPARATUS.

An amusing and instructive game apparatus, illustrating the principles of gravity and oscillation, and affording opportunity for the exercise of skill and judgment, is shown herewith, and has been patented by Mr. Frederick Pries, of Florence, Neb. A curved car, preferably formed of sheet metal, is suspended from the top plate of the frame by stiff wires, with hooks at their lower ends to engage screws attached to each side of the car near its ends, so that the car may swing freely like a pendulum. The car is open at the top, and there is a hole centrally in its bottom in vertical line with a tube fixed in the top piece, this tube having a flange on its lower end to prevent the ball used in the game bounding out of the car. The car has a false bottom, consisting of a strip of sheet metal bent to the proper shape and suspended therein to leave a space between it and the true bottom somewhat less than the diameter of the balls used. This strip of metal has one of its ends formed into a hook to engage one end of the car, while the other end of the strip is extended to be used as a handle, the strip being thus suspended in the car by its ends. At frequent intervals on the upper surface of the strip are vertical partitions forming cells, in the bottom of each of which is a hole large enough to permit the entry of the ball, but the central cell is cut all around. Beneath the car and attached to the base plate is a narrow receptacle connecting with a central groove in the base plate inclining toward the front. In order that the car may not swing too far, the frame is made with side cross pieces or stops, against which the wires will strike. The game consists in an effort to drop the ball through the tube, and through the central holes in the false and the true bottoms, so that it will come out at the front

PRIES' GAME APPARATUS.
through the central groove, while the car is swinging. A number indicating the highest count is placed opposite this cell, the cells removed therefrom being num bered to indicate counts proportionately less, the end cells being represented by a minus or losing count. A modification of this device provides for the swinging of the tube as a pendulum while the car remains stationary.

Why the Japanese Stoop
Dr. Kidera Yasuatsu has been inquiring into the cuase of the habitual stoop of the Japanese, and conbent posture being considered one of deference.

AN IMPROVED TAPE MEASURE.

The accompanying illustration represents a tape measure on which slides an indicator adapted to retain itself at any point on the measure by frictional contact, produced by a spring-actuated plate pivoted in the main body or frame of the indicator. It has been patented by Mr. Thomas W. Grierson, of St. Paul, Minn. Fig. 1 shows the application of the device to an ordinary tape measure and its box, of which Fig. 2 shows an end view. Fig. 3 represents the device applied directly to the tape. The indicator is attached to the box by a pivot passing through the edge flanges of the box, and its point is pressed into contact with the tape by a small spiral spring on the pivot, so that the tape will be held at any point to which it may be drawn out,
 until the point of the indicator is released from the tape by pressing down upon the opposite end of the indicator
plate. In applying the device di rectly to the tape the indicator pro per is pivoted in a supporting frame through which the tape is passed, the tension of the spring being suffi cient to retain the indicator at any point at which it may be placed on the tape, the indicator being passed along on the tape to the point desired.

The American Bison.

Mr. Plumb, of Kansas, in the Senate, and Mr. Peters, of the same State, in the House, have introduced mea sures setting apart a tract in No Man's Land for the propagation of buffaloes. Mr. Plumb goes to the extent of proposing to reserve for that purpose during twenty years all the land in the so-called neutral strip on the border of Texas, by leasing it to Mr. C. J. Jones, of Kansas, who has already a herd of bisons and cross breeds, and would put it on the reservation.
Last spring Mr. Satterthwaite, making up an estimate from his personal observation and from information which was furnished to him, concluded that there were fewer than three hundred buffaloes within the Yellowstone Park, and not more than three hundred in the whole United States outside of that tract.
Correct or not, this is detailed counting, and, at all events, no one questions that only a remnant of the millions of this fine race of animals is left. Hide hunt ers and sportsmen have been fatal to it, when the subsistence which it furnished for uncounted generations of the Indians of the continent left its enormous num bers not materially impaired. The extent to which the aborigines were dependent on the buffalo and a few other animals for their supply of food was shown by Gen. Sherman's proposal, in the days when the idea was current of an impending conflict between the red men and the white, to bring the former to terms by making war on a grand scale upon the buffalo and exterminating it. It was too soon evident that this organized attack would have been superfluous. The wanton slaughter of buffalo, elk, and antelope through out the West speedily reduced many Indian bands almost to starvation, and they became mendicants, supported on the government reservations.
Col. Dodge once declared that in the years 1872, 1873 and 1874 alone "more than five millions of buffaloes were slaughtered for their hides." This statement may be difficult to believe; but it is certain that during ten years after the close of the civil war a prodigious slaughter of these animals occurred. Hunters for skins to sell were helped in their work of destruction by British tourists and others who merely sought to kill as many as possible without even taking away the hides. Yet more than half a century ago Congress prohibited by law the reckless slaughter of game in the Territories; and the extermination of the buffalo has been carried on in violation of that statute. The ani mal was destined, of course, to gradually retreat and disappear before the march of settlement, but indis criminate and wanton destruction settled its fate gene rations too soon.

The Invention of Artificial silk

The recent development of the production of artificial silk by M. De Chardonnet, in France, has excited much interest. We have received several communica tions from Mr. David Baldwin, of Midland Park, N. J. who, as far back as 1871, had worked in the same direc tion. He claims to have succeeded in producing a cel lulose fiber which he combined with tannic acid and other substances in his attempts to increase its tensile strength. Four or five years ago Mr. Baldwin made known his project to a silk manufacturer, Mr. Thoma Holt, but who, not being a chemist, did not care to ex periment in that direction. The matter therefore la in abeyance. Now France comes forward as th
fatherland of an invention apparently conceived of in America. The story is an old one. An inventor must perfect his invention and patent it to obtain the recog nition of the world. As a matter of history, we fee that the above is an interesting statement of facts. The French invention is described in our Supplement No. 70%.

The practice of thrashing the patient ox to increase his speed, or whacking him across the nose when he is desired to stop, is certainly not the characteristic of a good teamster, any more than the habit of yanking, twitching, and whipping the horse is the indication of a good driver. If a man addicted to this method of driving will harness himself to a rig, and with his eyes blinded, a harsh bit in his mouth, and a person with the reins and a rawhide behind him, who, when he wishes him to start, gives him a cut with the rawhide, when he would have the speed increased gives him several additional cuts, and when he wants him to stop yanks the reins with force enough to nearly break his jaw, he will appreciate this style of driving, and know ing how it is himself will doubtless correct his method. There is nothing more unreasonable or wasteful than this style of managing horses. Good sense requires that a horse be started, urged forward, and stopped by the voice, and that resort should never be had to the whip unless absolutely necessary. A horse then knows what is required of him, and the annoying and dangerous habit of suddenly starting and jumping is avoided. A great majority of the spavins, sprains and ringbones, not to speak of the heaves and numerous other horse ailments, are caused by this rough and thoughtless driving.-The Clay Manufacturers' Engineer.

Horseshoes and Roadways.

The horseshoe of the present should be improved. There needs to be something which will save the hoof from an undue wear and breakage, while at the same time permitting of elasticity of movement when the weight of
from it.
rom it.
The World suggests that an improved roadway is needed in this climate; something that will wear as needed in this climate; something that will wear as
well as stone, be as easy to pull on as asphalt and give the horses' feet a good grip, so that they will not slip even in rainy weather.

AN IMPROVED LAMP

A lamp having a central-screw wick-lift, giving complete control of the flame, and whereby the wick is raised evenly, without fraying and twisting, as so commonly occurs in the ordinary lamp, is shown herewith and has been 'patented by Mr. Charles H. Grube, o Robinson, Ill. The bowl of the lamp has an open cen tral aperture, the stem below the bowl being open at its sides to give access to a centrally journaled turn screw extending up within the aperture, the threaded portion of the screw passing through a nut or body rom which radiate arched or recurved stems. The nds of these stems move vertically in narrow slots of he interior tube lining of the aperture, the points en gaging the wicks, whereby the wick is raised or lowered

GRUBE'S LAMP.
with the utmost precision by the turning of the screw. Exterior to the wick is a surrounding tube, extending from near the bottom of the reservoir upward to the flame base, where an internal collaris set snugly fitting the interior aperture tube, the collar being perforated around its upper portion, and having an annular flange projecting outwardly over the wick aperture. There is also an external perforated collar, a little slide in which covers an aperture into which a lighted match can be introduced for lighting the lamp without re moving the chimney. This wick lift is so distant from the flame that it is always cool, and the construction prevents any overflow of oil down the center of the lamp.

Oorrespondence.

Marking Zinc Plant Labels

To the Editor of the Scientific American :
A very simple and entirely satisfactory method that I have practiced for thirty years past is to write on them with a black lead pencil. A few hours after the writing is made it becomes fixed and cannot be re moved except by the use of an acid or by scouring The zinc should be slightly oxidized before the lettering is done. For marking trees, the labels should be tapered at one end, so that they may be easily wound around a branch.
For marking rose bushes, herbaceous plants, and ther things to which a label cannot be attached, I use a light iron rod with a loop at one end, to which the label is fastened by copper wire.
In one form or the other these labels may be used for everything that requires marking in the garden or the orchard. I send you samples of each that have been in use out of doors from six to ten years, to verify my statement of their indestructibility.
J. R. S. Rahway, N. J., February, 1890.
[The specimens were received, and are excellent. EDs.]

L Large Meteor.

To the Editor of the Scientific American:
In answer to L. B. Wilson in your issue of February 15, I can report a remarkably brilliant meteor seen here a Iittle before 9 o'clock, on the evening of Janu ary 24. A day or two after, it was reported in the Texas papers that a large meteoric stone weighing several thousand pounds had fallen at that date on Comanche Peak in Johnson or Hood County. When the meteor first appeared, it seemed to rise a little north of east, moving slowly and making light like a rocket, as described by Mr. Wilson. When nearly overhead it threw off two pieces, one larger than the other. For a minute period of time the meteor appeared to stop or waver in its course. The smallor piece was almost immediately extinguished; the larger one seemed to be thrown back in the meteor's path, and shot a considerable distance before it disappeared. The main body of the meteor proceeded toward the southwest, and was hidden from my view by trees. After the first explosion it threw off a number of sparks. The night was very misty and cloudy.
Brazoria, Texas, February 19, 1890.
R. M. Chinn.

Dur Warm Winters and the Gulf stream

To the Editor of the Scientific American:
The inclosed clipping from the Hawkeye, by C. C. Blake, Kansas, will explain itself. Please inform the readers of the Scientific American whether there is any truth in the statement that the Gulf Stream has changed its course within the last two years. If so, the change periodical, or can it be accounted for?
W. H. Hurlbut.

It is now pretty generally known that the Gulf Stream has been hugging the American coast from Florida to Newfoundland more closely than ever known before. Ordinarily a cold current from the coast of Labrador flows between the American coast and the Gulf Stream, extending as far south as Cape Hatteras, where it sinks under the Gulf Stream. But recently the near approach of the Gulf Stream to the American coast has cut off this cold current and stopped it at the Grand Banks of Newfoundland. It is difficult to conceive of any adequate cause for this great change in the mighty ocean current known as the Gulf Stream. I know of but one cause that could have produced it, and that was the great earthquake at Charleston in 1886. We know that a slight thing will cause the Missouri River to change its channel. At first no effect will appear, but gradually the current begins to change, and in a year or two the main channel has changed half a mile or more. It is not probable that the earthquake produced any serious up heaval in the bed of the ocean off Charleston, but it is quite possible that the tidal waves produced in the ocean by the earthquake may have started a change in the course of the Gulf Stream, and that it took about two years to effect the change. It is a well known fact that the winters in at least the eastern half of the United States have gradually become more mild ever since the time of the earthquake. If the rocks under the bed of the Gulf Stream were thrown up by the earthquake in such a way as to have caused the change in its current, then the change will be permanent, and a great change has occurred in the whol climate of a great part of the United States. But if only a little mud was thrown up, it will soon wear a way and allow the current to assume its former chan nel. But I think it more probable that no materia change was made in the bed of the ocean. It would
seem that the tidal waves produced by the earthquake were sufficient to seriously disturb the current of the Gulf Stream off Charleston. This deflection being started, it would take a long time to entirely change
the direction of such a large current. From all I can
earn in regard to it, I think the current was gradually bending to the west till it reached its maximum in the early part of 1889 , then, remaining apparently stathe early part of 1889 , then, remaining apparently sta-
tionary for some months, it began to recede last fall, and is now going away from our coast quite rapidly. Probably it will be back to its former channel within a few months. As soon as it swings east of the Grand Banks, the cold Labrador current will be able to resume its normal position, and if this is done during Febru ary, as I think proballe, the cold weather will extend to New York City before the end of February.
On the principle that similar causes produce similar results, this winter should have been a very cold one from the Rockies to the Atlantic. There is no instance within the past hundred years when astronomical causes similar to those which now obtain did not pro duce very cold winters in the United States. This winter would most unquestionably have been a very cold one but for the great change in the direction of the Gulf Stream. In making my weather calculations, I figure upon the basis that the mountains, valleys, and ocean currents will remain unchanged. But if an earthquake should change any of these, a corresponding change in the climate must ensue. For twelve years prior to the Charleston earthquake I calculated the weather for each month, and hardly ever made a serious mistake. Such errors as I have recently made have been due to the long train of effects produced by the earthquake. But it has been a blessing in disguise, as last summer would have produced the most disastrous drouth of the century had it not been for the influence of the near approach of the Gulf Stream. As it now seems to be returning to its normal position, have no doubt but that the predictions of weather for the remainder of 1890 will be very nearly correct.
While it is true that great convulsions of nature may occur at any time, yet it is not probable that another ike the Charleston earthquake will occur within a hundred years. It is not wise to expect such things, and all science can do is to go upon the hypothesis that nature will pursue the even tenor of her ways with only the ordinary fluctuations, which can be calculated in advance. The extraordinary change in the Gulf Stream is a fact. That fact must be accounted for can it be accounted for upon any other hypothesis than that the change was started by the Charleston earth quake? The winter has been cold in the northwest. and cold and very stormy off the coast of Newfound land, where the changed Gulf Stream met the cold Labrador current. This is attested by all the steamers arriving from Europe. The weather at all points has
acted as we should have expected if we had known that the Gulf Stream was going to make this change.
The present January thaw extends to the far West but it will not last long. It was predicted in my book for this year. This thaw is independent of the mild winter in the East, which was caused by the Gul tream.
C. C. Blake
[The statement of Mr. C. C. Blake is a fair theory for the past two winters, but does not account for the movement of the Gulf Stream in past warm winters when the temperature of the cold coast current has been observed to be abnormally high. Maury, in his "Physical Geography of the Sea," likens the Gulf Stream to a great pendulum swinging to and fro to the south and to the north; and marking upon the chart the southeastern point of Newfoundland as its most northern limit of vibration. When it touches this point, the northeastern cold curreit is shut out from circulating down our eastern coast and thus modifying our coast temperature.
There is no cause assigned for its vibration other than the irregularity of the general movement of the waters of the globe, as kept in circulation by the revolution of the earth and the unequal temperature of the oceans.]

Uncle Sam's Border Line.
For many years the question of boundary between the United States and the possessions of Great Britain was discussed, and at last, at the Convention of Lon don held in 1818, the forty-ninth parallel of north latitude was decided upon. A parallel of latitude, how ever, being an imaginary line, is a very poor guide to a traveler. So the next thing to do was to mark that line so that all who pass that way should know wher it was located. Accordingly the country in that va inity was surveyed, and monuments were set up a even mile intervals, the British placing one between every two of ours. These extend from the Lake of the Woods to the Rocky Mountains. M. Louise Ford, in the February Wide Awake, tells how the boundary line is defined.
Where the line enters forests the timber is cut down and the ground cleared a rod wide; where it crosses small lakes stone cairns have been built, sometime being eighteen feet under water and eight above; in other places earth mounds seven by fourteen feet hav been built.
The most of these monuments, which number three hundred and eighty-eight in all, are of iron. It was
found that the most solid wooden posts were not proof
rainst the ravages of the Indians, prairie fires, and the weather, so that nothing but iron would do.
These pillars are hollow iron castings fitted over solid cedar posts and well bolted through, and are sunk four feet in the ground.
They are eight feet high, eight inches square at base and four at top, and upon opposite sides facing north and south are the inscriptions cast in letters two inches high: "Convention of London" and "October 20, 1818."

The pillars weigh two hundred and eighty-five pounds each and were made at Detroit, Michigan. So you see Uncle Sam's border line is very distinctly marked all the way from the lakes to the summit of the Rocky Mountains.

Prediction of Weather

M. Luigi Palmieri, the learned director of the observatory of Vesuvius, has made himself a specialist in questions appertaining to the electricity of the earth. For some forty years he has studied this question, and has published various papers and more than a hundred notes or memoirs. Unfortunately for science, he has thought well to publish them, not only in Italian, but in local papers having naturally a restricted circulation. Dr. Albert Battander gives, in Cosmos of 25th January, a resume of the results obtained by M. Palmieri, which bid fair to prove of considerable importance, if not in the field of electrical engineering, in that of meteorology and the prediction of weather. M. Palmieri indicates, first, that the potential of objects which exceed the height of the surrounding earth differ from it in sign, in fair weather being negative, and positive only when rain, hail, or snow fall within a certain distance of the observations. Secondly, the electricity of objects exceeding in hefght the surface of the earth is not their own, so to speak, but is due to the induction of the atmosphere.
He indicates, for example, that if Vesuvius were negative while Naples below were positive, and this were due to different disposition of electricity on their sur faces, the two would tend to flow together and equalize, whereas this is found not to be the case. The electricity is, therefore, due to induction, and is so maintainei while the inductive influence is steady, changing as it changes. M. Palmieri has repeated his experiments some thousands of times since 1850 in varied manners to eliminate errors, and he satisfactorily proves that the electricity of the air is contrary in sign to that of the earth. The electricity of the earth is positive and that of the air negative. He gives two experiments showing the influence of the natural changes in the atmosphere. A platinum cup, filled with water and thoroughly insulated, is connected to the plate of condenser electrometer, the whole exposed to the sun's rays. The evaporation reveals the presence of negative electricity. Inversely, if the same cup is filled with snow, the dew which is formed produces signs of positive electricity, the conditions of success in the experi ment being the use of the condenser, on account of the feebleness of the potential, and the most careful insula tion of platinum cup. The question of the effect upon the electricity of the air, of plants, trees, or of the sun, has also been carefully studied, and if it is objected that these discussions are purely in the field of speculation M. Palmieri responds that in these electrical indication we should feel the most sure means of the prediction of weather. In fact, according to the director of the Vesuvian observatory, we must discard our old friend the barometer as the indicator of weather changes, which cannot achieve more than 80 per cent of success in prediction, and take the electrometer, which never is found in default. He argues for the extension of electrometer observations at numerous stations with instruments standardized to the same measure, adapted with methods of testing the varying layers of atmo sphere, and believes the time of absolute prediction of weather to be no longer an unrealizable, Utopian dream.-The Electrical Engineer.

Agricultural Prices.

United States Senator Teller in a recent debate con tended that agricultural depression is not confined to the United States. It prevails in all the countries of the world except France. A recent parliamentary in quiry has shown that the British farmers have within twelve years sunk more than half their capital. The rouble is neither free trade nor protection. Since the United States resumed specie payment in 1879, there has been a continuous drop in the prices of farm pro duce. The wheat crop of this year, with only a dif erence of $8,000,000$ bushels in quantity, was $\$ 180,000,00$ in value less than the wheat crop of 1880 . The corn crop of this year was $500,000,000$ bushels more than that of 1882, but it brought the farmers less. Evidently the American depression, great as it is, is far less than the Europen deression whatever the cause of the de pression may be.-Milling World.

A woman who knows it to be a fact says some men will get up out of bed at night in the coldest of winter weather to go to a fire, who cannot be induced to get up at 7 o'clock to start one in the kitchen stove.

RAILWAY PRACTICE IN AMERICA.
The art of railroad building has received a peculiar development in the United States. The necessity for low original cost of roads has necessitated many expedients, some of which from their ingenuity may be
grade is reduced to an average of 150 feet per mile. At one point the road passes on a trestle directly acros its own line at an elevation of many fuet above it. Whis can be seen in the

Fig. 1.-THE NEW PORTAGE VIADUCT, N. Y., LAKE ERIE \& WESTERN R.R.
curved viaduct is shown. America affords few more striking pieces of railway engineer-
ing than this four ing than this four miles of road.
Another view, Fig. 4, shows a somewhat similar roadway, where the South Park \& Pacific Railroad slowly climbs up the hills near Denver. Successive tiers of road are seen. one above the other, on the hillside. The view is taken from Rocky Point, near Denver.
In the next
illustration, Fig. illustration, Fig. 5 , an interesting
of two gigantic brackets, one carried out from each side of the space to be spanned, until they meet each other in the center. They are sustained by being anchored back, or by balancing, or by both. Generally the two brackets termed cantilevers stop before they meet, and the gap between them is bridged over by a truss. A moment's consideration of the strains shows that in a cantilever the strain is the reverse of that in a truss. The upper chord is in tension, and the lower one in compression. Hence, taking a full cantilever and truss bridge, we find on each side a portion where the upper chord is in tension, while in the center truss it is in compression. It is necessary, therefore, that there should be some measure of disconnection between the cantilevers and truss, and this is sometimes brought about by cutting the lower chord between cantilevers and truss.
The first railroad cantilever bridge ever built was constructed by C. Shaler Smith, C.E., on the Cincinnati Southern R.R., over the Kentucky River. The illustration, Fig. 5, shows the work in progress, and xhibits well the boldness of the conception. All sup ports from below, called falsework, are abolished, and the structure is pushed on in mid-air, member by member. The gorge crossed is 275 feet deep and 1,200 feet wide, and the river is subject to freshets rising sometimes 55 feet. It has been known to rise 40 feet in a ingle night. The bridge includes three spans of 375 eet each. At the time of its construction it was the highest railway bridge in the world, the trains passing over it 276 feet above the river bed. Each iron pier is
regarded as triumphs of engineering. In the mountainous regions of the West the natural and economic conditions were such as to evolve some very remarkable operations. Several of these are shown in the illustrations, for the use of which we are indebted te "The American Railway," Charles Scribner's Sons publishers.

The new iron viaduct on the New York, Lake Erie \& Western Railroad, at Portage, N. Y., shown in Fig. 1, is an excellent example of plain truss work. Formerly the valley was crossed by a wooden viaduct. This structure was 800 feet long, 234 feet high, and contained over a million and a half feet, board measure, of timber. It was finished in 1852, and in 1875 was destroyed by fire. The piers were 50 feet apart. The graceful structure shown in the cut has taken its place. It comprises ten spans of 50 feet, two of 100 feet, and one of 118 feet. It is composed of Pratt trusses. The iron columns taken in groups of four form towers 50 by 20 feet on the top. From masonry to rail the columns are 203 feet 8 inches high. There are over $1,300,000$ pounds of iron in the structure, or not far from one pound of iron to each foot of timber in the old bridge.

The typical American system of constructing such bridges depends upon pin fastening. The individual members are completed at the factory. None are over a few tons in weight. One by one they are hoisted into place. At each end eyes have been formed, and as the members reach their places, bolts or pins are passed through the eyes to secure them. In England the opposite system is generally used. Bridge work is riveted in place. The great Forth bridge was to a great extent built in situ. An American bridge is built at the iron works, perhaps a thousand miles away from its final location, and is carried in pieces to its site.

The cut, Fig. 3, shows the big loop upon the Georgetown, Col., branch of

Fig. 2.-CURVED VIADUCT ON GREAT LOOP OF UNION PACIFIC R.R.

Fig. 3.-LOOP, GEORGETOWN BRANCH OF THE UNION PACIFIC RAILROAD, COLORADO.
the Union Pacific R.R. Two points at a direct dis- illustration of iron cantilever railway bridge construc- 177 feet high, resting on stone foundation piers. The tance of $11 / 4$ miles, with a gradient of 480 feet per mile, tion is shown. The word cantilever is derived originally are connected. The grade is overcome by adopting from the Vitruvian term cantilabrum, or "lip of the the remarkable course shown. The curved route is 4 rafter." Its invention may be carried back to a very miles long between the two points in question, and the primitive period. A typical cantilever bridge consists roller beds, so that every provision for expansion and
contraction is made. After the trusses were cowpleted, the bottom chords were cut at points seventy-five feet distant from the piers, on the shore sides of the piers. Although no falsework appears in the illustration, temporary wooden supports were used when the cantilevers had reached half way out. These formed starting points for the remaining portions of the truss. In Fig. 6, page 154, is shown a loop and curved trestle upon the Colorado Midland Railroad. It is its own best commentary, affording an instance of boldness both of conception and and of execution.

Aluminous glass.

It is well known that certain varieties of glass when exposed to the action of fire, even for a short time, become opaque and the surface roughened.
Certain products of Thuringia, on the contrary, enjoy a well merited reputation, because glass coming from the manufactories of that country supports without deterioration fusion, remelting, reblowing, etc. This property has been attributed to the introduction of a certain sand obtained from the neighborhood of the village of Martinsroda.
It is interesting to understand the chemical composition of this sand.
Schott has made the following analysis of the sand, and side by side are the results of an analysis of the glass made from it.

	Sand from Martinsroda.	Glass made with Martinsroda.
Silica	9138	67.74
Alumina	$3 \cdot 66$	$3^{\bullet 0} 0$
Oxide of iron.	,. 0447	$0 \cdot 42$
Lime	.. 031	$7 \cdot 38$
Magnesia.	.. none	0-26
Oxide of manganese.	.. traces	$0 \cdot 52$
Potash .	.. 2•99	3:38
Arsenious acid.	none	0\%4
Soda.	$0 \cdot 50$	16.01
Total.	9931	$98 \cdot 95$

The extremely constant proportion of alumina in both sand and glass is remarkable, and calls for attention

In order to arrive at the exact significance of the presence of this base, various experiments were undertaken with glass, some samples being imade with pure silica, and others were used into the composition of which a little alumina had been introduced in quantity about equivalent to that contained in the sand of Martinsroda.
In submitting these different glasses thus prepared to the operation of remelting down into window glass, it was evident that it was much more easily effected in those samples which contained the alumina.
In short these experiments, which were very thorough, proved that the admixture of feldspar or alumina communicated to the glass greater strength, and made it more easy to work.
M. Schott attributes these advantages to the property which alumina possesses of lessening the volatilization of the alkalies in the superficial layers, and preventing that crystalline structure which always characterizes an easily broken glass, and which is due to the tendency of the double silicate of calcium and sodium to take the form of crystals.

The Prospering South

Never in the history of the South has her future looked so bright as at present, and never has ther
within the past two weeks, and is strong, with upward tendency. This advance represents something like twenty million dollars to the South. Coarse cotton
fabrics, so largely manufactured in the South, are adfabrics, so largely manufactured in the South, are ad-
vancing in price. Pig iron is in active demand, and Southern furnaces are all in operation. The price of pig iron has lately ad-
vanced $\$ 1.25$ per ton. Mineral and timber lands have greatly advanced in value, and sales are made almost daily. Yellow pine luinber is being more ex tensively used every year, and prices are improving. Many of the mills have advanced prices from one to two dollars per thousand feet for dimension stuff. The demand for all the Southern hard woods is brisk and prices are, generally speaking, higher. The farmers are alinost entirely out of debt, prosperous, and happy There are few mortgages on Southern farms. The Southern towns are developing at a marvelous ratefaster, perhaps, than ever known in any portion of this country Small manufacturing establishments ar springing up all over the South, and in most cases are exceedingly pros perous. In short, there is an increased activity in al branches of industry, and the next ten years will offer
the greatest opportunities ever known for making the greatest opportunities ever known for making money in the South.-Southern Lumberman.

A White Lead rest.

We happened in a factory the other day and found the superintendent out in the yard with a melting ladle in his hand full of white powder. It looked not unlike whiting, but in reply to our query he told us that it was white lead, which he was about to test. As this test would be of interest to the rubbermen, we lingered to see how it was done. The operation was exceedingly simple, and took but a short time. Having filled the ladle full of the white lead, he took an oil can and poured a little oil over the top of the mass, then placed the vessel in the fire and waited until the whole of its contents had fused. When he had run the powder down to pig lead again, he weighed it, and expressed hissatisfaction at finding that he had exactly a pound, which had been the weight of the powder before it was welted.
His original method of detecting fraud in lead reminds us of another experiment we saw him make, with a view to learning the purity of whiting. He simply filled a cup half full of whiting, held it under a faucet, run off in the could to as it on the water cup. In the bottom was left a certain percentage of what he called silver sand which, in reality, consisted of particles of flint or bits of cliff stone that had not been ground fine. Where he had a whiting that formed a very large sediment of this kind he called it poor, and looked around for one that gave him less. As a simple test ior goods of this sort it is very good -India Rubber World.
M. Nodon, having demonstrated that the solar rays shin ing on an insulated conductor communi cate a positive elec tric charge thereto
Fig. 5.-KENTUCKY RIVER BRIDGE ON THE CINCINNATI SOUTHERN R.R phenomena that has just closed. The cotton crop for last year is, example, those depending on atmospheric electricity in round numbers, about seven million three hundred thousand bales, of which the larger part is in the hands of correlation between light and elec hands of the planter. Cotton has advanced one cent tricity.-Photo. Review

Gates on Passenger Cars.
A passenger was killed on the Boston \& Maine a fortnight since by getting off a passenger train at a station on the " off side," and being struck by a slowly moving empty engine on the adjoining main track. The passenger alighted before the train stopped, and there was

Fig. 4.-VIEW FROM ROCKY POINT, DENVER, COL., SOUTH PARK AND PACIFIC RAILROAD.
lack of judgment in signaling the empty engine, but the State Railroad Commissioners, who investigated the case, lay chief stress on the matter of gates. It appears that all the cars in the train were equipped with platform gates, and that the commissioners have in past years recommended the roads of the State to use such a safeguard, but they were not closed in this in stance, and the superintendent testified that passen gers objected to them and threatened to jump over if they were used. The commissioners very justly eiterate their recommendation, and apply it specifically to "all divisions of the Boston \& Maine road" It is true that passengers will "kick," and that with he ordinary car platform it is not easy to make a perfect barrier, but a well designed gate, such as may be seen on the Boston \& Albany and the New York \& New England, is a valuable means of warning passengers that there are bounds beyond which they can go only at their peril. It is one of the wonders of modern civilization that so many hundreds of passenger trains daily discharge their passengers at stations where express trains pass by within 4 ft . of unprotected steps, and at speeds from 15 to 30 miles an hour or faster, without killing more passengers than they do. The American traveler who does not have his wits about him is a very infrequent fellow, comparatively, but he needs to be looked out for nevertheless.-Railroad Gazette.

Treatment of Tetanus.

The author has before made the statement that the best remedy for tetanus is absolute rest of the patient. He has already cured four out of five cases by this method. The tetanus patients were taken into a completely isolated, quiet, and darkened room and their ears stopped; the floor of the room was carpeted. All the manipulations were made when possible in the dark, only fluids were given as nutriment and absolute bodily rest was insisted upon. .If they suffered from violent pains, belladonna and secale cornutum were given internally. He gives the complete history of a case of traumatic tetanus which recovered under this method of treatment.-By E. De Renzi (Italy), Riv. Chir. e Terapeut., No. 1, 1889 ; Annals of Surgery.

Practical Experience as to Magnesium Lighting.
The discussion at a recent meeting of the Photographic Society of Great Britain was so rich in the elucidation of important points relating to magnesium lighting for photographic use, that special mention becomes desirable.
On a member handing round some flash-light groups which showed indications of that sort of flare or fogginess which rises from extraneous light entering the lens, Mr. W. E. Debenham gave it as his experience that, owing to the considerable extent of the flashflame and the almost inevitable conditions of arrangement in flash-light work for groups, this sort of flare almost invariably degrades the results, unless very efficient arrangements are adopted for shading the lens. Indeed, he pointed out that in flash-light work there is, we may say, in every case an enormous advantage in fixing a long tunnel of blackened cardboard, or some other suitable material, in front of the camera, so that the lens looks at the scene through this tunnel; and another point of moment is to have four flaps or sliding pieces fitted to the mouth of the tunnel, so that in arranging the apparatus these flaps or sliding pieces can be set inward as much as possible without actually contracting that portion of the image on the screen which will correspond to the trimmed print. By such means-and only by such means-does the best result become possible in Mr. Debenham's experience.
they have rather the expression of the fa
A remedy for this state of things is not hopeless, as several persons in the room pointed out. The apartment must be illuminated with bright gaslight or other artificial light, which light must not be subdued just before the flash, and means must be found to make the flash more instantaneous than it is with the ordinary blow-through lamps. At the same time it is to be noted that the shutter of the dark slide must, under the circumstances, only be drawn just before the flash, and it must be closed immediately afterward.

As regards the means of quickening the flash, Mr. Warnerke insisted on the desirability of using only a small quantity of magnesium dust in each lamp, so as to insure immediate and complete combustion, and during the present season it is often absolutely needful to dry the magnesium dust before use. Mr. Warnerke was opposed to the use of pyrotechnic mixtures containing magnesium, not only on account of their danger, but also on account of their uncertainty in action; and a subsequent remark by Mr. Chapman Jones gave a clew to what has long been recognized, namely, that the pyrotechnic mixtures are so variable in the rate at which they burn as to be undesirable for every-day use, apart from any question of danger. He described the following experiment
Two grains of magnesium dust were carefully dried,

Warnerke much prefers to using a yellow screen in conjunction with the lens, and so risking the fineness of the definition.
An excellent point of the new lamp is that the whole of the fumes pass up the chimney, and this chimney is quite small-about an inch in diameter. Mr. Warnerke showed how easy it is to roll up a newspaper so as to make an extension of the chimney of several feet in a horizontal direction toward fireplace or window ; or for temporary use it may be led into a large box, which acts as a settling chamber.
Now that magnesium is cheap, and we can have an hour's lighting at a cost of something like one shilling, its use will undoubtedly extend.-Photo. Review.

Natural Gas Freaks in Indiana.

A Kokomo (Ind.) note says :
A singular misfortune has overtaken the family of William Shenk, a farmer living five miles east of this place, in consequence of the finding of natural gas. About two months ago the Diamond Plate Glass Company leased Shenk's farm for gas and put down a well. On reaching a depth of about 800 feet a big flow of the elastic fluid was secured, which shot out the tools with tremendous force, followed by a stream of water that reached the height of at least 125 feet, and continued without cessation for more than a week, despite al efforts by the owners of the well to get it stopped

Fir. 6.-LOOP AND GREAT TRESTLE NEAR HAGEMAN'S, ON THE COLORADO MIDLAND RAILROAD.

Mr. Debenham did not give any details as to the construction of the fore-camera or shade he prefers to use, but from our own experience in analogous cases we recommend a square collapsible tube, formed by gluing four pieces of cardboard on to a piece of velvet; the size of this tube being such that it slips over the front of the camera and is thus rendered rigid for use. The "pile" or fiber ends of the velvet should point outward, so that reflection is reduced to a minimum, and as the area of the shade tunnel will be full that of the camera, it may, without risk of contracting the field of view, be made a little or sometimes considerably longer than the focusing length of the camera for the lens to be used. The four flaps for finally contracting the area through which the light reaches thelens may very well be made of two thicknesses of black calico cemented together by thin glue, an arrangement which makes it easy to fix them to the required aperture by means of four ordinary pins.
Such a shade as we have described folds flat like a portfolio, and is a useful addition to the outfit of even the outdoor photographer; especially when he works with the camera directed to ward the light-giving side of the heavens-a thing common now, but forbidden by the old school of photographic conventionalists. Such modifications in the shade as may be necessary for allowing any required shutter fittings to pass are easily arranged, although when the shade is used for ordinary flash-light work, no shutter is required.

Mr. Friese Greene now said that from a business point of view he had found flash-light portraits tend to be a failure. The pupil expands in the weak light preceding the exposure, and even when the flash is so rapid as to show no indication of a closing up of the eyelid, the eyes never have quite a natural expression
and a similar quantity of finely powdered potassium chlorate was also dried, the two being now cautiously mixed while slightly warm. This mixture, on being fired, positively detonated, the rapidity of the flash re calling the discharge of a Leyden jar, the shock shaking the windows of the laboratory; but a similar mix ture, if only exposed to the air for a fraction of an hour burned with a comparatively tame and slow flash.
The discussion passing on to the question of burning magnesium ribbon, Mr. Warnerke exhibited and ex plained the lamp made and sold by Mr. Ney, of Ber lin, which lamp has the reputation of being the only ribbon lamp which can be depended on to burn stea dily for an hour or more. In the case of the ordinary clock work lamp a long tail of magnesia ash forms ; and this first weakens the light, then of en extinguishes it ; but in Ney's lamp a striker crosses the ash at intervals of about two seconds, knocking it off, so that it is received by a pair of breaking-up rollers. In the Ney lamp an ounce of ribbon, having a length of between fifty and sixty yards, will burn for about an hour and a half, and, at the present low price of magnesium, the light is so cheap and convenient that Mr. Warnerke said it was folly to use any other light for copying, es pecially at this season. It has all the advantages of sunlight, with the additional one of being so constant that the exact exposure can be determined beforehand, after a little practice. In copying a print or a picture it is convenient to hold the lamp in the hand first on one side and then on the other, moving it meanwhile sometimes in a vertical line and sometimes in a horizontal line, so that creases or texture shall not become apparent. Except in very rare cases, less than half a minute is sufficient for the exposure, unless a yellow glass is placed in front of the lamp, a course which Mr

Shenk's farm was flooded so that he was compelled to dig trenches to prevent it from destroying his wheat crop and otherwise doing great injury to his land. But the water was finally shut off, and the gas and water separated, and it was considered one of the best producers in this vicinity. Within the past few days, however, the gas has taken an entirely new freak, and is now coming out of the ground all over the farm, and it is easy to light it in hundreds of places by simply ap plying a match. Even the water in the farmer's drive well is forced out by the gas, and the family is contemplating a removal from its residence to avoid being blown up. Shenk considers that his farm is entirely ruined, and will doubtless abandon it altogether, un less some way can be devised to control the escaping element.

A Privilege of Old Age

A wise old man, the late Dr. James Walker, president of Harvard University, said that the great privilege of old age was the "getting rid of responsibilities." These hard-working veterans will not let one get rid of them until he drops in his harness, and so gets rid of them and his life together. How of ten has many a tired old man envied the superannuated family cat, stretched upon the rug before the fire, letting the genial warmth tranquilly diffuse itself through all her internal arrangements! No more watching for mice in dark damp cellars, no more watching the savage gray rat at the mouth of his den, no more scurrying up trees and lampposts to avoid the neighbor's cur, who wishes to make her acquaintance. It is very grand to "die in harness," but it is very pleasant to have the tight straps unbuckled and the heavy collar lifted from the neck and shoulders.-Dr. Holmes, in the Atlantic.
the scientific die of the phonograph.
by өео. м. норкins.
I.-THE CHARACTER OF THE PHONOGRAPHIC RECORD interpreted by vibrating flames.
The phonograph in its perfected state, although a scientific triumph and a model of mechanical and electrical skill, is designed for commercial and social purposes rather than purely scientific use. Still it has within itself all the elements necessary for several very interesting physical experiments. These are obviously related to sound or vibratory action, some of them being illustrative of the phenomena of the phonograph itself.
Mr. Edison in the multitude of hiscares finds no time to develop the purely scientific applications of this most interesting invention. He has, therefore, delegated this pleasant task to the writer, who has given the subject considerable attention, and has devised a series of phonographic experiments, one of which is shown in the annexed engravings. This is given first, as it seems best calculated to illustrate and explain the action of the phonograph.
The instrument shown contains all the recent improvements. The phonographic record is made on a hollow cylinder of wax-like material. This cylinder is fitted to a cone mounted on the screw shaft. This shaft turns on two pointed bearings, one of which is fixed, the other being supported by a swinging arm, seen at the right hand end of the machine in the engraving. This construction permits of placing the record cylinders on the cone and removing them quickly and without the necessity of making any adjustments. The screw shaft is provided with a loose central bearing, which holds it up when the end bearing is swung around.
On a fixed rod arranged parallel with and behind the screw shaft is placed a sleeve which carries at one end a spring arm provided with a segment of a nut, which rests upon the threaded portion of the screw shaft. To the other end of the sleeve is attached a curved arm, which reaches over the record cylinder and supports the diaphragm cell. The latter is fitted to a socket in the arm, and is arranged so that it can be turned in its own plane through a few degrees to bring the recording and reproducing styluses into the position of use. An arm projecting from one side of the diaphragm cell is used to effect this change of position, and an adjusting screw, located above the arm, is used for securing a fine adjustment of the reproducing stylus. The enlarged sectional view, Fig. 2, shows the diaphragm cell and parts connected therewith, actual size.
The diaphragm is a glass disk about 1-200 inch in thickness. This is clamped at the edge between two thin soft rubber rings. To the center of the diaphragm is connected a stud, to which is pivoted one end o the lever, a. The opposite end of the lever is forked. One arm of the fork carries the reproducing stylus, b, and the other carries the recording stylus, c. These styluses are made of sapphire, a material which ranks next to the diamond in the scale of hardness. The reproducing stylus is a microscopic sphere or knob, perfectly smooth and highly polished. The recording stylus is cup-shaped upon the end which cuts the record cylinder, and is pro vided with a very keen edge.
The lever, a, is pivoted at or near its center in a stud projecting from the weighted lever, d, which is deli cately hinged to the upper part of the diaphragm cell, its lower end being free to move within certain limits. This construction permit the recording and reproducing sty luses to follow the surface of the cylinder whether it is perfectly true or not. It also allows the recording and reproducing apparatus to adapt itself automatically to cylin ders of different diameter.
It will be seen that the lever, a, is one of the first order, with a movable fulcrum, and that whenever the free end of the lever is moved upward by the projections of the record cylinder, it tends to lift the weighted lever, d; but owing to the inertia of this weighted lever it is unable to follow all the movements of the lever, a. As a consequence the motions of the latter in the reproduction of speech are im parted to the diaphragm. In making a record, the reverse of this occurs, i. e., the rapid motions of the diaphragm are imparted to the reproducing stylus, which cuts in the record cylinder a groove with de pressions and elevations, which taken together cor respond in form to the sinusoidal curve which would represent the sound waves by which the vibratory movements of the recording mechauism were produced.

Fig. 1.-Phonograph-latest form, with vibrating flame attachment.
through the nozzle, thereby elongating the flame, while every depression of the record allows the diaphragm to move inward by its own elasticity, thus drawing the gas inwardly, effecting a retardation of the flow of gas through the nozzle, thus causing a sinking of the flame. These changes in the length of the flame take place with such rapidity that no change in the character of the flame is observable with the unaided eye, unless the eyes are quickly turned from side to side, when the vibratory nature of the flame will appear; but no sat isfactory analysis of the flames can be made in this way. They must be viewed in the revolving mirror to determine their true form and the relation of the crests and hollows of the flame waves. These flames repre sent, in a greatly exaggerated form, the shape of the projections and depressions of the phonographic record. Every vowel produces a characteristic series of waves or flames, the images of which are spread out by reflec tion from the revolving mirror. Musical sounds from different instruments yield flames differing from those formed by vocal sounds. A song produces a rapid succession of flame images, which constantly vary in form and size.
As an aid to the understanding of the phonographi record and the action of the phonograph, nothing can excel this simple device.

The Wonders of Gas Wells.

The Pittsburg Dispatch of January 25 says
Passengers over the Pittsburg and Western Railroad have noticed near De Haven Station, for two nights past, a huge shaft of fire standing up against the sky and illuminating many square miles of territory with its lurid glow. Wonder as to what caused this remark able flame phenomenon has been liberally expressed. It is the Spang, Chalfant \& Co.'s well No. 2, which is on fire, and which has burned furiously since last Thursday morning, resisting all efforts to eheck it. A probable fatality is an unpleasant feature of the burn ing well.
The well came in last Wednesday with a rush. It showed a pressure of about 500 pounds, being equal in value to the No. 1, which came in several weeks since value to the No. 1, which came in several weeks since.
Both wells are on the Steiner farm, distant nearly two Both wells are on the Steiner
miles from De Haven Station.
The well was permitted to blow off all Wednesday night, and Thursday four drillers set to work to plug the well with the customary appliances. They were working right at the hole in the ground, with the gas rushing forth at high pressure, when, in some mysterious manner, the well caught fire. How, the men are utterly unable to say.
The surging flames swept skyward with a furiou roar, enveloping all four drillers in a mass of flame A force of men was at work yesterday trying to extinguish the burning well, but without success. The column of flame is nearly 100 feet in height, and presents a grand spectacle; but the heat is so intense that the men found it im possible to get near enough to accomplish anything. It is believed that the famous process of smoke stacking, which was employed so successfully at the great Murrys ville gas well fire, will have to be made use of before the well is pu out. A smokestack of sufficient siz will probably be made to-day by Spang, Chalfant \& Co., and taken to the place for use.

Expert Court for Patent Cases.
Those who are present at the hearing of a great patent suit in a United States court cannot but be struck by the incongruity and essential injustice of submitting vast business interests dependent upon mechanical appliances to arbitration of a judge who may have no more appreciation of ma chinery or mechanical ideas than he has of the foliage of the planet Jupiter. Only a few judges on the bench are really competent to try a patent case, except, of course, so far as the law points are concerned When the matter hinges upon the novelties of this or that device, and
dle of the mirror is journaled in a sleeve supported by an arm connected with the pointed rod forming the upper bearing of the motor shaft.
Arranged in this manner the mirror revolves when ever the phonograph is operated. So long as the dia phragm of the phonograph remains quiescent the slen der flame is undisturbed, and the revolving mirror re flects only a plain band of light; but when the dia phragin is vibrated by the contact of the reproducing stylus with the face of the record cylinder, every proection of the record pushes the diaphragu outwardly, thus forcing the gas outward, accelerating its flow
the infringement of one device upon another, very few of the judges are qualified by nature and training to hear the case and decide intelligently upon its merits. This emphasizes the necessity of a special court for the adjudication of patent claims, the judges of which should be drawn from the highest class of patent attorneys, commissioners of patents, and those who may fairly be called experts in mechanics. At the very least, the American Miller thinks, one or more experts should sit with the judges of the United States courts to decide mechanical questions, leaving to the judges the decision of law points.

RECENTLY PATENTED INVENTIONS.

Engineering

Steam Boller Furnace. - Micheal E. Herbert, St. Joseph, Mo. This boiler has water legs front end communicating with the fire box under th water legs, and feed devices at the bottoms of the magazines to feed the fuel to the grate, while the gaseous products are separately carried off and consuned.

Railway Appliances.

Car Coupling.-Adoniram J. Chapel Arkansas City, Kansas. This is an improvement in
that class of devices known as twin jaw couplings, th front section of the hook being provided with a link mortuse, in connection with a transversely movable shoulder section, an arm or bar extends from which
over the front section, and the coupling pin being movably supported on this arm or bar.
Car Coupling. - Solomon Heyman and Berry Prosser, Fayetteville, Tenn. Inthisdevice the pin is attacled to a lever pivoted beneath the drawhead
the pin working up and down from the bottom of the drawhead, the pushing back of a sliding bar in the drawhead by an entering link operating the lever
through a rack of teeth to push the coupling pin up through a rack of
through the link.
Wear Plate for Ties.-Thomas A. Davies, New York City. This is a rectangular plate
with an integral continuous marginal flange, being with an integral continuous marginal flange, bein
designed to protect the surface of the tie covered designed to protect the surface of the tie covered
thereby from the action of water, and to prevent the ingress of water between the plate and the tie
Bulkhead for Tracks. - Thomas A. Davies, New York City. This invention provides for the planting of opposed beams at suitable distancee apar connected by a strap, plate and loop, making an
are
anchor for the rails, so that the entire line of rails will anchor for the rails, so that the entire
be effectually prevented from creeping.

Mechanical.

Pipe Wrench. - Thomas W. Fisher, Helena, Mont. A stationary jaw is on the forward end
of a shank having a sliding rack, a handle being pivoted of a shank having a sliding rack, a handle being pivoted
to the shank and rack, while a receesed movable jaw is fitted to slide on the shank, there being a pivoted and toothed catch in the recess of the movable jaw, with a thumbpiece, and a spring for pressing the catch int
engagement with the rack.
Glass Polishing Wheel. - Wyman Kimble, Honesdale, Pa. This invention consists of a
wooden wheel composed of sector sections, each so cut and connected to the adjacent sections that the grain of the wood of each section will run at about right angle being united by dovetail joints.
Roller Grinding Mill. - Henry Bowman, St. Joseph, Mo. This invention provides im roller grinding mills with reference to each other, so as to render them parallel, and also spring-seated or yield ing to obstructions which may pass between them.

Agricultural.

Plow. - Stanly Tanner, Cheneyville apecially adapted for break ing out the middle ground between rows of plants, the implement carrying a right and left plow and a sweep
or double mould-board, which will follow the plows, or double mould-board, which will follow
aligning the center of the intervening space.

Miscellaneous.

Feed Cutter. - John B. Sykes and Thaddeus A. Faust, Dawson, Pa. This is a strong an simply constructed machine in which the cutting blad driven directly from the main shaft, and provide means for firmly clamping the material to be cut close t he knife as the latter is descending, and a feed mechanism which will carry the material forward to the knif the proper momen
Cotton or Hay Press Attachment William W. Adams, Ozark, Ark. This is a tramping pparatusatached to or over the press for packing th se on all presses in which the head block leaves the press box completely open, obviating the necessity doing this work by muscular power.
Hand Truck.-Joseph Annin, Brook yn, N. Y. This truck has an improved joint connec n improved form of such bars, giving great strengt nd rigidity with minimum weight of parts, bein designed for heavy work in warehouses, foundries, auchine shops, etc
Pedestal for Vehicles. - Thoma fill, Jersey City, N.J. This invention covers a variet of constructions for pedestals for the support of car or other vehicles, up to an adaptation for use with rail way passenger or freight cars, the invention coverin
novel arrangements and combinations of elements.
Stirring Machine. - Reinhold Handel, Leipsic, Saxony, Germany. This is an ad jastahie device whereby powder, dough, thick liquid and similar materials may be thoroughly commingle ind mifferen in any suitables receptacle, operating stirrers ny of the liquid or plastic compound which may b eposited upon the upper edge of the receptacle by th stirring operation.
Bracelet. - William Riker, Newark, .J. This invention relates to that class of bracelets known as "bangles," and consists in a peculiar fastening for securing the ends of the ring to each o

NEW BOOKS AND PUBLICATIONS. W. De Tunc Modern Life. By ter Scott. Pp. viii, 272.
The present volume contains the usual contents of such works, of which a great many have been published
recently. It gives a general history of electricity and evelopment in recent days. It is illustrated by a num ber of cuts taken, general!y, from the Electrician and
Engineer. As a resume of the science it is compact and Engineer.
of interest.
The Cosmic Law of Thermal Repul $\begin{array}{lll}\text { Sron. } & \text { New } & \text { York: Johı Wiley } \\ \text { Sons. } & 1889 . & \text { Pp. 60. Price } 75 \text { cents. }\end{array}$
Heliofugal power is invoked by the author of the present work-whose nume is nowhere discernible-to ccount for the phenomena of the motions of comet he author, in a brief preface, states that the essay enmuch pleasant recreation, and it is to be hoped that the readers will obtain the same therefrom.
Practical Marine Surveying. By Harry Phelps. New York : John
Wiley \& Sons. 1889. Pp. vi, 217. Price $\$ 2.50$.
A somewhat neglected field of surveying is excellently methods are thoroughly described. Soundings, shor survey, sounding with wire, determination of heights, tidal and magnetic observations, and other classes of
surveying are all included. Enough is said to indicat surveying are all included. Enough is said to indicate
he character of the book when it is noted that its subect is thoroughly covered in all its aspects, and that he consideration of the different topics is given wit not simply a dry collection of mathematical formulm number of plates are used to illustrate the construc ion of instruments and the triangulation of differen nds of territory.
Scribner's Magazine for March is an cellent number and contains an interesting article o Charles Lamb, with several good portraits of that cel brity. "A Forgotten Remnant" is an account of the eminoles of Florida, part of the tribe having remained in that State when the Seminoles migrated to the West. hurch. Besides these there is an article on the Boo rang and several serial stories.

Received.

SCIENTIFIC AMERICAN

buILDING EDITION
FEBRUARY NUMBER.-(No. 52.)

TABLE OF CONTENTS.

1. Elegant plate in colors of a cottage on Staten upplied by Munn \& Co. Perspective elevation floor plans, and details.
2. Plate in colors of a residence at Buffalo, N. Floor plans, sheet of elevations, details, etc.
3. An ornamental carriage ho
J. Perspective elevation.
4. Engravings of the new auditorium buildin Chicago, Ill.
A Staten Island cottage, costing $\$ 3,300$
A residence at Portchester, N. Y. Cost $\$ 11,50$ Lamb \& Rich, New York, architects. Plans and A dwelling at Hill View, Dunwoodie, N. Y. Cost $\$ 5,100$ complete. Floor plans and perspective
5. Design for a cottage at Mystic, Conn., by F. W. Beall, architect, New York. Elevations and flo plans.
6. A double dwelling house at Stamford, Conn. erected at a
perspective.
7. Cottage erected Lar $\$ 4,350$. Floor plans and perspective
8. The new Carteret club building erected at Jerse Gilbert, of New Yori. Cost $\$ 20,000$.
9. The Oriel Row of thirteen houses, San Francisco Cal. Erected at a cost of $\$ 5,800$ each. Plans and
perspective
10. A recently erected cotrage in "Iselin's Park," Ne Rochelle, N,
foor plans.
11. A very pretty cottage at Hill View, Dunwoodie, Chas. E. Miller, architect, New York. Floor plan and perspective elevatio
12. Miscellaneous Contents: Baths in school houses. Combined wood worker and moulder, illustrated -The Gurney Hot Water Heater Co.--A praci trated.-Square turned work for balusters, columns, etc.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies 5 cents. Forty large quarto pages, equal to about cally, a large and splendid Magazine of archite TURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting xamples of Modern Architectural Construction an allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.
MUNN \& CO.. Publishers,
301 Broadway, New York.

Business and Persomal

The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a lin as early as Thursday morning to appear in next issue.

For steel castings of best quality, write the Buffal For steel castings of best
Steel Foundry, Buffalo, N. Y.
For Sale-W. A. Brice's patent in U.S. or Englan Whastrated on pake 44. Address patentee.
Wanted--A party who can construct the apparatus ulcanize sheet rubber in small pieces by vapor and ca feach the process, Please address Ma
Ocientific American, New York Clty.
Hand ice making machine for domestic use-The United States patent for sale of the only successful ma hine. Many hundreds in use in Great Britain and the dress G. R. A care of therative bisiness certan. A ress G. R. F., care of the International News Compan Wanted-An instrument maker thoroughly competen o adjust transits an
Co., Philadelphia, Pa
Wanted-An energetic man, with some means, a
artner in an established business for manufacturin call bells, sash locks, and other light metal patente novelties. Articles covered by se
J. P. Connell, Kensington, Conn.
For Sale-On royalty or entire interest in patent col lapsible hat shade. See engraving, page 116, Vol. 62. Ad ress S. B. Bartine, Pleasant Plains, N. Y.
Machine tools, catalogue No. 47-B; wood-working machinery, catalogue No. 52-A; steam power, catalogue
No. 48. Largest lines offered by any firm in this country. No. 48. Largest lines offered by any firm in this countr S. \mathbf{C} Forsaith Mach. Co., Manchester, N, H.

Best Ice and Refrigerating Machines made by David Ge, Chicago, ill. 140 machines in satisfactory use. Guild \& Garrison, Brooklyn, N. Y., manufactur amps, acid blowers, filter press pumps, etc
For the latest improved diamond prospecting drills ddress the M. C. Bullock Mfr. Co., Chicago, ill. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. The Holiy Manufacturng Co., of Lockport, N. Y hinery, and containing retercribing water works ma Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses Wanta St Lis Wanted-By St. Louis house an A No. 1 foundry
foreman. He must be thoroughly familiar with all the details of foundry work and capable of fllling the posi-
tion to entire satisfaction. State experience, age, salary anted and reference. Address scientiffc American, New York.
Iron, Steel, Copper, and Bronze Drop Forgings of Conn
The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pulleys. The D. Frisbie Co., N.Y.city. Tight and Slack Barrel Machinery a specialty. John Greenwood \& Co.. Rochester, N.Y. See illus. adv., p. 173. Acme engine, 1 to 5 H. P. See adv. nest issue. Send for new and complete catalogue of Scientific
nd other Books for sale by Munn \& Co., 361 Broadway. New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
infor
information, and not for publication.
Rerforences to former articles or answorld
give date of paper and page or number of question.
give date of paper and page or number of question.
In प1 rites not answered In reasonable time should
be repeated; correspondents will bear in mind that
some answers require not a little research, and
some answendeavor to reply to all either by, ant
though we end department, each must take his turn.
or int
personal rather than general interest cannot be
expected without remueration.
scientifle $\begin{gathered}\text { A mer tcan }\end{gathered}$ (ticupplements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of
price.
meran sent for examination should be distinctly
marked or labeled.
(1913) A. B. P. asks for a recipe for aking paste shoe blacking. A. Blacking recipes are many. Several have
give two formulas:

Vinegar a little, after above have been mixed.

(1914) H. E. McC. asks : 1. How to con-
sruct un Colian harp. I have a description of one in which a box is strung with violin strings, but do not understand construction. A. An Æolian harp may be made by simply stretching strings or wires across sounding board. In our Supplement, No. 483. one is
described. 2. What composition is applied to produce mirrors, and how applied? A. Mercury and tin ge mirrolly. We have recently described the process S query, No. 1824. 3. What wages do marine engineers receive? A. From $\$ 50$ a month up to $\$ 200$ or more. 4. What is expected of dynamic and mechanical en gineers? A. It depends on how high he stands in the
(1915) O. M. asks: 1. The chemical reactions which occur in a chloride of silver battery cell?
A. (a) $\mathrm{Zn}+2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{AgCl}=\mathrm{ZnCl}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}+2 \mathrm{AgCl}$.

The last three at once react by this reaction: (b) NH_{3} $+\mathrm{H}+\mathrm{AgCl}=\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ag} ;$ so that the ammonium Also in a Leclanche cell? $\mathrm{A} . \mathrm{Zn}+2 \mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{MnO}_{2}$

(1916) W. V. L. writes: 1. I lately made soap. It washes well, cleans well, but gives
ittle or no froth. 1 used pure fat, 5 lb .; lye, 1/2 lb.: water, 2 pints. Probably I should have used soda, but did not because I wished to make a toilet soap. A.
Remelt your soap, first cutting it np finely, adding some water, and pour off the soap from the lye if any water, and pour off the soap from the lye if any
forms. You seem to have too much fat. This may prevent its frothing, but home made soaps are apt not to froth much. 2. Please tell me of some perfume I could use to perfume the soap? A. Use 4 parts oil of rose geranium, mixed with 1 part each oil of rose and oil of cinnamon and 2 parts oil of bergamot. Any
number of formulas can be given. 3 . What to use to number of formulas can be given. 3. What to use to
color the soap? A. Color with vermilion, carmine or an aniline color. It is best without any coloring.
(1917) F. W. K. writes : I am building the 8 light dynamo described in the SUPPLEMENT, No. 600, and have one nearly finished, except wire for wind-
and ing magnets? A. Office wire will not answer. The insulation takes up too much space. Use magnet wire.
2. Can I wind magnets round and round, just as thread 2. Can I wind magnets round and round, just as thread is wound on a spool, and give good results for incandescent lighting? A. Yes. 3. Should they be wound any arferent for an arc light? A. The machine wili ran and ferred to. 4. Can I get more than one arc light from the dynamo? A. It depends upon the size. You could run wo small arc lamps. 5. About how fast should I run it to get twelve 70 volt lamps on a circuit? A. A bout 3,000 revolutions per minute. 6. Is there any danger of burnng armature out? A. Copper is the best, but bronze answers very well and may be more easily worked.
(1918) Reader asks for a receipt for renoving ink without soiling the paper. A. Apply 10 per fterward blot it off and wash with water and blot he same way. The paper will be somewhat affected probably.
(1919) G. B. H. asks a formula (1) for covering cracks and seams of rubber boots? A. Use a solution of gutta percha in bisulphide of carbon. 2. A. For manufacture of India rubber werefer you to our UPPLEMENT, Nos. 249, 251, 252
(1920) A. D. P. asks: 1. Can you in form me of a simple and accurate method of testing
kerosene oil? A. To insure accuracy some skill in manipulation is required. Theoil is heated on a water bath, a thermometer bulb being immersed in it, and rom time to time a minute gas flame is quickly swept
over its surface. The temperature is noted at which a slight flash occurs. It should not flash below 110° to 120° F. 2. What paper describes the method of manufacturing ice, and the machines for that purpose? A. We have published several articles on this subject in
our Supplement. We may refer to Nos. $85,91,358$. and others.
(1921) P. N. asks : Will you kindly advise us as to what is the best non-conductor of heat
and cold and yet cheap? We desire a packing to pack around water tanks to prevent water freezing in winter, and also to shed the heat of the sun in summer. A. of materials for packing around tanks to prevent freezing and also keeping out the summer heat, that are not
perishable, mineral wool, asbestos, and pulverized charcoal are the best in the order named. Pulverized corn cobs, saw dust, and prairie hay are good, but liable to become wet and rot from any leakage from the tank. In using any of the above materials, a tight matched board
casing should be placed around the tank with 6 inches clearance, with the insulating material packed in lightly.
(1922) A. and B. ask : In a nest of and with 60 pounds eparate furnaces, if the fire under any one of them should get low, is it possible for a vacuum to form in the boiler with the low fire? A. When boilers are properly set in batteries, there should always be a check
valve and feed regulating valve between the main feed valve and feed regulating valve between the main feed pipe and each boiler. When this arrangement is used,
and the valves for regulating the feed of each boiler manipulated by the fireman according to the firing of each boiler, the water level will always be under control. Boilers set with free feed water inlets from a common main are constantly changing the water level to suit the steaming capacity of each of the fires. The surging of the waterlevels cased morly by the Thetion and arrangement of the steam connections, which may cause
from an inch to a foot difference in level in battery foilers set with free water feeds. This difficulty is
ber largely modified where large steam and mud drums with large necks are used, which allows of a more perfect balance of pressures through all parts of the boiler bat-
tery and of the feeding of the entire battery through tery and of the feeding of the entire battery through the mud drum.
(1923) J. P. E. says : A tank measuring 8 feet in height and 5 feet diameter stands 15 feet above ground. Should the supply pipe be made to discharge
through the bottom or over the top? What will be the difference in power required to fill the tank, wipe being the same size? A. There is much misunderstanding even among plumbers as to the proper connection of
feed and supply pipes for tanks. There is no need
wheser whatever for two pipes as you have describe L . The pump connection should be made at the base of the supply pipe. It not only saves the expense of an additional pipe, but lessens the pressure upon the pump by
the value of a hydrostatic column equal to the distance between the water level in the tank and the mouth of the overhead supply pipe. Thus when the tank is empty you will have $33 / 2$ pounds per square inch more pressure on your pump piston in pumping over the top
than when pumping through the supply pipe. With a than when pumping through the supply
full tank the difference is but trifing.

		dind	Prem
		Selen	${ }_{\text {preme }}^{\text {prima }}$
	Cafr roaid Hars		
Hend		and	
			Pa
INDEX OF INVENTIONS			
which Letera patent ot the		Hatee	
United Staten were Grantod			Poil
February 18， 1890.			隹
each bearing that date．			
eat end of list tout oopiese of theses ate			
Adatare mamene w．．．．．			
		matil	
			Mamp，Meme
		Heater	
			Railway conduit，electric，P．H．Griffin．．．．．．．．．．．． Railway grip attachment，cable．J．F．Appleby
mans or	Cole		
Alarm．see			Aneme
	cen		
$\xrightarrow{\text { Alemen }}$	Conink See car coupling．		Ram
a．w．manal	comel		
	cour		Remen mie
W．			
mast			
			River mimay
Beat			
			root drumina
			${ }^{\text {a }}$
Barat．			
furnace，steam，M．E．Herbert．．．．．．．．．．．．．．		Men	
${ }_{\text {Boid }}$			
r，ink or o	ieatr		
See Cotton box．Mail box．Sector－shaped			
Bren	Hex	Lifting jack，F．B．Mallory．．．．．．．．．．．．．．．．．．．．．．．．．．．．421，59 Liquid meter，rotary double piston，H．F．Gaskill．421，48	
			St
	Men	${ }^{\text {a }}$	Salee amemater
\cdots		deene．	
边			
（ex			
		lien Do ines	
for oy			
See Gas burner．Hydrocarbon burne dust burner．Vapor generating burner．			Seninib boped fatree，macmine
an	（e）		
		mex	Sexme
it in semmix．			Semin
			Shat
cex	${ }_{\text {rem }}^{\text {rem }}$	Mosic	
		Packing case，telescopic，G．C．Hennir $九 \ldots4421 .496$ Packing ring，piston，R．L．Ambrose．．．．．．．．．．．．．．421，646	（e）
Car draw bar，railway，D．I．Barnes $\ldots4$ 421．651 Car driving mechanism，motor，Beckfeld \＆Sieg－			
crest		Paper	deid
			（en

COMPOSITE GEARING.-BY PROF. C W. MacCord, Sc. D. Howto construet the teeth of a
wheel in which he involute and epicyclooidal systems
are so combined as to secure advantages which could are so combined as to secure advantaes which could
not, under the given conditions, be realized by the use

ARTESIAN

CHAS. A. 8CHIEREN \& CO.

enberthy Automatic Injector.

 THERMOMETERS--A VALUA BLE PA

CLARK'S NOISELESS RUBER WHEELS.
 PERFECTİN SPAPER F The Foob patent File for proservinn nerpgepere, Mapy

NOW READY.

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00 SEND for free illustrated circular and Table of Contents.

MUNN \& CO., Publishers,
 361 Broadway, New York.

FAMILY ICE MACHINE

 NJECTORS, WA MrED-A Acomperent gales.

(
 Printinng for salin mpyas A NEW CATALOCUE

 The Scientific American PUBLICATIONS FOR 1890.
Sthe orices of the idiferon pulileationsin the Unites
The Scientilc American (weekly one year, $\$ 3.00$
The scientific American Supplenent (weekly), one ${ }_{5.00}$
The scienentic A merican, spanisish Edition (montrily) 5.00

The Suentict combined rates.

Proportionate Rates for Six Months.
This includes postage, which we pay. Remit This includes postage, which we pay. Remit by postal
Rexpess money order, or draft to order of MUN \& CO, or draf to order of

Pfovertisements.

2.50
$\substack{200 \\ \text { are } \\ \text { ark. }}$

NEW KODAKS

ou press the button,
Seven New Styles and Sizes
D wrri
Transparent

THE EASTMAN COMPANY
Send for Catalogue Films.

PAPER AND CEME TM Ther.

COLUMBIA CYCLES

SADIES' No GENIEMEN'S. SAFEIES, TANDEMSAFEIIES,

 HICHEST CRADEONY

TO BUSINESS MEN

 The value of the SCIENTiFIC AMERICAN as an adver-tising medium cannot beverestimated. Its circuation
ismany times graater than that of any simiar journal
now nutished now published. It goss into all the states and Territo-
ries. and is read in alt he principal libraries and reading nore than to see his advertisement in wants something
aper. He wants circulation. This he has whens.
He
 or your interest to advertise. This is frequentilie done,

WALEABLE AND FINE GRAY IRON ALSO STEEL PATENTS!

MESSRS. MUNN \& CO., in connection with the publifor Inventors.
In thistine business they have had forty-me years.
e.rpertience. and now have unequalead facivitues for the preparation of Patent Drawings. specifications, and the the
proseation of applicaticnstor Patent in the United
s'ates. Canada. and Horeign Countries. Messrs. Nunn $\&$

 cure then; directions concernirg Labels, Coprrights,
Designs, Patents. Appeals, Reisusues, Infringements, As, signments, Rejected Cases. Hints on the sale of Pa-
tense.etc.
We also send, free of charge. a Synopsis of Forelgn PaMatentsinall the principal countries of the world.
MUN \& CO. Solicitors of patents,

A PERCHA \& RUBBER MFG. CO.
The Largest Manufacturers of Mechanical Rubber Goods in the World.

Packing, Belting, Hose, Mats, Matting, etc

INATIONAI FITTHR_
BRIGHT SPARKMING WATER
LARGE SIZES FOR MILLS AND WATER WORKS. NATIONAL WATER PURIFYING CO., Address for Pamphlet.

兟 STEAM ENGINES
 Upright and Horizontal,

 Portable and Semi-Portable.

THE GUTTA PERCHA \& RUBBER MFG. CO.
SYRACLISE WALIEABIE IMOWWORKS THREE ELEVATORS OTIS BROTHERS \& CO.'S Passenger and Freight Elevator Works, General Office, 38 Park Row, New York,

THE OTIS ELEVATOR

 COMPTOMETER
 Solved rapidly and accurately by u sing the Complometer
Sa e is 40 per cent. of time.
Entire relief trom mental Entire relie from mental strain
Adapted to all commercial and
scientific computations. felt \& TARRANT MFG. C0., 52 - 56 Illinois St., Chicago.

MARTN'S GAFES
HAVE MANY PATENTED
IMPROVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION by those who to seclure THE BEST SAFE MARVIN SAFE CO NEW YORK, PHILADELPHIA LONDON. ENGLAND.

 ELOCITY OF IC RO and

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465. and Jannary 30th, 1877. No. 186.787.

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof. and liable to suit therefor.

PRINTINE INTKS:

