

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, JANUARY 4, 1890.	

A. Riverside Park. B. Bloomingdale Asylum. C. Leake \& Watts Asylum and site for Cathedral of St. John. D. Morningside Park. E. Central Park. F. Flevated R.R. G. Proposed pier on Hudson Piver.

ฐrixutific gmurrian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
 No. 361 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, for the U. S. or Canada.
One copy, six months, for the U. S. or Canada........................... 15300 Remit by postal or express money order.

Australia and New Zealand.-Those who desire to receive the CIENTIFIC AMERICAN, for a litio MUNN \& CO., 361 Broadway, corner of Franklin Street, New York. The Scientific American Supplement
a distinct paper from the Scientific Ammrican. THE SUPPLEM ENT s issued weekly. Every number contains 16 octavo pakes. uniform in size Mith Scientific American. Terms of subscription for SUPPLEMENT, ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
Combined Rates.-The Scientific american and Supplement will be sent for one year, to any address in \mathbf{U}. S. or Canada, on receipt cesen dollar
The safest way
registered letter.
Australia and Now Zealand-The Scientipic Amprican an SUPPLEMENT will be sent for a little over one year on receipt of $£ 2$ current Colonial bank notes.

NEW YORK, SATURDAY, JANUARY 4, 1890.

Contento.	
(Illnstrated articles are marked with an asterisk.)	

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 731.
For the Week Ending January 4, 1890

Price 10 cents. For sale by all newsdealers.
 11. IRRIGATION-Irrigation in Callfornla-By WM. HAMMOND

Music. The Monochord. A Aew, ingtrument in which a sing: VI. NAVAL ENGINEERING.-The Twin Screw Steamer Columbial

IIIL. PHYsics.-The Water Barometer of St. James' Tower. - A ful

THE WORLD'S FAIR OF 1892

As our readers are aware, it is proposed to hold an in ternational exhibition of the science and industries of all nations in 1892. The United States will be the scene of the exhibition, which is in commemoration of the discovery of America by Columbus in 1492. The city for the exhibition remains yet to be chosen. It must be determined by the action of Congress. The federal legislature will designate the locality, and in so doing will pledge the assistance and co-operation o the central government for the enterprise. Severa prominent cities are making strenuous efforts to be selected, feeling that the fair will be a great benefit to the metropolis in which it will be held. These efforts have taken the form of conditional subscrip tions, appointments of committees to forward con gressional action, and have, in New York particularly, led to the definite selection of grounds, and the formation of a fund of five millions of dollars.
All Americans should have at heart the success of the exhibition as viewed from the national standpoint. The interests of a particular city are entirely a side issue. The fair is to be even more than national. The world of civilized nations is interested, and Congress should take this aspect of the case in evolving special legislation.
The impartial investigator would be guided in mak ing a choice by considerations affecting the size of the assemblages, facility of transportation and of accommodation, and would regard the finances of the fair as practically assured. The city of New York would be pre-eminent in these respects. It represents a center of population, and literally a national metropolis, of over three millions of inhabitants.
It may be considered in this sense as second in size to London only of all the cities of the globe. Within the limits traced by a ten mile radius, the above population is included. But this is not all. Distance may be expressed in time. Within eight hours of New York by fast trains a number of great cities are situated. Rochester on the west and Boston on the east, cowe well within the above limit. Between them lie a number of centers of population, all of considerable import ance. Going south, the cities of Philadelphia, Balti more, and Washington would be contributors within the eight hour line. On this basis, it has been calculated that a home population of ten millions of people will be within eight hours of New York
The foreign visitors will be most admirably provided for. It is but a few weeks since we illustrated examples of several new and magnificent ocean steamers the property of as many transatlantic lines, all run ning to New York. If the exhibition is held here, fifty ships of eqnally fine character could be employed, and the present New York and European fleet, unequaled, and never to be equaled, will be the all-important fac tor in bringing visitors from abroad. Wherever the fair is held, the visitors must pass through the gates of the national metropolis. After the sea voyage they should find themselves at their goal, not a thousand miles or more distant.
As regards facility of transportation, the particular site selected is peculiarly good. It occupies a central position as referred to distances north and south. The approaches will radiate to northeast and south from its gates, and from each direction approximately equa numbers will come. This distribution will do much to prevent overcrowding. The site faces with a high bluff for three and a half miles upon the Hudson River. This frontage can be utilized to great effect. Wharves and anchorage facilities can be provided all along this stretch. Steamers from all parts of the Atlantic coas can bring their passengers directly to the fair grounds. They can lie at the foot of the grounds for a numbe of days and be used as hotels by their passengers, who thus can visit the fair with the maxinum of comfor and convenience. Numerous elevators will be in operation from the wharves to the grounds. The world has never yet offered a site which presented the possibility of carrying out such an arrangement. There is no doubt if the fair is held on the grounds in question that steamers from Europe will carry out the pro gramme suggested above, and that thousands will visi the fair without other home than the steamship that will transport them from shore to shore
The site chosen for the exhibition in New York views of which we present on our first page, is one of remarkable excellence. It occupies the whole of tha elevated plateau known as Bloomingdale Heights, located just at one side of the center of the city, convenient and accessible from all points. On the west it fronts the Hudson River and on the east overlooks the Central Park, and the great city plain at the north thereof, with its splendid dwellings and concentrated population.
The noble Hudson, a mile in width and without shoal or rock, will offer an unequaled stage for nava displays. The high banks of the chosen grounds can be made to accommodate an assemblage of a million of spectators, while the fleets of the world would find am As a minor feature the straightness of the river would favor the operations of trains of spectators, who could
follow aquatic races and marine contests of every description.
The subject of money to carry out adequately the ends of the fair, and to enable America to present a greate exhibition than the world has yet seen, need hardly be considered. The wealth of New York, the charac ter of the subscribers to the guarantee fund, and thei ability to double or treble the subscriptions, are be yond all question. No city can offer a more satisfac tory financial basis than that already guaranteed by New York.

the incandescent light controversy.

The controversy now in progress between the pro moters of the rival systems of incandescent lighting though some will think of doubtful expediency, so fa as the companies are concerned, admirably serves to acquaint a public now grown timorous, with the de tail of operation and with the nature of the precau tions which, if employed, would render both systems entirely safe, at least to the user.
With perceptions sharpened by constant investiga tion, the rival champions have each in turn pointed out the defects of the other's system of lighting-de fects which, because of the reticence of the companies, have, till now, only been surmised by the public.
It is the purpose of this article to examine these, a they have been pointed out; inquiring as to the mis chief that might come, and describing the steps which the studies of practical electricians show to be neces sary for their correction.
The alternating current system, the attack on which led to the present controversy, is used very generally on both sides of the water for incandescent as wel as for are lighting; its chief recommendation, the power it possesses to light extensive districts from a single station. In an arc light circuit the current reaches the lamps directly from the conductors, the oltage varying, according to requirement, frow 1,200 to 2,000 . In the incandescent system this high voltage is maintained in the street circuit, but, by the inter position of converters or transformers, located in or near each building, a secondary current of scarcely more than fifty volts is produced. This is suitabl for operating a number of lamps, each equal to a ful working five-foot gas burner of 16 candle power. The transformer is made up of two separately wound and insulated coils, one of thin wire connected to the street mains and the other of thick wire connected to the wires of the building to be lighted; current sent through the coil of thin wire induce in the near by coil of thick wire currents, the voltage of which bears the same ratio to that of the primary curren as the number of convolutions in the primary bear to the secondary coil of the converter. For example if the electromotive force of the primary or street cur rent is 500 volts, and the electromotive force of the secondary current is required to be 50 volts, the primary coil will require ten times as many convolutions as the secondary. The promoters of this system say that it is an easy matter to make the insulation between the wo already separated coils effective and to prevent the current in the primary wire from penetrating it. On the other hand, their rivals say that no system of in candescence which has a high tension current behind it can be rendered absolutely safe, that breaks or leak ages will come, because the mechanisms of man, how ever ingenious, are never perfect, and human watch fulness and foresight not to be depended upon. They instance the case of the employe of the Manhattan Electric Light Company who got his death shock while carrying a portable incandescent light in the en gine room of the station, a lamp, be it said, supposed to be protected from the main current by a converter There would seem to have been a break in the insula tion of the wire, which his hand must have rubbed against, his face perhaps touching a steam pipe, thu orming a ground. The station men say that only 120 volts were on the circuit, but as this would not des roy life, it is evident that the high-pressure alternat ing current must have reached the wire, and, passing hrough his body, got to the ground through the steam pipe.
This, however, happened within a station, and, it is laimed, cannot be construed as an argument against the safety of the system, any more than the death of a nan who should fall against a fly-wheel could be used against steam engines. The alternating current peo ple say, and truthfully, it would seem, that the record does not furnish proof of a single case of death aimong he thousands who have been using the system, wher pplied to incandescent lamps.
The continuous low tension system is that used in the circuits of Mr. Edison. Here the voltage on the treet circuit, varying between 100 and 200 , even the higher pressure not in the least dangerous to life, is the same on the house circuit. All underground mains are meshed into one network, and while in the alternating system the wires are designed to sup ply only about 1,500 to 2,000 lights per pair, and mada of such a size that there is scarcely any decrease in the intensity of the lights at the further end, even when the demand for current is excessive the low tension
system at times calls for an enormous electrical energy, the pressure being far greater nearest the station than away from it. At times, when the switch is worked to put out the lights in a certain district, an are of blue flame is formed which must be blown out. This charge, made by a rival company, though true, is misleading, because the arc is harmless, never known misleading, because the arc is harmless, never known
to do any harim. The charge is made against the Edito do any harin. The charge is made against the Edi-
son system that it is subject to leakage, which at son system that it is subject to leakage, which at
times leads to fire. But it does not and cannot take times leads to fire. But it does not and cannot take
life, while leakage from the alternating street mains can take life as well as start fires.
As will be seen, both systems have striking advantages, and to all appearance are fairly safe. Disinterested electricians, however, insist that, to be rendered incapable of harin, where high tension currents are permitted in the streets, whether overhead or underground, every wire entering a house should be provided with a cut-out of lead or its alloy. It is a simple and inexpensive precaution by which a wire, however dangerously environed it may be, cannot transmit a high tension current beyond a certain point. Copper fuses at about $2,000^{\circ} \mathrm{F}$., but lead at 608°, and its alloy at about 375°, and thus a strip of $l \in a d$, joining the house system with the outside current would melt and break off all connection, should a vagrant current of high intensity essay to pass.

"EXPERIMENTAL SCIENCE."

This new book, by Mr. G. M. Hopkins, has proved to be very popular, and the demand for it is great.
It seems to meet the wants exactly of those who desire to obtain a knowledge of physics by means of actual experiment. It is profusely illustrated with novel representations of easily made devices, the contruction of which can hardly fail to impart both skill and information to the learner.
The Normal Exponent says: "This is a magnificent work of 740 pages and 680 illustrations. We are especially interested in the character of the work in this book. We have been laboring in this field for years, book. We have been laboring in this field for years,
and hope the popularity of science will be so effective and hope the popularity of science will be so effective that the commonest common school teachers will find
that the most important truths of natural science may be easily taught by experiment in his school with apparatus which he and his pupils can themselves devise. This splendid volume will aid in this work immensely. We therefore commend it most heartily to all teachers, especially to our pupils who have already attained some success in this direction."
The Electrical World says:
"Mr. Hopkins has produced a most interesting volume. We can readily imagine the delight with which any boy of a scientific turn of mind will study its pages and repeat the novel experiments described and illustrated. Scientific textbooks for the young are apt to take on an unattractive and even repellent shape, but this is one whose every page is an invitation to the joys of physical investigations. And the book is one, too, that will charm a great many persons far beyond childhood. There are not many general readers who care to bother with abstruse science after the educational period of youth; but the man must be dull,- indeed, to the scientific and invent ive progress of the age who cannot derive genuine pleasure and benefit from a perusal of these wellwritten and instructive pages, which put the student fairly abreast of the latest achievements in modern physics. The electrical chapters of the book are notably good, and the practical instructions given for
building simple electrical machinery may be safely carried out by those, not a few, who like to make their own apparatus."
The following is from The Engineering and Mining Journal: "The author has avoided repeating the hack neyed illustrations which have been passed from one book to another so long, and instead offers a set of ex periments which are largely of a novel character and very striking, particularly in the numerous paradoxes described, which are made so prominent a feature. The apparatus described, which is nearly always illus trated by the engravings, is mostly of a simple and in expensive character, and is usually such as can either be improvised from articles in common use or can be made by any one having a fair mechanical aptitude and the proper tools. All of the apparatus mentioned has been personally tested and used by the author
"The text consists of plain language, with as few technical terms as possible. The 672 cuts are nearly all from well selected original drawings, and help to explain the text and assist in preparing the apparatus described."

The English Mechanic and World of Science says: All teachers of science are aware that real knowledge is acquired best by the student making experiment for himself, and any one who points out how those ex periments may be easily made is doing excellent work. For this reason we commend to the attention of all in. terested in the spread of knowledge the work by Mr . Hopkins, which deals with 'elementary and practical physies,' and which should be found in every library.'
Nature (LondoE) says: "The subject of experi mental physics is here set forth in a manner calculated
a ready and enjoyable method of acquiring a know ledge of this fascinating subject. Although the popular style adopted by the author perhaps makes the book
better suited to the general reader than to the student it may safely be said that all classes of readers will find much to interest them. All the subjects usually included in the comprehensive term 'physics' are discussed, and in addition photography, microscopy, and
cuded cussed, and in addion. By carefully performing each experiment at the time of writing the description, the author guarantees certain success if his instructions are followed. There is an excellent chapter on 'me chanical operations,' containing many valuable hints on glass working, simple apparatus for laboratory use. soldering, and moulding. Mathematical expressions are almost entirely excluded.
"The book is chiefly remarkable for its hundreds of excellent illustrations, very few of which are diagra matic. Many of them, like a considerable portion of the text, have already appeared in the Scientific Amer ICAN, which is alone sufficient guarantee of their qua lity. Some of the latest inventions, including Edison's new phonograph, are described and illustrated."

Education by the Touch Alphabet.

Laura Bridgeman, the celebrated blind deaf mute, who gained such notoriety for the wonderful gift she possessed of acquiring knowledge through her only two faculties, and whose death was so much lamented in the scientific world a short time ago, has a youthful and very worthy successor in Miss Helen A. Keller who is at present an inmate of the Perkins Institute
for the Blind in Boston. She was deprived of her sight and hearing at the age of eighteen months. At the age of six, being deaf, dumb, and blind, she was put under the charge of Miss Annie M. Sullivan, who undertook to instruct her in the touch alphabet, and so eager was her pupil for knowledge, and so quick of perception, that she now is able to read and write with perfect facility.
It will be a matter of the profoundest interest to watch the development of human nature uninfluenced by the usual surroundings of life, and to watch the soul expand and grow by its own viriiity. No better
insight into the character of this poor unfortunate is insight into the character of this poor unfortunate is
afforded than by a letter that she wrote to a gentleman who sent her a mastiff puppy as a present. He did not have long to wait for his reward in the receipt of the letter printed below, which is taken from the Forest and Stream, to which we are indebted for it. Its purity of diction and correctness of style is quite remarkable for a child of only nine years, especially when it is remembered that practically all her know ledge has been imparted by sense of touch. The letter,
which was written in pencil in clear, distinct, round which was written in p
characters, is as follows

South Boston, Mass., Nov. 20, 1889.
My Dear Mr. - - : I have just received a letter rom my mother, telling me that the beautiful mastiff puppy you sent me had reached 'Tuscumbia safely. I thank you very much for the nice gift. I an very sorry that I was not at home to welcome her. But my mother and my baby sister will be very kind to her while her mistress is away. I hope she is not lonely and unhappy. I think puppies can feel very homesick as well as little girls. I should like to call her Lioness
for your dog. May I? I hope she will be very faith for your dog. May
ful, and brave, too.
I am studying in Boston with my dear teacher. I learn a great many new and wonderful things. I study about the earth and the animals, and I like arithme tic exceedingly. I learn many new words, too. Exceedingly is one that I learned yesterday. When I see
Lioness I will tell her many things which will surprise her greatly. I think she will laugh when I tell her that she is a vertebrate, a mammal, a quadruped, and I
shall be very sorry to tell her that she belongs to the order Carnivora. I study French, too. When I talk French to Lioness I will call her "Mon beau chien." Please tell Lion that I will take good care of Lioness. I shall be happy to have a letter from you when you to write to me. From your loving little friend,

Helen A. Keller.
P. S.-I am staying at the Institute for the Blind.
H. A. K.

Education in Germany.

Education, says Consul-General Mueller, remains, as it always has been, an important factor in this country's policies. The new spirit to get as much knowledge as possible of the wants of the outside world continues,
languages are still being learned and consuls and young men fitted for trade with other people. An idea of the thoroughness of a German education may be gained from a few facts which I read somewhere few days ago. A candidate for engineer honor must first take a full scientific course up to and through a gymnasium, a kind of high school. At
eighteen or twenty he begins his special technical eighteen or twenty he begins his special technical
studies. If he expects to be an architect or civil engineer, he goes two years to a technical high school at Berlin, Hanover, or Aix-la-Chapelle, after which he
and building construction. Then follow two years more and another examination. If successful, the can didate becomes a government assistant engineer or assistant architect, and spends, without salary, a year in or on some government work. Then he is again examined. He must work out an original design at home, and one under the eye of the examiner, consulting no books of reference. If successful, he goes up and gets the title of government engineer.
Mechanical engineers have a different course. They o into an engineer's works for a year after leaving the high school, then they go two years to the technical high school, go through the preliminary examination, have two more years of hard study and practice and examination, two more years' practice, a year in which to prepare for final examination-eight years in all. At the end of this probation the candidate is employed and gets about $\$ 2$ or $\$ 3$ a day. After five years' labor he may get a permanent position. If skillful, however, and talented, he goes up and up, not by favor, but merit, and all in old age retire on a pension.

GERMAN EMIGRATION.

Of the persons emigrating from Germany to the United States, nine hundred out of every thousand are fitted to enter the various walks of active American life. Few emigrants-less than 15 per cent-are under ten years, 65 per cent are between twenty and fifty, but by far the larger part nearer twenty. The emigrants are, as a rule, strong, healthy, well trained, and intelligent. The thing they lack most is a knowledge of the English language. They have a good education, and one which has specially fitted them for that branch of business or labor in which they usually continue when they go to the United States.
Of those emigrating, factory operatives constitute 25 per cent, day laborers 12 per cent, small farmers 25 per cent, commercial men 10 per cent, skilled laborers, including professional men, 12 per cent, miners 6 per cent, and 10 per cent with no definite trade or occupation make up every hundred that leave German ports for the United States. No artisans or tradesmen go to the United States except to stay there. Emigrants go out to better their condition and make the best possible use of their time and strength. Not one in a dozen goes to the United States with any other idea With the Germans their going is a voluntary act, a ree choice. They know well just what they are doing, what to expect. They know before going, for they have been told that they must work, and they are willing to, and do so. No golden visions haunt their healthy sleep, nor do they have day dreams of fortunes made by doing nothing. They know that a competency in America, a living better than the one enjoyed in Germany, is to be purchased by hard labor. And they know also, for it has become a proverb here, that they must do almost twice the amount of work in a day in Aınerica as they have had exacted from them here. The land where "time is money" is known to them by letters and newspapers.
On the whole, German immigrants were always, are now, and always will be, so long as they preserve their race characteristics, a desirable class. They are, as a rule, honest, healthy, thrifty, intelligent, and of good habits. In an immigrant, what more to be desired? They always were and are to-day good citizens. Their intelligent, they naturally prefer the United States to all other countries; educated, they know a good deal all other countries; educated, they know a good deal
of its history, its tendencies, and what it offers. If some have gone southward to the lower half of the continent, it was because efforts were made to direct the stream from the United States. The emigrant of to-day looks upon the United States as no El Dorado, but as the best country under heaven for a man or family willing to work, and Germans are workers.Jacob Mueller, Consul-General, Report to State Department.

A Cure for Diphtheria.

The following remedy is said to be the best known, at least it is worth trying, for physicians seem powerless to cope with the disease successfully. At the first indication of diphtheria in the throat of a child make the room close; then take a tin cup and pour into it a quantity of tar and turpentine, equal parts. Then hold the cup over a fire so as to fill the room with fumes. The little patient, on inhaling the fumes, will cough up and spit out all the membranous matter, and the diphtheria will pass off. The fumes of the tar and turpentine lousen the matter in the throat, and thus afford the relief that has baffled the skill of physicians.

A Superb Christmas Publication.

The publishers of the Montreal Daily Star have issued a Christmas number which is hardly surpassed in beauty, quantity, or quality by their London contemporaries The Graphic or Illustrated News. It embraces two superbly colored pictures of flowers, several photo-engravings of Canada's principal cities, besides a number of full page engravings of some of the celebrated modern artists' best paintings. We congratulate our Canadian neighbors on their ability to produce such a beautiful Christmas number.

THE PARIS EXPOSITION MEDAL.

The medal herewith illustrated, and which was struck off for distribution among the exhibitors who received awards, was designed by Mr. Louis Bottee. The competition was opened last May. It was not the only object of competition, which comprised also the engraving of a commemorative medal to be presented to the organizers, and which was designed by Mr. Daniel Dupuis. The conditions imposed by the circular were that within two months of the awarding of the prize the designers were to deposit at the mint the moulds and neces sary paraphernalia for manu facturing the medals. The ex amination took place July 17 Mr. Bottée was awarded a prize of 8,000 francs, and the same amount was given Mr. Dupuis.

Like most of the designs pre sented by the fourteen competi tors, Mr. Bottée's was antique in character. But the artist has skillfully given the composition a modern flavor. In the model and the arrangement of the draperies in particular, much taste is shown.

The obverse represents two figures: A superb figure representing Labor, seated on an anvil, in the act of being crowned by Minerva, who is seated near by with a bronze helmet on her head and wearing a collar that is decorated with the head of Medusa. As Min erva leans against the tree of peace, she extends the laurel in her right hand to the young man, who in return points out the Champ de Mars. The earth disap pears in a halo of glory from a setting sun. The re verse presents a very simple and very beautiful composition. Renown, with her wings extended, encircles the calm and mighty crest of the republic. By mean of the long trumpet she proclaims to the four corners of heaven the names of those who have been awarded prizes. As each exhibitor can only receive one bronze medal, Mr. Bottee conceived the happy idea of placing a tablet under the feet of Renown for the name of the recipient.-L'Illustration.

AN IMPROVED DREDGING SCRAPER.

A submarine plow, to remove obstructions and accumulations from the channels of rivers, etc., by being drawn over the bed of the watercourse to loosen the deposit so that it may be washed away by the current is illustrated herewith, and has been patented by Mr Joseph C. Coult, of Crockett, Tex. Fig. 1 shows a cen tral vertical section of this improved plow, Fig. 2 being a view in perspective of the plow in operation, as it is drawn along by a drag-chain or cable from a steam boat or by other means. The beam of the plow consists of a platform or bed,' preferably of boiler iron, made fast to bars of metal along either side, this bed

2

COULT'S DREDGING SCRAPER.
or beam resting on top of the deposit to be loosened and its iront end being bent up so that it will not dig into the sand while being drawn along. In one or more openings in this bed a plowshare is fastened, set at an angle, preferably of about forty-five degrees, and having a mouldboard shaped to deliver the debris at or beyond the two sides of the plow, each mouldboard having an overhanging front ledge to stiffen it and aid in directing the discharge of the matter raised by the plow.

ON December 10, a forty-ton flywheel at the Chesapeake Nail Works, Harrisburg, Pa., burst and injured about a dozen of the three hundred persons employed in the establishment, who were either struck by flying fragments or caught in the debris. The building was badly wreeked.

MEDAL OF THE PARIS EXPOSITION.
of the rail, so as to have their upper surface higher than that of the other intervening sleepers. When this is done the element of a springing surface is introduced. This adds to the insecure feeling experienced by any animals attempting to walk over it. The long sleepers are also used for attaching posts for the short section of side fence shown. This feature causes the fence to set well back from the road, so that it cannot interfere with the rolling stock in any way. It will be seen that the whole arrangement solves a rather difficult problem most effectually. The guard proper can be put in position in half an hour. It is made, as shown in the cut, in three sections, or if desired will be supplied in four the center one being subdivided into two equal lateral panels. The last-named type of guard is held in place by hooks catching under the rails, and admits of quick placing or removal.
An improved thimble is used, which renders the bars perfectly in all its details. The pole pieces of the field magnet/secure from being torn up by dragging irons or brake and the seats of the bronze journal boxes are bored at beans
one operation, to secure perfect alignment of the armature shaft. The boxes are arranged to supply oil automatically to the bearings. The commutator is made of pure copper and provided with improved connections for the wires of the armature. The brushes are furnished with a screw adjustment, which is an important inprovement.
The armature and field magnet are so proportioned as to enable the machine to deliver a large curren without sparking at the brushes. The efficiency of the machine is very high, in consequence of its superio construction and perfect proportions.
Although the machine illustrated is a small one, cupying a floor space of only 13×22 inches, it will deiver a 140 ampere current
with a pressure of 5 volts when running at a speed of 1,400 revolutions per minute. It will easily run a 400 gallon nickel solution or a 200 gallon brass solution. Its weight is 175 pounds. The pulley on the armature is 4 inches in dianeter and $21 / 2$ inch face. These figures show a mark ed improvement over other machines of the same size and weight.

THE NATIONAL SURFACE

 GUARD FOR RAILROADS.Where an ordinary road crosses a railroad track at grade, much difficulty has been experienced in secur ing the exclusion of cattle

THE BISHOP PLATING DYNAMO. rom the track. However
carefully fenced the railroad may be, cattle can obtain \mid British, $£ 154$; American, £7 10s. Duration-British, access to the tracks at any crossing. We illustrate a 14 years; American, 17 years. Number of applications device designed to overcome this trouble. It consists in 1887 -British, 18,051 ; American, 35,613 . Number of of a species of grating that is laid between the rails. It patents granted-British, 9.410 ; American, 20,429. Inis so constructed as to afford no footing to cattle. It come of Patent Office-British, £124,2797s. 9d. ; Amerihas been found to operate as an effectual barrier, and can, £228,902; expenditure of Patent Office—British, is as efficient as any fence.
A series of bars of thin iron or steel are placed upon to
their edges parallel with the rails. They are notched American (added to patent fund), £ 30,010 . Patent into cross pieces, or are otherwise secured on their ${ }^{\text {fund-British, none ; American, } £ 651,498 . ~}$
into cross pieces, or are othe
edges, so as to prevent lateral edges, so as to prevent lateral
displacement. In order to displacement. In order to avoid accident, they are spaced so closely that an animal cannot get its foot caught between them. But as this last condition would tend to impair their usefulness, they are made of un equal height It is found by experience that nothing will experience that nothing will
induce cattle to trust theminduce cattle to trust them selves upon such a surface. These pieces thus spaced and arranged may be carried upon the regular sleepers. But the perfected plan as shown in the cut provides for the use of two special sleepers considerably longer than the ordinary ones. On these the strips are secured. To make the surface still more deterrent, the bearing sleepers may be notched for the reception

THE NATIONAL SURFACE GUARD FOR RAILROADS.

A HAND LIFTER FOR COUPLING LINKS. A device which can be folded up and carried in the pocket, by means of which the coupling links of railroad cars may be elevated or otherwise moved, to enter an opposing drawhead, without the necessity of the operator standing or going between the cars, is illustrated herewith, and has been patented by Mr. Frank

GROVE'S LINK LIFTER.
G. Grove, of Luray, Va. The device is made in three bar-like sections, pivoted together, the central section having a spring which acts upon the shoulders of the two outer sections in a similar manner to the action of the spring of a knife handle upon its blades. The handle section has a head extending at a right angle beyond each side of the shank, and the grip section has an outer forked or bifurcated extremity, adapted to readily engage the link, giving a firm hold by slightly turning or twisting it, whereupon the operator, standing a considerable distance from the drawhead, may conveniently elevate, depress, or otherwise manipulate the link, as occasion may demand.

BROOKLYN'S TRIUMPHAL ARCH.*

The rage for erecting granite shafts and surmount ing them with the bronze figure of a Union soldier seems to have passed away.
In some of our Western and Eastern cities, beautiful monuments have been erected in commemoration of their brave dead.
One of the most conspicuous and beautiful of these monuments is to be the memorial arch now in course of construction on the Plaza, at the west entrance to Brooklyn's, N. Y., beautiful Prospect Park.
The corner stone of this monumental arch was laid with appropriate ceremonies about six weeks ago. *For the engraving of this arch we are indebted to the Engineering News.

After waiting a sufficient time to allow the concrete foundations of the abutments to set, work was begun upon the superstructure.
The structure is to be of light granite, and will be eighty feet long, seventy-one feet high, and fortyfive feet wide. Massive pedestals are to be raised on each side of the abutments, and are to be surmounted by bronze groups of colossal size. On the inner and outer faces of the abutments are to be attached bronze bass-relief figures emblematic of Victory, with the inscription "To the defenders of the Union, 1861-1865." On the other side are to be carved on stone tablets the coat of arms of the United States and the State of the coat of arms of the United States and lhe State of
New York. Above the main cornice will be wreath within which are to be carved the names of the battles in which Brooklyn's men engaged.
The top, which is to be used as a point of observa tion, is reached by stairs located in each abutment, and these also communicate with a room over the arch, which is to be used as a museum for the exhibition of war relics.

AN IMPROVED SAW.

An invention providing for the readjustment or reprojection of worn-down insertible saw teeth, by in serting filling pieces or equivalent supporting devices behind the reprojected and resharpened worn teeth, is illustrated herewith, and has been patented by Mr Benjamin F. Day. Fig. 1 is a side elevation of a portion of a circular saw with such a tooth applied, and Fig. 2 shows an insertible tooth with the filling block ennployed therewith. The tooth recesses in the saw plate have tongues in their longitudinal edges corresponding with grooves in the edges of the insertible teeth, the teeth being held in place by rivets in the usual way. A supplemental rivet seat is, however, supplied, forming a circular opening, partly in the saw plate and partly in the tooth, in which a rivet can

DAY'S SAW.
be secured to hold the tooth in projected position The filling block to be inserted in the rear of the tooth has grooved edges to conform to the lateral tongues of the recess, to the basic portion of which it is specifically conformed, to constitute in effect a prolongation of the tooth.

For further particulars with reference to this inven tion address Mr. William Atkinson, No. 316 Columbia Avenue, Philadelphia, Pa

AN IMPROVED FLASH-LIGHT LAMP.
The accompanying illustration represents a lamp fitted with apparatus whereby a charge of magnesium

HIGGINS' MAGNESIUM FLASH-LIGHT LAMP.
powder may be projected through the igniting flame, and the blast may be varied according to the light required. The invention has been patented by Dr. John J. Higgins. The lamp, as shown, is designed to burn alcohol or be supplied with gas, and the upper end of the wick tube is closed by a perforated annular cap, in the center of which is inserted a cylindrica tube, leaving an annular space between it and the wick tube, in which is crowded the wicking, to pre vent the fire from running down into the body of the lamp. The cylindrical tube has an aperture at its lower end for the reception of a right-angled tube connecting with the magnesium reservoir and air-compressing apparatus, and a gas and air supply tube is in serted in its other side. The top of the cylindrical tube is provided with a removable nozzle, shaped according to the form it is desired to give to the magne sium illuminating flame. There is also a flame erector supported a short distance above the wick-tube, consisting of a hollow cone or ring with legs resting on the lower collar of the wick-tube, and a horizontal reflec tor is clamped between the collar of the wick-tube and the collar of the lamp body. The air forcing and com pressing apparatus consists of two elastic bulbs connected by a tube, there being an outlet valve near the first bulb, whereby air may be kept under pressure in the second bulb, in the tube beyond which is also a stop-cock. Thistube is also fitted with a pinch-cock and a resistance section. The magnesium powder re-

ceptacle may consist of a magazine held on the rightangled tube extending out on the right of the lamp, or a suitable reservoir may be formed on the upward curved portion of the tube, where it is connected with the flexible tube. In either case, when the magazine is filled with powder, a discharge of air from one of the bulbs will carry forward to the igniting flame as much magnesium powder as lies in the tube below the magazine, a new charge of magnesium falling into the tube as soon as the air pressure becomes normal.
A modified and simpler form of the instrument is also made, which is very serviceable.
For further particulars with reference to this invention address Messrs. Charles T. White \& Son, 134 Pearl Street, New York City.

The Forth Bridge

The practical completion of the great bridge over the Firth of Forth was effected on Thursday, November 7, when the interesting operation of joining in the center the girder which forms the connecting link between the Inchgarvie and North Queens Ferry cantilevers was successfully accomplished. The Glasgow Weekly Mail says:
"It was fully anticipated that the connection would have been made on Wednesday afternoon. At 3 o'clock there was only three-eighths of an inch between the bolt holes, and the engineers had everything prepared to close the lower members of the girder, but unfortunate ly the tewporary plates on which rested the hydraulic jacks by means of which the two sections of the girder were to have been drawn together, showed indications of insufficient strength, and the operation had to be postponed until Thursday. It was predicted on Wednesday that the connection would be made at 3 o'clock on the following day. At 7 o'clock in the morning, however, the weather-temperature 58°-was such that the two sections of the girder expanded until there was only a distanee of three-sixteenths of an inch between the bolt holes, and it need hardly be said that the managers on the north end of the girder took full advantage of the favorable opportunity thus presented of forming a connection. This, it may be explained, was effected by means of five plates seven-eighths of an inch in thickness, 8 inches wide, and 10 feet in length, for each side, one going outside, three in the trough of the girder, and one on the inner side. Holes to admit bolts $17 / 8$ inches diameter were drilled in the girders and plates, the latter of which were adjusted in relation to the known capacity of expansion and contraction of the girder. Twenty-three bolts were needed to keep the plates together, with only three-sixteenths of an inch between the bolt holes. It was, of course, necessary to revert to the use of the hydraulic jacks, and as soon as the holes came opposite each other, a drift or wedge-shaped bolt was driven home on each side of the girder. No sooner were the plates and girders fairly in the required position than the drifts were withdrawn and the large $1 / 8$ inch screw bolts were inserted and the several layers of metal bound firmly to gether.

statue giving a double image.

At the Italian exhibition in the Champ de Mars there was a statue that attracted much attention from the visitors. It represented Goethe's Marguerite stand ing before a mirror. This latter gave by reflection the

statue giving a double image.
image of Faust, as shown in our engraving. The artifice was well concealed by the sculptor. In reality, it was not a double statue, but the figure of Faust was skillfully obtained by means of the folds of Margue rite's robe.
Marguerite holds her arms in front of her, and these same arms form those of Faust, who holds them
crossed behind his back. Faust's face is carved in Marguerite's back hair, and the man's figure is ob tained, as before stated, by means of the folds of the woman's robe. This curious object might inspire some of our sculptors with an analogous idea. We do not know the name of the author of the statue, but we can say that it was exhibited by Mr. Francesco Toso, a Venetian manufacturer of mirrors
The statue was of wood, and of nearly life size.-L α Nature.

THE WENHAM GAS LAMP.

For several months the Wenham gas lamp has been in use in the office of the Scientific American. Our many visitors have noticed it maintaining what at a distance seems to be a globe of flame, which burns
 without change or flicker. They are overhead lamps, and nothing but a transparent hemisphere of glass intervenes between the light and the air below, the illumination being ex tremely brilliant. The mass of flame is in shape like an inverted umbrella or mushroom, and is about six inches in diameter.
The lamp marks an epoch in the art of gas lighting. Years ago Bowditch pointed out the fact that by super heating the air consumed by a gas flame its illuminating power would be increased. The Siemens regenera tive furnace, by heating both fuel and air before combustion, practically increased the calorific power of fuel. In the Wenham lamp these principles are utilized. The gas enters at the top of the fixture and travels down GAS LAMP. ward through the center. The pipe through which it passes is surrounded by the products of combustion from the flame, and the gas becomes intensely heated. Part of the air enters above the flame, and, also pass ing downward, is in like manner heated. Issuing from radial jets, the gas meets the hot air and burns with an intense white light.
To prevent the annoyance of lowering the glass globe, a small watch light is provided and a stopcock operated by wire or chain is attached to the lamp. By simply pulling one or the other ehain, the gas is turned on and lighted or is extinguished.
Different sizes are provided, and a remarkable eco nomy in gas is effected. Over twelve candles per cubic foot of gas per hour is realized with ordinary gas. The common burner gives but half this quantity, indicating a saving of fifty per cent. The appearance of the burner is highly ornamental, it casts little or no shadow, and speaking from experience, we can say it is a practical success. It is supplied from 50 to 250 can dle power, and over 100,000 have been sold here and in Europe.
The United Gas Lamp Company, 825 Broad way, New York, are the proprietors of this lamp, as well as of the Lungren, Gordon, and other burners of the advanced type. By more than doubling the illuminating power of gas, a formidable rival to electricity as a lighting agent would seem to be created. Gas lighting at any rate is kept well in the front of the field, and we believe that there will now be room for both gas and electricity for many years to come.

Francis M. Roots.
Still another gap in the ranks has been caused by the death, on October 25 , at his house in Connersville Ind., of Mr. Francis M. Roots, whose inventions in cer tain mechanical lines have made his name world famous. Frominent among these inventions are the principles of the rotary exhausting and blower systems that bear his name. The following special press dispatch, bearing date of October 25, is all that we have at present respecting his decease :
Francis M. Roots, a well known philanthropist, banker, and inventor, died at his home in Connersville, Ind., October 25, after a long illness. He was taken seriously ill in London, England, about four weeks ago, but rallied after arriving in New York. When he reached home it was thought he would recover, but a serious relapse terminated all hope. Deceased was born in Oxford, O., on October 28, 1824, and was the son of a well-to-do farmer. He received his education in the Miami University, and moved to Connersville, in 1845, to establish a large woolen mill business, which, in connection with his brother, he conducted until about 1859, when he disposed of his interest and entered upon his career as an inventor. In 1860 he perfected the invention of the rotary blower, which is now in use at the Capitol, Washington, D. C., and in every West ern Union office of any size in the United States. It is also extensively manufactured in Europe, Mr. Roots having large business interests in England and on the Continent. 'He was also the inventor and manufac turer of Roots' gas exhauster--known to the gas indus try of the world-and Roots' steam pump. He did not tions, being president of the First National Bank of

Connersville, of the Connersville Furniture Company, and in several other branches of business in Conners ville and Cincinnati as well. He was a leading mem ber of the First Presbyterian Church, and widely known for his charity, having given largely to the Western Female Seminary, at Oxford, of which institution he was a trustee at the time of his death. He leaves a wife and three children-Daniel T. Roots and Mrs. Dwight Johnson, of Connersville, and Mrs. Edwin Dchively, of Philadelphia.

The Rotary Snow plow in New Mexico.
The use of the Colorado Midland's rotary snow shovel on the Denver, Texas, and Fort Worth seems to have created a mild sensation. A local paper says It was put to work in a big cut where the snow was bout 20 feet deep and made excellent headway, throw ing an avalanche of snow 50 feet into the air at every revolution of the great plow, which literally bored itself through a mass as compact as sand. When bout the center of the cut, a strange sight was wit nessed. Those who were standing on either side of the plow were suddenly deluged with a shower of bee steaks. On all sides fell porterhouse, sirloin, round steaks, small steaks, shoulder steaks, with occasionally a slice of liver or a nicely cut rib roast. It was though t first that the engine had left the track and was boring its way through a butcher shop. Investigation, how er, disclosed the fact that a herd of Texas cattle had le had rowded into the cut and had frozen and been buried in the drifts. Manager Meek immediately declared that no well regulated road should be without a rotary snow plow."

NEW SWING CUT-OFF SAW

We illustrate herewith a new swing cut-off saw recently patented by the Egan Company. This is one f the latest patents on a swing saw, and it will be ound to materially improve this class of machine.
The new feature of this swing saw is that the im proved self-adjusting compensating or balance weight keeps the pendulum or frame normally tilted back out

of the way of the operator, and in coming forward it adjusts itself to the movement of the frame and helps the operator in bringing it forward, as well as taking t back completely out of his way. A practical inan will appreciate this point on a swing saw.
It also makes this class of machine much better and much quicker to handle and also much more accurate. These will be found great points to commend the machine to all woodworkers.
The machine possesses the latest improvements, and is thoroughly tested and tried by the manufacturers before shipping. For a more completo description write the manufacturers, 261 to 281 W. Front Street, Cincinnati, 0 .
The machine is made with wrought iron frame for light work and cast frame for heavy cutting off.

Sorrespondence.

Gas Generated in Ammoniacal Ice Machines.
To the Editor of the Scientific American:
Referring to the "Unknown Gas" article on page 335 of your issue of November 30, 1889, I would say that I analyzed a sample of this gas October 21, with the following result :

Oxygen by volume..... 744 per cent.
Hydrogen by volume...................... 72:0 "4
Hydrogen by volume.
The color of the flame is yellow, tinged with green, the yellow tint being due to traces of sodium, the green to the ammonia present.
The above sample was taken from a new machine, from which I do not think the air was fully expelled The gas is principally hydrogen, as shown, and is due, I think, to the decomposition, under the varying pressure and temperature, of the ammonia itself.
C. F. Zeek, Supt., Pensacola Gas Company. Pensacola, Fla., December 3, 1889.
[The above analysis is of much interest, and carries out the conclusions expressed in our note upon the original communication.-ED.]

A New Filtering Medium

At a recent meeting of the Engineers' Club of Philadelphia, Mr. Win. B. Spence exhibited a working model of the Rimmer oxidizer, a filtering material, which he described, and for which he made various claims as to its utility in the purification of water by oxidation. He stated that the material used is an English invention and that it is known as magnetic carbide of iron. It consists of a mixture of granulated iron ore and carbon. The iron ore is said to be cleaned of all natural impurities by a patented process. It is then chemically treated at a certain temperature. It is claimed that this material will absorb and retain a large quantity of oxygen from the atmosphere. In use it is charged daily with atmospheric air, when, it is claimed, a reaction takes place with the impurities which have accumulated in the filtering material, and that the result passes off in the form of gas. It is claimed that metals in solution in the water will form insoluble oxides. The upper layer of the filtering plant consists of sand, for the removal of suspended matter by mechanical filtration, and the lower layer of the ma terial above described, for the chemical removal of im purities in solution. It is claimed that both vegetable and animal organic impurities and metallic contami nations are entirely removed by this process. The fol lowing tests were made in the presence of the meeting

The filtering materials were contained in a large glass funnel. Water, as muddy as that of the Schuylkill River during freshets, was made apparently per fectly clear. A solution of sulphate of iron in water
was inadeand a portion thereof passed through the filter. was inade and a portion thereof passed through the filter with ferrocyanide of potassium. The former showed a distinct blue tint, while the latter remained perfectly clear, showing the elimination of the iron. Lead and copper tests seemed to show the same results. To illustrate the destruction of organic matter, sulphide of ammonia, sulphide of iron, and acetate of lead wer added to water, making a compound which was almost black and of strong and unpleasant odor. After filtration it was clear, and tests seemed to fail to discover any trace of the impurities. A mixture of copying ink and water was passed through the filter with the sam results.

The anonymous correspondent of the Lancet whose suggestion of the combined use of papain and thallin in cancer was noticed in a recent number of the Lon don Medical Recorder, turns out to be Dr. J. Mortime Granville. He has since supplemented his first statement by a further communication, in which he say that if the solvent or digestive power of the papain i to be brought to bear on the morbid growth, it must not be exhausted by being first mixed with food. He therefore recommends very frequent administration of the papain and thallin and their combination in the form of pills. The aim is to get absorption of the drug, not local action on the stomach. In cancer of that organ, Dr. Mortimer Granville gives, besides the pills, papain suspended in water with thallin and an alkali. With the view of further preventing ex haustion of the papain, he directs that the patient shall be fed as exclusively as possible on a vegetable diet, and that the pills shall be taken before meals or in the interval between them. He has not found that the thallin given as described exerts any injuriously depressing effect on the organism as a whole. The vitality of the morbid growth seems (the italics are Dr. Mortimer Granville's) to be depressed by saturation with the thallin and papain locally; this is effected by applying a strong paste of the two drugs in combina tion, or, where practicable, by their inanction. The results obtained so far are said to be encouraging, and " make it clear that the method will deserve a full and fair trial by the profession."-London Medical Re eorder, August 20, 1889.

Rest and Exercise in Heart Disease.

In the treatment of more than one disease there has always been a conflict between those who advocate rest and those who advocate exercise as a remedial agent. The fact is, these differences are more apt to occur on paper, where inferences are hastily drawn
from a few cases. More than five years ago Oertel published, in Ziemssen's Handbuch der Allgemeinen Therapie, his Therapie der Allgemeinen KreislaufstörTherapie, his Therapie der Allgemeinen Kreislaufstör-
ungen, in which he advocated for certain forms ungen, in which he advocated for certain forms
of functional heart trouble, not rest, but active of functional heart trouble, not rest, but active
exercise, such as mountain climbing. Before him Stokes, of Dublin, had noticed that heart cases did well in climbing the Alps. In prescribing mountain climbing the utmost care is necessary, as the distance to be covered should be regulated for each patient. Its object is to strengthen the heart muscle and pro mote the circulation. As only healthy arteries can stand the strain, such treatment is, of course, con tra-indicated in atheroma.
Loomis (Medical News, November 9, 1889) has re Loomis (Medical $N e w s$, November 9 , 188s) has and In the early history of physical diagnosis the detection of a heart murmur was always looked upon as a grave event, and even now many clinicians hearing a systolic apex murmur forth with pronounce the diagnosis " mi tral regurgitation" without sufficiently considering the other signs and symptoms. Such cases often do wel with exercise and out-door life. In fatty degeneration the heart in a young person can stand a moderate amount of exercise and can undoubtedly be strength ened, but it is in fatty infiltration or fatty overgrowth that the judicious use of exercise does great good. In this case the general diet should be regulated and th general obesity which usually exists should be removed by a depleting diet. Some German physicians in their city practice recommend stair climbing when moun tain climbing is not feasible. It is undoubtedly a fact that cardiac exercise of this kind has proved of benefit to patients in Germany, and there is no reason why it should not be used in the same way in America. Those patients under forty without hypertrophy, and with other olgans intact, of ten recover entirely or at leas improve greatly while the murmur still continues, af-
fording them little or no inconvenience.-Maryland Medical Journal.

Somnal.

"Somnal" is the suggestive name applied to what is described as "ethylirtes chloralurethan," represented by the formula $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{~N}$ (Phar. Zeit., October 5, p. 611). It was at first described as being prepared from chloral, alcohol, and urethan, and as differing from the compound recently introduced as " chloralurethan" by containing 2 C and 4 H more in the molecule; also a melting at $42^{\circ} \mathrm{C}$., boiling in a vacuum at $145^{\circ} \mathrm{C}$., and as not being altered by the addition of silver nitrate or by acids. As the crystals are very deliquescent, the preparation appears to be sent out dissolved in alcohol, in which it is soluble to the extent of three parts in one. The advantage claimed for "somnal" is that when administered in two-grain doeses it induce within half an hour a quiet sleep that lasts from six to ight hours without any inconvenient by-effects. It is not unimportant to add, however, that Herr Lutze writing to the Pharmaceutische Zeitung (Oct. 26, p. 652), has claimed that somnal is none other than chloralurethan under a new name and that the addition of the word "ethylirtes" is simply a blind. Thi statement has, however, evoked a denial from Herr Radlauer, who now affirms that it is a product of the direct combination of chloral alcoholate and urethan in a vacuum apparatus, and that its composition i correctly represented by the formula:
$\mathrm{CCl}_{3}-\mathrm{C}-\stackrel{\mathrm{H}}{\mathrm{H}}$
$\mathrm{NHCOOC}_{2} \mathrm{H}_{6}$

Safety Appliances in Railroads.

In his recent message to Congress, President Harri son laid much stress on the need for adopting means or insuring the safety of railroad employes. An an railroad employes, with ten times the number injured, was cited by him asillustrating the urgent nature o the case. He suggested congressional action, requir ng uniformity in the construction of cars used in in terstate commerce, and the use of improved safety ap oliances upon such cars.
The suggestion seems one which should receive im nediate attention from Congress. Practically ever railroad in the United States falls within the scope, di rect or indirect, of federal legislation. All the stand ard gauge roads forward interstate trains and cars and it would only be a few narrow gauge roads that would not come within the interstate category. The ingenuity of inventors has been exercised to a wonder ful extent upon car couplers. All passenger cars on first
class roads have some form of automatic coupling and class roads have some form of automatic coupling and
brakes. The freight cars are still to be provided for When the engine of a freight train signals for the ap-
men to jump off the train, fearing a collision. In any case the application by hand is very slow. The use of hand brakes and common couplings on freight cars is the cause of so much of the loss of life alluded to in the President's message that we cannot but anticipate remedial legislation as regards these two vital and fatal parts of railway service and appliances.

CONCAVE CELESTIAL MAPS

In his lectures at the observatory of the Trocadero ornmenced in 1880, Mr. Leon Jaubert substituted con cave celestial maps for the convex globes that had ormerly been employed. These reproduced as accu rately as possible the appearance of the heavens and the apparent diurnal movement of the stars.
These maps are constructed on various scales, some being 3 millimeters to the degree, some 4 millimeters some 6 millimeters, and some even as large as 12 millimeters to the degree. Mr. Leon Jaubert exhibited at the Palais of Industry in 1887 a section of a sphere that was built on the scale of 6 centimeters to the degree, that is, $21 \cdot 60$ meters in circumference.
Mr. Jaubert has constructed geometrical spheres for astronomical uses in the following manner: 1. In two polar sections of 20° each. 2. In eight zones, each be ing $20^{\circ} .3$. Each zone is subdivided into twelve part by meridians 30° apart, and passing from the 80° north circle to the 80° south circle, thus forming in the eight zones 96 divisions. 4. Each polar section is subdivided equally into two sections by the meridian of the equi noxes, thus making four sections or 100 divisions for the whole sphere-50 for the northern hemisphere and 50 for the southern.
Each division is numbered in rotation, beginning with the north pole and descending to the south pole The imperfect system of notation of Bayer is replaced by a very simple system, which is much more exact and enables not only the stars visible to the eye to be observed, but all the stars according to their position, their brilliancy, or the nature of their spectrum. This same system facilitates the marking of certain bril iant portions of the Milky Way, the constellations, and ebulæ. It was easy to indicate the group of th Pleiades photographed by Mr. Henri at the Paris ob servatory. Instead of the Greek alphabet, Mr. Jauber makes use of the alphabet usually employed in Europe having 26 letters, each of which has two forms, the capitals and small letters. He has added to this fou narks.
He uses a mark to indicate the magnitude of the star which enables him to indicate all the stars, whether visible or invisible to the naked eye. The stars are also lassified according to their ixilliancy. Stars of the frst magnitude are marked A, a capital letter being used for the most brilliant and a small letter for the ess brilliant. Stars of the second magnitude ar marked B, a capital for the most brilliant and a smal letter for the less brilliant, and so on down the alpha bet. When several stars of the same magnitude are found in the same division, they are marked alike. The most brilliant stars, however, are only marked with the letter that ranks them in their proper magnitude. The next in brilliancy receive besides the letter the numerals $1,2,3,4$, etc. If in one section more than 20 stars are found having the same magnitude, this section i subdivided, and the stars of different sizes are classified as in the larger sections.
Mr. Jaubert has also classified the nebulæ accord ing to their general brilliancy. He marks them with a capital or small letter in italics according to size The letter is single if there is but one nebula in that section. If there are several, however, the latter is followed by numbers as a further distinction. The ections of the nebulæ also can be subdivided accord ing to their brilliancy in the same manner as the stars as indicated above. The spectrum or chemical constitution of the stars is also indicated. About one half the stars are either white or blue, and constitute the stars of the first class (in a chemical sense), the yellow stars the second class, the orange-colored stars the third class, and the red stars the fourth. The stars of the first class are indicated by the letter alone and without any mark. The stars of the second type have horizontal mark over the letter. The third class have a horizontal mark over the middle of the letter and those of the fourth class the same mark under neath the letter
The general direction and movement of the stars is indicated by straight or curved arrows.
Stars whose distance and motion are known are marked with a sign which indicates the distance, the speed, and the direction of their path. The fundamental stars, which are noted in the Connaissance des Temps and the Nautical Almanac, and which are observed especially by astronomers and mariners, are also marked by special signs of their own
From the above it may be seen that the astronomical maps of Mr. Jaubert contain a number of exact signs distinguishing the different heavenly bodies and which have been applied as a result of astronomical research. These signs are at the same time so simple that they may be read and understood by every one. - Ja Nature.

THE NEW YORK EXHIBITION OF 1892.
Ever since the guarantee fund for the world's fair of 1892 reached in this city the sum of $\$ 5,000,000$, there has been shown great interest in the various sites upon which it has been proposed that the fair be held. Various plans have been considered. In our illustrations on this and the front page, we show one of the sites hich fare favored than which for any other. This includes the tract of land situated at the north end of and communicating with Central Park, and extending from Morningside to Riverside Parks, and bordered on the south by 110th Street. The illustrations give a bird's eye view of the present appearance of this extensive tract of land. The view looking west, as portrayed at the top of the page, embraces in the foreground the level portion of Morningside Park, backed as it reaches the bluff by the heavy embankment wall with massive stone stairways and heavy buttressing bays, with the stately avenue bordering the plateau thus defined. The view in the other picture is taken from the Palisades across the Hudson River, and gives a good idea of the admirable railroad and river facilities that would be afforded by such a site. The tract in the foreground is the Riverside Park, while beyond may be seen the long, narrow strip of verdure which marks the location of the Morningside Park. At the right near the horizon is seen the more extensive expanse of the Central Park.
This portion of the city is so little built up that the expense of acquiring the property will not be very great, in spite of the fact that it is approximately the heart of Manhattan Island. It seems a curious provision that the city should have grown around it, and should have left this tract practically unimproved and, in con sequence, so much more desirable for the proposed exposition. The city south of this site is pretty well built up to about 100 th Street, while the tract north and east of this locality is a thickly settled city. The proximity of the Elevated Railroad and the New York Central and Hudson River Railroad, shown at the bottom of the lower cut, renders this very accessible to even the most southern portions of New York City, while this is particularly accessible to Harlem. The Hudson River, on the other hand, renders it possible for those residing in New Jersey to reach the fair grounds by water, and without having to pass through the streets of New York.
It is beyond question that it would be impossible to find anywhere else a site presenting so many and such a variety of interesting features. But the difficulties to be encountered in launching so vast an enterprise in so short a time demand the greatest energy and the best skill and hearty co-operation of architects, builders, engineers, and mechanics, as well as unstinted resources in money.
This space, favored by the site committee, so far as is
known, embraces also a strip of land about half a mile long and a quarter of a mile or more wide, to the north of Central Park, and extending a little way down on its northeast and northwest corners. This land is almost entirely level.

It was originally intended to include also the north ern portion of Central Park within the fair grounds, but this plan has now been definitely excluded, on account of the public opposition to such use of Central Park. The principal argument for thus including a portion of the Park was that our two great museums might be made features of the fair-the Metropolitan Museum of Art and the Museum of Natural History, both situated near the northern end of the Park on its east and west sides. These institutions are now rapidly

PROPOSED SITE OF FAIR.
attaining dimensions and securing an importance from the value of their collections which place them in the front rank among institutions of a similar class, and efforts will be made to greatly enlarge them and add to their attractiveness in anticipation of the fair, of which it is probable that they will now form independent but very important auxiliaries
It will almost go without the saying that the prime reason for fixing upon the location selected is its convemience of access. Larger spaces might have been had with far less difficulty, where the expense of huilding and laying out the grounds would have been much lower, but they were too far removed from the heart of the great city and its most populous suburbs, from which must come so large a proportion of the support without which the fair, be it ever so excellent, would be a failure. At the proposed pier, on its western river front, the largest vessels from any part of the world can conveniently unload, and thus direct communication would be established between the fair and Europe, which would prove such an inducement to the foreign exhibitors. Centrally the grounds are intersected by the west side elevated railway system and by horse car routes, while the east side elevated system runs very near the east side of the grounds, together with other horse car routes, and the great Vanderbilt
system of railroads has its entrance to New York through a partially sunk four-track road on the eastern border oí the grounds. All of the most important lines will, it is aliogether probable, provide especial depots in the immediate vicinity of several different entrances to the fair grounds, and it is difficult to conceive of a crowd so great that it will not be easily handled, for the exits and entrances on every hand will be convenient to what are already great thoroughfares for city travel.
Dispatch in get ting the fair definitely started is now the one thing needed-promptness in securing the required national and state legislation, and determining upon the plans for the buildings and the arrangement of the grounds; and with proper energy manifested in these directions, there is no room for doubt that the wealthy and enterprising business men of New York will generously respond to all needful demands, and that the whole country will unite in assisting to make the exhibition one well worthy of the time and the people.

The Cornish Uranium Mine.

It is gratifying to find that a continuous lode of uranium ore-unique in the world-has been met with in the parish of St. Stephen's, Cornwall, about $11 / 2$ miles distant from Grampound Road. The lode varies in width from three to five feet, and the uranium ore is not distributed in bunches or pockets, as is the case elsewhere, but is continuous throughout. This valuable metal, worth at present about $£ 2,400$ per ton, occurs in the state of uranic phosphate, though hydrated uranous oxide is also to be met with. Samples of the ore seem to have yielded, on the average, 12 per cent of the pure metal, though some samples run up to 30 per cent. The advantageous feature of this deposit of uranium ore, in addition to its continuous character, is its freedom from arsenic and other ordinary impurities, which render the extraction and purification of the metal difficult and costly. Our readers are, of course, aware of the uses of uranium, in giving green and golden colors to glass, in the production of a fine black upon porcelain, and in photography. But if a large and regular supply is available, it may be used in electro-plating and in the formation of gold colored alloys with platinum and copper, the former of which is said to resist acids. This may open the door atonce to honest and dishonest arts.-Chemical News.

Safety Line Wanted for Vessels.

To carry out the intention of Congress, which requires sea and lake going steam vessels to carry a line projectile apparatus on February 1 next, the supervising inspector-general of steam vessels has invited inventors of such devices to submit working models to the board of supervising inspectors, which meets on Wednesday, January 15, in order that their adapt ability for the purpose intended may be determined, and those devices found suitable approved for use.

MORNINGSIDE PARK

ELECTRIC PHENOMENA PRODUCED BY SOLAR RADIATIONS.
As a consequence of numerous observations made between May, 1885, and July, 1889, I have been enabled to establish the fact that solar radiations are the cause of certain electric phenomena, the study of which is summed up in the following laws:

1. Solar radiations, upon meeting with an insulated conductor (metal or carbon), communicate thereto a positive electric charge.
2. The extent of such charge increases with the intensity of the radiations and decreases with the hygrometric state of the air. At Paris, its value reaches maximum in summer at about one o'clock in the afternoon, when the atmosphere is pure and dry.
3. The passage of clouds near the sun causes the phenomenon to cease
The experimental arrangement adopted was as follows: A large metallic cylinder, C (see figure), turned toward the sun, was put in communication with the earth, and formed a Faraday's cage. An aperture in the cover permitted the solar rays to enter the cylinder and strike a metallic plate, S, arranged in the center. This plate was of copper and had been carefully insulated upon a Mascart's support. A conducting wire, wound with silk insulated with paraffine, was fixed to the plate, S , and ran to a room below in which were arranged the observation apparatus. These latter were as follows : A Mascart electrometer, E, a 100 ele. ment battery, P, a standard Daniell element, D, a graduated scale, G, and a sulphuric acid insulating support, M.
The box, C, the box of the electrometer, E, the center of the battery, P, and the negative plate of the battery, D, were connected at the same point of the earth, whose potential was taken as zero. The electrometer needle was connected with the insulated metallic plate.
I used in succession the Lippmann electrometer, which had to be abandoned on account of its too great capacity for this kind of experiments, the Hankel elecrometer and the Curie and the Mascart The following is in what the experiment consisted
The insulating support, M, to which were fixed the wires communicating respectively with the plate, S , and the electrometer needle, E , were so connected with the ground that the potential of the plate and needle became equal to that of the ground, which was taken as zero. The support was then insulated from the ground, and there was immediately observed upon the scale, G, a deflection of the needle indicating a positive charge of the plate, variable with the intensity of the solar radiations and the hygrometric state of the atmosphere.
This deflection was compared with that produced by the Daniell element, D, of which the positive pole was connected with the electrometer needle, and the negative with the earth. Moreover, I had carefully studied, in some preliminary experiments, the influence of the complex phenomena that might vitiate the observations by producing an electric charge independent of that due to solar radiations. In this way I ascertained that by suppressing the Faraday cage, the metallic plate, being exposed to the free air and shade became charged under the influence of the wind alone.
In the observations, this disturbing cause was carefully eliminated by the use of the metallic box, \mathbf{C}, the

THE INVENTOR'S HEAD.
presence of which prevented the wind from reaching the plate, S .
The other secondary phenomena, such as the heating of the plate, the thermo-electric actions, etc., were found to be of no consequence in the presence of the phenomenon studied. After this study of the phenomenon, let us endeavor to draw some practical conse-

APPARATUS FOR STUDYING ELECTRIC PHENOMENA DUE TO SOLAR RADIATION
quences from it relative to the electrification of clouds. We must in the first place admit that these results may be extended to non-metallic bodies, such as the clouds. This is a simple though very probable hypothesis, but one that it will be necessary to verify the accuracy of When solar radiations traverse a pure and dry at mosphere, they charge the earth that they strike with positive electricity. By analogy with actino electric phenomena we may admit that the stratum of air im mediately in contact with the earth becomes charged with negative electricity. This air, heated in contact with the sun, rises and carries with it its negative charge. This current of ascending air follows an oblique direction in the air under the influence of the wind, and it often happens that, in its ascent, it meets clouds of more or less thickness, that it sustains at a certain height in the atmosphere, and to which it abandons its negative charge.
This negative charge continuously increases under the influence of these masses of electrified and incessantly renewed air. This hypothesis would seem to give the explanation of a certain number of storm phenowena. It would appear to explain the negative charge of the majority of clouds. The positive charges that are sometimes observed in clouds may be explained by the supposition of two strata of clouds between which the electric manifestation may take place. Such charge of the clouds should be so much the greater in proportion as the solar rays are intenser and the hygrometric state of the atmosphere feebler. And this is what should especially take place in summer and principally in equatorial regions. This would be ex plained by the frequency of storms during the hot season and during the summer days in which the solar rays are intense. Herein, too, should be found an explanation of the fierce storms which chiefly prevail in the equatorial regions.
Nocturnal storms would be due to clouds charged with electricity during the day under solar influ ence, and which would become dis charged at night in consequence o the descent of the clouds toward the earth, the explosive distance then becoming sufficiently swall to allow the discharge to take place between the cloud and the earth Such descent of the clouds toward the earth at night is due to the cool ing of the ascending currents of air which sustain the clouds in the at mosphere.
We might, in analogous manner explain the frequency of storms over forests, rivers, lakes, etc., as a conse quence of the lowering of the tem-

CONCAVE CELESTIAL MAPS.-[For descrintion see page 7.]

Business and Personal.

The charge for Insertion under thrs head is One Dollar a line jor each insertion; about eight words to a line. as early as Thursday morning to appearin in next issue

Wanted-Heavy and light machine work and speci-
ulties to manufacture by well equipped shop. Box 1,446 alties to manufacture by well equipped shop. Box 1,4 For Sule... Patent Halter, 417,638 E. Harmon, Rippey The Celebrated Marion Waltzes! Brilliant and Melo odious! Price 50 cents
liberty street, N. Y. City.
I will furnish best possible factory site and erect suit able buildings in exchange for stock or interest in man-
ufacturing business. Coal $\$ 2.00$ per ton or less. The C. \& N. W. Railway and C. B. \& Q. run parallel tiroug ,
We desire to receive communications from those who the covering of steam pipes, boilers or other heated sur faces, and will pay for valuable suggestions. or unpatented formula, if accepted, tending to improve the product of this class, now on the m
O. Box 773 , New York City.
Wanted: Mechanical engineer experienced in design ing and building modern automatic high speed engines
(plain and compound), one who is capable of taking charce of correspondence and acting as eneral manage of office and shops. Location, Southern Pennsylvania
Address "Mechanical Engineer," care of this paper. Machine tools, catalogue No. 47-B; wood-working machinery, catalogue No. $52-\mathrm{A}$; steam power. catalogu
No. 48 . Largest lines offered by any firm in this country Send for bed-rock prices, stating exactly what you want.
S. C. Forsaith Mach. Co., Manchester . Capital will be furnished to place on the market patented article of undoubted merit. Address, with pa
ticulars, box 123, Cleveland, 0 .
Best Ice and Refrigerating Machines made by Davi
Boyle, Chicago, IIl. 140 machines in satisfactory use. Guild \& Garrison, Brooklyn, N. Y., manufactur steam pumps, vacuum pumps, vacuum apparatus. at pumps, acid blowers, filter press pumps, et
For the latest improved diamond prospecting drills Prese M. B Presses \& Dies. Ferracute Mach. Co., Bridgeton, N., The Holly Manufacturing Co., of Lockport, N. Y.,
will send their pamphlet, describing water works ma chinery, and containing reports of tests, on application Tuerk water motors at 12 Cortlandt St., New York.
Screw machines, milling machines, and drill presses For low prices on Iron Pipe, Valves, Gates, Fittings, ron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St., New York. Steam Hammers, Improved Hydraulic Jacks, and Tub Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city "How to Keep Boilers Clean." Send your address Magic Lanterns and Stereopticons of all prices Views illustrating every subject for public exhibitions,
etc. A proftable business for a man with small capi tal. Also lanterns for home amusement. 180 page cata
logue free. McAllister, Optician, 49 Nassau St., N. Y. For best hoisting engine. J.S.Mundy, Newark, N.J For the original Bogardus Universal Eccentric Mill, S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa
Send for new and complete catalogue of Scientific and other Books for sale by Munn $\&$ Co., 361 Broadway
New York. Free or application.

HINTS TO CORRESPONDENTS
Names and Address must accompany. all letters,
or no attention will be paid thereto. This is for our
information, and not for publication.
eference to former articles or answers should
give date of paper and page or number of question
In quIrien not answered in reasonable time should
be repeated; correspondents will bear in mind that
some answers require not a littlear research, and
though we endeavor to reply to all either by leter
or in this department, each must take his turn.

Scientitic American Supplements referre
to may be had at the oflice. Price 10 cents each
Books referred to promptly supplied on receipt o
Minerale sent for examination should be distinctly
marked or labeled.
(1666) J. R. asks (1) the best known means of deodorizing and taking the smell from petro
leum oils of any specific gravity. A. Treatment with concentrated sulphuric acid followed by thorough wash ing and neutralization of the acid is the best means. Also what kind of oil is Lima, O., oil? Is it an inferior
petroleum, or does it take that name beforeit is refined petroleum, or does it take that name beforeit is refined?
A. Lima oil is a dark or black and heavy oil, containing a great deal of sulphur. It is a limestone oil. It first showed a specific gravity of $36^{\circ} \mathrm{B}$., later wells have
reached 37° or 38° B., and one well 41° B. It only gives 50 to 65 per cent deodorized illuminating oil. The barrel. 3. What is the average price of petroleum oil when it is put on the quay fo shipping? A. Refined, $71 / 2$ cents gallon upward; crude, about $\$ 1.10$ per barre.
(1667) Varley asks: Can you give me the recipe of a harmless mixture for browning the skin, similar to sunburn. A. Use the juice of walnut husks Or some of the light brown hair dyes may be used with little risk, if they are free from lead. An ammoniaca
solntion of bismuth followed by a solution of pyrogallic acid may be employod,
(1668) G. asks (1) if fire clay can be burnt ato a brick two feet long and six by eight inches at
each end with the same degree of hardness throughout A. Yes. 2. Will frost or freezing cause it to disinte (1669). Slowly, if at all
(1669) H. S. writes: 1. I have a be with a friend that the sal-ammoniac solution has n effect 0 : the zinc or carbon in the Law battery until he circuit is closed. He thinks it has some effect. Who wins the bet? A. Practically it has no action, although, wing to the impinging of the zinc, it is slowly corrode on cpen circuit. 2. How many glow lamps does it tak light a Pullman palace car? A. About 30.
Vould a 1 horse power dynamo generate any electricity, and if so, how much, making 300 revolutions per minute? A. The speed of dynamos depends on their construction. A 1 horse power dynamo should generate 746 volt amperes of electric energy. 4. Would a two horse power dynamo generate as much, making 150 revolutions per minute? A. If of the same type it would hich it rapidly approaches its maximum power. (i670) H. D. asks : What size Edison inwith the dynamo machine described in Supptement No. 161? A. Two four-candle lamps.
(1671) W. M. writes for a good recipe for the making of a good gum mucilage. Ao A simple so hation of gum arabic in water with a few drops of oil of loves is excellent. See answer to query 263 for post age stamp mucilage. For regular mucilage substitut (1672) Ph. G. writes: Would you please met me know a cheap and simple way to make soap on a mall scale, to be used for scrubbing, etc.? A. Dis or as caustic potash) in one or two pints of water. Let it cool. Melt 6 pounds of grease in a pot and pour into it with constant stirring the soda solution. When thoronghly saponified, pour into pans about an inch deep, and when it solidifies cut into cakes. To improve nou may cut it np after a few days, ana remelt it with The curdy soap is to be lifted out with or granulate, The curdy soap is to be lifted out with a perforated
ekimmer,and washed off and remelted with a little more water if necessary, and cast into pans or moulds.
(1673) E. H. B. says: In the matricula tion examination, Harvard Medical School, departme of physics, the following question was asked : "Why can't gold, silver and copper coins be cast in a mould? What is the answer to above question? A. Coins can cast, and probably were castin the early ages, in the same manner as combs, hair pins and knives. Chinese
and Japanese coins are cast now. The casting of gold, silver, and copper in moulds makes rough surfaces lacking the beauty aud exactness of finish, as in the modern stamping process.
$(1674) \mathrm{C}$ W. M. asks : 1. How can I tery out of electric light carbcns A. Saturate one end of each rod with hot paraffine nnd ast lead around the ends so prepared. Pour the lead armature of simple motor make per minute? A. About 2500.

TO INVENTORS.

An experience of forty years, and the preparation of ents at home and abroad. enable us to understand th aws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, which are low, in accordance with the times and our ex tensive facilities for conducting the business. Address
MUNN \& CO., oftice ScIENTIFIC A MERICAN, 361 BroadMUNN \& CO.. oftic
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

December 17 1889,

AND EACH BE RING THAT DATE.
(See note at end of list ab Jut copies of these patents.
larm. See Low water alarm.
Ash pit, G. D. Snell
utomatic sprinkler, C. F. Roper
Axle boaring, car, E. Peckha
A. H. Harrington
Back pressure trap for sewer pipes, J. A. Voltz
Bag. See Feed bag. Nose bag.
Bag folder, grain, R. H uitt....
Balloon, S. A. King.
Barrel head, Campbe
Barrel head, Campbell \& Harrison................
Barrels, etc.. implement for handling, McNeill
Shaw................
Shaw.
Basin, lav
Basin, lavatory, J. E. Boyle

Batteries, treatment of
Mayer \& Liepmann.....
tery.
Beer cooler, J. Braun
Bellows, blacksmith's, F. Christe
Belt, tightener. G. Rosonuist
Belting, machine, A. Holbrook, Jr
Bicycle, Doring \& Siegert.
Bicycle, C. F. Watkins....
Bicycle, C. F. Watkins........
Bicycle brake, J. J. Astor, Jr
Bit attachment, J. N. Isabe
Bit, stock, A. A. Ken
Blank slitting machin
Blank slitting machine, H. C. Bailey
Bleaching powder, making, E. Solva
Blind fastener, window,
Block. See Can Soldering block.
Block cutting machine, J. D. Reekie
Board. See Game board.
Boiler. See Sectional boiler. Steam boller.

Boiler furnace, steam, w. G. Dodd
Boiler tube cleaner, S. Kelly........ Bolt. See Rotary bolt.
Bolt, De Villepigue $\&$ Bolt, De Villepigue \& De Bertram Bolt heading machine, E. Burdsall, Jr Bolt threading machines, means for operating then die heads of, J. S. Bancroft.. Books, making account, J. W. Horne...........
Boots or shoes, rotary trimmer for, Vose \& Hu

Box. See Core Box, J. J. Rust.

Boxes, machine for making metal corner fasten
ings for, C. T. Remus..
Brace bender, F. M. Leavitt et al
Brake. See Air or steam brake. Bicycle brak
Car brake.
Brick machine, V. D. Graves.
Bridge lift, L. M. Friar
Broom moistener, H. Weitzel.
Brush, circular, Knowles
Buckle, L. Hausmanu

Buggy tops, binding for. C. Bauer....................
Burner. See Gas burner. Hydrocarbon burne
Burner, R. B. Carsley...
Butter, 区orker, M. F. E. Stadtmuell
Button fastener, W. Ders......
Button fastener. W. Doerflinger
Calculating machine. M. May
Can filling machine, Stevens \& A yars...
Cans or jars, lining for metal, E. Haas
Car brake, H. S. Hopper
Car brake, automatic, E. F. Stephens.
Car brake or dead block, M. A. Morse
Car coupling, Robinson \& Weeks.
Car coupling, H. Severance
Car coupling, w. T. Sims.
ar coupling, w. T. Sims.
Car coupling. R. H. Stapp.
Car couplin, E. F. Stephens.
Car, dumping, E. E. Dwight..
Car heater and pipe connection, E. P. Sartell.
Car heating system. C. L. Kline......
Car platform attachment. L Roeth
Car platform attachment, L. Roeth.
Car ventilating device, H. I. Morrell
Car vestibule, J. Krebbbiel...
Car, vestibule, \mathbf{T}. W. Moore
Car window sash, street, P. M. Kling.
Carpet exhibitor, N. H. Traver
Carpet exhibitor, N. H. Traver
Carpet stretcher, A. A. Brower
Carriage gear, G. W. Farrell.
Carriage running gear, I. M. Fitch............
Carriage top prop, A. A. Line
Carriage top prop. A. A. Lines............
Carr:er. See Glass carrier. Ladle carrier.
Cartridge crimper, E. A. Franklin...............
Case. See Egg case. Trunk or traveling case
Cattle, device for holding the heads of, E.K. R
Cement, manufacturing, G. Duryee................
Chair. See Convertible chair. Reclining chair.
Chair or seat, A. H. \& P. A. Lindberg.
Chimney ca, W. E. Esper
Churn, M. N. Castleman.
Churn closure, M. N. Castleman
Cigar bunching machines, roller cloth or apro
Cigar receptacle. A. J. Parker.
Clamp, G. W. Baker
Claner. See Boiler tube cleaner.
Clip. See Paper clip.
Clip. See Paper clip.
Cloth stretching roll. G. W. Miller.
Clutch nail, D.
Clutch nail. D. E. Haven
Coffin fastener, L. E. Woodard..
Coffin fastener, L. E. W oodard..
Collar, horsene, J. b. Schott
Collar stuffing machine, C. Ewing.
Collar stuffing machine, G. E. Ho
Conductors, combined support and safet y device
for overhead, R. A. Morgan, Jr.
Overbaugh
Con
Convertible chair, w. F. P. Parmelee..
Copying press, portab
Core box, J. P. Serve
Cornet, H. Esbach...

Coupon cutter, Phippen \& Browne. Crate, knockdown, H. O. Hyatt. Cultivator, J. Roberson.

Cultivator, J. Roberson.... ...
Cultivator, Todd \& Griffin...
Cultivator a and harrow, combined. C. He......
Cultivator and planter, combined, T K. Bogs up. See Grease cup. Umbrella drip cup.
 Cut-off fo: e qines, automatic, H. Buddenha
Cutter. Ser Coupon cutter. Index cutter. Cutter and holder therefor, J. Martignoni Disinfecting cak L Scranton D. Fitt Drill. See Seed drill.
Drill, G. H. Tyler... Drills or auger bits, machine for making.
Crichen Dye, azo. M. UIrich.................................47,294 to
Dyeing apparatus. T. B. Bowers............... Dynamos, automatic regulator for, C. D. Jenney Eaves trough, J. P. Abbott.
Egg case, E. Butterick...... ${ }^{\text {El }}$

Electric lizhts. . ceiling plate for, H. H. H. Sawyer. Electrical conductor, U. H. Balsley. Electrical distribution of currents, system of, Elevator. See Grain elevator Elevator, P. H. Brodesser.
Elevator, H. Parsons......
 Embroidering machine, R. T. Smith . Embroidery holder, J. D. Lalor.......
Engine. See Gas engine. Pneun Steam engine. Traction engine.
Explosives, manufacture of. W. E. Liarde Extracts. preparing logwood, W. W. Macfarla
Fabrics. producing lace tucks on, J. Wiget. Fabrics, producing lace tucks
Fana automatic. . Comminge.
. 417,75

,ize

 417,431 ${ }_{417,557}^{417,504}$ | .417 .609 |
| :--- |
| 417.405 | 417,609

417,399
4
47

Filter cleaning apparat| 417,371 |
| :--- |
| 417.569 |

Fire kindler. G. . . Richardson.................. 417.5178
Fireproof structure, metallic, J. W. Kensett. 417,250
Flash light apparatus, magnesium, J. J. Higgins. $417,4.2$
Floor, freproof, O. W. Norcross.,............... 417,500
417,84
Fluids, indicating the velocity of running, II.
F'lad...417,400
Fly paper, sticky, o. \& whum........
Fly paper, sticky, o.
Frame. See Saw frame.
Frog, spring, J. T. Richardson....................... 417.
Fuel, artifcial, J. Morris........................... 417,
Furnace. See Boiler furnace. Gas and smoke
consuming furnace.
Furnace, J. H. Behee...............................
Gauge. See Rain or snow gauge. Saw gauge.
 417,290
175,48
417,262
417,528
Garden implement, R. E. Gamble.................. 417,554
Garment hook, M. Schloss................... 417.590
Gas and smoke consuming furnace. Hartung \&
Walsh, Jr................................
neller .. 417
Gas burner, incandescent, J. L. Stewart......... 41τ
Gas engine, w. E. Crist...............
Gas engine, w. E. Crist................................ 417,471
Gas engie igniter, W. Crist.....................472
Gas engines, operating, J. C. Beckfeld 417,524
Gas engines, operating, J. C. Beckfeld 417,b
Gas for heating and illuminating purposes, appa-
ratus for the manufacture of, B. T Babbitt.... 417,6
Gate. see.
gete.
Generator. See Steam qenerator.
Glass carrier, plate, Dickey \& Duster 417
Glassware, manufacture of moulded, I. Appert... 417
Governor, steam engine, J. A. Seymour......... 417
Grain, apparatus for drying, heating, cooling, or

Grinding mill, portable................................... 417, 417,
Guar,
Gun, B. Gorton.................
Gus, firing attachment for breech-loading, A.
417,231
417,693

Hanger. See Door hang
Harrow, S. Cordeman..
Harrow and cultivator, J. T. Scarbrough.......... 417, 417,
Harrow and cultivator, disk, T. Maxan....... 417.5
Harvester, grain binding, J. S. Davis 417
17,264 ($\begin{gathered}\text { Harvesters and grain binders, bundle carrier and } \\ \text { dropper for, J. A. Graham......................... } 417\end{gathered}$

Heading machines, foot board for, J. N. \& C. B.
Oliver..
Heater. See Car heater. Water hearer.

Hitching post, H. C. Williams,.............. 417, 417
Hoe. double-acting weeding, M. Rufe.........
Holder.
Holder. See Embroidery holder. Paper roll
holder. Pick or tool holder. Sad iron holder.
Hollow handled articles, manufacture of, H. C.
Hart... 417,244
Hook. See Garment heok. Whiffetree hook.
Hook. See Garment heok. Whiffetree hook.
Hoop. See Tank hoop.
Horseshoe nail and blank therefor, D. E. Kemps

Hydrocarbon burner, W. Wilson
Hydrocarbons. burning, J. Schin
Index cutter, W. Braidwood
Indicator lock, W. H. King.
Injector, steam, W. Barnett
Inkstand, H. C. Thomson ..
Iron. See Sad iron. Wear iro
Iron. See Sad iron. Wear iron.
Irrigating apparatus, Rist \& Clubine
Jars. etc., cover fastening for, J. Campbell...
Jack. See Lumber jack.
Jeweler's tray, I. Hirsch.
Journal bearing, W. S. Scales
K napsack, C. D. Weldon....
Enife. C. F. Bush
Knitting machine, circular, C. F. Carr
Knitting machine, straight, Seyfert \& Donner....

Lamp, arc. J. F. Shawhan
Laddle carrier, J. Ritzin
Lתddle carrier, J. K
Lance. W. Lorenz
Lanterns, in jector for. C. L. Betts.
Last block fastener, M. L . Wright.
Latch, gate, S. Corrothers...
Lathe beds, machine for grinding, A. Webster....
Lead and base bullion from slag, mattes, and
reux.....................................$~$
separating, W. B. D. Lereu
Leather channeling machine, Wright \& Rodgers.
Leather cutting machine, J. G. McCarter.
Leather. machine for the preparation of,
Klunik et al

Lightning arrester, P. Winsor
Lightning arrester. Winsor \&
Ljpt machine. J. Wavland...

January 4, r890.]
 Percussion lock. Seal lock.
Loconotive, A. H. Rank........ Locomotive for tramways, hot water, A. L. Rich
Loom picker, C. Chippendale...................... Loom positive shuttle motion, S. . H. S..............
Loom sheding mechanism. Stafford $\&$ Barrett.... Loom shedding mechanism. Stafford \& Bar Low water alarm, W. F. Hand
Low water alarm, H. Sims....

Lumber jack, W. R. Markham..

Mail pouch fastener, W. H. Horrall Malt stirring machine, C. S. Johnson et al....
Mangle and cupboard, combined, W. Frantz Mat. See Wooden mat.
Measuring apparatus, fluid, P. Kaulfuss.,
Measuring vessel for liquids, J. P. Muller Medicine, topical remedy, La Rosae \& Buzar Metal to powder, apparatus for reducing, Yeilding
Metals into

Meter. See Grain meter. Piston mete Milk can. E. Plancon.......................
Mill. See Grinding mill. Rolling mill. Millstone feeder and cooler, Z. W. Murphy Motor or pump, H. F. Hodkes.
mann................................
Music leaf turner, E. J. Wittebolle
Music plate for mechanical instruments, o.
Musical instrument, R. W. Pain
Nail. See Clutch nail. Horseshoe nail. Name plate and letter chute, combined, w.
Nose bag, G. D. Leonard
Nose ring for hogs, M.
Nozzle, spray. J. Bean.
Nut lock, J. M. R. Gedpe
Nut lock, A. Page.
Oil can, O. I. Hess.....................
Ore concentrator, dry, M. B. Dodge Ore, reducing unsmelted, J. T. Wainwright Oven door, W. J.
Packet, L.
S. Bell.

 Pails, hinge and cover for sap, G. J.
Paint composition, H. W. Clayton.. Paper bag machinery. C. B. Stilwell.............. Paper boxes, machine for making and coverin J. H. Bterich...

Paper making machine, F. H. Cram....
Paper making machine, F. A. Cushman
Paper pulp machine, Reed $\&$ Martien..
Paper rell holder and cutter, J. B. Seymour, Jr.
Paving block cutting machine, L. H. Southwort Pawl and ratchet mechanism, o. K. Mclntire Penmenship guide, P. D. Horto
Photographic apparatus for holding
sensitive plates, Merrill \& Wingo Piano tuning pin. G. M. Guild
Pigeon holes, partition for, o. C. S. Olse
Pin. See Piano tuning pin.
Pipe bending machine. H. E. Fowler.
Pipe union, lead, J. McAllister
Piston meter, P. Ball.
laning machine, endless bed surface, \mathbf{W}. \mathbf{H}. Planter, corn, J. Kellis.

Russell...................
Plow, S. H. Walton.
Plow and harrow, combined rotary, L. J. Berge
Pneumatic engine. H. W. Metzing,
ost. See Fence post. Hitching p
Powder. See Bleaching pow
Press. See Copying pr
Printer's chase, Ekstrom \& Galvin
ting in, J. H. Vivian.
Printing machines, printing attchment for rotar
C. N. Roberts...
Printing presses, perforating device for, G.
Pulley, band saw, J. R. Hoffman.
Pulp machines, automatic severing device for,
Julp screening machine, E. Victory
Rallway frog, J. T. Richardson.......
Railway rail brace, L. McElroy ..
Railway rail tie, R. Jones.
Railway signal, Loy \& O'Toole
Rallway switch, J. M. Kincade
Railways, operating electric, E. E. Ries..........
Railways. rail supporting bar for street, J. Reed...
Railways, stock gate for. J. Jackson................
Rake. See Hay rake
Reamer, expansible, T. Long.
Reclining chair, G. W. Spurr.............
Refrigerator, J. W. Egan..............
Reuulator. See Windmill regulator.
Ring. See Nose ring.
Rock drilling machine, withers \& Ed
Roller mill adjustment, \mathbf{P}. Couch
Rolling mill, P. F. Hanley
Rotary bolt, J. M. Case.............................
Ruffing and gathering. fabrics, machine for.

Sad iron, A. Rosa

ad iron halder, R. A. Burns
diui reeffng apparing. L. Stnckstrom.
Sash fastener, J. W. Hose
Bash fastener, H. C. Roee

\[
$$
\begin{aligned}
& 477,29 \\
& 417,428
\end{aligned}
$$

\] | 41,224 |
| :---: |
| 41,573 |
| 117.585 |
| 4 |

Blue , Southern Brew Compan Bluing, laundry, Carter, Dinsmore \& CFaunce \& Spinney........................Canned lobster, F. R
Cigars, J. Barzana.
Cigars, Berninger

$$
\begin{aligned}
& \text { Cotton sheetings and sh } \\
& \text { Dress staps, . Kelley. } \\
& \text { Extracts. flavoring. Ch. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dress stays, A. Kelley....................................... } \\
& \text { Extracts, flavoring, Chapman \& Smith Company } \\
& \text { Honey, S. S. Alderman and J. B. Roberts........ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Honey, S. S. Alderman and } \\
& \text { Liniment. . K. Pierson \& }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Liniment. . . K. Pierson \& \& o. } \\
& \text { Medicinal lotions and inhalents, Meito } \\
& \text { Medicine, cough, S. K. Pierson \& Co... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fabrikation_........ } \\
& \text { Saws, E. C. Attins \& Co } \\
& \text { Soap, Georgia Soap Co }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Soap, Georgia Soap Co.............. } \\
& \text { Tobacco, cigars, and cigarett } \\
& \text { chewing, J. G. Butler \& Co }
\end{aligned}
$$

$$
\begin{aligned}
& \text { chewing, I. G. Butler \& Co } \\
& \text { Undergarments, reform. A. J. Ailer } \\
& \text { Vinarar Tomor Virma }
\end{aligned}
$$

Vinegar, Tomato Vinearar Company

$$
\begin{aligned}
& \text { A printed copy of the specitication and drawing of } \\
& \text { any patent in the foregoing list will be furnished from } \\
& \text { this office for } 25 \text { cents. In ordering please state the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { any patent in the foregoing list will be furnished from } \\
& \text { this office for } 25 \text { cents. In ordering please state the } \\
& \text { name and number of the patent desired. and remit to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { name and number of the patent desired. and remit to } \\
& \text { Munn \& Co., } 361 \text { Broadway, New York. } \\
& \text { Canadian Patents may now be obtained by the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Canadian Patents may now be obtained by the } \\
& \text { inventors for any of the inventions named in the fore- } \\
& \text { going list, provided they are simple, at a cost of } \$ 40
\end{aligned}
$$

$$
\begin{aligned}
& \text { going list, provided they are simple, at a cost of } \$ 40 \\
& \text { each. If complicated the cost will be a little more. For } \\
& \text { full instructions address Munn \& Co., } 361 \text { Broad way, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { full instructions address Munn \& Co., } 361 \text { Broadway, } \\
& \text { New York. Other foreign patents may also be obtained. }
\end{aligned}
$$

$$
\stackrel{\text { New York. Otuer forelign patents may also be }}{\text { Əfovertisements. }}
$$

USE ADAMANT WALL PLASTER

 ADAMANT MPG. CO.

EDISON A LAMPS

 EDISON LAMPCO.

THE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBGORO, PA., Builders of High Class
Steam Engines. Diarond Drilling and General

浣
Chicago Niidkel Works
Metal Specialties, etc.
We make a specialty manufacturing on contract all
kinds of patented metal articles, smal machinery, etc.
purchasing, manuf acturi ng and selling on roany meri-
 estabishinent.in the West. potain our estimate on
(Onk and submit meritorinus patents
Chicago Nickel Wks., $9: 3 \pm 95$ E. Ohio St., Chicago, III.

WATER MOTORS

Simple, Cheap, and Safe.
quire no brick work, are econom
ical in fuel, and absolutely
The Silsby Mfg. Co.
246 MAIN ST.

WOODBURY ENGINE CO., Rochester, N. Y.

TEEL TYPE for TYPEWRITERS, Stencils, Steel Stamps, Rubber

Coulirris Pocker nnalizn

Address TREVOR \& CO., Lockport, N. Y SPECIAL MACHINERY

For shingle, heading, and stave mills; for handle, fruit package, and

WOOD PULP MILLS.

 f Handle Machinery;ZOOD PULP MACEINERY.

DOES YOUR PATENT PAY?

 SEBASTIAN,MAY\&COS EME Foo terfATHES $\$ 60$ Drill Presses, Chucks, Drills,
Dogs, and machinists and ama
teurs'
outfits. teurs, outfits. Lathes on trial.
CCatalogesmailed on application.
$\mathbf{1 6 5} \mathbf{W} .2 d$ St., Cincinnati, $\mathbf{0}$.

Scientific Book Catalogue

 RECENTLY PUBIISHKD. mailed tree to any address on application.
MUNN $\&$ Co., Publishers Scientifo
$\mathbf{3 6 1}$ Broadway, New Yor
BARREL manamex RREL MAGCC MEsems 30 memem cank motencom

 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877. No. 186,787.

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

TOBOGGAIN BIEIDI

 WLLEABLE AND FINE GRAY IRON ALSO STEEL

THE ARMSTRONG MFG. G O. WATER, GAS AND STEAM FIITERS TOOLS.

tocks and Dies for Pipe, Bolts, and Brass Pipe Wreuches. Pipe Vise, B, Pipe Cutters, etc.
Catalogues sent free on application.

THE CALDWELL Sash Balance No weishts, cord, or box frames. Aplied either at
the side or top of sash. Our top balance can be used the side or top of sash. Our top balance can be used
with a two meh mullion. Ask the hard ware trade for CALDWELL MFG. CO.. Rochester, N. Y
HOSKINS' PATENT HYDRO-CARBON
Blow-pipe and Assay Furnaces.

SAYER \& CO 37 DEY STREET, N. Y. The Drapir Recoriting Thammameter

ect and continuous record in ink of the temperature
on a weekly chart An invaluable accesso in factories, cotton mills,
dry kilns, and many other industries where recorded
temperature is of importtemperature is of import
ance. address
The Draper Mfg. Co 152 Front St.

 Tr) The Egan Company, 261 to 281 West Front St., CINCINNATI, OHIO, U. S. A., WOODTORKIIGG MAGEHIERY
 Latest Improvement

Stanley's Universal Hand Beader For Beading, Reeding, Fluting, or for light Routering
 Sold by all Hardware Dealers. COLD DRAWT weldLess
\qquad Sure Grip Steel Tackle Block area io min cor or histing

Starrett's Speceded Screv Micrometer

THE KODAK

Embodies the only system of continuous flm photo-
graphy. World-wide success. " You press the button. We do the rest." THE EASTMAN DRY PLATE AND FILM CO. Price $\$ 25$, loaded for 100 pictures. Reloading $\$ 2$.
Send for Kodak Primer, free. PIME DRIVING MACHINERY:

Barnes' Foot-Power Machinery Complete outitts for Actual Worksnop Business. A customer says: * Considering its capacity and the accuracy can be produced at such low cost. The velocipede foot-power is simply elegant. I can turn steadily for a a whole as if 1 had been walking around." Descriptive Price List Free.W. F. $\begin{aligned} & \text { JOHN BARNES Co. }\end{aligned}$ 1999 RUBY ST., Rockford. Ill .	

Send for New Illustrated Catalogue describing all Ma-
 NATIONAL TYPEWRITER EXCHANGE, $\frac{161 \text { La Salle street. Chicago, III. }}{\text { (2) }}$

EVEN THE BROWNIES MARE PHOTOGRAPRS PHOTOGRAPHIC OUTFITS FOR AMATEURS, Send for our New Illustrated Catalogue and
copy of Modern Photography. Rochester Optical Co., 18 A AUEDUCT ST., ROCHESTER, N. Y.
The. Fjirst Prize of Gold Medal awarded the THE HAMMOND TYPEWRITER CO 447, 449 East 52d Street, NEW YORK, U. S. A.

 Where water pressure is available,
we are preerared to prat lin isolated
plants, guaranteeing sucess. Treerk Hydranicic Power co. Cortlandt Street,
NEW YORK. THE CHALMERS-SPENCE CO., 419-425 E. Eighth Street, NEW YORK.

THE BROUGHTON MIX工凡 Wall Plaster \＆Fertilizers Alexander，Bradley \＆Dunning， Syracuse，N．Y．，U．S．A．

OIL WELL SUPPLY CO．Ltd．

ARTESIAN

TICLARK＇S ALROL TRUCK WHEELS －AND casters， AND CASTERS，
that save all wearing of floors．
Comple＇ve riducks． CEO．P．©LARK，

F f $\frac{1}{4}$ CQMPLETE STEAM PUMP哃 HHH ONLY SEVEN DOLLARS OF YOUR＊OR WRITE，
DEALER．TO US FOR PRICES． for VanDuzen＇s Patent GNOCINMAKT： $\mathrm{O}=1$
The Scientific A merican PUBILCATIONS FOR 1890 ．
The prices of the different publications in the United
States．Canada，and Mexico are as follows： The Scientitic American（weekly），one year ．$\$ 3.50$ The year．．．．．．．．．．．． 5.00 The Scientiff A merican，Spauish Edition（monthly）${ }_{3} .0$ T The Scientitic American，Architects and Builders ${ }_{2.50}^{\text {Edition（monthly），one year．}}$ The Scientiflc American and Suppleme The Sclentific American and Supplement，\cdot
The Scientific American and Architects and Build－
ers Edition， The Scientionc America，supplement，and Archi－
tects and Builders Edition． Proportionala，Rhich we pay．Remit
This includes postage，which
or epress money order or draft to order of
MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway，Ne

D Z C NEES \＆HEAD MOISES CURED bF fortable succoantu1 whershll

THE CELR
The Eagle Ejector．The Best Jet Pump Made． Felthousen＇s Cylinder Oil Pumps；Improved Gauge Cocks；Buffalo Duple
Drills；Combination Pipe and Nut Wrench；Compression Grease Cups． BUFFALO GLASS OIL GUPS AND LUBRICATORS．
Pop Valves；Steam and Water Gauges；Single Bell and Chime Steam Whistles；Piston and Valve Rod
Gacking：Supplies all kinds for Engines and Boilers． FELTHOUSEN \＆SHERWOOD， 120 Church St．，Buffalo，N．Y．，Sole Manufacturers．

PCRRFORATEDDETALSSAMINING SCREENS
 AHARINGTON \＆KING PERFORATING © ，CHICAGO．

IMIEIROTTED

 PLANERS A SPEOTATMT．BRETTELL \＆WILSON，Water Street，ROCHESTER，N．Y

 inc tool extant．
Saves its cost in ol
avery sh ott

25 to 50 per cent．Saving！ TEIE MIACIKMT Autiomatic Sprinker Thermostatic Fire Alarm Operated by Electricity． Positive in its action．Wasily tested．Indorsed by Underwriters．Estimates
given free on application． The J．C．MACKEY CO．， 316 \＆ 318 S．Water St．，Syracuse，N．Y．，U．S．A．

The faces of these Hammers
can be easily replaced． Useful to all Metal Workers． XV．XV．OLIVER，Buffalo，N．Y．

ECONOMY HEATERS

WARM AIR COMBINATION

 Steam \＆Warm Air
ATT TPETM TRERONTH

Send for 88 page illustrated catalogu
d．F．Pease Furnace Co． sgreoneo N．Y．Toronto Ont．

POP SAFETY VALVE WATER RELIEF VALVE $\mathrm{Y}_{0} \mathrm{O}^{3}$ WATER RELIEF VALVE QU STEAM ENGINE INDIOATOR Single Bell Chime Whistle，and all Instruments CROSBY STEAM GAGE \＆VALVE CO．Bos Bostoiver Mase．

EVANS FRICTION CONE CO．

FRICTIONAL GEAREING for REGULAT－
ING and CHANGING SPEED of all MACHINERY．
The speed can be quickly and easily varied while run－
ning from 1000 to 200 feet per minute．They are PROMPT，EFFICIENT，and NOISELEESS．
Address， 85 Water Street，Boston，Mass．

After Being on the Market Four Years

SCIENTIFICAMERICAN

s the oldest and most popular scientifc and
mechanicall paper published and has the largest
sirculation of any paper of its class in the world． nully illustrated．pest class of Wood Engrav．

A EHITECTS \＆\＆BUILDER S A great success．Each issue contans colored
ithhorraphic plates of country and city residid．
ces or public juildings．Numerous engravinge

PATENTS 40 Years＇experience and have hade made over lovotoo applications for American and For－ eign patentis． Send for Handbook．Corres－ TRADE MARKS． Cop YRIGHTS，for books，charts，map\＆

Mechanical Drawing SELF-TAUGHT.
Fourth Edition, thoroughly revised and corrected.

JでST READTV.

Mechnical Drawing Self-Taught; Compris-
ing Instruction in the selection and
Preparation of Draminn Instrutents, Biementary instructionin race Simple Geomerry and eiementary Me chanism, inciud-

BY THE SAME AUTHOR.

 Frfteenth Edition, tho ionghl revised and in great parit

 tifo Ilustrated circulars.giving the full tables of con
tents of all the above worss, sent freeto any one who will
put The above or any of our Books sent by mail. free of
postage, at the publication prices, to any adadress in the worli.

 HENRY CAREY BAIRD \& CO.

(1)

THE AIR BRUSH

THE BEST FOR READY-REFERENCE. THE INTERNATIONAL CYCLOPEDIA $\begin{aligned} & \text { is a complete, comp rehensive, ready- } \\ & \text { reference } \text { cyclopedia, published four }\end{aligned}$ years ago, at the lowest cost consistent with good paper, good type, good binding, and good editing, and is better to-day because of careful revision.
No other cyclopedia approaching it in size-15 volumes, with $\mathbf{5 0 , 0 0 0}$ titles-is sold at so low price, and no other so generally contains the latest information and statistics. Yet its . cost is moderate,
and terms of payment easy-if you wish. Delivered free of expense. Correspondence solicited. Salesmen wanted. Address, SUBSCRIPTION DEPARTMENT, DODD, MEAD \& COMPANY, Publishers, 753 \& 755 Broadway, New York.

NEW YORK BELTING AND PACKING CO. John H. Cheever, Treas. 15 PARK ROW, New York. VULCANIZED RUBBER FABRICS
FOr Mechantcal Purposes.
RUBBER BELTING,
Packing, Hose,
Vulcanite Emery Wheels, Rubber Mats, Matting \& Treads

 THE IIOTOR OP TMI 19tb CEMTORI used any place. by any one. for any purpose.
No Engineer, no Boiler, no Gauges, no Danger. Cost of operation
abouthone
ete., address, Petc., address, p. O. Box 148 .

ICE and REFRIGERATING MACHINES The Pictet Artificial lce Company (Limited), Room 6, Coal \& Iron Exchange, New York.

ANTERIN

0 TANLEY'S ODD JOB eventy-Five Cent old by Hardware Dealer EE ONE OF THESE TOOL

 $3 \frac{\text { NOW READY. }}{3 \text { xperimental }}$

By GEO. M. Hopkins. 740 Pages. 680 Illustrations. PRICE, by mail, postpaid, . . $\$ 4.00$ SEND for FREE ILLUSTRATED CIRCULAR and MUNN \& CO., Publishers, 361 Broadway, N. Y. $\$ 10.00$ to $\$ 50.00 \begin{gathered}\text { per night. } \\ \text { ifithat } \\ \text { ness. }\end{gathered}$
 Thomas Hall, 19 Brom field Sti, Boston, Mass.
Manufacturing Electrician and Optician

[^0]WORKIIIG MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Send for Model Circular.

r. Jones Bros. E Co., Cin ti. 0.

STEAM PUMPS FOR ALL PURPOSES. Hall Steam Pump Co.

91 LIBERTY ST New York.

GLASS ENAMELED

Steel Casks

 Pfaudler Vacuum Fermentation Company,
cos wilder Building, Rochester, N.x., \mathbf{U},
 HOWARD IRON WORKS, Buffalo, N. Y.

TOOL AGENTS WANTED
 OTTO GAS ENGINES FOR SALE

THE BACKUS WATER MOTOR.|THE BACKUS EXHAUST FAN.

 Send for speci-1 circulars to TMIE BACIKTS WATER MMOTOR CO., ANewark, N. J.

2fdeertisements.

 ment as the letter press.
received an anbilication oftce
ink to appear in next issue.
 KEY-SEATING MACHINES \& 20" DRILLS New and Second-Hand Machinery SEND FOR PRICE LIST OF
Lathes, Planers, Shapers, Engines, Boilers, etc W. P. DAVIs, Rochester, N. Y.

Established 37 years, and at present the largest Elevator Works in the world. OTIS BROTHERS \& CO., General Offices, 38 Park Row, New York City, and branch offices in nearly every principal city on the globe. Elevators for Passengers and Freight. They are smooth-running, economical, and above all SAFE.
\%…"
NTER,
MTMMAKER, MIDMAKER,
MIGHT,
CABSAKETMAKER,
$\boldsymbol{T} O \boldsymbol{T} \boldsymbol{O}$
 CHAS. A. STRELINGER \& CO., Detrolt, Mich.
 JENKINS' AUTOMATIC AIR VALVE No do may, whit he expan-

 H. W. JOHMS MFG. CO., 87 Maiden Lane, N.Y.

PRINTIING INTKGS,

LOVERS OF GOOD AND HEALTHY COOKING

 VVilmot

he

The Nevy Smith Premier TYPEWRITER FXCELILENT FEATURES:

SOLIDLY CONSTIRUCTED !
VERY DURABLE
Unequaled is all essentials of a perfect writing machine. peed, ease of operation, pernament alignment an
durability a speciatty, AII type clemaned in
ten seconds witliout soitink the hneds. seconds witliout soiling the h
Send for Catalogue and Price List.
The Smith Premier Typewriter Co. syRACUSE, N. Y., U. s. A.

 IIFiter 1s Oleaned Onee Each Day. Gaibe Gleaned in 10 Minutes.
LARGE SIZES FOR MILLS AND WATER WORKS. NATIONAL WATER PURIFYING CO.,

Gates Rock and Ore Breaker Weight ; als
Weight.
3 100
 States, and send to the address below, the advertisement of any illustrated paper or magazine containing so much high-class matter for so little money as the following advertisement of the New York Ledger for 1890 announces :

STRANGE TIDINGS FROM UNFREQUENTED LANDS. A series of eight articles by Herbert Ward, the companion of Stanley in Africa. These articles will cover five years' adventures in Africa, and they will be illustrated by sketches made by Mr. Ward on
the spot, and by photographs taken by him in Africa. These pictures will throw much light upon the manner and customs of the spot, and by photographs taken by him in Africa. These pictures will throw much iight upon the manner and customs of
the hitherto unknown cannibal tribes of Africa. Rev. E. R. Young, the celebrated missionary, will furnish fifteen articles on the experiences and adventures of himself and his wife during twenty years' residence in British America, twelve hundred miles north of St. Paul.-Leo Hartmann, Nihilist, writes twelve sketches showing how
 The first of these souvenir supplements will be a Poem by John G. Whittier, illustrated by Howard Pyle, and ongraved by H. Wolf, R. G. Tietze and E. A. Clement. The next souvenir will be a beautifully illustrated poem by James Russell Lowell.
SEREAL STORIES BEAUTIFULLY ILLUSTRATED. Continued stories will be coraBuruett, Anna Katharine Green, Elizabeth Stuart Phelps, Robert Louis Stevenson, Col. Thomas ${ }^{\text {W }}$. Knox, Albion W. Tourgee, Prof. W. C. Kitchin, Robert Grant, Frank H Converse, Harold Frederic, and others.
CONTINUED ARTICLES. These articles wore written especially for the "Leelger" by
 persons most eminently fitted to treat that particular subject assigned to each. -The Hon. George Bancroft con-
tributes three articles on The Battle of Lake Erie, beautifully illustrated. -Hon. Henry W. Grady tributes three articles on The Battle of Lake Erie, beautifully illustratod--Hon. Henry W. Grady
farnishes six arti cles on The Wonderful Development of the New South. James Parton contributes furishes six arti clos on The wonderful Development of the New South. Jomes Parton contributes
a series of articles on Incidents in the Life of Andrew Jackson.-Rev. John R. Paxton, D. D., contributes six articles on Experience in My Army Life.
POPULAR INPORNATION. Throughout the year the "Ledger" will contain hundreds mount of beneficial information that will be of inestimable value to those who are in search of something instructive and useful.-Prof. J. H. Comstock, of Cornell University, will contribute a series of six useful papers on the study of insects. Prof. Comstock treats of bugs that are useful to the agriculturist, as well as those that are destructive. He points out in the clearest scientific way how to destroy the pests of our fields.- Prof. Alexander M. Stevens will explain
the manners and customs of the Moki Pueblos, a peeculiarly strange tribe of Arizona Indians. by special arrangement, contributing a series of popular scientific sketches, embracing the observations of the writer during by special arrangement, contributing a series of popuar scientint sketches, embracing the observations of the writror during
his investigations into the onfamiliar phenomena of natural history and occult science. C. F. Hor contributes an extended series of articles on singular aspects of animal life on sea and land. His articles are brimful of information.
SHORT STORIES COMPLETE IN EACH NUMBER. Hundreds of illustrated fascinating authors as Madeleine Vinton Dahlgren, Col. Thomas \mathbf{W}. Knox, The Marquise Lanza Margaret Deland, Julian Hawthorne, Harold Frederic, Harriet P Pscott Spofford, Clara Whitridge, George F. Parsons, Marion Harland, Mary Kyle Dallas, Amy Randolph.
IMPRESSEVE PAPERS. These papars are a medium through which the readors of the of the day. The benefit derived from these articles will "Lin itself compensate any one for the price of the "Ledger", "Mu at Halstead contributes a serias of papers on The Journeyings of a Journalist, being the experience of the athor during his travels Around the Globe. Rev. Dr. McCosh, Ax-President of Princeton College, furnishos a series of papers on the prosent state of religious thought and dovelopment, ontitled On the Border Land of
Religion. explains how Egypt fell into a state of ruinous distraction, consequent on the decline of the Roman government, and how explams species of barbaric rudeness superseded the refined habits of the peopple.- Rev. Dr. Henry M. Field contributes
ever a paper on The Lopez Expedition, the first of a series of articles descriptive of thrilling historical opisodos.-Many thar highly improssive papers are in preparation by M. Wmory J. Haynes, and Ger Rev. Dr. John Hall,
HOUSEHOLD ARTICHES. Six articles will be contributed by Miss Parloa on _1 American Cookery, explaining why it is imporfect series of articles on Common Sense in the Nursery, offering valuable suggestions concerning the care of children. DTMER FEATMURES. The "Ledger" will also contain Historical and Biographical Items, Answers to Correspondence, and a vastquantity of matter interesting to the household.

Send Only \$2 for a Year's Subscription,

Or Send Six Cents for Sample Copy and Illustrated Calendar Announcement, to ROBERT BONNER'S SONS, 195 William St., New York.

We Will Give a Year's Subscription Free to the NEWYORKLEDGER to every reader of this advertisement who will cut out of any paper in the United

[^1]
Abstract

[^0]: Modern Smoking Pipes H.G.SCHRAMM CAMDEN.N.J.

[^1]:

