

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, DECEMBER 14, 1889.	ARELEAR.

THE NEW CHICAGO WATER WORES-THE LAKE TONNEL, IFTAKES, \triangle ND CAIRSONS.

Chicago has long been noted for its water works, drawing their supply from the inexhaustible reservoir of Lake Michigan. They have been termed one of the wonders of the world. On March 17, 1864, the work began on a tunnel to be carried out two miles into the lake in order to secure a pure supply. On December 6,1866 , the tunnel was finished, and water was first furrished to the city through it on March 25,1867 . The
original tunnel was in brick, 62 inches higb and 60 same crib, was extended under the city, so as to give inches wide, lying from 66 to 70 feet below the surface an independent supply to the southwestern quarter. of the water. As Chicago lies nearly on a plain, all The original pumping engines had a daily capacity of city levels are referred to this point, tbe surface of the $73.000,000$ gallons. The original tunnel could delilake. It forms a plane of reference, and is termed the ver $57,000,000$ gallons in the same time. In addition city datum. At the end of the tunnel a grated cylinder to the lake supply of water, a number of artesian wells of iron was established, through which the water enters have been sunk; at depths varying from 650 to nearly the tunnel. This intake, for further protection, was 2,000 feet. The water from these wells is not of the surrounded by a crib and break water. Subsequently purest, containing 70 grains of solid matter to the gal $\left|\begin{array}{l}\text { a second tunnel, } 84 \text { inches in diameter, carried out to the }\end{array}\right|$ (Continued on page 372.)

THE NEW CHICAGO WATER WORKS-THE LAKE TUNNEL. INTAKES. AND CAISSONS.

Frientific Ammericam.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. for the U. S. or Canada.
One copy, six months, for the U. S. or Canada
One copy, one year, to any foreign country bat
Remit by postal or express money order
A Acientipic American. for allttle over one year, may remit sliceive the Colonial bank notes. Address

MUNN \& CO., 3il Broadway, corner of Franklin Street, New York:
The Scientifc American Supplement
ls a distinct paper from the Scientific American. THE SUPPL Ement Is lsuued weekly. Hvery number contains 16 octavo pakes. uniform in slae
with ScIENTIFIC AMERICAN Terms of subscription for SIPPLEMENT, with Scientific ambrican. Terms of subscription for Sopplement,
85.00 a year, for U. S and Canada. 86.00 a year to forelgn countries belong 85.00 a year, for U. S. and Canada. 86.00 a year to forelgn countries belong-
Ing to the Postal Union. Single coples, 10 centa. Sold by all newsdealers througheut the country.
 cosen dollurs.
The safest way to remit is by draft, postal order, express money order. or
rekistered letter. rekistered letter.

NEW YORK, SATURDAY, DECEMBER 14, 1889.
Contente.
(Hllustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 728.
For the Week Ending December 14, 1889. Price 10 cents. For sale by all. newidealers.

Chemistri.-Snbstitute for Klpp's Apparatue.-By Eustace
 CIVIL ENGINEERING.-The Nicarapua Canal.-A Vivid an

 VIII. NAVAL, ENGINEERING.-H. M. S. Infiexible.- A Arst clas

 TECHNOLOG V . - New Drawing Tools.- New and Interestiog
modifcations of existing Instraments for drawling evenly spaced
marile planters, etc. Leading people in the various branches
of industry likely to be interested in the productions of American mechanical and manufacturing skill will be reached by this publication. Printed at the low rate of $\$ 3$ a year, it will have by far the largest and most substantial circulation ever given in Spanish countries to such a periodical.
We shall reserve a limited space for the publication of manufacturing announcements, for which the terms will be very moderate. We need hardly say this opportunity for advertisers to make their productions known and thereby increase their foreign trade is a rare one. Advertisements intended for the first number should be sent in without delay.

ERICSSON'S PHYSICAL STRENGTH.

It is well known that the late Capt. Ericsson was of robust constitution and remarkable power of endur ing continuous sedentary application ; but it is not so well known that he was possessed of enormous physical strength. Of this he was not vain, nor was it often exerted; he husbanded his resources with jealous care, with a riew to their expenditure in useful work. In one or two instances, however, his muscular power was displayed in a startling manner.
He was always very particular about the quality of both materials and workmanship, and on one occasion during the construction of an engine at Delamater's, a certain casting appearing to him doubtful as to soundness, he ordered it to be broken up. And possibly suspecting that blowholes might be plugged, or the suspected piece made to do duty in some way, he in sisted on having it broken on the spot. Some stalwar workmen accordingly attacked it with heavy two handed sledges, but, failing to make an impression, they desisted at length, saying: "We will put it under the drop by and by." His quick temper rose at this, but he spoke not a word; with bis right hand be snatched the sledge from the nearest man, and in an instant it whirled like a meteor before the eyes of the
astonished spectators, the ponderous tool driving its head at the firststroke through the shell of the dubious casting, making it a hopeless wreck. He tossed away the sledge as if it had been a jackstraw, and turning on his heel, strode away with the remark: "Now you nay put it under the drop."
During one of his visits of inspection to the Monitor while she was building, he was annoyed by tripping once or twice over a heavy bar of iron. Turning to wo workmen near at hand, he asked them to remove it ; but they said it was too heavy. Nettled at this refusal, and as if in contempt for the excuse, he made no reply, but stooping, he picked up the bar with his own hands, carried it without assistance across the shop, and threw it on a scrap heap. The two men were amazed, as well they might be, to see a single man, already nearly sixty years of age, dealing in this summary way with a matter which tbey had not ventured to meddle with; they procured some assistance at noon time, and out of curiosity weighed the offendng bar, which showed upon the scale nearly a third of ton.
In the summer of 1871 , the captain, accompanied by his secretary, on nearly every fine day used to cross the river to Hoboken, and take a stroll up around the
 Thin eseoption to the rulue of hip ordianary i uly routine was in conarinaee with the civiee of his physician, who had been called in on accotnt of certain pains in the small of his back, from which he had been suffer ng. And it is mentioned in this connection because Capt. Ericsson himself had been speculating upon the causes of these symptoms, which he persisted in attri buting to the circumstance of over-exertion in his youth, particularly on one occasion when, at the age of 18, he had lifted six hundred pounds, thereby, as he thought, straining the muscles and laying the founda tion for his trouble, though he had experienced no previous ill effect

Whale Break: a Submarine Telegraph Cable. On September 9th a fault broke out in the Santos Santa Catharina section of the Western and Brazilian Telegraph Company's system of cables, but through which signals were exchanged up to the moment of cutting by the repairing steamer Viking. The latter, while engaged on the repair on October 17, picking up toward the fault in 57 fathoms, and about 70 miles north from Santa Catharina, brought to the surface a monster dead whale, measuring about 50 feet long intact, with the exception of the upper part (the belly), from which all the skin had been worn or eaten away leaving only a small portion on the neck and tail; the cable parted at the fault with the strain put upon it in lifting, and the carcass of the whale being relieved of the downward pressure, rose like a torpedo and in flated like a balloon, a portion on arriving at the surface of the water burating and creating a most offensive odor, so that every one was thankful when the cable was cut, and the obnoxious object drifted to lee ward; the tail of the whale had two complete turns round the shank and three or four across the flat or fan part. It would be interesting to know how long this creature had been thus imprisoned; from the advanced stage of decomposition it must have been there some considerable time; its body was covered with barnacles, and some even on the white part, where the skin had disappeared.
It is worthy of note that this cable was laid in 1874, and with the exception of one repair by the contractors in 1875, has never since been touched, and is as perfect as the day it was laid.
The above by Mr. Peters, of the Viking, is the third instance in which whales have broken telegraph cables. The first occurred in the Persian Gulf some fifteen years ago, and the second on the west coast of America, off the Peruvian coast, some seven years since. In both cases the whale was dead wben brought to the surface by the repairing vessel, and was entangled in the cable. Tbe supposed cause is tbat the cables were hung in festoons through being laid too tightly over uneven ground, and that the whales used them as rubbing posts to get rid of some of tbe barnacles with which their bodies are often covered. A 8 wish of the tail can easily account for the cable being twisted round the body, and the weight and the struggles of the animal can easily account for the break. We are inclined to think the weight of the dead decomposing body is more likely to break the suspended bight than tbe swimming strength of the whale, which compared to the longitudinal strength of a cable must be a senall matter. The peculiarity of the case off the Brazilian coast lies in the cable not being broken. Electrical Review.

The steamer City of Paris, of the Inman line, plying between New York and Liverpool, is of 10,500 tons burden, 18,000 horse power, and has maintained a mean speed of 23.73 miles per hour throughout the voyboiler tubes exceed 13 miles in aggregate length
stanley'm Thrilling Rocord or Artican Exploration
Henry M. Stanley, at the head of his exploration and relief expedition, which started up the Congo, on the West African coast, in March, 1887, arrived at Bagomoyo, near Zanzibar, on the east coast, Dec. 4, with Emin Pasha and his principal lieutenants and a considerable number of followers. The day following a serious, if not fatal, accident occurred to Emin, who, being near-sighted, misjudged the height of a balcony in a building where he was being banqueted, and fell a distance of twenty feet. This seems strikingly like a continuance of the fatalism or providence which Stanley appears to think has been a dominant factor with him throughout his last expedition, as set forth in his own words in the following thrilling record of peril, adventure, suffering, and endurance, which comes by cable to the New York Herald. He says
First of all I am in perfect health, and feel like a laborer of a Saturday evening returning home with his week's work done, his week's wages in his pocket, and glad that to-morrow is the Sabbath.
Just about three years ago, while lecturing in New England, a message can: : ${ }^{\circ} \mathrm{m}$ under the sea bidding me to hasten and take gi- ssion to relieve Emin Pasha at Wadelai ; but, as faithful pack-horses, numb sle generally do with : Je generally do with little trifles, odds and
ve the proper burden. ends, are piled on over and
Twenty va ous little conaujsions were added to the principal one, each requiring due care and thought. Well, looking back over what has been accomplished, I see no reason for any heart's discontent. We can say we shirked no task, and that good will, aided by steady effort, enabled us to complete every little job as well
as circumstances permitted. as circumstances permitted.
Over and above the happyendingof our appointed duties we have not been unfortunate in geographical discoveries. The Aruwimi is now known from its source to its bourne. The great Congo forest, covering as large an area as France and the Iberian peninsula, we can now certify to be an absolute fact. The Mountains of the Moon this time, beyond the least doubt, have been located, and Ruwenzori, "the Cloud King," robed in eternal snow, has been seen, and its flanks explored, and some of its shoulders ascended, Mounts Gordon Bennett and Mackinnon cones being but giant sentries warding off the approack to the inner area of "the Cloud King." On the southeast of the range the connection between Albert Edward Nyanza and the Albert Nyanza has been discovered, and the extent of the former lake is now known for the first time. Range after range of mountains has been traversed, separated by such tracts of pasture land as would make your cowboys out West mad with envy. And right under the burning equator we have fed on blackberries and bilberries and quenched our thirst with crystal water fresh from snow beds. We have also been able to add nearly 6,000 square miles of water to Victoria Nyanza.
Our naturalist will expatiate upon the new species of animals, birds, and plants he has discovered. Our surgeon will tell what he knows of the climate and its amenities. It will take us all we know how to say this unexpected field of discoveries. I always suspected that in the central regions between the equatorial lakes something worth seeing would be found, but I was not prepared for such a harvest of new facts.
This has certainly been the most extraordinary expedition I hàve ever led into Africa. A veritable divinity seems to have hedged us while we journeyed. I say it with all reverence. It has impelled us whither it would, effected its own will, but nevertheless guided and protected us. What can you make of this, for instance? August 17,1887 , all the officers of the rear column are united at Yambuya. They have my letter of instructions before them, but instead of preparing for the morrow's march, to follow our track, they decided to wait at Yambuya, which decision initiates the most awful season any community of men ever endured in Africa or elsewhere. The results are that three-quarters of their force died of slow poison. Their commander is murdered, and the second officer dies soon after of sickness and grief. Another officer is wasted to a skeleton and obliged to return home. A fourth is sent to wander aimlessly up and down the Congo, and the survivor is found in such a fearful pest hole that we dare not describe its horrors.
On the same date, 150 miles away, the offleer of the day leads 333 men of the advanced column into the bush, loses the path and all consciousness of his whereabouts, and every step he takes only leads hisn further astray. His people become frantic; his white companions, vexed and irritated by the sense of the evil around them, cannot devise any expedient to relieve him. They are surrounded by cannibals, and poisontipped arrows thin their numbers. Meantime, I, in command of the river column, am anxiously searching up and down the river in four different directions; through forests my scouts are seeking for them, but not until the sixth day was I successful in finding them.
Taking the same month and the same date in 1888, a year later, on August 17, I listen, horror struck, to the tale of the last surviving officer of the rear column at
ter, disaster and death, death and disaster. I see no thing but horrible forms of men smitten with disease, bloated, disfigured, and scarred, while the scene in the camp, infamous for themurderof poor Barttelot barely four weeks before, is simply sickening. On the same day, 600 miles west of this camp, Jameson, worn ou with fatigue, sickness, and sorrow, breathes his last.
On the next day, August 18, 600 miles east, Emin Pasha and my officer, Jephson, are suddenly surrounded by infuriated rebels, who menace them with loaded rifles and instant death, but fortunately they relent and only make them prisouers, to be delivered to the Mahdists. Having saved Bonny out of the jaws of death, we arrive a second time at Albert Nyanza, to find Emin Pasha and Jephson prisoners in daily ex pectation of their doons.
Jephson's own letters will describe his anxiety. Not until both were in my camp and the Egyptian fugitives under our protection did 1 begin to see that was only carrying out a higher plan than mine. My own designs were constantly frustrated by unhappy circumstances. I endeavored to steer my course as direct as possible, but there was an unaccountable infuence at the helm.
I gave as much good will to my duties as the strict st honor would compel. My faith that the purity of my motive deserved success was firm, but I have been conscious that the issues of every effort were in other hands. Not one officer who was with me will forget the miseries he has endured,' yet every one that started from his home destined to march with the advance column and share its wonderful adventures is here to day safe, sound, and well, and the Herald correspondent may interview them to his heart's content. This is not due to me. Lieut. Stairs was pierced with a poisoned arrow like others, but others died, and he lives. The poisoned tip came out from under his heart eighteen months after he was pierced. Jephson was four months a prisoner, with guards with loaded rifles around him. That they did not murder him is not due to me.
These officers have had to wade through as many as eventeen streams and broad expanses of mud and swamp in a day. They have endured a sun that scorched whatever it touched. A multitude of impedi ments have ruffled their tempers and harassed their hours. They have been maddened witb the agonies of fierce fevers. They have lived for months in an atmo sphere that medical authority declared to be deadly They have faced dangers every day, and their diet has been all through what legal serfs would have declar to be infamous and abominable, and yet they live.
This is not due to me any more than the courage with which they have borne all that was imposed upon them by their surroundings or the cheery energy which they bestowed to their work, or the hopeful voices which rang in the ears of a deafening multitude o blacks, and urged the poor souls on to their goal.
The vulgar will call it luck, unbelievers will call it chance, but deep down in each heart remains the feeling that of verity there are more things in heaven and earth than are dreamed of in common philosophy. I must be brief. Numbers of scenes crowd the memory. Could one but sum them into a picture, it would have a grand interest. The uncomplaining heroism of our dark followers, the brave manhood latent in such uncouth disguise, the tenderness we have seen issuing from nameless entities, the great love animating the ignoble, the sacrifice made by the unfortunate for one more unfortunate, the reverence we have noted with barians, who, even as ourselves, were inspired with nobleness and incentives to duty--of all these we could speak if we would, but I leave that to the Herald correspondent, who, if he has eyes to see, will see much for himself, and who, with his gifts of composition, may present a very taking outline of what bas been done, and is now near ending, thanks be t God for ever and ever !

Yours faithfully,
Henry M. Stanley.

Houne Building at the Went.

Building, of course, is active in the new and growing West; but what is equally important and pleasant in point is the fact that more and more attention is paid to architectural excellence and requirements. Superior architects are becoming numerous and are universally employed before constructions of any importance are commenced. The literature, too, of architecture is a very well established feature of the day. As the best periodical in the line, the Architect and Builder edition
of the ScIENTIFIC AMERICAN may be mentioned. It is published monthly by Messrs. Munn \& Co., the noted patent solicitors, No. 361 Broadway, New York. Price, \$2.50 a year.
It is a beautifully illustrated serial of large size, magazine shape, and treats of the subject in all the respects of design, ornament, cost, and economy. The perusal of its pages affords a rich treat of abundant profit to any one the least concerned with or interested in building.
As an educator of the laity and a source of hiats and

While small and medium sized structures receive profuse attention, larger ones are likewise elaborated in plain and detail.
In each number, also, a double page is devoted to handsome houses already built. The illustrations are printed in colors, showing how the finished erections appear appropriately painted.-The Dubuque Trade Journal.

Captaln Robert B. Forben

Captain Robert B. Forbes, one of the last of the old merchant princes of Boston, died at his residence in Milton, Mass., November 23. No man has been more closely allied and identified with the shipping interests of the whole country than he. He took great interest in everything relating to the sea, and introduced many mprovements in the construction and equipment of essels of all classes.
Captain Forbes was born at Jamaica Plains, Mass. on September 18, 1804, and on January 17, 1811, his mother, his brother Thomas F., and himself embarked at Boston on board of the schooner Midas, bound for Marseilles, to join his father. Off the port the schooner was captured by a British frigate, which sent her to Fort Mahon. After considerable delay Mrs. Forbes and her boys reached France. Here the boys were sent to school. The master was as ignorant of English as they were of French, yet by close attention and the use of a French and English dictionary the boys soon acquired a sufficient knowledge of French to pursue their studies. On the 13th of May, 1813, Mr. and Mre. Forbes and their boys embarked at Bordeaux on board the American schooner Orders in Council, bound for Boston. Shortly after leaving this port the schooner was attacked by a British cutter, which she beat off after an hour's fight, but was captured soon after by the frigate Pomone and taken to Lisbon. The Forbes family embarked in another vessel, and were again captnred, but finally reached Newport, R. I., in the ship Ledd.
At the age of thirteen years, Robert B. Forbes went to sea before the mast in the ship Canton, packet, bound for China. When sixteen years old he was third mate; at twenty he was captain; at twenty-six he owned a ship and commanded her; at twenty-eight he left the sea; and at thirty-six he was at the head of the largest American house in China, and a man of fortune. His father was dead and his brother Thomas was drowned at Canton. He provided liberally for his mother and his younger brother, J. M. Forbes. During his seafaring career be traded between China, the United States, Europe, California, and South America and was erninently successful in all his voyages. In 1847 Captain Forbes commanded the United States sloop-of-war Jamestown, laden with provisions for the starving poor in Ireland, and made the voyage from Boston to Cork and back in forty-nine days, and then helped to load the frigate Macedonian on the same errand of mercy. During the war of the rebellion be was employed by the government to inspect the buildingof several gunboats, and had built for himself the frigate Metea, 1,500 tons, to cruise in search of the vessels which were preying upon American ships. In all he built about seventy sail. He took a great interest in everything connected with seamen, so much so that he was called the "Howard of the Sea." He did much and wrote much about the best means of saving life in cases of disaster. In 1882 he published his " Personal Reminiscences," a model of condensed writing. At the age of thirty years he was married to Miss Rosa Green Smith, who died on the eighty-first anniversary of his birth. He had by her two sons, Robert Band and John Murray Forbes, and two daughters. Captain Forbes was a liberal supporter of every benevolent institution for seamen and soldiers. He was almost worshiped by the boys of Milton, for he made for them with his own hands over one hundred models of sail and row boats.
Captain Forbes was for many years a contributor to the Scientific American. His writings are marked by clearness of expression and the practicability of his views. Probably his very last contribution to the press was the article which we give this week on another page. It was written for the Scientific American at Milton on October 26 last, and contains excellent suggestions relating to the need for fresh water basins at our navy yards.

American Lighthousen.

The Lighthouse Board has submitted its report for the fiscal year ending June 30. 1889, to the Secretary of the Treasury. At the close of the year there were under control of the board 1,021 lighthouses and lighted beacons, 1,328 lights on Western rivers, and 4,284 buoys of various kinds. In the maintenance of these there are employed 1,934 light keepers and a number of miscellaneous employes.
The estimates for the ensuing year are $\$ 2,576,700$. The estimates for special appropriations aggregate $\$ 3,290,650$. The deficiency estimate is $\$ 211,496$.
The board reports that the effort to light Gedney
hannel, New York Bay, hy electric lights, has been successful thus far.

A POCKET TICKET CASE.
The accompanying illustration represents a simple and convenient pocket case or receptacle for carrying street car, ferry, stage, and other tickets. It has been patented by Mr. Frank I. Hart, of No. 151 East One Hundred and Twenty-third St.,
 New York City. Fig. 1 shows the device in use, Fig 2 being a sectional view, and Fig. 3 showing the case open for the reception of tickets. The body section of the case is in the form of a box with acentral opening in its top. and a transverse slot at one end, of sufficient width for a ticket to be
passed through, while the cover section is a flanged plate hinged to one end or side of the bottom, its flanges engaging with the inner or outer faces of the body section, or the cover may be held closed by any approved form of clasp. A spring is secured to the inner face of the cover, as shown in Figs. 2 and 3, whereby the tickets are pressed upward to the top of the case, in position to be passed singly out through the slot by a slight pressnre of the thumb or firger upon the uppermost ticket through the opening in the top of the case.

AN IMPROVED SEED DRILL AND FERTILIZER

 DISTRIBUTER.The accompanyine illustration represents a simple form of drill specially adapted for sowing all kinds of garden seeds in rows and for distributing fertilizer. It has been patented by Mr. William H. Genung, of Madison, Ohio. The main frame has a top plate, in

GENUNG'S "IRON RING" SEED DRILL AND FERTIL-
the middle of which, to the rear, is held a seed hopper having on its bottom a flange resting on the top plate, the flange having a downwardly extending lug passing through an aperture in the top plate. The rear part of the flange has a straight side, against which works an eccentric cam pivoted to the top plate, whereby the hopper is locked in position on the top plate. For distributing fertilizer a larger hopper is employed, either being readily locked in place by means of the eccentric cam. In the bottom of the hopper is an aperture, registering with one in the top plate, whereby the seed passes to the discharge spout, in front of the lower end of which is held a vertically adjustable plow or runner adapted to form a V-shaped furrow for the seed or fertilizer. On the spout is also pivoted a rearwardly extending forked arm, on which are held covering disks adapted to close the furrow held covering disks adapted to close the furrow
after the seed or fertilizer has been dropped. The amount of seed or fertilizer delivered is regulated by a

WILSON'S CAR DUMPING DEVICE.
disk pivoted to the top plate and extending under part of the bottom of the hopper, the disk having nine different openings of varying sizes, any one of which can be brought to register with the aperture in the bottor of the hopper and the top plate, to govern the amount of seed passing down the spout. Near the lower end of the hopper is a feed wheel, operated by a sprocket chain, from the front driving shaft, whereby the seed in the hopper is kept from clogging in its passage to the spout. Markers are attached to the rods which extend from each side of the frame, to mark the position of the next following row on each side of the machine, and either one or both of the markers can be held out of contact with the ground by means of cords passing through eyes on the under side of the handles. A considerable number of these machines is already in use, and they are said to prove highly satisfactory.

Ullizing Niagara Falls.

The town of Niagara Falls, Ont., has in course of construction a new system of water works. The work is interesting from the fact that a greater part of it is being done near the brink of the Horseshoe falls. A tunnel 125 feet long, 6 by 7 feet in size, the mouth of which is 35 feet below the brink of the precipice, and which has now reached a depth through solid limestone rock of about 50 feet, is being made to serve as a tail race from the wheel house to the pump house. These buildings will stand just beyond the Table Rock House. The necessary water to operate the works will come to the wheel house through a wooden tube 6 by 8 feet in size, and about 600 feet long. A shaft is being sunk through the rock to allow of the discharge of the volume of water coming through the tube on to the water wheel and into the tail race or tunnel. At the upper end of the wooden tube will be an open cut 12 feet wide and 11 feet deep, extending about 150 feet outward toward the northern end of Cedar Island, where the water is deep. Outside or inside the wooden tube will be placed a 14 inch pipe, the end of which will extend some few feet beyond the mouth of the open cut near Cedar Island, and through this pipe will come the water that will be furnished throughout the town for general use. Work on the tunnel is carried on night and day. The works are expected to be in operation by June next.

Removal of Moles.

In a recent number of the Practitioner Dr. Jamison writes on the use of sodium ethylate in removing hairy moles on the face. He operated in this way. The hairs were cut off as closely as possible with a very fine pair of scissors, and the mole was then painted over with sodium ethylate, a fine glass rod being used. When the mole had a varnished look the ethylate was gently rubbed in with the glass rod, to make it penetrate more deeply into the hair follicles. The mole had quite a black look when the operation was over. A hard crust formed over it, which was nearly three weeks in becoming detached. When it came off the hairs were seen to be destroyed, and the surface of the mole had a smooth, somewhat cicatricial appearance, of a much lighter color than beiore; and this favorable condition continued until the mark was scarcely noticeable.

AN IMPROVED CAR DUMPING DEVICE

A device to facilitate the dumping of four-wheeled cars, used to transport ore, coal, sand, earth, etc. whereby the cars way be automatically discharged of their contents at the edge of an embankment or the end of the track, is illustrated herewith, and has been patented by Mr. Charles F. Wilson. The body of the car is hinged to the terminal sloped ends of the car frame, the point of connection being such that, when loaded, the car body will be retained upon the frame by gravity, but the center of gravity is sufficiently near the hinge to readily permit of the tripping of the body over the sloped ends of the frame, by the sudden arrest of a forward motion in that direction. Near the edge of the embaukment or other point where the load is to be discharged, a bracket stand is secured upon one of the cross ties, midway between the rails, and a bell crank lever is pivoted to rock upon a shaft supported by the bracket, its limbs being at right angles to each other, as shown in the small view. The limbs of the lever are of such length that they will project above the axles of the car, the outer limb being straight and the inner one having a right-angled projection. As the car moves toward the point of discharge, its front axle abuts against the vertical limb of the bell crank lever, when in the position shown in the small view, the further movement of the car rocking the lever to elevate
its prostrate limb between the front and rear axles, and cause the right-angled projection of the latter limb to hook above the rear axle of the car, thus suddenly arresting the car and dumping the load. The backward movement of the car restores the tripping lever to its original position, ready to engage the next loaded car.
For further information relative to this invention address Mr. R. C. Macy, Breckenridge, Col.

IMPROVED DEVICE FOR SANDING RAILROAD TRACKS. An attachment especially adapted for street cars, enabling the driver to conveniently sand the rail in front of the wheel whenever desired, and prevent clogging of the sand in the discharge spout of the sand box, is illust rated herewith, and has been patented by Mr. John W. Bates, of No. 31 Willoughby Street, Brooklyn, N. Y. The sand box is located under the seat. of the car, and on the lower end of the spout leading therefrom a valve is hinged in an inclined position. The valve is pivotally connected with one end of a rod which passes upward and horizontally through a barrel, in which a coiled epring is secured to the rod, as

BATES SANDING ATTACHMENT FOR CARS.
shown in the small figure. The rod extends outwardly under the car platform, where it is pivotally connected with one arm of a bell crank lever, the other arm of which is connected with a short rod passing upward through the bottom of the platform, and having on its upper end a knob adapted to be pressed upon by the foot of the driver. When the driver presses on this knob, the valve rod is operated through the bell crank lever, and against the tension of the spring in the barrel through which the rod passes, to open the valve at the bottom of the spout, the spring operating to close the valve when the pressure on the knob is removed. In order to prevent clogging of the sand in the spout, an upwardly extending crooked agitating rod is connected with the inner face of the valve, to agitate the sand as the valve is opened and closed.

AN UNLOADING ATTACHMENT FOR CARS.

The accompanying illustration represents a recently patented device to facilitate the unloading of coal and other cars, when the material to be unloaded is of such a nature that a shovel cannot be readily inserted until a portion of it has been removed by the hands of the laborer, to expose the floor of the car body. It consists of a shoveling plate, or guide rest, made of sheet metal, bent upon itself along its upper edge to orm a hollow half hinge, as shown in Fig. 1, a hinge rod passing through the half hinge having its bearings in the sides of the car body, as shown in the sec tional view, Fig. 2. The same kind of a shoveling

board can be used on covered box cars for unloading ear corn, potatoes, coke, etc., the bottom of the car being filled at the ends first, by turning up the shoveling board, afterward turning it down to rest upon the car floor, when the remainder of the load is added In applying such a shoveling board to a grain door, the board should be made to run from one end of the door to the other, the board beingturned up out of the way when the door is to be pushed to one side.
For further information relative to this invention address the inventor Mr. J. S. Harshman, Harshman, 0.

THE BEAVER (CABTOR FIBER).

Among the rodents there is not another creature about which there have been so many fabulous stories as there have been about the beaver. The accounts of his skill in building, specially, are exaggerated, and recent researches have furnished the first satisfactory accounts of his habits.
In regard to the present distribution of the beaver in Europe, the greatest numbers of them are found in Poland, Russia, Sweden, and Norway, although isolated specimens are encountered on the Danube, Moselle, Weser, and other rivers of Central Europe. Formerly they must have been very numerous in Germany and the neighboring countries, for the names of many rivers and places indicate their presence. Thus, for example, the "Bohrfluss" in Silesia has, doubtless, derived its name from the Flemish word " bohr" (beaver), and the name of the imperial castle " Babelsberg" can be traced to the same source, "babel" meaning the same as "biber" (beaver.) The greatest numbers of these rodents are now found, however, in Alaska, which exports 30,000 skins annually. The darkest skins are considered the most valuable, the prices of such.ones ranging from $\$ 12$ to $\$ 14$.
pressed, snout blunt, neck short, back arched, and his eyes are rather small. His small ears project very little from the fur, and can be laid down flat, so as to nearly close the ear openings. The incisors are extraordinarily strong, and project; and besides these, each jaw is provided with four molars. His legs are short and muscular. Each foot hasfive toes, and the hind feet are webbed. Both the male and female are provided with castoreum-secreting glands. In trade there is a dis tinction madebetween the Siberian and American castoreum, the former being considered the most valuable A half counce of this salve-like mass costs from $\$ 20$ to $\$ 24$. It is used in medicine as an anti-spasmodic. Each litter consists of from two to four young ones, which are weaned when about four weeks old. In less than two months they have gained sufficien strength to be able to follow the mother about. At the end of a year the young beavers are fully grown.Illustrirte Zeitung.

Suiphur Recovery.
The chemical section of the British Association paid a visit during the late meeting to the Jarrow Chemical Company's Friar's Goose Works, where the ndw sul-
where it burns, and the sulphurous acid produced passes with that derived from the pyrites directly into the vitriol chambers. It is calculated that about 75 per cent of the total sulphur present in the alkali waste is thus recovered.
The Newcastle Chemical Works Company, through the enterprise of Messrs. Allhusen, will shortly have the largest plant at present made for the process, and will be able to convert the whole of their waste into marketable sulphur. The sulphuric acid used on these works is all derived from pyrites smalls, containing about 50 per cent of sulphur, and about 30,000 tons of pyrites are burnt annually to produce sufficient acid to decompose the 50,000 tons of salt which the company require per annum. This quantity of acid will therefore give 15,000 tons of total sulphur at present lost in the waste, and which the new plant is meant to recover, or, assuming that two-thirds only is recoverable, will mean a yield of 10,000 tons of sulphur per annum. Thekilns forgenerating the carbonic acid required to effect the decomposition of the waste are of special construction, being built on the Dietz system, and fired with cinders and refuse coal from the other parts of the works. These works at present can produce annually about

THE BEAVER (CASTOR FIBER)

Our cut shows a female with her young at home. On the farther bank we see the male, peeling and piling up pieces of wood, which furnishes the principal material for their so-called "lodges." These lodges are made of branches and sticks thrown together in confusion and cemented together by quantities of sand and mud. The beavers fell their building material by means of their very strong teeth; they bite right through inch thick sticks, while the stems of larger growth they eut down by gnawing around them. When felled, the trees are first robbed of their branches, then cut up, and the pieces used in building. The bark, which is their favorite food, is eaten at once, or stored away.
When completed, a lodge looks like an arched oven, and contains room for storing their winter food, besides the space in which they sleep. The beavers work incessantly on their dwellings, enlarging and improving them, carrying in provisions, etc., until the frost puts a stop to this industry. They erect these skillful structures only when living in large companies. Individuals living by themselves dig tunnels, which begin below the water level and end at a distance from the bank
The beaver is one of the largest rodents. A full-grown male measures from $21 / 2$ to 3 feet in length, and weighs from 40 to 50 pounds. His tail has a scale-like covering, his body is rather plump, his head broad and com-
phur recovery process of Mr . Chance is now at work and to the Newcastle Chemical Works Company, where plant to the value of $£ 60,000$ is now being erecte. for the same purpose. At the Friar's Goose Works the plant is capable of treating about one-third of the total waste produced at the company's works, and roll brimstone and "flowers of sulphur" are now among their salable products. It will be recollected tbat the new process is based on the fact that carbonic acid gas decomposes the calcium sulphide of the waste in pres ence of water, first into carbonate of lime and calcium sulphydrate, and finally reacts with the latter, forming a second quantity of carbonate of lime and sulphuret ed hydrogen gas. The plant is so arranged that the process is a continuous one, the carbonic acid being led under a pressure of 40 pounds into large tanks containing the alkali waste arranged in series at such a rate that at the end of the series pure sulphureted hydrogen gas is evolved and collected in gas holders. The operator is able to introduce the carbonic acid into any of the tanks by turning valves, und the gas which issues from the different tanks is tested from time to time by burning in a Bunsen burner, so that only a gas rich in sulphureted hydrogen is allowed to enter the gas holders. At the Friar's Goose Works, only part of the sulphureted hydrogen produced in this way is converted into sulphur in the Clauskilns. The remainder is introduced direotfy into the pyrites kilns,

18,000 tons of bleaching powder and 20,000 tons of 60 per cent caustic soda. The salt used is obtained from the company's salt works at Cow pen Marsh. South Durham, where extensive beds of rock saltexist at a depth of 1,000 to 1,200 feet. In addition to the new plant, the visitors had an opportunity of visiting the old works, and were shown the manufacture of 77 per cent caustic soda, which is replacing the cruder forms of the article in paper making and in other industries which can be more economically worked with a strong and pure lye derived from a high strength caustic.

Niter Deposita

Caves containing deposits of earth with from 4 to 30 per cent of calcium uitrate and 5 to 60 per cent of calcium phosphate are common in Venezuela, not only in the littoral mountain chains, but also on the flanks of the Cordillera of the Andes. In these deposits are embedded remains of mammalian bones, preserving their form, but so friable as to fall to powder when they are extracted. They consist solely of calcium phosphate the gelatin has been nitrified and dissolved out, and the calcium carbonate of the bone bas been used up in neutralizing the nitric acid produced. The nitric ferment is found in abundance thronghout the deposits in a very well developed form. Some of these deposits are 10 meters thick. -Jour. Soc. Chem. Ind.

the new chicago water woris.

(Continued from first page.)
lon. The lake water, however, is remarkable for its good qualits. It contains only 8 grains of total solids to the gallon, approximating in purity to distilled water.
Although this original water works had an excellent record, supplying water continuously for many years, under pressure limited by a stand pipe 130 feet high, being interrupted only for a few days during the great fire of 1871, the increase in population of the city has excited apprehensions as to its sufficiency, and new water works, on a greatly increased scale, are now in process of construction. We illustrate these operations, and the views show our readers what is really one of the great engineering works of the day.
The general design of the new works provides for a tunnel which is to extend under the lake for four miles easterly from Park Row. This is to be about double the length of the old tunnel. Under the city , proper two miles of tunnel are constructed, so as to connect two new pumping works, one for the south and the other for the west division of the city. The old system of tunnels and pumping works for the north division of the city will be brought into connection, by means of the tunnel under the city, with the new system, so that old and new tunnels and water works will all be con nected and be susceptible of working together. The original intention was to have built a tunnel of 96 inches internal diameter. Upon investigation, it was found that the ground under the lake was not adapted for so large a structure. A stratum of bowlder clay, suitable for tunneling, was found beneath the lake, but was both overlaid and underlaid by strata of dangerous or unreliable character. The clay layer was too shallow to receive an 8 foot tunnel, so it was decided to construct two 72 inch tunnels parallel with each other, and situated about 50 feet apart.
The work within the city limits was constructed from three shafts, located at proper intervals, and these two miles are now complete. As regards the lake tunnel, about threequarters of a mile are now finished, leaving a little ofer three miles still to be built.

The work under the lake is being constructed from four shafts, the first one being situated on the shore at the foot of Park Row. The depth at which the tunnels are built varies from 75 feet to 110 feet below the city datum. The lake shafts are three in number. The first is located one-half mile from shore. A pumping station was neceseary at this.paint during the constrnction, in order to keep the worke drained, owing to the grade. From the standpoint of the city's uses itis foreseen that this might be used for temporary supply if the completion of the terminal crib and connections was from any cause delayed. It is also possible that this shaft may ultimately be connected with the South Side water works by an independent tunnel. in order to be used as an intake for a high pressure water service to run elevators and machinery. The other lake shafts are two and a half miles and four miles from shore. The two and a half mile shaft is a structural one only. All the permanent shafts are heavy cast iron cylinders, built in sections, protected by hollow cribs or caissons.

The caissons for the first two shafts in the lake are built of 12×12 timbers, bolted together by $11 / 4$ inch drift bolts. Taking as an example the two and a half mile caisson illustrated in one of our views, it represents two concentric pentagons, with their parallel walls twenty feet apart, providing an inner clear space of about 28 feet in diameter, the outer diameter being 72 feet 6 inches. The almost annular space between the two pentagons is filled with heavy rock, which rests upon the floor or bottom of the structure, which is made quite water tight. This fioor extends over the area between the two pentagons, leaving the center well free. The pentagonal shape of the caisson affords a good place for vessels to lie at, each side being 47 feet 6 inches in length. The shaft descend through the center of this structure. The half mile shaft is of similar construction, and is the one which it is proposed to adopt as part of the water supply; it is further protected by a breakwater run out from shore. But the work of greatest magnitude is the four mile permanent caisson. It rep resents, in general terms, an annulus or ring of combined steel, timber, granite, and concrete, 125 feet in external diameter at the base, 118 at city datum when in position, 70 feet in internal diameter, and 63 feet in height. The bottom course is of timber. A grillage of solid white pine timbers, 12 by 12 inches each, was built up in the shape of a ring, 13 feet is depth, 125 feet in externa diameter at the base, 123 feet at the top, and 70 feet in internal diameter.
Drift bolts, 1类 inches in diameter, 2 feet long, and spaced not over 6 feet apart, are used to secure the members of this enormous mess of timber; inside and out it is planked with double vertical courses of 6 inch plank, the outer course being of white oak, Shoe conrses of timber, 24 inches deep, runaround its bottom, ontaide and fisida, and two 12 inah courses of timber
were specified to floor the bottom of th well. Upo the top of this ring-shaped structure are based two cylinders of steel plate $\$ / 8$ of an inch thick. The inner cylinder, 70 feet in diameter, rises vertically from around the inner wall of the grillage. The outer cylin der rises from the outside of the grillage with a sligh batter inward; 24 radial bulkheads connect the two steel cylinders. The cylinders and bulkheadsare bolted down to the timbers, some courses of bolts running through the entire 13 feet of timber and 2 feet of shoe courses. Through the timber six ports, 5 feet square. provided with gates and fish screens, are carried for the admission of water. The immense mass, owing to the timber and the air space, as it was built absolutel water tight, possessed considerable buoyancy, and floated on the water after launching and completion The best quality of concrete, with large stones embedded in it, was then filled into the hollow annulus between the iron plates until it was sunk well down nto the water, in order to do as much of the work a

chicago water works-caisson section.
possible near the shore. It was then towed out to its place and more concrete added until it sank and rested upon the bottom of the lake, at this point 42 feet deep. The concrete was then filled up to the level of the top of the steel work. About 24,000 tons of concrete were used for this operation. This brought the upper line of stee within a few feet of the water or city datum plane. Two walls of granite, circular and concentric, were then carried up 8 feet above the iron plates, and the space between them is filled in solid. Upon this foun dation a lighthouse is to be established to warn vessel of the proximity of the caisson.
Within the caisson is the $\mathbf{7 0}$ foot well formed by it, floored with 8 feet of concrete. Here the main inlet shaft is situated, leading to the tunnel. It is a cas iron pipe 10 feet in diameter and $2 / 4$ inches thick, made in sections joined by bolts passing through inter nal flanges.with calked lead. joints. Nearits top two gates. 5×6 feet, are provided for the admission of water. The object of making so massive a structure is to secure it against disturbance from storms and to avoid the necessity of building around it a break water, which, as already stated, was found necessary in the case of the intake of the original water works. These works were put under contract by the city of Chicago with Mr. Andrew Onderdonk, New York, about two years ago. Since that period the work has progressed night and day uninterruptedly, and in two years more it is believed the work will be completed. The end caisson was built under the direct charge of General Charles Fitzsimmons, of Chicago. In many respects the work is unequaled by anything of the kind ever undertaken. The new pumping stations will, of course, be constructed of the most advanced type, and we illustrate in elevation one of the buildings which it is proposed to eregt for such u,se.
Whether the International Fair of 1892 be held in New York or Chicago, it is fair to assume that the new works here described will be one of the important objects for the inspection of visitors to America.

FEAT IN PHOTOGRAPHY.

Trotting horses, leaping acrobats, running hounds, even a locomotive at full speed, have proved comparatively easy subjects for instantaneous photography,
he best mere streaks, not in any way resembling the projectile. This failure to procure a sharp impression is shown by the photographitself to be due to lack of shutter speed.
A recent invention, to which we alluded a short time ince in an article on "The Tachyscope," has appar ontly obviated this difficulty, so that it can no longer be said to be impossible to secure a recognizable pic ure of a flying projectile.
Last year Mr. Ottamar Anschuetz, of Lissa, Prassia, tried some very interesting experiments at Gruson near Magdeburg in Germany, which demonstrate the practicability of photographing a flying bullet by daylight. Mr. Anschuetz constructed a small camera of great strength, in which he arranged a shutter of his own invention, which in this case was operated by an eight hundred pound weight. The shutter is arranged immediately in front of the sensitive plate, and con sists simply of a curtain having a narrow slit as long as the plate, the width of the slit being variable. This slitted curtain passes over the entire face of the sensitive plate, exposing successive portions thereof to the action of the light. This arrangement insures a brief exposure of all portions of the image of the moving figure, thereby producing an extremely sharp nega tive. The slit in the shutter during this experiment was adjusted to a width of 0.002 of an inch.
Fig. 1 of our engraving represents the photograph in its actual size. Fig. 2 shows the photograph enlarged In the field of the camera, which covered a space of 46 feet, Mr. Anschuetz drew a canvas curtain, and a very $131 / 8$ feet suspended a projectile 12 inches long or comparison with a projectile of the same kind to be fired from a cannon. At a distance of 200 feet a wire netting wae placed, which was connected electrically with Anschuetz's drop shutter. The projectile passed through the wire netting at a velocity of 1,812 feet per second, and its image was caught on the sensitve plate after having sped along the canvas curtain a distance of 42 feet. The shutter passed over the plate in the short space of $75-1,000,000$ of a second. The numbers marked on the canvas indicate the distance in meters. The projectile shown below the space between the 10th and 12 th weters is one of those suspended for compari son; the other shown above the 13th meter is the one photographed in its flight.
The photograph we reproduce was furnished us by the United States Photograph Supply Company, of No. 3 East 14th Street, New York City, who represent Mr. Ansehiretz in thfe cotintry.

A Now Antivepitc

Under this title a paper was read before the Medica Society of London, on November 4, by Sir Joseph Lister The antiseptic is the double c.yanide of mercury and zinc, and is prepared as follows :
A soluble double cyanide of mercury and potaseium is dissolved, and to it a soluble salt of zinc is added; the precipitate formed is the double cyanide, which should be well washed with water to free it from any soluble cyanides, as they cause irritation and suppura tion if placed on a wound in the shape of gauze.
One in 2.000 of double cyanide keeps blood serum and corpuscles from putrefaction, but if the wound has developed bacteria a much stronger solution or powder orgauze must be used. In other words, the double cyanide has a strong inhibitory but a weak germicida power. Gauze is prepared in the following way: The double cyanide is triturated with starch, and water is added to this, the result being a somewhat leather-like mass. The water is strained off, and to the mixture of double cyanide and starch sulphate of potassium is added. This enables the mixture to be easily powder ed, and, when it is dry, it is a fine white powder. In order to fix this powder on gauze, 3 per cent or 5 pe cent of it is suspended in a 1 in 4,000 solution of mer curic chloride, when, by the agency of the starch, it sticks so firmly that it cannot be washed ff except with difficulty.
Sir Joseph Lister said that the dressings should be used moist. and be had a little contrivance which he employed to show the surgeons present how they might prepare the gauze themselves, as he had made it a point that the gauze should be made as required. The exact composition of the double cyanide is uncertain, and is being nvestigatod in the Pharmaceutical Research Laboratory.

The Tallent Chimney Yet.

The Clark Thread Company's chimney, at East Newark, N. J., which was illustrated in these columns not long ago, and claimed to

PHOTOGRAPH OF FLYING PROJECTILE

 the skill of the photographer as well as the capacity of planted by a smokestack just finished at Fall River the apparatus employed.
Perhaps the most difficult feat yet attempted in the line of photography is that of catching an impression of a bullet or cannon ball as it flies across the field of the camera. This has been accomplished with varying degrees of succase but most of the specimens of this class of work hitherto produced have been at

Mass., which is 840 feet high above the granite baseand 30 feet square at the bottom. The shaft was built on the grounds of the Fall River Iron.Works, and is, without doubt, the tallest smokestack in America
The tallest Anished chimney in the world is at Paisley, Scotland, and is over 500 feet high. Fall River's new chimney will furnish draught for four new factoriee.

©

Fresh Water Basins for Navy Yards.

To the Editor of the Scientific American
In your paper of this date, page 256 , I find some interesting suggestions on the subject of the improvementof the New York navy yard, and especially in regard to a fresh water basin in which to put iron or steel ships when out of commission, and so preven the rapid deterioration of the plates.
Several years ago I suggested that every navy yard should have what I termed "storage basins." large enough to contain one, or perhaps two, ironclads. My idea was and is to have the basins supplied with fresh water, when any water was needed, from the city water mains, but generally the basins were to be kept dry, so that the bottoms of the ships could be attended to. To haul up iron or steel ships in salt water has always seemed to me to be very much like committing suicide. I think that basins or stalls to contain not over two ships at a time would be better than to have one large basin for what your correspondent calls "our gallant navy." If my plan should find favor, comparatively little water would be required, and it could be procured from the public works. Salt water and bigh tide are good enough to carry the ship into her dock, block her up and let the water run out, close the gate and wash out with fresh water, dry the ship thoroughly inside and out, paint her and let her stand all ready for duty. Each of our yards would probably require three basins each to store two ships. All that is needed will be time and money. R. B. Forbes. Milton, Mass., October 26, 1889.

Stopping Vibrations Caused by Falling Water.
That portion of our space which we are able to devote to auswering the inquiries of our friends who write us, asking questions upon almost every conceivable topic, is far from adequate, and we have to supplement it by sending many more answers by mail than we print in the paper. The following correspondence covers an instance of this kind, such as it is pleasant to record, where our answer exactly fitted a special case, although it was of a kind not likely to occur frequently :

To the Eaitor of the Acientfic Amerian:
We have just let the water over a new dam, with a perpendicular face of is feet, falling on to an apron 4 feet under water: length, 140 ifeet. One end hags close to a stone abatment, opposite end is open, eo one conld
walk in. Water strikes between 5 and 6 feet from base of dam. Sheet of water wavers or flatters, sonnding something like the exhanst of a high pressure steam engine rnnning at medinm spaed. The vibration is felt for a mile around, more on the high gronnd, and sufficient to annoy the in-
habitants. It movesioose windows and doors, also dishes. Please exhabitants. It movesioo
plain canee and remedy.
(Reply.-The vibration of the sheet of water flowing over the dam Is due to the evenness of the thickness of the water. The elasticity of the air confned within the area propagates any vibration that may start in any
part of the falling sheet to the whole mas8, giving it, under certain conpart of the falling sheet to the whole mase, giving it, under certain con-
ditions, a perfect wave, synchronal with the condition of the surroanding ditions, a perfect wave, synchronal with the condition or the sarroninding atmosphere. A ragged edge to the dam or a nnmber of break
sheet at anequal distances will break ap the sound waves.-ED.]

To the Eaitor of the Scientifc Amertcan:
, N. H., Oct. 29, 1889
Your esteemed favor is at hand. Did not expect you to answer by letter. I am very glad you did. Before your kind answer came, a log came
down atrcam, lodging on crest of dam, which stopped a good part of the down atrcam, lodging no crest of dam, which stopped a good part of the
troublesome vibration. We decided to pat a foot bridge on crest of dam, with foarpiers, 12 inches wide, projecting a trifle over edge of dam, and are quite right now. Thanking yon nany times, I am,

Very respectfally,

The Mongolian Pheasant.

This valuable addition to our native game birds was imported from China a few years ago. It has increased with surprising rapidity in western Oregon, Washington, and in the northwestern corner of California, under effective legislative protection.

It is unusually prolific, hatching two and frequently three clutches perseason, the first nest containing eighteen to twenty-five, the last from twelve to sixteen eggs. This accounts for the fact that several different sizes of chicks are frequently seen in one covey. The first brood when hatched is turned over to the care of the male until the second and third broods appear, when all are combined and cared for by both parents.
They do well in confinement. Hatched by the domestic hen, they are as apparently contented in following her as on their native heath; but at the age of six weeks they "shake" their adopted mother and depart, never to return, much to her grief and disgust.

The plumage of the male is extremely brilliant and
tractive. As a table dish it equals the partridge and attractive. As a table dish
prairie chicken of the East.

The motion for an injunction in the case of the Bridgeport Wood Finishing Company vs. The New York Wood Finishing Company recently came on to be heard before Judge Wheeler in the Circuit Court of the United States for this district, and was argued by S. J. Gordon, Esq., for the complainant and Albert Comstock, Esq., for the respondent. The judge sustained the Wheeler patent, and ordered the injunction to issue.

Naval and Marine Requiremente.

If official recommendation were of any avail, the country would long ago have been in possession of war vessels and commercial steamers equal to any in the world. But the dilatory action of Congress in the matter has up to this time kept the United States in the background. We have made a slight progress, however. We have built half a dozen new ships, but they are not of the latest forms, and they are lacking both in speed and defensive power. They can neither resist nor run. Let us hope the new Congress now in session will enact the necessary provisions for a great and effective naval system. The display of congressional enthusiasm and vigor in the premises would give much satisfaction to the people.
The President in his recent message presents the following:
"I recommend that such appropriations be made for ocean mail service, in American steamships, between our ports and those of Central and South America, China, Japan and the important islands in both of the great oceans, as will be liberally remunerative for the service rendered, and as will encourage the establishment and in some fair degree equalize the chances of American steamship lines in the competitions which they must meet. That the American States lying south of us will cordially co-operate in establishing and maintalning such lines of steamships to their principal ports I do not doubt.

We should also make provision for a naval reserve to consist of such merchant ships, of American construction and of a specified tonnage and speed, as the owners will consent to place at the use of the government. in case of need, as armed cruisers. England has adopted this policy, and as a result can now, upon necessity, at once place upon her naval list some of the fastest steamships in the world. A proper supervision of the construction of such vessels would make their conversion into effective ships of war very easy.
"I am an advocate of economy in our national expenditures, but it is a misuse of terms to make this word deseribe a policy that withholds an expenditure for the purpose of extending our foreign commerce. The enlargement and improvement of our merchant marine, the development of a sufficient body of trained American seamen, the promotion of rapid and regular mail communication between the ports of other countries and our own, and the adaptation of large and swift American merchant steamships to naval uses, in time of
"Th
"The enlarged participation of our people in the carrying trade, the new and increased markets that will be opened for the products of our farms and factories, and the fuller and better employment of our mechanics which will result from a liberal promotion of our foreign commerce insure the widest possible diffusion of the benefit to all the States and to all our people. Everything is most. propitious for the present inauguration of a liberal and progressive policy upon this subject, and we should enter upon it with promptness and decision.
"The legislation which I have suggested, it is sincerely believed, will promote the peace and honor of our country and the prosperity and security of the people. I invoke the diligent and serious attention of Congress to the consideration of these and such other measures as may be presented having the same great end in view."
The Secretary of the Navy, Mr. Tracy, is keenly alive to the naval requirements of the country. In his annual report he says:
" The necessities of our vulnerable position demand the immediate creation of two fleets of battle ships. They must be the best of their class in four leading characteristics-armament, armor. structural strength, and speed. Not only must the speed of our battle ships be high, but it must be uniformly high, for the speed of the fleet is regulated by that of the slowest vessel.
" In addition to the battle ships the situation of the country requires at least twenty vessels for coast and harbor defense. The one problem now before the government, in the matter of a naval policy, is to get these
forty vessels built at the earliest possible moment. It is recommended that the construction of eight armored vessels be authorized at the coming session, and that
they be of the type of battle ships rather than coast defense ships. the former being more generally serviceable and there being only three of them now in process of construction as against eight of the latter.
"In reference to fast cruisers, all modern experi ence goes to show that they are essential adjuncts of an armored fleet, and the proportion of three cruisers to one battle ship is believed to be sound and reasonable. This would make the future navy consist of twenty battle ships. twenty coast defense ships, and sixty cruisers, or 100 vessels in all, which is believed to be a moderate estimate of the proper strength of the fleot. Of the sixty cruisers required, thirty-one are now built or authorized. It must be remembered, however, that cruisers have another and
equaily important function in the attack and defense
of commerce. Any stanch vessel with a good coal capacity and the highest rate of speed, armed with a few rapid-firing guns, though built and used principally for commercial purposes, may by certain adaptations in her construction be made readily available for this orm of warfare. The fast transatlantic liners, nationalized in foreign countries, but supported and maintained by American trade and American passengersmany of them, even, owned by American citizens-are a powerful factor in the naval force of the governments whose flag they bear and at whose disposal they must place themselves in tine of war.
It is matter for serious consideration whether steps may not be taken toward the creation of such a fleet of specially adapted steamers of American nationality, owned by American merchants, carrying the American flag, and capable under well defined conditions of temporary incorporation in the American navy. The advantages of such an arrangement, which eularges the merchant marine and makes it at the same time self-protecting, are overwhelmingly great. The dif ficulty is that American capital will not be drawn into the euterprise unless it can be sure of specific compensation for the concessions which it makes to the government--first, in the adaptation of its vessels to the latter's needs, and, secondly, in the surrender of a privilege to use them when the exigency arises. In the absence of such an arrangement, the naval policy of the United States cannot neglect to take account of the fleets of fast cruisers which foreign states maintain under the guise of passenger and merchant steamers.

They constitute an auxiliary navy, and must be reckoned as a part of the naval force of the governments maintaining them. It is difficult to imagine a more effective commerce destrcyer than the steamship City of Paris, armed with a battery of rapid-firing guns. She can steam over 21 knots an hour, and can average $19 \cdot 9$ knots from land to land across the Atlantic. No man-of-war could overtake her ; no merchantman could escape her. A fleet of such cruisers would weep an enemy's commerce from the ocean.
-Our deficiency should be supplied either by a line of fast merchantmen, constructed with special reference to use in time of war, which will enable the govern ment to avail itself of their services at critical moments, or we should build a fleet of at least five firstclass cruisers of the very highest rate of speed, certainly not less than twenty-two knots. The displacement of these vessels should not be less than 4,000 tons. Even such a fleet will not supply the want of swift merchant steamers for coaling and transport service. Colliers and transports must alike be fast, for they cannot fight, and the collier can take no chance of capture, for she carries the life of the fleet. Apart from the want of battle ships, the most marked defect of the present fleet is in torpedo boats. This branch of defense cannot safely be neglected any longer. It is high time that steps should be taken to supply these essential constituents of a naval force. I therefore recommend that the construction of at least five torpedo boats of the first and second classes, in suitable porportions, be authorized as a beginning at the coming session of Congress."
While Congress is deliberating over the above excellent recommendations, let us hope it will also consider the significance from a naval point of vjew of what a railway company just north of us is doing, and which is briefly described as follows:
"The new vessels now building for the Canadian Pacific Railroad, and destined to run on the. Pacific side of the great route about to be established between England and India, are to be fitted with gun platforms. Rapid-fire guns are to be assigned these vessels, and it is understood that the pieces will be carried on board either mounted or stored below decks for immediate use in time of war. The vessels, on the breaking out of hostilities, will be at once turned into armed cruisers The engineer in charge of the construction, Mr. Bryce Douglass, is the man under whose supervision the Um bria and Etruria were built. The total dead weight of each of the new steamers will be about 3,750 tons They will all be ready, it is thought, early in 1891."

New Gas Invention.

The Pittsburg Dispatch describes a new invention by Mr. William Root, which promises important results.
It consists of the combination of air with the gas as it issues from the burner. The experiment made was with a small revolving fan on the same shaft that runs the other machinery. A pipe from this connected from beneath with a glory hole and ran up to the center of the burner. Heretofore it has required the valve wheel on the gas supply pipe to be turned once and a half around to supply enough pressure for the glory hole, but when the air was turned on, the wheel only required to be moved $1 / 4$ inch. The usual pressure to a glory hole is 1 ounce, while in this case the pressure was very small fraction of this amount.
Mr. Root said that by putting the air in all the burneers the pressure in the factory could be reduced to 3 ounces where 16 to 20 are now required.

HOW TO MARE A SIMPLE ELECTRIC TELEPHONE

 REQOIRING NO BATTERYThe engravings represent an electric telephone in the simplest form. This instrument may be made by the use of a jackknife and a few o
the materials of which it is
composed, with the exception of the fine wire on the spool, may be found almost any where.
To make an operative telephone line, one that will work for any distance, say up to five or ten miles, two of these instruments are required, to be connected by the line wires No battery is necessary.
The engravings being of the exact size, it will be unneces sary to give dimensions, as they may be obtained from the cuts.
For the telephone shown in parspective in Fig. 1 and in section in Fig. 2, the following materials are required viz., a small horseshoe magnet of the size shown, a wooden pill box, a block of wood a piece of thin tin plate, one ounce of No. 36 silk-covered copper wire, and a few common screws.

One leg of the magnet is

Fig. 1.-SIMPLE TELEPHONE-PERSPECTIVE VIEW

Fig. 2.- SIMPLE TELEPHONE-SECTIONAL VIEW. broken off, as shown. To

To make the diaphragm cell, A, take a square block ered wire must be passed through a hole in the side of of hard wood and cut in it a circular hole, B, of the the spool, where the flanges join the cylindrical part. size shown on the engraving, and fasten to the apertured block a bottom piece, C, by means of glue or This wire should project from the spool two or three inches, and while the spool is being wound, great care should be taken not to break this projecting end of the wire, as an accident of this kind would necessitate re winding the spool.
The spool may be filled upon a lathe or the bobbin winder of a sewing machine, or, when no better facilitie are available, it may be wound by hand. It is preferable to make the winding as smooth as possible; but this is not essential.

In the diaphragm cell. A near one of its edges, is in serted a second pole piece, G formed like the pole piece, D of the head end of a large common iron screw. The bev eled head of the screw pro jects from the face of the dia phragm cell sufficiently to form a good contact with the remaining pole of the magnet E. It also projects upwardly a short distance beyond the upper face of the diaphrag in cell, so that when the dia phragm, H, is placed over the circular aperture of the diaphragm cell, it will form the other leg, A. is fitted the mortised block, e. To the diaphragm cell, A, make an aperture in which to magnetic contact with the end of the pole piece, G. this block is glued the wooden pill box, a, which is insert the pole, D. This is formed of the head end of The diaphragm, H, consists of a disk cut from a ferroapertured to receive the pole of the magnet. The box a large common iron screw, the beveled part of which type plate or from a thin tin plate, and where it touches may be of the size shown, or a little larger or smaller. projects beyond the diaphragm cell a short distance to the pole piece, G, the tin or japan with which the plate A little variation as to the size will make no appreci- insure a good contact with one of the poles of the mag- is coated must be scraped off to allow the pole piece, able difference in the working of the instrument. In net, E, and the outer end of the pole piece is a short G, to touch the iron of the diaphragm. Between the the center of the cover, j, of the box, a, is made a circular hole, which is flared as shown, to form the mouth piece. To the cover is loosely fitted the thin tin plate which forms the diaphragm, h. Between the diaphragm, h, and cover, j, are placed cardboard rings, i, to hold the diaphragm in place.

To the end of the magnet is fitted a thin spool, f, made of cardboard or wood, and upon this spool is wound the No. 36 silk-coveredcopper wire. The inner end of the wire is carried through a hole in the side of the spool before winding.

In the block, e, are inserted two common screws, p, g, each provided with two copper washers or burrs. Around these screws are wrapped the ends of the wires, n, o, which extend into the pill box and are soldered to the ends of the fine wire on the spool. In the block, e, is inserted a screw, k which bears against the edge of the magnet and clamps
the magnet in working position, that is to say, with the end of the magnet placed as near the diaphragm h, as it can be without producing a jarring sound when the diaphragm is madeto vibrate by talking to it loudly

Fig. 5.-TRANSVERSE SECTION OF BIPOLAR TELEPHONE. diaphragm, H, and the cell, A, is placed a narrow cardboard ring, and above the diaphragm is placed another similar ring, both having an internal diameter corresponding with that of the diaphragm cell. Above the outer ring is placed a piece of wood, I, having an aperture of the same diameter as that of the diaphragm cell. Outside of this ring is placed a mouthpiece, J, which is beveled or concaved. The mouthpiece has a small central aperture, as shown.
The diaphragm, H, must be placed very near but not in contact with the pole piece, D, and $s 0$ arranged that when the diaphragm is set in vibration by sound waves, it will not jar upon the pole piece. The mouthpiece, J, and the piece, I, are clamped to the diaphragm cell, A, by means of common screws, K, and the diaphragm cell, A, is clamped to the poles of the magnet, E, by the wooden crosspiece, L, and the screws, M, passing through the wooden crosspiece into the bottom of the diaphragm cell.
The ends of the fine wire on the spool, F, are uncovThe arrange ment of the line, and the theory of the working of h e instrument are given in connection with the ection with the elephone show in Figs. 3 to 5 in clusive
The instrument shown in these figures is a little more complicated than that shown n Fige 1 and 2 in Figs. 1 and 2, but it is at the same time more effective.
For the construction of this telephone the following materials are required: A permanent horseshoe magnet of about $t h e$ size shown in the en graving, an ounce of No. 36 silk-cov ered copper wire twolargecommon iron screws, such as are used in woodwork, a piece of thin tin plate; and some pieces of wooc and small common serewh.

Fig. 3.-FRONT VIEW OF BIPOLAR TELEPHONE. ered and wrupped around the coarser naked wires, N, O, passing through the side of the dia. phragm cell. phragm cell. Upon the outside of the cell, A, these coarse wires are bent into loops, and small wood screws, P, Q pass through the loops into the the loops into the side of the diaphragin cell, and uponeach of these screws are placed two copper hurrs or washers, between which the ends of the line wiresareclamped.
When two such instrunents a re connected together by means of two wires clam ped by the screws, P, Q as described Q as described, sounds uttered in will be reproduced in the other, and may be distinctly heard, although the volume is considerably reduced When a piece of
iron approaches the pole of a permanent magnet, it reduces the magnetism of that pole, and when the iron is removed from the magnet pole, the magnetism of that pole regains its normal strength. Faraday discovered that when the magnet is inserted into a coil of wire, it produces a momentary current in the coil in one direction, and when the magnet is removed frow the coil, it produces a momentary current in the coil in the opposite direction. Any change in the magnetic condition of a piece of magnetic material contained in a coil produces a momentary current in one direction or the other in that coil. Now, by the vibration of the iron diaphragm of the telephone in front of the pole of the magnet, variations in the strength of the magnetism are produced in the pole, and this alternate increase and diminution of the strength of the magnet acts upon the coil surrounding the magnet core in exactly the same manner as if the has net were introduced int and removed from the coil. The alternating currents thus generated in the transmitting telephone pass over the line and through the coil of the receiving telephone, and these impulses alternately increase and diminish the strength of the magnet in the receiving telephone so that its iron diaphragm is alternately attracted toward the pole of the magnet and then released, thus producing vibrations in the diaphragm of the receiving telephone which correspond to those of the transmitting telephone. These vibrations are imparted to the surrounding air, prodacing sounds like those uttered in the transmitting telephone. These instruments may be used inter changeably as receiver and transmitter. No battery is required, as no microphonic transmitter is employed.

A single wire may be used to connect the screws, P, of the two instruments if the screws, Q, of the instruments are connected by a wire with a water pipe or a metallic ground plate two or three feet square, buried in earth that is constantly moist. In this case the circuit is completed through tbe esrth. If the ends of the line wire are connected with the instruments by means of flexible conducting cords, the disagreeable jarring of the wires will be avoided. No. 12 galvanized iron wire or No. 16 copper wire will make a good line. The wire should be supported at intervals of 200 or 300 feet on glass or porcelain insulators.
The precautions necessary to observein the con struction of this instrument to insure success are briefly as follows: to secure a good contact between the pole pieces, D, G, and the poles of the magnet, and between the pole piece, G, and the diaphragm, H, to have the diaphragm perfectly flat and straight, to provide a perfect connection between the fine wire of the bobbin and the wires, $N, ~ O$, running out of the diaphragm cell, to insulate the line wire conecting the two instraments, to have the diaphragm, H, as near the pole piece, D, as possible without danger of contact therewith, and to clamp the diaphragm by its edges in the cell in such a way as not to bend or buckle it.
The materials for the telephone may be obtained from any dealer in electrical supplies in any of our large cities and towns.

LEWIS MORRIS RUTHEREURD.

Must scientists purẹue their vocation under the auspices of some college or public institution largely from two motives. First, because they are dependent upon the salary of such a place for their means of support, and secondly because the cost of scientific apparatus is usually so great that it prevents private ownership. Very few, for instence; could afford an eqnipment like that of the Lick Observatory, in California, or an outfit similar to that possessed by the Jefferson Physical Laboratory, of Harvard University, A notable exception to this rule, and by far the mosst distinguished private scientist in the United States, is the gentlewan whose career is herewith described.
Mr. Rutherfurd was born in Morrisania, N. Y., on November 25; 1816. He comes of distinguished lineage, for his grandfather was John Rutherfurd, twice elected to the United States Senate from New Jersey, serving from October, 1791, till February, 1798. Senator Rutherfurd's father entered the British army at the age of seventeen, and after taking part in the Canadian cainpaign, under Sir Jeffrey Auherst, resigneid hie commission, married a daughter of James Alexander (thus making bim a brotber-in-law of Lord Stirling), and be came a citizen of New York. The senatorwas educated at Princeton, and studied law. After his admission to the bar he married a daughter of Lewis Morria, and
continued in New York City until 1787, when he.re moved to New Jersey.
His grandson, the subject of this sketch, is the son of Robert Walter Ristherfurd and Sabina Elliott Morris, and was graduated at Williams College, in 1833. Selecting law as the profession which he proposed to follow, he studied under Governor William H. Seward (afterward Secretary of State in President Lincoln's cabinet) in Auburn for two sears, and then in New

Fig. 6.-THE TELEPHONE IN USE.
York City with George Wood, who was at that time one of the foremost lawyers in the country. As Mr. Wood persistently refused public office, his name has been alinost forgotten, but the following anecdote shows the esteem in which he was held by bis contemporaries When William C. Preston, of South Carolina, was about, to argue an important case in the United States Supreme Court, Daniel Websterasked him who was on the other side. Preston replied that it was a man from New York, whose name he could not recall, and said, "A sleepy-looking fellow nained Wood, I think." "If it is George Wood," said Webster, "I advise you to look out how you wake him up." Such were Mr. Rutherfard's legal instructors, and he was equally fortunate in his associates in practice.
In 1837 he was admitted to the bar of the New York State courts, and entered into partnership with Peter Augustus Jay, the son of the Chief Justice who administered the oath to President Washington, in 1789, with whom he continued until Mr. Jay's death, in 1842, and then be becarae associated with Harnilton Fish, who was alterward ©ecretary of State in President Grant's cabinet. Mr. Rutherfurd continued in active practice until 1849, when he went to Europe, remaining

LEWIS MORRIS RUTHERFURD

abroad until 1852. On his return he did not resume his profession, but thereafter devoted his leisure to studies in astronomy and optics. He erected an observatory in the garden of his residence, at 175 Second Arenne, on the corner of Eleventh Street, New York City, and there did his principal scieatific work.
One of his earliest contributions was concerning the
"Companion of Sirius," whose discovery had just been announced by Alvan G. Clark, the well known maker of telescope lenses. Mr. Rutherfurd corpoborated its existence, and says: " Since hearing of the eristence of this star I have never looked for it in vain. Its dif-
flculty is not occasloned by faintness, but by its proxmity to so brightan object as Sirius. I consider it decidedly a brighter star than either of the close companions in the trapezium of Orion; no reasonable amount of illumination in the field extinguishes it."
In December, 1861, at the suggestion of Dr. Wolcott Gibbs, he began a series of experiments with the view of determining the best form of instrument for the purpose of continuing Fraunhofer's observations upon the spectra of the hervenly bodies. He adapted Bunsen's and Kircbhoff's sim ple form of spectroscope consisting of a condensing elescope with adjustable slit, a scale telescope with photographed scale of equal parts showing bright lines upon a dark round, a flint glass prism of 60°, and an observing telescope with Huygenian eyepiece, magnifying bout five times, the whole firmly but lightly mounted on seasoned wood and provided with an adapting tubedin front of the slit, by means of which the spectroscope is hattached to the eye tube of the equilateral. A year later he published his results* in a paper, giving the fixed lines exhibited by the moon; also the lines and bands of Jupiter and Mars, with maps of the spectra of seventeen of the fixed stars, and including a full description of the instru ments that he used.
This was the first work to be published after the great revelations of Bunsen and Kirchhoff, and was the first attempt to classify the stars according to their spectra. While Mr. Rutherfurd was engaged in mak ing there researches on the spectra of the stars, he diacovered the use of the star spectroscope, by means o which it is possible to show the exact state of achro matic correction in an object glass, and is particularly adapted for the rays that are used in photography.
In 1864, after many experiments in various directions, but all undertaken for the same purpose, he succeeded in devising and constructing an objective of $11 \frac{1}{4}$ inches aperture and about 15 feet focal lengtb, corrected for photograpby alone. This instrument was a great suc ess, and was described by him in the Ameriocen Joese nal of Science.t It was constantly used by hin in making negatives of the sun, moon, and star groupe. At the Jrnuary meeting of the National Aca demy of Sciences, in 1864, he presented a paper "On Photographs of the Solar Spectrum," accompanied by a picture that he had taken by means of bisulphide of carbon prisms. It contained more than three times the number of lines that had been laid down within similar limits on the charts by Bunsen and Kirchhoff.
He also was the first to show the double charac ter of the D sodium lines in the spectrum, find ing that " is resolved into fourteen fine and close lines, with a beautiful and symmetrical band of finely doubled lines stretching toward A."
About the eame time he published criticisme on different forms of spectroscopes that had been used by Secchi, Airy, and Donati, and in 1865 produced an automatic form of a six-prism spectroscope, wbich still continues the best in use. \ddagger
In 1868 he built a new objective, with 13 inches aperture and about 15 feet focal length. This glass was an ordinary achromatic, such as is used for vision, and was converted into a photographic objective by the addition of a third lens of flint glass, which made the proper correction, und could be affixed in a few minutes. With this instrument Mr. Rutherfurd made several photographs of the moon that are of remarkable beauty, and have never been surpassed in deli cacy or exactness. One taken on Feb. 27, 1871 is stated by Warren de la Rue to be the finest in existence.
He constructed a micrometer for the measure ment of astronomical photographs for use upoq pictures of solar eclipses or transits and upon groups of stars, of which he has measured severa hundred, showing, as it is claimed by him, that the photographic method is at least equal in accuracy to that of the hellometer or filar-micrometer, and far more convenient. It was suggested by German writer that tbe collodion film was unrelia. ble, and Mr. Rutherfurd published a series of measurements that demonstrated conclusively its fixity under proper conditions.8
In 1870 he constructed a small ruling engine, which produced inference gratings on glass and speculum metal that were superior to all others until the recent

[^0]productions of Prof. Henry A. Rowland, of the Johns Hopkins University. With one of these gratings he obtained a photograph of the solar spectrum that for a long time was unsurpassed.
He published, in 1876, a paper on "Glass Circles for Measuring Circles,"* in which he described an instru ment in which the divided circle was of glass, and showed by readings that it gave a far greater accuracy than could be obtained from divisions on metallic cir cles of the same dimensions
In 1883 failing health led to thediscontinuance of his scientifle work, and in December of this year he pre sented his astronomical instruments to the observatory of Columbia College, where they are mounted.
These included a large equatorial refractiug telescope, with an object glass of 13 inches and focal length of 15 feet, supplied with photographic correcting lens made after his own design; a transit instrument made by Stackpole \& Brother, of New York City, for observations of time; likewise micrometers for use with the large equatorial and a special micrometer for measuring photographs, which had been for several years in

He was one of the original members named in the act of Congress, in 1863, creating the Nutional Academy of Sciences. and has been a member of its council, and has served on various committees. In 1857 he was elected to membership in the American Association for the Advancement of Science, and in 1875 wasadvanced to the grade of fellow. He has been a correspondin member of the Academy of Natural Sciences, of Phi ladelphia, since 1859 , and a member of théNew York Academy of Sciences since 1864. Besides membership in various other scientific bodies, he is an associate o the Royal Astronomical Society, of Great Britain, and his work has been recognized by the gift of various diplomas, orders, and medals, both at home and abroad.

THE LOMINOUS FOUNTAINS AT THE FRENCH EXPOSITION

Among the most wonderful displays, electric and visual, at the recent French exposition were those pertaining to the luminous fountains, which were ar ranged on a grand scale and occupied a large portion
plenty and with dolphins, from which issues water that, falling into a vast basin, afterward falls in a eascade, 130 feet in width. into a lower basin in communication with a rectangular basin 130 feet in length, orming the second piece of water. Finally, the water eaches an octagonal basin ornamented with 17 wheatsheaf jets (Fig 1) We shall not speak of the detail . overcome in the progress of the work, but shall proceed to describe the structure of the jets through which the water and light issue. In the upper basin, the water escapes through four horns of plenty, four dolphins, and six arns, forming together fourteen parabolic or horizontal jets; then two vertical jets, each placed on the side of the vessel. On the edge of the rectangular basin there are fourteen wheat-sheaf jets, two of which are placed in the lower basin. Each of these consists of seventeen jets of small size so arranged as to cause the water to fall back in a spray around the vertical jet that escapes from the central part. Finally, the octagonal basin consists of two ows of concentric vertical jets-the first comprising

CLOSE OF THE FRENCH EXHIBITION-THE LAST PLAY OF THE LUMINOUS FOUNTAINS, NOVEMBER 6, 1889.

the possession of Benjamin A. Gould, of Cambridge, and was used by him in measuring up his photographs also a very fine sidereal clock, made by Dent. of London, and a cistern bar made by Green, of New York.

With these instruments he included a gift of sufficient money to defray all expenses necessary for their transportation and mounting in the Columbia Observ. atory. The value of this benefaction is estimated at $\$ 15,000$.

In 1858 he was elected a trustee of Columbia and continued as such until he resigned in 1884. The degree of LL.D. was worthily conferred on him by this institution at its centennial celebration in 1887.
Mr. Rutherfurd was appointed by the President of the United States to be one of the American delegates to the International Meridian Conference held in Washington, D. C., in October, 1885, and he took an n.ctive part in the work, and framed and presented the resolutions that finally expressed the conclusions of the conference. He was invited by the French Academy of Sciences to become a member of the International Conference on Astronomical Photography, held in Paris in i887, and was appointed by the president of the National Academy of Sciences as its representative to that meeting, but was obliged to decline on account of failing health.
of the plateau in front of the main entrance. The chameleon-like changes of color in the fountain waters were something astonishing to behold. It was not accomplished by the mere throwing of colored lights upon the exterior of a spouting jet, but was due to an interior electric illumination of the molecules of the water ; the beams of .ght being, 80 to speak, thrown into and imprisoned within the crystal walls of the water and then carried along with it, becoming visible by interlor reflection during the discharge of the water.
We give from Le Monde lllustre a spirited di'awing of these remarkable fountains as they appeared during the grand illumination in honor of the closing of the exhibition, on the evening of November 6 last, and we subjoin additional illustrations showing the particular modus operandi whereby the illumination of the fountain jets was effected.
As the exposition was to open at night, it became necessary to find, aside from the enchanting illumination that it was proposed to have there, an attractive novelty worthy of figuring among so grand surroundings during the evenings of the exhibition. It was then that the luminous fountains were thought of that had so great a success at London, Manchester, and Glasgow.
First is the monumental fountain representing the ship of the city of Paris, ornamented with horns of
six and the second ten jets. In the center is placed an immense double wheat-sheaf jet.
As may be seen, the whole consists, then, of thirty three vertical and fourteen parabolic jets, forming nearly three hundred tubes, from whence the water escapes at the rate of 88 gallons per second, supplied by Seine water derived from the Villejuif reservoir, situ ated at an altitude of about 290 feet
As for the lighting, that is effected by 17 arc lamps (with a 60 ampere current) in the English part of the octagonal basin and by 30 regulators (with a 40 ampere current) in the rest of the fountain, including th French portion. The motive power absorbed by this lighting is of 250 horses. Subterranean galleries ex tend under the entire piece of water, and form a true crypt, in which are placed the electric lamps and the whole arrangement for producing the variation in colors.
If in the subterranean chamber we place the arc lamps, each provided with a reflector, under a glass plate, we obtain a vertical luminous pencil formed of sensibly divergent rays, which envelop the liquid mass of the jet as well as the water that falls back in drops.
The regulator, or lamp, whore carbons are vertical is regulated automatically; then, for the tin reflector
spherical in form, receives the rays of the are lamp and concentrates them horizontally upon another and plane mirror inclined at an angle of 45°, which, in turn,
sends them vertically into the jet. A glanceat Fig. 2 sends them vertically into the jet. A glance at
will allow the operation of this arrangement to be understood.
We now come to the lighting of the parabolic jets that escape from the dolphins, etc. After laborious researches, Mr. Bechmann, assisted by Mr. Richard, found the solution by converting the solid jet into an annular one, into the center of which a luminous fascicle was projected. This was done as illustrated in Figs. 3 and 4. The water escapes through the annular space and forms a hollow jet, through which the luminous fascicle is sent by a mirror inclined at an angle of 45°, placed in front of the cone and receiving vertically the light.
This arrangement permits of illuminating a jet of water 8 inches in diameter and of a height of fall of $143 / 4$ feet. What is particularly remarkable is that not a ray escapes from the liquid, and that the fascicle of light is totally reflected over the entire curve of the jet, on condition, however, that the latter be not broken by anything, such as a blast of wind or a foreign body placed in the annular space.
What precedes gives a sufficient idea of the lighting. We shall now have a few words to say about the variations in color and the maneuvers they necessitate. The various tints given to the jets are obtained by simply interposing colored glass between the luminous source and the jet of water; in a word, the rays are passed through differently colored plates of glass forming a gamut of five tones. These plates are superposed in a frame fixed to the vault of the gallery, as may be seen in Fig. 3.

We shall now briefly describe the principle of the

Fig. S.-ILLUMINATION OF PABABOLIC JETS OF WATER. maneuver. All the glasses of the same color are connected with each other in series of five by means of a cable of small section passing, at the angles formed by each change of direction, over movable pulleys, and ending at a lever (see Fig. 5), to which it suffices to give a backward and forward motion of from 20 to 30 inches in order to bring the glasses in front of the luminous sources or to replace them in the frame. Each frame that carries the glasses is placed upon wheels that run upon rails, and is provided besides with a lattice work of very fine wire and with large meshes, in order to prevent the pieces from falling upon the mirrors in case a glass breaks.

Fig. 1.-SECTION AND PLAN OF THE LUMINOUS FOUNTAIN OF THE PARIS EXPOSITION.
he judges of the effect, the foreman controls the plays of water and light ; the first through levers that he himself maneuvers, and the second through a series of electric buttons that coinmunicate with the subterranean chambers and indicate to the men the colors that are to concur in the general effect.
Fig. 5 repretents the int terior of one of these chambers, situated under the principal group. In the center are placed the maneuvering levers, and above them is see the annunciator on which the orders for the cclors to be shown are given electrically.
To the left is perceived a part of the frame that sup ports the four regulators which light the horns of plenty on each side of the vessel. To the right, between the doors of the lateral galleries, in which are placed the regulators and mirrors that light the jets bordering the rectangular basio, figure the electric measuring apparatus.

When we shall have said that the entire mechanisn

Fig. 4.- NOZZLE FOR PARABOLIC WATER JETS
that we have just described operated with perfect regularity, producing surprising and admirable effects, with which are joined the fires at the summit of the Eiffel tower, lighting the group of the Genius of France, borne on the vessel of the City of Paris, and overthrowing Routine and Ignorance on each side, while at the prow of the ship the Gaulish cock sings the success of the exposition, ąnd while at the joop the Republic directs the rudder, we shall have said everything about the fountains, which are as marvelous as they are luminous.
We cannot finish without citing the names of those who, in the different parts of this work, have shown a remarkable activity, an extensive knowledge, and a talent beyond comparison, and to whom we are happy

As regards the maneuvering of the whole, that is to render homage by addressing our thanks to them directed by a foreman in a kiosk situated at 95 feet for the courtesy that we always met with during the from the fountain and corresponding through a gal- electric installation that we had charge of ; they are $\left|\begin{array}{l|l}\text { from the fountain and corresponding through a gal- } & \text { electric installation that we had charge of ; they are } \\ \text { lery with the octagonal basin. From this kiosk, whence }\end{array}\right|$ Messrs. Alphand and Berger, the organizers; Mr. Hippolyte Fountaine, the promoter of electric light ing par excellence; Mr. Formigi, the architect; Messrs. Bechmann and Richard, whom we bave already mentioned, and who directed the arrangement of the fountains; Mr. Meker, the inspector who superintended the central shops of the lifting mathines of the city of Paris, assisted by Mr. Dallard, foreman in the construction of the apparatus; and finally, the sculptor Coutan, who crowned the work by a composition whence emanate all the grace, flexibility, elegance, and vigor of French art, from which he has borrowed with his whole soul, contrary to the practice of some artists of too often imitating Greek art as soon as it becomes a question of allegories.
Finally, allthave ; given proof of an indefatigable ardor, all feeling the importance of the work that they were doing; all, the workmen included, have had but one end in viewthe success of the exposition, for such success is the triumph of the genius of France.-D. Napoli, n La Nature.

Virginia Mincemeat.

The wife of Gov. Fitzhugh Lee, of Virginia is a famous housekeeper, and this is how she saysshe makes the mincemeat for her Thanksgiving pies: Two pounds beef, two of currants, two of raisins, one pound of citron, two of beef suet, one and a half of candied lemon peel, four pounds apples, wo of sultana raisins, two of sugar, two nutmegs grated, quarter ounce cloves, half ounce cinnamon, quarter ounce mace, one quart sherry or good homemade currant wine, one quart good brandy, one teaspoonful of salt, the juice and rind of two lemons and twooranges. Simmerthe meat gently till tender, and when perfectly cold chop it fine. Stone the raisins, shred the citron, pare, core, and chop the apples, chop the suet fine. Mix the dry ingredients together,
 then add the juice and rinds of the wine and brandy, cover close, and keep cool. This mincemeat will keep all winter. When wanted for pies, thin with cider or wine. The rule is an old one, and is said to have come from the Custis family in the beginaing. According to Virginia tradition the Widow Custis, who became Mrs. Washington, made famous mince pies.

Pig. 6.- birdseefe view of the luminous fountais.

fio, 5.-subterranean chamber of the luminous fodntain.
recentli patented inventions.

Engineering

Petroleum Motor Engine. - Karl Gramm, Berlin. Germany. This invention provides a novel apparatus by which the explosive mixtare is prodoced and introduced into the cylinder of the engine
by causing a jet of air to take up a certain quantity of petroleum, which mixes in the form of a apray. mixture being then carried into the heated cylinder.

Rallway Appliancen.

Car Starter. - Samuel J. Pearsall, Saratoga Springe. N. Y. A toothed wheel on which are pivoted apring pawls is held loosely on one of the
axles, and a ratchet wheel is secored to the axle, a aprocket chain engaging the toothed whecl, and a apring connected at one end to the aproeket chain and at its other end to the car, whereby power may be atored up by the operator on the platform as desired, to be atilized
Dog for Log Cars. - Robert J. Thompson. Grandin, Mo. This is an attachment in
which a series of dogs is arranged to be raised or which a series of dogs is arranged to be raised or
lowered simultaneonely, and the doge npon either side of the body may be manipulated independently, the body of a car or wagon or other log carrier, and expeditionaly released therefrom at the proper time.

Car Journals. - James K. Hardwicke, Marsball, N. C. This is a device for antomati-
cally oilling and cooling jonruale and bearings, and cally oiling and cooling jonruals and bearings, and
antomatically cleaning them from gam or other matter antomatically cleaning them from gom or other matter
in case of overheating, a reservoir with valve commoniin case of overheating, a reservoir with valve commaniiam extending onteide of the box to be operated
stated intervale by projectione along the roadway.

Mechanical.

Plane. - Wilhelm Meister, Apolda, Saxe-Weimar-Eleenach, Germany. This is a carpen-
ter's plane in which the bit opening extende part way ter's plane in which the bit opening extende part way
toward the top of the etock, and through ite sides for toward the top of the etock, and through its sides for
the escape of shavinge, the bit having a slot open at the the escape of ebavinge, the bit having a elot open at the
rear end, and a bed plate, clamping plate and acrews, the laiter having heade with crose slote, making plane in
elipping.

Tool Holder. - Henry Schoncke, Oceanus, N. Y. This is a holder apecially designed for
holding a tool in proper position for grinding on a holding a tool in proper position for grinding on a
wheel, and has atandards, forwardly projecting too wheel, and has etandards, forwardly projecting too
holder arme, a T.shaped apring with its traneverse arme bearing upon the arma, a crose plece connecting the
standarde above the epring, and a set screw projecting standards above the apring, and a set screw projecting throngh
epring.
Tool. - John L. Painter, Bellevue, Ohio. This is a combination implement comprising a
series of wrenches of different sizes, each capable of series of wrenches of different sizes, each capable of
independent ose. a wire cutter, pliers, and a screw independent ose. a wire cutter, pliers, and a screw driver, the tool being especially adapted for use in connection with self-binding harvesters and similar ma asines, and belng ain
Belt Carrier.-Thornton M. Nichols, Lexington, Mo. This invention provides a helt-carrying frame adapted to be held on the rim of the wheel or and adapted to engage and release the rim of the wheel being a simple and effective device for conveniently placing the belt on the palley
Gudgeon for Sand Reels.-Williain Richards, Mayburg, Pa. This is an improved gudgeon or drilling machine sand reels, and is light and darable and designed to prevent the ende of the tubular ree
shaft from splitting, the gadgeon being held locked to the shaft under the eeverest pressure upon the friction pulleys of the reel.
Picker Check for Looms. - Robert Whitehouse, New York City. This is a check or bnnter having an elsetic cuabion, and capable of ready attachmeat to and detachment from a loom, whereby the with the picker will be largely reduced, and the shattle der need not be so tightly ad justed as heretofore.
Windmill. - Jaines E. Duncan, For man, North Dakota. This invention consiste of horizontal wiadwheel turuing loosely in an apertar ormed in the bottom of a casing mounted to tnrn, and provided with an adjustable Inclined cover for guiding the wind to the wheel. the construction be
Printing and Ruling Machine.James W. Dickieson, Brooklyn, N. Y. This invention combines a printing press with a ruling machine in such manner that machine, the paper being first printed and then rnled
whereby it is dealgned to produce work anperior to that which can be done when the paper is first ruled and then printed.
Bending Vericle Shafts.-Thordas E. Montagae, Weat Lorne, Ont., Canada. This inven tion relates to machines for bending the shafte or
thills of carriages or other vehicles, and covers improve mente on a former patented machine of this clase of the sume inventor, whereby the machine is made more simple and antomatic, enabling the eha
with greater economy of time and labor.

Mitscellaneone

Sash Fastener. - Henry P. Bulioch and Willam L. Grogan, Jonesborough, Teras. Com becared to the lower assh and provided with a priction roller on its free end engaging the apper sabs, permitting of conveniently raisingand lowering the sashesand holding them at any desired place in the window

Extension Mattress. - Edwin R. Weber, New York City. This mattress has flexihle trips and extensible end portions, consiating of elastic V -shaped brace atrips, with other novel feature whereby the mattress may be extended or shortened without interfering with the eprings, will be frmly braced at the ende, and may be rolled op.
Mosquito Canopy.-Harriet B. Kip, Morristown, N. J. The head plate is made in two sections, hinged together at the side flanges and adapted
to fold one on the other to form a box to receive the to fold one on the other to form a box to receive the netting fabric, the apparatus being deeigned to fold in
very small space for convenient trangeortation. and to very amall apace for convenient transportation, and to
be readily unfolded and set ap for uee over a bed, be readily
or chair.
Hoop Stay for Buckets, etc.-Wil lim S. Pollitt, Crested Bntte, Col. Combined with the veesel ie a stay consisting of a atrip of metal having
hrackets arranged in pairs projected from the oute ace, with other novel featares, for retaining the hoop in proper position ehould the wood abrink, and whereby the hoope may be tightened when desired, in a conve and expeditious manner.
Gauge for Lanterns.-Eugene D Scribner, Northville, N. Y. In the side of and in com and in this tube is secared a glass tabe, whereby the amonnt of oil in the reservoir may at all times be acco rately ascertained, so that in flling the danger of ove flowing the lantern at the opening may be avoided.
Covered Cart. - Philip Bourde, No. 748 Monroe Street, Brooklyn, N. Y. This is a car which is necessarlly closed when thedriverstande upo hinged covere or lide and a eectional movable foot
board, the connectiona being so arranged between the board, the connections being so arranged between the
foot board and the covers that when the foot board yec tionsare pressed down the covers will be closed, pre venting the blowing away or the losing of any of the

SCIENTIFIC AMERICAN

BUILDINGEDITION.
DEGEMBER NOMBER.-(No. 50.)
TABLE OF CON'TENTS.

1. Elegant plate in colors of a cottage for $\$ 1,000$ 2. Plate in colore of $\$ 1,500$ cottage. Floor plane, per spective elevation and
View in colors of the residence of C. W. Miller,
Esq., Tompkineville, N. Y. Cost Esq., Tompkinaville, N. Y. Cost aboat $\$ 20,000$.
Plane, elevationa, detaile, etc. E. A. Sargeant, Plane, ele
architect.
2. Colored plate of the residence of E. Bridgeman, Esq., Staten Ieland, N. Y. Cost about \$18,006.
Floor plane, elevations, etc. E. A, Sargeant Floor plan
architect.
3. A cottage erected at Larchmont Manor, N. Y., at a
coat of $\$ 1,500$ complete. Pergpective elevation and floor planes.
4. The new Boarse or Commercial Exchange at Paris, designed by M. Berteau
viewf. Cost $\$ 1,400,000$.
5. A cottage receritly erected at Larchmont Manor, N . Y., at a cost of 83,000 . Floor plane and perspec
tive. Architect W. Holman Smith, New York. 8. Cottage at Larchmont Manor, N. Y., erected at cost of $\$ 4,500$ complete. Floor plansand per
tive. Architect Henry Kilbarn, New York.
6. A very attractive cottage at Ieelin Park, Rochelle, N. Y., at a cost of $\$ 3,400$ complete Plans and perspective.
7. Residence at Holyoke, Mass, Cost 85,500
8. Engraving and groand plan of a church at Ru,
9. Engraving and
ford, N. J.
10. Residence at Larchmont Manor, N. Y. Cost $\$ 5,800$ 3. A cotilete. Plansand perspective. Cost $\$ 6,000$. Plans and perspective.
11. A dwelling at Roseville, N. Y., recently erected at a cost of $\$ 8,000$. Floor plane and perspective
12.
13. A residence at Bedford Park, N. Y. Cost $\$ 6,000$. Designfor Perapectiveand floor plan
14. Design for a library and reading room for a country
15. Design for a cottage to cnat aboat 83,000 .
16. Elevation and plan of two workmen's bouses at Derig er a boue
17. Design for a house at Royslyn, Thames Valley. England.
18. Design for a honse at Woodlande, Thames Valley. 1. Miscellaneone Contents: Artistic wood decora-trans.-Improved wood-working machinery, illos-
trated.-The Caldwell sash balarce, illnatrat d,-An improved eash chain, illuatrated.--Dec orative honsehold work.-The Fuller \& Warren warming, ventiiating and sanitary conatrnction. The Scientific American Architects and Baildera Edition is isaned monthly. $\$ 2.50$ a year. Single coples, 25 cents. Forty large quarto pages, equal to abont
wo hnndred ordinary book pages; forming, practically, a large and aplendid magazne of Azchitec URR, ricbly adorned with elegant platea in colora and with fine engravinge, illmetrating the most interesting examples of
alled snbjects.
The Fullness, Ricbnese, Cheapness, and Convenience of any Architectural pablication in the world. Sold by all newedealers.

Dhisiness and 2Personal.
The charge for Insertion under thro head is Ons Dollar a linejor each ineer tion; about eight woords to a line. as early as Thursday inotring to appearinnext seme Mothers Invention-Bedclothes fastener. See adver-

Isement, pare 381 .

Experienced topographical engineer desires position irnt drauk htaman in an ofich
on Square(2d flat). Now York.
Machine tools, catalogue No. 47-B; wood.working aachinery, catalogue No. 52-A ; ateam power. catalogue
No. 48. Larkest linee orered by any firm in this country. Send for bed-rock pricee, etating exactly what you want. C. Forsaith Mach. Co., Manchester, N. H.

Capital will be furnished to place on the market a atented article of undonbted merit. Address, with par
icnlurs, box 123 , Cleveland, \mathbf{o}. Beet Ice and Refrigerating
Beat Ice and Refrgerating Machines made by David For beat hoisting engine J. S.Mundy Now N Gnild \& Garrieon, Brooklyn, N. Y., manufacture pompe, acid blowers, alter prese pumpe, etc.
For the latest improved diamond prospecting
addrass the M. C. Bullock Mfr.Co., Cbicaso, IIl.
Preses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufactaring Co., of Lockport, N. Y rill send their pamphlet, describing water works ma chinery, and containing reports of teste, on application. Taerk water motore at 12 Cortlandt St., New York. Screw machines, milling machines, and drill presees.
The Garvin Mach. Co., Laikht and Canal Ste, New York. The Garvin Mach. Co., Laikht and Canal Ste., New York. Iron, Steel, Copper, and Bronze Drop Forginge of
every description. Billinge \& Spencer Co., Hartiord. The Improved Hydraalic Jacks, Panches, and Tobe Models, experimental work, and light machinery conSal Pleve Safety Elevators, , team and belt power ; quick and
mooth. The D. Fribble Co., 112 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John For steel castinge of best quality, write the Baffalo For steel castinge of beet
steel Foundry. BuÍalo, N. \mathbf{Y}.
Belting.-A good lot of second hand belting for sa
cheap. Samnel Roberts, 3 gy Pearl st., New York.
Send for new and complete catalogue of Scientific and other Books for sale by Mnnn \& Co.. 381 Broadway New York. Free on application.

HINTS TO CORRESPONDENTS.
Namesand addrese mnat accompany all hetters,
or no attention will be paid thereto. This ie for our
lnformation, and not for phbliction

Booke referred to promptly supplied on receipt of
price.
winerain sent for ezamination should he distinctly
marked or labeled.
(1614) G. E. H. asks : 1. Would electric light carbons arranged in the form of a cylinder, or
twelve of them in a bunch, make the carbon elemen for a plnge battery: A. Yes. See Scientific Ameri can, Oct. 27, 1888, and Dec. 17, 188\%. 2. I have severa a twelve.cell battery, and propose to nae 12 carbona cell. What will be the nomber of volts per cell, and what cande power light would it ran? A. Abont
volte per cell. You can probably run one sixtee candle lamp for two or three hoors.: 3. How lon zonc element and no bepolarizer9 A. It would work for a few minntes at a time. 4. How can I prepare wood cell for a plange battery, to take the place glase? A. A cefl made of dry pine, well saturated wit paraffo, anawera very well. 5. Woald one onnce o No. 18 and four onnces of No. 38 copper wire make an
induction coil large enougb for practical parposes in induction coil large enough for practical parposes in
medicine? A. Yes.
(1615) S. B.-There is no absolute dis tinctive mark for the ecliptic boundaries of the zodiof 30° each, commencing at the vernal equinox as existed about 2,150 years ago. The precesion of the equinoxes fo the mean time has carried the constella in thefirat point of the conatellation Piscea
(1616) A. B. asks: 1. Will cast iron A. No. 2. What is the bsee of the machine dight dyam A. No. 2. What is the base of thachine composed o used to convey the current a distance of 150 feet Yes; but offles wire would be better
(1617) C. T. asks: What heat is required to bake chin
(1618) Beaker writes: Will you stat
(1618) Beaker writes: Will you stat the length of German alliver wire for the resistance of
one obm No. 28 American wire gange at the temperature of 70 degrees Fabrenheit, and also the increase in reaistance for each degree (Fah.)? A. Approximately 1704 feet. Ite change per degree Centigrade may be calcalated from following formnla:
$\mathbf{R}=\boldsymbol{r}\left(\boldsymbol{1}+a t+b t^{2}\right)$
in which $\mathbf{R}=$ reetietance at $b_{1}, \boldsymbol{r}=$ reaistance at $0^{0} \mathrm{C}$ and $a=0.0004433$ and $b=0.0000010152$.
(1619) T. H. writes: 1 . There is a spring one of the tribatarles of the Allegheny River which when the sediment in the bottom is agitated becomes apringe known elsewhere? Is there sueh a thing as phosphoruelin a mineral atate? A. It is nodoubtedly dne to organic matter in a state of decay, being the same phenomenon as presented by decaying wood or putref ying tieh. Similar manifestations are quite common, bnt phosphorus has nothing to do with most of
them. It does not occur in the free state in natore. them. It does not occur in the free state in atare.
Does diatilling water parify ity I once heard a diatiller Does diating $\begin{aligned} & \text { water porify } \\ & \text { that any forelgn matter with a atrong odor put in a }\end{aligned}$ donbling still woald show itself, both in taste and smell, in the liquor. A. Yes; from non-volatile matter; the distiller was right, as volatile matter goes over with the distillate, and to some extent is recondensed or reabsorbed in it. 3. Is rabber in making shoes put on the moold in a hot or melted state? A. It is vulcanized in place. See onr Supplement, Noo. 249, 251, and 252, for lectores on India rabber. 4. Why will not red hot or a hot coal ignite illuminating gas? A. The
not intenge enough when it fails to ignite gas.
(1620) H. A. A. writes: 1. Is there any preparation that will turn the hair gray withont injury
to the scalp or tha texture of the bair? A. Binoxide of to the scalp or tha texture of the bair? A. Binoxide of
hydrogen. will bleach hair, and if properly applied need not do permanent injury, thongh it might affect the follicles to some extent. It ls sold noder various names, as bair bleach, etc. 2. Where can I get a dictionary of electrical terms and phrases? A. We can supply you with Houaton's Dictionary of Electrical Terine for $\$ 2.50$ by mail.
(1621) G. R. C. asks: 1. Is there such thing as noiseless gonpowder, and if so, npon what
heory is the fact of there being no noise (or very little noise) explained? A. There is no such thing. It is
easy to noderatand that there may be a difference in easy to noderstand that there may be a difference in
noise or detonatlon, and a more perfect jowder may be less noisy than a crnder preparation. 2 . How may glase disks of ordinary window glase be pnnctured to ta abaft or mandrel? A. By a tabe of copper goided a frame and torned by a common brace, its edge sealing wax to the glase and fitting the interior of the tabe may be used to center it.
(1622) E. M. S. - Pot-pourri is a mixare of dried petals of roses, violets, etc., mixed etc., are collected and dried on porous paper in the sun; as soon as dry they are placed in a jar in layers alternating with the salt. Powdered orris root and extracts
and many other ingrediente may be added according to taste.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
conts at homeand abroad. enable us to underatand the conts at bomesind abroad. enable $\mu \mathrm{s}$ to understand the
awe and practice on both continente, and to possess unequaled facilities for procuring patents everrwhere. A gynopsis of the patent lawe ni the United States and all foreign conntries may be had on application, and persons contemplating the eecnring of patente, either at bome or
abroad, are invited to write to this office for prices. which are low. in accordance with the times and our ex-
tenaive faetities for conducting the buainess. Address IUNN \& CO. omice Scientific American, sil Broad-

INDEX OF INVENTIONS

For which Letters Patent of the

 November 26, 1889,
AND EACH BEARING THAT DATE.

[See note at end of list abont copies of these patents.]

Absorbent burner for liquid fuel. F. M. Lvtle...... 416.114
 Air compressor, H. C. Sergeant..................... 415822
Air compresor, bydraulic, Weyand \& Lang...... 415,931 Air compreseor, bydraulic, Weyand \& Lang 415,831
Album leas, B. Fucha 41594 Anchor block for bolldinge, W. Kruee.............. 45.840 Antmal catching and holding device. W. Becraft.. 416.046
Annanctator, electrical, C. E . Lee. Annonciator, electrical, C. E. Lee. Apron. C. W. Fribbee....
armatare, W. S. Belding
Armature for electric machines, W. S. Belding. Armature plate. W. S. Beldlur...................... 415069
Armatures, coll guard for. W.S. Belding.... Automatic lubricator. F. Keller... 416, 4662
Axle car. 3. E. Blackmore............. 450
Bag holder. F W. Weber Bal hoder. F. W. Weber...
Baleg, derice for compreselin, binding, aud secur ing cotton, Y. E. Town............................
Banjog or ruitarg, bell attachment for, Koenta Van Cleve........ 416,041 Bauk ncte holder. r. O. Young...................... 415.763
Baeeball. D. M. shibe.......................... 45.88 Battery. See Galvanic battery. Secondary battery.
Battery jare
Enholm.............ion for lining electric. O. A. Bed, foldlag, I. Ogzood...70 45,72
Bed, wardrobe. A. Linee Bedetead, cabinet. F. H. Hangne.................... 415,94
Belt arriler, T. M. Nichole 45,921 Bicycle, F. Schrader................................. 418.00 Binders, knotter for Belf. Whitelgy a Bayley
Bit. See Extenion bit.
Block. See Anchor block. Builolng block. Block. See Anchor block.
Boiler, E. Begra..
Boiller, J. Devine.
Bollar. ع. P. Waggoner................
Boit
 45894
415.788
416,129

Box. See Feed box. Journal box. Watter b... 415,981 Miter box. Paper bo
Brake. See Car brake.
Brake. See Car brake.
Brake, J. R. Wilson....

re shoe. C. w. Roeppor..... 115,738			
73. 15.747			Hodse
		Liftling jack, F. B. Bro	
Reea traction cable for draw w. Filatrault.... 416,008	Enzine, N. H. Edzerton.......................... 116,147	Liquid releasing device	8ignat. gee Rallway zemaphore ol
Bucket elevator for fouring milla. W.J. Pardy ... 11.819	Enk	cross 416,121	Sxirr eleator.dress, G. W. Way -................ 11002
Building lock, J 8. Goodmin 115,	Envelope mach	Llanor cooler and holder. combliod, J. Gordoni...4 415,777	9
. See Absorbent bur	${ }_{\text {Ex }}$	Lock. goe Bolt lock. Can lock. Eleetric look.	
Gaseous fuel brine	${ }^{\text {x }}$	Not lock.	8
	Fau for ventilation, H. C.	Loom let-itmotion, J. Whiktison.	8peaklag tubes, sound recelver for, R. Walsh.....
Cable sheaves, olling and adjusting device for, w.	Feea box for poultry, A . s . 8berman 415.	Loom pleterer stick, L. K. Bryant.................... 115,810	Tynan
Ix	Feod mater prititer and ccale arreater, B. F. Field 118,		Bpr
		Loom suttie motion, Murphy $\&$ Broadbead....... 1515.878 Lubricator, gee Antomatic lubrictor.	8team bolier, sectional. \mathbf{N}. W.Pratt.............. 11.976
Wesslau.			ste
lee,jolnt for coupling underground, Werstau	Fence machline. J. A. minilick................... 115,843	Manganesa bronze and alloy of commerce, A. H . 15 , 4 \%	
Tratren	Fence makling machine, Pa		
ndar. B.			
Can headilig machine, E. E. Angell.... .f. Als,983,	Filee letter, J. F. Jash.......................... 18.006	Match makiog	Stove, дая, J. Wybaum 415,891
Cen heading machines, bead bolding Jaws for, E.	Filter and water puriAer, F. Stlleea 415.2e7	Match ipllinto, machine for cutting and gilling, m.	8
E. AnRell	116		
Can lock. milk J. D. D. Cael........................ 418.049			
	die.	Mechanical movement, M.C. Jackron............... 415.783	
	Fluldes, apparatus for the continuons extraction	Mill.	Tacks, palle
Car couplliog. J. M. Bouck.......................... 115,909			k. Matze
Car coupling, N. Boudreau.... 415,701	Flusting apparatus, siphon and trap for, L. M.	Mo	
	Flushing by electricity, sutomatically, H. c.		
ar starter, P. Fiood.			Theaster appliance, 0. O. Leabhart ilisizi
115,72\%	Flusbling device, H.C. Weeden.......... - 416,131	Musical tastruments, macbline for plaslog upon.	Thermo-eleetrio Indicator, Wleesbrock \& Huber.. 415.58
[11,22			
Car, stook, Davis \uparrow Fibber........... 115.767	H.C. Weode		
I. J.	Flushing derice for urials,	${ }_{415.922}$	
Cars, dor attachment for lok, R. J. Thompron.... 418.128			To
${ }^{415,9 \%}$	Ior tanl		Toluidine blue, manufacture of, Dandilker a
Carpet eneeper. Gore \& RuTon.................. 416,101	log urinal		Toot clamp. G. F. Hall........... 415989
Carrage etep. J Pendergast...................... 112		Paper ba	
Ret.top. Merrell d Thom			
硣		Paper feeding mechanlams, antomatic requlator	Trap. See Mole trap.
tridze case, damb			Trimmer. See Raua trimmer.
${ }^{\text {a }}$	es	118,003	Trimmings for the edges of fabricsic making, J. D. Morley... 415.874
Cath Indicators, key arreater for. C. B.	ble		
hr register, T. Munaill....................... 416,	Gaivanic batery. O. A.Enholm................ ... 115.963		
Castiop printers' 'rollera apparatue	Garment eupporter. J. M. March.................. 415,Y4	Plane, W. Meitater. . .	Tub
硅	Gas cheek, T. A Arell. 115,804	Plow a	
tle deb	Gas generationg apparatus, Boeklen d Wrikht..... 41,04	Plow at	
Itrituaal			
	Gaseous fuel burner, T. A. Bryan.................	Plows, jointer arm for, E. M. Hickman.............. 415,886	v
Chlmney cover. G. Lbote. \qquad	Gate. Soe		
Chrominm sulphates: imakio	Glase arrici	Portable furnace, J. N. Mnller. 418,0;8	
		15,720	
Cante, coal, ₹. C. Botbibl. 48,018			
ar bunching maotine, F. J. Hagen	Glasmare, toot tor zaruk wd ormplog, \mathbf{C}.	Poul	${ }^{000}$
	Ind		
Clamp. see Tool clamp.	Gral da	Preoses, bale remoring and heading-up attach-	0
			Wagon be
		Printiog derice, A. L. stevens.................. 115.9595	Wagoo Dody. P. V. Clark....................... 115.288
Cloth fold	Grinding pla Horner...		${ }_{\text {Wa }}$
115.87	415,208	Pump, compressor. E. Penney................... 416,	
thes drier, A. A.	J. L	p,do	
teb, frl			
tch, friction, F. C. M			
machine for mixing ground, 0 . Voigt 415.851 roaster, T. B. C. Bnrpee....................... 45,99\%	Hanger. 8		Watco dialeas applyling characters and lines to, F.
		Reiliwa katee, 8	${ }^{\text {chenmais.e. }}$
Collar stuming machine, horse, R. Brownson...... 415,937			r closet. D. L L Dminnell..................... 415.581
Concentrator, G. Gatee........................ 415,289		Realway semaphore slmal, G . W. Reirr........... 11.0074	Water clo
Coorler. See Llauor cooler.	Hayand grald stackera, eleratlog derloe for, F.	${ }^{\text {Ralluas }}$	Water Closet fubhiog appar
oler, P. L. Dermigny 415.901			Water wheel. turbine. w. C. Meadows............ 1515.8 Q 2
,	H	Rase. Soe Lami rake.	wheol. Water wheel.
	Heating and	Rand trimmer, J. W. Plummer.... 116,011	Wheel. т. P. ollver............................... 415,87
W. E. Elamet al........ 115881	708	Razor, safoty. C . B. Lench.................... 118,113	Windmil1. C. Claspool.............. 415.814
pllur.	Heating apparatui, eleetrio, C. צ. CXicoenter' '213,8866	Refrikerstlig machlies, 0 ompresesor pump for, E.	IIII. J. E. Duncan........... 45.594
	Hlage, J. U. Wino.........r: 48.004	ter	WIIdow. G. W. Keoler. 115.946
casing pa Mayall:	Hinge, lock, w. s. McNell..................... 418.120	ter.	WIndow screon. W. H. Thomas.................. 416.0 P3
	Holation apparaus, W. N . 8harp................ 415,82		
	-	Rivetion, J. D. strickler 115,88	WIre atretcher, \mathbf{J}. M. Merritt.......................... 116,005
Crushlig mill, G. Fribbee.................... ... 415,911	Sash holder. Tlidy holder. Tool		Wir
Curtaio hanger. D. Davis........................ 115,883			Yeadetice ${ }^{\text {ad }}$
t's burr drill, E. т. starr.................... 11,933	Horieshoe. Rhonemus 4 10hnos............ 415.595		designs.
Dentut's mouth mirror, Q. F. Pease............... 115,788	Horeeshoe nalls, manutacture of, w. w. Miner... 11,818	Rombl	esigns.
			Buckle, clasp. H. C. Noble19,477, 19,488
Ing and desulbhurizing hydrocarbon oll. cess of and apparatus for, F. W. Minshall.. 4ib			
check, Gay \boldsymbol{x} Wirom 110,006		Bash holder. G W. Powell............................ 1151588	
	Hydrat. C. Hase.............. 11.1010	sam. b. F. Day........... 418,094	G. F. Gies
Draukhting	Hydraulle motor, J. W. Garrett. Jr............. .126,033	8aT, dras. J. H. Alestalat............. 115.724	
wer gulde, D. C. Clapp.. er. See Clothes drier.		8awmill band. D. .C. Proscotil................... 11.012	TRADE MARK
ier. 8ee Cl III. See Den	Vallie.		
		Saming machioe. W. Baptist................... 18.0 ,088	
Ricbards.................. 815.825 rilling rallway rails, etc., machine for, E. N.	tora	5158	
115,729		8creve IApplaR machloe. F. H. Richarde.......... 115.848	Oll cans
collector. G . R Reerres................... 118,124	Jo	8crew threading machioe. F. H. Rlohards 115.	Paitat.
			Palits. pillera, and stalss. Monod Ctty
In¢ machine, yam, L. Wello on................... 415,888	itted Rood		
${ }^{115989}$			Pencli bbarpeners Add ra3or strops, G. H. Coureen. 17.217
	Knottline machloe, ciroular, M. J. Dinoeen 415,834		Pens. LL leaces \&Co... 17.221
beater, S A. Perry 415.383	$1{ }^{1}$	Reece	Pens. 8. B. McBeath.
Setric lock, G. \mathbf{A}. Harter...................... 416,		Soming mach	
ric machine or motor, dy	Lamp birner. F. A. Taber....................... 415.920	8ewing machine tensiou mechanism. A. Steward.. 415.851 8hafte, vehicle. D. M. \& T. H. Parry............. 415,732	wbisk, Alman \& Co.
Electric transformer. E. Thomson................ 15,74.	Lamp hanger. adjuatable. w. F. Bradner 415.88	sbarta, machine for bending vehicle, T. E. Mor-	A Printed copy of tee specisication and dramion of
rical datatibution by	Lamp occret, incandescont, P. J. Chersascee........ 118.0		
rical distribution by se			
ctrode	41808	415,9	Co.. 381 Broadmay. New York.
		Shell for ordanace. e. H. . . .mmene.......... . . 415.709	Canadisn Patonty may now be otained by the
odes of secondary hatteries, making suprts for. W. F. 8mith..	\% 15		40
	Leed bollion from matte and slas. seopratios, N .	T	

2fdvertisements．

 int to appear in nezt issue．
USE ADAMANT WALL PLASTER

emem

 E．Genesee Street
Syracuse，N． \mathbf{Y} ． ICE－HOUSE AND COLD ROOM．－BY R

第
 THE COPYINGPAD－HOW TOMAKE

SEBASTIAN，MAY\＆CO＇S Foot $\&$ Y Power PTES
 和莫
 Drill Fresses，Chucks，Drills， Cataloguesmailed on application： 165 w．adst．，Cincinnati，

CABINET WOODS

 and VENEERS， FRET SAW Or BRACKET WOODS，
 ELECTRO MOTOR SIMPLE．HOW TO otor dersed and constru cted with a view to assistin

Scientific Book Catalogue RECENTLY PUBLISHBD．
 matiled tree to any address on application．
MUNN © CO．，Publishers Scientige

TYPEWRITERS

 NATIONAI．TYPEWRITER EXCHANGE

PRES8ES．so Mo soo pows，

HARRINGTON \＆KING PERFORATING © ．CHICAGO．

SPECIAL NOTICE！

THE MODERN 1 CE YACHT．－BY

 Scientific Samerican

ESTA BLISHED 1846.

The lilest Popalar Scientific Paper in the Worid． Only 88.00 a Yeat，includiny Pontage．Weekly．

This widely clrculated and splendidly Illustrated paper is pabisshed weekly．Every number contains elx－ original engravings of new inventions and discoverites representing Engineering Works，Steam Muchinery New Inventions．Novelties in Mechanics，Manufuctures， Chemistry，Electricity．Teegrapby，Photograppy．Archi－ omplete List of Patents each week， Terms of Subsci－iption．－One copy of the Scien－ postage prepald．to any subscriber in the United States r Canada，on recelpt of three dollnin by the pub－ Clubers；six montes， 81.50 ；three months， 81.00 ．
Clal rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order．Draft．or Express Mones Order．Money carefnlly placed inside envelopes，securely sealed，and correctly addressed． seldom goes astrag，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－ able to IMTUNIN \＆CO．，

$$
861 \text { Broadway, New York. }
$$

Scientific American Supplement．
This is a separate and distinct publication from h size，every number containing sixteen large pages full of engravings．many of which are taken from foreign papers，and accompanied with translated descriptions． The Scisntific american SUPplikment is published weekly，and includes a very wide ranke of contents．It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of science and the Dseful Arts，embracing Biology，Geclozy，Mineralogy， Natural History，Geokraphy，archæology．Astronomy， Chemlstry．Electriclty，Liaht．Heat，Mechanical Engl－
neering．Steam and Rallway Engineering，MinIng． Ship Building，Marine Engineering．Photogriphy， Technology，Kanufacturing lodustries．Sanitary Ka－ gineering，Agriculture，Horticulture，Domestic Econo－ my，Riography，Medicine，etc．A Vast amunnt of fresh licatlon． The mast important Engineering Works，neechanisilis， and described in the SUPPI：EMENT． Price for the SUPPI，EMENT for the United States and
Capada， 85.00 a year，or one copy of the Scienturic AM CRICAN and one Copy of the SUIP LEMM SNT，both mailed for one year for $\$ \mathrm{Fi} .00$ ．Single coples 10 cents．Address and remit by postal order，expressmoney order．orcheck，
MUNN \＆Co．，361 Broadway，N．Y．．

ablishers scientifio Amelican

Building Edition．

The scipntific Amerionn archirects＇and
builders＇Edition is tbsued monthly． 82.50 a year． Single coples， 25 cents．Yorty large quarto pages，equa to about two hundreagd splendid Magazine of Architecture，rich is adorned with elecant plates in colors，and with other ane engravings；illastrating the most interesting ex amples of modern Architectural Construction and a special featu
A special feature ls the presentation in each namber
of a variety of the latest and best plans for private resh－ dences．city and country．Including those of very mod erate cost as well as the more expensive．Drawings in
perspective and to color are given，together with full The elegance and chespness of this ioagnilficent wort have won for it the I，irkest Circulation of any Architecural publication in the world．Sold by al
nowsdealers． 82.50 a year．Remit to

MUNN \＆CO．，Publishers，
361 Broadway，New York
TOOL AGENTS WANTED

STEEL TYPE for TYPEWRITERS Stencils，Steel Stamps，Rubber and Metal Type Wheels． w York Stencll Works．Mirs
100 Nassau Street，New York．

PATENTS！

 them is done with special care and promptaess，on very
reasoabie terms．

Foun ded oy Mathew Carey, 1785 . HENRYCAREYBAIRD \& CO. 810 Walnut Bt.. Philadelphia, I'a.o U.S. A.

to any one
adaress.

Established ou EDW ARD L. YOUMANS.
The Popular Science Monthly.
 It has developed the clumby dug-out into the swlit
ocan oteamer, and the slow-going cart into the fylak
rallway-train.
 Without tit the race mas powerless in the presence of
disease, with its help epidemice are disappearing, and
better health with longer life are secured.

Similarly, in every department of human activity it is

 stoindand for nearly twenty years hasmaintaineda leading
position amon scientific fournacs.
With other llustrations, each nnmber containg a fine-
1y engrave PORTRAT of some eminent man of oci-
encr, with a BIOGRAPHICAL SKETCH.

 5 BEW YORE.
Single Number, 50 cents. Yearly Subscription, 85.00 .
 The "ACAE"
 THE KODAK Wmbodies tbe only system of continuons film photoTHE EASTMAN DRY PLATE AND FILM CO. Price ${ }^{225, ~ l o a d e d ~ f o r ~} 100$ plctures. Heloading $\$ 2$.
Rockesstra, N.

A GIFT FOR EACH MEMBER OF THE FAMILY.
 years ago at the lowest cost consistent with good paper, good type, good binding, and good editing, and No other cyclopedia approaching it in size- 15 volumes, with 50,000 titles-is sold at so low a price; and no other so qenerally contains the latest information and statistics. Yet itw cost is moderate and terms of DiOM DEPARTMENT Salesmen wanted. Address, SUBSCRIPTION DEPARTMENT, DOOD, MEAD \& COMPANY, Publishers, 753 \& 755 Broadway, New York

1The CHANDLER WATER MOTOR

 Howard Bros., Buffalo, N. Y. Q A description of the auther B. C. BOY'S. F.R.S.

CLARK'S ALL TRUCK WHEELS s Rubber-Tired Truc,
 AND CASTERS.

PRODUCTION OF AMMONIA FROM

NOW READY

F? xperimental R cience,
GEO. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00.
MUNN \& CO., Publishers,

$$
361 \text { Broadway, New York. }
$$

This book treats of the various topics of Physicy in a opular and practical way.
It describes the apparatus in detail, and explains the
experiments in full, so that teachers, students, and others interested in physics may personally make the ap-
paratus and perform the experiments without difficulty. It is a book full of interestand value for teachers, students, and others who desire to impart or obtain a prac-
tical knowledge of pbyaics.
heads of the chapters.
I. Properties of Bodies. II. Rest, Motion, and Force.
I. The Gyroscope. IV. Falling Bodies, Inclined Prane, The Pendulum. V. Molecular Áctions. VI. Liquids. VII. Gases. VIII. Sound. IX. Experiments with the
Scientift Top. X. Heat. xI. Light. xII. Polarized $\left\{\begin{array}{l}\text { Scientife Top. X. Heat. XI. Light. XI. Polarized } \\ \text { Light. XIII. Microscopy. XIV. The Telescope. XV. } \\ \text { Photography, XVI. Magnetism. XVI. Frictional }\end{array}\right.$ Electrictty. XVIII. Dynanic Electricits. xIX. Elec tric Lighting. XX. Induction by Electric Currents.
XXI. Telephone, Microphone, and Electricul Mazic. XXII. Lantern Projection. XXIII. Mechanical Operam tlons.
Sound, ander is full and complete. Under the head of is kiven, with ended description of the new Phonosraph on Polarized Light is superbly illustrated and containg many simple experiments explanatory of this difficult. suject. The chapter on Photography is a manual ot the art. Electricity in all branches is sulls treated. The
performance of the experiments in the chapter an namic Electrictty will give the reader a practleal knowledre of electricity in its modern applications. The standing of all the principal Ling $\alpha / v e s$ a clear underProjection contains a large number of new experiments.
The book closes with a chapter on Mechanical Opera The book closes with a chapter on Mechanical Opera-
tions. contraining information of great value to the experimenter. Each experiment described has been subSend a practical test.

MUNN \& CO., Publishers,
361 Broadway, New York.

 SWIFT RUNNINQ MACHINERY. CHA8. A. 8CHIEREN \& CO. 45-51 FERRY STE, NEW YORK
 MUNSON'S POBTABIE MILLS, THE PHONOGRAPH.- A DETAILED description of the new and improved form of the pho
nograph just brought out op Edisnon. With 8 engrav

PILE DRIVING MACHINERY

EVERY USER OF MACHINERT How to Use Loose Pnlleys.
 van duzen a turt. Cincinati, 0

PERFECTHEWSAPER ILE

 N NEW CATALOCUE
 HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Bulldert of High Clase
Steam Engiven. Damond Drulling and general咅 $/ N A \begin{gathered}\text { BARREL, KEG, } \\ \text { Hogghead, }\end{gathered}$
 Trea Hoop Driving. E. \& BuFALO, Holmes,

The value or the scientipic Amizrican as an adver-

 from the
ed on the
arose

MUNN
CO.. Pablishers,
$\mathbf{3 6 1}$ Broadway, Now York.

RAGIC

 LANTERNS

4

 PULLEYS, Cheapesi. Lnghtest. and Beest, Madeby

PULLEYS, HANGERS, PROGRHSE MAOHINE WORKS

 De. P. HEAP,
ner, $h i r i d i d i s t r i c t . ~$
Proparain for Dredgina-U. W. Evanker orpick

 THE PATENTS of all Countries on a CALRLOU-

The Scientic American

publcaritions for 1890.

The prices of the diferent publication sln the Coitod
Statee. Canada, and Merico are as follows:
The Scientifc American (week|y), one year $\quad \$ 3.0$ The scientitid American Supplement (weekly). one 5.00
year. The Sclentitic American: Export Edition (monthis)
one sear. S.00
 ombined ratrs.
The scientifc American and aprement. ers Edition, ${ }_{5}{ }^{5} .00$

Herbert Ward, Stanley's Companion.
Horbert Ward, the companion of Stanloy in his explorations in Africa, is the only white man cannoc⿻ed with stanleys African explorations who has ever retarned alive from the "Dark Continent." Mr. Ward's articles ronning through eight numbers of the "I Iodger" are of the most inceansely interesting doscription, and cover five yearra of his adventurees in Affica,

The 8tory of a Forsaken Inn, (a serial story) By Anna Katharine Green. Life in British America, By Rev. E. R. Young.
Being the adventures and experiences of Rov. E. R. Young, the colebrated miasionary, and his wis during their roeidence in the Polar region twelve hundred miles north of st. Pall, in which Dr. Young narrates how he mamed and tanght the native wild
Indiand of the Forthwest; how he equipped himself for and how he made his perilons oledging and hazarilous canoo tripe when visiting all the Inden settlementis within five hondred miles of his home.

Honorable Henry W. Crady

Contributes a series of mix articles on the "Wemderfol Development of the Industrial Porscits of the Eew South"
American Cookery, (a series of articles) By Miss Parloa.
Gtving tire reasons why it is imperfoct, and serme wayt by whioh it may bo improved.
Nihilism in Russia, By Leo Hartmann, Ninilist.
Loo Hartmann, a fagitive from Rosian authorities, has been connoctod with the most daring feats of the Ragdan Fihilista, Mr. Hartmann ahow how the intelligent people of Rasaia are beooming Nihilists in coansequance of the deepotism of the form of government. A participant in plots to kill the Czar, snch as the blowing up of che Wintor Palace, ho is able to give true information as to how this and other great schemes wer
love of every troe Americai for our form of government.

EXTRA SOUVENIR SUPPLEMENTS.

Ammg these beautifully ill ustrated four-page monvenirs, which will be sent free to every subecriber, will be a poem by
John Creenleaf Whittier, Illustrated by Howara Pyle.
Writtem for the "Iredger" by Mr. Whittier in his 82nd year. Another souvenir will be a beentifally illastrated poem writton by Honorable James Russell Lowell.
The Ledger will contain the best Serial and Short Stories, Historical and Biograph-

Other Contributors for 1890 are:

Mrs, Frances Hodgson Burnett.
Mrs. Margaret Deland.
Wrs. Florence Howe Hall.
Mrs. Madeleine Vinton Dahigren
Mrs. Harriet Prescott Spofford.
Mrs. Emma Alice Brown.
Mary Kyle Dallas.
Marion Harland.
Clara Whitridge.
Marquise Lanza.

Robert Louis Stevenson.
Anna Sheilds. Josephine Poilard. Amy Randolph. Frank H. Converse. C. F. Holder. Dr. Fellix L. Oswald. Rev. Emory J. Haynes. Jullian Hawthorne.
Prof. W. C. Kitchin. Robert Crant.
M. W. Hazeltine.

Thomas Dunn English. Chomas $\mathbf{C o o r g e} F$. Parsons. Coorge Thomas W. Kno Rev. Dr. John R. Paxton. Rev. Dr. James McCosh. Prof. S. M. Stevens. Prof. J. H. Comstock. James Parton.
Harold Frederic
Harold Frederic.

Subscription money can be sent at our risk by Post Office Money Order, Bank Check or Draft, or an Express Mioney Order. Send Six Cents for Sample Copy and Hllustrated Calendar Announcement. Address: ROBERT BONNER'S SONS, 195 William Streat, New York City,

3 Wheling is Better than Walking. Victor Bicycles

Are Betterthan Any ©thers. Catalogue Free.
Overman Wheel c_{c}., Makers, boston, mass.

 ed. (Lta.). S TON POP 8AFETY VALVE UUB) IMPROVED STEAM GAGE -

 EPRINGFIELD, OIIO, The Original Unvulcanized Packing CALLED THE STANDARD-As it it the packingby which Accept no packing as Jenk NTINS PACKING unless stampe

NATIONAT FITTER Special size to Filter Entire
GUARANTEED
TO
BRIGHT SPARKIING WATER If Filter is oleaned Once EnebDay. Ganbeoleaned in 10Mintion.
SIES NATIDNAL WATER PURIFING CO.,

 WORKINA MODELS And Experimental

ESTABLISHED HALF A CENTURY

HAVE MANY
PATENTMPRQVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION
EY THOSE WHO TO SECURE THE BEST SAFE MARVIN SAFE CO. NEW YORK, PHILADELPHIA, LONDON. ENGLAND.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Grabam Bell, March 7th, 1876, No. 174,465 , and January 30th, 1877, No. 186,787.
Thetransmission of Speech by all knowi forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders eacl individual user of telephones not furnish ed by it or its licensees responsible forsuc] unlawful use and all the consequence thereof, and liable to suit therefor.

VALLEABLE AND FINE GARYIRON ALSR STEE-

PRINTING INKS

[^0]: *An. Jour. Sors.,2, vol. 88, p. 71. 1668
 t" On Astronomical Photography," 2 eeries,-rol. 20, p. 304.1396
 \ddagger "On the Constraction of the Spectroscope." $\Delta \mathrm{m}$. Jour. . $\alpha 4 ., 2$, vol.

