
[Entered at the Post Office of Nex York, N. Y.. as Serond Clase Matter. Copyrighted, 1890, by Mnnn \& Co.]
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vole Liribion

THE MECHANICAL INTERLOCKING SWITCH AND SIGNAL \mid twenty-onelines of parallel tracks are produced. Trains These are connected to rods running along the tracks SYSTEM AT THE GRAND CENTRAL DEPOT, NEW YORK. from three separate railroads enter and leave the depot, some for operating switches, others for rotating signals. The yard of the Grand Central Depot, in New York, involving between two and three thousand train move- When a lever is pulled in one direction or the other, it has recently been equipped with a new interlocking ments daily. When a lever is pulled in one direction or the other, it
therefore moves the corresponding switch or lever. switch and signal system. Four parallel lines of tracks The general principle of interlockingswitch and signal The levers are made to interlock with each other, so enter the yard at its northern end, and as they ap- mechanism may be given in a few words. In a central that certain levers can only bernoved after othershave proach the two depot buildings fork and diverge until building called the tower a number of levers are placed. (Continued on page 102.)
 new system of dnterlocking switches in operation at the grand central station, new york city,

§rientific ghmericau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. \quad A. E. BEACH.

TERRMS FOR THE SCIENTIFIC

Spanish Edition of the Scientific American.

 The safest way to remit is by postal order express money order

or | praft |
| :---: |
| $8 . \mathrm{CO}$ |

NEW YORK, SATURDAY, FEBRUARY 15, 1890.

TABLE OF.CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 737
For the Week Ending February 15, 1890. Price 10 cents. For sale by all newedealers

1. ASTRONOMY AND METEOROLOGYY-Clouds and Cloud Waters.

$\mathrm{VH}_{\mathrm{G}}^{\mathrm{th}}$

helping the merchant fleet.

The plan outlined in the bill recently introduced into Congress by Mr. Cummings, of New York, for dealing liberally with American steamer lines in the matter of mail contracts, would seem to have much to commend it and to be worthy of a trial. The bill does not contemplate the payment of subsidies save in the way of recompense for carrying the mail, nor is the rate it fixes in excess of that we now pay foreign lines for the same service. The remittance of dues and charges and similar favors seems not too much to ask; the loss of revenue fancied rather than real, for if there were to be such imposts there would not be any ships, and hence no source for such a revenue.
All that is asked may fairly be regarded as insignificant if it will enable ships which cost more to build and more to man than foreign ships to keep the seas.
The class of subsidy, if payment for service actually performed can rightly be called a subsidy, which it is designed to pay these steamers is one generally prevailing now upon the ocean, and it is immediately obvious, therefore, that no first-class steamers can successfully compete in the ocean traffic that do not receive it.
It is perhaps within the power of the mathematician, taking things as he finds them and with no eye to the future, to figure out a prospective loss at the start. He might be able to show the actual benefit received much smaller than the sum paid out plus received much smaller than the sum paid out plus
dues remitted. But the same was once true of industries which now pay their way a hundredfold in employment of labor and demand for material.
We have now entered upon an era of war ship build ing ; the country is agreed that we need a fleet of modern ships, and Congress is making appropriations with unstinted hand. Great yards and shops are being established for the construction of iron and steel ships, and the facilities being at hand, the time is ripe for the construction of a mercantile as well as a war fleet. There is no reason why, the most efficient type of ship not yet having been decided upon, we should not ourselves discover it. There is no reason why a nation which has nursed its land industries into a state o profitable independence should be less liberal with its shipping.

EUROPEAN WORKERS.

One of the speakers before the National Association of Builders, recently meeting at St. Paul, declared that less persons were learning trades to-day than 25 years ago. He attributed this to the restriction of the apprentice system by the trade unions.
Those who keep themselves informed will, however have found another cause for this besides the one he very justly decries. It is the distaste of American youth for hand labor. Here, where, above all other countries, labor is held to be honorable, small clerkships, affording only a precarious means of livelihood, seem to be preferred to the calling of the artisan with its large demand and liberal wages. Any one wanting proof of this need only advertise for the one and the other. In all likelihood, he will get a score or to ap
plications for a clerkship at $\$ 10$ a week, while for the plications for a clerkship at $\$ 10$ a week, while for the
artisan's place, who must receive more than twice that sum, he will, trade being fairly good, get few, if any, applications.
If it were true that here, as abroad, a hand laborer was likely always to remain a hand laborer, the discrimination might be more easily understood, though perhaps equally senseless. But a man here may rise as quickly and as high as his fortune and capability The workshops and mills of the country abound with instances of men coming up from the ranks to import ant positions, and even to be owners of works. Such careers, though possible anywhere, are frequent here and men so rising, to their credit be it said, rarely make any secret of it.
The delegates to the all-Americas Congress, traveling through the West, were entertained one evening in a palatial residence. Its owner, who, we may say in passing, is the largest carriage manufacturer in the world, called their attention to a painting, hung upon the wall, of a humble village swithy. "There," said he, "I began my career." What with the disinclina tion of American youth to learn a trade and the ob stacles the trade unions put in the way of those who might be tempted to do so, the builder has now to look to Europe for an important part of his working force -the stonecutters and plasterers ; the number native here being inadequate for the demand. These men the close of the season, and a means is now being sought to prevent their employment at all.
The speaker at the Builders' Convention said on the subject :
"Cut off our foreign mechanics to-day and not increase the number of apprentices, and before many years the nation will be robbed of the means of material advancement. As a proof of this, within the last year the stonecutters unions passed a resolution shutting out the stonecutters called birds of passage, who 1 come over here from Europe in the spring, working
here all summer and autumn for good wages, and when the winter sets in go back to their homes, taking the money they have saved with them to be left on the other side, and repeat the same thing year after year ; and as a consequence of shutting out so large a number there is a great scarcity of good stonecutters in our large cities and the progress of building greatly delayed. With this policy of the unions I am in full sympathy, if at the same time they will remove restrictions placed on the industrial education of our youth. The plasterers are now very largely dependent upon the foreign sup ply, and becoming so scarce that in the busy season they can demand almost any wages. This, certainly, is not a healthy state of things for the nation and people when we cannot either educate mechanics or import them."
The reason that these foreign stonecutters and plasterers come here is, of course, because of higher wages, and the measure resolved upon by the unions, instead of keeping them out, is calculated rather to force them to remain here. It would seem, therefore, a wiser policy to encourage native youth, not only to permit them to enter freely into apprenticeship, but to encourage them to do so.

Algol.

At the meeting of the Royal Prussian Academy of Sciences held on Nov. 28, 1889, Prof. Vogel gave the results he had obtained from photographs of the spectrum of this variabie. Prof. Pickering had pointed ont, some years ago, that if the variation in stars of the Algol class were due to the transit of a dark satellite across the disk of its primary, producing a partia eclipse, then, since in every case yet known the two bodies must be close to each other and of not very disproportionate size, the primary must revolve with very considerable rapidity in an orbit round the common center of gravity of the two, and, therefore, be some times approaching the earth with great rapidity and sowetimes receding from it. Six photographs of the spectrum of Algol-obtained, three during last winter, and three during the November just past-have shown hat before the minimum the lines of the spectrum of Algol are markedly displaced toward the red, showing a motion of recession; but that after the minimum the displacement is toward the blue, showing a motion of approach. Assuming a circular orbit for the star, and combining the details given by the spectroscope with the known variation of the star's light, Prof. Vogel de rives the following elements for the system of Algol :

Speed of translation of the entire sys-
tem toward the earth
2 miles per second.
It will be seen that the density, both of Algol and its companion, is much less than that of the sun-less than quarter, in fact. This is what we might expect, for Algol and all the variables of its class yet examined give spectra of Group IV., and should therefore repre sent a less advanced stage of condensation than that seen in our sun. This demonstration of the truth of the satellite theory of variation of the Algol type de rives also an especial interest from Prof. Darwin's re earches on tidal evolution, for assuming, as we well may, that the cause of variation is the same in all members of the class, we now know of nine stars in which arge companion is revolving round its primary at but a very short distance from it and in a very short space of time. The companion of U Ophiuchi must, indeed, be almost in contact with its parent star.

Lassar's Treatment for Baldness

First Stage.-A strong tar soap is applied to the calp for at least ten minutes.
Second Stage.-Removal of soap by a tepid water douche, the water to be gradually cooled, the scalp to be well dried afterward.
Third Stage.-The scalp to be shampooed with the ollowing solution

```
R. Hydrarg. bichlorid. corrosiv............................. gr. x.
    Glycerin,
    Spirit. rect
    Aq. destil.
```


Fourth Stage.-Shampooing of head with absolute alcohol to which half per cent of naphthol has been added.
Fifth Stage.-The following solution to be well rubbed into the skin
R. Acid. salicyl...
Tinct. benzoic.
Ol ped taur

Graetzer found this treatment most useful and efficacious in private practice, and therefore does not hesitate to recommend it to the profession. He says that with such a powerful method of treatment in view, the present indifference of medical men with regard to the reatment of alopecy ought to be given up.-Medical Record.

Antiquities Made to Order

The rage for having furniture of the antique pattern has grown wonderfully during the last few years. Antique oak dining suites, bedroom suites, and hall furniture seem to be the most popular, but anything of an antique character now sells rapidly. Many purchasers who are furnishing their houses really believe that they are buying furniture which some old time Puritan had used. In this they are greatly mistaken. Antique articles are manufactured every day in the different warehouses.
A furniture dealer was recently interviewed by a New York Mail reporter on this subject. He said: "A few years ago agents used to be sent all through the rural parts of New England to pick up superannuated furniture of every kind-such as was found astray in farm houses, village attics, country hotels and elsewhere, having been handed down from generation to generation in the families of long-resident natives. The latter were usually willing enough to part with the treasures, which were only valuable in the eyes of people of æsthetic tastes, and the dealer paid a mere song for the articles, reaping a big profit. But now the supply obtained in this way has been practically exhausted. Now it is the fashion for rich Yankee people to have in their houses one or two apartments in the old colonial style, with Hoor and walls of dark oak, massive rafters, huge fireplace, mahogany furniture, and an occasional spinning wheel. There are not nearly enough of these precious relics to go around, so it is a blessing that provision is made for reproducing them indefinitely at comparatively cheap rates.
"The most approved method of giving a floor or wall a look of old age is to scrub it at intervals with gallons of old ale. This produces a fine effect. Mahogany is generally used for the manufacture of antique pieces of furniture. In its natural state it is no darker than black walnut, and to make it of the proper hue staining must be resorted to. If oak is wanted, it is rubbed with common shoe blacking, and the usual wax finish put on afterward. This is warranted to add fifty years to the apparent history of a bureau or desk in one hour. For the inside works of said desk or bureau pine is employed, and this is given the requisite look of antiquity by repeatedly firing a shotgun loaded with nothing but powder, and plenty of it, into the drawers and around them until the surfaces exposed are sufficiently discolored and all full of those curious indentations which ordinarily indicate age. Another process is to wash the drawers, etc., with a coarse sponge dipped in powerful acid, which eats wood here and there, and effects the same result.
"Brass fittings are manufactured in all the ancient designs that were ever used. In order to make them look dull and old, the moulds in which the brass is cast are rubbed and chipped somewhat, and in them a little gunpowder is placed and fired with a match. This occasions a discoloration, which seems to betoken the action of time's gnawing teeth, and the same is warranted to last until the merchandise is sold, though not much longer.
"A special branch of the work has to do with clocks of the ancient upright pattern, which are copied in every detail from the really old ones. Even the metal faces, with their curious numerals, are imitated, and the works of modern pattern are permitted to lie in a dusty corner and oxidize comfortably while the framework is in process of construction. There is nothing, the makers say, in the line of back number furniture that cannot be reproduced at a few days' notice from brand new materials, and yet so like the old that no ordinary person could pussibly tell the difference."

A New Drier.

M. John Castelar, in the Moniteur des Produits Chimiques, has drawn attention to the valuable properties possessed by manganese oxalate as a drier. This salt has hitherto not had any important industrial uses; but as it can be readily prepared in a state of purity from the native carbonate by the action of oxalic acid, the author is of opinion that it will be found of use for this purpose. If prepared from carbonate free from iron and lime, it can be obtained as a nine crystalline white powder, and 2.5 per cent is sufficient to bring about the change. The oxalate is resolved by heat into manganese oxide, carbonic acid, and carbon monoxide, and in the presence of fatty acids the manganese oxide formed combines with them, the decomposition taking place at about 130 deg . The operation is easily carried out by mixing in a mortar the oxalate with two or three times its weight of oil, and then adding the mixture to the main portion of the oil. The heat should be applied gradually, and the decomposition is known to be complete when there is no further evolution of gas. The boiled oil, under this treat ment, preserves its limpidity, and also remains color less. Manganese oxalate has the advantage over oxide of lead, which is commonly employed for this purpose, in causing the oil to remain transparent when exposed to sulphur vapors. Manganese acetate has also been used, but it likewise causes a darkening in the color of the oil, and the nitrate is dangerous, owing to the
oil. Manganese borate appears to be next in value to the oxalate as an oil drier.

English and German Torpedo Boats.

The embodiment in designs of the various opinions held by builders with regard to form of hull in relation to power and speed produces marked differences in the expenditure of power and general efficiency, when the object aimed at is the same. British builders, as a rule, adopt comparatively full bow lines, with sections more or less of the U-form. In many French-built boats the water lines at the extremities are comparatively full, with a midship section approaching in contour that of the old Symondite type of British naval brig. German builders, on the other hand, seem to believe in extreme fineness of entrance, and to secure this feature have in the majority of cases placed the greatest section abaft the middle of the length, giving to the boat a long fore body, with a relatively ful after body. The adoption of such a form tends to reduce the proportions of the bow wave created when duce the proportions of the bow wave created when
running, and to remove the crest further aft along

the side, but against this crew space is reduced and comfort at sea sacrificed. The difference in fullness between the fore and after bodies is greatly exaggerat ed when the boat is running, as an alteration of trim then takes place, the bow rising above and the stern falling below the original level. In relation to resist ance, the policy of adopting an after body full in re lation to the fore body is a doubtful one. Mr. Froude than whom no better authority can be quoted-ha distinctly stated that fish-shaped bodies, towed with the blunt end foremost, experience a less resistance
than when towed from the fine end. Applying this statement to the type of vessel under consideration then those which attain extreme speeds, with relatively full runs, do so with an undue expenditure of power and it has also been proved that excessive fineness o

How to Make Matt-surfaced Class
Matt-surfaced glass, in which the roughening is very fine, has several uses in photography, and by the etch ing method as given in detail by Lainer a surface can be obtained in which the graining is very much finer than can be produced by grinding, and for such fine focusing screens as are required in special scientific work there is considerable advantage in using th etched glass surfaces.
Lainer's method of operating is as follows: The glass is first cleaned with the same care as is required in preparing a plate for the wet collodion process, after which it is bordered with wax, and when set on a lev eling stand the plate is flooded with dilute hydrofluoric acid, made by mixing one part of the commer cial acid with ten of water, this acid being allowed to remain on the plate for about a minute. The object of this preliminary etching is to produce an absolutely clean surface. The acid is now rinsed off, and the plate is wiped with a soft and carefully cleaned sponge. The plate is next leveled, and the matt etching preparation is poured on. This etching preparation is made as follows: In a suitable vessel-wood lined with asphalt is recommended-is poured enough strong hydrofluoric acid to fill it not more than onefifth full, and powdered crystals of sodium carbonate are gradually stirred in until the mixture becomes thickish and hangs like snow on the stirrer, which stirrer may be a strip of wood soaked in shellac varnish and dried. The white foaming mass is at this stage strongly acid. It is advisable to perform the operation of partial neutralization out of doors, not only on account of the irritating nature of the fumes (carbon dioxide saturated with hydrofluoric acid), but also on account of possible damage to lenses or other polished glass surfaces.
The pasty mass of fluoride of sodium and hydrofluoric acid is now diluted with water, from five to ten times its volume being required, according to the degree of concentration of the original acid. The best way is to begin with the smaller proportion of water, and to etch a trial piece of glass by leaving the liquid in contact with it for two hours. If the etching gives a very close, fine grain all is right, but if, on the other hand, the grain is coarse, unequal, and almost crystalline in appearance, further dilution is required.
When the dilute preparation is so weakened by use that it acts too slowly, a little more of the pasty soda mixture may be added. In etching the plate, cleaned as already described, a layer of liquid from a quarter to half an inch deep is required. When the etching is complete the plate is rinsed and scrubbed with a hard brush to remove an adhering film of decomposition products.-Photo. Review.

A Large Phosphor Bronze Casting.

A few days since, at the Gateshead works of John Abbot \& Co., limited, another very heavy casting of phosphor bronze was successfully made. It is one of a series for the new British cruisers now build ing at the Elswick works of Sir W. G. Armstrong Mitchell \& Co. Two very heavy castings have already been made, as previously pointed out in the Newcastle Daily Chronicle, and these were the earliest so cast in England. To John Abbot \& Co., limited, the casting of a nine ton casting in iron is a small event, for "bed plates" for engines are in brisk times often cast far exceeding that weight, but the novelty of the metal and weight of its casting drew foremen and apprentices from several departments of the works to witness it. Alike by the young apprentice, with his moulding tool by his side, and the experienced foreman, the tapping of the reverberatory furnace, the running of the orange hued metal into a huge ladle, the conveyance by an overhead traveling crane to the ladle wagon, and thence to the mould, were witnessed with great interest, as well as the filling of the mould from the ladle, until a burst of flame from the air holes indicated the completion of the work. The phosphor bronze-an alloy of copper and phosphorized tin giving a metal of great tenacity and strength-run into the ladle from the furnace, was about nine tons in weight, and the value of the metal was stated to be nearly $\$ 9,000$, the casting itself being less in weight, and cast in a sand mould. One of the other castings, made a few days ago, was shown in the yard, and was a magnificent piece of work.

An Electric Snow Sweeper.

The electrically driven snow sweeper in use on the West End Street Railway in Boston consists of a platform car, mounted on a four-wheel truck, two Thom son-Houston motors of 15 horse power each being attached to the axles. Underneath each end of the car is a large cylindrical brush made of rattan, set at an angle of about 45 degrees, and reaching across the track. The brushes are revolved very rapidly by power from a fifteen horse power electric motor which is on the platform of the car. The sweepers are pro pelled precisely the same as the electric cars, the long pole reaching the trolley wire being fixed to a post on the platform.

A COMBINED COTTON CHOPPER AND CULTIVATOR. The accompanying illustration represents a combination implement which has been patented by Mr. Perry L. Jordan, of Garvin, Texas. To the inner face of each drive wheel, the wheels being mounted loosely on the axle, a sleeve is rigidly attached, and on the inner end of one of these sleeves a spur wheel is secured. Upon the reach bar a sleeve is also held to revolve, having integral therewith a pinion adapted to mesh with the teeth of the spur gear. From opposite sides of this

JORDAN'S COTTON CHOPPER AND CULTIVATOR.
sleeve upon the reach bar project two or more arms, to which rods are adjustably secured, adapted to carry scraper blades on their outer ends, a scraper blade being provided for each set of arms, and the cutting edges of the blades facing in opposite directions. The scraper blades have a slight inward inclination, and may be ad justed farther out or closer to the sleeve, as required by the width of the row. Two cultivator stocks are attached when the implement is to be used as a cultivator and scraper, these stocks having each at their forward end a hook adapted to embrace a squared central portion of the axle, and the stocks having each a downwardly extending section, to which the cultivator shovel is attached. To prevent the driving reins from catching in the scraper arms, two vertical rein holders are provided, extending upward from the central portion of the axls. The cultivator blades are guided by the operator as the machine is driven forward, and this attachment may be readily removed when not needed.

AN IMPROVED HAND RAKE.
The accompanying illustration represents a rake which is light, strong, and durable; and designed to supersede the old-fashioned wooden rake. The head of the rake is preferably made of a flat plate of No. 16 sheet steel, having its lower edge bent outwardly at right angles, and in this edge are slots or apertures, through which the upper ends of the rake teeth are in

paxson's hand rakf.
serted, to bear laterally against the flat-head plate, the top of each tooth being bent inwardly at right angles through a slot or aperture in the vertical part of the head plate, on the inner side of which it is clinched. The small view shows how the teeth are attached and also the attachment of the central handle clip. The teeth are preferably of No. 8 steel wire, and it is designed that the total weight of metal in a rake 23 inches long, and having twelve teeth, shall be only one pound.
For further information relative to this invention ad-
dress the patentee, Mr. Jonathan Paxson, No. 530 South Center Street, Pottsville, Pa.

VOLT AND AMPERE ANALOGIES

A.

Considerable difficulty is experienced in appreciating the true relations of electric units. Any analogies drawn from more familiar or concrete things are use ful if they are really apposite. In the cut are shown the lines of a simple experiment of ten used to show the phenomenon of torsion, which may be employed to illustrate the relations of potential difference, usually expressed in volts, to an electric circuit and to the current produced in it by the potential difference in question.
A vertical wire is attached at its upper end to a pointer moving over a dial graduated, as shown. To its lower end a lever is attached, to whose end a thread passing over a pulley and carrying a weight is fastened. Several intermediate dials are placed at even distances, the wire passing through their centers. To the wire, pointers are attached, one for each dial. The whole is so adjusted that when the weight rests on its support and the thread is tight, all the pointers stand at zero.
If the upper pointer is turned around, the others will share in its rotation to an extent inversely proportional to their distances from it. Suppose, in the ar rangement shown, that the first pointer is turned to 4 and that the weight is just raised. Then the second pointer will reach the figure 3 , the third pointer the
 figure 2 , the fourth pointer the figure 1, and the lowest will move only an inappreciable distance. If we imagine the wire to be part of an electric circuit, and the rotations of the pointers to indicate voltage, we have an excellent illusration of fall of potential. The rajsing of the weight represents the developinent of a current. Thus the first pointer moving over four divisions, while the last does not move, indicates a difference of potential between the two extreme points of four volts or other unit. Taking the middle of the wire where he pointer stands at 2 , a difference of potential of ($4-2=2$) two volts between the upper end and center of the wire, as well as between cener and lower end, is indicated. The ame rule of uniform drop of po tential will hold for all intermediate points. The wire is supposed to be structurally uniform, and references to proportional distances on an ed electric distres, of course, to what may be termed electric distances, measured by resistance, and not necessarily by lineal feet or inches.
The ampere is the unit of intensity of current; it is not a unit of quantity, except indirectly. It is the cur rent which a difference of potential of one volt will establish through a resistance of one ohm. It has in or dinary measurements one very close analogy that seems to have been seldom utilized in text books. In the Western States and Territories the flow of water is measured by what is known as the "miner's inch.' It is the flow of water that will take place through a hole one inch square in a two-inch plank under a head of eight inches of water measured from the lower edge of the opening. The anaiogy is excellent between this and an electric current. The head of water represents the difference of potential, say of one volt, the opening in the plank represents a conductor of defined re sistance, say of one ohm, and the water escaping, run ning out at the rate of one miner's inch, represents the current produced under the conditions, or one ampere An ampere flowing for one second gives a quantity of electricity termed one coulomb; the miner's inch flow ing for one second gives a quantity of water termed $0 \cdot 1937$ U. S. gallon
Both units can be used without reference to time to indicate the strength in one case of a current of water in the other case of a current of electricity. It show how incorrect it is to speak of a current of any num ber of "amperes a second," instead of simply "am peres." If seconds are to be used, then the curren should be spoken of as equal to so many "coulombs per second." Water flows at the rate of so man miner's inches, without any reference to time

AN IMPROVED CAR COUPLING.

A car coupling designed to be automatic in its action and in which the old form of drawheads may be utilized, is illustrated herewith, and has been patented by Mr. William A. Cooper, of West Grove, Pa. Upon the forward end of the drawbar are inclined locking limbs, of arrow-head form, and in its rear end is a slot for the insertion vertically of a pin, to the lower end of which weight is secured, there being on the pin an adjust-
drawbar, and hold it normally in position for engagement with another drawbar, as shown in Fig. 1, while leaving sufficient room for its necessary vertical and lateral changes of position. In each drawbar, at one side of its arrow-head, is an opening for the reception

COOPER'S CAR COUPLING.

of one limb of a corresponding arrow-head on a mating car coupling, as indicated in the top plan view, Fig. 2. A tripping arm is pivotally secured to the side of the drawbar, a rocking bar extending thence to the corner of the car frame, where it has a jointed attachment with a swinging lever, to which is attached a chain ex tending to the car roof, that the lever and rocking bar may be operated therefrom. Near the outer end of the rocking bar is a coiled spring, whose torsional strength is adapted to hold the tripping arm in its normal po sition, aligning with the drawbar. On the outside exsition, aligning with the drawbar. On the outside ex
tremity of the tripping arm is a toe, which extends laterally to lie below the forward end of a mating draw bar, and, by the operation of the hanging lever from either side of the roof of the car, an engaged drawbar is lifted sufficiently to disengage the ìmbs of the arrow heads, thus detaching the couplings.

AN IMPROVED MUSICAL INSTRUMENT.

Prof. L. V. Barnard, of No. 16 Robbins Avenue, Pitts field, Mass., is the patentee of a new instrument of the violin class, named Agillo. The neck is elevated and extended over the breast of the instrument, as shown by the illustration, thus forming an uninterrupted passage under the neck or fingerboard for the thumb whereby the performer may guide his hand and carry it deftly from the first to the highest position withou obstruction, while the special form of the left side o the upper part of the instrument-it being S -shaped and the edge of the breast curved or bent down-per mits the hand and arm to move easily to any desired position on the fingerboard, enabling the performer to bring into action every note the strings are capable of

BARNARD'S VIOLIN
with great facility. The instrument has five strings, and is tuned by fifths. When played, it is held in the lap. The reach being short, the fingering is easy for ingers of all sizes. In compass of tone it is designed o exceed all other instruments of the bow, ranging from the lowest notes of the cello to near the highest tones of the violin. It has a particular adaptation for pizzicato, harmonic, and glide effects, and like th violin commands several parts simultaneously. By eason of its capacity for active execution, it is named Agillo from the word agile. It is said that the highes musical authorities in New York have examined the instrument and give it their indorsement.

ENGINES OF THE AUGUSTA VICTORIA. Among the recent additions to the fleet of great ocean steamers plying betwen Nificent ship, and on of the finest vessels in the world. Her propelling machinery is of the strongest and most costly character. There are nine main boilers, in three groups of three each, and each group, together with its coal supply, is plcced in a separate water-tight compartment. Six of these boilers are 17 feet 3 inches long and 15 feet 4 inches in diameter, and the remaining three are the same length, but 14 feet 3 inches in diameter. All the boilers are double ended. The material used is steel. In these boilers very great care and attention on the part of the builders during construction was neces
engines, herewith illustrated, each set capable of developing 6,250 horse power. The cylinders are 40, 66 and 101 inches in diameter, stroke 66 inches. All the cylinders are jacketed. The cylinders are carried on extremely massive, double-legged box columns. Steel is freely used in the moving parts of the machinery. The reversing gear is by Allen, and is very rapid and noiseless in its action. The shafting is of steel and is hollow. It was made by Krupp, of Essen. The crank shaft is $201 / 2$ inches in diameter, the tunnel and propeller shafting being $191 / 2$ and $201 / 2$ inches in diameter respectively. The thrust block is unusually large, and is of the adjustable open "horseshoe" pattern. All the main shafting bearings are of white metal, and ample surface is provided. The glands in the and
officer in charge to at once have the engines stopped or reversed, and thus avoid collision or other damage that might occur from any misunderstanding of the orders transmitted from the bridge. The motograph also shows on the bridge the number of revolutions the engines are making. It also registers the direction in engines are making. It also registers the direction in which the engines were last moving-ahead or astern,
as the case might be-and remains so until the engines are again reversed, and it also obviates the necessity of a man standing by in the engine room to reply to the bridge, the engines themselves automatically in dicating the reply on the motograph. Lubrication in the main engines is most ingeniously effected by means of Bischoff's lubricators. Auxiliary condensers are placed in each engine room to take all the exhaust

ENGINES OF THE TWIN SCREW EXPRESS STEAMER AUGUSTA VICTORIA.
sary, as the German authorities require dimensions, \mid are packed with the United States Company's metallic \mid steam from the winches and small engines, galley, etc.
scantlings and work much in excess of Lloyd's or the Board of Trade. In each boiler there are six Purves ribbed flues. The total heating surface' is 35,000 square feet, and total grate area 1,220 square feet. The working pressure of steam is 150 pounds per square inch. Each group of boilers is supplied with a sepa rate feed pump and temperature compensator or feed heater. Feed injectors are also fitted to each boiler. The main steam pipes are so arranged that any one boiler or group of boilers can be used or shut off, as the case maybe. As regards the main steam pipes, they are of copper, and very great care has been raken with their construction, and, as an addrucible steel 7-18 wire.
The screws are revolved by two sets of tri-compound
packing, and throughout the long trial trip, with the engines at full speed the whole time, all the glands not only remained tight, but the piston and slide rods were as bright as possible, and no trouble was experienced on this head whatever. Chadburn's deck and engine room telegraphs are supplied, also helm and bridge telegraphs. Chadburn's engine room counter is used, and on the bridge Allison's motograph-a very useful and ingenious invention-is supplied for each engine. The motograph is of simple construction, and is actuated by a current of air contained in a copper tube eading from the engine room to the bridge. It is of great value to the captain, officer or pilot on the bridge, as it at once assures them that their orders are being executed, and removes all anxiety on their part as to which way the engines are going, thereby enabling the

Each of these condensers is fitted with an independent air pump and circulating pump. An excellent instal lation of fire pumps is supplied. The engines are sep arated by a water-tight bulkhead extending to the upper deck.
The slides for the H. P. and I. P. cylinder are of the piston type, and in the L. P. cylinder the long D slide is fitted with a balance back. All the slide rods are balanced. The slide valves are worked by the ordinary link motion of the single bar type. Tail and piston rods for the cylinders are not fitted, but the shoes on the piston rod heads and the guide plate of the column are given very large surfaces. The pistons themsel ves are very deep. Condensers are placed at the back of the engines, and are of the usual surface pattern. The air pumps are driven by a rocking lever off the L. an
H. crossheads. These are the only engines driven in connection with the main engines. Bilge, feed, and each circulating pump are driven by a pair of independent engines, made to a special design by Tangye. There are two three-bladed steel propellers, their diameter being 18 feet, and 32 feet pitch. The total blade area is 96 square feet, and the total disk area is 509 square feet. The bosses are of steel and are 4 feet 6 inches in diameter. The bosses are recessed to admit the flanges of the blades. They are so constructed that when the blades are fitted the boss is as spherical as possible; covers are fitted on the after end of the bosses, and the whole is a very complete job. A peculiar feature in the stern is that there is an aperture similar to that in single screw vessels. This aperture is of great service, as it enables the propellers to be run at greater efficiency, besides preventing any vibration. It also facilitates the turning of the ship.
A distinguishing feature is the excellent electric light installation. It is seldom, indeed, that such a complete plant is seen, except on board warships. The plant consists of three sets of combined engines and dynamos, supplied by Von Bremen, in conjunction with Siemens Brothers, of London. The dynamos are compound wound, and are of Siemens' latest type. Current is delivered at an E. M. F. of 110 volts. The plant is in triplicate, the third set being for daylight use. The spindle of the armature revolves in long phosphor bronze bearings. The engines are compound, vertical, and direct acting. The shaft is coupled direct to the armature spindle, and engines and dynamo are bolted to one bed plate. These engines are of very good design and make. The cranks are balanced, and massive flywheels are fitted. The engines and dynamos make 350 revolutions per minute. The main cables are led to a large slatebased hardwood main switchboard. Each circuit has its own main switch cutout, voltmeter and ammeter, these last being "dead beat" in their action and are by Schaffer \& Budenberg, who also supply all the gauges throughout the ship. The lamps are incandescent 110 volt lamps, by Edison \& Swan. They are of the "capped" kind. For the saloons, frosted globes are fitted. Group lamps are supplied for the masthead and side lights.
The Victoria Augusta belongs to the Hamburg American Packet Co., C. B. Richard \& Co., agents, 61 Broadway, New York.

THE MECHANICAL INTERLOCKING SWITCH AND SIGNAL SYSTEM AT THE GRAND CENTRAL DEPOT, NEW YORK.

 [Continued from first page.]been operated. In this way their movements are made interdependent and have to follow certain and definite orders of movement, which are susceptible of any desired variation. When the order of movement of a set of levers has been fixed by the adjustment of the interlocking mechanism, it cannot be departed from in operation. Thus, taking the simplest case of a switch and signal, two levers with interlocking movements might be used, one for the switch and the other for the signal. These would be made to interlock, so that before the signal could be turned to show "safety," the switch must be set to leave the line clear. Before the switch could be reversed, the signal would have to be set to danger. This is not all. It may be that to give a clear track four or five switches may need setting. In this case they would be made to interlock together and with one or more signals, so that the latter could not leave the "danger" position and show "safety" until all the switches had been properly set.
Into the safety of the trains running over the system, as factors of safety the watchfulness of the train hands and of the switch men enters as well as the perfection of the system. It does not eliminate human intelligence.
The signal tower in the Grand Central station is a two-story building, upon whose upper floor are placed the levers and interlocking mechanism. The levers stand nearly vertical, rising from the floor in a long row, and have bent arms at their lower ends, whence rods or wires run down to the ground level, shown in Figs. 1 and 3. Thence, by levers and rods, the movements of the levers are transmitted to distant points and in all directions. The rods running along the tracks are carried on pulleys bolted down to the ends of the sleepers or to special timbers. The view (Fig. 4) of an engine passing a switch shows this feature clearly In the manipulation of the switches a special contin gency has to be guarded against by means shown in the same view. It is the throwing of the switch while a train is passing over it. This would send part of the train one way and part another, and might even send the two trucks of a single car on different tracks. Along the rails of each track affected by the movement of a
switch, a bar of iron about forty feet long is carried, switch, a bar of iron about forty feet long is carried, members of a parallel ruler. This bar is thrown back and forth each time the switch is moved, swinging through the arc of a circle and above the rail in so do ing. When a train is passing over a switch some of its
wheels are always over this bar and preclude the possibility of moving it. Such a bar is termed a detector
bar, and really makes a part of the interlocking system, the engine and train locking its own switch In the same view is shown a lock for switches worked by ever from the tower. Its general construction is obvious. A bar attached to the swinging point of the witch reaches across the track. Near its center it is perforated by two holes, and a bolt, axial with and moving in the direction of the track, is arranged to pass through one or the other of these apertures. They

Fig. 5.-DIAGRAM OF INTERLOCKING MECHANISM.
are spaced so far apart that the bolt will enter the holes only when the switch is in one or the other of its two positions. This locks it. The bolt is connected by cranks or rods and levers to a lever in the tower For some places a similar locking mechanism is used, placed to one side of the track. These locks enter also into the action of interlocking.
Signals may be of any type. In the Grand Central yard lantern signals are used, mounted so as to turn through an angle of 90°, and show red or white to the engine driver. Red indicates danger, white indicates safety. They are worked by connecting rods exactly as are the switches and switch locks.
The principal interlocking is done in the tower. In

Fig. 6.-DETAILS OF INTERLOCKING MECHANISM.
front of the operatives and on the farther side of the levers is the interlocking mechanism, shown in Fig. 1 In general principle it is simple; its complexity is due to the fact that it can be adapted to any conceivable contingency.
Below the levers are a series of curved links pivoted at the center of their lower surface. As the lever swings backward, it swings the rear end of the link down. This particular movement may be effected by the separate hand piece and connections on the front of the levers. To
the front end of each link a short rod or pitman is attached that rises vertically therefrom. In front-of each ling across and underneath the series of upper rods is a long
narrow grating pivoted at its ends. At the rear end, or the one nearest the lever, which the pitman s attached. The details are shown in Fig. 6. In the normal position of the lever the pitman is drawn down and the grate is horizontal. When the lever is drawn back ward, the pitman is pushed upward and the grate is thrown out of horizontal to an angle of about ; 45 from the same. Hence a lever cannot be moved without a grating moving with it. If the grating is held ast, the lever is locked. Mechanism is provided by which any lever may be made in its movements to lock ast any one or more grates and so prevent the lever connected therewith from being moved. This consti tutes the typical interlocking. Across the gratings
above and,below them run a series of rods, one for each
lever if necessary. A pin and slot connection is made between the rod and the grating belonging to the lever in question, so that as the lever moves and actuates the link, pitman, and grating it also causes the rod to slide in one or the other direction at right angles to the axis of the grating. In Fig. 6 the farther lever is thus connected. One or more projecting dogs are bolted to the rod, projecting downward from its lower surface. Two are shown in Fig. 6.
These are of such a length as just to clear in their movements the upper surface of the grating. If, when the lever is normal, a dog is so placed as to come over the rising side member of a grating, then this grating cannot be moved, and its corresponding rod and switch or signal, as the case may be, is locked. But as the lever is drawn forward, the rod slides and the dog is drawn to the left. This brings it over one of the openings of the grating, thus freeing it. The lever attached to this grating with its switch or signal can now be moved. A second series of rods extends under the grates, and by dogs projecting upward also locks them, thus economizing in necessary length of grates. Sixty-two apertures are provided for rods, and as some of the rods extend only part of the length of the series, there is room for a rod for each lever
To show how the interlocking can be varied and how its movements affect or are affected by the order in which the levers are moved, a diagram is given, Fig. 5. In it a, b, and c represent the ends of three gratings, the same as shown in Fig. 6. The grating a is attached by slot and pivot to a rod carrying the dogs x and y. The lever connected to this grating works the rod to right and left. The crank arms to which the pitmen are attached are also shown. In the position shown in No. 1 the lever belonging to grating a is normal; grating b with its lever and grating c with its lever are free, and the switches or signals connected therewith can be moved. After these are moved the lever of grating a can be thrown over and all can be fixed as shown in No. 2, the dogs catching the edges of the grating. In No. 3, starting with the levers at normal, or, what is the same thing, with the gratings horizontal, grating a has first been moved, locking c but bringing a dog over the opening in b, leaving it free to move and its lever has been thrown. In No. 4 it is shown how b and c can be locked by dogs differ ently spaced, being brought over their edges by the movement of the lever corresponding to grating a.
The above is simply given as an example of the pos sibilities of the system, and not to illustrate any special combinations.
At proper places in the yard selectors are placed. They enable one lever to do in a certain sense the work of a number. The rod from such lever running along the ground terminates in a box. From the other end of the box several rods issue, as shown in the cut, Fig. 7, No. 5, five in number. The ends of these have verti cal play of about an inch. If dropped, they hook on to an extension attached to the main entering rod, A, and are actuated by it. If raised, they are disengaged and cease to be actuated. To raise and lower them bars slide under them at right angles, carrying in clined planes. As these bars are pulled in the one or other direction, the five rods, m, n, o, p, r, are raised and lowered. The inclines can be set to right or left, and can be varied in number so as to produce any deired combination. These inclined bars are actuated by obliquely slotted plates, a, b, c, d, attached to and worked by other signal or switch rods. Thus, suppose rod a is connected to a switch whose safety signals ar et by rods n and p. Then when the switch is thrown he left hand bar is thrown over, raising out of en gagement the rods m, o, and r, and leaving in action ods n and p, just specified. A movement of the leve connected to rod A sets the signals. In the same way rod b and c and d can be taken care of, and by varying the position and setting of the inclined planes, one to five signals can be set in any order determined by the rods a, b, c, d, all through a single lever attached to $\operatorname{rod} A$. In No. 6 of the same cut is shown an elevation of the nclined planes and end sections of the bars m, n, o, p, r. The apparatus in place lies in the horizontal position No. 5 giving the plan. In dotted lines the hooking-on mechanism is indicated in a general sense.
The effect of these selectors and of other features of the installation is to reduce the number of levers. On the system in vogue a few years ago, 176 levers would have been needed todothe work of the yard. In the present plant, where one lever often does the work of a number, either by working lock, switch, and detecto bar at one stroke, or through selectors, owly 87 levers are employed.
The system was put in by the Union Interlocking Switch and Signal Co., of this city. After three months of work without interfering with the old plant, the connections were made, practically with no interruption to traffic. A portion of the interlocking was disconnected for four hours on a Sunday morning. It will be seen that by varying the shapes of dogs and their positions, any desired combinations can be ffected. The designers of such systems become ver expert, and can work, it is said, by a sort of intuition in carrying out the interlocking.

©orrespondence.

Beautiful Meteor

To the Editor of the Scientific American
On the night of January 24, at 8:40 P. M., I saw a light rise in the west horizon. It looked like a rocket until it came near the zenith. Then a meteor with two heads about the size of first magnitude stars, apparently 20 inches apart, with a foggy light over three yards long, shot east about 15° south of zenith. Have any of your readers seen it, and what was it like?

Philadelphia, Pa.

L. B. Wilson.

Carbolic Actd for Carbuncles.
To the Editor of the Scientific American:
Dr. Boggs, in your issue of December 21, errs in crediting Professor Verneuil, of Paris, with the introduction of carbolic acid in the treatment of carbuncuar affections. If Dr. Boggs will refer to the New York Medical Record, or Sansom's great work, he will find that Dr. Cleborne, of the United States navy, first injected carbolic acid subcutaneously, and swabbed out buboes with the crystallized acid; and he was followed some time later by Dr. Taylor, of the army, who injected the acid diluted with glycerin or water in the treatment of boils.
The use of carbolic acid for the cure of carbuncles, boils, buboes, etc., is, therefore, an Amerisan, not French invention.
A. Smythe Palmer.

Washington, D. C., January, 1890.
An Improvised Organ Pipe
To the Editor of the Scientific American:
Chance led to an experiment in acoustics the other day. Wishing to dry a bottle of two liters capacity with an opening at the mouth of about three centimeters, I inserted a Bunsen burner with a blue flame about three centimeters long, into the bottle, which was held bottom upward. The bottle immediately resounded with a full tone, like an organ pipe, which continued till the flame was beaten out. The bottle was a resonator, or stopped pipe, for the flame. Various other bottles were tried, but no other was found which gave a musical note when the flame was introduced into it.
Others may have found this out before, but I have not heard it before.
W. C. P.

How to Sharpen a Razor

To the Editor of the Scientific American:
I have ascertained that razors can be quickly and efficiently honed in a manner different from that usually employed. Thinking the subject might be of interest to some of your subscribers, I send you a description of the process. Use two hones, an Arkansas oil stone and a fine razor hone. The razor is first applied to the Arkansas stone, using fair pressure, and finishing with lighter and lighter pressure strokes. Remove razor from the coarse hone to the fine razor hone, upon which oil is also employed. With a few light strokes on the fine hone, an enduring, hair-splitting edge is formed. If the razor be kept on the finishing hone too long, the fine edge will be lost. If this be the case, the process must be repeated, that is, the razor is again applied to the coarser hone and again finished upon the fine hone, care being taken to cease honing after the razor has acquired the hair-splitting edge. Very little practice is required to ascertain when that point is reached, a few hairs of medium fineness supplying the required test. No doubt other instruments requiring very keen cutting edges could also be sharpened in manner indicated. The coarse hone employed should be of sufficiently fine texture to put a smooth edge on a pocket knife, but not fine enough to give a smooth cutting edge to a razor.

Philadelphia, Pa

E. S.

A Beautiful Atmospheric Phenomenon.

To the Editor of the Scientific American :
The city of Williamsburg, in Virginia, is situated on that ridge of land known in history as "The Peninsula." It is about two hundred feet above the level of the sea, and is separated from the rivers by well wooded land, the tall trees effectually concealing all trace of the billowy streams, which in their ebb and flow have carried out and brought in the messengers of commerce which have for nearly three centuries connected America with the nations of Europe. These rivers can only be descried on a clear day from the highest towers of the town. On the morning of January 3 they lay uncovered before the astonished eyes of the inhabitants, seemingly not more than a mile away, blotting out, in their turn, the trees by which they had been so long concealed. On the north lay the York in blue light, with the shores of Gloucester distinctly outlined on the further side. Shades of color produced by the dashing waves and varied depth of the water were well marked. On the south, the James unrolled its tawny length, stretching off on the one hand to the old historic island of Jamestown, and on the other, sweep-
ing with majestic curve, lapped the marl banks of Carter's Grove, then widening out into Burwell's Bay, passed out of view fifteen miles away. The scene was one of rare beauty and interest; the panorama thus unfurled an appropriate welcome to the decade of 1890.

The phenomenon can be accounted for on scientific principles. The entire month of December was one of peculiar warmth and dryness. On the morning of January 3, a light, cool wind sprang up from the north, laden with humidity. The dense vapors that had settled in the river bottoms were disturbed. Two strata were formed of varying density, and at the point of union the separation of the ray of light limned the charming landscape. The wand of Morgan la Fay was waved over the land, and a scene of fairy enchantment delighted the eye.

Cynthia B. T. Coleman.
Williamsburg, Virginia.

PHOTOGRAPHIC NOTES,

Coating White Celluloid Sheets with Sensitive Emulsions for Positive Pictures.-Speaking of these positive pictures, the Br. Jour. of Photo. says: Failing the possibility of obtaining the sensitized celluloid, it is not a difficult matter for the photographer himself to coat it with emulsion.
Any good, slow emulsion will answer well for positives, but it is better that it should for the purpose contain a larger proportion of gelatine and less silver than is usual when a negative image is required. This gives a more transparent deposit, and adds to the depth and richness of gradation.
It will not be found convenient, working on a small scale, to coat the full-sized sheets, nor, indeed, anything much exceeding one-sixth of the dimensions, owing to the difficulty of getting the flexible material to be perfectly flat. We have tried a variety of ways of securing this end, but find nothing more convenient than to squeegee the celluloid on to a sheet of plate glass previously coated with an adhesive material, such as india-rubber solution or one of the adhesive plasters obtainable at any chemist's. A very thick mixture of gelatine and glycerine, similar to the wellknown "graph" composition, answers well if the emulsion is not too hot when poured on, and we have even succeeded by simply wetting the glass before laying down the celluloid. What is required is simply to retain the sheet in contact with the glass until the emulsion has set, after which it may be stripped of and hung up to dry.
The size of the sheets coated will depend upon the sizes to which they are subsequently to be cut; it should not be too great, owing to the difficulty we have mentioned, nor too small, or extra time and labor will be wasted in coating. The cabinet size cuts rather awkwardly into 50×20 so as to use the material to best advantage, though for general purposes the dimensions are very convenient. Whatever size be selected, care should be taken to allow for cutting of
bad edges, which are more liable to occur with cellu loid than with glass.
The next point is the cleaning or preparing the sur face to receive the emulsion, and this is a rather difficult task, owing to the apparent greasiness of the celluloid. The trouble is vastly lessened by slightly abrading the surface; but then, for some purposes, the beauty of the imitation ivory picture, especially in small sizes, lies in its fine though unobtrusive polish. If a matt surface will answer, then the polish may be removed by friction with prepared chalk, made into a thin paste with alcohol ; or, perhaps, a better plan is to pour plain methylated alcohol on and off a few times, when, upon setting it aside to dry, the surface will be found to have lost its fine finish. A little ether may be added to the alcohol to increase the matt ffect.
When it is requisite to preserve the high polish, some other means must be adopted of causing the emulsion to take to the repellent surface. Similar precautions are frequently taken in conjunction with glass, such as applying a preliminary coating of such solutions as silicate of potash or sugar, and these might answe with celluloid, though we are not in favor of such applications. Polishing with powdered talc we have practiced with success, though it occasionally fails but to make assurance doubly sure it is better to fol ow up the latter treatment by giving a coating of plain gelatine solution containing 10 grains of gelatine, $1 / 4$ grain chrome alum, and $1 / 2$ drachm methylated alco hol to each ounce of water. This may be poured on to the leveled celluloid, or the latter may be floated on the gelatine, and the surplus in either case drained off without waiting for it to set. Before placing the coated sheet away to dry, examine it carefully to see that the gelatine has not run away from any portions; if it has, the bare portions must be rubbed with a piece of sponge dipped in the gelatine solution and the coating or floating repeated.
When the celluloid so prepared is dry, it is ready for coating with emulsion, which will then take readily to the surface and adhere perfectly. For coating, let the celluloid be laid down upon glass in the manner de
scribed, and then covered with emulsion just as if it were a glass plate only, the film and support being aid upon a leveled slab to set in the ordinary manner When set quite hard, insert the point of a penknife between celluloid and glass, and the two will part readily, and the sensitive film may be hung up in the drying cupboard to dry.
In cutting up to size, a glass shape and a pair of long bladed scissors will prove more satisfactory than any form of cutting or trimming knife, owing to the thick ness and toughness of the material ; but undoubtedly the best way of reducing the sheets to standard and uniform size, where it is available, is the card or mount cutting machine that now is to be found in many studios. This is at once expeditious and accurate, and nothing is so essential to neatness of finish or accuracy in cutting.
Collodion emulsion may be substituted for gelatine if preferred, $\mathrm{bu}^{\mathbf{d}}$ if applied to the bare celluloid will slightly lowe: the gloss, and at times tend to produce a slightly saiken appearance in the shadows. The preliminary coating of gelatine obviates this, thus re taining th : full polish and giving brilliance and transparency to the image
Pictures, whether portrait or landscape, should be printed under a mask, in order to provide a clear, white margin, except in the case of those of large size, which are better framed or mounted without margin. If protected by means of a suitable varnish, such pictures may be placed in albums or framed without glass, and exhibit little tendency to succumb to the ordinary wear and tear to which such things are subjected.
We repeat, in conclusion, our surprise that so little has been done in this kind of picture; but perhaps some of the plate makers will, ere long, remedy the neglect by placing the coated celluloid for positives on the market.
Compound for a Twenty Thousand Candle Power Magnesium Light.-The Moniteur de la Photographie gives a receipt for magnesium light, which gives, when burning, a light of twenty thousand candle power The mixture recommended is as follows:

Barium nitrate...
 Flower of sulphu

The suet is melted and kneaded up with the mixture which is filled into zinc cases, $10 \times 7 \mathrm{~cm}$. Each such case holds about a pound, and will burn for twenty seconds, giving a light that may be seen at a distance of sixty miles. This appears to be perfectly possible, for Dr. Miethe, who some time ago experimented with signal rockets containing a mixture of magnesium powder and chlorate of potash, found that the light emitted was visible from Potsdam to Oderberg.
Recent researches by Signor Vittorio Aducco (published in the Atti della R. Accademia dei Lincei) seem completely to confirm the earlier results arrived at by Molescholt, that change of tissue in the animal organ ism is promoted by the action of light. Change of tis sue, on the other hand, in the case of animals confined in the dark, takes place so slowly, and to such a small extent, that the nutriment ordinarily in reserve in the body is quite sufficient to keep life from becoming extinct for a very long time. We shall not be surprisect says the Italian paper, to find the vegetarians makin: capital out of this piece of information, and recommending those desirous of living cheaply to supplemen a vegetarian diet by existence in a darkened room!

Protection of Fruit Trees from $\begin{gathered}\text { and } \\ \text { Woodchucks. }\end{gathered}$

The Massachusetts Agricultural College, located at Amherst, issues bulletins occasionally, giving results of their experiments, which are useful to the farmer and all persons interested in horticulture. In the last issue of the bulletin, just published, we find the following directions for ridding fruit orchards of pests which are ometimes very destructive :
Another season's test, says Samuel T. Maynard, pro essor in the division of horticulture, has confirmed the results of our experiments of previous yearsin proecting trees from injury by girdling, and as numerous etters of inquiry for means of protection from girdling by mice, rabbits, and woodchucks have been received we give the results of our experiments up to date.
In addition to the simple mixture of lime, cement and Paris green wash, we have found, if the above be mixed with skim milk, it adheres better than if mixed with water; in some cases adhering firmly for six months or more
Portland cement adheres more firmly than the Rosendale, and is more satisfactory when not mixed with milk than the latter
Several reports have come to us of young trees having been injured by woodchucks during the summer, and in one case we can report that out of more than 1,000 trees treated with cement, milk, and Paris green, not one was injured during the past summer while many not painted were seriously injured.
The amount of Paris green used was one table spoonful to each two gallon pail full of paint, mixed so as to easily apply with a paint brush.

A NEW ELECTRIC CONDUIT FOR STREET CARS. Recent developments in electricity have demonstrated the necessity of provision for greater safety in the use of heavy currents. It has been shown that are light currents are particularly dangerous. It is known also that objectionable and even dangerous shocks may be given to men and animals by such currents as are used in the propulsion of street cars.
We illustrate a conduit for electric railways in which all dangers of this kind are avoided. In this system the conductor is entirely out of reach, and an electrical connection can be established only upon the portion of the railway occupied by the car. A clear understanding of this invention may be had by examining the parts of the railway and car from which portions are broken away to show the interior.
The car, A, runs upon the railway track, B, and is provided with an electric motor, C, which is geared to one of the axles of the car in the usual way. Underneath the car is suspended a series of electro-magnets, D, which extend downwardly to a point near the electrical conduit, E. These electro-magnets are inclosed to protect them from dirt or injury, and also to prevent them from gathering particles of iron.
The conduit, E, is formed of a tube having a top made up of sections, a, of non-magnetic material, insulated from each other and the body of the conduit. In the bottom of the conduit, E, is arranged a conductor, F , which is thoroughlyinsulated. To the conductor, F, are attached standards, b, to which are secured flat springs, c, carrying at opposite ends pieces of iron, forming armatures. The normal position of of iron, forming armatures. The normal position of
the springs is horizontal, but when the magnets, D, the springs is horizontal, b
pass over the springs, they are raised up into contact with the sections, a, pro ducing an electrical con nection between the con ductor, F, and these sec tions.
To the bottom of the car are attached brushes, d, which are adapted to take the current from the sec tions, a, as the car passe along. The current passe from the brushes through the motor, C, a small por tion of it being shunted through the magnets, D The current returns to the generator through the wheels of the car and the railway rails. It will be noticed that an electrical connection with conduc tor, F, can be established only when the armature carried by the springs, c, are drawn up by the mag nets into contact with the sections, a, so that any thing touching the sec tions a which are not in tions, a, wich are not in the electric circuit will would be by contact with the paving stones. As the car passes along, the armatures carried by the springs are released and the springs returned to their normal position. The surface of the sections, a, are cleaned by brushes located at the ends of the car

Not only is perfect safety secured by this improved system, but the accumulation of mud and water in the conduit is avoided by sealing it from end to end. As the sections, a, are insulated from the conduit and from each other, the current cannot be transmitted from one section to another. It is the intention of the inventor to maintain a constant circulation of air through the conduit, to prevent the condensation of moisture, and thus avoid the accumulation of water.

This system consists almost entirely in the conduit and the electro-magnets and brushes carried by the car. Any good electrical motor can be applied to the car, and the current may be supplied by any dynamo of approved construction

This invention may be readily applied to existing sur face railroads, and the expense of applying will be les than one-half that of other systems, as it is not neces sary to disturb the roadbed or cut the ties. The conduit may be placed directly upon the ties, or above the ties.
The current is carried directly to each car, and the chances of leakage are reduced to such a degree that the loss from this cause may be left out of calculation This system also has a great advantage on single track roads, as it may be applied to turnouts and switches without any complication, and the conduit may be carried around sewer manholes and other street ob structions. The difficulties arising from the use of slotted conduit are entirely avoided.
Mr. Harry W. Smith is the inventor of this system, and the Smith Electris Conduit Company, of 120

Broadway, New York, are the promoters of the inven

 tion.
The Outlet to Lake Superior

Lake Superior, the greatest of our wonderful inland seas, has an area of 32,000 square miles, is 350 miles in length, and 900 feet deep. Its outlet is at its western end, through the St. Mary's River, a narrow and dan gerous stream, obstructed by falls and rocks. The im provement of this river was first begun by the State of Michigan in 1852, and in 1855 the first lock was opened, with a depth of $111 / 2$ feet. Since that time the general government has greatly enlarged the locks and improved the river, and the commerce of the lake has correspondingly increased. Congress is now asked to appropriate five and a half millions of dollars for further enlargements and improvements. There are few more necessary public works than this, and none that promise such immediate returns of the costs in benefits to the country. An able address in advocacy of this great work was recently delivered in the Senate of the United States by the Hon. Cushman K Davis, of Minnesota, from which we make the follow ing abstracts:
The distance from the city of New York to Duluth, at the head of Lake Superior, is 1,400 miles, of which 800 miles are deep water navigation, by way of the great lakes. The only outlet from Lake Superior is the St. Mary's River, which is 75 miles in length. The fall in this distance is 20 feet 4 inches, and of this 18 feet 2 inches are at the falls. The only channel now navigable is, for the first 35 miles below that place, so
tortuous that passage through it at night is unsafe and
habited. It is now the seat of great mining opera tions, which are rapidly increasing. It is traversed by railroads, and cities have sprung up in the wilderness. The wheat received and shipped from that port in 1880 was $3,021,837$ bushels. There were received 17,310, 605 bushels in 1889. The shipments of flour in 188 were 891,800 barrels ; in 1889 they were $2,020,953$ barrels. Nearly all of this is the product of the greatest flouring mills in the world, those of Minneapolis, whose outpu has in six days been 187,050 barrels, an average of 31,175 barrels each day. The elevator capacity is $19,500,000$ ushels.
In 1883 the coal receipts at Duluth were 420,000 tons, as against $1,045,000$ tons in 1889. The arrivals and clear ances of vessels at this port in 1889 were 2,554 vessels, of egistered tonnage $2,475,195$
The length of dock line is 16.27 miles ; the length of ock face is $115 \cdot 30$ miles
The following railways and railway systems connect directly with these docks :

St. Paul and Duluth.
Miles.
252
25
Northern Pacific and branches
Chicago, St. Paul, Minneapolis, and Omaha, and connecting branches.. 7,067
t. Paul, Minneapolis, and Manit...
uluth and Iron Range
uluth, South Shore, and Atlantic
ilwaukee, I, Iake Sb
Duluth and Winnipeg
Duluth. Red Wing and Southern.. 117
529
$\frac{25}{16,455}$

This is but the statement of the commerce of a sin gle city. That of Superior, Ashland, Houghton, Mar

A NEW ELECTRIC CONDUIT FOR STREET CARS quette, Ontonagon, a n d other ports in which is comprised the enormou output of the iron and copper mines of Wisconsin and Michigan, goes to make up the vast aggre gate expressed by the sta tistics of the operations of the canal and lock.
There can be no doubt that a case of urgency is presented by the present situation.

Dried Fruits, Nuts, and Honey.

The foll wing statistics of the fruit and nut product of California for the past year show what phenome nal strides that country is making in its fruit, culture As usual at this season says the California Fruit Grower, the annual review of the various lines of trad are being issued b.y enter prising firms in this city Whing firms in this city While we do not agre whey furnish of the quantity of each va riety produced in the Stat during the season of 1889

Lake Huron the navigation is good
The great increase in the number of vessels and in the quantity and value of freight conveyed through the lock demonstrates that before the present improvement an be completed the lake commerce will be under the ost pressing necessity for their use. In 1889 the num ber of vessels passed through lock was 9,579 ; freigh onnage, $7,516,022$; valuation, $\$ 83,732,527$.
In 1888 the entries at and clearances from the port of New Orleans were, registered tons, entries, 721,128 registered tons, clearance, 727,520 ; total, $1,448,648$.
During the same year the registered tonnage locked through the St. Mary's Canal was $\mathbf{6 , 4 1 1 , 4 2 3}$ tons. Th United States expended six and one-half millions of dollars in deepening the channel at the mouth of the Mississippi River and into the Gulf. In this it did wisely. The error was, as here, that the work was deayed too long
The total registered tonnage entered and cleared in all the ports of the United States from and to foreign countries in 1888 was $31,062,007$ tons. In the same yea he registered tonnage through this lock was (estimat d) $6,200,000$, being about 20 per cent of the amount o tonnage entered and cleared in that year from all the ports of the United States in its foreign commerce.
Consider the commerce of a single city during the year 1889-the city of Duluth. The shipments of iron ore from that point were 826,814 tons, as agains 504,110 tons in 1888 , an increase of 320,000 tons in one year. The shipments in 1884, when export from the Minnesota iron mines began, were only 62,122 tons This ore is of the finest quality. It is produced from he Iron Range of Minnesota. These mines are inex haustible. Six years ago that region was utterly unin-

The following figures are taken from their reviews :

Making Sodium Globules.
Sodium may be obtained in fine, clean globules by half filling a small beaker with water, adding to this about an inch layer of paraffine oil, and plunging pieces of sodium, on the point of a wire, through the oil into the water, where they will be superficially oxidized, de taching themselves from the wire, and floating to the surface of the paraffine. In case there should be lobules of water in the oil, they may be gotrid of by globules in tall bottle few hours, when they will tanding a the liquid for the preservation of sodium, as it has the ad vantages of cheapness, non-volatility, and non-explosiveness, which "potassiun naphtha" has not. These globules are especially useful for demonstrating the properties of the metal. They float on the oil, but sodium coated with oxide, as in the commercial metal does not,-English Mechanic.

THE DOG-HEADED OPOSSUM.

Australia, Van Diemen's Land or Tasmania, and we may say New Guinea also, possess a population of mammals whose characters are so marked that it may be asserted that all these countries once formed a vast continent which has for a long time been separated from the other regions of the globe. The mammals of this southern, and now dismembered, continent belong, in fact, to other categories than the present mammals of Europe. They correspond to the order (or, better, to the sub-class) of Monotremata, comprising the anteaters and duck-bills, whose analogues might be sought for in vain in other countries, or to the order of Marsupialia, which still comprises, it is true, a few representatives in the new world, but which, since the tertiary period, has become completey foreign to our country.
Without being as odd as the Monotremata, which have retained certain traits of the reptiles and birds in their structure and mode of development, the Marsupialia yet present one strange char acter which stamps their organization with the seal of inferiority. Their young are born in such a state of feebleness that they would infallibly be condemned to perish had not nature taken care to protect them during the early period of their existence by offering them shelter in a pouch, or at least a cutaneous fold situated under the mother's abdomen, in the immediate vicinity of the hind legs. This pouch or marsupium, to which the order owes its name, is supported by two more or less developed osseous appendages which, according to several authors, result from the conversion into solid pieces of the tendons of the great oblique muscles inserted on the pelvis. During the entire period of nursing it holds the young in immediate and continual contact with their mother, and, later on, serves them as a place of refuge when danger threatens them, This, however, is not the only peculiarity of organization that the marsupials exhibit, for distinctive signs might also be easily found in the conformation of the feet, in the development of the clavicle, and in the arrangement of the lower jaw. On the contrary, the brain, the dentitrary, the brain, the denti-
tion, and the digestive appation, and the digestive appa-
ratus do not furnish good ratus do not furnish good
characters, for they are not constructed upon a uniform type. Indeed, in the marsupials, they exhibit variations analugous to those observed in ordinary mammals, and that are in direct relation with the degree of intelligence, nature, and habits. Thus, while in the giant kangaroo the cerebral hemispheres are voluminous and contain many folds, in the sarcophile, which belongs to the same order, the encepha-
lus is greatly reduced and the brain entirely smooth and, while the same kangaroo resembles the tapir in the form of its molar teeth, the wombat recalls the rodents in its jaws, deprived of canines, but possessing strong incisors.
The differences are no less striking in the external form and in the proportions of the various parts of the body, and it is positively necessary to examine closely in order to discover the bonds of parentage between the little petauristes and the belides, which have the bushy tail of the squirrel and the alar membranes of a polatouche and the great kangaroo whose pyramidal body rests upon a sort of tripod formed of a massive tail and hind legs two or three times larger than the fore legs. So great is the diversity that we find among the marsupials that one might even be tempted to establish a system of parallel classifications for these animals and the ordinary mammals. But one would very quickly find himself arrested by a certain number of important gaps, for, among the present marsupials, there exist no types comparable to the bats, seals, ele-

THE DOG-HEADED OPOSSUM (THYLACINUS CYNOCEPHALUS)
the wolf, the numerous incisors and the sharp molars, the wolf, the numerous incisors and the sharp molars,
although the latter do not offer the same proportions The body is more slender and sits lower on the legs, and the tail is much more tapering, more woolly, and colored entirely differently. The coat of the thylacines, in fact, is of a brownish-gray, variegated with yellow, which becomes lighter toward the lower parts of the bory, and which upon the loins is crossed by fourteen dark stripes. These stripes, which are very sharply outlined, recall those of the ichneumons, and increase in length up to the hips, where they fork and are con tinued upon the base of the tail by three or four similar but much shorter stripes. The tail, which is pro lar but much shorter stripes.
vided with coarse hairs, is of a dark brown above, of a
lighter shade beneath, and blackish at the extremity. The head is of a pale shade but a dark line extends on each side through the eye, a the angle of which there is a tawny spot, and the muzzle is of a dark color, with a little white on the edge of the up per lip. The latter is pro vided with long mustaches, and, as in the dog, a few hairs are implanted in the cheeks and over the eyes, which lat ter are large and have a dark chestnut-brown ball.
To complete this description, let us say farther that in the thylacines the marsu pial character is scarcely indicated, the bones designed to support the ventral pouch being rudimentary. It is not astonishing, then, that the first colonists took these ani mals for genuine wolves, and the less so in that, although the proportions differ, the size is about the same in the two animals. This explains why the common name zebra wolf was given to the thylacine concurrently with the names tiger, hyena, zebra opossum, and dog-headed opossum. The thylacines hunt the kangaroos and bandicoots, and also attack the echidnas, which they suc ceed in strangling and devouring despite the spines that constitute the defensive armor of these singular mam mals. It is even asserted that formerly, while they were as yet wandering upon the seashore, they fed greedily upon the remains of seals, decayed fish and mollusks cast up by the waves, but the settling of European colonists in Tas mania furnished the indigenous carnivora with a more succulent food. In fact, the colonists introduced domestic animals upon the island and devoted themselves to the raising of cattle and poultry upon a large scale, so that the thylacines easily found the wherewithal to satisfy their sanguinary appetites, their sanguinary appetites,
and so much the more easily and so much the more easily
in that in their quality of nocturnal animals they could profit by the darkness to slaughter sheep in the folds and fowl in the poultry yards In order to defend their
which we propo ion of our readers.
TTh en acines, of which we know but a single species (Thylacinus cynocephalus), are found, at the present epoch, probably confined to Van Diemen's Land, where they are destined to be exterminated in a near future, as the wolves have been in England. After having been distributed over the entire country, they have gradually been driven into the interior by the colonists, whose herds they decimated, and have been obliged to seek a refuge upon mountains of from 3,000 to 4,500 feet altitude, in regions where snow falls during a part of the year. It is here that it was necessary to look for the thylacines that were taken to London about 1850 , and those that have been living for three years in the Garden of Plants, and from which the figures were made that we herewith publish. As may be judged from these faithful portraits, the thylacines have ex actly the physiognomy of the wolf in their conical head, erect ears, and elongated snout truncated at the extremity. They have also the formidable dentition of
property against such terrible enemies, the farmers had to display all their vigilance and energy, and it was not without great trouble that they succeeded in driving the animals to the mountains. It was espe ially by setting traps for them that success was ob ained in arresting their multiplication, for although the thylacines dare not attack men, they show a bold ront to the dog, which hesitates to attack them, and which retires from the contest defeated and crippled
Up to the present, the thylacines have not bred in captivity, either in France or England. Those in the Garden of Plants seem to have become accustomed to the loss of their liberty, and do not exhibit any more erocity than do many other carnivora, and, as in their native country, they prefer to remain hidden during a portion of the day
We have said above that the thylacine was proba bly confined to Tasmania. The reason that we were not more affirmative was that we remembered that on two occasions the Zoolvgical Society of London has received information that tends to make us believe in
the existence in Australia of a carnivorous marsupial more or less analogous, if not identical, with the thylacine. In a letter addressed to Mr. Selater, Mr. B. G. Sheridan, of Cadwell (Queensland), states, in fact, that his son, a boy of thirceen, who was accustomed to run the woods like an old hunter, was out one day accompanied by a small terrier, when he saw the latter obtain a scent and follow it up with eagerness. Curious to know what game he had to do with, the boy ran after his dog, and found himself face to face with an animal of the size of a dingo dog, with a round an animal of the size of a dingo dog, with a round
head like that of a cat, with a long tail, and with a head like that of a cat, with a long tail, and with a
body striped with yellow and black, and which was body striped with yellow and black, and which was
crouching in the high grass at about a mile from the coast. The dog and the savage beast soon grappled, and the boy, in order to aid his companion, tried to kill the enemy with a pistol shot, but, having merely succeeded in wounding and rendering it more furious, he judged it prudent to beat a retreat. An animal of the same species was also perceived by a police officer of the same district, and traces of it have been observed on several occasions. Thus, in 1872, a Mr. Hull, having been called by his inspection service to the banks of the rivers Murray and Mackay, to the north of Cadwell, was taking a little rest in his tent. when, in the stillness of the night, he heard the barking of an unknown animal. He at once started out with his companions, armed with guns, but could not see the beast. In return, he discovered the imprint of its feet upon the ground, and made a faithful tracing of the same, which he sent to England through a Mr. Scott. Now this imprint seems to conform well to the track of a carnivorous animal of the size of a thylathe track of a carnivorous anima
cine. $-E$. Onstalet in La Nature.

an improved electric signal.

The accompanying illustration represents a signaling apparatus for use in connection with telegraph lines, by which a signal may be sent to any station upon the line without disturbing the other stations. It is designed to place all the signals upon the line under the control of the train dispatcher, whereby he can signal a train at patcher, whereby he can signal a train at
any station, whether the operator at that any station, whether the operator at that
station is asleep or awake, present at his instation is asleep or awake, present at his in-
strument or absent. The invention has been strument or absent. The invention has been
patented by Mr. John D. Taylor, of Piketon, patented by Mr. John D. Taylor, of Piketon,
Ohio. The principle of the apparatus may, perhaps, be best explained by supposing that the several stations on the line will each be indicated by a letter of the Morse alphabet, although any other system of dots and dashes might be employed. The call, therefore, for station " G," according to the Morse alphabet, would be two dashes and a Morse alphabet, would be two dashes and a
dot (---). The several impulses of unis dot $(---)$. The several impulses of anis
call, operating through the line relay, and call, operating through the line relay, and
through magnets, gear, and ratchet wheels, move a wheel on the periphery of which are notches corresponding to the signal, on the completion of which another battery is automatically brought into circuit to operate a signal which may be a bell in the office, a semaphore at the side of the track, or other suitable device, the circuit last made by the call remaining closed until the operator comes to answer the signal, and, by moving a lever, allow the parts to re turn to the point of starting. The arrangement is such that any other letter or combination of letters than that for which the instrument is adjusted would prove inoperative to work the signal. This instrument is also designed for use whereve:' a number of electrical instruments are connected in series, and where it may be desired to throw one of the instruments into the circuit without affecting the others.

A Wise Father's Good Counsel.

" Hundreds of young men of fine natural ability and thorough education make miserable failures in life merely because they have rich parents," said one of the oldest and most successful iron merchants in St. Louis to Stoves and Hardware. "If they were thrown upon their own resources from the start, many of them would not only succeed in a monetary sense, but would become worthy and influential citizens. As it is, the majority fail, simply because they lack incentive. Over thirty years ago I started in business with scarcely any capital, but with plenty of courage and energy, and a firm resolution to accuinulate enough to place my family in comfort in my old age. Never allowing myself to forget this object for a moment, I have succeeded beyond my most sanguine hopes. Now I have a son who recently graduated at a prominent institution of learning. Instead of selecting a profes sion he looks forward to a life of activity in a mercantile pursuit, and has commenced work as an assistant shipping clerk in my establishment. The work is hard and the pay small, but as he masters the business he will advance. After a while he will earn his way through the various departments to a desk in the counting room. It may take several years, but the practical knowledge thus gained is essential to a successful busi ness career, and, besides, it is a knowledge obtained only by such work, Of course I could have placed him
in the counting room at first at a good salary, but this would not have given him the necessary experience, nor have enabled him to obtain the independence and
self-reliance that comes with a thorough mastery of self-reliance that comes with a thorough mastery of
business. In the years to come that boy will have a knowledge of business that will always find him employment should financial reverses come. But, as a rule, financial reverses never come to men with such a training. If rich fathers would encourage their sons to work through such an experience, they would see the day when their sons would bless them for it. Idleness will ruin any young man."

The Distribution of Hydraulic Power in London
Few Londoners (writes a correspondent of the T'imes) are aware that there are now under the streets of the netropolis forty miles of pipes charged with a pressure of 750 pounds per square inch. These are the mains of the London Hydraulic Power Company, which now extend in a perfect network throughout the city, and from the docks at one end of London to Victoria at the other. Compressed air has been largely used for transmitting power in this country, notably in Birmingham, on the Continent, and in the United States; and electricians are working hard with a view to the introduction of electricity as the agent. But in London the system of hydraulic power is virtually having its own way.
It is now more than half a century since Lord Armstrong first directed his attention to the utilization of water pressure and its transmission for mechanical purposes. For the past thirty or forty years hydraulic machinery has been in use at docks, at rail way goods stations, in warehouses, and elsewhere. But Lord Armstrong'senthusiasm led him to anticipate the time when the practice would be widelyextended, when hydraulic power would be drawn from a common center, especially for fluctuating and intermittent purposes. That dream has been realized. By the system which was es-

taylor's electric signal.

tablished at Hull, in 1876, under the direction of Mr. E. B. Ellington, by the system which has been organized in London by the same engineer, and by a similar un dertaking at Liverpool, a service of high pressure hy draulic power is now at the command of the public, of consumers large and small, the cost of the power being in direct proportion to the work done.
The mains in London are of cast iron, varying in internal diameter from 7 inches to 2 inches, and are kept charged constantly at a pressure of 750 pounds per square inch by powerful engines located at Blackfriars and Westminster. The engines at the Blackfriars sta tion can pump 3,000,000 gallons per week, and those at Westminster $2,000,000$ gallons ; and the rapidly increas ing demand for power has necessitated the construction of a pumping station at Wapping which will deliver $4,000,000$ gillons per week. The present supply to con sumers amounts to about $3,750,000$ gallons weekly. This
is consumed by somewhat over a thousand machines, and there are at the present time 200 applicants for machines to be connected with the mains. This power is supplied direct to lifts, presses, and other purposes of a similar character without the use of any engine or drivingroducing machinery, and can also be used for riving engines of special construction in the same way grinding coffee, ventilating, working elevators and crushers, driving dynamos and general machinery, but hydraulic power is chiefly used for machinery which is used intermittently. For pumping it is also valuable. No engine is required, only small direct-acting rams, which may be allowed to run without attention. The quantity of power used is measured in gallons by meters, and is charged for on a sliding scale, commencing with a minimum of $£ 110$ s. per quarter for 3,000 gallons or under, down to about 2 s . per 1,000 gallons in the case of large consumers. The power is available day and night and on Sundays all the year round. There it is, to be had by the simple turning of a tap. There is no getting up of steam, no filling of tanks for one's own hydraulic supply.
As has been indicated, it is where power is required
As has been indicated, it is where power is required
intermittently that it is cheaper to use hydraulic powe
than to set up one's own gas or steam engine. The engineer of the company considers that, taking all the circumstances into account, it can hardly be a profitable operation to supply public power under conditions similar to those which exist in London at less that 2d. per indicated horse power per hour. This would be from £20 to £25 per horse power per annum, working from fifty to sixty hours per week. Where the power used is imall, that would compare favorably with the cost of steam. The comparison may not, perhaps, be so favorable with a gas engine working under the most advantageous conditions; bur directly the gas engine advantageous conditions; but directly the gas engine
is set to do intermittent work, the advantage is largely is set to do intermittent work, the advantage is largely
on the side of hydraulic power ; while for such purposes as lifting and pressing, the general convenience and simplicity of the hydraulic system, are such that its use would, rerhaps, scarcely be affected even if there were no direct economy in the cost of working.
Failures of the mains occur occasionally, and, considering the very hign pressure with which they are charged, this is a serious matter. The velocity of water at 700 pounds presssure through a free orifice being 320 feet per second, a thole only a quarter of an inch in diameter will pass kerween 30,000 and 40,000 gallons in 24 hours. The method employed ior detecting leakage is based upon an automatic record of the quantity of water forced into the mains. When there is an abnor mal increase ducing any night, particularly during the early hours of the morning, the mains are tested. Pressure gauges of considerable range are connected to each of the malys radiating from a station. Each main is shut off in succession, and the behavior of the hands of the gauge will indicate whether there is leakage or not. By closing in succession the valves along a main in which a leak has been discovered, and by using a sounding rod, nearly the exact spot of the leakage may be determined. On one occasion, from the record o the pumping, a leak was supposed to exist in one o the mains running from the Blackfriars station. An observation was made, and the action of the gauge could only be accounted for by a stop valve about two miles away, supposed to be closed, passing a small quantity o water, and by a machine near the valve having been left working by an attendant. Upon examination at the spot the valve was found leaking, as had been expected, and the machine could be distinctly heard at work. It was a small hydraulic pump, and each stroke was indicated by the gauge.
One important use of this high pressure water circulation has not been indicatedamely, its use in case of fire. A small je f high pressure water injected into a larger jet from the ordinary waterworks mains so intensifies the pressure of the latter in the delivery hose that a jet of great power can be obtained at the top of a high building without the aid of a fire engine. Captain Shaw has expressed a very decided opinion as to the value of this high pressure supply of water for the extinction of fire, but though the provision of the necessary injector hydrant is comparatively inexpen sive, the authorities have displayed an apathy on the subject which is difficult to understand. Last year Captain Shaw witnessed a most satisfactory experiment. The jet from an ordinary water main, having a pres sure of about 40 pounds per square inch, rose through a hose to a height of 40 feet or 50 feet. The high pres sure water was then turned on through a three-eighth inch opening. The jet at once rose to a height of 90 eet or 100 feet, which, in the opinion of Captain Shaw, would have been as useful as any fire engine for ex tinguishing a fire. It has been stated that in Manchester, after the introduction of high pressure hydrants, the loss from fire was reduced by sixsevenths. In Liverpool the loss was reduced to onefourth of what it was previously. If the annual loss fourth of what it was previously. If the annual loss
from fire in London amounts, as is calculated, to over rom fire in London amounts, as is calculated, to ove tem of hydrants were only one-fourth, or even one tenth of the saving effected in the cities mentioned, it would amount to hundreds of thousands of pounds annually.
"I ALWAYS make it a point," remarked a manufacturer, the other day, " to reply to every communication of a business nature addressed to me. It doesn't matter what it is about, provided only that it is couched in ivil language. I do this because courtesy requires that I should ; but aside from that, I find also that it is good policy. Time and again in my life I have been reminded by newly secured customers that I was re membered through correspondence opened with me ears before, and many orders have come to me through this passing and friendly acquaintance with people. On the other hand, J have known plenty of business men whose disrespectful treatment of correspondents has been bitterly remembered and repaid with com pound interest. Silence is the meanest and most con emptuous way of treating anybody who wishes to b heard and to hear, and resentment is its answer every heard and to hear, a
time."-Age of Steel.

SOME EFFECTS OF LARGE CURRENTS.

 by geo. m. нор:INs.During some of the earlier experiments with electricity as a motive power for railways, in which the rails were employed as conductors of the current, it was observed that the wheels which received the current from the rails had an enormously increased traction while the current passed. This was at first attributed to the direct action of the current, then to molecular change caused by the electrical heating of the surfaces in contact, but the phenomenon has never been fully explained.
The contact between the wheel and the rail under the conditions of actual use upon railways is scarcely more than a short line. If the surfaces were perfect as well as infinitely hard and rigid, the contact would be simply a mathematical line. In reality the surfaces in contact are very small, so that any current meeting the resistance of such a contact must produce some heat, which becomes greater as the current is increased. Experiments show that a current of several amperes, having a pressure of one volt or less, is required 'to secure good results.
Some interesting facts in regard to the local effects of large currents may be demonstrated by means of the simple apparatus shown in Fig. 1, in which a long pivoted index carries a jaw for holding a metal plate, a, the edge of which rests at right angles upon the edge of a metal plate, b, held by the fixed jaw. The free end of the index extends partly over the face of a scale secured to the base of the instrument. The two jaws are insulated from each other and connected by wires with a secondary battery or other source of electricity capable of supplying a six or eight ampere current with a pressure of from one to two volts. When this current passes through the metal plates held by the jaws, the parts in contact expand instantly, as shown by the upward movement of the index ; and when the current ceases, the plates immediately contract, allowing the index to drop. Although the distance through which the index moves is small, it is measurable, and when the minuteness of the portion of the metal actually expanded is considered, it is seen that the expansion is very great. Different metals are not all affected in the same degree. As would be expected, the effect of the same current on good conduc tors, such as silver and copper, is less than it is on iron and German silver.
The molecular changes effected in the metals are analogous to those produced in the lead of the Trevelyan rocker. In this instrument, however, the expansion takes place in one only of the pieces of metal in contact, the other piece being contracted by the with drawal of the heat by the cold metal
The form of Trevelyan rocker shown in Figs. 2 and 4 has been designed with special reference to the comparison of the effects of heat from an external source, and heat generated within the metal by the passage of a current through a point of resistance. The clamps mounted upon the upright metal rods are arranged for holding plates of different metals. The rocking bar, which rests upon the edges of these plates, is of cylin drical form. In the side of the bar, at one end, is formed a narrow groove leaving ridges which rest upon the edge of one of the metal plates. In Fig. 2, the dark plate is lead. The rocking bar, of brass, is provided with a light index to show the vibrations. When this bar is heated by means of a flame, and placed upon the edges of the metal plates, with the ridges in contact with the lead plate, it rocks violently, and if the index be removed, the rocker gives forth a musi cal note, which continues until the heat o the bar is reduced below the operative limit. This action is due to the local expansion of the lead by contact with the ridges of the heated bar and the subsequent rapid cooling of the lead on the separation of the surfaces. These operations occur with great rapidity; the two ridges alternating in the production of the effects.
If, after cooling the heated parts, a heavy current is passed through the standards, the plates, and the bar, the same vibratory motion is at once set up, and while, in the case of the Trevelyan rocker, lead seems to be the only metal available for one of the surfaces, in the electrical rocker the results are the same in kind, although different in degree, with all the metals and alloys tried thus far.

To render the movements clearly visible, a pendulum is applied as shown in Fig. 4. The ring at the upper end of the pendulum rod is provided with a set screw, which allows it to be shifted from one rocking allows it to be shifted from one rocking bar to another. This arrangement also
permits of placing the pendulum and bar in working position, without the necessity of leveling the base of the instrument. The current from one small cell of secondary battery or from two large bichromate cells connected in parallel circuit is sufficient to cause the pendulum to begin to oscillate
from a state of rest, and to increase its amplitude of vibration until it describes an arc of about 30°. The heat generated by the current is conducted away so rapidly as to permit of continuous operation.
By raising the pendulum so as to bring the convex

Fig. 1.-APPARATUS FOR SHOWING LOCAL EXPANSION.
side of the rocking bar into contact with the edges of the plates, and drawing the bar along lengthwise of the plates, first without the current and afterward with

Fig. 2.-ROCKER FOR APPLIED HEAT.
the current flowing through the apparatus, a great increase in friction will be noticed as the current passes, the increased friction being due to the jutting out by

Fig. 3.-MODIFIED ROCKER.
xpansion of points upon both the edges of the plate and the side of the rocking bar.
In Fig. 3 is shown a slightly modified form of rocke in which a plate with a graduated series of notches i used in connection with a cylindrical bar.

Fig. 4.-ELECTRICAL ROCKER.

In the case of the rocker with the attached penduum the taps of the rocker upon the edge of the plate are as distinct and regular as the ticks of a French clock.

The Secret of Cheap Building.

A man who is resolved to be independent of land lords can build a very comfortable house forfrom $\$ 2,000$ to $\$ 2,500$. He can have sufficient room, and a house with a decent exterior and a plain interior. He ought, first and foremost, to provide a bath room, even if he cannot buy a slate mantel. It will be the wisest in the long run to have a bath room. Ask any woman who has had the care of two or three children how much a bath room saves them. The larger the family, the greater the saving in work and worry, which is more wearing than work. If a man has only $\$ 2,000$ and a large family, he must sacrifice something or deny himself something when he builds.
If he is wise, he will contrive closets and cupboards a style of house that renders running up and down stairs unnecessary (there is nothing so tiresome as go ing up and down stairs), make his dining room large enough for a living room, and see that the arrangement of the kitchen is labor saving. Slate roof, slate mantels, bay windows and pretty trimmings can all be dispensed with. There are people who do not seem to have any clear idea of the things that are appropriate in a cheap house. We recall an instance where a gentleman, after looking at a design for a cheap house gentleman, after looking at a design for a cheap house,
expressed surprise at the cost, which was very low, and expressed surprise at the cost, which was very low, and
in the same breath he inquired if the house would be in the same breath he inquired if the house would be
roofed with slate. A cheap house is not roofed with roofed with slate. A cheap house is not roofed with
slate, it is needless to add. His next query had refer ence to the plumbing. If his ideas were realized, the plumber would charge at least $\$ 300$. Evidently, the gentleman thought the plumbing would cost about a third of that sum, or less.
To sum it all up, substantial fixtures rather than pretty trimmings. Good ventilation, ample room, plenty of light and warmth, may be obtained if a man desires to insure it in building for his own use, at a very moderate outlay. But then he must build to please himself instead of vying with his neighbor.Real Estate Record

Mineral Products of the United States.

Metallic Products of the United States in 1888.
Pig iron, spot value long tons, $6,489,738, \$ 107,000,000$; Silver, coining value troy ounces, $45,783,632, \$ 59,195$, 000 ; gold, coining value, troy ounces, $1,604,927$, $\$ 33,175,000$; copper, value at New York, pounds, 231, $270,622, \$ 33,833,954$; lead, value at New York, tons of 2,000 pounds, $180,555, \$ 15,924,951$; zinc, at New York, tons of 2,000 pounds, $55,903, \$ 5,500,855$; quicksilver, at San Francisco, flasks, 33,250, $\$ 1,413,125$; nickel, at Philadelphia, pounds, $195,182, \$ 115,518$; aluminum, at Philadelphia, pounds, $19,000, \$ 65,000$; antimony, at San Francisco, tons of 2,000 pounds, $100, \$ 20,000$; platinum (crude), at New York, troy ounces, 500 $\$ 2,000$; total, $\$ 256,245,403$.
Non-Metallic Mineral Products of the United States.
Bituminous coal, tons of 2,240 pounds, $91,106,998$, $\$ 122,497,341$; anthracite, tons of 2,240 pounds, 41,624 , $610, \$ 89,020,483$; building stone, $\$ 25,500,000$; lime, barrels, $49,087,000, \$ 24,543,500$; petroleum, barrels, 27 . $346,018, \$ 24,598,559$; natural gas, $\$ 22,662,128$; cement barrels, $6,253,095, \$ 4,533,639$; salt, barrels, $8,055,881$, $\$ 4,377,204$; limestone for iron flux, tons of 2,240 pounds, $5,438,000, \$ 2,719,000$; phosphate rock, long tons, $433,705, \$ 1,951,673$; zinc white, short tons, $20,000, \$ 1,600,000$; mineral waters gallons sold, $9,628,568, \$ 1,709,302$; borax pounds, 7,589,000, $\$ 455,340$; gypsum, short tons, $96,000, \$ 430,000$; manganese ore, long tons, $25,500, \$ 255,000$; mineral paints, long tons, 24,000 , $\$ 380,000$; New Jersey marls short tons, $600,000, \$ 300,000$; pyrites, long tons, $54,331, \$ 167,658$; flint, long tons, 30,000 $\$ 175,000$; mica, pounds, $48,000, \$ 70,000$ corundum, short tons, $589, \$ 91,620$; sulphur short tons, - - ; precious stones, $\$ 64,850$ gold quartz, souvenirs, jewelery, $\$ 75,000$ crude barytes, long tons, $20,000, \$ 110,000$ bromine, pounds, $307,386, \$ 95,290$; feldspar long tons, $8,700, \$ 50,000$; chrome iron ore, long tons, $1,500, \$ 20,000$; graphite, pounds $400,000, \$ 33,000$; flourspar, short tons, 6,000 , $\$ 30,000$; slate ground, long tons, 2,500 , $\$ 25,000$; cobalt oxide, pounds, $12,266, \$ 18$, 441 ; novaculite, pounds, $1,500,000, \$ 18,000 ;$ asphaltum, short tons, $53,800, \$ 331,500$ asbestos, short tons, $100, \$ 3,000$; rutile pounds, $1,000, \$ 3,000$; total, $\$ 328,914,528$.

Résume.

Metals, $\$ 256,245,403$; mineral substances, $\$ 328,914,518$; mineral products unspecified $\$ 6,500,000$; grand total, $\$ 591,659,931 .-$ Eng and Min. Jour.

No consideration is sufficient in law if it be illegal in nature.

RECENTLI PATENTED INVENTIONS.

Railway Appliances.

Car Coupling. - Thomas B. Winn Darien, Ga. This is a device designed to render the common link and pin coupling automatic, and obviate all necessity for going between the cars to couple or un-
couple them, the device being simple, strong and cheap, couple them, the de
Cable Railway.-George W. Higgins, Bunker Hill, Kansas. This invention consists of an which the grip shank passes, which will keep the slot which the grip shank passes, which will keep the slo
covered along the entire length of track except im mediately at the point where a car is passing.

Mechanical.

Water Motor. - William E. Vernon, Sipe Springs, Texas. This invention provides for the Sipe Springs, Texas. This invention provides for the
transmission of the power generated by the revolution of two or more water wheels to a single driving shaft,
the wheels being located in a frame forming a wheel channel, with hinged gates, and other novel features.
Plumb Level.-Carl E. Nielsen, Salt Lake City, Utah Ter. This is an instrument designed a supersede the ordinary fragile one, while being mad straight plumbs, and correct compass lines in building and also the angles in mining, and the height and dis
tance of buildings and other objects.
Plane. - Gustav Heymeier, Bremen, Germany. This is a tool for planing the bottoms of
grooves in mouldings and ornamental wood grooves in mouldings and ornamental woodwork
whereby the depth of the cavity may be readily fixed whereby the depth of the cavity may be readily fixed
and the shape of the curved bottom of the groove re tained while the tool is doing its work.
Valve. - Oscar F. Burton, Brooklyn N. Y. This is a direct-acting graduating valve, with a
bored body or case, in which is fitted a hollow stem for bored body or case, in which is fitted a hollow stem for endwise movement, having at opposite ends valve
heads of different areas, adapted to seat at opposite ends of the case, the valve being especially designed fo
use between supply and expanding chambers in workuse between supply and expanding
ing steam, water, gas, or other fluid.

Agricultural.

Check Row Planter - William R. Morse, Chicago, Ill. This invention provides a machine designed to be quickly and easily adjusted, while
adapted to mark the ground oftener than is common adapted to mark the ground oftener than is common
with machines of this class, as a better guide to enable the attendant
Plow. - Franklin H. Wissler, Win chester, Va. This invention is designed to provide a
simple construction of standard and point, whereby the simple construction of standard and point, whereby the
point may be firmly secured in position and its securing
bolts be in a great measure relieved of strain, the point bolts be in a great measure relieved of strain, the poin being easily applied and removed.

Miscellaneour

Anemoscope. - Cornele B. Adams, Walthourville, Ga. This is an instrument for making an accurate graphic record of the direction of the wind at any hour or minute of the day, and consists of a
properly ruled web, web-advancing mechanism, and properly ruled web, web-advancing mechanism, and
pointers or markers, with connections between the web pointers or markers, wit

Cabinet File. - John Muhlhauser, Rochester, N. Y. This is a file in which a number o horizontal rigid panels are arranged in a pile in an open
frame or casing to press upon and hold in compact position assorted sheet music, periodicals, etc., the panels having a hinged vertically sliding connectio
with the casing.
Music Album and Leaf Turner. Warren H. Jeu Devine, Friend, Neb. This invention covers a novel construction whereby the eheets of musia
held in the album may be turned by the performer a will by pressing against the knee swell of the piano organ. \quad Gas Stove. - James H. Carrington, New York City. This stove consists of a shell made in the shape of a cone or dome and formed of transparen ing glow from the light visible through the foraminate
Oil Stove or Lamp. - William W. Batchelder, New York City. This stove or lamp has a of flame by causing the flame to burn in a zigza, fluted, or ruffle shape, giving a flame surface much in excess of the area which the width of the wick would otherwise afford, and a maximum an
beat from the quantity of oil burned.
Web Cutter for Lining Machines -Arnold W. Schlichte, New York City. This is an at tachment for use with a machine formerly patented by
the same inventor, to provide for the automatic action the same inventor, to provide for the automatic action old construction having been operated by hand.
Head Check Loop.-John H. Rafferty, Worcester, Mass. This is a device adapted more es harness bridle, and adapted also for use as a driving rein loop, being intended as a simple, inexpensiv ornamental, and reliable loop of this character.
Harness Pad. - Willard A. Bates, Princeton, Me. This invention consists in inflexible housing pads, united flexible connection, and provided each with a rocker at or near its transverse center, whereby the rockers will act against the under side of
the saddle pads, to enable the housing pads to rock in the saddle pads, to enable the housing pads to rock in the direction of the ends of the saddle, making a pad which can be adjusted to fit any horse, and which will bear evenly upon the horse.
Building.-James W. Brook, Lynchtions hinged or pivoted together, one of the sections
being hinged or pivoted at its outer edge to the framing, and the other section being movable at its oute with other novel features, the invention being ap plicable in the building of ice houses and othe Baby Carriage Brake.-George W Dolby, Tremont, N. Y. This brake consists of a rope or chain adapted to be secured to the handles of the
carriage, twin hooks for engaging the felly of the carriage, twin hooks for engaging the felly of the
wheel, having a common shank, and secared to the rope or chain, and a spring interposed in the chain, the far, even on an inclined surface.
Sleigh Knee. - Seth C. Doane, cevens Point, Wis. Combina wall and rumerer an he heam is a knee having a ball and socket join mit a certain amount of motion of the runner whil ecuring the requisite strength.
Poultry Coop. - Robert Yoakum, Dallas, Texas. This a portable folding coop, more es pecially designed for the transportation of fowls to
narket by rail or boat, and is so constructed that the market by rail or boat, and is so constructed that the eturn to the owner in packed and folded bundles
Mixing Liquids. - Benjamin F. Yhelps, Kansas City, Kansas. This is a device consist
ing of a rocking frame on which is pivoted an arm carrying a cup held on top of each glass contaning th quid, a platform and carrying the glass, for mixing and shakin iquids thoroughly and efficiently
Evaporating Apparatus.-Richard G. Peters, Manistee, Mich. This invention is designe vacuum by a continuous feed of brine and a continuous discharge of salt precipitated, the vacuum being sealed
by immersion of the outlet of the discharge pipe in a y immersion of the outlet of the discharge pipe in a
ank of brine, where the salt is received by the bucket f an endless carrier and elevated to dripping bins o other means or appliances for drying.
Apparatus for Abrading and PoLishing.-James H. Niland, Port Jervis, N. Y
This invention relates to machines for cutting and polishing glassware by a revolving wheel, aud provide
mproved means for agitating the abrading and polish ing material to prevent its settling in the reservoir and for applying it evenly and frequently to the cutting and olishing tool.
Hfmmer. - Isaac Schneer, New York City. This is a single seaming attachment for sewing madesirable for unting the sleeve of a shirt to the bod and the body to the bosom.
Sliding Sashes. - Sidney R. Deacon, Los Angeles, Cal. This invention provides means
whereby a slidıng window sash may be swung within whereby a slidng window sash may be swung within
the room to facilitate its cleauing, there being combined with the sash an attached hinged bolt, in connection with the sash an attached hinged b
with certain devices used therewith.
Folding Seats. - John M. Sander Bloomsburg, Pa. This invention relates to hinges to be used on opera chairs, school desks, etc., providin
therefor a hinge which will be noiseless, and at the time simple and durable in construction.
Lock.-Georg St. Meyer, Felton, Pa. This is a reversible lock, designed, with but sligh while it can also be used ae an ordinary door lat.ch, the nvention covering various novel features and combina

Ridge and Hip Covering fo Roors.-Thomas Toner and John E. Carroll, of No. 3 North Fifth Street, Philadelphia, Pa. This is a new article of manufacture consisting of a series of plates
adapted to be easily and conveniently applied by the roofer, to prevent all leakage of roof water, and at the

Metallic Shingle. - The above in $\begin{aligned} & \text { entors have also patented an improved form of } \\ & \text { metallic shingle, which is designed when applied to }\end{aligned}$ eecurely interlocked and braced, and prevent all bac water from passing on to the wood on which the shin les are laid

NEW BOOKS AND PUBLICATIONS. The Conversation Method for Speaking, Reading, and Writing GERMAN. Intended for self-study or use in schools. By Edmond Gas-
tineau, A.M. Ivison, Blakeman \& Company, New York and Chicago Páges xx, 534 .
The Gastineau method of learning to speak languages is based as nearly as possible on the natura
method. It is a development, of course, of the ol Ollendorff system, but greatly perfected. Throughout a great part of the work the parallel systems are given,
the English and German filling their respective columns the English and German filling their respective columne, his, where deemed necessary, phonetic spelling is used o give the pronunciation of the German. A numbe aries under different headings, are very valuable and are well adapted to carry out the object of the work. At its end some 70 pages are devoted to the grammar
proper of the lauguage. The Gastineau system has acquired such popularity that it vouches for the value o this work.
The National Medical Dictionary By John S. Billings. Vol. I. A to J. Philadelphia: Lea
1890. Pp. Ivi, 731.
The eminence of the editor and compiler of the presciently expresses its contents, which include everything relating to medicine. It opens with the doses of different melicines in apothecaries' weights and measures and
y the metric system, notes on the antidotes to differ
nt poisons, systems of numbering spectacle glasses, di mensions of parts and organs of the human body and their weights, and Professor Atwater's tables of food and dietaries. After these the dictionary proper be gins. Its character is of an extensive nomenclature but with comparatively short definitions. It is a work
or strictly dictionary use, not of cyclopædic capacity for strictly dictionary use, not of cyclopædic capacity.
It will be a most valuable addition to any scientific ibrary.
Report of the Commissioner of Edu CATION FOR THE YEAR 1887-88 Office. 1889. Pp. xii, 1209.
This valuable report treats of the educational work of the United States, the history and present aspects o discussion of questions relating to different public institutions, statistics of school systems, traning of teachers, secondary and superior instruction, profesional iustruction, kindergartens, and manual trainin re all treated at length. It is so comprehensive that does not lend itself to a report. It may truthfully be
said that all interested in education will be certain to nd something in their own department of value and in erest in its pages. The statistics are very exhaustive covering all the prominent institutions of the United States. Many familiar names appear among the inst ations treated of; among others a description of the Pratt Institute, whose work has been illustrated in our

The First Book in Color. By Stephen
W. Tilton. Boston: Published by
the author. 1889. Pp. 137. Price $\$ 1$.

The title of this book expresses its field. It is in ended to give a practical system of color study which can be applied to the artist's use by carrying out its principles. It is claimed that all natural colors can be
mitated by the mixture of pigments. It is an iuterest mitated by the mixture of pigments. It is an interest ing attemp
practice.
Pratt Institute Record. Published
by Pratt Institute, Brooklyn, N. Y.
.
This number of the Record of the Pratt Institute of Brooklyn discloses what the institute is doing, its needs
and prospects. The president's address indicates his nd prospects. The president's address indicates his
desires. The Thrift Association and financial aspects and probable success of its undertakings are given ample epace. An excellent illustration of the institute is used as frontispiece. The Thrift Association, to which we have alluded, is a species of savings bank which
conducted in unison with the work of the institute.

SCIENTIFIC AMERICAN

bUILDING EDITION
FEBRUARY NUMBER.-(No. 52.)
TABLE OF CONTENTS
Elegant plate in colors of a cottage on Staten
Ieland, N. Y., from drawings and specifications supplied by Munn \& Co. Perspective elevation,
oor plan, a details.
2. Plate in colors of a residence at Buffalo, N. An ornamental carriage house at South Orange, N . J. Perspective elevation
4. Engravings of the new auditorium building, A Staten Islan
5. A Staten Island cottage, costing $\$ 3,300$ complete A residence at Portchester, N. Y. Cost $\$ 11,500$. Lamb \& Rich, New Yo
A dwelling at Hill View, Dunwoodie, N. Y. Cost $\$ 5,100$ complete. Floor plans and perspective
elevation. Architect, C. E. Miller, New York.
8. Design for a cottage at Mystic, Conn.. by F. W Beall, a
plans.
9. A double dwelling house at Stamford, Conn., erected at a cost of $\$ 7,800$ complete. Plans and
10. Cottage erected at Larchmont Manor, N. Y. Cost
$\$ 4,350$. Floor plans and perspective. $\$ 4,350$. Floor plans and perspective
11. The new Carteret club building erected at Jersey
City Heights, N$\cdot \mathrm{J} \cdot \mathrm{J}$, from designs by Bradford L. City Heights, N. J., from designs by
Gilbert, of New Yori. Cost $\$ 20,000$.
12. The Oriel Row of thirleen houses, San Francisco, Cal. Erecte
perspective.
13. A recently erected cotrage in "Iselin"s Park," New Rochelle, N. Y. Cost $\$ 6,000$. Perspective and A very pretty cottage at Hill View, Dunwoodie, N. Y.. E. Miller architect, New York Floor plan and perspective elevation.
15. Miscellaneous Contents: Baths in school houses.Combined wood worker and moulder, illustrated. cal device for working window shutters, illus-
trated.-Square turned work for balusters, columns, etc.

The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages : forming, practi cally, a large and splendid Magazine of Architec TURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Lareest Circulation
of any Architectural publication in the world. Sold by of any Architectural publication in the world. Sold by all newsdealer.

MUNN \& CO.. PUBLibhers,
361 Broadway, New York

〇usiness and Personal.
a linarge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a line.
Advertisements must be received at publication oftic as early as Thursday morning to appearicin next issue All books, app., etc., cheap. School of Electricity, N.Y. For Sale-Patent 401,409, for detecting leaks in plumb ing system of hotels, apartment and office buildings. New eight-light dynamo and first-class 2 H. P. Ship-
man engine, $\$ 115$. E. H. Loomis. Hamilton, N. Y. The advertiser, an inventor, will assign all invention made by him during one year in consideration of a nom
nal sum of money, a smail percentage of proftts, and the cost of obtaining patents on each invention.
J. M. Grabam, 203 Race St., Philadelphia, Pa.
For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& W. s. Carr Co., 138 and 140 Centre St., New York. Magic Lanterns Wanted--For sale or exchange. Ha bach \& Co., Philadelphia, Pa
Wanted-To buy a patent of general utility not yet ntroduced. Address, stating price, terms, and in
specifications. P. O. box 1315, Stillwater, Minn.
Wanted-Competent man to take charge of a machine (hop building special, heavy machinery. Give age, ex-
perience, references, wages. Address T. R. H., box bot, Chicago. Ill.
Salesmen can add to their incomes by selling our goods on commission. Commissions to one salesman,
who devoted only one hour daily to our who devoted only one hour daily to our goods, averaged
twenty-five dollars per month for past three months. Our koods have been on the market for twenty-one
years, are well known, and are first class in every years, are well known, and are first class in every re-
spect. Address "Commission," care Scientific Amerispect. Address
can, New York.
Machine tools, catalogue No. 47-B; wood-working No. 48. Laraest lines offered by any frm in this country. Send for bed-rock prices, statink exactly what you want. C. Forsaith Mach. Co., Manchester, N. H.

Best Ice and Refrigerating Machines made by David
Bogle, Chicago, Ill. 140 machines in sat isfactory use Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacu, Bumps, acid blowers, filter press pumps, atc. For the latest improved diamond prospectis ddress the M. C. Bullock Mfg. Co., Chicano, Ill. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y., will send their panphlet, describing water works ma-
chinery, and containing reports of tests, on application. Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses. Drop Forgings. Bronze Forgings. Upward of 3,000 difierent articles. Billings \& Spencer Co., Hartford, Conn. Steam Hammere, Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St.. New York. Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city. "How to Keep Boilers Clean." Send your address
or free 96 p. book. Jas.C. Hotchkiss, 120 Liberty St... N. Y. Magic Lanterns and Stereopticons of all prices. atc. A profitable business for 1 man with small capital. Also lanterns for home amusement. 180 page cata-
logue f ree. McAllister, Optician, 49 Nassau St., N. Y. For best hoisting engine. J. S. Mundy, Newark, N.J. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Split Pulleys at low prices, and of eame strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St... Philadelphia, Pa.

HINTS TO CORRESPONDENTS
Names and Add ress must accompany all letters,
or no attention will be paid thereto. This is for our

 Scientine American Supplemponta referred
toman bedad at the oftice. Price 10 cente each.
Books referred to promptly supplied on receipt of $\begin{gathered}\text { price. } \\ \text { meran sent for examination should be distinctly } \\ \text { marked or labeled. }\end{gathered}$
(180)
(1806) H. A. asks: What is added to paraffine in the manufacture of chewing gum, to canse it to become plastic? A. A very little olive oil and
some glycerine are melted in with the wax. The glycerine, as a softening agent, must be regulated in
(1807) W. H. L. asks : 1. How to stain white spots in buffalo horns, so as to polish: the horns
have white tips, and along the top are a gray or a brown, and we cannot get a good black polish on them. A. Teat the spols with a solution of nith silver, repeated. 2. Please give receppt to polish the same. A. For several methods we refer you to our a
query No. 1324 in a recent issue of this paper.
(1808) C. H. W. asks: 1. Whether cotton, when packed in bales and stowed in the hold of a ship, and free from grease or any other foreign
substance, can ignite spontapeously without the aid of any outside agency. A. It is very improbable; pure cotton cannot be regarded as spontaneously inflammable. 2. To what is the fact of spontaneous combus-
tion, as in the case of cotton, attributable? tion, as in the case of cotton, attributable? A. To the
presence of bales whose contents have absorbed cotton seed oil. This has recently been pointed out in our
(1809) G. T. W. writes: How can I
lay an underground drain one foot or eighteen inche
deep around the perimeter of the cellar. been roughened in spots by acid falling on it, but (1818) H. C. B. asks : 1. What is the which has not penetrated much into the stone? A Polishing is your only resource. Ground pumice may
be followed by finely powdered marble and finally be followed by finely powdered marble and finally
whiting, or any polishing agents of similar character whiting, or any polishing agents of simi
may be used in the order of their fineness.
(1810) T. P. H. asks : 1. How to take the stains from a solution of blue vitriol out of cotton
goods. A. Wash out thoroughly with soap, followed by ammonia. After this, if the stain is not entirely gone, soak in lemon juice. 2. How is that let water come to a boil, the cider will not work, whereas if you
simply bottle it and set it away, it will work? A. The heat kills the ferment, a low form of primitive organ ism, upon whose existence and presence the fermenta tion depends. 3. Will you please explain the Grene
battery? A The sulphuric acid dissolves the zinc battery? A. The sulphuric acid dissolves the zinc
hydrogen is liberated at the carbon surface, to be in stantly oxidized, forming water at the expense of the oxygen of the chromium trioxide. The last is reduced to sesquioxide, and combines with the sulphuric acid Another portion of the sulphuric acid combines with the potassium, and the potassium and chromium sul phates give chrome alum as they crystalliz
(1811) E. B. B. asks: By whom wer playing cards invented, and about what time? A. It is unknow. The first record goes back to the days of Charles VI., of France, February 1, 1392, of which date a memorandum exists, to the effect that Jacquemin cards (jeux de cartes). This proves that they wer known at that date, but there is no clew to how long they had then been in use. There is no proof that they were invented for the amusement of this monarch, as is
often stated.
(1812) M. M. M. writes: I know the stand you have always taken on the much worn ques-
tion of perpetual motion, and, so far as I know, no one has been able to prove that your position is not the correct one. But suppose such motion should be pro possibility of doubt to the world, without the least mystery concerning its workings. Would it be valuable enough to warrant an outlay say of $\$ 50$ or $\$ 100$, eithe for exhibition or any other purpose? A. Yes.
(1813) S. S. W. asks : Is it cheaper to use a 40 horse power boiler when one 20 horse power
can be made to do the work? Also how far will steam carry from 40 or 50 horse power boiler without condensing? A. There is economy in using the 40 horse work. The large proportional fire surface of the larger ereby lessens the temperature of the waste products of combustion in the chimney. There need be no more grate surface in the
large boiler than would be used under the small boiler. For this purpose the sides of the fire chamber can be bricked in on the grate to make the area of the prope
size. Steam may be conveyed from 500 to 1,000 fee size. Steam may be conveyed from 500 to 1,000 fee
with good effect, where the pipe is full large to lessen friction, and thoroughly felted and boxed. There will always be a small amount of condensation under any need be no more loss in pressure than from 7 to 12 pounds for above distances,
(1814) G. L. L. asks how to obtain wate from a lake elevated 10 feet above land. I wish to irrigate, but a ridge knoll or hill lies between the said lake
and the land to be irrigated, fully 40 feet high, distance 900 feet. The question is how to obtain or convey the lake water over the hills any plans or suggestion would
be thankfully received. A. There is no royal road to convey the water over the ridge. If you cannot go around, nor through, there is but one way left, which is force, which may be in the form of a windmill for
economy in running. As the pipe line would be a siphon, economy in running. As the pipe line would be a siphon,
the work of the windmill would be comparatively the work of the windmill would be comparatively
light, by which a larger volume would bedischarged than if pumping to a reservoir on the hill only. When flow, address the makers of windmills advertised in Scientific American, for details as to size and cos of plant.
(1815) F. F. F. asks for a good receipt for making indelible ink for marking linens, that wil be black and will not wash out. A. For
inks we refer to our SUPPLEMENT, No. 157 .
(1816) H. D. B. asks : Is the core of the D. any other made of ened to a piece of iron. flat and not in U shape? If so, can any blacksmith make them (the cores and yoke piece) A. Yes; if the cores and flat yoke piece are well fitted together. 3. Can you tell me how to make a batter strong enough to light three 4 candle power lights? A
See Scientific American. vol. 57 , p. 116. 4. How t make a cheap powerful electric motor to run a lathe What size wire to wind magnets with, and abont how much the whole thing will cost? A. See Supplement No. 641.
(1817) J. A. C. says: We have built several stone cellars with sand and lime, and put two
courses of brick on the bottom and two course courses of brick on the bottom and two courses
on the sides (the brick were laid in Portland ceon the sides (the brick were laid in Portland ce-
ment); with all this precaution the cellars fill with water 2 feet and more whenever it rains. The wate ellare? A. The best way to make waterproof cellar is, at the time of building, to sprea over the cellar bottom a layer of cement made of the best Portland cement and clean sharp sand in equa parts. Let this layer extend beyond the exterior line the walls go up cover them upon the cutside, and as the walls go up, cover them upon the outside with an it to the cement floor. Thic is the only effectiveway we know of to realize a perfectly waterproof cellar, and its success depends upon the excellence of the materials employed. The walls are in this way inclosed in ce-
ment, and the cellar is in fact a waterproof pocket; or
current? A. An alternating current consists of electri pulsations in opposite directions succeeding each other with great rapidity. 2. Can the simple electric motor be run with the alternating current? A. No. It require a direct current. 3. Does it make any difference, pro-
vided you get the right amount of wire on an armature ided you get the right amount of wire on an armatur or not? A. There is some loss in loose winding. It is best to wind as compactly as possible.
(1819) F. W. P. asks : 1. What will be the difference between the number of heat units expended in producing the hydrogen by dissociation of able for generating steam by reassociating them in th los of 10 per cent up Theoretically none ; practically loss of 10 per cent upward will be the result. 2. How many atmospheres of pressure could be applied to hy
drogen and it remain in its gaseons state? A. At ord nary temperatures there is no limit, as the critical tem perature of hydrogen is very low.
(1820) A. Z. asks : 1. In an induction coil, how should the thin wire of the secondary coil be wound-in the same direction as the thick wire of the primary coil or in the opposite direction? The coil is to be used to give shocks. A. It may be wound in
either direction. 2 . Will 50 feet of No. 20 wire and 2 ounces No. 36 wire make a good coil? A. This coil would answer very well, but it would be better to use
14 the length of No. 18 in lieu of the No. 20 . 3 . How 4 the length of No. 18 in lieu of the No. 20. 3. Ho nected with a magnet and vibrator, so as to work well A. Connect one terminal of the primary with one pole o the battery. Connect the other terminal with the post
to which the vibrator is attached, and lastly connect the to which the vibrator is attached, and lastly connect the
(1821) C. H. M. asks: 1. Why are ca wheels made to revolve with the axle and not on it when the wheels are secured to the axles. This con truction is better calculated to withstand latera
brusts. 2. What is the action of car wheels on a track when the car is going round a curve? tainly cover more surface than the other, yet it does not evolve faster than the other. A. In going around curves the truck naturally tends toward the outside of he curve, and the wheels being coned, the larger part of the outer wheel rides upon the outer rail, while the rail, thus wholly or in part compensating for the different distances traveled by the two wheels. On some urves there will be more or less slip of one of the as they pass around the curve.
(1822) C. J. S. asks : 1. What is the best on? A Sponge off carefully with benzine, 2. What is the best thing to take stains off white feathers, such as a yellow stain on white pigeon? A. It depends on
what caused the stain; its treatment in any case is difficult, as any washing tends to impairthelay of th 1s there such a book as a furrier's manual ? Alt hink the Taxidermist's Manual 50 cents, would be se to you. The Text Book of Tanning, \$4,
recommend for treatment of leather in general.
(1823) H. W. M. says : 1 . On artificial one, made from Portland cement, 'here appears a Woold hydraulic pressure prevent this? Also would each sand canse this? A. The efflorescence is due to mpurities in the materials used,such as magnesian salts, There is no remedy. It will probably disappear in me. Hydraulic pressure probably would do no good (1824) G. D. asks if there is a good last ing cement that will cement rubber to cast iron that is
turned off (not polished), for example a rubber band on cast iron wheel or pulley crown face. A. The follow ng is recommended. Pulverized shellac is soaked in ten mes its weight of strong alcohol. It forms a trans pa at me addition of war in
(1825) J. E. S. asks : How are mirrors silvered? A. Mirrors are silvered thus: Tin foil is laid on a flat surface and mercury is poured over it. The
dean glass is now pushed over the lignid amalgam, with its front edge below the surface. After pressure the glass is placed on edge until all the liquid drains away (1826) C. McE. says : On a wall of a large building in this city is an ivy that covers almost
all of the wall. In the spring this ivy is filled with the birds, who annoy the people in the adjoining honse. he sparrows seem to build their nests in the vine and elp me? A. We are friends of the sparrows, for the good they have done us, and are unwilling to advise
their destruction for the trifing offense of seeking comfortable winter refuge. Therr mating season noisy, which should be borne with patience.
are angry with the bird, think of the worm.
(1827) G. A. W. asks : Can you tell me how to renew a copying tablet after it has become soft
and sticky $?$ A. It can be remelted and cast over again, our Supplement, No. 438.
(1828) F. O. C. would like to know the ngredients of the lacquer used by electrical companie struments is made from clear shellac or seed lac dissolved in 95 per cent alcohol, 1 of lac to 12 or 15 parts acohol, settle for a few days, decant, and color if deeat the articles to be lacquered to 160°. Lacque quickly. The articles must be a
(1829) E. H. asks : Will you kindly giv
equire but a short expobure to sun? A. See Scien
ific American Supplement, No. 584. 2. Will it work well on good linen writing paper ? A. Yes.
(1830) W. S. R writes : I have mader (1830) W. S. R. writes: I have made ENTIFIC American, and they will not work. I have fol owed directions as near as possible with what I had to work with. 1. Does it make any difference which side fhe permanent magnet is connected with the tw
pole pieces? A. No. 2 . Will it work better with a re turn circuit in the ground than with a return wire - A No. 3. Wonld No. 9 wire be too heavy to use on th ne? A. No. 9 wire will answer, but it is heavier than n some particular in following the directions.
(1831) O. \& B. write: We use a great ome to us slightly scratched, so as to remove the sil vering, we desire to know how so can repair the fault A. It 18 considered impossible to effectively repair scratched mirror. The backing on a fragment can be placed over the crack, and tin foil (not lead foil) may be applied over all. Experiment will determine whether the method will answer your purpose.
(1832) T. B. S. writes : If, as is supposed, he sun is nnety-five millions of miles from the earth can we see it with the naked eye? If not, what do we
ee.? A. We see the sun itself. It is 860,000 miles in diameter. A 1 inch ball placed 9 feet from the eye i approximately to that short distance as the sun is to
(1833) A. T. O. asks : Will common rought iron gas or water pipe turned off inside an atside so as to remove scale etc., answer for the cyl nder of the Deprez galvanometer? A. The cy'inde
shonld be made of soft homogeneous iron. Gas pipe is shonld be made of
apt to be defective
(1834) J. R. C. says : Please give formula for anti-oxidizer to prevent gold and silver articles
rom discoloring during hard soldering. A. A wash of a paste of whiting and water dried on the bright parts of jewelry or silver ware will save it from oxidation
while soldering, but must not interfere with the boraxed while soldering, but
joint to be soldered.
(1835) W. R. C. writes : Will you inform me if a cemented cistern which has had the taste of the air could be out would do for the storing orel? We should hesitate to recommend it. As a preliminary measure we would suggest sponging down the sides
with vinegar.
(1836) M. A. E. asks for a receipt for the lacquer used on chandeliers. A. The lacquer used on anandelier work is made of shellac and yin per thin and slightly colored with alcohol, very thin and slightly colored with dragon stand a few days for the insoluble part of the gum to settle; the clear lacquer should then be poured off and settle; th
filtered.
(1837) L. A. C. writes : 1. I have an electric bell similar to those used as an alarm or call bell on a Bell telephone. Does the bell require an alternat-
ing current to run it A. Yes. 2. If so, how can I make a simple device, by means of which to run it by common battery \boldsymbol{P} A. You can operate the bell by the se of a battery and any forn of pole changer. A mag it will require a number of cells of battery to produce the current necessary to overcome the high resistance of the bell. 3. What is the office perfornied by the two polarizes both the magnet core and the armature. Can power be transmitted electricaly over a distance 0 thirteen miles? A. This can be done by placing a
suitable dynamo at one end of the line and an electric otor at the opposite end.
(1838) G. G. asks : 1. Can an amateur make a home-made telegraph ? A. Yes. 2. In the sim CAN, December 14. 1889, No. 24, can the magnet be broken in the middle, instead of one side, as shown, thus saving the expenditure of two magnets ? A. Yes. ${ }^{3 .}$
Can an amateur make a simple phonograph? A. Yes.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unynopsis of the patent laws of the United States and and foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low, in accordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO., office SCIENTIFIC AMRRICAN, 361 Broadway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedJanuary 28, 1890,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Abrading and polishing material, etc.. apparatus
for agitating, .J. J. Niland... 480,

Music

rricultural boile..... 420,351
Air brake, automatic, J. B. Stewart................... 420. 420.121
Air moistening apparatus, c. N. Swift.....420.317, 420,318
Alarm. See Burglar alarm.
Alarm lock, R. G. Vasan
Anemoscope, recording
Axle box. A. Robbins
Axle. car, J. M. May

Band e
stad
Barrel cover, J. J. o, Conno
Barrel roller, J. Goodrich.
Barrel stand, S. R. Mace
Bathing apparatus, c. De Choubbersky
Battery
Battery plate, secondary, G. A. Jo
Beam, composite. H. C. Hodkes..
Bed bottom stretching mechanism, J. J. Loomis.
Bedclothes clamp for holding R X. McAthis Bed, invalid, A. J. Goodwin..
Bed or oher fold
Bed or other folding articles, sofa. L. Meirowitz. Bedstead, c. E. Clark...
Benzine can. C. Wagner
 Binder, temporary, J. G. N
Block. See Pulley block.
Board. See Cloth board. Ironing board.
Boiler. See Agricultural boiler
Book, check, L. J. Evans............................. 420,150
Book, duthe
Moore.............................. 420,308
Bottle, nursing, Graves \& Hyer -
Box. See Axle box. Cock box. Fare box. Fruit
box. Letter box
Box cover, S. . Gordman.................... 420,198
Box handle, w. H. Hart...................... 420,062
Bracket. See Dental bracket.
Brake. See Air brake. Carriage brake.
Bread raiser, w. M. Shelton 420,110

Building, J. W. Brook...........
Burglar alarm, C. H. Phulpott
Burner for petroleum, etc., G. M. Stone............. 420,124
Button, W. F. Whiting 420,59
Button fasteners, implement for removing, H. S.
Ginther.................................. ${ }^{420,340}$
Cowint
Cabinet for hotel stationery, W. F. Rush...........
Can. See Benzine can. Mili can. Oil waste can.
Can for hermetieally sealed goods, R. T. Smith.... ${ }^{420,116}$
Cane mill, W. O. Dunlap.............................. 420.147
Cane slicing machine, sugar, J. N. s. Williams.... 420,427
son.. 420.031
4:00200

Car, dumpin, G. Ross... 420,392
Car, dumping, J. G. Tomlinson................... 420.175
Cars, pipe coupling for railway, N. Nilison.............. 420.111
Cars, steam heating apparatus for railway,
Cars, steam heating apparatus for railway. G.
Westinghouse, Jr....................... 420,132
ards in packs, machinery for composing playing,
P. Gauchot...................................... 420,194
Carpet or upholsering abic
Carpet or upholstering fabric, G. S. Griffith. Jr.... 420,269
Carriage brake, baby, G. W. Dolby............ 420,030
Carriage door window, Lines \& Bronson..... 420,205 Carriage door window, Lines
Carrier. See Sheaf carrier.

埗
Case. indicator and reekister, Kletzker \& Dubinski.. 420,346
Cement making naterials, burning, J. M. Willcox 420,511
Cement making ınaterials, burning, J. M. Willcox 420,771
Chinin, drive, J. Goodrich 420,311
Chandelier, extension, H. Horn.... 420,270
Check loop, head, J. H. Rafferty................ 420,244
Checkrein loop, G. L. Smith.......................... 420.172
Chopper. See Cotton chopper.
Chuck having revoluble Jaws, J. T. Hayden........ 420.199
Churn, J. A. \& W. D. Gabbert................... 420,231
Churn, working body, C. Fuerste.............. 420,049
Clamp. See Extension clamp. Floor clamp. Saw

420,236

Cock box, stop. A. Ormsby............................ 420,413
Cock or faucet, self-closing, o. F. Hakeman..... 420,155
Cocks, extension service box for water or gas, H.
E. Dennis... 420,
Coffn fastener, L. . Woodard............... 42
Coin-actuated boxes, electric detecting apparatus
for, W. J. Howey... 420,
Coin wrapper, S. s. Kimball.............
Colter, rolling, Gale \& Tremblay

Copying press, portable, F. O. Climer...............
Corset fastening, J. R. Haight.
cotton chopper and cultivator, combined, P. L.
Counter, coin and check, F. J. Host................ 420,
Coupling. See Car coupling Joint coupling
Coupling. See Car coupling. Joint coupling.
Pipe coupling. Pitman coupling. Thill coup.
Coupling joint, W. Amos 420.220
Cribbing iron for horses, B. L. E. Gowan......... 430,054
Cribbing iron for horses, B. L. E. Gowan............ 420,054
Cultivator, E. E. Edington................. 420.046
Cultivator, H. H. Sater. $. \ldots . ~ 420,448$
Cultivator, harrow, and marker, combined, H. J
Cultivator, listed corn, F. F. \& H. Deitchl....................................
,….................... 420,325
Cutter. See Band cutter. Paper cutter. Sod
cutter.
Decoration, interior, Bowers \& Pettit, Jr...
Decoration, surface, Bowers \& Pettit,
Dental anodyne, A. Cark........
Dental bracket, Hood \& Reynolds....
Desk, F. E. Waring.
Door check, J. G. Whittier
Door hanger, G. W. Morri
Druught equalizer, Ryan \& McDonald.............................420,3
H. Everson.. 420
Drying machine, fabric, B. Stetson.

Dynamos or motors, governor for, A. G. Water-
house ...398
Earth clos t, dry, T. W. Carrico..
Earth clos t, dry, T. W. Carrico.. 420,3
Eaves trouph hanger, c. Van Horn........... 420,3
Eaves trough hanger. w. S. Wakeley............ 40,1
Electric circuits, automatic safety cut-oI for,
Guerrant

420,293
420,263
420,186

0,321
0.134
0.238

\qquad | 20.379 |
| :--- |
| 20.2 .5 |
| 20.2 .56 |
| 20.02 | 20,332

20,666
20,176 420,198
420,214

Electric reciprocatind tool，
Electric signal，J．D．Tol 1 or
Electric transformer，E．Th
Electric transformer，E．Thomson．
Electrical communicating syste．
combe．．．
Engine．See Rotary engine．Steam engine．Steer ing engine．
Evaporating apparatus，R．G．Peters Exercising apparatus，R．Reach．
Extension clamp，J．J．Tanner．． Fabric．See Carpet or upholstering fabric．
Fan for ventiation，rotary，J．T．Hope et al Fan，rotary，B．F．Perkins
Fare box，J．Bricker Fare box，J．Bricker．．．．．．．．
Farm gate，automatic，J．J．
Feed regulator，J．J．Horau Feed regulator，J．J．Hora Fellies of metallic wheels，machine for drilling
holes in the．G．H．Everson．．．．．．．．．．．．．．．．．．．．． Fence machine， ，Skinner ．．．．
Fence post，iron，w．D．Stillma Fifth wheel，carriage，S．M．Co
Fille，cabinet，J．Muhlhauser．．． Fire alarm system，electric，J．Speicher Fireproof construction for buildings，I．I．Sagen－ Floor clamp．Warren \＆Jordan．
Floor covering， Floor covering，slatted，H．W．
Fruit box，Hunt \＆Rappleye Furnace．See Metallurgical furnace
Furnaces，kindling fre in，H．Hackn Gauge．See Pressure gauge． Game apparatus，J．Elson．．．．．．．．．．
Garment supporter，G．H．Phelps． Garment supporter．E．S．Smith．．．
Garment suppor and liquid holder，J．Flannery

Gas motor or engine, a
McMahon...................
Gas washing apparatus, N. C. Dye
Gate. See Farm gate.
Glue stock, apparatu

Gun carriage，s．Seabury

Gun sight，adjustable tubular，
Gun．spring air，M．F．Stanles
Hair curler and comb，combined．Monfort \＆Pec

Hame，D．Schoonmaker
Hame clasp，J．E．Himmel
Handle．See Box handle
Hanger．See Door hanger．Eaves trough hanger
Hat hanger． Harness pad，W．A．Bates．
Harrow，disk，E．C．Boyer ． Harvester， D ．W．Bovee．
Hat hanger，A．B

Hat hanger，A．J．All Hatchet，s．Rogers．．

Hay tedder and hay rake，combined，s．L．Den－
Heater．See Ventilating heater．
Hinge for folding seats．
Hinge for folding seats．J．M．Saud
Holdback vehicle，w．G．Lansing．
Holder．See Broom bolder．Gas and licuicid hold
er．Grain binder cord holder．Lignt holder
er．Grain binder cord holder．Light holder
Pen and pencil holder．Sash holder．Towe Hook，J．L．Murphy．．．．
Horse boot，A．McKay．
Horseshoe，T．F．Erans．．
Hose bridge，A．H．Hatchard ．．．．．．．．．．．．．．．．．．．．．．
son．．
Hub boring machine，metalic，G．H．Everson．．． Index center，F．J．Miller．． Insulating casing，J．A．Seely．．．．．．．．．
Insulating device，gas pipe，E．w．Ric ron．See Cribbing iron．Curlin ire， arbonizing and purifying Ir ning board，G．W．Gardner．．．．
Ironing machine．D．H．Campbell Ironing machine．D．H．Ca
Jack．See Wagon jack．
Joint．See Coupling joint．
Joint coupling，universal，F．Schoff． Journal bearing，anti－friction，W．E．Elliott． Knife．See Meat knife．M．Richards
Knitting machine．circular，J．C．Egls Lamp，electric arc，R．Schefbauer．
Lamp，electric arc，C．E．Seribner ．． Lamp，electric arc，C．E．Sc
Lamp socket，incandescent，H．Lemp．． Lamp socket，incandescent．
Lamp，wall，J．M．Satterfeld
Lamps，construction of．Barringer \＆Johnston．
Latch，c．W．Trotter．．．．．．．．．．
Lathe，vertical gang，J．H．Haskins
Letter box，J．G．Smith．．．．．
Light holder，J．O．Barrett．
Lightning arrester，C．A．Pfluger．
Lining machines，web cutting attachn
w．Schlichte．．．．．．．．．．．．．．．．．．
Liquid mixing machine，B．F．Phelps．
Lock．See Alarm lock．Master key lock．Nut
lock．
Lock，G．St．Meyer．
Log rollink，apparatus，O．E．．．
Loom let－off motion，G．Kerr
Loom shedding mechanism．Stafford．\＆Barrett．

Magnetic separator，G．Conkling
Manholes，flling for

Waster key lock．T．Taylor
Ieat knife．N．C．Oakley．．
Leat knife．N．C．Oakley．
Meat mixer，J．Zimmerman
Metals f foom their ores，separation of，M．Craw
ford
Metallurgical furnace， F ．L．Bartlett
Milk can，A．W．H．Smith
Mill．See Cane mill．Rolling mill．

Millstone dressing machin Mixer，H．Boemermann．

nould
Motor．Electric motor．Gas motor．Water motor Music album and leaf turn Nut lock，C．C．Colemar Nut lock making machine，W．Dun
Ocean signal，Thompson \＆Gartner

 USE ADAMANT WAIL PLASTER

Patent Foot Power Machiner Complete Outfits．

THE BROUGHTON
MエX円卫 Wall Plastert Fertiizers

Alexander，Bradley \＆Dunning，

C．H．DE LAMATER \＆CO．

ICEHOUSE AND COLD ROOM．－BYR．

ICE－HOUSE AND REFRIGERATOR．

chanics，Builders，men of leisure，and professiona men，of all classes．need good books in the line of permits the transmission of books through the mails at very small cost．A comprehensive catalogue of
useful books by different authors，on more than ffry free circulation at the office of this paper．Subject classiffed with names of author．Persons desiring
a copy，have only to ask for it，and it will be mailed to them．Address，
MUN N
\＆CO．，
361 Broadway，New York．

A New Book on Assaying.

 The Newest and Best in the Enolish Lanoucoe It Leads an others!!
RECENTLY PUBLISHED.

THE ASSAER'S Manval

HENRY CAREY BAIRD \& CO., INDUsTRIAL PUBLISHERS,BOOKSELLERR\&IMPORTER
S10 Walnut St., Philadelphia, Pao, U.S. A.

THE
AMERICAN RALWAY
pare, the greyond all com
can work onat Ameri
isa great
and
Bound in half leather ${ }_{*}^{8 \mathrm{VO},}{ }^{\$ 6.00}$ net. CHARLES SCRIBNER'S SONS 9

Starrett's Patent Combination Square

THE BEST LIME KILN KNOWN

aAfter being on the Market Four Years

 ROCEESTER MACHINE TOOL WORKS, BTOWI's Race, ROCHESTER, N. Y

SEATTLE

 SOME APPLICATIONS OF ELECTRIC Transmission.-A lecture by Frank J. Sprague, delivered
in the sibiey Colleee ourse, explaining the variou
nethot of transmitting energy by electricity and the
operation and
overnment of motors aid reviewing

 Name and Locate all Stars and Constellations visible by
using Whitalls Planispheres.

Using Whill Thill Tele | $\begin{array}{l}\text { Heliotellus.Lunatellus, Mapict LanternsandSlides, Books } \\ \text { etc. W. } \mathbf{T} . \text { Cooper, Mgr., P. O. Box } 69 \text {, Woodbury, }\end{array}$ |
| :--- |

Q

NOW READY.
Experimental 1 dience,

By Geo. M. Hopkins.
740 Pages. 680 Illustrations
PRICE, by mail, postpaid, \$4.0
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.
MUNN \& CO., Publishers,
(0ftice of ©he §rientiftic smaticaw,
361 Broadway, New York.

FOR SALE!
The Brattleboro Sewing Machine (io. offer
their Plant and Machinery, consisting of good waterpower, four-story building, 40×100, with outbuildings,
boiler-house, and machinery, or will rent the same on Brattleboro Sewing Machine Co., Brattleboro, Vt.

			FOR SALE. The Machinery, Tools, nad Patents Gurfin Lock coo, Frarkiin Fals, N. H. 1 Servionsi- We mak anying fic want from
ON GAS ENGINES. - A VALUABLE 	EVANS FRICTION CONE CO.	PRICTION POLLERS CLDTOCHES And ELEVEATORS	TO INVENTORS I--PATENTS,
		$\$ 10.00$ to $\$ 50.00$	CARY \& MOEN CO TEEL WIRE OFEV DSSCRIPION O-.
			HE PENNA. DIAMOND DRILL \& MFG. CO BIRDSBORO, PA., Builders of High Class Steam Engines. Diamond Drilling and Machinery. Flour Mill Rolls Ground and Grooved.
RELIABLEAND ECONOMICAL Fully Warranted van duzen	of all MACHINERY. The speed can be quickly and easily varied while run- ning from 100 to 200 feet per minute. They are PROMPT, EFFICIENT, and NOISELESS. Address, 85 Water Street, Boston, Mass. RCTITחпハाएTR I BOAF		
	ARGHITBGTIRAE ROOKS		
$\underset{\substack{\text { Rificentic }}}{\text { Book }}$	Useful, Beautiful, and Cheap. To any person about to erect a dwelling house or sta-	25 C FTA THIS 25c	
mailed tree to any address on application. MUNN \& CO., Publishers Scientific American, $\mathbf{3 6 1}$ Bioadway, New Yoik.			The S cientific A merican
			IONS FOR 189
			he Unitos
DERFECT NEWSPAPER FILE	Ion and approzimate cost. 解 bound volumes are now ready and may be ob-		The Scientific American (weekly one year The Scientific American Supplement (weekly), one The Scientific American Supplement (weekly), one year. 5.00 The Scientific American, Spinish Edition (montily)
Men			
			COMBINED RATES. The Scientıfic American and Supplement, . The Scientific American and Architects and Build- $\$ 7.00$
\cdots Now	Bo, Puy, New,		
	CELEBRATED SUUTTONTRING PACKING		

Dhovertisements．

 Thne abore are oharges per patat ineataput eifhe

Wheeling is Better than Walking．
Victor Bicycles
Overman Wheel Co．，Makers，
THE MODERN ICE YACHT．－BY Geo．W．Polk．A new and valuable paper．containing

NEW KODAKS

You press the button，
Seven New
Styles and
all loaded with Transparent THE EASTMAN COMPANY，

WORKING MODELS
 OIL WELL SUPPLY CO．Ltd．
 HOME－MADE INCUBATOR．－PRACTI－

ARTESIAN

 If You area
CAREATER
PATtERNMAKER， ERNMAKER；
MILLRETGHT：
CABINETMAKER，
want Firat－Class $\mathbb{Z}_{8} \underbrace{}_{8}$

 PATENTS！

Derforated METALS fom MINING SCREENS
Coalano Ore Separators，Revolving ano Shaking screns．

The MOTOR of 19th CENTURY．

 Charter Gas Engine Co． Gates Cornish Rolls Pulverizer

 GATES IRON WORKS
Ad

THE HEAT TREATMENT OF STEEL，

TO BUSINESS MEN

（6）OIPMAN AUTOMATIC STEAM RIGNILS．

品品ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company（Limited），Room 6，Coal \＆Iron Exchange，New York．

INVENTORS and others dessring．new articles manufac．
tured and introducea，address P．O．Box 866 Cleveland， 0 ．

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465．and January 30th， 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each
individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof．and liable to suit therefor．

FIRE FELT．

IMPROVED SURFACE GAUGE．

 Standard Tool Co．．，－Athol，Mass． SOME INDUSTRIAL APPLICATIONS

BARREL，KEG Hogshead， STAVE AND MACHERT

E．\＆B．HOLMES， affale，n． \mathbf{x} ．

SVRACUSE MALEEADE IMDWWOXKS

Established 37 years，and at present the largest Elevator Works in the world．OTIS BROTHERS \＆CO．，General Offices， 38 Park Row，New York City，and branch offices in nearly every principal city on the globe．Elevators for Passengers and Freight．They are smooth－running，eco－ nomical，and above all SAFE．

SHAPING SHEET METAL．－DESCRIP

COLUMBIA CYCLIES

－ORDINARIES
－LADIES＇N GENIEMEN＇S
SAFETIES，TANDEMSAFEIIES，
HICHEST GBADEOMY

ฐ́ricutific American

ESTABLISHED 1846 The Most Popalar Scientific Paper in the World． Only 83.00 a Yenn，including Pontage．Weekily． This widely circulated and splendidly illustrated paper is publisted weekly．Every number contains six－

teen pages of useful informatton and a large number of original engravings of new inventions and discoveries．
representing Engineering Works，Steam Muchinery， New Inventions．Novelties in Mechanics，Manuf： ：ctures，
Chemistry，Electricity，Te egraphy，Photography，Archi－ tecture，Agriculture．Horticulture，Natural History，etc． Complete List of Patents each week．
Terms of Subscription．－One
Terms of Subscription．－One copy of the Scien－
TIFIC A \because ERICAN will be sent for one pear－ 5 n postage prepaid．to any subscriber in the United States， Canada or Mexico，on recelpo of three dollnrs by the
pubishers ；six months， 81.50 ；three months， publishers ；six months，\＄1．50；three months，$\$ 1.00$ ．
Clubs．－Special rates for several names，and to Post Clubs．－Special rates for several names，and to Post
Masters．Write for particulars．
The safest way to remit is by Postal Order．Draft，or Express Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Ad－ seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－ able to MIUININ \＆CO．，

361 Broadway，New York． TIEI
Scientific American Supplement．
This is a separate and distinct publication from
THe SCIENTIFIC AMERICAN．but is uniform therewith in size，every number containing sixteen larke pages full of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions．
THE SCIWNTIFC AMERICAN SUPPLEMCNT is published
weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in all the principal departments of science and the
Useful Arts，embracing Biology，Geclogy，Mineraloky， Natural History，Geography，A rchæology．Astronomy， Chenistry，Electricity，Light．Heat，Mechanical Engi－
neering．Steam and Railway Engineering，Mining．年ering．Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photogriphy，
Technology，Manufacturing Industries，Sanitary En－ gineering．Agriculture，Horticulture，Domestic Econo－ my，Biography，Medicine，etc．A vast amount of fresh
and valuable information obtainable in no other pub－

The most important Engineering Works，Nechanisms， and Manufactures at home and abroad are illustrated and described in the SUPPIEMENT
Criade 850 ， EIIICAN and one copy of the SUPPLEMENT，both mailed for one year for $\$ 7.00$ ．Single coples 10 cents．Address and remit by postal order，express money order，or check．
MUNN \＆Co．， $\mathbf{3 6 1}$ Broadway．N．Y．．

Building Edition．

The Scientific American Architects＇and
Builders＇Edition is issued monthly．$\$ 2.50$ a year Builders＇Edition is issued monthly．$\$ 2.50$ a year．
Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，rich
ly adorned with elegant plates in colors．and with othe ly adorned with elegant plates in colors．and with other
fine engravings；illustrating the most interesting ex amples of modern Architectural Construction and
numbe of a variety of the latest and best plans for private resi－ eratesost as well as the more expensive．Drawings in
ent perspective and in color are given，together with full
Plans，Speciflcations，Sheets of Details，Fstim The elegance and cheapness of this is，nagnifficent work have won for it the Largest Circulation of an
Archicecural publication in the world．Sold by al

MUNN \＆CO．，Publishers，
361 Broadway，New York．
PRINTING INKS

