Paicentiric Mirlerex
a weekly jourdal of practical information, art, scievce, mechanics, chemistry, and manofactures.

NEW YORK, FEBRUARY 8, 1890.

PROPOSED PLAN OF BRIDGIIG OVERCROWDED STREETS OF NEW YORE CITY-[See page 87.]

stientific ghmericau.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. poblished weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN

The Sclentific American Supplement

Building Edition.

Spanish Edition of the Scientific American

MUN $\&$ CO., Publisherg,
Publishers,
361
Broadway, New Yort.
,

NEW YORK, SATURDAY, FEBRUARY 8, 1890.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 736.
For the Weelk Ending February 8, 1890. Price 10 centr. .For eale by all newedealers.

1. AERONADTICS.-Mechanical Birds-Some very simply construct

herds of the noble game once roaming the broad continent in countless thousands. What remains is in sad need of protection from the pelt hunter and the wan ton slayer.
In a recent paper, W. T. Hornaday, taxidermist at theSmithsonian Institution and for years a professional hunter for an animal collecting agency, computes the amount of game now remaining and discusses the pros pects of its survival. He says the wildest trail of the old days is now scarce a fortnight's journey from Broad way. The man who used to content himself with a weapon scarcely more accurate than the blunderbuss can now buy a breech-loading rifle for $\$ 18$, and a fine double-barreled breech-loading shotgun for $\$ 30$. The magazine gun, he says, is "giving the great American duffer a chance;" stirring up his game with his first shot, and pumping lead after it, shot after shot, in rapid succession till he brings the animal down or sends it away with a mortal wound.
Another and important aid in extermination is the granger. He kills everything he sees, whether in need of it or not, the author meeting a man at Rawlins Wyoming, recently, who "offered for sale, at one dollar each, thirty-four little spotted fawn skins from the young of the mule deer, not one of which came from a fawn over three weeks old.
Practically speaking, the American bison in his wild tate was long since extinct. Eighteen years ago there were millions of them. The elk, so the author thinks, will be the next to go ; being easy to kill, and his mag ificent head and massive antlers in great demand Once they were spread over the United States, but are now found only in Montana, Wyoming, Colorado Idaho, Oregon, and Washington.
The prong-horned antelope, that picturesque crea ture, is scarcely good for ten years more outside the Yellowstone Park. He lives in the prairies, open plains, or park-like meadows, and can be outwitted by the veriest bungler with a good gun.
Moose, since they range up to the arctic regions, cannot be wiped out, but in the United States they will scarcely last us twenty years, there remaining now probably less than 150 head, most of them in Northern Maine, Northern Minnesota, and in the main ranges o the Rockies. 'The head of a large bull moose readily etches $\$ 75$.
The caribou ranges the same latitudes as the moose, but happily loves the thick woods, the leafy tangles, and evergreen forests, and will be hard to exterminate. The black tail, or mule deer, our author thinks, will go long before his congener, the Virginia white tail. This latter does his own thinking, being keen-eyed and alert, and skulking in the thickest timber, will not, in all likelihood, ever be driven even from the Fastern States. The Rocky Mountain goat is as good as gone with us; all his haunts are known, and he is being slaughtered at wholesale, the author having recently bought seventy-five skins, tanned and dressed, from a Brooklyn tanner for $\$ 1.50$ the pelt. Happily he ranges to Glacier Bay, Alaska. The mountain sheep, or big horn, is sharing the same fate.
The ancient Hudson Bay Fur Company is winding up its affairs, there being no more furs to be had, and an old fur buyer, recently returned from the Northan old fur buyer, recently returned from the North-
west, says the business of gathering furs is dead. The beaver has become scarce, trappers now seeking the once despised musk rat and even the little gray rabbit to nake up for the lack of beaver, otter, mink, marten, and sable. Lynx and bear skins are in great demand. The Southern fur seal is gone, and Pacific Coast poachers are slaying indiscriminately ; the California elephant seal is extinct ; the walrus is rare; the great arctic sea-cow is gone, its congener, the manatee, a curiosity. Bears, particularly the grizzly, wolves, and foxes are fast going, and milliners' taxidermists are now slaughtering the singing birds in vast quantities.

BRIDGE OUR DOWNTOWN SIDE STREETS

To the many thousands who have homes in the country near the city, and who come to New York daily to attend to business duties, the problem of how to reach their offices and the main arteries of traffic is a serious one. The inconvenience is formidable, and the dangers are many and at every hand. Nor is the nconvenience confined to the residents of New York and its suburbs, but every visitor who reaches this city by ferryboat has a taste of the daily sufferings of a large class of people doing business here who have daily to cross West Street, one of the most crowded thoroughfares of the metropolis. West Street borders the Hudson River on the west side of the city, and the immense commerce received from the wharfs of the Hudson River must be transported across or through this overtaxed thoroughfare.
The population and business of the city has increased to such an extent during the past ten or fifteen years that the principal streets in the lower part of the city are completely blocked three or four days out of the week, the result being very serious delays and consequent losses to merchants and others. It is not so much, however, to this that this article is directed, but to the annoyance and dangers of transit for foot passengers. The lower part of Manhattan Island is ap-
proximately V-shaped. The main arteries of traffic converge to certain points where the great business and commercial centers are located ; the streets are narrow and are usually being torn up by the steam, gas, or electric supply companies, so that it becomes a simple arithmetical problem how many trucks and vans are required to cause the complete stoppage of traffic. This problem is being demonstrated almost every day by a complete blockade and stoppage of all transit, this be ing the proof of the question that the limit of taxation has been reached and passed. The fate of the poor foot passenger is that he must walk to the ferry house, as the cars usually are unable to run, and a cab, which can only be used by a limited class, is usually blocked before reaching th \quad rry house. This means splashing struck by a pole or being rolled over by an unruly horse, while the sidewalks are not much better, being always obstructed and almost blocked with cases, boxes, vegetable and fruit barrels, and crates.
It has been proposed to overcome these difficulties and dangers by building a raised passageway for foot passengers over the sidewalks from the ferry houses, across West Street, and along the various streets that lead to the ferry houses as far as the elevated railroad stations, and even as far as Broadway. The benefits of this would be incalculable. Plans have been prepared by the Pennsylvania Railroad Company for laying such a thoroughfare through Cortlandt Street to the Cortlandt Street ferry, and we have prepared drawings showing the proposed arrangement, which are published on our front page.
It is to be hoped that at no remote period this elevated pathway will be carried out, and it is with much pleasure that we learn that the first step to that end
has been taken, as the Board of Street Opening and has been taken, as the Board of Street Opening and Improvement have granted to the Pennsylvania Rail road and the Central Railroad of New Jersey the
privilege of erecting bridges over West Street. This is only, however, a partial cure of the evil, and every effort should be made to extend the system at least far enough to connect with the elevated railroad stations. A plan similar to the one represented on our initial page
this week was illustrated in the ScIENTIFIC AMERIthis week was illustrated in the Scientific Ameri-
Can as long ago as June 28,1884 , but not until very recently have any measures been taken to carry out any plan for the relief of persons who live out of the city, and have to cross our downtown crowded streets. At first great opposition was offered to the granting of the privilege of building even a bridge over West Street, and it was claimed that the railroads should pay the city for the right conferred.
As it was demonstrated, however, that the proposed venture conferred no especial benefits upon the com panies, and was of incalculable convenience to the public at large, these objections were waived, and the project is now fairly under way. Such structures should not only be put up in Cortlandt Street, but also in Liberty, Barclay, and Chambers Streets, and in case the railroad and ferry companies are not disposed to take hold of the matter, why should not the city do so, and thereby confer an immediate benefit upon the
public? This could be done without imposing any burden upon the taxpayers, for the expense would not be verygreat and the increase in the value of real estate along the line of improvement would be so great that the improvement could be made to pay
for itself either by direct assessment of the property for itself either by direct assessment of the property stories of the buildings directly with the elevated tho roughfares, and thus convert these parts of the build ings, which now are practically valueless, into stores shops, and restaurants.
Several of the ferry lines which have found that ten minute, and even seven and a half minute, boats are not able to handle the enormous crowds that cross the river daily, are having plans prepared for doubledecked ferry boats which would complement the benefits of an elevated thoroughfare by enabling the pasboat to the footpath without being compelled to go to the street.

Patent Office Reform

Congressman Butterworth's efforts toward reforming the Patent Office deserve immediate success. As he was once Commissioner of Patents, he is well qualified to judge of the needs of the bureau. It now occupies a small portion of the building which was erected out of the profits of running it, and is badly cramped.
Other bureaus of the government are run at a loss. the government, yet it is in cramped quarters, has an insufficient force of examiners, which causes great deinsumcient force of examiners, which and financial loss to inventors. In some branches lay and financial loss to inventors. In some branches Some of the applications on file are for important inventions which are imperatively needed, but no appli cation can be taken up out of order except by order of the Secretary of the Interior, for reasons of public necessity.
It should not be overlooked that one of the greates
we possess over every other nation by reason of im
proved machinery and mechanical devices, the pro proved machinery and mechanical devices, the products of American genius. Great as have been the so many useful and convenient inventions were being brought out as at present, none of which can be intro duced until covered by letters patent.
The Patent Office ought to be given all possible faci lities for rapid and efficient administration. The in ventors more than pay all expenses, and there is no justice in subjecting them to unnecessary delays. This is one of the most important subjects now before Con gress, and should be dealt with promptly.
The Philadelphia Inquirer, from which paper the above is copied, is quite right in urging upon Congress the importance of taking immediate measures to relieve the overburdened Patent Office, and furnishing the whole bureau of employes more room and better facilities for carrying on the work. To this end, which is somewhat encouraging, the House committee on pat ents has been directed to investigate and report, by bill or otherwise-
First.-What change in existing patent laws is neces sary to correct any alleged abuses and render the sys tem more perfect and efficient.
Second.-Whether the Bureau of Patents has sufficient room and facility for the proper and prompt discharge of the business brought before it.
Third.-Whether the force employed is adequate and the compensation of examiners sufficient to secure and retain an efficient corps.

The Edinburgh Exhibition, 1890

An international exhibition of electrical engineering, general inventions and industries will be opened this summer at Edinburgh. A large guarantee fund has been raised and all preliminary arrangements made. A arge number of exhibits are to be forwarded from Paris, including the whole of the Edison collection. A site of ninety acres has been secured in a commanding
situation near Merchiston, to the southwest of the city. There are to be two main buildings, one of which will be devoted entirely to the electrical exhibits and machinery in motion. The two buildings are connected by a covered way, crossing the railway by a annex will probably be erected. The building for gen eral exhibits, which is 700 feet by 200 feet, is ap proached from the main entrance by a handsome iron bridge crossing the Union Canal. The general char aster of the design of the main building is that of the
French Renaissance, the towers being, as has become almost universal in exhibition buildings, somewhat Moorish. The engineer and architect-in-chief is Mr. W. Allan Carter, M. Inst. C.E., and his assistants are C.E.

Thin Macadam Roads.

Mr. James Owen, county engineer of Essex County, N. J., under whose direction the admirable macadam roads about Orange have been built, sends the following communication on their construction to The En Ineering and Building Record.
I obtained my early experience, says Mr . Owen, in the sixties, in the construction of park roads in Brooklyn when the thickness of pavement was never less than sixteen inches, laid on a bed of 12 inches of sand, and was undoubtedly a Telford pavement. When, however, I had to initiate in New Jersey a more economical system, I decided on a depth of 12 inches, 8 inches of pavement and 4 inches of broken stone; between 30 and 40 miles were constructed of this depth in the venues radiating from Newark through the Orange and Montclair. They have stood the wear and tear for
sixteen years admirably, of course with proper repairs, and in only two or three instances did the foundation ever blow up. These roads were county roade, and really main arteries, but when the local committees decided to build their own roads, the divergence of opinion and lack of crystallized sentiment led to the adoption of anything from 4 to 12 inches, and the result has been in the same ratio as the thickness. The Oranges, East, West and the city, have laid their roads 10 to 12 inches in thickness, and the uniformly good
condition of their roads is proverbia condition of their roads is proverbial. Bloomfield
and Montclair have been building theirs 6 inches, and the difference is remarkable; ruts quickly appea holes are common, and they look, as they are, cheap roads. In these cases, however, there was an attemp at a pavement. In other townships, like Clinton, Millburn and parts of South Orange, no attempt has been made further than to spread 4 to 6 inches of broken stone on the natural soil, and the result shows that it is to a certain extent a waste of money. The only advantage accruing in such a road is to keep the wagons from getting mired, but as means of travel they do not reach to a very high order.
In the red sandstone formation of New Jersey, in which all the roads mentioned are laid, there are
critical periods, especially when the frost is coming out, when it seems absolutely necessary to have a foundation of some sort to keep the roads from break-
ing up, and only in specially favored localities is it pos sible to keep a 6 inch pavement without rutting unles there is a sharp fall to the roads. In the latest roads buit in this section at Belleville I adopted a rule of making the thickness of pavement as follows: Fo grades flatter than 1 percent, 10 inches; between 1 and is the thinnest construction advisable in this locality with any certainty of good, permanent results, unless the roads are merely built as a preventive from miring nstead of from travel.
In conclusion, I wish to deprecate as strongly as possible the idea of doing cheap work in road construction as in my experience there is more money wasted in these attempts than is generally realized. A com munity; if educated to a proper standard, will prefe to spend a dollar well than fifty cents in makeshifts, na it should be

Fair Play for Inventors.
It is a habit far too common for railway officers and some railway papers to speak in a derisive way of any man who invents or offers a new device in the line o railway appliances, especially if he is not a practica railway man. He is dubbed a "crank," or a "coupler fiend," as the case may be. One who has devised and put into practice a very important device, and who has made a fortune by it, is commended and held in high honor, notwithstanding the fact that he may have patented a half dozen other devices that are as ridiculous as any of those of a real idiot. As the sneer of a poor fool has been known to strike palzied an arn ust raised to reap a crowning victory, so there is no doubt that this custom of ridiculing inventors has de terred many a man from bringing out some very useful device, for fear of becoming a butt for this class o ridicule. Very many of the most valuable railway appliances now in practical use have been devised by nen having no practical experience in railway work, and had it not been for this class of inventors, very ittle progress would have yet been made in railway mprovement
Of late, however, more attention is being given by railroad men to experiment and invention, and many recent patents are in the name of prominent railroad men. This fact may tend to elevate the inventive fraternity in the estimation of railway officers. We say, all honor to the men who spend a dollar in money or an hour's time in an attempt to improve upon existing practices. We live in an age of universal ideas there is a restless and persistent spirit of enterprise Brilliant results have followed this practice of univer sal thinking; while there are a few idiosyncratic inven tors and others whose devices are utterly worthless, there is no justice in this wholesale criticism. There are many inventions that fail at first on account of imperfections in secondary details, and the inventor may not be appreciated at the time. The defects may be remedied by some one who comes after him, and the device prove to be a great success. The last man receives the credit, which in fact belongs to the first, who in his day received only ridicule. This is a common ccurrence, and shows to what unkindness and injustice this habit of ridicule may lead.-American Journal of Railway Appliances.

Peter Hendermon.

Peter Henderson, the florist and seedsman, died reently at his home in Jersey City, of pneumonia. The disease developed from the grip. He was 66 years old and until within a few days ago he was in robust health. He leaves a wife, two sons, who were his partners in business, and one daughter. He was born in Castle Head, Scotland, in 1823. At the age of 16 he was apprenticed to a gardener. He became a carefu student of botany, and a year later he received a gold medal offered by the Botanical Society of Edinburgh for the best scientifically arranged herbarium. He became a member of the Society for the Advancement of Horticultural Science, and prepared a paper for the London Gardener's Gazette, denouncing the then common practice of holding as secrets horticultural opera tions. In 1843 he came to this country. He worked for gardeners and florists until he had saved money enough to start in business for himself. That was in 1847. He bought land in Wayne, Monmouth, and Mer cer Streets, in Jersey City, and started as a market gar dener. Some time afterward he added a florist depart ment, and then the seed business. His hothouses on Jersey City Heights now cover more than five acres, and it requires 100 men to take care of the flowers. Mr. Henderson has written many books on horticulture. His first was "Gardening for Profit." It was published in 1866, and more than 125,000 copies have been sold. In 1868 he published "Practical Floriculture," and in 1875 " Gardening for Pleasure." His last book, "Handbook of Plants," was printed in 1881.
Mr. Henderson often remarked that he had never been sick a day in his life. He was a member of the New York Horticultural Society, the New York Florsts' Club, the Society of American Florists, and the Seed Dealers' Association.

A BURNER FOR HEATED COMPRESSED AIR AND OILS, GASES, ETC.

The accompanying illustration represents a burner for use with hydrocarbon oils, gases, etc., designed to be employed for all purposes where a steady, uniform heat is desired, of a high degree, and free from sulphur or other impurities. It has been patented by Messrs. David C. Andrews and James F. Seery, of

ANDREWS \& SEERY'S HYDROCARBON BURNER.

New York City. Fig. 1 represents a vertical sectional elevation of the burner, and Fig. 2 illustrates its application in a heating or welding furnace. The lower portion of the body of the burner has a heating chamber of annular form, projecting upward from the inner walls of which is a tapered portion forming a mixing chamber, with a concaved cap piece, above which is held a superheating plate in such position as to provide an annular slit or opening, through which the mixed gases issue at the point of ignition of the burner. Into the lower end of a central hollow portion of the burner body is fitted a nozzle, within which is fitted a smaller inner nozzle, both discharging upward into the mixing chamber. Into the outer one of these nozzles opens a pipe from an oil reservoir, and into the inner nozzle opens a pipe from the annular heat ing chamber, another pipe from a compressed air re-

KELLS' EXTENSION CLAMP.

servoir discharging into the heating chamber. Another pipe is arranged to admit air or steam through diametrically opposite passages directly in to the mixing chamber about on a level with the discharge end of the oil supply nozzle. This apparatus is inclosed in an open-topped casing or cylinder, to which is jointed an outer casing extending above the inner casing, whence the outer casing is carried inward and downward to about mid way of the mixing chamber, around which the inner termination of the continuous wall of this outer chain ber is bent up in cone shape. This forms a passage between the two casings, the only outlet from which is toward the point of ignition of the burner, air being supplied to this passage to be superheated therein on its way to the point of combustion. If desired, in the burning of light oils, the oil supply pipe may be con nected directly with the heating chamber to vaporize

MONROE \& YEAGER'S CAR COUPLING. 居
the oil, whence it is discharged in that condition from the inner nozzle direct to the mixing chamber, to be there commingled with air supplied through the opposite side passages. It will be noticed that there are valves in all the pipes for the proper regulation of the supply of oil or gaseous fuel, steam, and air, as desired, according to the work to be done, which may include according to the work to be done, which may include heating blanks for bolts, firing axles, chisels, etc. The system is claimed to be particularly adapted to fire machines, generating steam in a few minutes, requiring but little draught, dispensing with the use of nozzles, thereby increasing the efficiency of the engine : allowing the carriage of sufficient fuel, while the entire absence of coal dust, sinoke, ashes, and cinders is a commendation.
For further information relative to this invention address Mr. D. C. Andrews, No. 24 State Street, New York City.

Albumen Paper for Blue Prints.
Very pretty effects may be produced by printing on ordinary albumen paper sensitized with the following solution :
Citrate of iron and ammonia................... 334 drachms.
Dissolved in water...................... 2 ounces.
Red prussiate of potash.................. $21 / 2$ drachms.
Dissolved in water. 2 ounces.

Red prussiate of potash
334 drachms
2 ounces. $21 / 2$ drachms.
2 ounces.
Mix equal parts just before using, as the mixed solution will not keep, and float the paper as on the silver bath, filin down, for half a minute or so, and suspend by one corner in a dark room to dry.
Detail can be brought out almost equal to silver prints, while the ease of working and the cheapness make it quite desirable. The prints can be mounted and burnished.
Do not try to keep the paper sensitized, but make up fresh when wanted.-J. T. M.

AN IMPROVED CLAMP.

The accompanying illustration represents a clamp especially adapted for use in connection with articles to be glued, cemented, or otherwise attached. It has been patented by Mr. Herbert Kells, of No. 95 Fulton Street, Astoria, N. Y. The body of the clamp consists of two spaced side pieces united at one end by a block forming an end bearing surface, the side pieces being united at the other end by a fixed head block having its upper end curved. Near the center of the inner faces of the side pieces is a longitudinal rib, in which fit grooves of the inner or sliding section of the clamp, which may consist of a strip of wood or metal of slightly greater width than the side pieces, there being another bearing block at the outer end of this sliding section. Upon the head block is pivoted a latch, and the straining device consists of a screw with a ball at one end entering a cavity in the upper curved end of the fixed head, while at the other end is a pivoted handle, instead of a winged head, the full and dotted lines in which the handle is shown indicating the facility with which the screw may thereby be turned. This clamp is designed to afford a perfectly straight contact surface, whereby, in panel work, etc., the extra piece of wood or metal hereto fore employed to true up the work is dispensed with.

AN IMPROVED CAR COUPLING.

A car coupling designed to automatically couple cars of different heights, and permit the detachment o coupled cars from the roof or sides of the car, as de sired, is shown in the accompanying illustration, and has been patented by Messrs. Charles \mathbf{S}. Monroe and Clinton E. Yeager, of Kinzie, Ind. The coupling is shown in perspective and sectional elevation. The coupling jaw is seated, by means of a transverse rib on the top of the main section of the drawhead, where it is held in a rocking bearing by a clamp. An integral draught hook is formed on the front end of the coup ling jaw, and a spiral spring is arranged to bear on the under side of its rear end, to retain the jaw normally in closed adjustment, as shown in the sectiona view, while allowing it to yield to a longitudinal thrusting movement of the entering coupling link, the pressure of the spring then causing an interlocking of the parts. A cushioning spring is placed on the draught rod, received in the rear end of the draw head, to sustain the shocks received thereby. Across the end of the car a rock shaft is revolubly supported in bracket boxes, with crank arms, whereby the shaft may be rocked at either side of the car, a rock arm on the shaft being connected by a chain with a ring on the outer end of the coupling jaw. This chain is also extended to the roof of the car, to facilitate the elevation of the coupling jaw when uncoupling is to be effected from that point.

OIl and gas have been discovered in Johnstown Fulton County, N. Y., and the most flattering pro spects for these industries have dawned upon this quiet locality.

an attachment for printing presses.

An attachment for cylinder presses, to facilitate the printing of additional matter in a color different rom that in which the body of the sheet is print ed, is represented in the accompanying illustra tion. It has been patented by Mr. Allen Ditson, of Larned, Kansas. On the outer end of the shaft of the main cylinder is a gear wheel mesbing into a gear wheel on a shaft held to turn in suitable bearings secured to the main frame, the latter shaft being here shown to the rear of the main cylinder and directly under the fly. This latter shaft carries one or more adjustable attachments, each of which is formed as a cylinder or a seg:nent of a cylinder, adapted to hold the type or plates to be used in printing the desired matter, which may vary from a single line to one or more columns. Figs. 1 and 2 represent side and end elevations of such a cylinder segment, Fig. 3 being a

dITSON'S PRINTING PRESS ATTACHMENT.

sectional view through the attachment and the main cylinder. Each printing attachment, when made in the form shown, may be clamped on the shaft in such place and position as desired, the shaft being preferably geared to make two revolutions to one of the main cylinder. The type or plate on the printing at tachment receives its ink from rollers and a fountain arranged to operate independently of the rollers which ink the form on the bed of the press, the distribution being effected by a lever engaging a cam groove in the gear wheel which operates the attachment.

Olive Oil for Snake Bites.
Dr. C. R. Earley, M.D., Ridgway, Pa., uses olive oil with invariable success as a cure for rattlesnake poison. t is given in doses of a tablespoonful. Half a dozen doses, at frequent intervals, is sufficient. The doctor has treated many cases, always successfully. In these days of olive oil adulteration, care should be taken to secure the pure article.

AN IMPROVED STOVE PIPE.

A pipe adapted to be conveniently and rapidly put together and easily opened, for cleaning or other pur poses without removing the pipe, is illustrated here-

TURNER'S IMPROVED STOVE PIPE.
with, and has been patented by Mr. James E. Turner, of Delaware, Ohio. The edges of the seam or joint of the pipe are formed with flanges adapted to receive a break joint plate, as shown in Fig. 2, for covering the sides of the pipe section. The plate has notehes fitting on to rivets or pins secured to the sides of the pipe section, and on the outer end of each rivet is a hook adapted to engage the opposite rivet or pin, as shown in Figs. 1 and 3. By disconnecting the hooks the pipe nay be sufficiently opened, while in place on the stove to afford facility for cleaning.

THE ARMSTRONG 9-INCH GUN.

The 9 -inch gun mounting herewith illustrated, and which will serve as an example of the type generally known as a carriage and slide in the British service, is intended to be fired over a 6 ft . parapet or from a gun pit. Our engraving and the following description are from Engineering
As the platform or slide is mounted on a ring of live rollers, an all-around fire can be obtained, while the area of the gun pit exposed to shell fire is a circle of less than 20 ft . in diameter, and from this must be deducted the area of a circle 12 ft . in diameter, occupied by the concrete foundation, which forms a solid block about 2 ft .6 in . high in the center of the pit. It will thus be seen that a very small space is exposed to the enemy's fire, and even this is protected by the 6 ft . parapet.
Many eminent officers object to a completely inclosed emplacement, on account of its liability to act as a trap for well-directed shells. The parapet, however, need not be continued all around, as the rear may be left open to allow of the exit of the projectile.
A special feature in the gun is its capability of firing at night. For this purpose the ordinary day sights are fitted with an ingenious and easily attached contrivance, which will be hereafter described. For the present it will be sufficient to say that the ordinary sights are illuminated by a small incandescent lamp, the rays from which, passing through a lens, are converged, so that only a minute point or line of light, just sufficient

The carriage is a compact structure of steel, each side consisting of a pair of steel plates, between which is interposed a cast steel skeleton bracket. The three partsare firmly riveted together. The two sides are connected by transoms of steel plate and angles and a bottom plate of the same material. There is a curved shield attached to the top of the carriage brackets. It is made from 134 in . steel plate. This gives ample cover both to the vulnerable portions of the carriage and also to the men who may be employed in loading or in laying and firing.
Permanent rollers are fitted to the carriage to allow it to run up after firing into the firing position. The carriage is kept from jumping by strong steel clips un der the platform.
The platform also is of simple construction, consist ing of two strongly built up girders of steel connected by transoms. On the upper surfaces of the girders the carriage rests, and to the lower surfaces is attached the upper roller path. The lower roller path is a sin gle steel casting which is firmly bedded into the concrete foundation, and is also secured by twenty large anchor bolts. The slide is secured to the path by clips similar to those attaching the carriage to the slide. Around the outside of this path is attached a toothed rack into which a pinion works. This pinion is actuated through simple bevel gearing by the rear hand wheels, so that the gun can be traversed directly from the platform in rear, or from the floor of the emplace ment.
when run out ; but it is useful for getting to the front portion of the slide when necessary.

Danger of High Pressure Electric Lights.

A recent number of the Boston Globe says :
As Patrolman S. Good was patrolling his beat on Washington Street last evening he passed close to the curbstone opposite the building numbered 731, and as he did so he experienced an electric shock. As he advanced nearer the building to investigate he experienced another shock, and the nearer he approached the stronger the electricity seemed to be.
The officer was puzzled as to the cause of the strange demonstrations, and while he was making an exami nation a large crowd, almost blocking the street, col lected. He then rapped for assistance, and Patrolman Moore and Sergeant Boston responded.
The crowd, with much difficulty, was held back from the spot, but, notwithstanding this, several advanced near enough to receive a portion of the electric fluid that appeared to be playing hide and seek over the entire front of the building. While the officers were awaiting the arrival of an electrician, to ascertain the difficulty, a homely-looking black dog came along and touched the side of the building. He gave a loud yelp and in an instant his entire body was enveloped in a blue flame and the animal fell dead. No one would touch the body, and it continued to burn almost to a crisp. The cause of the difficulty was a wire attached to an arc light, which became loose and charged the

ARMSTRONG 9'2 INCH GUN MOUNTED.

to distinguish the sight, is obtained. By means of an adjustable resistance, the light can be modulated to suit the degree of darkness of the night or the eye o the observer.
The carriage admits of 15 deg . elevation and 7 deg depression being given to the gun. This allows objects quite close to the gun to be hit, and also of a range of about 8,500 yards being attained. The penetrating power of the projectile, even at this great range, is at least $41 / 2 \mathrm{in}$. of iron, which is quite as much as some of the older classed, but still serviceable, ironclads carry on their sides.
At the rear of the slide a platform is fitted for working the gun, from which, after the loading operation is complete, one man is able to elevate, traverse, and fire the gun without further assistance. The mass to be revolved is over eleven tons, and it will therefore be seen that this is a considerable achievement in design; one great advantage being that it enables the man in charge to see his object, and to correct the lay ing up to the moment of firing.
There is an electric firing key, in the form of a pistol, which is held in the hand, so that no delay is occasioned by looking for the firing key. The firing battery is placed, as shown, so as to be well out of the way, but yet always handy for inspection. A metal are is let into the stone coping around the top of the concrete foundation. This arc is graduated in degrees, and a pointer on the platform indicates the exact position of the gan, so that the latter can be elevated and traversed by signals from a distant observing station. Both operations can be carried out from the floor o the emplacement, and therefore under cover of the parapet.

Between the upper and lower roller paths a ring of ive rollers works. This enables the carriage and slide o traverse almost without friction, and this accounts for the ease with which it can be manipulated. The ollers can be taken out and examined with a very mall amount of labor ; and, as they are well covered very little grit or dirt finds its way in.
It has been already stated that the gun can be ele vated from the platform at the rear of the slide. Thi is effected by a shaft running parallel with the top o the slide, along which shaft a worm slides during re coil. The worm gears into a worm wheel, on the spindle of which is a pinion engaging the toothed arc fixed to the gun. The wormwheel is not attached directly to the pinion spindle, but to the friction disks compressed by a screw on the end of the spindle, so that when the gun is fired this portion of the gear may be allowed to slip without any undue strain on the worm The carriage is fitted with a single forged stee Vavasseur recoil cylinder, which is bolted to the bottom plate. The piston rod is fixed to the front of the slide. The piston is fitted with a rotating valve with wwo ribs, which slide in rifle grooves cut in the cylin der ; ports are cut in the piston, and corresponding ones cut in the rotating valves. The cylinder is flled with oil, and the ports are shaped to give a uniform velocity of the liquid through the ports, and therefore uniform pressure within the cylinder during recoil.
After the gun is fired it can be kept back, with its carriage, at the rear of the slide, by an automatic pawl, fitted to the right side of the slide. This pawl is re leased by the simple movement of a lever, and the gun is thus allowed to run out into the firing position. This arrangement is not generally used, as the gan is loaded
iron work in the front of the building. The capacity of the current was 1,000 volts, and one of the electric light employes who arrived later to remove the dangerous obstruction said that had any one brushed against the walls of the building, it would have been sure death. The entire sidewalk was charged with the current, extending to the curbstone. The obstruction remained for almost an hour before the current was turned off.

Natural Gas at Findlay, Ohio.
A Findlay letter to Light, Heat, and Power says: All the week people have been going out to the Hudson farm, between Stuartsville and Van Buren, to see the great gas well which the Northwestern Gas Company brought in early in the week. There is no sort of doubt but what it is the greatest well yet struck in Northwestern Ohio. The pressure is tremendous and yield enormous. The gauge shows over $35,000,000$ feet of gas per day, and the roar of the escaping gas is deafening. The Findlay Gas Trustees, who own all the surrounding leases, are erecting a derrick on the tract immediately adjoining on the south, and expect that they will also strike it rich; but if they do, it will be something remarkable, for it is rare indeed that two great wells are struck in the same neighborhood.
Prof. Orton's recent prediction that nine years from now will see the total extinction of gas in Northwestern Ohio is langhed at by operators here. Even if the old wells should fail after four or five years' service, new wells are continually being drilled, and the city of Findlay alone has territory enough to supply, at the present rate of consumption, a population of 40,000 inhabitants for twenty years.

Shoe Leather Olls.

Animal oils and greases incorporate themselves with the fiber; they do not evaporate. Their action is like that of compounding various metals-instead of forming a composition, in the one case, all the elements are so compounded that their individuality is lost, and separation is almost impossible; in the other, the ele ments are mixed, but can be separated almost without loss in bulk. Moisture will crive the grease to the sur face, and gradually the interior will be robbed of its life, but there is no evaporation. Consequently the leather retains its flexibility much longer than when the grease is also drawn out by heat and the action of the air.
Animal oil does not penetrate the leather so quickly as oils that are more volatile, but this very quality is what makes them more valuable, as they are taken up by the fiber, not simply sucked in and filling around it, and they are equally difficult to draw out. Rancid oils, oils that have undergone a chemical change that marks the first step toward vitiation, have lost their most valuable properties, and the process of decay which has begun introduces gases, creating the volatile element which so quickly robs the leather of its nourishment. At the same time the fiber is injured by the decaying grease.
Vegetable oils rank next to animal in their preservative qualities, but the oils extracted from flax seed and cotton seed, unless purified, are of such gummy nature and so easily affected by heat that they are unfit for use by the currier. Cotton seed oil, purified as it is when sold for sweet oil, is an excellent but an expen sive oil for leather. Pure olive and castor oil possess the qualities requisite for preserving leather and keeping it soft, but their cost precludes their general use. Castor oil is, the best, and for reoiling it is not surpassed by animal oils.
Fish oil is used more than any other, and to its use may be attributed much of the poor wearing qualities of the leather now in the market. By an improved process of manufacture, fish oils are deodorized so thoroughly that their presence cannot be detected. They penetrate more readily than either animal or vegetable oils, but they do not incorporate themselves with the fiber. They simply fill up the interstices, and being of a light uature, they are easily drawn out by heat or moisture. They impart a soft condition to the leather when it is new, as much so if not more than do the animal oils, and because of that, they are not condemned. If used freely in connection with hard grease, they become rancid, and impart an odor which is retained as long as there is any grease in the leather.
Mineral oils are being introduced quite freely, and as they are thoroughly deodorized, they find ready purchasers. These oils are the worst possible that can be put into leather. They have wonderful penetrating properties, but they are heating, and their volatile pro perties deprive them of the permanency so necessary for the preservation of the leather. They do not take kindly to other oils or greases, and are easily cut by water. While the natural heat from the feet will cause
evaporation, particularly if the leather is moist, they do not become rancid, but they are more injurious to the fiber than even the most rancid animal oil.
The shoe manufacturer should condemn all leather treated with mineral oils. A little care on his part will enable him to determine the oil used, whether animal, vegetable, or mineral. Good grain and clear fleshen stock invite the eye, and if properly treated with oils the leather will prove acceptable, but grease is the life of the leather, and just in proportion as the grease is pure and incorporates itself with the fiber is the leather durable or otherwise.-"Boots and Shoes Weekly.

Shop Notes.

In the shops of the Manhattan Elevated Railway, New York City, work is produced at a minimum cost by a judicious use of jigs, templates, special appliances etc. In turning bolts, says the Master Mechanic, they use two sets of gauges, one set of standard finished izes and the other set of slightly larger dimensions. The latter is used for all work which must afterward be hardened and ground, and the former is used for all work not hardened and for grinding hardened work to finished sizes. Connecting and parallel rods are milled on both heads and bodies, instead of planed, the only planing being the finishing cut on the end of the main rod after the parts have been fitted together for the reception of the box. Guides are forged out of scrap ron and are finished by milling. They are casehard encd and afterward ground. The standard crosshead on this road used to be built up from a number of pieces, nearly all of which were wrought iron or steel Their standard is now of cast steel, which is much cheaper and reduces the number of parts. They are using cast steel and pressed steel to quite an extent in the place of cast and malleable iron. The boiler fronts are now made of pressed steel, and their appearance is
very neat. An engine has just been equipped with th Woolf valve gear, a design which only needs two ec centrics per locomotive and in which the link is supplanted by a block sliding in a movable guide. The road has had no experience with this gear, but severa roads in the Northwest have engines equipped with it, and good results are obtained.

IMPROVED GATE FOR RAILWAY CROSSINGS.

A gate designed to be operated by an approaching locomotive and train of cars, to prevent travel over the road crossing until after the cars have passed by, is shown in the accompanying illustration, and ha been patented by Mr. Abram B. Anthony, of No. 19 North College Street, Schenectady, N. Y. At a proper distance from the road crossing a transverse shaft is journaled in bearings clipped to the base flanges of the rails. An arm is secured to this shaft near the inner side of one rail, and the outer end of the arm is pivoted to a forked link which is loosely connected at its other end to a treadle lever rigidly fastened to one of the cross ties. This treadle lever is preferably a stee plate, sufficiently elastic to be normally retained above the face of the rail near which it is placed, while it will be depressed by the flanges of the locomotive and car wheels passing over it. Upon the extremity of the transverse shaft a rock arm is secured, projecting in an inclined position opposite to that of the arm secured on the same shaft near the inner side of one of the track rails. On the end of the rock arm is pivoted a rud, and a rod and chain connection extends thence to a grooved pulley on a shaft journaled in a post or tandard located at one side of the track, to which th chain is attached, there being intermediately inter posed a spring shock absorber. A similar rope or chain is secured by one end to a larger grooved
pulley on the same shaft, and extends forward, with the interposition of another shock arrester, the end

ANTHONY'S AUTOMATIC GATE FOR RAILWAY CROSSINGS.
of the chain being secured in a groove of a pulley on shaft journaled transversely in the gear casing of the gate. The passage of a train over the treadle lever perates its connections, through the transverse shaf and to the gear casing of the gate, to lower the gat cross the road crossing, a spring within the gate cas ing restoring the gate to vertical position after the rain has passed. The spring shock arresters are de signed to prevent too much vibration of the gate bar and absorb any shock liable to injure the gearing of the device.

The Influx of Foreign Capital.
About eighteen months ago, investments of foreign capital, particularly that of British capital, began to be made in American commercial enterprises.
This investment was suggested and stimulated by the organization of a corporation which "syndicated the sale of the Sir Edwin Guinness ale and stou breweries, of Scotland. The surplus capital of the world's metropolis having turned such a quick penn in this speculation, immediately sought for a new field and naturally attention was directed to this country A thorough system of exploitation began. London and other large English municipalities have a body of highly trained and skillful men called " chartered ac countants," whose reports are accepted with implici faith by all financial institutions in England. The task which these men had to perform was to verify the book accounts of the various institutions, take an nventory of the plants examined, and substantiate tatements made in regard to business. The work of investing in American enterprises in a short time be came a regular organized business. A large number of properties have been examined by these chartered ac countants, and negotiated through the brokers of va rious syndicates. It is not one but many different organized financial associations which have taken up hese properties and "floated" or " placed" them. The result, the editor of the Architecture and Build ing believes, will be highly beneficial to the industria interests of the country, provided the venders keep good faith with the vendees. This provision is neces
ary, because the system pursued generally is to buy any given property outright, and retain some one who has been prominently connected with the business to superintend its continuance under a salary. Thus the business is conducted by experienced hands. The idea involved in the purchase on the part of the vendee is that for himself and his associates he can command a business which will pay as an investment much more than the paltry two or three per cent which the same noney will command at home. The investments taken are generally sound, substantial, thoroughly estab ished business ventures, and the direct consequenc of this influx of foreign capital, so far, has been highly beneficial. The ultimate tendency, we believe, will be o secure further investment in enterprises that need additional capital to promote further progress. We do not believe in the alleged statements of the opponent of these investments, that the ultimate outcome will be a drain on our resources to enrich a foreign bond older, for whenever that point is reached that his interests are greater in this country than in the land of his nativity, it has generally resulted in the moving o that country of the foreign bondholder. It is a monstrous and pernicious doctrine to uphold that the foreign bondholder has been a drain upon this coun try's resources. On the contrary, we owe to him the means by which our resources have been brought to their present great development, and his coming should be encouraged rather than impeded.

The st. Clair Tunnel, Port Huron, Mich., and
This tunnel, which is being constructed by the Grand Trunk Railway Co., of Canada, under the St. Clai River-between Port Huron, Mich., and Port Sarnia Ontario, connecting the lines of the Grand Trunk, of Canada, and the Chicago and Grand Trunk Railways -is expected to be completed by the end of next year. According to a consular report which we have recently received, the progress during the last two years has been slow, and the work difflcult and expensive, much mone having been expended in experimental and preliminary work. The tunnel is being con structed at this particular point on accoun of the comparatively shallow depth of water the favorable materials of the river bed which are shown by the borings to be com posed of rock at a depth of from 90 feet to 95 feet below the surface of the water, overlaid with a bed of clay, the short line of new rail way that will be required, and the possibility of constructing both the tunnel and its ap proaches in a straight line.
The tunnel will be 2,267 yards long, of which 777 yards will be under land on the American side, 770 yards under the river, and 720 yards under land on the Canadian side Nearly 500 yards of the portion under the river will be almost level. At either end of this section there will be a gradient of 1 in 50 , until the approaches are reached. The length of the ascent on the American side will be 1,633 yards; on the Canadian side, 1,657 yards. The minimum depth of the tunnel below the bed of the river will be 15 feet, and the maximum below the surface of the water $661 / 2$ feet. There will be but a single line of rails. The cross section will be circular, and the clear internal diameter 20 feet. The lining will consist of cast iron. The total cost is estimated at $£ 517,500$, of which the Dominion government has granted the company a subsidy of $£ 77,625$. The advantages to be gained by the construction of the tunnel are a reduction in the expense of transporting trains and a degree of regularity in the service not obtainable by ferry, through the river being obstructed by ice in winter and by vessels during the season of navigation. According to the United States consul at Port Sarnia, the tonnage passing up and down is estimated to be nearly five times as much as that passing is sho he Suez Canal, and the necessity for a tunnel carried across the river St . Clair in connection with the Grand Trunk Rail way. During the year ending June $30,1889,184,000$ through and 13,500 local cars were transferred by ferrying; an average of 524 a day, or 226 per hour, which is equivalent to the crossing of a boat load of cars every forty-eight minutes.

Daniel Drawbaugh, with some of his friends and neighbors, was in Harrisburg recently, giving testimony before M. Ott, the examiner, in the suit of the United States against the Bell Telephone Company. This testimony is intended to substantiate the two charges that Alexander Graham Bell has no right to the telephone patent, because it was obtained by fraud in the Patent Office, and, even if it were obtained with. out fraud, he has no right to it because Daniel Drawbaugh was the prior inventor. Among those whose testimony was taken was James Brooks, of Shiremanstown, Cumberland County, Pa., which is near Drawbaugh's home. He swore that he used the telephone in Drawbaugh's workshop between 1873 and 1874, before Bell had even announced such an invention.

BRIDGING NEW YORK STREETS.

West Street runs along the Hudson River front of the city of New York. Over eighty years ago its width was assigned it as 70 feet. Since then, within a comparatively recent period, an act has been passed by the legislature to widen it, and the bulkhead line has been carried out into the river in many places, so that it there forms a very wide thoroughfare. At several points the street is crossed daily by an immense number of people. These points mark the location of imber of people. These points mark the location of important downtown ferries, such as the one operated in
connection with the New Jersey Central, the Pennsylconnection with the New Jersey Central, the Pennsyl-
vania, the Erie, and the Delaware, Lackawanna and vania, the Erie, and the Delaware, Lackawanna and
Western Railroads. Another point is at the foot of Rector Street. At Pier 8, situated at the foot of this street, large steamers running between New York and Sandy Hook in connection with the Central Railroad of New Jersey make their landing, receiving or discharging at each trip, in the height of the season, several thousand passengers.
To provide relief for such cases as these an act was passed in the year 1889, by the legislature of the State of New York, which is embodied in Chapter 347 of the laws of that year. This gives power to the Board of Street Opening and Improvement to au thorize the construction of bridges over streets of New York. Under this act permission was applied for by the Pennsylvania and New Jersey Central Railroads to erect bridges. The petitions were taken. into consideration by the Board of Street Opening and Improvement, consisting of the following city officials, ex-officio members: the of the following city officials, ex-offcio members: the
Mayor, Comptroller, Commissioner of Public Works, Mayor, Comptroller, Commissioner of Public Works,
President of Public Parks, and President of the Board President of Public Parks, and President of the Board
of Alderinen. Resolutions authorizing the construction of two bridges have now been passed by them. One is to be erected by the Central Railroad of New Jersey, and is to cross from the northeast corner of Rector and West Streets to Pier 8. This is to accommodate the Long Branch passengers. The other is for a bridge to cross from the southeast corner of West and Cortlandt Streets to the ferry house of the Jersey City Ferry. 'This bridge is to be built by the Pennsylvania Ferry.
As passed, the resolutions call for substantially the same bridge in each case, except as regards the span and width. The Central Railroad's bridge is to have 81 feet clear span, without support or stairs of any kind within that limit, and its width is to be 8 feet. The Pennsylvania Railroad bridge is to have a clear span of 100 feet and is to be 13 feet wide. The other requirements apply to both bridges. In general they are as follows :
The plans and specifications are to be approved by the Board of Street Opening and Improvement. The bridges are to be for the use of pedestrians only, and calculated to sustain a moving load of 100 pounds to the square foot. The trusses are to be 8 feet or more in depth. Sixteen feet clear head room is to be provided beneath them. A $41 / 2$ foot guard rail is to run on both sides to prevent accidents. No part of the structure is to be built upon the sidewalk. While the main structure comes under the jurisdiction of the Commissioner of Public Works, the Department of Docks, in consequence of the widening of West Street already alluded to, is named in the resolution as having cogalluded to, is named in the resolntion as having cog structures is to be provided for, and the bridge is to be roofed. To cover all contingencies a bond of $\$ 25,000$ is to be filed by the company constructing the bridge. The city is to be held harmless in the event of damage or injury from constructing or operation of the bridge. The permit is revocable at the pleasure of the board and if they so direct, the structure must be removed at the expense of the railroad within thirty days. No news stand or similar structure and no advertising signs are allowed where the bridge extends over the public street. Their use is to be absolutely free to the public, who are to have full access at both ends. The eastern ends of both bridges enter buildings situated on the corners named. Within these buildings the stairs will be constructed.
The Pennsylvania Railroad Company contemplates running double deck ferry boats. These, in connection with the elevated road over which its cars are soon to run in Jersey City, will afford its passengers a practi cally independent mode of communication. It is proposed, when the time comes, to lift up the ferry house on the New York side, raising it bodily 14 feet, and to build adequate supports beneath it. The present waiting rooms and ticket offices will then be on the level of the bridge and upper decks of the ferry boats. We illustrate on our front page what the Pennsylvania Railroad Company designed doing in furtherance
of this idea. Recognizing the fact that a great many passengers came by the elevated railroads, they prepared plans in continuation of the bridge, carrying an elevated sidewalk up the south side of Cortlandt Street to connect with the elevated railroad system. Were this carried out, passengers could take the elevated railroad cars uptown and be placed on board the cars in Jersey City without ever touching the ground. For
the present, at least, this plan will not be carried out. the present, at least, this plan will not be carried out.
an arcade through the buildings lying between West and Washington Streets, or perhaps Greenwich Street, which arcade would naturally be filled by stores and stands of various descriptions. This, however, has probably been abandoned.
Our views showing the proposed plans were prepared the Pennsylvania Railroad Company

Natural History Notes.

Temperature of Trees. - From some observations recorded by Mr. H. L. Russel in the Botanical Gazette, it appears that, as a general rule, the temperature of the interior of a tree is somewhat higher than that of the air, except during the warmer parts of the day, the maximum temperature of the air being generally between 1 and 2 P. M., and the minimum between 6 and 7 A . M. The comparative tables show that heat is absorbed and radiated more rapidly in the outer layers than in the center.
Experiments made at a time when the buds were tarting, in order to determine whether the chemical action carried on in the tissues gives rise to heat, led to the conclusion that it is very doubtful whether the metabolic processes involved generate enough heat to influence the ordinary thermometer. A curious difference, however, was discovered in the wood of the oak and pine in winter, the author having found that the temperature of the pine was lower than that of the oak at all times except during the latter part of the night and early morning. This is attributed to the thick coating of the leaves on the pine preventing absorption of heat by the trunk, since the larch, which has similar wood, resembles the oak rather than the pine in the watter of temperature. The further conclusion is reached that the direct absorption of heat is the main cause of the high temperature of trees, and that it is largely dependent upon the character of the bark, sinooth-barked trees being warmer as a rule than thick-barked ones.
The Longevity of Birds.-The swan is the longestlived bird, and it is asserted that it has reached the age of three hundred years. Knauer, in his work entitled "Naturhistoriker," states that he has seen a falcon that was 162 years old. The following examples are cited as to the longevity of the eagle and vulture A sea eagle captured in 1715, and already several years of age, died 104 years afterward, in 1819; a whiteheaded vulture, captured in 1706, died in 1826 in one of the aviaries of Schoenbrunn castle, near Vienna, where it had passed 118 years in captivity.
Parroquets and ravens reach an age of over one hundred years. The life of sea and marsh birds somehundred years. The life of sea and marsh birds sometimes equals that of several human generations. Like
many other birds, magpies live to be very old in a state many other birds, magpies live to be very old in a state
of freedom, but do not reach over 20 or 25 years in captivity. The domestic cock lives from 15 to 20 years and the pigeon about 10. The nightingale lives but 10 years in captivity, and the blackbird 15. Canary birds reach an age of from 12 to 15 years in the cage, but those flying at liberty in their native islands reach a nuch more advanced age.

Longevity of Elephants.-The journals of Ceylon have recently mentioned the death of an elephant that was well known on the island and had been seen by several generations of Englishmen. He was called Sello and had belonged to the last of the kings of Kandy. He was one of the hundred elephants that were taken by the English government in 1815, when the Kandyan dynasty was overthrown. At this epoch, the elephant was said to be fifteen years old. eighty-nine years.
Relation of Plaints to Soil.-Mr. G. Ville, in a paper read before the Academy of Sciences, of Paris, shows that the composition of the soil influences plants in five principal characters, viz., the stature, the color, the amount of carotine and chlorophyl, and the quan tity of vegetation. A table is given showing the dif ference in stature and color of plants of the common
hemp according to the manure used, from which it is hemp according to the manure used, from which it i evident that this plant flourishes least in soil withou ure without nitrogen. The absence of lime and phosphate in the manure in the case of hemp did not interfere so largely with the color and stature of the plants. It would appear, therefore, that rich manure is essential, at least, to the development of foliage.
Structure of Pulpy Fruits. - To the Annals of Botany Mr. J. B. Farmer contributes an article in which, after pointing out the very different sources of the pulp in different fruits, he gives detailed descriptions of its mode of formation in the elder, dulcamara, blackberry and ivy. The term berry is usually applied to fruits in which the pulp or succulent tissue is derived from the pericarp, but in Daphne mezereon t is formed not only from the pericarp, but from the outer integument of the seed also. In Citrus it is due to hairs which spring into the ovarian cavities and become distended with fluid. In Vitis and Solanum Dulcamara the pulp is formed partly from the placenta and partly from the pericarp. In the latter, after fertilization of the ovary, the cells of the placenta grow
out between the seeds, so as to give them the appearance of being sunk in it, and this growth is continued until met by a similar growth from the pericarp, so that the cavity of the ovary is then filled up with pulpy tissue. The outermost layer of cells of the ovules also undergo a change, their inner and side walls becoming lignified and the outer wall becoming mucilaginous and forming part of the mucilage of the pulp, just as it does in linseed. The red color of dulcamara berries is due to the appearance of a large number of chromoplastids derived from the chlorophyl granules. At the same time that this formation takes place, the starch in the fruit becomes changed to sugar.
Perfume of the Rose.-In an elaborate article on this subject in the Bulletin of the French Botanical Society M. R. Blondel states that the odor of the rose is chiefly developed in the group Centifolice, and especially in R. certifolia, Mill. The group Canince possess a similar perfume, which is, however, generally much more feeble. The hybrids produced by crossing tea roses (R. fragrans, Riv.) and Bengalese roses (R. semper(R. fragrans, Riv.) and Bengalese roses (R. semp ϵ -
florens, Curt.) with R. centifolia give a great variety florens, Curt.) with R. centifolia give a great variety
of odors; while the noisette roses (hybrids of R. mosof odors; while the noisette roses (hybrids of R. mos-
chata and semperflorens) are generally scentless. In chata and semperflorens) are generally scentless. In
the group Banksio, R. Banksia alba possesses a very pronounced odor of violets, while R. Banksia lutea has no marked perfume. The group Cinnamomea, with one or two exceptions, do not possess a strong odor, and the Pimpinellifolice are likewise nearly scentless. In the group Villosa the flowers have but little perfume, but the leaves are glandular, and in R. villosa, L., emit a terebinthaceous odor. The section Rubiginosa (sweet briers) are also remarkable only on account of the peculiar perfume emitted by the leaves of several species. In the petals of the fragrant species the essential oil resides in the cells of the upper and under epiderm ; its presence may be easily detected by the use of osmic acid.
M. F. Crepin confirms the statement that the odor contained in the glands of the sweet brier, R. rubiginosa, L., and of the species nearly allied to it, is totally different from that of the other species of the genus.

The Adulteration of Confectionery

To the Editor of the Scientific American :
In the editorial notes in your issue of January 18 you refer to the use of terra alba in confectionery, and state that the Board of Trade Jourrual of Portland, Me., is authority for the assertion that 6,000 tons of terra alba were recently imported through this port for use in confectionery. I have before me the letter of the editor of that publication in which he affirms that he had no authority for the statement, but that the arti cle was clipped from some other publication and the credit left off in the make-up by mistake. I have been unable to trace the statement about the terra alba to any reliable source, or to find any truth in it.
The other statement in your note about the lozenges shipped to St. Louis over the South Shore Railroad emanated from the National Druggist, and I have before me the letter of the editor of that publication saying that the affair occurred five or six years ago, before the National Confectioners' Association was organized. Believing the Scientific American to be a fair and honorable publication, that would not willingly do ujury to an honorable calling, I write so that you may wake such reparation as would be proper, to counter act the harm done by the publication in your widely circulated journal ; for the circulation of such reports is an injury to the trade.
There is no terra alba used now by any reputable manufacturer of confectionery. The National Confectioners' Association '، offers a reward of one hundred dollars for evidence that will enable it to convict any person of adulterating confectionery with poisonous or injurious substances, the association assum ing the cost and responsibility of prosecuting the offender." The publisher of the New York Confectioner pledges himself to pay over an additional \$100 to the person who furnishes him with the evidence that will enable the National Association to effect a conviction, and several large manufacturers each offer $\$ 100$ upon the same terms as the C'onfectioner.

Harry J. Shellman,
Editor New York Confectioner.
New York, January 17, 1890.
[The above assurances that the adulteration of conectionery with terra alba has practically ceased are ery gratifying, and we have much pleasure in placing them before our readers.-ED.]

Purgative Chocolate.

M. Giraud proposes a preparation made as follows :

Cacao (powdered and freed from oil)	50 grammes.
Sugar (powdered).	100
Castor oil.	50
Vanilla (powdered)	q. s.
Make into tablets.	

The oil should be incorporated with the cacao, and the sugar and vanilla added. The ingredients must be well worked up upon a heated slab, and allowed to cool in moulds.

RIO DE JANEIRO.

The recent overthrow of the monarchy in Brazil, and the establishment of a new republic under the name of the United States of Brazil, has called renewed attention to that wonderful country, which is larger in area than our own United States, and has an internal river navigation far exceeding that of any other state in the world.
Rio de Janeiro is the capital of Brazil. It is situated in latitude $22^{\circ} 54^{\prime}$ south and longitude $45^{\circ} 36^{\prime}$ west. It occupies the east side of a broad bay, which forms one of the most magnificent harbors in the world. The city was founded in 1556 by the Portuguese, at which time a large emigration took place. In 1808 King John VI. of Portugal fled from Lisbon on the approach of the French army under Napoleon I., and took refuge in Brazil. He proclaimed its independence and estab lished a monarchy
Rio de Janeiro consists of two cities, the old and the new. The latter has broad streets, the buildings well constructed and handsome. It is here one sees the Bra zilian civilization and customs ; here are the princely monuments, the commercial buildings, and, in a word, the social activity. Seen at a distance, Rio de Janeir presents a panorama of grandeur and beauty. Above the anchorage is a castle, from which the signal flag float to announce the arrival and departure of vessels Here are seen the lovely terraces of the public pro menade, the Convent of San Bento, with its building and gardens, and numerous churches. The Botanical

Type Setting by Machinery

The substitution of mechanism for hand labor in $1 . \mathrm{h}$ setting of types, although long delayed, may be now con idered as realized, and the day cannot be far distan when the type-setting machine will be the principal re liance in all properly organized printing establishments. In this city the New York Tribune is almost wholly se up by the type machine. In Hartford, Conn., another orm of machine, which proves very valuable and effec ive, has for some time been at work, and is thus de cribed in the Hartford Post.
The Post is besieged with inquiries from all parts of the country concerning the practical working of the wonderful Thorne type-setting wachines, which are known to have been in operation in setting the type for this paper for nearly three years, and for the las year or more have been thus employed to the exclusion all hand composition for reading matter. The Post has four of these perfected machines in its composing room, though rarely more than three are in use, as a ingle machine will "set" from one to two columns pe hour easily. The Post has given the Thorne the severest possible tests, at times under the most unfavorable conditions, with a view to discovering all imper fections or weaknesses and all causes of complaint which would be likely to develop under its practical use in newspaper and book offices or wherever types are set for printing. The result is all that could b wished, and the Post is prepared to indorse the ma chine fully and heartily as being a perfect substitute
after galley of perfectly set type which it produces during the eight working hours of every day
As before stated, the Thorne machine is giving per ect satisfaction here. It has proved itself equal to al the emergencies of a daily newspaper, and has come to occupy a place in the regard if not the affections of verybody connected with the Post which could not be filled in any other way. It has come to stay, first because it gives better service than handwork has ever given ; second, because it does its work with three or four times the rapidity of the ordinary compositor and third, because it saves a very large per cent of the cost under the old method. This is a great deal to say of any machine; but the pay roll of the composing room will substantiate the statement, and figures in uch cases do not prevaricate.
A great many persons have, first and last, within the past year, visited the Post mechanical departments for the purpose of observing the operation of type setting by machinery. These include a number of prominent editors, publishers, and practical representatives of the principal printing industries of the country, some of whom have subsequently adopted the Thorne machine or immediate use in their own establishments.
The young ladies who preside at the Post machines are not easily annoyed by visitors, who are always wel come. The era of type-setting machines is upon us, a he keenest critics now generally admit. Employing printers recognize the significance of the fact in th steadily increasing number of orders for the Thorne ma

THE CITY AND HARBOR OF RIO DE JANEIRO, UNITED STATES OF BRAZIL.

Garden at Rio de Janeiro is probably the finest in America. Here have been cultivated, from the earliest years of this century, the tea plant and other exotics from seeds brought from the Isle of France by the naturalist Lintz d'Abreu. Here is a celebrated collection of palms, arranged on each side of a long avenue. The trees are over 80 feet high. and form an immense array of columns with green capitals, presenting the appear ance of an immense bower of a most surprising kind.
The spectacle seen on entering the Bay of Rio de Janeiro is grand and astonishing. The bay is sur rounded by high mountains of granite. There are pic turesque islands scattered about; various cities occup the wargins of the waters, between which and the capital boats are constantly plying. As the seat of a great empire, Rio de Janeiro has been the residence of the Tribunes of the nation, the General Assewbly, the superior authorities, etc. It possesses an excellen university, wilitary and civil academies, commercia institutions, charitable establishments, museums, libraries, a conservatory of music, arsenals, etc. Ac cording to the census of 1880 the population is 400,000 Our engraving is from La Mustracion Espanola.

Combined Toning and Fixing Bath.

The formula is as follows
Diesolve in warm water.
Diesolve in warm
Sulphocyanide of a
ounces

Hyposulphite of soda
And when quite cold add to the above five grains of chloride of gold previously dissolved in about on rachm of distilled water
The above bath has given me such satisfaction that for some time now I have used no other, except for purposes of experiment.-Photo. Review.
for hand labor and a wonderful economizer of time and noney in the composing room.
It may be of interest to readers of the Post, as it certainly will be to contemporary publishers, to read a brief and not too technical description of the working of the type-setting machines, as used in the daily pro duction of this paper. The machines are started a 7:30 o'clock every morning, a small electric motor fur hishing the slight power needed. Each machine has rishing the similar to the an ordinary typewite and at each keyboard sits a young lady operator. Be fore her is spread the copy which she is to put in type and her nimble fingers pass with such rapidity ove the keys that she is able to set as ruch type on the nachine in a given time as three or four compositor would in the same time set by hand. Her "case" is always full, for the machine automatically keeps itsel constantly supplied with type, and thus no time is lost n "distributing." Should it be necessary to change copy at any moment, or any number of times, it can be done in an instant; and the interruption of rushing in an item at the last moment, when a machine happens to be otherwise employed, causes not the slightest incon venience or delay. With ordinary care few or no errors are made. The machine itself cannot make a mistake, and all errors that occur are the result of insufficient attention or undue haste on the part of the person ope rating it. Every letter is deftly directed to its prope position by the ingenious little "packer," with as much delicacy and positiveness as if it possessed intelligence, and with such apparent dajntiness of touch as to ren der injury to the types almost beyond possibility.
The machine is simple in its design and construction Its parts are all essily accessible, and it runs hour after hour without giving its attendants any trouble beyond supplying it with copy and taking away the galley
chine which are now on that company's books; while far-sighted compositors are getting hold of and learning the keyboard, in anticipation of a demand for printer operators, who are sure to be preferred to fresh hands when the stampede of publishers to the machine begins in earnest.

Petroleum in Netherlands-india.

The Deli Courant states that search for petroleum along the banks of the Lepan River, in Langkat, has resulted in the discovery of large deposits of that oil. Raw petroleum oozes out of the ground at many places, where the natives have consequently dug pits. The output from most of the latter has never been considerable, and shows fluctuation. At Telaga Tunggal, where the boring reached a depth of about 350 feet, more important results have been arrived at. Appearances indicate that the main reservoir has been tapped there. The oil met with in the other pits and deposits proved to have found its way above ground from that storing place. The oil tested yields 35 per cent of lamp oil of good quality. It does not contain harmful ingredients, and offers advantages as a lubricator. The exact depth of the other deposits remains to be determined before an estimate of working expenses can be accurately made.

A Newfoundland Dog Gives a Fire Alarm.
A big Newfoundland dog recently saved six lives in Allegheny City. Ahout one o'clock in the morning the dog awoke his master, Mr. F. D. King, by loud barking. Repeated efforts to quiet the brute failed, and ooking out of the window, King discovered that the Boyle building was in flames. He called assistance and succeeded in rescuing from the burning building the members of three fandilien.

MR. LORILLARD'S STEEL LAUNCH.

Mr. Pierre Lorillard has been in the habit, during the past few years, of cruising about the coast of Georgia and Florida with a party of friends on his large steam yacht the "Reva." He usually leaves New York as soon as the severe winter weather sets in and visits such resorts on the coast as the Jekyl Island Club, St. Augustine, Fernandina, etc. The luxury in which he lives is well known, and last winter his friends lives is well known, and last winter his friends were interested in learning that he was not conupon a perfectly appointed yacht, but that he took with him a floating stable. This consisted of a sort of scow, especially built for the purpose, and fitted up with stalls and a carriage room, so that in case he or his friends wished to stop at any point and have a few days shooting, they could be quite independent of the inhabitants, and could well have all the luxuries of civilization on a deserted island. Many of the rivers, bays, and inlets of the Florida coast, however, are shallow, or have very high bars, and it was found that a good deal of good country was lost to the sportsmen, owing to the fact that they could not conveniently reach the field desired, and to that end Mr. Lorillard has had built the steel launch illustrated in the accompanying cut. Possessing considerable speed, and with light draught, she adds greatly to the service of the "Reva," and makes it possible to visit parts of the country that have hitherto been inaccessible. Her cabin is light, airy, and commodious, and she is adapted to make exten sive trips up the beautiful rivers of Florida in periect comfort.
This boat was constructed at the Jonson Iron Works, of New York. She is 65 feet long, 10 feet wide, and 6 feet depth.
She is built of $5-32$ inch steel plates on her sides, and for bottom and shear strakes, $9-32$ inch plates. For frames $11 / 2$ inch angle irons $1 / 4$ inch thick are used. Soft steel $1 / 4 \mathrm{inch}$ rivets driven cold are used to join the plates. Canvas is introduced in the seams, all of which are left uncalked. Her model is somewhat peculiar, the bilges being carried below the line of the keel, so that if she grounds she will rest horizontal as regards her cross section. She is driven by a screw 31 inches in diameter and 48 inches thick. The engine, which we illustrate separately, is built by the firm of Riley \& Cowley, of Brooklyn, N. Y. It is an engine characterized by simplicity of construction and accessibility of parts, and from these features may be considered as peculiarly adapted to service of this nature. As the cut shows, the slides and moving parts are readily accessible from the starboard side. It is a triple expansion engine, with 4 inch, $61 / 2$ inch, and 10 inch cylinders and 8 inch stroke. There are three cranks set at an angle of 120° with each other. The high pressure and intermediate cylinders have piston valves,
a sleeve that is free to rotate upon the shaft. In the sleeve a spiral groove is cut, and in the shaft a straight keyway.
It is evident that a pin engaging both of these slots, on being moved in one or the other direction along the line of the shaft, would rotate the sleeve carrying the

TRIPLE EXPANSION ENGINE FOR STEEL LAUNCH "LILLIAN."

An Inventor Recognized.
The complaint is frequently heard that great invent ors rarely enjoy the fruits of their labor in the way of a pecuniary return commensurate to their services, the harvest being in a majority of cases gathered by some not over-conscientious capitalist, to whose bounty the struggling inventor has been indebted for the means of perfecting his invention or who takes advantage of his necessity in other ways.
It is refreshing to hear of a case where both fortune and business preferment have been the rewards bestowed upon the individual whose inventive genius enabled him to earn such favors.

The Philadelphia Daily Record reports an instance of this kind which is worthy of notice. Says our contemporary, referring to this fortunate inventor :

His name is Claus H. Van Hagen, and he has devised a machine to forge twist drill, for which the Chester Twist Drill and Tool Company has paid him $\$ 25,000$ in cash and $\$ 65,000$ in stock In addition to this he has been appointed to the position of superintendent of the Chester works, for which he will receive a weekly salary of $\$ 50$. He has all his life been a poor man, and during the thirteen years he has been at work on his invention he has gone into deb to the amount of $\$ 10,000$ or more.
This should serve to encourage the army of inventors in our shops and mills throughout the country, and it doubtless will in a measure While there may be plenty of "room at the top," still, many of our "mute, inglorious' geniuses at the bench and the lathe have often realized that the road which reaches to that desired eminence is a difficult one. Success in invention, as in every other path where the reward is worth possessing, comes only to the
a second short sleeve that slides freely outside of the other one. It is moved back and forth by rack and pinion movement, so as to turn the eccentrics one way or the other, reversing the engine whenever desired without the use of the complication involved in ordinary link motion. The estimated horse power is placed at 75, giving 450 revolutions with a steam pressure of 260 pounds to the square inch. There are independent air, circulating, and feed pumps. The surface condenser contains 120 square feet of cooling surface. The fuel to be used at present is anthracite coal. The boiler is F. D. Althause's sectional steam generator Ultimately it is proposed to burn kerosene oil.
The cabin, a veraging 9 ft . wide by 13 ft .4 in . long, occupies the front portion of the deck house. It is ceiled with Georgia pine. The windows and doors are of mahogany, the latter with glass panels. The boiler and engine room come next, occupying the rest of
the house. There are two folding bunks here for the the house. There are two folding bunks here for the
crew. Aft of the cabin, under the deck, a cooking
undaunted, and after persevering and, in many instances, tedious effort. Each recorded success should serve as a stimulus to the fainthearted, and the case above quoted contains every element which should make it an especially encouraging citation to the ambitious artisan.-The American Artisan.

Cooling of the Body by spray.

Dr. S. Placzek, following up some laboratory experiments by Preyer and Flashaar, on the effect of spray ing a sonsiderable part of the body surface of animals with 0 - 1 waver, has applied the spray for the purpose of reducing febrile temperatures in human beings. In the case of a man suffering from phthisis, whose tem perature was high, he found that by spraying about a pint of water at between 60° and $70^{\circ} \mathrm{F}$. over his body the temperature fell to normal, and continued so for several hours. Again, a similar method was satisfac torily applied in the case of a girl with diphtheria. In the healthy human subject the spray lowered the tem-

STEEL LAUNCH "LILLIAN," CONSTRUCTED FOR MR. PIERRE LORILLARD.
the low pressure cylinder has slide valves. The high pressure cylinder is forward. There are no links, and there are but three eccentrics for the three cylinders. These three eccentrics are close together on the rear end of the shaft; one operates the low pressure valve directiy, the motion from the other two eccentrics is carried by through rock shafts to their respective cylinders. These three eccentrics work from
stove and lockers are placed. The cabin is furnished with lounges, tables, etc., and hammocks may be adopted for sleeping in.
The wheel is forward, and the steersman communicates with the engineer by electric signals. Forward, a canvas hood is provided for shelter while steering. Under the forward deck are the water tanks, which have a capacity of 800 gallons.
perature nearly 2°, and in animals which had been pu into a condition of septic pyrexia by injections of bac teria the temperature was reduced to normal by the spray. By keeping healthy guinea pigs and rabbits some hours under spray and using from half a pint to a pint of water at the temperature of the room- -44° to 62°-the temperature of the animals fell several degrees. -Lancet.

Qorrespondence.

To the Editor of the Scientific American:
In your issue of December 7 I notice that the Read ing Railroad officials have decided to make use of the coal dust as fuel by pressing it into bricks, applying steam during the process. It may be of interest to the readers of the Scientific Ambrican to know that the Chinese have been utilizing the coal dust in that way for a long time, only with the difference that they made the dust into "balls" I have used these balls myself, and found them excellent, especially in grates. I believe balls to be superior to bricks, on account of the air space between the surfaces, which promote draught. I think the promoters of the company men tioned in your paper would gain by employing presses of such a shape as to produce balls instead of bricks, which could easily be done by an arrangement like mould.

Vancouver, B. C.
To the Editor of the Scientific American:
I have here some curious numerical relations. Their discovery was incidental to another line of investiga tion, and the facility with which they do the work heretofore assigned to the higher mathematics must be of general interest.
The mean distances and relative velocities in orbit o all the planets are derived from their periodic times.
The units of planetary time and space in our Coper nican system are one day and one million of English miles.

Let the rate of motion, or velocity in orbit, be the inverse cube root of their days. The ratio for earth $\left(\frac{1}{7 \cdot 15}\right)$ being one unity, all other planetary velocities will be multiplied by its reciprocal.
Then the mean distance of any planet is produced from one-fourth of its periodic time multiplied by its relative velocity.

The figures obtained by means of these simple formu le will state the distance with all the exactness that we are able to record the time. The two terms neces sary for Kepler's third law are here evolved from one, and the reason for that law becomes obvious in view of the new data. These facts seem to imply something more important than another solution to a puzzle of two centuries.
C. B. McMeekin.

Cincinnati, 0 .

	$\begin{array}{\|c\|} \text { Periodic } \\ \text { Time in Days. } \end{array}$		One-quarter of the Periodic Time.	
Mercury.... $\begin{array}{l}\text { Venus. } \\ \text { Earth. } \\ \text { Mars } \\ \text { Mars }\end{array} . . .$.	87960	$1 \cdot 61$	21.990	$35 \cdot 400$
	${ }^{244} 8700$	${ }_{1}^{1.172}$	56.175	${ }^{65} 98374$
	- 6886.980	0.81	91314 171745	- $139 \cdot 113$
Asteroids ...	\{ Average			
	($\begin{array}{r}1736.000 \\ 433250\end{array}$	${ }_{0}^{0.495}$	434.000 1083	258.000
	10759:220	0:323	2689805	868.808
	$30688 \cdot 820$ 60300000	${ }_{0}^{0.2288}$	7671705 15075000	${ }_{2743} 17565$
	030000		15075000	

To assist in the verification of these calculations, the respective inverse cuberoots of the periodic times are as follows:

How a Spider Stretches His Web across a! Street.

To the Editor of the Scientific American:

Your correspondent, T. S. K. (1608), asks " How does a spider get his web stretched from one side of a street to the other ?" He takes an elevated position, spins his web, collects it into an irregular mass for his air ship, now fastens his web to the place he is about to leave, weighs anchor, and the wind carries the workman to a new terra firma.
Before the days came for me to earn my own bread (while on the farm), I found great pleasure in watching
the many little workmen.
Dr. J F. Buck.

North Topeka, Kan.

Removing Warts.

To the Editor of the Scientific American:
In your issue of December 7, F. B. asks, in queries and answers, how to remove a wart from an eyelid without injury to the eye. I may tell how I did it successfully some years ago, viz., simply by taking a clear piece of thick clean blotting paper, making a hole in it just large enough to fit snugly around the wart, allowing the wart to pass through the hole of the blotter, then by using a small clean stick of wood about the size of a match and dipping it jnto a bottle of Squibb's No. 1 im
pure carbolic acid, not diluted, and touching the top of the wart with the stick, holding a very small drop or particle of the acid, the blotter absorbing the surplus acid and preventing injury to the eye or skin outside of the wart, then removing the blotter, the acid causing the wart to turn to a whitish hue and in a few days to disappear forever. One or two touches of the acid at the first application were sufficient for a small-size wart. I have removed other warts quite successfully by a milar process.
E. T.

Summit, N. J
[An operation of this delicacy ought only to be tried, however, by a physician or optical expert.-Ed.]

To the Editor of the Scientific American

Suppose you write up the idea of domesticating the seal. A good seal skin is, I suppose, worth more than a sheep would sell for, and the seal, if its habits were understood, could be raised more cheaply than the sheep, especially along the seashore, and perhaps on the shores of Salt Lake, and possibly around fresh water streams and lakes. If so, there is no end to the area adapted to raising them. If I am rightly in formed, the seal can be very readily tamed; in fact takes naturally to domestication and hangs around its wner like a dog.
M. W. Gunn.

La Salle, Ill.
aral and Industrial Products Turkey
The Journal de la Chambre de Commerce de Constan tinople says that frequent inquiries have been addressed to it from abroad respecting the agricultural and in dustrial products of the Ottoman empire, and in reply a statement upon the subject has been prepared, o which the following is a resume. On all points of the vilayet of Hudavendighiar the cultivation of cereals is carried on on a large scale. Sericulture is also in a lourishing condition, and the silks produced in the dis trict are largely exported. The rose trees of Kezanlik imported some few years ago have been a great sucess, and essence and rose water hàs been prepared of almost as good a quality as that produced in Kezanlik tself. The vine is found in many parts of the empire and is cultivated very extensively at Mont Athos, the Dardanelles, Tenedos, Chio, and Sinyrna.
The cultivation of opium is carried on in the greate part of the empire, and is particularly prosperous in the sandjak of Malatia. Dyeing materials, such as indigo, cochineal, etc., are found in the vilayets of Syria and Aidin, and it is desired to extend their cul tivation in the interior of Anatolia. The provinces and sandjaks which, independently of cereals, produce cotton for local consumption as well as for export, ar Sinyrna, Magnesia, Adana, Aleppo, Demas, Nablour Mossoul, and Bassorah. Cotton is also cultivated in the interior of Anatolia, and in the greater part of the vilayet of Maamurat-ul-Aziz. The rearing of bees and silkworms is carried on to a very large extent in Turkey The principal vilayets in which these industries ar practiced are those of Hudavendighiar, Adrianople Aidin, Koniah, and Diarbekir.
Carpets known as sedjades and kilims, and other imilar tissues, are manufactured in the province of Aidin, and enter into competition with similar articles produced in Europe. The cultivation of cereals is also carried on on a large scale in the vilayets, while the figs, grapes, dates, olives, tobacco, opium, gall-nuts, silks, woolens, and essence of roses of this province are well known throughout Europe. At one period various stuffs manufactured at Aleppo, such as zerbaf ergherie, velvets, etc., were much appreciated in rarious parts of Europe, and thirty years ago there were still 40,000 looms in the province. The stuffs woven there had a high reputation, not only in Turkey but throughout Europe.
At the present time there are only very few looms existing. At Diarbekir, stuffs for wearing apparel are produced which, known under the name of petie, comprise a species of fine cloth (burumdjik machlak), and another resembling satin. The fineness of these stuffs is much appreciated. The shawls and veils, known as djar, tcharchef, zar, and rehide, produced in the pro ince are superior to similar products of other coun tries. Wines, liquors, and elixirs prepared in the same vilayet, such as hara and rouhelhagat, are much sough after. In certain villages of this province the women who for a loom make use of four pieces of wood planted on the ground, weave carpets and kilims so admirably that they have been occasionally taken for Persian shawls. The silk and cotton tissues of Bagdad are worthy of attention. If the machlaks (a kind of cloth woven of camel's hair) were more carefully prepared, it is said they would find a ready sale in all parts of the world. At Saida silks and woolens are produced, and indigo is largely grown. In the vilayet of Tripoli Asiatic Turkey) olives and tobacco are produced, and the sponge fishery is carried on to some extent. Manu factured articles are silk, soap, tissues, and girdles.
Oranges, lemons, and other fruits are also exten sively grown, while a large export trade is carried on in wool. In Arabia, coffee, saffron, and vegetable ivory are found. The finest coffee is produced at

Yemen. The exports from Tripoli (Barbary) comprise ivory, ostrich feathers, olive oil, wool, cereals, and cattle. All kinds of vegetables are grown there, and there is a species of madder, the color of which is a deep red. This color is used in dyeing, and consider able quantities of it are exported. There are various descriptions of dates grown, and from them is extracted a species of brandy called boha, which is exported in earthen jars known as goul-goul. In cutting the uppe part of the date trees, a liquid exudes of a dark colo and very sweet taste, which is called leken, and which makes an excellent beverage when fresh. In about six hours this liquid ferments and is transformed into a wine with an agreeable taste. Olives are one of the principal sources of the wealth of the country. Ther is one description of olive oil which is called harati, and this is considered superior to the best oil of Crete.
There are also found in great abundance fruits, such as apples, figs, grapes, mulberries, peaches, apricots weet oranges, and citrons. Melons are grown on a large scale, and those called kalvaz have an exquisit flavor. The principal description of sheep is the karaman, which breeds twice a year. Goats and camels are also found in great numbers. In Turke the industries adapt themselves to the tastes and habits of the inhabitants, and, therefore, are not much appreciated abroad. To quote one example among many others, mention is made of the tissues known a aladja and bulut, and which are manufactured in th sandjak of Orfa. These are now woven exactly in the same way and on the same pattern as they were 500 ears ago. There are two species of camel reared in Bagdad, and flocks of sheep are abundant in various districts of this province. The skins are used in the nanufacture of boots (babouches) and sandals (yemeni) The horses reared in this vilayet have not their equa in any part of the world.
Attempts have been made from time to time to re prod uce the race of Bagdad horses in France, England, and Russia, with the result only of improving the ex isting breeds in those countries. The soil there is ex ceedingly fertile, and the principal products are barley wheat, rice, and dates. Independently of these pro ducts, cotton, sesamum, beans, peas, and lentils are largely grown, while every description of fruit abounds These products are exported in large quantities to India and European countries. Opium is also largely cultivated. At Hele, part of the population is en gaged in agricultural and part in industrial pursuits. The kefie, tcharcheb, abani, machlak, and othe woolen and cotton stuffs are woven there. Weaving wood carving, and shoe making are extensively en gaged in, while these industries are also carried on in Bagdad. The industry which principally affords the neans of livelihood to the Jewish inhabitants is the weaving of the abani. In localities such as Nedjif Echref, and Echra, machlaks of good quality are manu factured.
Materials for scent making are found in abundance in the vilayet of Orete, and they are also found at Sinyrna, Broussa, and in many other provinces. Soap is the most important of the manufactured articles of the island of Crete, and important transactions have taken place in this article. The most important in dustry of Rethymo, in the same island, consists in the manufacture of soap and olive oil. In the island of Chio the plain of Cambos is covered with gardens planted with orange trees, olive trees, and mastic trees The products of the woolen, silk, and cotton manu facture have considerable importance at Beyrout. There are also exports from this province of olives, gall-nuts, silk cocoons, and madder.
Samsoun produces tobacco, while the port of Sinope s important on account of its timber. Harness making and several other industries exist at Erzeroum ; the products, however, are not exported, but are required for local requirements. The principal source of the wealth of the peasant is the rearing of domestic ani mals, such a s oxen, goats, and sheep. Near the Persian frontier, near the vilayets of Van and the sandjak of Hekiari, cattle are found in large numbers, and from hese districts considerable quantities of skins are exported. The wool produced in these districts is used in the tissues manufactured to suit the requirements of local consumers.-Jour. Soc. Avts.

Developing Genius.

Genius unexerted is no more genius than a bushel of acorns is a forest of oaks. There may be epics in men's brains, just as there are oaks in acorns, but the tree and book must come out befose we can measure them. We very naturally recall here that class of grumblers and wishers who spend their time in longing to be higher than they are, while they should be employed in advancing themselves. How many men would fain go to bed dunces and wake up Solomons! You reap what you have sown. Those who sow dunce seed, vice seed, laziness seed, usually get a crop. They that sow wind, reap a whirlwind. A man of mere "capacity un developed " is only an organized day dream, with a skin on it. A flint and a genius that will not strike fire are no better than wet junkwood.-Kalph Waldo Em erson.

HIGH AND LOW TENSION ELECTRIC CIRCUITS. T. O'CONOR BLOANE, PH.D.

An error in scientific nomenclature does not always imply ignorance. The chemist invariably calls carbon ous oxide carbonic oxide, and calls the higher oxide of carbon either carbonic acid or carbonic acid gas. Sev eral such inaccuracies have become so engrafted upon the science that they are accepted and used univer sally. Electricity has been defined as the science of measurements. It might with more propriety have been termed the science of nomenclature aud definition Any tendency to error in its terminology is to be avoid ed. Every day an inaccuracy is perpetrated by elec tricians as well as by the laity which should be stopped, especially as no end is served by its continuance. It is the use of the term high and low tension current or high and low potential current. Neither tension nor potential can be attributes of an electric current. The use of such an expression may conduce to convenience but if for the word "current"either "system" or "cir cuit" be substituted, an improvement at least is effect ed. The worst of the matter is that this application of the term tension has given a false conception of the true nature of a current.
A current passing through a circuit is urged by elec tromotive force, or by a difference of potential, which in a certain sense, forces the current through the wire The term tension is correct if used to denote this differ ence of potential ; but it no more expresses an attribut of the current than the elevation of Lake Glazier ex presses an attribute of the flow of the Mississippi. It influences its flow, but is not a function of it.
The error is worse when a current of so many volts is spoken of. A current is rated by amperes, not by

Rasistruce: : 10 ohme.
Curreut: 1 Antupere.

fessithurc: : 000 Ohrms Currant: Impere.

HIGH AND LOW TENSION ELECTRIC CIRCUITS.
volts. A wire carries current at the rate of so many amperes, a current cannot be measured in or be desig nated by volts.
Some diagrams are given to show when a current is produced how a high and low potential difference may produce absolutely identical currents. For convenience simple numbers will be used throughout the de scription.
Three dynamos with their circuits are shown. The first dynamo is supposed to maintain a difference of potential of one volt at its terminals. The terminal are supposed to be connected with a wire ten feet long of one ohm resistance. A current of one ampere will pass through the wire.
The second dynamo is supposed to maintain a differ ence of potential of ten volts, and to have its termi nals connected by one hundred feet of the same wire. This will give a current of one ampere, just as before Finally the third dynamo is supposed to give a differ ence of potential of one thousand volts, its current passing through ten thousand feet of the same wire. As before, the current will be of one ampere intensity. Under the popular terminology, the first two cases would be called low tension currents and the last a high tension current. Yet the currents in the three cases are absolutely identical.
To illustrate this still further, equal lengths of the different circuits can be compared. Suppose a section of five feet is taken and its electrical data determined It will in all three cases be found to be passing a cur rent of one ampere intensity. The difference of poten tial from end to end of the section will in all three cases be one-half a volt. Thus, if equal portions are compared, the three currents, high and low tension "currents" socalled, are found to be identical. In like manner if ten foot sections of the different wires be compared, the same current of one ampers, with a difference
of potential of one volt, will be found in all three. The popular term indicates the original difference of poten tial, but is very incorrectly used. It would be far better to consider the whole circuit with its generator and apply the adjective to it-speaking of a high or low tension circuit or of a 1,000 volt circuit, alluding in all cases to the maximum difference of potential th is maintained in the circuit when in operation.

Copper Guns.

It is matter of very recent history that the alloy of copper, zinc, and tin, known as gun metal, was em ployed in the construction of guns with great success There are still in existence scores of so-called "brass" field pieces, and very powerful and excellent weapons they were. They have long since been superseded by guns of longer range and greater accuracy. It is note worthy, however, that brass guns seldom burst. Their great defect was a tendency to droop at the muzzle when fired rapidly. The enormous steel guns of H. M. S. Victoria have developed a similar defect, and are being returned to Elswick to be straightened and stiffened by carrying a breech hoop further forward. We have spoken of brass guns to show that there is nothing new in the idea of employing copper to some exten in the manufacture of guns, but the purpose we have n view at present is to suggestits use in a way which we believe to be novel. It is generally known that modern guns, both heavy and light, are rapidly destroyed, as far as the chase is concerned, by what is technically known as "scoring." The projectile does not fit the bore dead tight. The powder gasescharged, no doubt, with unburned powder in the con dition of sharp dust, and intensely heated-rush through the insignificant crannies between the sho and bore, and cut channels in the latter. The mis chief, once begun, goes on rapidly, and in a very short space of time the whole inner surface of the gun is plowed up and roughened and furrowed to a disastrous extent. Nothing remains but to cut the steel lining tube out, and replace it with a new one
We suggest, as a subject for a not very costly exWe suggest, as a subject for a not very costly periment, the substitution for steel of some copper
alloy wherewith to line our guns. In the smaller alloy wherewith to line our guns. In the smaller
natures, the present lining tube is a plain steel barrel a couple of inches thick, over which are shrunk hoops or rings of steel. The innermost tube is not supposed to impart any strength. It is intended to receive the rifle grooves, and endure wear and tear. In the larger natures of guns, the inner tube plays a far more important part. It is an extremely costly article, bored out of a solid forging. To the difficulties met with in making these tubes may be attributed most of the delay experienced in obtaining heavy guns for our hips
It may be urged that to adopt a comparatively soft material in lieu of tempered steel as a lining for gun would be a mistake, but we think not. It is well known that it is next to impossible to score coppe with powder gases. Touch holes, for example, are bushed with copper. Vents made directly in the iron or steel are scored up a great size by comparatively few discharges. Soft tough metals resist abrasion exceedingly well. Thus, for instance, it is very difficult to cut copper on a fine emery wheel. Lead cannot be so cut at all. The end of a copper bolt may be held for an hour against an emery wheel almost without effect, but the same wheel will cut up a file at the rate of two inches a minute. All experience goes to show, then, that it would be quite possible to use a gun with a copper-lined bore, which would be practically exempt from scoring. But such a gun could not be rifled, at least we fail to see how sufficient stub bornness could be imparted to the grooves. But al though copper would itself be too soft, it does not follow that its alloys would be, and our proposal is simply that a steel gun should be made and fitted with a liner of phosphor bronze, manganese bronze, or Deita metal, and the results ascertained. The cost of the ex periment would be very small. It would only be ne cessary to take some gun which needed retubing, and instead of lining it with steel, line it, as we have sug gested, with a copper alloy, and then go on firing it to destruction.
If we can substitute copper alloy for steel as a liner, the construction of big guns would be enor mously facilitated. The tubes could be cast and bored out. They could be rolled to toughen and consolidate them. As the metals we have named have enormous ductility, they could be put into a gun comparatively loose, and expanded to fit the bore by a couple of rounds, as proposed years ago, and carried into effect by the late Major Palliser, when he converted cast iron smoothbores into rifled guns, by fitting them each with a steel lining tube. There need be no apprehension that the gun would be weakened, for any of the alloys we have named could be made to bear as nuch as forty tons on the square inch, while remaining exceedingly tough, whereas a steel of the same strength would be extremely brittle. It is not easy to see what the objections are to the system of construc nese bronze liner may yet prove to be the gun of the
future. Be this as it may, it seems that the experi ment would be worth carrying out, but care should be taken not to spoil the experiment by using a badly selected alloy or an unsuitable system of rifling.-The Engineer.

PARIS SEWER, ELECTRIC WLRES, ANTD PNEUMATIC TUBES.

In Paris the city station Bergere has aerial cables, and these are used by the Faubourg St. Martin station. But the new companies that have just received grants will be able to establish subways only. The sewer have been reserved for the cables of the municipal ser vice. If we consider that the cables, although pro tected by mouldings or otherwise, are at the mercy of the force of workmen who traverse the sewer, and are exposed to humidity and several other causes of dam age, this is perhaps not an advantage. It must, more over, be remarked that the sewers are greatly encum bered by telephone and telegraph cables, and by pipes or distributing compressed air
In the illustration we show a section of a sewer in Opera Avenue. At A there is a water main, $31 / 4$ feet in diameter ; at B and C, two 4 inch water pipes; at D an 8 inch pipe for the distribution of compressed air t E , several large bundles of telegraph and telephone wires ; and at F, a pipe for the passage of compressed air for setting pneumatic clocks. To these still should be added the pipes that serve for the pneumatic post of Paris. The large number of conductors already es ablished will be especially remarked. Under such con ditions for the placing of wires, especially for alternat ing currents, it is indispensable to take precautions against the phenomena of induction. It might seem as if the most advantageous means for this purpose would consist in the adoption of concentric cables.

section of a paris sewer

Now, such cables, which are already employed in several distributions, present great inconveniences, both as egards making connections and the security of the service, and, despite experiments, the use of them has not as yet entered thoroughly into practice. It is probable that the sewers will not be used for this purpose The various electric lighting companies are taxing their wits to find models of subways for the laying of their cables as advantageously as possible.
We shall not fail, when the occasion occurs, to decribe the principal methods employed, and which will finally settle us as to the practical establishment of subways-a question which is certainly the most important one in distributions.-La Nature.

A Novel Project.

When it was stated some weeks since in the newspapers that the building of a milk pipe line from a point in New York State to New York City was projected there was a rather general smile, and the mater was treated as a joke. The projectors were, however, it seems, in sober earnest. A company with a capital of $\$ 500,000$ has, it is announced, been formed at Middletown, $\mathrm{N} \cdot \boldsymbol{Y}$., for the purpose of constructing such a line. The proposed method of forwarding the nilk is in cylindrical tin cans surrounded and propelled by water, and the promoters of the scheme assert that the time of transportation for a distance of 100 miles will not exceed an hour, while the profit will be about one cent a gallon. Fire and Water thinks if this sort of thing goes on, we need nat be surprised ere long to find New York the converging point not only of oil, natural gas, and milk pipe lines, but of whisky ducts from the blue grass regions, and beer ducts from Cincinnati, St. Louis, and Milwankee. The pipe manufacturers may well feel cheerful at the prospect before them.

RECENTLY PATENTED INVENTIONS.

 Railway Appiliancen.Car Coupling. - James M. Cosby, Elberton, Ga. The drawhead of this coupler has an abutmeut portion, projecting over which is a vertically
swinging coupling hook with depending beak, whule a fixed hook portion with upwardly extending beak projects beyond the abutment at one side of the beak of the coupling ho
pin and lever.
Single Rail Elevated Railway.ohu N. Valley, Jersey City, N.J. Combined with a series of independent hangers, each having a flat
horizontal arm, are independently supported rails conhecting the hangers, with lateral lugs that rest flat on the arms, forming a construction costing but little, and with a minimum number of parts.

Mechanical.

Soldering Apparatus. - John H. Michener, Jr., Philadelphia, Pa. This apparatus is constructed with work-supporting disks and heating
burners therefor, with vertically movable soldering burners therefor, with vertically movable soldering irons, in combination with a treadle mechanism for
raising and lowering the soldering irons above the disks, it being designed that one person with the apparatus will solder many more cans than has been

Tile Machines. - Aaron Mark, Ivesdale, Ill. This invention relates to cut-off tables for dale, Th. This invention relates to cat-off tables for newly moulded tile strips, whereby their form will be maintained, and consisting of an endless carrier belt
with brackets and supporting blocks, the blocks being with brackets and supporting blocks, the blocks being
adjustable to fit ciosely against the peripheral face of adjustable
the tile.
Miter Box.-Edwin G. Herbert and Francis L. York, Ann Arbor, Mich. This is a miter box adapted for use with the ordinary hand saw,
whether long or short, thick or thin, wide or narrow, whether long or short, thick or thin, wide or narrow,
setting itself automatically at the more commonly used angles, and which may be set at any angle from ninety degrees to about ten degrees in either directio

Agricultural.

Corn Planter. - Adam Wenzel, Dakota City, Neb. Combined with the body frame is a forward frame having feed boxes and chutes, with
other novel features, the corn being automatically other novel features, the corn being automatically
dropped twice for each revolution of the main wheels, while the furrow is closed by metal wings or shields,
and the earth preseed over the furrow.
Harrow and Cultivator. - Asa C. Brown, Eugene City, Oregon. This is a combination
implement, the main frame of which has handles and a mplement, the main frame of which has handles and a
draught bail, a shovel-carrying ausiliary frame being adjustably connected to the main frame, while cutters or guiding rods extend downward and to the rear from the rear end of the frame, and a rotary harrow is arranged
frame.
Mile Can. - William C. Thornton, Jefferson City, Mo. This is a receptacle for new milk, adapted to seal the contents and permit the submerging of a sealed can in a cistern or spring of water, and
which may be used to separate the cooled milk from which may be used to separate the cooled milk from
the cream, and indicate when the separation has been completed.
Horse Hay Rake.- Willard Clemens, Le Roy, N. Y. This invention provides means whereby the auxiliary rake may be dropped independent of the main rake, and by which, wen to drop its load and is carried down again to its
valed
normal position, the auxiliary rake, if lowered, will be normal position, the auxiliary rake, if lowered, will be rake.
Beehive.-Jackson B. Wilcox, Manis tee, Mich. This invention provides means whereby a
hive carrying movable comb frames and having a rehive carrying movable comb frames and having a re-
movable bottom may be converted into an invertible movable bottom may be converted into an invertible
hive in a simple and expeditious manner.

Miscellaneous.

SaddLE.-William R. Thompson, New Castle, Col. This is an improvement in the class o
suddles generally used by stockmen on the plains in which two girths are employed and straps are used in
connecting the girths with the saddle, the invention Purifying Petroleum. - Robert M. Perrine, Cleveland, Ohio. This is a process for deo dorizing and purifying crude oils, consisting in agitat ing them with chloride of lime, then adding sulphuric
acid to elıminate the chlorine gas and neutralize and acid to elıminate the chlorine gas and neutralize and
precipitate the alkaline matters, according to a method precipitate the alkaline matters, according to a method
described, and finally drawing off the purified oil
Mop and Wringer. - Carington L. Westbrook, Reynolds, Ind. Cloth-covered rollers, from which project feed teeth in longitudinal rows, are
journaled in a suitable frame, there being upper and lower bars adapted to be raised and lowered, with othe novel featnres, whereby it will not be necessary to wet or soil the hands in wringing the cloth and adjusting the machine.

- Shutter Worker. - James K. McGukin, Newark, N. J. This invention provides means whereby the window shutter may be opened or closed
from the inside locked in any desired position, the invention being an improvement
same inventor

Trunk. - William W. Brinkerhoff, Albany, N. Y. This 18 a trunk having fixed fastening designed to be effective and durable in strengthening and holang and relieving the strain on the lock and hing arioing froin rough usage.

Wagon Body.-Thomas Tyson, Mound City, Mo. This is an improvement in wagon bodies es. pecially adapted for farm use, and is deigned to
simplify the simpint de the same inventor, whereby the side boarda may be more conveniently manipulated and the rear end of the wagon body lees obstructed when the end gate is lhrown down to remove the load.
Folding Ladder. - Pierre F. M. Burrows, Auckland, New Zealand. This is a ladder Surrows, Auckiand, New
adapted to be readily adjuated to the inequalities of the ground or other support, and which can be quickly and
compactly folded when not in use, the constryction compactly folded when not in use, the construction
being strong and eimple, and deigned to be entirely P under all
Preparing Lumber. - Thomas h. Sampson, New Orleans, L. This invention covers an apparatus for treating lumber to prevent its warping
and twieting, and consiets of a long iron shell or cylinder that can be made air tight, in the botom of cylinder that can be made air and bish is cust iron mauifold box with compartment
whic
Ore Washer. - Samuel C. McLanahan ORE WASHER.-Samuel C. McLanahan tion relates to ore washers in which a revolving shaft o agitating and washing the ore, the invention relating more particularly to the blades and their means of con-

Gelatine Moulds. - Gustav Kolle Vienna, Auetria. This invention provides a process T reating glue and gelatine moulds for casting works of rit, the moulds being adapted for making serviceable of a low melting point directuly into them, and the in
in vention consisting of treating the surface of the mould action of the light.
alarm Lock.-Eleazer Harmon, Baltimore, Md. This lock is so made and its parts so conmoved from the bolt casing an alarm will be eounde if the bolt should be thrown back to even a partially unlocked position ty persons either on the outside or
inside of inside of the room, the invention being an improve-
ment on a former patented invention of the eame innent or

Well Boring Apparatus.-Lawrence V. Elder, New Orleans, La. This apparatus is to sink wells by means of a atream of water injected into the
well shaft or boring under presure, the invention well shaft or boring under preasure, the invention
covering special reans for estahlishing temporary com munication between the well pipe or tubing and the pumps to maintain a
section to the tubing.
Furnace Door Opener.-Andrew H. Ballagh, Macon City, Mo. This is an attachment for opening the door by means of a treadle, leaving the
hands of the operator free to throw on coal or rake the Lands or the operator free to throw on coal or rake the
fire, a spring being arraged pressure on the treade is removed, with other mean or holding the door open against the tension of the
apring when so desired.
Baling Presses.-Al vin Allen, Girard, Kausas. This invention covers a follower operating
mechanism for presees employed in baling cotton, hay etc., and provides for two forward movements of the
follower for every revolution of the sweep or lever for a rapid movement of the follower during the pre liminary compression of each batch of material, with an effective application of the power during the flinal com-
Picking Fur Skins. - William A Connolly, New York City. This is a machine designe co automatically feed the skin to place, blowing the soft hair to one side, and exposing the coarse objection-
able hair, retaining the ekkin in position for clipping able hair, retaining the skin in position for clipping
such coarse hair, and feeding forward knives to ac
MAR
Making Clay Conduits.-James J. Powers and Robert Van Buren, Brooklyn, N. Y. This invention covers a machine for making clay conduitt
for electric wires, etc., hydraulic or fluid pressure bein employed for compressing forming apertures in the section, two pistons and two cylinders being used, one shaped in part to form th mould.
Hentilating Conduits. - John H Hilliker, New York City. This invention provides for
establishing communication between the ,conduit, the sewer, and the culvert and manholes of the sewer, whereby escaping gases may find speedy and conveni ent exit to the open air, obviating danger from explo
sions and upheavals of the road bed or pavement.
Can Top. - George J. Record, Con neaut, Ohio. Combined with a can cap having an aper
tured dome is a spout-carrying cap fitted to turn on tured dome is a spout-carrying cap fitted to turn on
the dome of the can cap, an apertured packing betwee the caps, a bolt projecting through the packing and spout cap, and a thumb nut on the bolt, whereby an wear may be taken
spout-carrying cap.
Measuring Faucet.-John A. Ken dall, Maysville, Mo. This invention covers a novel con to accurately measure the quantity of liquid withdraw from a cask or receptacle, and furnish a record thereof
Dental Apparatus. - Samuel A the introduction of Thedicated heated air or nitrou oxide gas to the tooth under treatment, provision being made for the charging of the conveying medium with the vapors of such volatile oils as it may be desired t
Roll Paper Holder. - John Zerr, Quincy, Ill. This is a holder and cutter, the invention relating to the means for supporting the roller and
causing the necessary tension upon the roll of paper to causing the necessary tension upon the roll of paper to
prevent it from being too freely unwound or running
off more than
of the papar.

Re-enforced Rattan Articles. Elise Depersenair, New York City. This invention providee a metho
carriage bodies, which, while having the appearance of being made wholly of ratan are built up with as in terior re-enforcing trame, concealed by an exterior reed wrapping or covering, to be very substantial and orna

Shoe Scraper.-Cornelins A. Sparrow Mechanicsburg, III. This is a device formed with a standard adapted to be secured in any denired position, and designed to facilitate the cleaning of the sides and edges and bottome
feet of the wearer
Mangle.-Robert N. Reid, Orange, N J. This is an adjustable and self-adjusting machine lessly, and adapted more especially for household o family use, for mangling a large variety of fabrics such as table and bed linen and clothing.
Pencil Sharpener.-John Bigham, Ripon, Wis. This device has a pencil-receiving shaf and means for revolving it, means for holding the pencil therein, and a grinder arranged to be brought to bear upon the pencil, making π cheap a
device for sharpening lead or slate pencils.
Sefarating Solder from Tinned SEPARATING SOLDER FROM TINNED
Iron.--William E. Harris, New York City. This invention covers a method which consists in coating th
article with a substance which will prevent molten solder from adhering to it, and then melting the solde from the article, which may be effected by first smelt ing the article by burning petroleum on it.
Armor for Ships. - Isaac B. Abraham, San Francisco, Cal. This invention consists in com bining with a vessel a gunwale formed of a series o sections, hinged at their lower ends to the deck of the vessel, and adapted to be elevated to form an armo

storms.

Combined Cap Pillow, etc. Frangois Frank, Grass Valley, Cal. This is essentially an air-tight bag, adapted also for use as a life preserver,
and consists of an upper and lower cylindrical section, one adapted to fold in the other, gore sections unitin the cylindrical sections, while there is a valve in the
upper section to admit air, and an escape valve in th npper section to admil air, and an escape valve in the
lower section. Gas Stove. - James H. Carrington New York City. The body of this stove is composed o
perforated metal, with closed top, it being designed to obviate all centralization of draughts or currents of air or heat, and give free outward radiation of the heat a
all points, the hurner being mounted on the base.

SCIENTIFIC AMERICAN

buILDING EDITION

FEBRUARY NUMBER.-(No. 52.) TABLE OF CONTENTS.

1. Elegant piate in colors of a cottage on Staten Island, N. Y., from drawings and specification
supplied hy Munn \& Co. Perspective elevation supplied hy Munn \& Co
floor plans, and details.
2. Plate in colors of a residence at Buffalo, N. Y Floor plane, sheet of elevations, details, etc.
3. An ornamental carriage hou
J. Perspective elevation.
4. Engravings
5. A Staten Islan con
6. A Staten Island cottage, costing $\$ 3,30$
Floor plans and perspective elevation.
7. A residence at Portchester, N. Y. Cost $\$ 11,500$ Lamb \& Rich, New York, architects. Plans and
perspective elevation. 7. A dwelling at Hill View, Dunwoodie, N. Y. Cos $\$ 5,100$ complete. Floor plans and perspectiv
elevation. Architect, C. E. Miller, New York.
8. Design for a cottage at Mystic, Conn., by F. W Beall,
plans.
9. A double dwelling house at Stamford, Conn. perspective.
10. Cottage erected at Larchmont Manor, N. Y. Cos
11. The new Carteret club building erected at Jerse City Heights, N. J., from designs by Bradford L.
Gilbert of Gilbert, of New Yori. Cost $\$ 20,000$
12. The Oriel Row of thirteen houses, San Francisco,
Cal. Erected at a cost of $\$ 5,800$ each. Plans and Cal. Erected at a cost of $\$ 5,800$ each. Plans and
13. A recently erected cotrage in "Iselin's Park," New Rochelle, 1
floor plans.
14. A very pretty cottage at Hill View, Dunwoodie, N. Y.. recently completed at a cost of $\$ 5,000$ and perspective elevation.
15. Miscellaneous Contents: Baths in school houses.Combined wood worker and moulder, illustrated -The Gurney Hot Water Heater Co.--A practi-trated.-Square turned work for balusters columns, etc.
The Scientific American Architects and Builders Edition is issued monthly. 82.50 a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of ArchitrcTURE, richly adorued with elegant plates in colors and with ine engravinge, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richnese, Cheapness, and Convenienc of any architectural publication in the world. all newsdealers.
MUNN \& CO., PUBLiBrers,

301 Broadway, Now York.

$\mathfrak{B u s i n e s s}$ and æersomal.

ne charge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a line. Advertisements must be received at publication office

All books, app., etc., cheap. School of Electricity, N.Y. Wanted-Competent man to takecharge of a machine shop building special, heavy machinery. Gıve age, ex
perience, references, wages. Address T. R. H.. box 606 , Chicago. III.
The undersigned, experienced inventor, will develop ventions, perfect mechanisms. or invent them for inentors who cannot complete their work. Strict conflconditions, caccordine to labor involved. Address " " Ex-
perience." care of Scientifc American, New York City. Money, Time, and Life Saved.-Draught gear for ve cles, patent No. 418,688. December 31, 1899. Prevent durable, simple, easily operated. Tnoroughly tested. rable, simple, easily operated. Thoroughly tested
nited States. Canada, and Brazil for sale by inventor. . H. Thompson, Blufton, Ga.
Salesmen can add to their incomes by selling our
cods on commission. Commissions to one salesman who devoted only one hour daissions to our ooods, salesmana, ur goods have been on the market for twenty-one
years, are well know, and are first class in every re pect. Address
can, New York.
Machine tools, catalogue No. 47-B ; wood-working No. 48. Largest lines offered by any frm in this country. Send for bed-rock prices, stating exactly wh
S. C. Forsaith Mach. Co., Manchester, N. H.
Best Ice and Refrigerating Machines made by David Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
pumps, acid blowers, fllter press pumps, etc.
For the latest improved diamond prospecting drills, For the latest improved diamond prospecting
address the M. C. Bullock Mfg. Co., Chicago. III.
Presees \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co.. of Lockport, N. Y. Fill send their pamphlet, describing water works me Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses, The Garvin Mach. Co., Laight and Canal Sts., New York. Iron, Steel, Copper, and Bronze Drop Forgings of
very description. Billings \& Spencer Co., Hartford onn.
The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Duageon, 24 Columbia St., New York.
Safety Elevators, steam and belt power ; quick and smooth. The D. Frisbie Co., 112 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co.. Rochester. N.Y. See illus. adv., p. 173 . For steel castings of best quality, write the Buffalo Acme engine, 1 to 5 H. P. See adv. next issue

HINTS TO CORRESPONDENTS a mes and Address must accompany all letters,
or no atention will be paid thereto. This is for our
information, and not for pubbication. information, and not for publication.
Rererencem to former articles or answers should
give date of paper and page or number of question.
 or in this department, each must take his turn.
Special Writen Information on matters of
personal rather than general interest zannot be
 price.
winer.in sent for examination should be distinctly
marked or labeled.
(1780) A. J. S. asks for the list of subject man has to "pass" in order to become an "articled " In general they include chemistry, pharmacy, hotany materia medica, reading of and putting up difficult prescriptions, detection of incompatible and poisonous
prescriptions, knowledge of doses, etc. Practical expeprescriptions, knowledge of doses, etc. Practical exp
rience is generally necessary and is often required.
(1781) R. K. S. asks : What is the origin of the term carat as applied to gold and what it eig
nifies? A. The word "carat," was derived from the nifies? A. The word "carat," was derived from th
Arabic "qirat," a bean or pea shell, weighing about rabic "qirat," a bean or pea shell, weighing about
grains. The Arabians are eapposed to have borrowed he word from a similar one in Greek, meaniug a little horn, the fruit of the "carob" tree.
(1782) B. D. asks: 1. Of what material eeiv now used made of ? A. Thin iron, ferrotype plate
How thick is it ? A. About $1-100$ inch thick. What is its diameter? A. 21/4 inches. 4. Which pole of the permanent magnet is next to the diaphragm? A
It makes no difference. 5. $]$ made a telephone as in It makes no difference. 5. 1 made a telephone as in-
structed in the Scientific Ambrican of December 14, 1889, Figs. 3, 4. and 5, using sik-covered wire, No. 36, and tintype diaphragm 1-112 inch thick. The distance from the core to the diaphragm is about $1-32$ inch, but it fails to give a sound. What is the reason? A. You
nust have failed to follow the description in some par cular. Possibly your fine wire is broken.
(1783) W. D. asks how he could make a canvas canoe waterproof. A. Paint over with a number of coats of white lead in oil. Sometimes the canvas is
treated with paraffin melted in with a hot iron. 2. reated with paramin meited in with a hot iron. 2 .
Would a proper battery in any way improve the bipolar Would a proper battery in any way improve the bipola
telephones illustrated in your paper of December 14, telephones illustrated in your paper of December 14,
1889? A. The battery is not needed and would effect ittle if any improvement. If used it must be properl connected or it might neutralize the permanent mag

		rfisemen	
Mantel sheot metaL J Graves................... 419.659	siknal, J		
Matches, mechine for wrapping block, Q. Grisel., 419,851	Sileeve holer. D. G . Butts.......................... 419,		
		$\begin{aligned} & \text { rges per as } \\ & \text { netice show } \end{aligned}$	
	Splining machine, Drees \& 8wan................. 416,699 ${ }^{\text {a }}$		
	ush		
(39)	Stone, man		
	8		
C. tean, H. Gnels........................ 419,9040	$\mathrm{swinf}_{\text {ing, }} \mathrm{A}$.		
chine. ซire. J. B. Hastings................. 119,94 T	Table. Se		
ils, machine for making corrugated, A. Samson \qquad	Table, J. H. Taylor Teeth, manufacture of pads for cleaning and pol-		
Nalling machine, W.s. Fitzerarald.................. 119.762	Isting the, G. F. Horsey.. 419,75 I		
	Telephone circuit and apparatus, J. N. Culbert- son...	G. Hatileld. With directions for construction. Four engraving. Contained in Scirntrio Amelcin sup-	
T	Telephone, mechanical, r. C. M. Bowles.......... 419,986		
119,37	Thlll coupling, C. R. Moore.... 420,015		
	Th		
${ }_{T}$	Tee.		
T	Tongue support, W. B. Davis............................ 419,837		T.
	To		
ermaking machine, suction apparatus for, M. T.	Transer carriage for elevated ways, w. . s . Bookle. 419,62	Y.	
	Transom lifter, J. Kelly,.................418,680, 419.681	TNTM TNTMEy	
	Trap See A		
ing block, Q. Schrever..................... 20,020 T $^{\text {T }}$	Tr		
cil holders, pointing apparatus to be employed in, F. W. H. Hass.			
419.910			
${ }^{42190978}$	-rret and turreted barbe		
${ }_{\text {4, }}^{419,828}$			
e branch, S. Loyd.......................................			
ee joints. apparatus for constructing cold			
packed, A. N. Rankin....................... 119.955			
	Venicle roof, J. H. Ficken........................ 419.959		
Planter, corn, A. Wenzel............... 419.988 ,	Vehicle spring, E. Jarrell 419,9		
	Ventilatin		
${ }_{\text {Plastic mater mial, }}$ moulding machine for, Howell			
and hardening, J.F. Gesner......... 19.66\%	Wagon box, collapsible d. D. Lang.............. 419,689		
Plo	Wason, farm, J. Herby................................. 419,62		
419,935			
vehtce, S. R. R Bailey............ 419.984 4,	Washer. See Ore washe		
419,85	$\xrightarrow{\text { Washing machine }}$ Washln mashine		
Press. See Baling press. Printing press.	Washing machine, H. Q. Hood................... 28.0011		
erser			
Inting mach	Washing ma	R COMP	
Coting machine dellivery	Watch, stem minding and setting. B. Frese....... 419.654		
	Water		
Printing mechanism. meb, I. C. Crowell............49,882			
Printing plates upon cylindrical surfaces, fasten- ing for, JA . Dear (r).	Water Raupe. A. Worthington.................... 419,773		
111006	Water heater, С. B. Rice........... 420.019		
Printing preses, cushoning apparatus if	Web severing mechanism, L. C. Crowell 419,835		
			8
J. Pennington..........419,99, 419,792	Well drilling machine, Bowers \& Hamilton...... 20.004		361 Broadway, Now York.
Pump. H. A. Johnston................... 419.957	Wheel. See Car wheel. Fifth wheel. Metal		TEET
19,n			
R:isil chair, J. J. Anderson 419,814	Whip socket, F. E. Benton............................ $19.819,15$		ientitic American Supplem
Reailmay, cable street, L. Heynemann.............. $419.59,9$			-
419.61	419.85		
$\begin{gathered} \text { M/Ias } \\ \hline \end{gathered}$	Wood, means for joining, E. J. Fletcher.......... ${ }^{\text {419,763 }}$		
1199		Goods, etc. Correapponden EDWARD HARRISON MLL	
	TRADE MARES.		
Rallway sgitem, electric., T. .E. Adams......... ... 419.618	Bakinn powder. Vapor Bakin Powder Co......... 17,478		
	Beer made from hops and malt, singer δ Wheeler. 17,423		Natural History Geokraphy, ar rheology Astronom
Rake.			
Rat	Crabs and crab meat, deviled, w. B. Smith.......... 17.424		
Repulato			
hol	Guano, R. A. Wooldridge \& Co................... 17,428		
Roller mill, J. L. Willford....................... 420.028			The most important Ensineerinn Worke, M1 echantoms,
	Tablets, blankbooks, and the like goods, s. E. \& M.		
			Frice for the St'Pri.rment for the United States and
ary engine, J. R. Hart ct alili...... 419			
C. Mitchell.............................. 419			
Ruder for vessels, duplex, V. F. Lassoe.......... 419,980	Company		
$\begin{aligned} & 49,688 \\ & 49.717 \end{aligned}$			
419,889	fild \& Co...........................17,410 to 17,416		
d screening apparatus, w. B. Cratt 419.930			Buiding Edition.
h tastener, D. $\mathrm{O} . \mathrm{Livermore}$....................... 419,992		2	the scientipic american architects and
${ }_{41198.891}^{419,81}$	Breast pump. J. L. Hancock.......................... 19.5038		bullde
${ }_{419} 11989$	Dish, C. E. Havilan		
419.69			large and splendid Maxazine of A rchitecture, rich-
-. 41919.89818			-
${ }^{419.977}$			
419,	Wail and celling covering, C. C. Hiscoen. ...19,588 to 19		led subjects.
			erate. cost as mell as the more expensive. Dramings in parspective and in in color are given, together with full
119:81	and number of the patent desired, and remit to Munn		
419.62			The elegance and cheepne
…............ 19,883			Archirecural publication in the world. Sold
129	2		MUNN \& CO., Publis

ITOTV FIコADE.

The Metallic Alors

 HENRY CAREY BAIRD \& CO.,
 Useful, Beautiful, and Cheap.
To any person about to erect a dwelling honse or sta-
ble, either in the country or city, or any builder wishing house, club house, or any other public building of high TECTS' AND BUold procure a complete set of the ARCHI-
BULI merican.
The information these volumes contain renders the
work almost indispensable to the architect and builder and to persons about to build for themselves they will colored plates of the elevation, plan, and detail drawings of almost every class of bullding, with specfica-
Eight bound volumes are now ready and may be obnewsdealer. Price, $8: .00$ a volume. Stitched in paper ave

MUNN \& CO., Publishers, 361 Broadway, New York.

IS YOUR LIFE SAFE AT HOME?

SEATTLE

ELECTRO - DYNAMIC REPULISIONS

STEEL TYPE for TYPEWRITERS, Stencils, Steel Stamps, Rubbe and Metal Type Wheels. w York Stencii Works, Mirs.
100 Nassau Street, New York.
 Penberthy Automatic Injector.

BOOKS, NEWSPAPERS And CIRCULLARS C

NOW READY.
3 xperimental \ll cience,

By Geo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, ... $\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,

361 Broadway, New York.

MAGICLANTERNS
 -ANDEOPTICONS SCHocls \&PUBLIC STEREOP TITFRTHENTERTAINMENTS

TO INVE NTORS I--PATENTS, Trade

WORKIIG MODELS \& LI

OIL WELL SUPPLY CO. Ltd

Scientific Book Catalogue RECENTLY PUBLISHED. Our new catalogne containing over 100 pages, includ-
Ing works on more than ffty difererent subjects. Will be
mailed tree to any address on application. MUNN \& CO., Publishers Scientific

$$
\begin{aligned}
& \text { ublishers Scientifc, American, } \\
& \mathbf{3 6 1} \text { Broadway, New Yorl }
\end{aligned}
$$

 CLARKS NOISELESS RUBBER WHELLS

PERFECT NEW SPAPER

The Koon Patent Fiet for rrearyinn norppaper, Masi

 MUNN \& CO., Publishers Soientipio A nerica

p

\qquad P
 swrf rumimia maculer.

CHAS. A. 8CHIEREN \& CO.

HOW TO MAKE DYNAMO-ELEC'RRI

THE BEST. LIME KILN KNOWN

ABEESTOS Fire Felit Cororinge:
 BIRDSBARO, PA., Builders of Gigh Clase
Seam Engines. Diamond Drilling and General
Machinerg. Flour Mill Rolls Ground and Grooved.

chines. Largest stotoky describing all Ms

 NATIONAL TYPEWRITER EXCHANGE,161 La Salle Street, Chicago, Ill.

weitmyer patent furnace. boilers of every deschiption IDE AUTOMATIC ENCINES. Tration and Portable Englices,
 Manufactured by FOUNDRY \& MACHINE DEPT., Harisburg, Pa., U. S. A.
CELEBRATED SUTTPN, RING PACKING.

NEW CATALOGUE

 VALUABLEFPAPERS IUNR $\&$,EVERY ISER OF MCCHINERY How to Use Loose Pullegs.

The Scientıfic American

 PUBLICATIONS FOR 1890.sthe prices of tho diferent pulleations in the Unitod

 The geilenticic. American, Architects and Bullers ${ }_{2.50}$ The suent tue American and supplement, . . sind

 Proportionat Rates for sit Hionthe Thisidnclueno posiage, mhan ha bay Remit by potal

One Star Hack Saw will cut off a haif inch bar of

MIIllerre TRalle OOP IV heeling is Better than Walking Victor Bicycles Overman Wheel Co., Makers, CE YACHT - B THE MODERN ICE YACHT. - BY

 NEW KODAKS
 do the button

Seven New Styles and Sizes Transparent Films.

THE EASTMAN COMPANY send for Catalogue. Rochester, n. y THE- ONLY-PRACTICAL K HOMEPRRCED

PThe CHANDLER WATER MOTOR $\underset{\text { Pressures. }}{\text { Well on low and High }}$ Single, Duplex, Triple, and QuadTORS, ada pted to all classes of work-
Send for Circulars. Howard Bros., Buffalo, N. Y.

PATENTS!
M ESBRS. MUNN \& CO., in connection with the publiIn this line of business they have had forty-one years'

 them is done with special care and promptness, on very
reasonabioterma. pamphlot mant free of charee, on application, con-
a

 patentsin Ail the pincipal countries of the world.

Patoril Rivited Monarch Rnhber Boting. BEETM IN TPEIE VOORID. the gutta percha amd rubber mfa. co. 36 Warren 8treet, New York. Chicago, San Franciseo Boston, Mase.
HARRISON CONVEYOR :
$\underset{\text { Handing }}{\text { Firaln, Coal, Sand, Clay, Tan Burk, Cliders, Ores, Seeds, \&c. }}$

THE PHONOGRAPH.-A DETAILED

asbestos materials
Asbestos Liquid Paints.
Asbestos Roofing.
Asbestos Millboard.
Asbestos Steam Packings.
Asbestos Plastic Stove Lining.
Colors in Oil and Japan.

Asbestos Fire and Woter-P Covering VULCABESTON
W. JOHNS MFG. CO., Sole Manufacturers, $8 \boldsymbol{y}$ Maiden Lane, New York.

THE BEST FOR READY-REFERENCE.
THE INTERNATIONAL CYCLOPED|ANA $\begin{aligned} & \text { is a complete, comprehensive, ready- } \\ & \text { reference cyclopedia, published four }\end{aligned}$ years ago, at the lowest cost consistent with goorl paper, good type, good binding, and good editige, and is better to-day because of careful revision.
No other Cyclopedia approaching it in size- 15 volumes, with 50,000 titles-is sold at so low a price; and no other so generally contains the latest information and statistics. Yet its cost is moderate
and terms of payment easy-if you wish. Delivered free of expense. Correspondence solicited. Salesmen wanted. Address, SUBSCRIPTION DEPARTMENT, DODD, MEAD \& COMPANY, Publishers, 753 \& 755 Broadway, New York.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. $186,787$.
The transmission of Speech by all known forms of Electric Speaking Telephonts infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all. the consequences thereof, and liable to suit therefor

HAVE MANY PATENTED HOT FOUND IN MAES that Will well repay an INVESTIGATION by thosewho to secure THE BEST SAFE MARVIN SAFE CO. NEW YORK, PHILADELPHIA, LONDON. ENGLAND.

INATIONAI HITTHR_
 BRIGHT SPARKMING WATER LARCE SIZES FOR MILLS AND WATER WORKS.

Established 37 years, and at present the largest Elevator Works in the world. OTIS BROTEERS \& OO., General Offices, 38 Park Row, New York City, and branch offices in nearly every principal oity on the globe. Elevators for Passengers and Freight. They are smooth-running, economical, and above all SAFE.

COLUNBIA CYCIES

- IADIES SAFEIIES, TANDEM SAFEIIES, HICHEST-GRADEONIY

 ICE-BOATS-THEIR CONSTRUCTION

NVFNTOR - :-We make anything You want from a
Screw to Complete Working Model.
Inventions per
REMINGTON

STANDARD TYPEWRITER.

Wyckoff, Seamans \& Benedict 32y BROADWAY, NEW YORK P POP SAFETY VALVE ROS Water relief valve IMPROVED STEAM GAGE STEAM ENGINE INDIOATOR
 CROSBI STEEAM GAGE \& VALVE CO. Bo ioninver st. MKODIETB!
 QATES ROCK \& ORE BREAKER

PRINTIING INKES.

