

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS. CHEMISTRY, AND MANUFACTURES.

"FIRE ENGINE NO. 31"-THE NEW FIRE BOAT IN USE IN BOSTON HARBOR.-[See page 135.]

Sxientific ब్రmmitam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

 The Sclentific American Supplement

Building Edition.

Spanith Edition of the Scienitic. A1.50 a year.

NEW YORK, SATURDAY, MARCH $1,1890$.	
the	Hair invi
${ }^{\text {nili. . char }}$	
	Hyporic experiment.
Fork	det
Cars coupink, improved	Me
and charcoal	
Damae heary buildings	
	Ph
erimental	Photographic ,
	spa
Gas, naturaral, in iñ indiana	

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLĖMENT NO. 739.
For the Week Ending March 1, 1890. Price 10 cents. For eale by all newedealers

 vi. ${ }^{\text {h }}$

x. $\overline{\mathrm{N}}_{\mathrm{BE}}^{1}$

the world's fair

The Legislature of the State of New York has passed the world's fair bill, authorizing the holding of an exposition in the city of New York in commemoration of the discovery of America four hundred years ago. The city is authorized by this law to raise and expend ten millions of dollars for the acquiring of land and the erection thereon of buildings for exhibitions of art,
science, and other objects of this nature. This liberal science, and other objects of this nature. This liberal
allowance, added to the guarantee fund, which no wexceeds five millions of dollars, puts the whole enterprise on an admirable financial basis. At Washington, the ad vocates of four cities presented their claims, St. Louis, Washington, and Chicago being competitors with New York. It seems probable, however, that the general consensus of all who have dispassionately studied the subject favors New York.
The question of site has been already discussed at length in these columns. The tract of land finally set tled upon has won universal commendation from all who have the success of the fair at heart. We have illustrated it recently, and its striking features of excellence are now known to all. There is one point in connection with this choice that may yet cause trouble. A great deal of private property is included within the limits. A number of owners have agreed to make favorable arrangements with the commissioners, to the effect that they will cede the use or the fee simple of their property for the purposes of the exhibition. Many of these offers indicate a sacrifice of interest that is highly to be praised, and which represents a true subscription to the object in view. But other property owners seem indisposed to yield to the popular demand, and it is probable that there will be difficulty in acquiring possession of much of the territory required. The owners of real estate will probably contest the legality of condemnation proceedings, and at this late period the risk of delay cannot be encoun tered.
The above is more than a possibility. It is so proba ble that it is satisfactory to feel that there are severa ways of escape from the difficulty. One of them has already been suggested by us. The area of Riverside Park could be extended by widening or carrying out a flooring over the steep banks of the park fronting on the river. The park could thus be made sufficient in itself for all principal buildings, while Morningside Park would accommodate any overflow from the main grounds. There would be no difficulty in executing this work, and the space thus covered would be very attractive
Another way, if difficulty arises as to the presen site, would be to abandon the site entirely. The city owns large areas of land elsewhere, in the form of park property, much of which is yet unimproved to any extent. The fair could be relegated to some of these places. Inwood Park, about five miles north purpose. It seems a pity to would answer ever advantages of a long and elevated frontage upon the Hudson River, and the central position as now chosen Hudson River, and the central position as now chosen,
but the advantages of other sites are also many. Should the contention by property owners prevail, and be settled in their favor to the exclusion of the fair from the contemplated site, harm will have been done, but the fair will still have a metropolitan site, and one which will give its organizers every chance to exce
greatest exhibition hitherto held in any country.

ELECTRO-MOTORS ON TRUNK LINES.

At the recent meeting of the National Electric Light ing Association, one of the best authorities on the elec tro-motor, F. J. Sprague, of New York, gave some in teresting testimony concerning its present condition and future prospects. Themost unobservant can scarc have failed to see that it is rapidly taking the place of
horses for street car traction, and he thinks it will dis place the cable. The flexibility of the electrical system the ease with which it is extended, its adaptability to various conditions of service, freedom from long-con tinued breakdown, and the advances which have been made in perfecting its apparatus would seem to insure its supremacy.
Will the electro-motor take the place of the locomo tive on trunk lines? That is a question which ha been guessed at by those more or less competent. Mr Sprague, perhaps as capable as any authority, answers "Probably not, according to present notions of trunk line transportation and by present methods of train dispatching." But he has a plan to propose, or rathe a prophecy to make, indicating the point at whic motor practice is likely to trend upon the domain of It
and deciding whation of supplying energy along a lin and deciding what is the best potential to work with On say a line like that from Jersey City to Philadel phia, while he would not attempt, at least at present to follow the regular train service system, by one more adapted to electro-motors a still more expeditious and convenient one could be supplied. Beginning by de scribing the existing conditions now prevailing in the Pennsyl vania Railroad service between the points men
of 13 hours, 21 regular trains leave the Jersey City station for Philadelphia. Twelve of these make only one or two stops. The others make more or less stops, according to the running schedule. In addition to these there are a number of local trains serving way stations. Taking the through trains only, and allowing an average say of five cars to a train, there are in the 13 hours about 105 through cars dispatched from Jersey City, or at the rate of one car every $71 / 2$ minutes, and of the through cars not making over one or two stops there would be one every 13 minutes.
Supposing an additional track to have been built, leaving the distance about what it is now, say 90 miles with the grades eased and the worst curves rectified, the through cars could be dispatched in two-car unit on a perfect block system, and run through to Phila delphia with not more than one stop at fixed intervals, and at say 60 miles an hour, making the trip in $11 / 2$ hours.
In other words, he would employ the same number of cars as are now employed by the railroad company in its express trains, but instead of sending them in trains at long intervals, he would start two cars on the road to Philadelphia every 13 minutes. With careful figuring he finds that with one station in the middle of the route the potential at the farthest from the sta tion would be 3616 volts, and near the station one ninth higher. He says
' Can we handle it? Yes, in time, but perhaps not yet. Nor is there any necessity for doing so; for if we increase the number of stations and go to a three-wire instead of a two-wire system, making the track the balance of circuit, we would have the motor potential as expressed by the following table:

Stations.		Motor	
Number.	Miles apart.	2 2-wire.	3-wire.
1	$\ddot{2}$	3,516	1,808
2	45	1,808	900
3	30	1,205	603
4	$221 / 2$	904	452

which last brings us down to ordinary street car prac ice, which is only the beginning of what will be don n the effective handling of potentials.
"So, after all, it does not seem such a serious electri cal problem, and certainly not one to shrink from.
" The supposititious case is well within the range o possibilities. A 60 mile express service every ten minutes instead of a 40 to 45 mile service every hou would revolutionize travel. Of the comforts of such a system I need not speak. That it will in the not very distant future be a fact, I know you all agree with me in hoping."

S. J. PERRY

The saddest news in connection with the late sola eclipse is the death of the Rev. Father Perry, chief as ronomer in charge of the English governiment expe dition to Cayenne. The story of his death reveals ex raordinary devotion to duty. He was seized with dysentery shortly before the time of the eclipse, and while suffering greatly and hardly able to walk, super vised the operations and secured perfect exposures for photographs of the eclipse. He personally conducted the work at one instrument. After all was over he gradually grew worse, and was taken on board the ship which set sail for Barbados. He died on shipboard be ore the island was reached, and was buried there-a ember 26, at 4:15 P.M. By his death England has los one of her greatest astronomers. The amiable characte of the man and his devotion to his duty are strikingly revealed in the detailed accounts of his death that have reached us. For many years he was a professor in Stonyhurst College in England, and his work brought the college observatory, for twenty five years under his charge, into high reputation in the astronomical world.

WILLIAM JARVIS McALPINE.

On February 16 of the present year this eminent civil engineer died, after a long life of usefulness in his profession. He was born in 1812, and received a com mon school education in this city. He began his caree as an engineer upon the Erie Canal, and remained con nected with that work until 1846, being one of the chief engineers. He next received an appointment from the Federal government, being made chief engineer of the Brooklyn Navy Yard dry docks. In 185% he was elected State Engineer of the State of New York, and two years later was made a State Railroad Commissioner One of the trophies of his life was won in 1870 , when his plans for the improvement of the cataracts of the Danube River were accepted by the Austrian govern ment, he having to compete with the leading engineer of Europe. The Chicago water works were constructed under his supervision. He was elected president of the American Society of Civil Engineers for 1868-69, and was the first American elected an honorary member of the London Society of Civil Engineers. His opinions on the recent failure of the South Fork dam, bringing about the destruction of Johnstown, were widely quoted, as he was considered a high authority on earth-work dams.

The committee appointed by the New York State Prison Superintendent to test the efficiency of the electrical appliances and dynamos placed in the State prisons, for the execution of condemned murderers by electricity instead of by hanging, has made its report to the superintendent The committee consisted Calos F Macdonald M.D.A. D. Rockwell, M.D Carlos F. Macdonald,
Louis H. Laudy, Ph.D.
The contract for appliances with which to carry out The contract for appliances with which to carry out
the law called for "one 650 light aiternating current the law called for "one 650 light aiternating current
dynamo with electro-motive force variable at will from 1,000 to 2,000 volts in each one of the three State prisons, each dynamo to be furnished with an exciter and rheostat." A Cardew voltmeter and some other apparatus were also to be placed in one of the State prisons which the superintendent might specify. The method employed by the committee to determine the electromotive force of the dynamos was to measure, by means of a Cardew voltmeter, the full potential along a resist ance of German silver wire. The committee says
" With this end in view were constructed four frames, each holding 100 ohms of No. 15 German silver wire. The 100 ohms were divided into portions of ten ohms each. In parallel with each of these portions was put a fifty volt lamp of twenty candle power. The object of the wire was to maintain the potential when the Cardew voltmeter was applied to the lamps. The voltage between each lamp was taken with a Cardew voltmeter which had been previously calibrated.
"This method furnished a ready though inexact means of observing the potential from the candle power of the lamps. The exact measurements were made with the Cardew voltmeter applied successively."
The committee says that "the term electromotive force, as used to express potentials on an alternating current, needs definition," and these definitions are given:

1. A commercial voltage of, say, fifty volts is such an alternating voltage as will, upon an incandescent lamp or Cardew voltmeter, produce the same light and heat effects as fifty volts in the case of a continu ous current.
' 2 . In alternating current dynamos the electromo tive force undergoes rapid periodic changes, being at one instant zero, increasing to a maximum, diminish ing again to zero, then reversing in direction, it again rises to a maximum, to fall again to zero. This cycle of changes is usually repeated many times in a second The average of these rapidly changing strengths is sometimes called the electromotive force of the dy namo.
2. Sometimes the maximum of electromotive force obtained in the cycle of changes is called the electro motive force of the dynamo, hence the figures will vary according as the electromotive force acting in any ap paratus is expressed in accordance with one or the other of these definitions.'
The committee adds: "In the following tables the results are stated in the three ways referredto, namely commercial, mean, and maximum:

SING SING Prison.
Commercial volt:ge.
Mean voltage......
Maximum voltage.
Speed of dynamo...
Speed of exciter.
1.560
$.1,404$ and to supp tested was an alternating current in candle power each
aUburn prison.

Commercial voltage	1,680
Mean.	1,512
Maximum	2,376
Syeed of dynamo.	.1,700

peed of exciter.
" The dynamo tested was an alternating current in tended to supply 650 incandescent lamps of sixteen candle power each

CLINTON PRISON.
Commercial voltage

Mean

Speed of dynam
Speed of exciter.

..1,170

The dynamotested was an alternating current in tended to supply 650 incandescent lamps of sixteen candle power each. These quantities were the maximum that the committee could obtain with the ma chinery at their disposal."
The report concludes as follows
At Auburn prison the committee tested the deadly energy of the current on a calf and also on a horse the latter weighing about one thousand pounds. Placing one electrode on the forehead of the horse and the other on the outer aspect of the hind leg just above the gambrel, a current of electromotive force
,200 volts was passed. Death was instantaneous
In order to throw light upon the question as to the ossibility of resuscitation after apparent death by electricity, Dr. George E. Fell, of Buffalo, was invited to he present with an apparatus devised by him for this purpose. Immediately after the calf had received the
electrical stroke Dr. Fell opened the wind pipe and in-
serted the tube of the apparatus, and for half an hour kept up forced respiration, but failed to elicit any evidence of life. This demonstrated that the condition was not one of suspended animation, but of death.
At Clinton Prison a young bull, weighing about six hundred pounds, was instantly killed by a current of 900 volts. On receiving the full force of the current, 900 volts, the animal fell and instantly the muscles re laxed, owing to a drop in the voltage from 900 to 400 . The period of contact was continued, however, for ten seconds; but as the experiments have shown that a current of 400 volts is hardly sufficient to kill one of the larger animals, the conclusion that the bull was killed by the instantaneous impact of 900 volts is inevitable.

Drs. Macdonald and Rock well, of the committee, had previously experimented on various animals, including dogs, calves, and horses, and had found that a current of 1,000 volts was sufficient to instantly kill a horse, while one of 500 volts was all that was necessary to kil dogs and calves weighing as high as 75 pounds.

In all these experiments the contact varied from ten seconds at the lowest to twenty seconds at the highest. The minimum time necessary to effect death was not accurately determined.
From the tests of the dynamos, as described, together with the experiments on animals, which were regarded as satisfactory, the committee entertains no doubt as to the efficiency of the three dynamos at Sing Sing, Auburn, and Dannemora to accomplish the work fo which they are intended.

"Experimental science."

Rarely does a book upon any subject find purchaser mong all classes of people. This is especially true in regard to scientific books. The majority of book buy ers are seeking information on some special subject and as a consequence purchase only such books as are useful in one particular line; but notwithstanding this there is an unmistakable inclination on the part o many people in widely different walks of life to ac quire at least a general knowledge of the principles underlying all modern industries based on early or recent developments in physical science. To us this has been particularly noticeable since the publication of our new book by Mr. Geo. M. Hopkins, entitled "Experimenta Science."
We find that it meets with a large sale, not only among science teachers and students, but also amons men of every profession. Persons in almost every line of business have manifested their interest in science by he purchase of this book. From many of these we have had letters expressing great satisfaction with the character of the work. The book has proved itself t be exactly suited to the use of those who desired to se cure by the experimental method a good knowledge of magnetism, electricity, electrical measurements heat, light, polarized light, photography, microscopy acoustics, pneumatics, hydraulics, and the wide range of other subjects included under the general title of physics.

James Watt the Inventor of the Letter Copying
In his recent inaugural address before the University of Glasgow, Prof. Archibald Barr, after speaking of Watt's steam engine discoveries, says
Watt's other inventions are too numerous to men tion, and most of them-such as the parallel motion the governor, and the steam engine indicator-are well known to have come from him. But the very multitude of his inventions makes his name to be little asso ciated with some of his most fruitful works. Had he made no other invention, or had he been of a more self-assertive disposition, his name would probably have become known wherever business is conducted, in connection with his invention of the method, still almost universally in use, of copying letters by means of the copying press.
It would seem to be the common fate of all great and novel inventions to raise a storm of opposition from those whom they are most calculated to benefit. Dudley's invention of the process of smelting iron by means of coal instead of charcoal brought him only persecution from the iron masters and the destruction of his works by rioters at their instigation. The steel nakers of Sheffield attempted to get the government to prohibit Huntsman from working his great inven tion-the cast steel process-and nearly succeeded in driving the cutlery trade out of their own hands and
out of Sheffield. David Mushet's discovery that the "wild coals" were ironstones of great value excited or years a strong prejudice against him in the minds of the iron masters of Scotland, who have since made not only their own fortunes, but in great measure the Scotland of to-day, through the working of those blackband ores. Neilson's invaluable invention of the hot blast for smelting furnaces was not only ridiculed by the iron masters, but so stoutly resisted that for ears he was unable to get it even tried on a practical scale. So again the landed proprietors, who had nerhaps most to gain from the opening up of communications throngh the country, strongly opposed the early
rail way projects. They supposed that they were to be
reduced to beggary by the "infernal railroads," as one land owner called them, declaring that he " would rather meet a highwayman, or see a burglar on his premises, than an engineer!" Many wore such in stances might be quoted.
We need not, therefore, be surprised to find that Watt's copying process, though brought out practically in its present state of perfection, found little favor at first with many business men; but it is curious now, after the invention has for more than one hundred years been almost indispensable to the class of men who then resented its introduction, to read of the bitterness of the opposition which it met with. The fear that "it would lead to the increase of forgery" ran so high that on one occasion when Smeaton and Boulton (Watt's partner) were sitting in a London coffee house, they heard a gentleman exclaiming against the copying machine, and "wishing the in ventor was hanged and the machines all burnt." No one could attempt to estimate the value to the world of this single invention, and still comparatively few people now know to whose labors and knowledge they we the boon.

PHOTOGRAPHIC NOTES

Mounting Large Prints.-Notwithstanding that of late India rubber rollers are much employed for mount ing prints, I find that a stiff bristle brush is much su perior to anything else for insuring perfect adhesion of the prints to the mounts. Use it as follows: Paste your print, lay the mount upon it, turn it over with the print adhering to it, lay a sheet of tissue pape over the print, then brush it down, commencing from the middle of the print
No air bubbles will remain, neither will the larges prints be strained or distorted. A small clothes brush or such a one as is used by copper plate printers to brush their paper with, is the kind to use.
Removing Emulsion from the Backs of Negatives.Plate makers continue to be very generous with their emulsion-on the reverse of plates, just where it is not required. This, of course, must be cleaned off, in order to prevent a separation of molecules under the pressure of the printing frame. A better instrument for this purpose can hardty be imagined than a ball of horsehair, such as is used by copper plate printers to assist in freeing their hands from ink (they call it a "tuzzy "). Apply this to the back of the plate upon re moval from the fixing bath, then rinse under the tap. C. T. Chesterman in the Photographic Review.

Light and Health.

Most persons would say that the outside light is two or three times as strong as that within our houses But the ratio of difference is vastly greater. Carefully prepared tables show that for a view at the seashore comprising sea and sky mainly (with a lens and plate of a certain speed), an exposure of one-tenth of a sec ond is sufficient. An open landscape a way from the sea wouid, with the same lens, the same aperture, and the same plate, require one-third of a second. A fairly lighted interior would require two and a half minutes while a badly lighted interior, such as rooms which most ladies prefer to occupy, would require half at hour to obtain an equally good picture. In other words, patients strolling on the seashore in sunny weather are in a light not two or three times, but eighteen thousand times stronger than that in the ordi nary shaded and curtained rooms of a city house; and the same patients walking along the sunny side of a treet are receiving more than five thousand times as much of the health-giving influence of light as they would receive indoors in the usually heavy curtained rooms.-Health.

The Niagara River Hydraulic Tunnel, Power, and Sewer Company will now, it is stated, carry out its plan for utilizing the fall of water at Niagara, by building its main tunnel and connecting cross tunnels with wheel pits. The estimate of cost is $\$ 2,250,000$. It is estimated that if thirty mills of 500 horse power each are built, it would pay five per cent upon a capital of $\$ 3,000,000$, while if all privileges were taken the result would pay the interest upon a large block of bonds and a handsome return upon the stock. One of the best known banking houses in Wall Street is deeply interesting in this undertaking. The scheme is one of sound engineering and is thoroughly practicable.-The Electric World.

The Automatic Phonograph Exhibition Company, of New York city, has been incorporated in this State with a capital stock of $\$ 1.000,000$. It is formed to nanufacture. lease, use, and sell a nickel in the slot machine, by means of which the dropping of a coin in the slot will operate a mechanism which will cause a phonograph or phonograph-graphophone to produce the sound recorded upon its cylinder, and after such reproduction cause the diaphragm to return to its original position. The trustees of the company are Felix Gottschalk, Willard L. Candee, Thomas T. Eckert, Jr., Richard W. Stevenson, Victor E. Burke, John E. Prague, and James Molinari.-The Electric World.

AN IMPROVED PRINTER'S GALLEY.
A printer's galley in which the type may be locked in position without using the ordinary wooden quoin is shown in the accompanying illustration, and has been patented by Mr. Williain S. Rogers, of Los Angeles, Cal. Near the ends of the galley are secured toothed cross bars, through slots in which extend stems rigidly connected to a bar extending length wise of the galley, the teeth in the cross bars being a nonpareil em apart. These teeth on each crossbar are engaged by a springpressed pawl through which the stems of the longitudi-

ROGERS' PRINTER'S GALLEY.

nal bar pass. The longitudinal bar is inclosed in a case, with bow springs between the bar and the case, the bar and its case thus forming a two-part side stick having a yielding working case. A spring may also be arranged at each end of the longitudinal bar to draw the bar to one galley flange. Type placed in position on this galley will be held to place without using the ordinary furniture and quoins.
For further information relative to this invention address the inventor or Mr. Julius Copp, box 1426, Los Angeles, Cal.

HYDRAULIC PRESSURE GOLD CHLORINATION PROCESS.
We annex an illustration of a chlorinating cylinder in which, by the application of hydraulic pressure, gold is extracted from refractory ores. The process is the
invention of Mr. J. Holms Pollok, B.Sc., of the Glas invention of Mr. J. Holms Pollok, B.Sc., of the Glas-
gow University, and is thus described by Engineering:
The ore to be treated is first crushed to about the fineness of sand, preferably by rollers, to avoid as far as possible the presence of much fine dust. It is then, when necessary, roasted at a dull red heat for about
six hours, which removes the sulphur and renders the ore porous or spongelike. If much sulphur is present the roasting takes somewhat longer, and if copper, lead, zinc, etc., are present, about 5 per cent of salt must be added, so as to chlorinate these metals in the furnace and prevent them consuming the chlorine in th subsequent operations. After roasting, the ore is raked from the furnaces and allowed to partially cool, it is then placed in the chlorinating cylinders in charges of about one ton of ore at a time, together with 30 pounds of bleaching powder and 40 pounds of niter cake, or about $11 / 2$ per cent of bleaching powder and 2 per cent of niter cake. So soon as the ore and reagents are placed in the cylinder the cover is screwed over the charging door and the valve on the hydraulic pipe opened, when the water is forced in to a pressure of about 100 pounds per square inch. Considerable advantage is gained by allowing the air initially present in the cylinder to escape during the admission of the water, as it acts detrimentally in wasting chlorine. This may easily be done by opening the cock, afterward used for blowing off the excess of chlorine, and closing it as soon as the air has escaped and the cylinder is full of water.

The cylinder is then revolved for one hour, when the niter cake reacts with the bleaching powder, liberating chlorine gas, and as there is no air in the machine, the whole of the chlorine passes into solution, and the high and steadily applied pressure drives this strong chlorinating liquid into the pores of the ore, so that the gold contained is rapidly and completely converted into the chloride and dissolved in water. The cylinder sits on four friction wheels and is re volved by a shaft passing through two of these. The hydraulic pipe passes through the center of one end of the machine and is connected to the machine by a packing box, which while it keeps the pipe perfectly tight, leaves the machine free to revolve. By this means the pressure of 100 pounds per square inch is maintained throughout the whole operation. Immediately beyond the packing box is placed an automatic rubber valve, which admits water under pressure, but prevents amy ore or
chlorine solution from finding its way back into the pipe from the accumulator. After the chlorination is over the cylinder is stopped revolving, and the excess of chlorine blown off by connecting a flexible pipe to a stop cock on the top of the cylinder. The cover is then removed from the charging door and the ore and solution of gold run into a filter. The liquor is then
pumped out of the filter into precipitating tanks, where the gold is thrown down by ferrous sulphate ($11 / 2$ per cent) or sulphureted hydrogen, or, if preferred, it may be precipitated by running the solution through a bed of charcoal, the charcoal being afterward burned. The gold is then collected and fused into bars. Coarse gold when present is obtained by running the refuse from the chlorinator over amalgamated copper plates. The inventor does not claim that the process is new in its entirety. What he does claim is that, by the application of hydraulic pressure in the process of chlorinating under pressure, one can operate better,
quicker, and cheaper than by any method hitherto in quicker, and cheaper than by any method hitherto in
use. The cost of treatment of ore in England is estiwated as $\$ 1.50$ per ton. In reckoning the cost at the gold fields it is necessary to include freightage. Ore has been received from all gold and silver producing countries in the world, and there has been extracted on the average 95 per cent of the gold present in py rites or float gold ores.

Practical Vision Testing.

Mr. Brudenell Carter, well known ophthalınologist has been lecturing to the Society of Arts on practica vision testing. The greater part of the lecture was de voted to color blindness and the means of testing it, so that it is not surprising, says the Chemist and Druggist, that controversial and personal matters had a larger share of the discourse than is commonly to be found in lecturesdelivered to the general public. There are several methods of testing color blindness, and one of the objects of the lectures was to point out that the tests employed for those in the public service, as, for example, in the examination of seafaring men and of engine drivers, are not sufficiently crucial, and men who are really color blind can be "coached" to pass the examination in this subject, but this coaching does not extend its influence so far as to prevent collisions. It is unnecessary to enter here into the merits of the re spective tests which are used; but when such authorities as Mr. Brudenell Carter state that they do not completely guard the public against danger, it is time that some steps were taken to test the truth of the asser tions.
In regard to vision testing for the selection of spec tacles and similar purposes, Mr. Carter said that print ed types, of regulated sizes, are much used for vision testing, and answer fairly well for many purposes; but they are inferior, in the accuracy of the results which they afford, to those groups of epots which correspond with the anatomical structure of the retina. The best kind of spots are hexagonal in shape, and the best me chanical arrangement for testing vision by groups of dots is to have a series of these groups placed in a cir cle near the margin of a revolving wheel, which again is placed behind a disk with a marginal apertur

hydraulic pressure chlorination process. curacy.
the next step is to allow him gradually to approach the dots until he reaches a distance at which his mistakes cease. The difference between the distance at which he ought to see and the distance at which he can see permits the degree of acuteness of vision which he pos esses to be stated in a fraction with absolute ac

AN IMPROVED CABLE GRIP.

A cable grip by means of which a car may be readily connected with a running cable, or disconnected there from, while allowing the cable to remain on the sheaves even on the sharpest curves, is shown in the accompanying illustration, and has been patented by Mr. Elijah Dainty, of Coal Bluff, Pa.

DAINTY'S CABLE GRIP.

as it would appear applied to a cable passing over a roller and around the pulley or sheave on a vertical axis at a curve in the track. The shoe has a semicircular part, through the top of which passes the cable, the under side of this part being rounded off at the ends so as to easily pass over the sheaves, while one end of the shoe has an overhanging curved flange to prevent the cable from jumping out of the shoe. The cable is clamped in the shoe by a cam pivotally connected with the shoe in its middle by a pin passed through upwardly extending flanges of the shoe and the cam, the latter being formed on the ower end of a lever fulcrumed on a pin held in a coupling link or bracket, which is here shown as a link adapted for connecting the adjoining ends of two cars to be moved by the cable. The pin connecting the cam with the shoe has an offset on one end, and on its other end a short arm extending in an opposite direction, whereby the pin will always be held from falling out of place. The lever operating the cam may be adjusted to a vertical position by means of a pin adapted to pass through apertures formed in flanges of the link and through a central aperture in the lever, and when the lever is so adjusted the cam is disconnected from the cable; but when the lever is pushed to one side, and thus held by passing the pin directly through the flanges over the lever, as shown in the en graving, the cam then engages the cable and clamps the latter in the shoe. The cam and the link are preferably made double to permit oi attaching the cable grip to either end of a car.

Cheap Photographic washing Troughs.

For Plates.-Take a metal plate box and make a very small hole, as small as you can, at the bottom. Put the plate in that you want to wash, and let the tap drip into the box rather faster than the water can run out through the hole at the bottom. The excess will of course run over the top, but the hypo will escape at the lowest point. Some plate boxes are made so that the glase projects over the top. These do not answer the purpose.
For Prints.-What you want to do is to introduce the supply of fresh water at the bottom, so that it mixes with and carries away any hypo accumulation that settles down. This can be done by putting a bit of elastic tubing over the nozzle of the tap long enough to reach to the bottom of the vessel.
But an easier plan is to use a funnel. There are two ways of doing this, either let it stand on its bigend in the basin with its small end projecting over the surface (see that it is exactly under the tap, so that the drip falls down the tube and comes into the basin under the rim of the big end), or, if you have anything you can make a foot of, you can put the big end upward. I use a small earthenware funnel for this that has no straight part. If the side of the basin is tolerably upright, it is enough to of such a size as to disclose one group at a time. The \mid rest the side of the big end of the funnel against the person to be examined is placed at the proper distance (50 meters), in proper light, and the disk is turned round. As each group of dots is disclosed, the person tested should name the number of dots composing it, rapidly and without mistake. Whoever can do this has normal vision. If the examinee makes mistakes,
side of the basin and let the drip pass through the former.-Q. D. in British Journal of Photography.

Recent discoveries made by the use of the spectrosope show that all the heavenly bodies appear to be composed of the same chemical elements.

AN IMPROVED BRAKE STAFF SUPPORT

An inclosed brake staff support, designed to take the place of the ordinary brackets and pawls secured to the woodwork of the car, is shown in the accompany ing illustration, and has been patented by Mr. Daniel C. Meeker, of Limestone, Cattaraugus County, N. Y. Fig. 1 is a perspective view of the device, which is shown in section in Fig. 2, Fig. 3 showing its applica tion on a car. A bed plate is arranged for connection with a car roof, or the plate of a box car, this plate being formed with a partial housing and provided with a swinging section, which is a complement of the hous ing made integral with the bed plate. The upper end of the brake staff is guided by the bed plate, to which

MEEKER'S BRAKE STAFF SUPPORT.

the pawl is pivotally connected, its foot piece extend ing out over the casting. Both the latter and the hous ing section are preferably made of malleable iron. This construction is designed to insure a proper holding of the pawl and ratchet, and prevent the entrance of snow, hail, dirt, or any matter which would be likely to clog and prevent their operation.

AN IMPROVED WINDOW SHADE EXHIBITOR
The accompanying illustration represents a conven ent portable device to receive and support a number o curtains or window shades, permitting the ready dis play of one or more of them at the same time, while the display samples will be securely housed when not on exhibition. The invention has been patented by Mr. Edwin McManus, of Randolph, N. Y. The upper and main portion of the exhibitor consists of a rectangular frame made of two upright end boards spaced apart by top and bottom pieces, while the open sides of the frame are closed by opposite doors hinged to the bottom piece to hang perpendicularly when open, as shown in the illustration. The frame is mounted on legs having stay braces and provided with casters. In vertical strips or stiles secured to the end boards of the frame elongated thumb screw bolts are inserted at spaced intervals, bracket blocks being inserted at corre

MCMANUS' WINDOW SHADE EXHIBITOR.
sponding intervals in the opposite stile, the latter being perforated to receive the pintle ends of rollers de signed to support the window shades. 'The inner ends of the thumb screw bolts are axially perforated to retain in horizontal parallel planes the several rollers, which are provided with the usual springs to automatically roll up the attached shades. There are two series of spaced rollers, one at each side of the frame, near the doors, and when either door is let down, two or three samples of shades may be readily drawn out for exhi bition, and others drawn out to overlap them, all be ing automatically returned to their places when the examination is completed.

AN IMPROVED CAR COUPLING.
A car coupling designed to be simple and durable in construction, and very effective and automatic'in operation, is shown in the accompanying illustration, and has been patented by Messrs. Robert L. Finley and Henry H. Harper, of Bonham, Texas. The usual opening in the drawhead continues rearward into an opening in which slides longitudinally a block having its front end ally a block having its front end
concave, to conveniently adapt itself to the end of the coupling link. This block supports the coupling pin previous to coupling the cars, and to its rear end is secured a backwardly extending rod, fitted to slide in the drawhead. On this rod is a coiled spring, and a pin secured in the rod has projecting ends extending into slots in the top ends extending into slots in the top
and bottom of the drawhead, to and bottom of the drawhead, to
limit the inward and outward movement of the rod and the block secured thereto. A key limits the forward and backward movelnent of the drawhead, the rear end of which is guided on a pin on which is a coiled spring. When the cars are to be coupled, the pin is raised and rests on the top of the block, as shown in the large view; the block being forced outward by the coiled spring on its attached rod, and the
coupling pin in theothercar engag-
ing the link in the usual way. When the cars come together the block is pushed back, compressing the spring and permitting the pin to drop. Two devices are shown for raising the pin, one view showing the pin connected to an upwardly extending rod, with a handle on its upper end to be operated from the top of the car, and pivotally connected by a link with an arm formed on a longitudinal shaft turning in suitable bearings on the end of the car. On each end of the longitudinal shaft a handle hangs downward, whereby the link may be raised from either side of the car. In the other device shown, a transverse bar is secured to the upwardly extending rod, the ends of the bar being pivotally connected by links with the inner ends of levers fulcrumed on the end of the car, and extending in opposite directions, so as to be within easy reach of the rainmen on either side. By either of these means the coupling pin may be readily raised until the block in the rear of the link is forced outward by the spring, when the pin rests on the block, as shown.

Tannin in the Treatment of Burns.
A correspondent of the Pharmaceutische Zeitung speaking from his own experience, says that tannin cannot be too highly recommended as an application to burns, especially when very extensive, the skin being entirely removed. A 5 per cent solution is queezed from a sponge over the denuded surface which is then dressed with some soft ointment, either with or without tanniu. Pain immediately abates, and the healing process is wonderfully rapid. The tannin solution must, of course, be freshly applied as often as the dressings are renewed.-Drug. Circular.

AN IMPROVED BUTTER WORKER.

The accompanying illustration represents a machine in which the butter may be worked as taken from the churn, the position of the butter being automatically shif ted while a rolling pressure is brought to bear upon it. The invention has been patented by Miss Alma A. Foster, of Pomeroy, Ohio. The trough is essentially triangular in general contour, although curved at the outer or wider end and straight at the inner end. This trough is supported to extend outward from a frame supported by four uprights, the trough inclining slightly down ward to the rear, where there is a faucet by which any liquid worked out of the butter may be drawn off. The main front portion of the trough has a central rigidly attached floor section, on each side of which is a wing section, each adapted to be brought to a perpendicular or inclined position relative to the central floor section, this operation being effected by mean of chains attached to brackets operated by rods or levers connected with the gearing at the rear of the machine, the operation being automatically effected as the machine is worked to keep the butter constantly in position to be worked by the central roller. The roller is tapering and preferably corrugated or ribbed, and is held to roll from side to side in the trough, by means of a mechanism connected with that which operates the wings, the detail of which is partly shown in the small iews, the whole being operated by a crank arm By this means, as the butter is rolled upon the central floor section, by the movement of the roller to one side, it is again returned to position, by the movement of one of the side wings, to be again rolled the other way in the backward motion of the roller, and this movement is continuous until the operation is completed. The trough may be readily removed at any time for cleaning or other purpose.

The American Metrological Society.
This society, founded in the year 1873, has for its object the improvement of existing systems of weights, measures, and money, and is largely comnitted to the metric or decimal system of measures. Its constitu tion very clearly defines its scope and specifically state that its object is to secure the use of the decimal system.

harper \& finleys car coupling.
But beyond this limited scope its operations include the securing of common units of measures for physical work and purposes of general investigation. The objects of the society are worthy of all commendation, and their modes of operation, as disclosed in the constitution, include appeals to legislative bodies, boards of education, school teachers, boards of trade, and the like, as weli as direct appeals to the people, who eventually must be the arbiters in the matter. The following are the principal officers elected for the year 1890: The president is B. A. Gould, Cambridge, Mass.; corresponding secretary, О. H. Tittmann Washington, D. C.

AN IMPROVED CHECK HOOK FOR HARNESS.
A check hook attachment consisting of a retaining plate adapted to engage the point and close the en-

FOSTER'S CHECK HOOK FOR HARNESS.
trance to the hook, while it is designed to receive the back band strap, which serves to normally hold the plate in position, is shown in the illustration herewith, and has been patented by Mr. George E. Foster, of Santa Ana, Cal. The hook is shown applied to the tree and saddle, the latter being slotted and the upright part of the retaining plate passed up through it. The retaining plate is angular, and its upright part, when the lower portion is in horizontal position, closes the entrance to the hook, but when the lower portion is tipped downward the hook is released, permitting free entrance or exit for the check rein. In adapting the device to draught harness the hook is formed with a slot or loop which receives the retaining plate. The plate is held in place in the hook and saddie hy a small screw.

FOSTER'S BUTTER WORKER.

Irrigation in the West

Major J. W. Powell, the director of the United States Geological Survey, contributes an article to the March Century on "The Irrigable Lands of the Arid Region," from which we quote the following :

- The Snake or Shoshone River heads in the great forest-clad mountains of Wyoming and runs across the line into Idaho, then passes quite across the Territory until it becomes the boundary line between Idaho and Oregon. Passing the northeastern corner of the lastmentioned State, it enters the State of Washington, and runs westward for a long reach until it debouches into the Columbia. The Shoshone River is one of great volume, second only to the Colorado. Reservoir sites along its course in Wyoming and Idaho have already been revealed by the surveys, and it is shown that in the upper region water can be stored to an amount of more than $2,000,000$ acre feet. This will irrigate at the first usage at least $2,000,000$ acres of land ; and if they be properly selected, so that the waters can be collected again and again after serving the land, the area redeemed will be more than $4,000,000$ acres. There are many other tributaries below that have not yet been examined, and it is safe to say that the waters of the Shoshone with its tributaries may ultinately serve from $8,000,000$ to $10,000,000$ acres. In its utilization three clases of problems are involved. If the waters are taken out in small canals near to the river, and the lowlands served first, and prior rights and interests established on such lands, then but a small part of the stream can be used, and the greater part will run away to the Pacific Ocean; and subsequently the region of irrigation can be enlarged only by buying out vested water rights scattered along the course of the river. But if at the very beginning the water can be taken out high up the river and carried in great canals to either side and there distributed to the higher lands, and used over and over again on its return, a complete utilization can be secured, and the cost of the construction of the system of irrigation by reser voirs and canals will be greatly reduced per acre. To irrigate $2,000,000$ acres of land near to the river by short canals taken out along its course here and there will cost more than half as much as the construction of hydraulic works that will serve from $6,000,000$ to $8,000,000$; while the scattered minor works will be for ever subject to destruction by the floods, and the agriculture secured will be of less value per acre, because the best lands will not be served, and only imperfect drainage will be secured."

AN IMPROVED MACHINE FOR STACKING HAY, ENSILAGE, ETC.

The accompanying illustration represents a portable stacker, capable of automatic elevation as the stack is formed, and designed for convenient manipulation, while expeditiously forming the stack. It has been patented by Mr. Daniel H. Talbot, of Sioux City, Iowa The drum of the machine is conical, and may be made of a series of graduated rings or disks tied together so that they may be detached when desirable, or of a series of strips essentially triangular in cross section provided with a longitudinally tapering outer cylindri cal surface. The drum has a trunnion at its reduced end, terminating in a cap, to retain in position a loose sleeve having on its under face an outwardly project

TALBOT'S MACHINE FOR STACKING HAY, ENSILAGE, ETC
ing arm, with an opening through which passes the perpendicular bar or post around which the stack is formed, this bar forming the pivot around which the machine travels. The frame is made with two down wardly inclined side beams, attached at their inner ends to a cross bar, and united at their outer ends by a larger cross bar or beam, making the frame essen tially triangular. Upon this frame. above the conical drum, is an inclined platform, upon which the hay elevating mechanism may be placed and frow which the material is fed in the track of the drum. A shield
is attached to the forward end of the frame to protect the journal end of the drum from contact with the ma terial to be stacked. A vertically adjustable auxiliary frame is attached to the main frame at one side to release the bearing of the drum from the load carried by the platform, this auxiliary frame usually consisting of two upright side pieces, with a series of apertures, the uprights passing through straps secured to the main frame, and being secured thereto by a bolt or pin. On the lower end of the uprights is a horizontal sill, so fastened that it may be vertically inclined, cast ers being secured to the sill. The machine is ordinarily operated with a team attached to a vertical beam adjustably fastened to the rear or outer end of the main frame.

AN IMPROVED HOE OR RAKE.

The accompanying illustration represents an im proved implement in which the blades are secured by

VOLTZ HOE OR RAKE.
bolts to the handle to form a variety of tools for farm garden, and plantation use. The invention has been patented by Mr. William Voltz, of No. 189 Chicago Avenue, Chicago, Ill. Fig. 1 represents the handle of the implement, and Fig. 2 a double tool blade, as a combined hoe and rake, for attachment thereto, Fig 3 showing a rake, and Fig. 4 a potato fork, attached to the handle. Except when used as a double tool, the plate on which the hoe or rake is formed has L-shaped slots to receive the bolts secured on the plate fastened on the lower end of the handle, the tool blade plate being then passed to place through the slots and locked in position by nuts screwed on the bolts. These nuts are preferably arranged with a cap, into which passes the outer end of the bolt, which is then hidden from view, and grass and weeds are prevented from twisting around the bolts. In the central plat of the double tool, as shown in Fig. 2, the bolt holes are simply suitable circular apertures, and in attach ing this tool to the handle, the nuts must first be en tirely unscrewed from the bolts.

Controlling the Phonograph and Graphophone
It was announced last week in New York that a syn dicate, composed of several prominent capitalists among them Henry G. Marquand, D. O. Mills, Jess Seligman, and J. M. Waterbury, of New York, and John Wanamaker and Thomas Dolan, of Philadelphia, had purchased the foreign graphophone patents fo $\$ 50,000$ cash. Inquiry elicited the fact that arrange ments had been perfected with Mr. Edison by which a new company is being formed to control both ma chines in all countries outside of the United States and Canada. One of the Philadelphians comprising the syndicate said: "There has been such a syndicate formed, and those who comprise the syndicate are D. O. Mills, H. G. Marquand, H. H. Cook, W. Marti Grinnell, Jesse Seligman, and J. M. Waterbury, of New York, and Thomas Cochran, William Wood, George H. McFadden, Thomas B. Wanamaker, and Thomas Dolan, of Philadelphia. John Wanamaker, the Post naster-General, is not in the syndicate. The company will have possession of all machines and instrument nonder the patents, and the capital backing the syndicate is unlimited. The particulars will be deve oped in a few days."-The Electric World.

The Difference between Coke and Charcoal.
Dr. W. Thoerner, in an article published in Stahl und Eisen, gives the result of a series of experiments designed to bring out the comparative characters of coke and charcoal. He points out that charcoal consists of a large number of more or less regularly arranged cells, joined to one another longitudinally. The walls of the cells are easily permeable by gases, and readily oxidizable. Coke, on the contrary, contains generally separate unconnected cells or groups of cells, the walls of which are composed of a dense vitreous substance which is impermeable by gases and exceedingly difficult to oxidize. Coke acts differently to charcoal in the furnace, and less advantageously because of these differences. If, therefore, it were pos-
sible to cause the structure and character of coke to more nearly resemble charcoal, either by rendering it
more porous without sacrificing strength, or by making it more easily oxidizable, the coke would be greatly improved. Dr. Thoerner gives the results of severa analyses, from which it seems that ordinary gas coke possesses lower real and apparent specific gravity than oven coke, and shows more cell space in its substance. Wood charcoal possesses thrice the purity of coke, with much lower specific gravity and sometimes double the cell space. Pine charcoal, the most porous of all possesses the densest charcoal substance. In charcoal the smallest details of the original structure of the wood are preserved; the arrangement of the cells being such that the gaseous products of carbonization can easily escape without rupturing the substance. Conse quently, when the charcoal is burnt, the entrance and circulation of oxygen in the cells is equally easy. The charcoal substance does not pass through a stage o fusion in the carbonizing process; whereas in coke the substance has been fused into a dense, impenetrable vitreous mass through which, in consequence of the want of continuity between the cells, the oxygen can only slowly penetrate.

Natural Gas at Anderson, Ind.

At the recent annual meeting of the Citizens' Gas Company, of Anderson, Ind., president John L. Fork ner made an interesting report, from which we extrac the following

We have laid 17,000 feet of additional mains, com pleted a high pressure line through the entire system making a complete circuit, from which we feed the low pressure mains, at such points as it is necessary to give perfect service
The mains of the Citizens' Gas Company now extend throughout the entire city of Anderson proper. They are furnishing fuel to the whole populace, with but few exceptions. We undoubtedly have the best system and the most complete plant in the Indiana gas field.
We have now four first class gas wells, giving an out put of from $20,000,000$ feet to $30,000,000$ feet of gas per day. The plant is in a splendid condition.
Not an accident to person or property has happened during the past year, and but one small break has oc curred in the lines, and that was of minor consequence and soon repaired.
The splendid system of free fuel, inaugurated by ou company, has attracted many people to our prosperous and growing city, who are buying and building home among us, that they may enjoy the luxury of natural fuel.

AN IMPROVED HEDGE FENCE.

The accompanying illustration represents a method of constructing a hedge fence by plashing in a sys tematic way, connecting the upper ends of the canes by a horizontal rod or rail formed in sections, and hav ing spliced connections with each other. The inven tion has been patented by Mr. Peter Geiser, of Waynes borough, Pa. The trimmed-out canes or stalks are drawn to their desired inclined position, and thus held by a series of wire bracing strands with open-ended hooks on one end to embrace the roots, slightly unde the surface of the ground, the wires passing diagonally upward to be bent around certain of the canes and passed horizontally backward, where they are inter lapped without fastening on opposite sides of adjacen canes. To stiffen the top line of the canes a horizontal

GEISER'S PLASHED HEDGE FENCE
railing or strand is passed or plashed through between and with them, this line being made up in sections with splicing loops, as shown at the bottom of the engraving. The top ends of each of the canes are pre ferably tied to this railing with tarred or other waterproof cords or wire. Below this line may be used one or more horizontal strands of barbed wire, which are simply passed between and alternately on opposite ides of the canes, without fastening them otherwise thorns.
the new boston fire boat "enaine no. 31."
The city of Boston has recently built and put into service a fire boat, designed for use as a floating fire engine. As the vessel in question represents the most advanced type of fire boat, and in a number of points differs from any hitherto constructed, we illustrate it in this issue. The construction of boats of this kind has now been developed until they are no longer mere tug boats with special pumps. Everything in their design is intended to insure the production of a true floating fire engine, one that for days in succession, without a minute's intermission, can throw waterupon burning buildings or shipping. Thus on the occasion of the burning of the great elevators of the New York Central Railroad in this city, in May, 1889, the New York Fire Department boat Havemeyer was kept at work for nineteen days and nights, her boiler being under forced draught for that period. This, of course, was a highly exceptional occurrence. There are but few structures in New York and its environs that would require such heroic treatment if burning. Yetit shows what a fire boat may be called on to perform.
The new Boston fire boat is named "Engine No. 31," and has no other title. The general dimensions are as follows: Length over all, 108 feet; on water line, 97 feet; beam, maximum, $241 / 2$ feet; on water line, 23 feet: depth of hold, 8 feet 1 inch; draught, 7 feet 4 inches. The hull is of wood, and is of extra strength to resist the exceptionally heavy strains to which the heavy machinery will subject it. The best quality of white oak is used for the principal members of the frame and for the planking. Hackmatack and yellow pine are used for upper frames and other parts. Below the water line the hull is sheathed with yellow metal.
The stem under the water curves upward very gradually from the keel, and from a point about two feet above the water line downward and aft for about twenty feet carries a yellow metal shoe, one-half inch thick. On the hurricane deck, or above the main deck house, is the pilot house and the officers' house and drying room. The cabins in the main deck house include officers' cabin and main cabin, galley, mess room, and general offices. Accommodations for a crew of fourteen men and officers are provided in this house.
The steam is generated by Cowles' water tube boilers. There are two of these, each occupying an area of $111 / 2 \times 71 / 3$ feet, and in height rising $111 / 2$ feet. When tons. They have 3,200 square feet of heating surface, a little over 87 square feet of grate'sirface, and are tested up to 300 pounds, giving a working allowance of 200 pounds. With natural draught they develop 400 horse power, which may, by steam jets in the chimney, be brought up to 900 horse power. This boiler is a sort of combination tube and shell boiler. The tube ends are expanded into place, so that no screw connections are
exposed to the fire. The same type of boiler is used exposed to the fire. The same type of
upon the New York fire boat Havemeyer.
The engine is two-cylinder compound, 18 and 34 inch cylinders, with 20 inch stroke. They are inverted, and are carried on six wrought iron columns. They have link gear, and in general are of the tug boat type. A Wheeler surface condenser of 1,000 square feet surface
is employed to condense the exhaust steam. The shaft is of wrought iron and steel, and is $63 / 4$ inches diameter at its smallest part. Steam reversing gear is used.
Two screws are used, embodying the Kunstadter steering gear arrangement. One works just aft of the place. The other, termed the swiveling screw, is carried by a short shaft journaled in the rudder, and revolves about this as an axis, the rudder being cut away to allow it to rotate. This short shaft is connected to the main shaft by a universal joint directly in line with the rudder post, which is cut away to allow room for it to work in. As the rudder turns, it turns the axis of the after screw, so as to materially reenforce the directive action of the rudder. The rudder is of cast steel. The front screw is of 6 ft . diameter and 9 ft . pitch; the after or swiveling screw is of the same diameter, but of 10 ft . pitch. Each has four cast steel blades. When the rudder is straight, the thrust o both screws comes upon the inboard thrust bearings when the rudder is inclined, the oblique component of the thrust of the after screw is taken by the rudder frame.
A steam steering engine, double cylinder, 7 in. stroke, 5 in . diameter, is employed to turn the rudder and the swiveling screw. A small steering wheel in the pilot house is used for working it. Spare tackle is provided for steering by tiller when necessary.
The pumps were built by the Clapp \& Jones Manufacturing Company, of Hudson, N. Y. They are of vertical, duplex, double-acting flywheel type. They are divided into two sets, comprising altogether
steam cylinders, 10 in . by 10 in ., and 4 water cylinders steam cylinders, 10 in. by 10 in ., and 4 water cylinders
of 10 in . stroke and 9 in . diameter. One set is placed on each side of the engine room. In the forward end of the deck house is a cast iron 12 inch header, into which the pumps force their discharge. It has four $31 / 2$ in. and four $21 / 2 \mathrm{in}$. hose connections, with gates or
valves. To these hose of any length may be connected so that water can be delivered at high pressure, one or
two thousand feet away. Upon the forward deck are also installed two Cowles swiveled nozzles carried by short stand pipes. Each of these delivers a four inch
stream of water. They can swing through a complete circle, and water. They can swing through a co. copper pipe is carried from the pumps below deck on the port side, to supply the header and stand pipes. The means for perfectly controlling these immense streams are well illustrated in the cut. The maximum working pressure is 225 lb . On the trials this pressure was not attained. The pumps could be driven up to 320 and 330 revolutions per minute. At 300 revolutions, with 50 to 60 lb . pressure, they worked well. A good work-
ing speed was found to be 210 revolutions and 140 lb . ing speed was found to be 210 revolutions and 140 lb . pressure. They threw a 4 in . stream from the Cowles 100 ft about 400 ft . and four $25 / 8$ streams 230 ft . through 100 ft . of $31 / 4 \mathrm{in}$. hose and hand pipes simultaneously. On her trial trips the boat was found to be of good speed, developing a speed of 16 2-7 statute miles per hour. The swiveling screw on this speed test showed a slip of only 4.7 per cent, and the leading or stationary screw showed a negative slip, due undoubtedly to the boat drawing water after it. A considerable slip is not incompatible with efficiency, and the old view that the two could not coexist has been abandoned.
The fire pumps were found to be unexceptionable in their working. In the illustration a good idea is given of the service that such a boat can perform. In addition to the two four-inch streams thrown from her forward deck under perfect control, a number of lines of hose can be carried from the header, so as to deliver water to engines on shore. Thus the boat is not merely for the protection of the water front. Most useful service can be executed in a belt 2,000 feet wide around the shore line.
High speed is a valuable factor in boats of this character, as enabling the nearest point to a conflagration to be quickly reached. This is possessed by "Engine . The Kunstadter screw steering attachment in and efficient steering can be obtained when the engines are reversed, so that the boat can be worked to a certain extent as a double ender. This quality of good steering when going backward might be of the utmost importance in critical positions.

Recent Additions to the British Navy.
The following is a list of the vessels launched for her Majesty's navy during the past year

Name.	Tons.	Horse power.	Speed.	Cost.
	9,000	20,000	knots.	$\underset{430,653}{ }$
Vulcan	6,620	12,000		292,107
Barham		6,000	$19 \cdot 5$	101.408
Blanche	1.580	3,000	$16 \cdot 5$	96,937
Blonde.	1,580)	3,000	$16 \cdot 5$	96,937
Barrosa	1,580	3,000	$16 \cdot 5$	96,937
Barracout	1,580	${ }^{3.000}$	$16 \cdot 5$	96,937
Basilisk Beagle	1,170	$\stackrel{2}{2,000}$	14.5	-67,632
Widgeon	${ }^{1} 805$	1,200	$13 \cdot 5$	45.678
Redpole	805	1,200	13.5	45,678
Goldfinch	805	1,200	13.5	45,678
Lapwing	805	1,200	$13 \cdot 5$	45,678
Ringdove	805	1,200	${ }^{13} 5$	45,678
Magpie	805	1,200	$13 \cdot 5$	45,678
Redbreas	805	1.200	13.5	45,678
Tharrow	805	1,200	$13 \cdot 5$	45,678
Thrush Wizard	805 735	1,200 4,500	${ }_{21}^{13.5}$	45,678 58,000
Whiting	735	4,500	21	58,000
Salamande	735	4.500	21	58,000
Seagull	735	4,500	21	58,000
Sheldrake	735	4,500	${ }^{21}$	58.000
(Skipjack	735	4,500	21	88,000
Spanker	${ }_{735}^{785}$	${ }_{4,500}^{4.500}$	$\stackrel{21}{21}$	58,000 58,000

'To these may be added thirteen first class and ten second class torpedo boats, supplied by Thornycroft Yarrow, White, and a Paisley firm. for the navy, and the Pandora and four sisters, of 2,575 tons and nine teen knots speed, for Australia.

Maria Mitchell Chair of Astronomy

But a few months have elapsed since we had to record the death of Maria Mitchell, the professor of as ronomy at Vassar College. One of the last efforts of her life of usefulness and of devotion to education and sience was in the direction of making the astronomi cal department of Vassar College self-sustaining. Only her failing health and death prevented the accomplish nent of her wish. By personal solicitation she had raised $\$ 5,000$, no inconsiderable nucleus, as has since
been made evident. Already the alumnæ have increased the sum to over $\$ 25,000$, leaying about $\$ 15,000$ still to be raised. The establishment of a professiona chair requires about $\$ 40,000$. Miss Mitchell did much o advance her chosen science, and played her part in levating the standing of her college and country in he lastronomical world. Some testimonial is due to he bright Nantucket lady who was a friendly rival to Mrs. Huggins in her devotion to stellar science. Our readers know her as a most interesting contributor.
We feel that many of Prof. Mitchell's scientific friends will be only too glad to have an opportunity of con ributing to a testimonial in her honor. Such an oc casion has now offered itself, and will, we trust, be iberally responded to by many. Subscriptions may be addrissed to Vassar College, Poughkeepsie, N. Y.

©orrespondence.

Warts-their Cure and Removal.

To the Editor of the Scientific American:

In reading the Scientific American of February 8 found a remedy for removing warts. I send you a remedy that we have found to be better and more simple. Take common washing soda and make a very strong solution. Apply it to the wart four or five times a day. We have tried this and have never seen one wart that this would not remove in a few days and ave no soreness at all
West Philadelphia, Pa.

Destroy the Sparrows.

To the Editor of the Scientific American:
I am compelled to take exception to the answer in No. 1826, to "C. McE.," wherein it is suggested the English sparrow is useful in destroying worms.
The English sparrow is a granivorous and not a carnivorous or insectivorous bird, and will not touch an insect. The country to-day is as much, if not more, infested with injurious insects than before the sparrow made its appearance, and that is owing greatly to the fact that the English sparrow is an enemy to and has driven most of our native birds away, which were in-sect-eating and did much toward ridding the country of the pests. The little wren, one of the most valuable insect-eating birds, has got to be quite a curiosity on account of its scarcity, being run out by boss sparrow. It is a fact that the sparrow has become a nuisance in every respect, and should be exterminated.

The habits of birds has been a life study with me and I speak from experience. Thos. D. Hyatt.
49 Bainbridge St., Brooklyn, Feb. 15, 1890

A Striking Hypnotic Experiment.

The end I have ever held before my eyes, then, and which I hope I have never lost from view, is this : to study the hypnotic phenomena according to a strictly scientific method, and for this purpose to employ pro cesses purely physical and which can always be com pared with one another, so that the results obtained by me may be rigorously tested by all observers who shall use the same processes under the same conditions. Take one example from among a thousand. present to a woman patient in the hypnotic state a blank leaf of paper, and say to her: "Here is my portrait; what do you think of it? Is it a good like ness?" After a moment's hesitation, she answers
"Yes, indeed, your photograph; will you give it to "Yes, indeed, your photograph; will you give it to
me ?" To impress deeply in the mind of the subject me ?" To impress deeply in the mind of the subject
this imaginary portrait, I point with my finger toward one of the four sides of the square leaf of paper, and tell her that my profile looks in that direction; I describe my clothing. The image being now fixed in her mind, I take that leaf of paper and mix it with a score of other leaves precisely like it. I then hand the whole pack to the patient, bidding her to go over them and let me know whether she finds among these anything she has seen before. She begins to look at the leaves one after another, and as soon as her eyes fall upon the one first shown to her (I had made upon it a mark that she could not discern), forth with she exclaims: "Look your portrait!" What is more curious still, if I turn the leaf upside down, as soon as her eyes rest upon it she turns it over, saying that my photograph is on the obverse. I then convey to her the order that she shal continue to see the portrait on the blank paper, even after the hypnosis has passed. Then I awaken her and again hand to her the pack of papers, requesting her to look over them. She handles them just as before when she was hypnotized, and utters the same exclamation: "Look, your portrait!" If now I tell her that she may retire, she returns to her dormitory and her first care will be to show to her companions the photograph I have given her. Of course, her com panions, not having received the suggestion, will see only a blank leaf of paper without any trace whatever of a portrait, and will laugh at our subject and treat her as a visionary. Furthermore, this suggestion, this hallucination, will, if I wish, continue several days all I have to do is to express the wish to the patient before awakening her.
The foregoing experiment has been made hundreds of times by me and by others, and the fact can easily be substantiated; their objectivity is as complete as could be wished in researches of this kind. Hypnotism is directly amenable to our means of investigation and must needs be an integral part of the known domain of science; to that goal our efforts ought to be directed.-Dr. J. M. Charcot, in the Forum.

Hair Invigorator.

A correspondent of the Lancet states that he has found the following preparation most useful in cases of falling off of the hair:

> Tincture of jaborandi..
> Lanoline.
> Mix [by the aid of a little soft soa

A little to be rubbed in every night.

What Sanitary Reform can do for a City. The Secretary of the Tennessee State Board Health, Dr. J. Berrien Lindsley, has prepared an article for the forthcowing report of the board which shows in a striking manner how the health of a large community can be benefited by the intelligent efforts of a few active individuals who have the support of public opinion. The article deserves to be studied by sanitarians everywhere, if only as an encouragement to them to persevere in their apparently thankless task often against great odds.
Dr. Lindsley's paper is a history in brief of the work of sanitary reform in the city of Nashville, which work was begun in 1874, the immediate incentive thereto being the devasta tion wrought by the last cholera visitation
"The Board of Health as organized in Nashville consisted of the mayor, $e x$ officio, and of four physi cians, chosen by the City Council, with a medical health officer exclusively devoted to the work Th devoted to the work. Th city was then small and very poor. Hence the
board moved cautiously. No extravagant system of sanitary engineering was urged, no bonds issued, no debt incurred. The first steps were the registration of deaths and thorough local sanitation. Rigid house-to-house inspection house-to-house inspection by first-class officers was steadily pursued. Health or diances impartially and uniformly enforced. A complete sanitary survey of Nashville was taken early in 1877, a thing which had not at that time been attempted in a Southern city, and, indeed, in only one or two in America. Its value can hardly be computed. Besides giving that information without which a board of health moves in darkness, it is an educator without equal. An intelligent and respected member of the police force, well known and well liked by all the community, visited every house and every building in detail. With suitable memorandum books, he entered the results of his inquiries. Thus, in a few months, every one in Nash ville was initiated into the work undertaken by the board-that of making Nashville a city renowned for health and proof against epidemic scourges."
During the epidemic of yellow fever in Western Ten nessee, in 1878, Nashville became a veritable city of refuge, and its board of health had an opportunity to demonstrate the efficiency of individual isolation and perfect sanitary preparation. The healthfulness of the city at this time was so universally ascribed to the ef forts of the board of health, that the citizens gave them forts of the board
an ovation as a mark of gratitude and public appreciation of their services. This public demonstration was, of course, of far reaching benefit in impressing in impressing upon the entire undoubted value of sanitary reform.

In the fall of 18 ± 3 the Board of Public Works came into existence, and at once began the work of remedying the great defects made apparent by the sanitary survey. These were, especially, the deficient water supply, the almost total lack of drainage, the miserable condition to go back to coal or wood. The Ohio Thrasher Comof the alleys, and the pressing need of improved streets and sidewalks in many portions of the city. The progress made in each of these lines has been progressive and most satisfactory. The city has now twenty-five miles of sewers, and the new water-works, nearly com pleted, will furnish a daily supply of thirty million gallons.

But of more interest than a mere statement of what has been done in the way of sanitary improvement is a
comparison of the results following these improvements. This can be stated in very few words
In 1877 Nashville occupied an area of scant three miles, with a population of 27,000 , and a death rate of 34.55 per 1,000 yearly. Now it has an area of 4,021 acres, or six and one-third square miles, with a population of 68,531 , and a death rate of 15.31 .
As Dr. Lindsley justly says, this is progress. It is

AN ARTESIAN WELL NEAR RIVERSIDE, CAL.
would be a disgrace were it not a healthy city; but that should be no cause for discouragement for other ess favored localities. Even the city of Mexico, built as it is almost in a swamp, is destined, without doubt, to become one of the healthiest cities in the world when the huge sanitary work now in course of construction completed. Nashville was not a healthy city before Dr. Lindsley and his associates took hold of it, and it is now what they, and others inspired by their zeal and nthusiasm, have made it ; and there is no valid reason why every other city and town in the country should not be improved in the same way, if only the right men can be found to undertake the task. They certainly ought to be urged at least to try, after reading of what Nashville has accomplished quietly and as a result of patient effort.-Medical Record.

Failure of Natural Gas at Upper Sandusky, o. Upper Sandusky's great gas well, known as " Jumbo, has given out, and the town is likely to return to coal On the 1st of December there were over 1,600 fires go ing, but of late a large number have had to be shut off on account of the lack of supply, and others have paid

RIVERSIDE, CAL., AS SEEN FROM RUBIDEAUX MOUNTAIN.
pany, which was induced to come here from Mansfield, expecting free gas, has already expended about $\$ 30,000$ and being about ready to commence business find that they will be left out in the cold. The citizens feel very indignant at the managers of the gas company, believ ing that by proper management they would not thus have been shut off. The entire town has been piped, and nearly every one connected, at costs ranging from $\$ 25$ to $\$ 75$, which is about as good as that amount throw
away. Three wells are being put down just north of town, and still some hopes are entertained that gas will be found, but for the present the people will have to be content with carrying wood and coal, as in years gone by.-Fostoria Democrat.

THE ARTESIAN WELLS OF RIVERSIDE, CAL
In the February number of last year's North Ameri an Review Wm. Hosea Ballou, in an article entitled ' Unconscious Suicide," refers to the impure sources of supply of the domesti water systems of all the leading cities of the United States, and the enormous increase of mortality pro ceeding from this cause There are, he declares, only a few towns, and these mall ones, in the whol United States which hav a perfectly pure water sup ply, notably Grand Ra pids, Mich., and Wauke sha, Wis., " which are fed by enormous springscases exceptional and singular in the water works history of this continent," Mr. Ballou may be ex cused for having over looked the domestic wate system of Riverside, Cal. from the fact that it had only been in operation about a year when the arti cle we refer to was written The domestic water sys tem of Riverside (a place o about 7,000 inhabitants) Cal is supplied from artecion wells, about ten twelve in number. The discharge from each well is onveyed in open cement conduits to a central reser voir, where, after having been sufficiently aerated, the water is conveyed by a main pipe to Riverside about ten miles distant, where it is distributed by branch pipes in the usual way.
The artesian basin in which these wells are sunk is situated at the foot of Mounts San Bernardino and Gray Back, of the Sierra Nevada range. Gray Back is 1,500 feet above sea level, and snow can be found on its northern summit every day of the year. It is this melting snow, percolating down through the thousand feet of rocks and sand into the gravel strata, that furnishes the supply where, about seven miles from the base of the mountains, the wells are sunk This water has been pronounced by Prof. Hilgard State analytical chemist, who analyzed it, as containing not the slightest trace of any foreign substance, being absolutely pure. It is remarkably clear and sparkling The artesian wells of this system are all (fourteen) sunk in close proximity to each other within about seven acre of ground A verage depth of wells 122 feet The source of supply seems practically inexhaustible. As fast as he requirement of the rapidly growing city of Riverside (the orange growing cen ter par excellence of California) de mand, a new wel is sunk. The last one was put down last month, and is now flowing 148 inches, and with such force that it brought up from the bottom and projected from its mouth a stone weighing $21 / 2$ pounds.
These wells are situated at an elevation of 174 feet above the lowest part of the city, giving a pressure sufficient for all fire purposes. The
rom this system is used for irrigating orange orchards, but mate for irrigating orange orchards, but must not be confounded with the irrigation water
system of Riverside, the supply of which (about 4,000 system of Riverside, the supply of which (about 4,000
inches) is carried from the foot of the mountains in an nches) is carried from the foot of the mountains in
E. R. Skelley.
Riverside, Cal., February, 1890.
THE sustaining power of the Forth bridge may oe magined from the statement that each cantilever would sustain six of the greatest ironclads.

THE ARMADILLO.

Since naturalists have begun to study the animals of earlier ages as diligently as those of the present time, the latter have been forced by comparison to give way to the former; for in the ranks of the extinct fauna are many gigantic forms which cannot be approached by their modern representatives. Apparently many large animals are doomed to extinction; the sea cow, the great auk and the dodo have died out within historic times, and there is no doubt as to the fate of the elephant and other pachydermata.
The armadillo must be a near relative of those enor mous edentates, the glyp todon and the megathe rium ; but in regard to size it is truly eclipsed by them, for its greatest length is about one yard or one and a half yards. The fossil a half yards. The fossil sembled the living members of their family closely in their limited mental ca pacity, and to have used very little intelligence for the preservation of their kind.
The three armadilloes

ARTESIAN WELLS AND RESERVOIR, RIVERSIDE, CAL
(not visible in the cut) ; its color is dark gray or brown- comb. The claws on its forefeet are developed to a re ish. The forefeet have strong, slightly curved claws, on warkable degree, reminding one of those of antediluthe points of which the animal walks, while the claws vian creatures. A full grown tatou can dig a hole of the hind feet lie horizontally on the ground. longer than itself in three minutes, or in less time if Travelers who have seen these animals run describe the gromnd is soft. It is stated that the animal sinks before the observer's eyes, and these statements are proved by the two arma dilloes in the Berlin Zoolo sical Garden. As they roll themselves up in their holes, it is almostimpossible for even a strong man draw them out Th madillo is often oblige to enlarge or change hi burrow in his search for ood, which consists of beetles, larvæ and worms ants and termites. It uanner of burrowing reninds one of the mole
Although the flesh of the armadillo is prized in South America, it is much dis liked by the hunters of th broad steppes. The bur rows of tatous of ten throw galloping horses, injuring them or throwing their riders from their saddles.
Besides the armadilloes already referred to, we might mention the Dasy pus gigas, Dasypus sex oinctus, Dasypus cons cinctus, Dasypus conurus
the movement as very comical, this impression being increased when the bolita runs clattering over boards. Its ability to roll itself up protects the armadillo from the attacks of many animals.
The bolita is found in the great plains of South America, the home of all armadilloes, being most numerous in the Argentine Republic. Captive bolitas eat fruit and leaves, but their food has to be prepared in small pieces, because their mouths are very small.
The tatou (T'atusia Ka?pleri) is marked No. 2 in our illustration. It attains a length of about twenty-three inches; its forefeet are provided with four claws and the hind feet with five, and its armor consists of little four-cornered scales, the separate bands consisting of triangular plates with the points forward.
No. 3, the bare-tailed armadillo (Dasypus gymnarus), has a very different armor, the front part of which is provided with divisions resembling the cells of honey

Dasypus minutus; all of whi
America.-Illustrirte Zeitung.
The Value of Electric Lighting on the Suez Canal The night traffic on the canal has increased very apidly since electric lighting was started. Thus in 1887 there were in all 371 night transits made, but in 1889 this number had increased to 2,454 out of a total of 3,420 , or upward of 71 per cent of the vessels passing through the canal, and four-fifths of the total ton nage, used the electric light to assist them. At the sametime the average duration of the passage has been reduced upward of 40 per cent. Putting these facts into another shape, it appears that the effect of the electric light as applied at Suez has been the same a if the canal had been increased from 22 meters, its pres ent width at the bottom, to 32 meters, an operation which would cost at least $£ 4,000,000$.
mor of plates or scales is interrupted by three bands

Natural Gas in Indiana.

A synopsis of Indiana gas facts and figures shows hat 400 miles of pipe lines have been completed, including those supplying the city of Indianapolis from the Hamilton Country field. Of the Indianapolis lines, the Consumers' Trust, with its recent purchase of the Broad Ripple plant, has about 74 miles of pipe line, Broad Ripple plant, has about 74 miles of pipe line,
and with its 9,000 connections supplies about 35,000 and with its 9,000 connections supplies about 35,000
people. Its pipe line includes 30 miles of 8 in., 14 miles people. Its pipe line includes 30 miles of 8 in ., 14 miles
of $10 \mathrm{in} ., 12$ miles of 12 in ., and 18 miles of 16 in . pipe, and it has about 115 miles of street mains, varying from 16 in . to 3 in . in diameter. The Indianapolis Natural Gas Company has 35 miles of pipe line, and, with 5,000 connections, supplies 20,000 people. Its pipe line includes 6 miles of 6 in ., 8 miles of 8 in ., and 21 wiles of 12 in . pipe, and its street mains extend over 60 uiles. The two companies combined supply 55,000 60 miles. The two companies combined supply
domestic consumers, at a saving over former coal bills domestic consumers, at a saving over former coal bills
of $\$ 250,000$ annually, and up to a comparatively recent of $\$ 250,000$ annually, and up to a comparatively recent
period each supplied about 150 factories and public period each supplied about 150 factories and public
buildings, with an annual saving over former coal bills of more than $\$ 100,000$.
The other completed pipe lines in the State vary in length from 5 to 48 miles and in diameter 2 in. to 12 in., the majority of them averaging 8 in . Upward of 20 cities and towns in the State, with an average population of 260,000 , are supplied with pipe line service, and if the cities and towns of the State supplied directly from the wells are added, the list will be increased to 71 cities and towns, with an aggregate population of 411,000 , in round numbers. Placing the calculation on the basis that one-fourth of the population in cities and towns supplied with natural gas are consumers, it would give the State upward of 100,000 municipal consumers, with an approximate annual saving over former
fuel of $\$ 3,000,000$. The saving to manufacturers in the fuel of $\$ 3,000,000$. The saving to manufacturers in the four cities of Muncie, Anderson, Marion, and Kokomo all the other State manufacturers using gas fuel did not exceed another million, it woutd make up a total of not exceed another million, it woutd make up a total of $\$ 5,400,000$ a year as the amount of saving effected by
the new fuel to the people of the State, saying nothing about the increased comfort and incidental advantages which attend its use.
In piping of natural gas it is estimated that capital has come into the State amounting to $\$ 7,433,000$, employing 7.783 new operators. Still this does not begin to show the actual benefit in the way of employment and the increase of population to the State. Then it is asserted that "the area supplied with natural gas in Indiana by wells within its boundaries
and pipe lines extending from the main field now inand pipe lines extending from the main field now in-
cludes portions of 30 counties, containing a territory cludes portions of 30 counties, containing a territory
that measures more than 8,000 square miles and populated by more than $1,000,000$ residents. 'The main field of supply alone includes the greater portion of 21 counties, containing more than 6,000 square miles and a population of 750,000 . As compared with this, the gas
fields of other sections of the country seem very limitfields of other sections of the country seem very limited. This State has less than 400 square miles of produrtive gas territory. The Ohio field, counting all territory claimed as productive, measures less than
1,200 square miles. The Indiana gas territory already 1,200 square miles. The Indiana gas territory already
developed will measure several times as much as all developed will measure several times as much as all
the other gas territories thus far developed on this the other
continent.
What the future of the Indiana field will be is to some extent a matter of conjecture, but there is every reason to believe its supply will outlast that of other sections. The big wells in the upper portion of the Indiana belt, like the "Jumbo," at Fairmount, in Grant County, which furnishes $11,500,000 \mathrm{ft}$. daily, and which has transformed that town into a manufactur
ing center with a doubled population, show no appre ing center with a doubled population, show no appre-
ciable diminution of their flow since they were struck, ciable diminution of their flow since they were struck,
more than two years ago. The safeguards claimed to more than two years ago. The safeguards claimed to seems likely to preserve a supply for the use of the people of that State long after the supply of its neighbors has been exhausted, is its low initial pressure and geological location of the belt. The latter makes it impossible to convey the gas to points outside the low rock pressure makes it difficult, if not impractica ble, to carry the gas in pipe lines beyond a moderate ble, to
limit.

Damage to Adjoining structures from Heavy

With the increasing size and weight of modern offic buildings there come not only serious problems of saf and economical construction, but the still more diff cult question of how to prevent damage to adjoining structures, not merely from undermining of founda tions, which can be avoided by suitable underninning, tions, which can be avoided by suitable und
but from the actual compression of the soil.

If any one will take the trouble to examine the old and comparatively light buildings alongside of which some high and heavy structure has recently been erected, the chances are that he will find the old buildings more or less damaged by their new neighbor, and over the nearest windows, will show that the old wall
next the more recent structure has been carried bodily downward. As before intimated, this settlement in most cases is not caused by any defect in or injury to that the ation of the old building, but by the fact taken the lighter one down with it.
As the evil is progressive, increasing as the new build ing goes up, and for some time after it is finished, it cannot be provided against once for all, but the remedy must be progressive also, and the only way to prevent the injury is to keep the old wall wedged or screwed up while the new one goes down. The only instance we know of where this has been done is in the case of a large building now being erected in Chicago, where the soil is so compressible that such a building is expected to settle three or four inches during construction, and where one fine tall building has had one corner carried down four or five inches by a heavier building alongside, with the result of very badly cracking the older structure from top to bottom through the nearest line of windows. To a void such a disaster the wall of the old building, some seven stories high, next which the new building just mentioned is being put up, is temporarily supported on screws, and is by them kept slightly above its normal position, so as to allow for settlement between times. These screws will support the old wall for some six months after the new building is finished, and until all settlement is over. With a less compressible soil, or a lighter building, perhaps iron counterwedges between stout bearing stones would give sufficient lift, and could be left in when the new building was completed.-The Engineering and Building Record.

Beavers-Their Sagacity and Industry.

Probably more has been written about the industry of the honey bee and the sagacity of the beaver than about any other two members of the animal kingdom. A recent number of the Boston Journal of Commerce gives a most graphic description of the intelligent and industrious beaver as follows
Beavers live in families, like human beings. The male has one wife, and the children stay at home until they are three years old, when they go abroad seeking companions of their own and set up housekeeping for themselves. If by any reason a general break-up of the "lodge" takes place, the young beavers go down stream and the old ones up, as it is easier to build a dam up stream, where the water is shallower, and
The lodges, if not broken up by man, red
for a long series of years, and are admirablyain in use for a long series of years, and are admirably adapted to
convenience and safety. Each lodge on the bank of a stream has three openings, and sometimes more. The first entrance slopes up gradually from the bottom o the stream to the chamber where the beaverslive. By this entrance they bring in their food, which consists
of short sticks of wood covered with bark, cut shor of short sticks of wood covered with bark, cutshort
enough to he turned or handled any way inside of the living room. Another entrance, or way of egress rather goes straight down from the chamber to a level with the bottom of the river, when it turns squarely and comes out in the bottom of the stream. Down this hole they drop the sticks when they have eaten off the bark, and then drag the white naked pieces of wood out to the bottom to float away. The third entrance is from beneath also, and is sinuous, turning in many ways, and serves a good purpose when besieged by an enemy. All these entrance ways are arched over with sticks and plastered with mud and grass. The bottoms like corduroy. The lodge or chamber itself is a house from six to eight feet square, laid up against the wall with sticks like a log cabin. When a stick in the wall of this cabin rots, it is carefully removed and another put in its place.
The beaver exercises great diligence and wisdom in procuring and storing its food. Thick bark on the trunks of large trees is not suitable for him and his family, and so they cut down the tree for the smaller limbs, on which the bark is more tender and nutritious. Two nights' work is sufficient to fell a large tree, each family being left to enjoy the fruits of its own labor. It is said they promptly kill all socialists, trouble breeders, which they are working begins to crackle, they desist from cutting till it begins to fall, when they plunge into the water one after another, "plunk," "plunk," "plunk," till all are in, where they wait with great caution lest the noise of the falling tree might attract some enemy to the place, maybe some fool with
gun. Nor is this all. They know how to regulat the cutting of a tree so as to make it fall always in the water. This is done so as to enable them to transport their short sticks by water to the lodge. Master beaver places it under his throat and pushes it before him to the place where it is to be sunk at the mouth of the entrance way to the lodge.
A book might be written on the beavers' dam. This is, without doubt, the most ingenious and scientific structure built by any creature save man. The object of this dam is to raise and hold the water so as to cover the entrance way to his chamber. This makes th
beaver both comfortable and safe. The dam is constructed of sticks, mud, and stones gathered together with great skill and labor. The breadth of the base and top of the beavers' dam is always in exact propor tion to its height and length and the volume of water to be held.

Care of House Plants.

Whenever an herbaceous plant begins to drop its eaves, it is certain that its health is impaired in some way. This may be due to several causes, such as being pot-bound, over-heated, exposure to cold or the application of powerful stimulants, as guano, strong liquid manure, alkalies, etc., or to some other cause, which has destroyed the feeding roots of the plant, thus inducing disease and speedy death in all cases where remedial measures are not speedily resorted to. The steps taken in these cases by the amateur are generally the most disastrous course that could be taken toward the plant, short of destroying it at once-that of deluging it with water and applying strong stimulants
When the nutritive organs of the plants have been destroyed or overgorged, the remedy is very similar -that which nature suggests when animal digestion is deranged-namely, that of giving no more food until it reacts. Then, if the roots have been injured from any of the above named causes, we must let the soil in which it is potted become nearly dry. After which remove the plant from the pot, take the ball of soil in which the roots have been enveloped and crush it between the hands, just enough to allow all the hard outer crust of the ball to be shaken off. Repot in a rather dry soil, which must be light and rich, using a new pot, or if the old one is used it should be well scoured to open the pores, that evaporation may be properly carried on through the sides.
Let the pot be only large enough to allow an inch of space between the sides of the pot and the ball of roots After repotting give sufficient water to settle the earth well about the roots. Sink the pot in a half shady place or in a box of soil. Do not apply water until the plant starts to grow unless the air is so dry as to eva porate the moisture before any perceptible growth starts. Then of course water must be given in suffi cient quantities to keep the soil damp, but no more.
I cannot conceive why people water their plants so much, nor why they should think water such a specific remedy for all the ills to which the plants are heir The following is a case in point : A neighbor consulting me about the feeble condition of her geraniums said, "I am sure the plants are not suffering from want of attention, as I have watered them copiously twice each day!" I think it is quite safe to assume that half the plants that die in the hands of amateurs are watered to death.
Small white worms sometimes infest pots in which he plants have stood a long time These are easily discovered by turning the plant out when rather dry oosening the soil among the roots. Should any worm be found, the roots of the plants may be washed gently in soft water until freed from theold soil, then repotted in fresh earth. If it is not desirable to repot, the pot may be set for a half hour in hot water nearly to the depth of the soil inside. This will drive the worms to he surface without injury to the plant. Enough weak ime water may now be coured on the surface to penetrate the plant roots. This will not only kill the worms, but fertilize the soil.
Ants sometimes cause trouble where pots have been plunged or kept in the ground. There is no way to get rid of them except by repotting. Geraniums of ten become enfeebled and in many cases die from excessive blooming. This must be corrected by pinching out nearly all the buds as soon as the leaves begin to in dicate a decline of vitality by their stunted and discolored appearance.

Danger of Acquiring the Morphine Habit.
Professor Dujardin-Beaumetz, Paris, France, in a re cent lecture at the Cochin Hospital, Paris, France, on he treatment of nervous diseases said : I need not here peak of the advantages and dangers of morphine. have many times discussed this subject, showing that if morphine is an admirable analgesic medicament, it is also the most dangerous of all by reason of the fact that the patient becomes accustomed to and dependent on the morphine injections, and ends in becoming a morphiomaniac
It may be affirmed that morphiomania has become one of the vices of the day, and we may almost lay i down as a rule that any patient who for thirty con secutive days takes morphine injections will ever after be a victim to the habit, even when the symptoms of the primary malady shall have completely disapneared and it will thenceforth be a matter of no little difficulty to cure the morphine habit, now become a disease more rebellious than the affection for which these injections were first ordered.
The number of morphiomaniacs increases every day, and this deplorable vice exists in all classes of society Unfortunately, our own profession is not exempt from this abuse, and I know quite a number of medical cont
freres who have been or are still victims of morpnine.

RECENTLY PATENTED INVENTIONS. Electrical.
Switch Board.-William M. Stewart, Schenectady, N. Y. This is a board for central electric lighting stations using a cennaction between any of the
being designed to make conne
dynamos of the station and any of the circuits running dynamos of the station and any of the circuits running
out of the station, so that any or all of the circuits may out of the station, so that any or a
be switched on to other dynamos.

Railway Appliances.

Car Truck.-Lee C. Sharp and John A. Gutsche, Plattsmouth, Neb. This invention covers novel features of construction designed to afford in-
proved means for the distribution of the load strain upon the axles, whereby frictional resistance is greatly reduced, heating of the bearings obviated, and the
sustaining capacity of the axles greatly increased.

Miscellaneous.

Burglar Alarm. - Noah M. Powell, Reger, Mo. This invention covers a suitable housing
and platform scale, the platform being connected by and platform scale, the platform being connected by
electric circuits with alarm bells and indicators, so that any one approaching the safe will cause the alarm bells to ring, and indicate the manner of approach
Street Sign for Lamps.-Theodore cator, designed more especially for use with olectri lamps, to be easily read by daylight or at night, the sign
plates being arranged in peculiar positions relatively to plates being arranged in peculiar positions relatively to
the lamp body or frame and the plane of the light arc the lamp bo
or burner.
Lifting Goods from Shelves.-John H. Jeffrey, Crescent City, Cal. This invention covers a
novel apparatus or device designed to afford faclity in novel apparatus or device designed to afford facility in
lifting goods or packages of any character from shelve or high supports, obviating t
Cigar Case and Extinguisher. John Smith, Butfalo, N. Y. This case has a conical body in two sections, one section having an exterior terior suring fingers, whereby a lighted cigar may be placed in the case, extinguished, and carried in th packet, to be kept for further use
Ruler. - Oscar S. Matthews, Dallas, Texas. This is a ruler capable of being bent and con-
forming itself to curved or undulating surfaces, the informing itself to curved or undulating surfaces, the in-
vention covering novel features designed to prevent all clotting, blurring, or blotting, and insure straight ruling n curved or undulating surface
Calculator. - Willard D. Otis, Blue Springs, Neb. This is a device designed to quickly and
accurately reduce a load of grain or seeds to bushels accurately reduce a load of grain or seeds to bushels grain, coal, or other article, and indicate the amount o ey to be paid or received therefor
Household Furniture. - Martin J. Walsh, Parsons, Pa. This invention provides for an article combining in one piece a kneeling or praye
bench, a desk, and a table, the several parts of which are so made that they may be folded up to occupy only a mall space when in use simply as a kueeling bench.
Guard for Bedsteads. - Louis E. Meyer, St. Louis, Mo. This is a device to preven
people from falling out of bed, and consists of a frame with two folding sections adapted to be readily clamped on the side rail or board of the bedstead, and to be con-
veniently taken off and set aside when not needed.
Toilet Mirror - Joseph Manheimer New York City. This mirror las a supporting handle
hinged to its back, and a comb case or pocket attached hinged to its back, and a comb case or pocket attached
to the hinged handle, providing for holding the comb to the hinged handle, provid
Images on Metallic Mirrors Carl Wegener, Moscow, Russia. This invention pro-
vides for making invisible images capable of being endered visible on another surface by reflected luminous rays, the image being formed on the metallic
mirror by etching, engraving, etc., and then rendered mirror by etching, engraving. etc., and then rendered

Hose Coupling. - Isaac D. Weaver, Lebanon, Pa. This is a coupling especially adapted for Lebanon, Pa. Thise in connection with steam-heating apparatus for railway trains, and the invention 18 designed to provide
a simple and durable device in which washers and other leaky contrivances may be dispensed with.
Bale Tie Buckle. - Robert W. Carroll, Memphis, Tenn. This is a buckle of simple and strong construction, designed to be manufactured
at small cost, and when the bent ends of a hoop or at small cost, and when the bent ends of a hoop or
band are passed through it, longitudinal bars hold the short ends bent under the sides of the buckle to render it impossible for the
straighten out the ends.
Artificial Denture. - John A. Throckmorton, Sidney, Ohio. This invention relates
to an improvement in the means for holding artificial to an improvement in the means for holding artificial teeth in the mouth, and consists in providing the
bridge work with arms to clasp the bridge work to the natural tee
the gums

Removing Incrustation from Boiler Tubes.--James P. Karr, Monticello, Ind. This Is an improvement on a formerly patented invention of the same inventor, for an apparatus designed to temporarily enlarge the boiler tube in opposite directions, so that the scale will fall off while the tube will spring
back to its original shape.
Refrigerator Box.-Frederick Beinhauer, New York City. This is a box so made as to be readily taken apart for transportation or to faci-
litate cleaning, being made in three principal sectionslitate cleaning, being made in three principal sections-
a bottom section, a front section, and a back sectionthe invention providing a construction designed to utilize the ice to the best advantage.

Piano. - Edmund R Holmes, Tokio, apan. This invention covers an improved construction
of bridges for the strings of a panano, and the arrange nent of the parts, whereby the contraction and expan
Fan Supporting Bracket.-Joseph J. Schmidt, Jamaica, and Carles A. Jonson, Brooklyn,
V. Y. This is an adjustable fan support, in which the N. Y. This is an adjustable fan support, in which the
parts are so arranged that the fan-supporting frame may ded back out of the way when the fan is not in use
Ditching Machine. - Henry Carter Albion, N. Y. This invention covers an improvemen being a machine for cutting and clearing or excavatin ditches or trenches by means of a plow or share, and and discharge the soil.
Fire Escape.-William M. and George Taylor, Gorlestou, England. This is an apparatus in pulley are used, in combination with a brake pulley, friction cord, and spring, the apparatus, after eac
descent, automatically setting itself for a fresh load.
Coffin Fastener.--William J. Noble New York City. This device has a base plate with upwardly projecting socket having a segmental slot in its
upperedge, an anglearm being held to revolve in the ocket with a lug or stop extending downward withi secured to the top of the case.
Lock for Hoops.-John H. Mitchell, Bloomfield, Iowa. This is a fastener consisting of op
positely beveled blocks having vertical grooves on thei opposite faces for receiving a fastening wire, the beveled faces of the blocks being toothed, while one of the locks is slotted and the other has a staple through which the fastening wire may be passed.
Dumping Cart.-Thomas Hill, Jersey City, N. J. The cart body is provided with side trun nions or pivots and leaf springs carried by the runnin ear, with other novel features, the design being to so mount and support the shafts upon the axle that ther will be relieved of all undue shock draught janima the movement of the vehicle over rough yround
Shaft Detacher. - Flor S. Pollitt Harrodsburg, Ky. Combined with the shaft clip is adapted to overlap the head of the thill bolt and the nut by which the bolt is held to place, with means for operating the pivoted plate, whereby the shafts may
uickly disconnected from their supporting clips.
Horse Muzzle.-Benjawin S. Seama
Corming, N. Y. This muzzle is made up of a number of scraps of leather arranged in series, each series connected to the adjacent series by a wire, and the ends of
he scraps interlocking, making a strong and durable nuzzle which will not hurt the horse, and which can made at small cost.
Harness. - Edward Clark, New York City Combined with the saddle girth are links having penings between their ends and pivotally connected a toir lower ends to the girth below the line of the thins bars on the under side of the thills, whereby the anima will be permitted to draw with great ease
Cant Hook. - Alfred E. Creigh. Ronceverte, West Va. This is an implement for use in driving logs on rivers, and the general handling of loge, four sections, and both it and the point being readily removable when they become worn or dull.
Hame Tug. - James D. McAnally, Waterloo, Ind. This tug consists of an inner and outer plate, the latter having in its outer face a number
of under-cut cross groves or channels to receive the rib on the trace attachment, the device being designed to obviate the use of trace buckles and the conseque
weakening of the parts to which they are applied.
Jar Lid Fastener. - Charles P Maiser, Allegheny, Pa. Combined with a neck wire
formed with eyes, in which are pivoted the ends of bails, is a locking lever formed of a single piece of hat the jars can be placed one on top of the other packing,
Link for Bracelets, etc.-Antoine . Kerckhoffs, New York City. This invention provides a hinged joint of economical construction and
reat strength and solidity, and one which will rende great strength and solidity, and one which will render
the links or parts connected pliable only upon one side the links or parts connected pliable only upon one side,
whereby the article may be made to better fit the portion of the body it is adapted to ornament.
Inkstand - John R. Droney, Kane, Pa. The parts of this inkstand are so arranged that the depression of the pen within the delivery funnel acts to force a supply of ink upward within the funnel, the
ink within the well being sealed and cut off from communication w
is prevented.
Self Ink Distributer.-Samuel D. Henry, Coon Rapids, Iowa. This is an apparatus adapted for use in connection with hand newspaper presses, combining an ink board, an ink trough, and a
reciprocating carriage, with other novel features, to insure the even distribution of theink upon the forms and

NEW BOOKS AND PUBLICATIONS.

The Clock Jobier's Handybook. A practical manual. By Paul N. Has$\&$ Son
cents.
The entire subject of repairing clocks of different kinds, German, American, French and others, a treatise on escapements, pendulums, and striking mechanisms,
are all comprieed within the pages of the present book.
Cuts are very liberally used to illustrate clocks, their
movements, and special tools for use by the clock
maker. The thoroughly practical character of the text nd illustrations, of which latter there are over 100, give

A Handbook for Sugar Manufac-

TURERS AND THEIR CHEMISTS. By
Guilford L. Spencer. New York: Guilford L. Spencer. New York:
John Wiley \& Sons. 1889. Pp. 126. Price $\$ 2$.
In the 126 printed pages of this book chemical control of sugar house work is treated of. Mllustrations are ses and tables for practical use, both of specific gravities of solutions and other data, are given. Bound in the same cover are a number of pages ruled off for tak ing notes of practical sugar house working, followed by
blank pages for persunal notes. The whole will be blank pages for personal notes. The wh
found very useful to sugar house chemists.
Monzert's Practical Distiller. By Leonard Monzert. New York: Dick
Fitzgerald ; London: Trubner \& Company. Pp. 156. Price $\$ 3$.
The distillation of liquor is a subject concerning which it often seems dificult to get real, practical in
formation. The present work aims at filling up such vacancy. The manufacture of beer, liquors, essential oils, alcohol, and vinegar are all given place, and treated in a very practical way. Nineteen illustrations are em-
bodied in the book, while numerous tables and collec bodied in the book, while numerous tables and collections of data
the subject.
The Illustrated American.-The first number of a splendidly illustrated weekly newspaper
has just been issued,and is a beautiful specimen of artisic and typographic work. This periodicalrank the best French and German illustrated papers, and contanns the best class of photo-engravings, and with each well known painting or work of art is promised, and the first is a copy of Edward Detaille's Comrades of the Desert. The paper is the same size as Harper's Weekly, and contains 24 pages, besides a colored cover and supplement. The reading matter will be entirely free from political discussion, and whi be uneectarian. It will contain descriptive articles of travel, etc., as well as ewcomer to the newspaper fraternity and wish it every success. The 1llustrated American is published in New York, and those wishing to subscribe should
address Maurice M. Minton, general manager, Bible House, Astor Place, New York, or 142 Dearborn Street

SCIENTIFIC AMERICAN

buILDING EDITION

FEBRUARY NUMBER.-(No. 52.

table of CONTENTS

Elegant plate in colors of a cottage on staten
Island, N. Y., from drawings and specifications supplied by Munn \& Co. Perspective elevation loor plans, and details.
2. Plate in colors of a residence at Butfalo, N. Y Floor plans, sheet of elevations, detalls, etc.
3. An ornamental carriage house at South Orange, N
J. Perspective elevation. Engravings of the new auditorium building,
Chicago, III.
A Staten Island cottage, costing $\$ 3,300$ complete.
Floor plans and perspective elevation.
Floor plans and perspective elevation. Lamb \& Rich, New York, architects. Plans and dwelling at Hill View,
dwelling at Hill View, Dunwoodie, N. Y. Cost
$\$ 5,100$ complete. Floor plans and perspective $\$ 5,100$ complete. Floor plans and perspectiv
elevation. Architect, C. E. Miller, New York.
8. Design for a cottage at Mystic, Conn.. by F. W. Beall,
plans.
9. A double dwelling house at Stamford, Conn., erected at a cost of $\$ 7,800$ complete. Plans and
perspective. ective.
Cottage erected at Larchmont Manor
$\$ 4,350$. Floor plans and perspective
11. The new Carteret club building erected at Jersey City Heights, N. J., from designs by Bradford L. Gilbert, of New Yori. Cost $\$ 20,000$.
12. The Oriel Row of thirteen houses, San Francisco, Cal. Erected at a cost of $\$ 5,800$ each. Plaus and
perspective. perspective.
13. A recently erected cotrage in "Iselin's Park," New Rochelle, N. Y. Cost $\$ 6,000$. Perspective and A very pretty cottage at Hill View, Dunwoodie, N. Y., recently completed at a cost of $\$ 5,000$
Chas. E. Miller, architect, New York. Floor plans Chas. E. Miller, architect,
and perspective elevation.
Miscellaneous Contents: Baths in school houses. Combined wood worker and moulder, illustrated. -The Gurney Hot Water Heater Co.--A practi-
cal device for working window shutters, illus-trated.-Square turned work for balusters,

The Scientific American Architects and Builders Edition is iseued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary hook pages forming practitwo hundred ordinary hook pages : forming, practi-
cally, a large and splendid MAgAZINE of Architec TURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by of any Architectural publication in the world. Sold by
all newsdealers.

MUNN \& CO.. PUBLIBEERB,

Business and Personal. 2
The charge for Insertion under thes head is one Dollar
a line for each insertion; about eight words to a line. Advertisements must be received at publicatoon office

Wanted shop building special, heavy machinery. Give age, ex.
perience, references, wages. Address T. R. H.. box ©utf. perience, ref
Chicago. Ill.
Winted.
Wanted.-A mechanic who understands setting up and running steam threshing machinery, to go to Mex a knowledge of spanish. Address, stating salary and
a mand particulars, F.. box 344, New Yors City.
Machine tools, catalogue No. 47-B; wood-working machiners, catalogue No. 52-A ; steam power. catalogue
No. 48. Larkest lines offered by any frm in this conntry. Send for bed-rock prices, stating exactly what younve Best Ice and Refrigerating Machines made by David Boyle, Chicago. Ill. 140 machines in satisfactory use. Guild \& Garrison. Brooklyn, N. Y., nanufacture steam pumps, vacuum pumps, vacuum apparatus, alr For the latest improved diamond prospect ddress the M. C. Bullock Mtg. Co., Chicago. Ill. Presses \& Dies. Ferracute Mach. Co., Bridgeton. N.J The Holly Manufacturng Co.. of Lockport, N. Y., ill send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses. Inventions of or improvements in measuring instruments and other flie tools wanted to manu facture and sell on royalty. Address "Inventions," office Scientifle merican, New York City
Wanted-By St. Louis house an A No. 1 foundry foreman. He must be thoroughly familiar with all the
details of foundry work and capable of fllling the posiion to entire satisfaction. State experience, age, salary wanted and reference. Address Foundry Foreman, care For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co.. 138 and 140 Centre St.. New York. Steam Hammere, Improved Hydraulic Jacks, and Tube Safety Elevators, steam and belt power; quick and
sooth. The D. Frisbie Co.. 112 Liberty St., New York. "How to Keep Boilers Clean." Send your address
free 96 p. book. Jas. C. Hotchkiss. 120 Liberty St., N. Y. Magic Lanterns Wanted--For sale or exchange. Har-
bach \& Co 809 Filbert Street, Philadelphia, Pa. bach \& Co , 809 Filbert Street, Philadelphia, Pa.
For best hoisting engine. J. S. Mundy, Newark, N. J. Wanted-To buy a patent of genera utility not yet introduced. Address, statiok price, terms, and inclosing Fpecincations. P. O. box 1.3is, Stiliwater, Minn.
For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc.. address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Split Pulleys at low prices, and of eame strength and Works. Drinker St., Philadelphia, Pa.
Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co.. 361 Broadway.

\% Hest tolurins

HINTS TO CORRESPONDENTS

(1866) W. H. S. asks: 1. Will you kindly athe why the wires leading to and from a telephoue and
other electrical instruments are made in spiral form? A The wires are generally wound in a spiral to increase their flexibility and avoid breakage. 2. Having a dynamo of certain E. M. F., how would the operator ar-
range to increase the amperage and decrease the voltage? A. This can be accomplished only by rewinding the ar mature with coarser wire and connecting the sections of the fieid magnet wire in parallel. Rewinding of the field magnet with coarser wire may be found necessary. 3. To increase the voltage and decrease the amperage,
has the operator any control in this respect of the dyhas the operator any control in this respect of the dy namo? A. The E. M. F. can be increased by increas-
ing the speed of the armature or by increasing the strength of the magnetic field. The ampe
reduced by putting resistance in the circuit.
(1867) D. J. J. asks for formula of chemi current of electricity coming in contact with it pro a duces a black mark. A. Iodide of potassium solution produces a dark brown stain, and is probably what you allude to. The paper must not be perfectly dry.
(1868) Miliwright says: Among our mill wrights the question has arisen whether a belt will travel toward the highest or lowest side of a pulley. A.
The'guestion is much misunderstood in itst wo bearings. The'question is much misunderstood in itstwo bearings. With parallel shafting, belts run to the high or larger part of conical and crown pulleys. With shafting out
of line, with straight or low crown pulleys, belts will of line, with straight or low crown pulleys, belts will
run to what is called the low side, or side toward which
(1869) W. H. S. asks: 1. If you take bar magnet and cut it in half at the neutral points,
would each of the cut ends become poles? A. Yes. 2. If you cut it 1 inch from the negative pole (supposing the bar to be say 4 inches long), what would the end opposite the negative pole be, that is, on the 1 inch
piece $\left\{\right.$ A. Positive. ${ }^{3}$. If you were to cut a wire leading to an electric arc light when the light was burning, and then connect the two cut ends by a non-conductor,
the current still flowing, would the non-conductor be the current still flowing, would the non-conductor be
consumed? A. In this case no current will flow unless ${ }^{\text {con arc is formed. If an arc is formed, any substance }}$ placed in
consumed.
(1870) B. B. asks : 1. Is the Mississippi, A No: the Amazon, 3900 miles Would a sid jarge enough to till the whole orbit of this earth appear but a point of light viewed from a star that has no paral-
lax ? A. Yes. 3. Has Capella any parallax? A. We lax. A. Yes. . Has Capelia any paralaz: A. We
have no measures in our list. 4. Toward what star or constellation is the solar system supposed to be going?
A. Toward the constellation Hercules. No particul A. Toward the constellation Hercules. No particular
star can be named. 5 . Does our san form one of the stars of the milky way? A . No; it is central. 6. Is the sun supposed to throw heat into space where no planet or comet resistst it ? A. It generates ether waves in all
directions which only develop heat by impact upon directions, which only develop heat by impact apon
matter. The term "radiant heat" is now abandoned matter. The term "radiant heat" is now abandoned
by many advanced scientists, although retained by many as a matter of convenience.
(1871) A. C. W. asks: 1. Can hard rubber, sach as is used for electrical purposes,be urned
in a lathe? A. Yes. Use such tools as are used on hard wood. 2. Not long ago I saw a sma lelectric mo-
tor which worked equally well on a contunuous or alternating current. The field magnets consisted of a bar of soft irou wound with No. 14 B. and S. gange, the ends of the bar termunating in pole pieces. The armature was of the I type. made of sections of charcoal iron,
and was also wound with No. 14. The machin and was also wound with No. 14. The machine was connected in series. Was its action on the alternating
current due to the soft iron used in the field magnets and armature? A. We doubt if you ever saw such and armature A. Ae doubt Ty you ever sfew such
motor. It is possible that the Tesla motor ffect, due lag of period, might obtain in a common dynamo. How do you find the horse power of an electric motor?
A. Its actual power is determined by a brake, as in the
(182) J. P.O. aks: How far thelight
(1872) J. P. O. asks: How far is the light house at Houstholm, Denmark, visible by mariners at
seap Also please state the distance that lights can generally be seen at sea. Please tell me how far the two million cande power could be seen under most favorable circumstances by the naked eye. A. We do not know the height of the light above the eea, which is es150 feet high, it can be seen from the masthead of a ship
at from 35 to 40 miles. The two million candle power at from 35 to 40 miles. The two million candle power
can be seen no farther, but gives a stronger light in hazy weather
(1873) J. A. H. writes : We are desirous mon match which has sulphur on the stem, as we want to experiment in our class. A. Experiments of this an idea of the formulas, which are very numerous and varied :

Red phosphorus.

Mix on a water bath. After coating the ends of the splints with melted sulphur, dip them in the mixture.
(1874) F. H. says: If I have two columns of any metal, say wrought iron, being of the same
diameter, but one of them hollow, is it possible that, making the hole in the hollow coiumn a certain size said:column will better resist a force of a certain mag
nitude tending to break it, than the solid column The solid column will resist the greatest strain, It the economy of a given weight of metal in a oolid or hollow column that gives preference to the hollow column, because, with equal weights, the hollow column is largest, which gives it greater stifness from bending forces, and may give it greater crushing
strength, dueto compact grain, and bracing effect from its annular form.
(1875) E. B. asks:1. What metals expand the most ? A. Of common metals, zinc expand bination of metals which, when heated say to same heat bination of metaly hich, when headed ill expand, and re tain the expanded size when reduced to ordinary temperature? A. Rubber vulcanizes at 276° Fah. There are no alloys that melt at this temperature that expand and remain so. An alloy of 75 parts lead, 16.7 antimony, $8 \cdot 3$ bismuth expands in solidif ying, but melts at a much higher temperature than that used for vulcanizing. 3.
For my purpose I want a metal that will expand and reFor my purpose I want a metal that wil expand and re wo not necessarly essential, though desirable, and can obtain it? A. We know of no such alloy or metal. 4. How many degrees of heat Fah. can I obtain with a mouth blowpipe in a small furnace made after direc. tiong given in "Experimental Science," how many degrees with a mechanical blowpipe? A. You can get
about $1,500{ }^{\circ} \mathrm{F}$. with a mouth blowpipe. With a small about $1,500^{\circ} \mathrm{F}$. with a mouth blowpipe. With a small
bellows you can get about $2,500^{\circ}$, and can melt small mounts of gold, silver, brass, and copper. 5. Explain Scientiric American Supriement, No. 141, for full size comparison scales of Fahrenheit, Centigrade, and Reauunur thermometers. 6. Have any patents been taken out for the manufacture of aluminum from clay,
cryolite, or feldspar, as an article of commerce i oo, please furnish numbers of patents, and I will remit or copies. A. There are many patents on the manufacture of aluminum. We can furnish copies for several years back at 25 cents each. 7. Is there any known
aftinity for aluminum. such as a magnetic affinity or the use of mercury for the extraction of gold? A. Alumi-
num is not magnetic, nor has mercury any affinity fo What are the component parts of cryolite, feldspar, and clay? A. You will tind analyses of cryolite, feldspar and clay in Dana's Mineralogy, $\$ 3.50$, mailed. 9. In what is aluminum found freest? A. Aluminum is easiest
reduced from cryolite. 10. Will the heat of a Bunsen burner flame be augmented by use of blowpipe? What ame gives the most intense heat ? A. The heat of a
Bunsen burner will be increased, if applied as a pipe. For a small blowpipe an oil lampgives the mos pipe. For a
intense heat.
(1876) J. A. B. asks: 1. What is the (1876) J. A. B. asks : 1. What is the
implest method of making gunpowder? A. By mix-
 little water and grind to impalpability. Roll out while wet, into small cylinders, which ent up or break up into grains after drying. 2. I have a 50 light Edison mahine. What number wire should 1 wind with? A. It depends on the type of machine. Apply to the Edison tion, etc of machine 3 How is the so celled patent leather made? A. By japanning, with special precautions and skill. The following is a formula for the japan: Burnt umber, 8 oz.: asphaltum, 3 or 4 oz.;
boiled linseed oil, 1 gallon. The umber is to be ground
and in a little of the oil, the asphaltum dissolved in a little nd the whole mixed. It may be thinned with turpen-
(1877) F. C. says: 1. After a steam auge freezes, what action has the frost on the spring to
cause the pointer to be on the wrong side of the pin? cause the pointer to e on the wrong side of the pin?
and if you steam up, the pointer will come back and can't see mowh the frost has weakened the spring. I goes down in the boiler and the pointer comes back to the pin. It seems a mystery to me how the pointer can get on the other side of the pin. And when you find out how much it is weakened, what is the best way to get
the spring in it it right position again without sending it he spring in ite right position again without sendingt to the factory where it was made fauge is or should be filled with water, and is liable to freeze by exposure. In the frezzing of a steam gauge the pointer may be thrown clear around against the pin by the expansion of the water in the pipe, sup.
posing it to have commenced to freeze at a little dis. tance from the gauge first. You can take off the head and reset it, but the probability is that the relation of
the gauge to the dial marks will be changed, and the he gauge to the dial marks will be changed, and the
gauge become unreliable. Better send it to be repaited zange becon
(1878) X. asks : Can a large thick-coated cat emit or rather transmit enough electricity to a
person for an electric shock to en felt prickling or even a shock can be thus obtained unde

(1879) A. C. R. writes : I have three or our hundred Indian darts or fints. one tomahawk and ne knife. Can 1 arrange them so they would be attract-
ve? A. Mount them by fine wires in regular design
(1880) J. M. writes : Can you tell me of ny chemical compound which, when poured into frozen water pipe, will generate such a heat that the ice in the pipe will be thawed out? A. Alcohol is often
used to thaw out water. The trouble with all the methods is that the hot water stays in the top of the pipe, and the heat does not descend. Strong chemicals
should not be nsed.
(1881) T. S. writes : If two round light openings be equally exposed to therays of the light, one
2 inches in diameter and one $11 / 6$ inches in diameter what relativa percentage of light will pass throught the openings? A. The light will vary as the area of the openings, or what is the same thing, in the ratio of the
square of their diameters, viz., in the proportion of (2$)^{2}$: $113)^{2}$ or $4: 11$. The large opening will pass more than wice the amount of light.
(1882) Theta wants a formula for a toning bath to obtain good black or purple tones on ready A. Chloride gold

Boraz.
Weter
.1 gr.
.60 a
Water.................................. . 4oz,
See Scientific American, page 225, April 13, 1889. If a small single combination lens with an opening
F-16 would be available in a hand camera, using dry F-16 would be available in a hand camera, using dry
plates with sensitometers 25. A. Yes; but only the cener portion of picture will be sharp. A small diaphragm tions are usually slower than double. Dallmeyer makes a special single combination lens for handcameras that
(1883) P. A. S. asks for the method of alvanizing wire, the materials used, etc. Can the metal be melted in an ordinary iron kettle? What tempera-
ture does the metal melt at? What is used to make the ure does the metal melt at? What is used to make the netted metal adhere to the wire? A. The iron is pickled It is then scrubbed with sand or emery and immersed In hath of equal parts of saturated solutions of chloride uto melted zinc; to every 640 pounds of which 106 pounds of mercury, and 5 or 6 ounces of sodium have been added. The bath can be melted in cast iron. Its emperature should be about 680° Fah. The mercury melted zinc can be used. Zinc melts at 671° Fah.
(1884) W. S. C. writes: As a reader of over twenty years' standing of your valuable paper, 1
heg to ask the following : Last week a man jumped from a bridge at an elevation of it is said, 285 feet. sapposing the jumper weighed 160 pounds, with whal
force did he strike the water and how is the computation made? A. No direct answer can be given. If we assume that he sank two feet before the energy due to the
fall was exhausted, his $285 \times 160=45,600$ foot pounds of energy would be reduced to an average of $\frac{45,600}{2}=22,800$ b. averaqe pressure extending over the two ieet. There
is no fast rule, Beaufoy experimentally determined that

1 pound striking with a velocity of 1 foot gives a pressure of $0 \cdot 5003$ pound. This applied to your case would
give $160+160 \times 0.5003 \times(135)^{2}$, or about $1,458,000$ pounds But Beaufoy's results are fallacious, as the blow de pends on the relative distances of fall and space traversed in coming to rest.
(1885) U. S. S. Co. asks how to tin or copper iron by a cheap process. A. Iron may be cop-
pered lightly by simple immersion for very short time in a solution of sulphate of copper (blue vitriol). To give a substantial coating it must be electroplated. To tin ron it must be pickled and then run through a solution of chloride of zinc with a little sal-ammoniac and then
through a bath of melted tin. The tin bath should be protected from oxidation by a layer of matted charco be
(1880) J. D. P we.t
(1886) J. D. R. writes: 1. Will you give hrough your paper instructions for cleansing and puri-
fying old zinc for battery purposes 9 sind and and water and a stiff brush or stick of wood whose end has been beaten into fiber. If to be amalgamated, use a little acid. 2. Is there any process by which we
can reclaim or restoreold, worn-out oorous cups, such as can reclaim or restore old, worn-outporous cups, such as
are used in the Leclanche batteries? A. Such cups are best discarded if really worn out, otherwise soaking will lear out the pores. 3. What is the most simple way mo cells the resistance of a battery? A. By puttin vanometer or Wheatstone bridge. But in this case the wo cells must exactly neutralize each other
(1887) E. M. asks for a formula for a good liquid shoe dressing that can be made cheaply. A.
We have published several blacking formulas recently. We have published several blacking formulas recently.
They are very numerous. One reads: Ivory black and They are very numerous. One reads : Ivory black and
molasses, of each $1 / 4$ pound, oil of vitriol 1 ounce, meal molasses, of each $1 /$ pound, oil of vitriol 1once, meal
oil 2 ouncee, sour beer 1 pint; after mixing thoroughly sired consistency with water
(1888) X. X. X. asks for the process for are washed, and boiled thoroughly, when potatoes 85° wahhe, one quart of brewer's yeast and 1 or 2 pounds of flour are added. After four or five hours fermenta-
tion the head falls in. It is left for two or three hours tion the head falls in. It is left for two or three hours
after this occurs. From 70 to 90 pounds of flour are after this occurs. From 70 to 90 pounds of flour are
mixed with water at 85° Fah., and the above leaven or ferment is forced through a sieve and intımately mixed with this flour, giving the "sponge." The potato skins and flour left on the sieve are washed with
the water added. About 30 quarts of water suffice for the sponge. It is allowed to rise and break twice,
which requires about an hour for each break, and which requires about an hour for each break, and
then enough flour, from 190 to 210 pounds, is added to make, with what has been added, 280 pounds. Thirty quarts of water are added and about 3 pounds of
salt. It is kneaded, allowed to stand an hour. and "scaled "into loaves, and baked, the oven being at 400° For an excellent treatise we refer you to "The Complete Bread, Cake, and Cracker Baker," $\$ 3$.
(1889) F. R. W. asks : 1. What number ro,000 tons, by upward of 30 manufacturers A. 2. How many different processes are there used? A. This is impossible to answer; perhaps three or four distinctive processes. 3. Is not the acetic acid process, or what is known as the Dutch process, the one in common use ?
A. Yes; and the best, in general estimation. 4. In the A. Yes; and the best, in general of labor, and what for the acid? A. Such figures cannot be obtained. They vary for different localities The white lead manufacturers are apt to be very secre-
tive; many consider that they have trade secrets, and others adulterate with barytes, etc
(1890) J. H. D. asks : 1. Will you kindly give me the formula for preparing a photographic printing paper called Pizzighelli ori gray paper? A. See
full details in Scientific American Supplement, No 636. 2. Are there any positive celluloid films manufac manner to the dry plate ferrotype? A. No. White cel luloid is coated with the emulsion, on which positive pictures may be made either by contact or in the camera from a negative. The Seed Dry Plate Company, of St. Louis, Mo., supplies them. What are the chief adulterants of linseed oil, and what is the pres-
ent New York market price for the pure article? Is there any simple test by which the presence of adulterof the principal deted? A. Resin oil and fish oil are two tection should be entrusted to a chemist. Linseed oil is worth now about 60 cents a gallon
(1891) C. H. G. asks: What is the difbarrel? There are gun harrels called laminated stee bar, Damascus steel bar, and Damascus barrels. A. The laminated barrels have a thread-like appearance
in the twist that lies parallel and even along the direcin the twist that lies parallel and even along the direc curl along the twist. The forms of this curl are fade curl along the twist. The forms of this curl are made
by welding two or more twisted rods together and then twisting the combined rod, from which the gun is made (1892) A. B. writes : 1. Can you give me he hair to turn gray? A. We cannot. You can bleach it with binoxide of hydrogen. 2. In your description, "How to Make a Simple Telephone "(magnetic), you do not give directions as to the signal call. Can the mag neto bells be adjusted so as to be used on the same
wires? If so, how? A. See Supplement, No. 162 . (1893) L. A. W. asks (1) for a receipt for making liquid blumg. A. Use soluble Prussian blue. Ordinary Prussian blue may bedissolved in oxalic acid The mixture is highly poisonous. 2. Also, how to
make white soap for laundry purpose? A. Saponify 6 pounds fat with 1 pound caustic soda and a little water. You should procure some manual on the subject, as thereare many details and variations into which
(1894) W. L. asks if it is possible to set
violin strings in vibration on a violin by applying on
same compressed air through a flat nozzle $3 / 4$ by $1-100$ same compressed air through a flat nozzle $3 / 4$ by $1-100$
of an inch in size, or any other similar proportion,
and if practicable, how high pressure will be needed.
A. You will find it difficult to do it satisfactorily The conditions of air blast required to vibrate a string have never been satisfactorily determined. In some cases the angle at which the air strikes a wire seems
to make a great difference in its power of causing to make a
vibration.
(1895) E. A. H. asks whether there is any method by which phosphorus can be applied to the face of a clock, or hands of same, without damage to clock or danger to person handling same. A. For this purpose you should use Balmain's luminous paint.
Phosphorus could be dissolved in oil and smeared over Phosphorus could be dissolved in oil and smeared over
the face, but would soon become exhausted. Either would cost but little, but the paint would last a long
(1896) C. L asks: Could you give me a good working formula for making blue fire? A. For

For firing as powder in pans:
Nitrate of potash.
Sulphur.
Sulphur........ .
(1897) Marion asks by what recipe or process the beautiful gloss which I see on gentlemen's It is principally by the United States is obtained. A. polishing sadirons. A little kerosene or paraffin wax sometimes added to the starch. In our Supplement
(1898) W F W
(1898) W. F. W. asks : 1. How can I clean bottles which have contaned a stannous chloride
solution! The white coating on the sides and bottom is difficult to remove. A. Rinse with hydrochloric acid. difficult to revove. A. Rinse with hydrochloricacid casioned by spilling kerosene on it? A. Try fuller's earth. Mix with water to a thick paste, make a little
heap over the spot, and when perfectly dry remove and sweep.
(1899) T. C. R. asks for a good receipt sulphuric acid. This dissolves the alloy and leave pure gold on the surface.
(1900) W. B. P. asks: When a man dies, how do all the newspapers throughout the land get his portrait for the next issue of the paper? A.
Often the likeness is prepared a few days before the Often the likeness is prepare
death, when it is anticipated.
(1901) H. J. D. asks : 1. How is commer ial natrium æthylat manufactured? A. By dissolving metallic sodium in alcohol ; the latter should be abso lute. 2. How is hydrogen peroxide made, and what are its uses? A. By treating binoxide of barium with dilut sulphuric acid.
cially for hair.
(1902) P. J. L. asks: 1. What are the cheapest white and light colored metals that will not tarnish, and that can be milled, moulded, or both, and the same for small parts of machinery? A. Many re ceipts for white metal alloys are given in the books German silver is perhaps as available as any. Cast it in sand moulds. 2. Is there a duli colored plating, for
brass that wears as weli as nickel plating? A. Use tinbrass th
ning.
(1903) M. A. H. asks regarding chromic iron ore: 1. Is it very expensive to manufacture chrome yellow from it? A. It involves considerable plant, and
may be classed as rather an expensive operation. 2. What is its commercial value? A. For value address a broker in iron ores
(1904) D. H. asks: How can I make a thin, clear, and yet adhesive mucilage, similar to that used on the back of postage stamps?

(1905) C. T. asks for a recipe for a good and cheap furniture polish. A. Dissolve 4 ornces shel-
lac in 2 pints strong alcohol, add 2 pints linseed oil and 1 pint spirit of turpentine, then 4 ounces ether and (120q) St. P. A. Shake when using
(1906) St. P. A. asks for a receipt for erasing ink stains out of white paper. A. Oxalic acid
dissolved in water and mixed if desired with a little tar taric acid may be used
(1907) F. E. K. J. \& J. E. C. ask how copper plate printing is done, where the fine lines on the plate are filled and transferred to the paper in raised
letters; what is used to prevent the ink from taking on the surface of the plate. A. The plate is inked all ove
that in then the surface of the plate. A. The plate This removes al thiving except what is leavy pressure is used.
give
(1908) C. S. R. asks: Will you inform me where I can find the geometrical construction o
polygons of $7,9,11,13$, and 17 sides? A. You must d polygons of 7, 9, 11, 13 , and 17 sides?
them tentatively for the most part. Special methods might be worked out for some of them.
(1909) A. L. C. asks: 1. Will you tell me what gas is generated by placing silver in nitric acid? A. Nitrogen dioxide, $\mathrm{N}_{2} \mathrm{O}_{2}$, which oxidizes in the air, forming higher oxides, probably $\mathrm{N}_{2} \mathrm{O}_{4}$ for the mos part. 2. What is precipitation? A. The formation of a
solid insoluble substance in a solution. 3. Is it safe solid insoluble substance in a solution. 3. Is it safe
to generate oxygen in an iron retort? A. Yes, if your to generate oxygen in an iron retort? A. Yes, if your
chemicals are pure. 4. How is the location of a break in a telegraph wire detected when the ends do no tonch the ground? Also how is a break in a cable loarine unbrokated? A. By determining the capacity of the unbroken part, or if the cable communicate
break with the water, by testing its resistance.
(1910) H. B. asks: A recipe for the component parts of the hekto
to our SUPPLEMENT, No. 438.
(1911) J. L. asks how to grind the interior of glass tubing to prepare for making level
vials? Give best way to prepare, or rather obtain level surface in interior of glass tubing. A. Glass tubes for levels of transits and other surveying instru ommercial tubes, with care as to pazallelism in their ylindrical form, and cut from the tube, a caliper being used to find the proper sections to be used. A brass rod is made a little longer than the section and center, the difference between center and ends being not over so of an inch, with as true a curve as possible This, with the finest flour of emery and water, is used grind the inside of the tube. In doing this the tub slightly curved, which must be considered in the grinding operation. Much judgment and experience is re quired to do this so as to obliterate any ridges or un evenness and bring at least one side to a perfect curve nubes for bring insuments 73 of the cir be made by fillng and corking the ends, A tral can madie by illing and corking the encts, when, in defects may be corrected before seaing the ends.
(1912) F. W. M. asks: Which do you think would be the most practicable for tricycles What and other road machines-steam or electricity hroughout the United States would be power ma hines, if the extra cost did not exceed $\$ 75$, and pe aps not but $\$ 50$, and extra weight less than 30 lb ? At present there are serious difficulcies with both ap quired. If this and the large expense could be some what overcome, large numbers would be used.

TO INVENTORS.

An experience of forty years, and the preparation o tents at home and abroad. enable us to understand the and practice on both continents, and to possess un synopsis of the patent laws of the United States and a oreign countries may be had on application, and persons abroad, are invited to write to this office for prices hich are low. in accordance with the times and our exmUNN \& CO., office Scientific Americican, 361 Broad-

INDEX OF INVENTIONS

or which Letters Paten of the United States were Granted

February 11, 1890,
AND EACH BEARING THAT DATE.
See note at end of list about copies of these patern
djustable chair, K.
Alarm. See Burglar alarm. Door alarm Album or picture exhibitor. E. S. Glo Animal shears, Bechtol \& Bessonett
Animal trap, A. W. Cardozo
Auver, wood, H. Loftie...................
Axle lubricator, car, A.
Axle, vehicle. W. Jones..
Baby jumper. F. E. Lyon
Bag. See Paper bag. Traveling bag
Bap holder, A. J. Hesner.....................
Baling presses, power device tor, H. W. Nott
Basket, L. A. Brown.
Basket, Le A. Brown............................
Bath. See Electrical spray and vapor bath.
Batters. See Electric battery. Electric body
battery. Galvanic body battery. Storage
\qquad
Bedstead guard, L. E. Meyer..........
Beheading block and ax, w. Hanlon
Belt, driving, F. Clouth
Blind, ventiliating, Holgroas \& \& Ri........
Blind, window, E. Hantsch Blind, window, E. Hantsche, Jr....
Block. See Beheading block. Engraver's block
Board. See Center bourd board. Wash board.
boat, O . R. Ingersoll Boat, O. R. Inkersoll...
Boiler. C. H. Ross...... tion from. J. P. Karr...
Bolt. See whiffletree bolt.
Boot blanks, machine for forming felt, A. E

Hardy.. Boot or shoe

Boot or shoe heel fastening, J.
Boring tool. T. Lea.............
Boring tool, combined, M. Wood
Bottle, nursing, Rose $\&$ Balston
Bottles, drink reaistering attachment for, H.
Barker.
Bouquet holder. R. F. Nelson............................
Box. See File box. Letter box. Paper box. Re-
frigerator box.
Box. D. M. Somers
Box toe, W. B. Arnold...
Brace. See Railmay rail brace.
Bracelets, chains, necklaces. etc., link for, A. J.

bracke.
Brae Car brake.
Bridle attachment, C. C. Schwaner
Buckle, bale tie, R. W. Carroll.
Burglar alarm. M. M. Ritch..
Burner. See Sulphur burner
Burner. See Sulphur burner. Vapor burner
Cable grip. . . Daint....
Cable grip. N. Kirchner
Calculator. W. D. Otis.
Can. See Oil can.

Cant hook, A. E. Creigh.
Car rake. M. Bodefeld.
Car brase, A. Hendee..
..... 420,9
Car. collapsible railmay, L.
Car coupling, J. W. Brooker
Car coupling, J. R. Chambli
Car coupling, J. M. Clark
Car coupling, W. Falkner.
Car coupling, Finley \& Harpe
Car coupling, E. N. Jones....
ar signal. Belknap \& Cawth
Car, stock, A. W. Street............. Cars, sliding door for rallway, A. B. Pullman
Carding engine cylinder, E. \& G. A shworth arpet. reversible ingrain or imitation Bruss
Carpet stretcher, R. E. Z.............
Carrier. See Elevated carrier. Trace carrier
Cart, dumping. T. Hill.
Cart, road, F. Rudolph

artridge feeding device, L. F. Bruce Case. See Label case. Piano case.

Cash register and indicator, H. A. Herr

 Caustic holder, stick, G. E. Ferren. Celluloid, embossing sheets of, Wood \& Gillmore Chaif. See Adjustable chair. Hygienic chair Reclining chair. Rocking chair. Checkrow wires, knot for, R. Faries....... Chimney flues, thimble for, A. T. Staples Churn, C. T. Boyer Clasp. See Garment clasp. Clasp for albums, books, boxes, etc........................ Cleaner. See Type cleane
Clip. See Stub clip. Clothes line fastener, Q. Re
Clutch, friction, J. Walker.
Cock for water Cock for water coil boilers, inlet, R. W. Apple garth ... ooke, manufactur, J. Noble..... Collar or cuff, waterproof, H. C. Milligan.
$\begin{aligned} & \text { Wakefield }\end{aligned}$
Compost distributer, J. R. McGee..
Cooler. See Milk and butte
Copper. reflning, J. Garnier
Coppholder, J. F. Frankey
Cord fastener case and label holder, combined.
L. Pitney.,

Cork holder, H. Baldwin
Corn husker, J. E. Miller
Cotton cleaning mechanism, P. Carroll
Cotton gin feeder, J. w. Wofford
Coupling. See Car coupling. Hose coupling
Thill coupling,
Crankpin, adjustable, J. Mills
Crusher. See Ore crush
Currents, system of distribution for alternating,
E. Thomson.... E. Thomson.......

Denture, artiflicial, J. A. Throckmorton
Detergent, Deteriling, wood, apparatus for.
Ditching and excavating machine, H. Carter
Ditchin Door alarm, J. F. Wollensak... . Door, storm, F. C. Shuck
Drayght equalizer, A. Hunt
Drying apparatus, C. Sentz
Dust collector, R. Whitehill.......................
Dynamo regulator, E. \& F. W. Heymann Ecrasure, F. J. Mesle.................
Electric battery, E. M. G. Hewett.
Electric body battery, o. S. Hall.
Electric cable conduit, W. P. Ty.er....
Electric circuit safety device, H. Lemp Electric circuit safety device, H. Lemp.............
Electric compound push, J. H . Wollensak.........
Electric machines, collecting contact for, Schmid

 Electrical communication, J. I. Cutler...
Electrical spray and vapor bath, N. I.yke Electro-mechanical movement, S. E. Nutting,

Eseglass holder, s. E. Kelley

 Fan attachment for chairs, etc.Fan, automatic, W. R. Poll, Jr
Fan supporting bracket, adju Tagkart....

```
421,344
```


H
Hammer, drop, N. C. Stiles
Handle. See Velocipede handle.
Hanger. See Tobacco hanger.

$$
\begin{aligned}
& \text { Hadle. See Velocipede handle. } \\
& \text { Hanger. See Tobacco hanger. } \\
& \text { Harnass. E. Clark.... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Harnass, E. Clark.... } \\
& \text { Harvester, corn, F. H }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Harvester, corn, F. Hazen........... } \\
& \text { Harvester wheel, S. D. Lecke.... } \\
& \text { Hat ironing machine. C. H. Reid... } \\
& \text { Hat pressing device, C. M. Osioood }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hat pressing device, c. M. Oskood............ } \\
& \text { Heater. See Steam heater. Water heate. } \\
& \text { Hedze trimmer and lawn mower combined. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Heage trimmer and law } \\
& \text { Carr................ } \\
& \text { Hinge. C. C. Bess....... } \\
& \text { Hinge, spring, c. Zattau }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hoe or rake, W. Voltz............. } \\
& \text { Hoe, revolving horse, A. G. Emery.. } \\
& \text { Holder. See Bag holder. Bouquet }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Holder. See Bag holder. Bouquet holder. Caus- } \\
& \text { tich older. Copp holder. Cork holder. Eye- } \\
& \text { glass holder. Globe or shade holder. Paper } \\
& \text { holder. Rope holder. } \\
& \text { Hook. See Cant hook. Check hook. Snap hook. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Horse detacher. L. Swensson................ } \\
& \text { Horse power for hay presses, D. S. Waugh.. } \\
& \text { Horseahoe w Rryden }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Horseshoe. W. Bryden..... } \\
& \text { Hose coupling, J. H. Sewal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hose coupling, I. D. Weaver.......... } \\
& \text { Hose straps, making. C. W. Kimbil } \\
& \text { Hob otanhino dovico Wricht \& St }
\end{aligned}
$$

Hub. vehicle, P. McMenamin.

ree machine, J. Kurtz...............................
Indicator. See Liquid level indicator. Station
indicator. Vote indicator.
Ink distributer, self, S. D. Henry
Ink distributer, self, S. D. Henry
Inkstand, J. R. Droney...........
Insecticide solution, C. Schneide
nsecticide sole iron. Soldering iro
Iron. See Pole
Jar lid fastener, C. P. Mai
Jewelry, D. . . Adams...
Joint. See Rail joint.
Journal bearing. Kinsey \& Smith
Journal bearing. J. J. Wood....
Key fastener, E. Frary.
Key fastener, E. Frary.
Knit garment, combination, A. R. Burpee........
Knitting machine, circular rib, scott \& William
Knitting machine filling burr, J. S. Crane........
W. H. Draper
Label case or cabinet. druggist's, C. B. D.
Lamp, central draught, J. Jauch..........
Lamp, generative gas, Stern \& Mucke...
Lamp, generative gas, Stern \&
Lamp, hanging, J. c. Miller..
Lamps, cut-out for incandescent, E. Thomson.
Latch, C. Rettie..
Lathe, metal turning, P. Lobben....
Lathe, tubular cutter, E. Zimmermann et al.
Leather stuffing wheel, A. J. Darragh...
Letter box, CBappell \& Moore (r)
Lithtning arrester. G. G. Bayne...
Liquid receptacles, spreading tip for, W. H. Un
derwood..
Lock. See Hoop lock. Nut lock. Till lock.
Lock, F. Sykora......
Locomotion and conveyance, system of, w.

Locomotive feeding tank, J. F. Smi
Log loader, steam, F. O. Kilgore...
Loom for weaving with short wefts, J. H. Green-
leat
Lubricator. See Automatic pressure lubricator.
Axle lubricator.
Mangle. F. J. Rost
Mat. See Door mat. Wire foot mat.
Mat. See Door mat. Wire foot mat.
Measuring vessel. liquid, H. P. \& S. L. Barnhart.
Metal bending machine w. W. Green
Metal bending machine,
Metal wheel, Burgess \& M
Metal wheel, Burgess \& Munz.
Metallic vessel, lead lining, T.
Middlings separator. T. Ponsar................
Milk and butter cooler, N. H. C. Slaughter
Milk and butter cooler, N. H. C. Slaughte
Mirror, toilet, J. Manheimer.

Motor. See Spring motor.
Mouse trap, A. T. Sullivan
Mouse trap, A. T. Sullivan....................
Mowers, rrass receptacle for lawn. P. F. Kelley
Musical instrument, stringed, A. Shaeffer.
Muzzle, horse, B. S. Seaman..................
Nails, manufacture of hook, S. Taylor...
Nails, manufacture of hook, S. Tay
Nut inishing machine,
Nut lock, R. McDonah
Oar, bow f.
Oar, bow, J. w. Jackson
Open hearth furnace, R. .o. Young
Ore concentrating apparatus, R. D. Gates
Ore concentrating apparatus, R.
Ore crusher, J. F. Wiswell.........
Organ stop action, J. A. Hillstrom,
Oxides to the metallic state, reducing metallic,
Paint, componsition for, N. A. Bibikov.
Paper bag, F. .e. Porter
Paper box, J. C. Powell
Paper Bisles, machine for affxing flies to, G
Bisler.....
Paper cover,
Paper holder and cutter, roll, J. Baines.
Pavement and gutter,
Pavement and gutter. O. \mathbf{S}. Burdett. .
Peas, hulling, C. P. \& J. A. Chishol
Pen, stylographic , T.
Pen, stylographic, T. W. Evans.
Plano, E. R. Holme
Piano case, A. Gleit
Pin. See Cran
TUT苛
See Metal pipe.
.

$.421,062$
.${ }_{421.023}$

Rolling metal, J. Guest.... 421,272
421,039
Rope holder, C. H O. Strohbach......................... 421,328
Rosaniline, sulphonating, E. D. Kendall......... 421,049
Rowanine, suphona
Rowing apparatus, E. J. Kerns.......................... 421,080
Rubber water botle, J. Burbige.......... 41.100
Rule, stair, C. E. Wilson.... 421.216
Rule, stair, C. E. Wilson....
Ruler, o. S. Matthews......
Ruler, N. B. Wheeler..
Sash fastener, O. Beebe.......
Sash fastener, G. W. Cook...
Sash fastener, w. N. Hunter

Sawing and drilling metal or other substances,
machine for, W. B. Hammond

Scholar's companion, A. Ove
Scoop, potato. J. Vowles....
Scourer. Bee Grain scourer.
Scourer. See Grain scourer.
Scraper, C. Rath.............
Scraper, C. Rath... 420,92908
Seawallor breakwater, H. Case.....
Seaming tool, double roof, P.S. My ers........... 421.187
Seat. See vehicle seat.,
Seat. See Vehicle seat.
Semaphore, J. M. Kirby
421.005
$.421,185$

machines for. . . H. Brown..................... 420
Bewing machine feeding mechanism, J. M.
Brosius.................................23
Sewing machine ripping attachment, N. T. Que-
vedo.. 421,
brake for. T. J. Sawyer.......................... 421,056
Sewing machines, stitch setting-up device for, w.
S. Cobb... 421,045
Shaft detacher. . s. Pollitt................ 42140
Shearing machine, C. A. Bertsch................ 420.986

Shearing machine, C. A. Bert
Shears. See Animal shears.
Sheet metal pipe, J. White.
Sheet metal vessel, F. A. Wa
$\ldots . .$.
Sheet metal vessel, F , flanging, F. A. $21,21,213,421,33$
Shoe fastening , J. Schoonmaker
Signal. See Car signal. Railway electric signal.
Silver ffrom copper ores, mattes, and other cop-
per products, extracting, R. Pearce............ 441,031
Silverware, etching and oxidizing gold plated,
Myrick \& Roller.............
Silverware, etching gold plated, Mrrick \& Roller. 421
Siphon, M. T. Schuberth........... 42,
Slotting machines, tool holder for, S. Benson....... 421.3,
Snap hook. . H. Smith 421,2
Soldering iron.
Soldering iron, electric, W. M. Miner.. 4211,185
Soldering machine, can. W. D. Brooks.......... 411,043
Soldering machine, can, F. Trullender........... 421,331
Soldering machine, can, F. Prulender............... 41, 41,
Spining machine, ring, G. Perkins t al....... 421
Spinning machine thread guide, Burt \& Davol.... 421
Spittoon, F. Haberman...421,273
421,280
Spool case. c. M. Imbrie....
Spring. See Vehicle sprin
Spring for beds. etc.,. J. S. Biery.
Spring motor, Wall
Stamp mill guide, Lee \& Viggers
Stamp, self-inking hand, Sawyer
421,230
421,334
Stamp, seff-inking hand, Sawyer \& Force....
Stand. See Album stand.
Station indicator, M. Byrne.
Station indicator w.
Station indicator, W. J. Smith
Steam engine, L. D. Copeland.
Steam heater, F. J. Furman....

Steam heater, L. J. Furmand..................................421,261, 42
Steam trap. F. J. Ferrell
Storage batterry. C. Sorley
Stove. \&as, J. B. Foley................
Stovepipe fender. Johnson \& Packer
Stove, range, or furnace, A. Berthe
Stratiner, revolving bucket.
Strainer, revolving bucket. J. T. Dore..............
Straw stacker, automatic swinging, H. R. Nagle
Straw stacker, automatic s.
Stub clip. w. M. Houser...
Sulphur burner, S. Smith..
Surgical applicator., c. C. Harri
Suspender trimming. T. W.
Suspenders, L. Sternberg....
Suspension device, F. Rhind.......................... 421,326
Switch. See Railway switch.
Tank. See Locomotive feeding tank.
Tape meanure. T. W. Grie................................1133
Telegra phic sounder, G. W. White............... 421,214
Telegraphic sounder, G. W. White...................
Telephone attachment, G. F. Newland...........
Telephone transmitter and receiver, H. w. Lib-
bey 421,
Thermal cut-out, P. Cardew.................. 421,1
Thermal cut-out, E. W. Little............ 421,18
Thermo-electric resistance regulator, S. E. Nut-
ting.............................. 421,053

Founded by Mathew Carey, 1885. HENRY CARE BAIRD \& CO. Indastrial Publishers, Booksellers, and Importers ARRHIRECTURLL BOXSS. Useful, Beautiful, and Cheap.

 To any person about to erect a dwelling house or sta-ble, either in the country or city. or any builder wishing to examine the latest and best plans for a church, school
louse, club house, or any other pullic building of high or low cost, should procure a complete set of the Archi-
TEcts' AND BuILDERS' EDITION of the ScIENTIFIC american.
The information these volumes contain renders the
work almost indispensable to the architect and builder, and to persons about to build for themselves they will colored plates of the elevation, plan, and detail drawtngs ot almost every class of building, with specifica-
tion and approximate cost. tion a.ad approximate cost.
Eipht bound volumes are now ready and may be obtained, by mail, direct from the publishers or from any
newsdealer. Price. $\$ 2.00$ a volume. Stitched in paper
covers. Subscription price, per covers. Subscription price. per annum, 82.50 . A
and remit to
MUN \& CO., Publishers, 361 Broadway, New York

(18)
ELECTRIC SPIRAL SCREW DRIVER PRICE, BY MAIL, \$1.
Gurumat Poxis wime

DERFORATED METALS fomINING SCREENSS
Coal ano Ore Separators, Revolving ano Shaking screns IGS \& STAMP BATTERIES watumw MILING MINING MACHINERY Y M maw
HARRINGTON \& KING PERF ORATING © ,CHICAGO.
uct The Choice Novelties of $1890 . \operatorname{cin}^{2}$

EVANS FRICTION CONE CO.

frictional gearing for regulatING and CHANGING SPEED of all MACHINERY. The speed can be quickly and easily varied while run-
ning from 100 to 200 feet per minute. They are PROMPT, EFFFICIENT, and NOISELESS.
Address, 85 Water Street, Boston, Mass.

NOW READY
 Fxperimental $\$$ dienee

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, $\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,

 Navy
nore
there

 lot. The Department reserves the right to waive de-
fects or to rejectany orth bids not deemed advanta-
geous to the Governmentil
JAMES FULTON, Paymaster General, U. S. Navy. BARREL

	After being on the Market Four Year \rightarrow The "A CME" Still Leads! rochester machive tool woris, browis riac, rocekester, n.		
-		on	
	RAILWAY AND STEAM FITTERS' SUPPLIE Rue's Little Giant Injector. arew jacks, sturtevant blowers		
woun		8	
	TMNTFD \qquad $\$ 10.00$ to $\$ 50.00$ ner nimat	The Scientric American	
	WANPED \qquad Population in 3,$000 ; 1885,25,000$;	Publications for	
	Coun miole		
LIARS	Nind		
E.			
THE BACKUS WATER MOTOR.ITHE BACKUS EXHAUST FAN.			

Didoertisements．

JAMES MEANS \＄3 SHOE．

 more anxioust oget the genuine．
JAMES MEANS $\mathbb{E} \mathbf{C O}$ ．， 41 Lincoln St．，Doston．

Victor Bicycles
Overman Wheel Co．，Makers，
Chicopee Ealls，Mass． THE MODERN ICE YACHT．

NEW KODAKS

Seven New Styles and Sizes Transparent Films．

THE EASTMAN COMPANY，
Sem for Catalogue \quad ROCHESTER，N．Y．

If you are a
If you carin ERNMAKER，
MILLWRAGHT，
CAIBINETMAKEIR，

 PATENTS！
MESSRS．MUNN \＆CO．，in connection with the publi－
cation of the SCIENTIFIC AMERIIAN continue to ex．
amine improvement and
for Inventors．

ICE－BOATS－THEIR CONSTRUCTION

COLUMBIA CYCLES

LADIES＇
SAF GIIES，TANDEMSMEN＇s．
SAFEIIES，
HICHEST CRADEONIY
JARGELUSTRATED MGUE UE

NEW CATALOCUE VALUABLEPAPERS E

 CROSBV STEAM GAGE \＆VALVE CO．IBoton，Mass．

$\overline{\text { JAMES B B．EADS．－AN ACCOUNT OFF }}$ the

2nernall

FORGING AND WELDING BY PETROLEUM AIR BLAST FIRES，
 $*$ We will replace in stock or Mutual Compminies any Insura． THE stanied accordinst to our plams． THE AERATED FUEL COMPAN Springfield，

THEAMERHAN BELU TEPRPHONE CD
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 877．No 186，787
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences

FIRE FELT．

THE FREY，SHECKLER CO．，BUCYRUS， 0.

THE NEW NON－CONDUCTING MATERIAL

THREE ELEVATORS

OTIS BROTHERS \＆CO．＇S
Passenger and Freight Elevator Works，
General Office， 38 Park Row，New York．
THE OTIS ELEVATOR
THE＂GRAVESWTELEVATORS
Slates Patent Cutring－0ff Tool

WRE ROPE

 エ玨曰

Suicutific sumpicau

The Mosi Popalar Selentific Paper in the World．

This widely circulated and splendidy yllustrated
paper is pub isted weekly．Every number contains six－ teen papes of sueful information and a arge number of
original engraving of new inventon sand discoveries． original engravings of new inventons and discoveries．
representing Engineerig Works，
Steam Mum Muchinery， New Inventions．Novelties in Mechanics，Manufictures，
Chemistry，Electricity，Te egraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural Iistory，etc．
Complete Terner
Terms of Subsciption．One copy of the Scien－ postage prepaid．．o any subscriber in the Une United statess，
Canada Canada or Mexico，on receipt of three dollinr wh the the
publishers；six monts，f1．50；three monthe， 81.0 ．
 Masters．Write for particulars．
The safest way to remit is by Postal Order．Draft，or
Express Money Order．
Money
carefully xxpress Money Order．Money carefuly placed inside
of envelopes，securely sealed，and correctis addressed of envelopes，securelty sealed，and correctig adressea，
seldom goes astrays but is at the sencrs r risk ad－
dress dress all letters and make all orders，dratts，et co．，pay－

MIUININ \＆CO．，
361 Broadway，New York． TEXE
Scientific American Supplement．
This is a separate and distinct publication from
THic SCIENTIFIC AMERICAN．but is uniform therewith size，every number containing sixteen large pages full of engravings，many of which are taken from foreign
papers，and accompanied with translated descriptions． The Scikntific american Surpleminnt is published weekly，and includes a very wide range of contents．It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of science and the Useful Arts，embracing Biology，Geclogy，Mineralogy， Natural History，Geokraphy，Archæology．Astronomy， Chemistry，Electricity，Light．Heat，Mechanical Engi－
neering．Steam and Railway Engineering，Jlining， Ship Building，Marine Engineering，Photography，
Technology，Manufacturing Industries，Sanitary En－ gineering，Agriculture，Horticulture，Domestic Econo－
my，Biographs，Medicine，etc． my ，Biographr，Medicine，etc．A vast amount of fresh
and valuable information obtainable in no other pub－ lication．
The most important Ensineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and Manufactures at home and ab
 Canada．$\$ 5.00$ a year，or one copy of the Scientific Am－
 for one year for कi．00．Single copies 10 cents．A ddress
and remit by postal order，express mones order，or check． MUNN \＆Co．， 361 Brondway，N．Y．．

Building Edition．

The Scientific Ambrican abchitects＇and
Butideres＇Edition is isaued monthiy． 8250 a year Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of A rchitecture，rich－
adorned with elegant plates in colors，and with other ly adorned with elegant plates in colors．and with othe
fine engravings；illustrating the most interesting ex amples of modern Architectural Construction and allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi dences，city and country，including those of very mod dences，clty and country，including those or very nod－
erate cost as well as the nore expensive．Drawngs in
perspective and to color are given，together with full Plans，Specification，sheets of Details，Estimates，ttc．
The elegance and cheapness of this nnagnificent wurk have won for it the harsest Circulation of any Archirectural publication in the world．Sold by all MUNN \＆CO．，Publishers，

PRINTING INKS．

