A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year. for the U. S. or Canada...
One copy, six months, for the U. S. or Canada
One copy, oneyear, to any foreign country b
Remit by postal or express money order.
by postal or express money order. Wha to Postal Union, 40
Australia and New Zealand.-Those who desire to receive the
Sinentific American for alittle Colonial bank notes. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientipic American. The supplem ent is issued weekly. Heery number contains 16 octavo pages. uniform in size is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, 85.00 a year, for U. S. and Canada. 86.00 a year to foreign countries belongIng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers
throughcut the country. Combined Rates.-The Scientific American and SUPPLEMENT will be sent for one year, to any address in U. S. or Canada, on receipt of
seven dollars. scoven dolars.
The safest
registered letter.
Australia and New Zealand.-The Scientific american and rent Colonial bank notes.

NEW YORK, SATURDAY, DECEMBER 7, 1889.
Contente.
(Illustrated articles are marked with an asterisk)

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 727.
For the Week Ending December 7,1889
Price $\mathbf{1 0}$ cents. For sale by all newsdealers.
CIVIL ENGINEERING.-Milford Docks.-The new Aclantic port.

- A bird's-eye view of the new docks at Wales recently entered A birds-eye view of the new docks at Wales recently entered use in future by A tlantic liners. -1 illustration
I. ELECTRICAL ENGINEERING.-On Mechanical Engineering in
Electrical Industries.-By Prof. John Perry.-An exceedingly Electrical Industries.-By Prof. John Perry.-An exceedingly practical paper by a well krown mechanical engineer of 25 years'
standing, giving the strictly engineering view of electricity......
III. Geolog y.-Glacial Geology.-By Prof. James Geikif.-The Valua ble paper by Professor Geikie continued, giving an ex action of rlaciers of the present op
The Rocky Mountains in British Territory........................ fllustrations of the summits of the Rocky Mountains north of
he British line in the region traversed by the Canadian Pacif Railway; an interesting supplement to Professor Geikie's paper.illustrations.
MECHANICAL ENGINEERING-Expiess Passenger Midland Railway.-A full description of one of the first class Eng ish engines as exhibited at the Paris exposition, with elaborate table of details. - illustration... Lncomotive for the Northern Paciffc- Railroad.-A consolidaten thousardth engine turned out from the Baldwin Locomotive Works.-4 illustrations.
The Benier Hot Air Engine. - A further description of this engine. as exhibited at the Paris exposition, with section
and general view of the mechanism. -6 illustrations...
V. METALLURGY.-The Ludlow Process for Steel.-A new stee process, due to Mr. Rodney F. Ludlow, of Springfield, Ohio, in
volving the pneumatic treatment of cast iron by strong blasts o air...
II. MISCElLANEOUS.-The " Divining Rod" Boy.-A description of the achievements of this phenomenon, concerning whom so nuch has recently been written in England.-4 illustrations...... The Luminous Fountains at the Paris Exposition. I. and 11.wo exhaustive articles on this much admired feature of the of the fonntains and of their modus operandi, plan, sectiona I NAVAL ENGINEERING-Neglected Monitors.-By.J. J. BrICE.-A plea for the monitor type of war ship by a naval engi-
neer, giving its many advantages over other types of vessels.-A neer, gtving its many advantages over
vir PEY II. PHYSICS.-Instruments for Measuring Radiant Heat.- By C. V. Boys. - The third lecture of this exceedingly important series dealing principally with the thermo-galvanic battery. -1 illustra
tion...
X. Technolog y.-Iron Mordants for Toning and Dyeing Pape in the pulp before manufacture, with a review of the differen in the pulp before manufacture, with a review of the differen
annlication of iron salts thereto. with formule................

SHORTENING THE OCEAN TRIP HALF A DAY. The steamer City of Rome, on her last trip out, made the port of Milford Haven instead of Liverpool, the magnificent system of docks, long under construction at that port, having been at last completed, at an ex pense of $\$ 5,000,000$. The completion of these docks at Milford Haven is an important event, marking as it does the first practical step in the development of the project to join Fort Pond Bay, at the eastern extremity of Long Island, with the nearest harbor on the British coast for ships out of New York. The substitution of Milford Haven for Liverpool as a terminus saves the delay in steaming up St. George's Channel and up the Mersey, and, more important yet, avoids the dangers of the channel fogs and the annoying delays off the Mersey bar. So substantial is the gain that it is likely, indeed, the builders of the Milford docks have, it is but reasonable to suppose, some assurance that other great lines will follow the Anchor line and forsake Liverpool A great expanse of almost land-locked water is Milford Haven, having plenty of water, so that the bigges ships can make their docks at all stages of the tide. It has now a graving dock 700 feet long, with expansiv wet docks, where small fleets may lie, and a railroad, the Great Western, the new line having been recently completed and coming down to the docks, so that when the passengers land they have but to step aboard a train and go on without change to London, thus es caping the delay and confusion of transfer to a tende to reach the docks, as at Liverpool. To London from Milford Haven via the Severn tunnel is 285 miles, against 201 from Liverpool, it being $1 / 2$ hours longe by rail; the rate of speed being 46 miles an hour, in cluding stops, the new line through South Wales pass ng through a charming region.
Milford Haven is scarcely more than a pastoral Welsh town, and is not likely to perceptibly detract the trade of Liverpool, which has thriving Manchester the bustling Yorkshire towns, and the rich Midlands a its back. Yet, if appearances go for anything, Milford has a great future before it. Even without the adjunct of our own Fort Pond Bay, it insures the saving of quite half a day under ordinary conditions of weather in the real if not in the apparent transatlantic passage; the official time of east-bound steamers stops at Brow Head under the present system of running; and if the project of making a western terminus at the eastern end of Long Island should be put through, it will, it is claimed, shorten the ocean trip by a full 24 hours.

A PLEA FOR THE MERCHANT FLEET

The patriotic sentiment animating the projectors of the National Maritime Exhibition in Boston will not fail to touch a responsive chord in the American breast. The task they have undertaken would seem, at least, under the present conditions, a difficult one. There are some-nearly all the speakers at tho opening ceremonies are among them-who believe that all that is wanted to bring about the much to be desired end is government subsidy. To them the solution of the problem rests upon the humor of Congress. There are others, however, who do not believe any healthy development of deep-sea commerce is to be looked for by that means. Where, it may be asked, does a subsidy come from? Obviously from the pockets of the people.

Following the theory of subsidy to its conclusion, it is readily seen that the greater cost of carriage by American ships, if not all paid by shipper and con signee, is at least paid by their own countrymen It comes out of the country, and may fairly be regard ed as an additional tax thereon.

There is a reasonable hope of the revival of our ocean commerce in our well-known ingenuity in that ofttime illustrated faculty of finding in machinery and labor saving devices a successful competitor to the small profit adventures of European capitalists.
Quite recently was described in these columns a new war ship built by Sir William Armstrong's company for the Italians; a ship which, in point of effective ness, is said to be far in advance of anything the world's costly navies can show. If the promise of this ship is realized, then not even the costliest ship would be able to compete with it in its vocation of war. If this has been the experience in the war fleet, why may not the same occur in the merchant fleet? Should Yankee ingenuity discover a type of cargo-carrying ship that will take more cargo at greater speed with the same or less fuel, the thing is done. Then neither the less cost of the European ship, the poor pay and poor food of its crew, nor even the fact that its owner is content with a low rate of interest on his capital, wil suffice as a barrier against American competition

Who can say what the ship of the future will be like? The principal cargo of the earlier paddle-wheel steam ers, even those of the famous Collins line, was the coal to be used in driving them across the ocean. Then came the screw. If the advantages of the new type, that which is yet to be discovered, should be so important as the advantage of screw over paddle wheel it would have the pick of the ocean traffic, and the British merchant steamer, as now constructed, could
will supersede coal as fuel on the high seas. Perhaps ctricity will follow oil
The field for investigation and experiment is broad, the prizes many. The present exhibition, with its-con secutive groups of models showing the progress of naval construction, and with its collection of facts and figures concerning ocean commerce, offers an excellent pportunity for the student and artisan. Perhaps from his or similar efforts the germ vill come that will once more give us command over the seas without recourse to so senseless and futile a policy as that of hiring ships to show the American flag.

SACCHARIN, THE SWEETEST OF SWEETS

About nine years ago there was accidentally discovered in the chemical laboratory of the Johns Hopkins University a substance which at once attracted the at tention of the scientific as well as the unlettered public. In the course of the manufacture of a definite series o higher derivatives of the carbon compounds, Prof. Ir Remsen had the collaboration of one of his students, Dr. C. Fahlberg. The plan was to make all the sub stitution products, and to ascertain a few of their physi cal and chemical properties. That one on which Fahl berg happened then to be engaged was found by chance to be intensely sweet, and was subsequently named saccharin. It was shown to be from 280 to 300 time as sweet as cane sugar, and was deemed especially valu able in medicine. Sufferers with diabetes mellitus, by using very much diluted solutions of the chemical in their food, could once more enjoy the "sweets of life." It came highly recominended by doctors, because it was known to pass in quantitative amounts through the human body without any apparent effect on its various processes
Dr. Fahlberg shortly thereafter went to Germany and undertook the manufacture, on a commercial scale of this anhydro-ortho-sulphamine benzoic acid or ben zoic sulphinide, otherwise called saccharin, and gave it his name. At once it found quite extensive use as a medicinal preparation, as an adulterant, a substitute for sugar, and the like, both in Europe and, there is rea son to believe, also in this country. The impure product for sale in the markets sells at about $\$ 15$ per pound. Prof. Remsen, who still continues work in the same se ries, states in a recent article in the American Chemi cal Journal that the commercial form of saccharin is more than one-half impure, and estimates its sweetnes as but 125 times that of sugar. It dissolves readily in boiling water, and has several interesting derivatives with sweetening power. One of these has been found to be intensely sweet in the front part of the tongue, neu tral in the middle, and exceedingly bitter in the poste rior portion near the soft palate. The investigation with this compound is the best single proof that there exist in the tongue two sets of specific nerve fibers, cor responding to these two kinds of sensation. Thus it will be seen that there have been some advantages from the discovery and the prominence given this new sub nce
But this has been more than compensated by the train of evil that everywhere follows in its path Authorities differ somewhat on this, but the weight of evidence lies both in the number and the reputation of those who condemn its use. Pflugge has shown that it prevents the action of the ptyalin ferment of the saliva whose function is to change the undialyzable starch in to soluble grape sugar; that it disturbs the gastric digestion, so that egg albumen is dissolved in its pres ence only after four days; that it has a deleterious in fluence on the pancreatic and intestinal digestion He concludes that the substance is not a fit substi tute for sugar, and must be especially injurious to diabetic patients, in whom so much depends on good and healthy digestion. Other opinions differ slightly from this, but a variety of charges are made gainst it, for interference, in varying degrees, with the many kinds of fermentation and the putrefactive pro cesses that constantly go on in the human system, mos of which are connected with digestion, and all of which are beneficial. Brewers have found a use for saccharin not as a sweetener, but more as a preventive of diastatic fermentation, the like of which is performed in certain parts of the digestive tract in man. These are, there fore, likely to be hindered by the adulterant in this vorite beverage.
Its use has been made the subject of legislative action n Belgium. Spain, and France. The Belgian Academy proclaims that it is not a food stuff, as it does not rep resent the nutritious value of sugar, since it seems to pass unchanged through the body; that its application as a sweetener in food preparations and drinks appears to be followed by injury to the health ; and that manu facturers are therefore warned that they must give ample notice to the consumer of its presence in article of food. In Madrid it is called an adulterant, food containing it are forbidden to be sold under penalty while the article itself is heavily taxed. The French government, some time ago, put saccharin under a tem porary ban as a substance possibly injurious to the health. Now it has definitely pronounced against it a a drug, food product, and adulterant, and has put an a drug, food product, and adulterant, and
almost prohibitory tariff on its importation.

Little has as yet been heard from this saccharin in public here in America, save as a chemical curiosity. But there seems to be a disposition among chemists to believe that it is extensively used. Our medical experts in the various laboratories of cities and States where adulterated articles and harmful drugs are sought out and the criminal processes of indictment begun, should direct their attention to this, which is undoubtedly a deleterious substance. The good of the country should also be consulted by the specialists in the Chewical Division of the United States Agricultural Department at Washington. Let them ascertain if the charges against saccharin be true, and, if so, let them advise that measures be taken to prevent its coming into wore general use than has hitherto fortunately been the case. A.nd if thesecharges should be proved, Congress should, like the authorities in France, put such a high tax on it as will prevent its importation. Dr. Fahlberg has a patent on the method of making his product, in this country, and thus we shall be spared the danger altogether.*

Smokeless Powder Wanted by the Government-
 a Chance for Inventors.

The subject of smokeless powder for military uses occupies considerable space in the annual report of Brigadier-General Benet, Chief of Ordnance, just issued. The report says :
"In the absence of a suitable small-arm powder there has been no substantial progress in the matter of a small caliber rifle beyond what has been heretofore reported, except in the negetive gain resulting in the ap. parent abandoninent, or tendency that way, abroad of all powders but the so called smokeless.
"This change, involving the return to a grained powder, is, if permanent, an appreciable gain for ali in economy and efficiency of the product in the manufacture of smalt-arm cartridges, and may have been brought about as much from the difficulty of obtaining uniform and satisfactory results in the way of velocities and pressures with the compressed powders, as from the more valuable properties of the smokeless. ' No American has yet subwitted for trial a smokeless powder, and experiment with compressed powders
has shown the same eccentricity as developed abroad, tending to destroy confidence in the final production of a serviceable compressed powder cartridge.
" All effort, official or otherwise, to date, to obtain a smokeless powder has been abortive, and American powder makers and chemists have not yet awakened to the lucrative opportunity presented to them. There is reason to believe, from an application made to an
officer of the Ordnance Department wore than ten officer of the Ordnance Department more than ten
years ago, that smokeless powders originated, like many other inventions, in America, only to be brought to the attention of the world in foreign countries, although in this instance the person concerned met with encouragement of which he did not avail himself.
" In view of the present status of the powder question, it is not deemed expedient to produce a small caliber rifle for compressed powder cartridges. Such rifle, however excellent in itself, would be inferior to foreign arms using sinokeless powders, and consequently unsatisfactory to the army and the country at large. It is believed, however, that all the elements entering into the problem, except the powder, are ready for use the moment this powder is obtained. A thirty caliber rod bayonet Springfield rifle has been made, and a rod bayonet thirty caliber magazine arm is now in progress of construction, in anticipation of the final acquisition of the much needed powder, so that no time may be lost in presenting for trial both single-loading and magazine small caliber rifles."

Utilization of Coal Dast.

The Reading Railroad officials, headedby President Corbin, recently visited the company's coal plant at Mahanoy City, Pa., to inspect a new process of making fuel from coal dust. Heretofore about one-seventh of the product of the coal mines has been lost in dust. It is now intended to utilize the dust by making it into bricks that will burn like hard coal, except that there
are no clinkers, as the bricks burn to asbes. The new process consists of the coal dust being evenly distributed with one-tenth per cent of pitch. This by an ingenious contrivance is pressed by great inachines into large cakes, steam being used to moisten the mass. So hard does it become that it possesses the same power of resistance as coal, or, in other words, a hundred pounds of pressed coal dust will last as long as the same amount of hard coal. A pressure of thirty-five tons amount of hard coal. A pressure of thirty-five tons
is brought to bear on each brick. There are two presses in operation, which, when run to their full capacity, will turn out about eight hundred tons of the bricks in twenty-four hours. The bricks take up 25 per cent less space than ordinary coal, and in consequence an engine can be loaded to go one-fourth further withopt replenishing the supply of fuel. Al the officials expressed themselves very much gratified with the new process. A. company has been forined with Austin Corbin as president, for manufacturing this fuel.

PHO COGRAPHIC NOTES
The Pyro Developer.-A pyro solution recommended for its keeping qualities by the British Journal of Pho tography is made up as follows :

The solution will keep for several months without becoming discolored. Ammonia potash or carbonate of soda all work well with it as an alkali.
Reducing Over-developed Bromide Prints.-In communication to the Photographic Club, Mr. Adolphe M. Levy stated, as reported in the British Journal of Photography, that his experiments showed that a print could be reduced by immersing it for fifteen minutes in mixed ferrous oxalate and hyposulphite of soda solution, the latter being made in the proportion of one ounce old ferrous oxalate to twenty of hypo. solution. The hypo. was made of strength of 3 ounces to one pint or 16 ounces of water. The cause was attributed to the formation of a small quantity of ferric chloride salt, which exercises a strong reducing effect on the silver salts. Other experiments were tried by immersing the print first in a ferrous oxalate solution and then in a hypo. bath, which produced a similar result. Washing Frints.-Mr. Augerer's method of washing prints is as follows: After a first washing in a pan, the prints were laid on a sort of sloping desk formed of a plate of ground glass with the ground side upward, and over them a constant spray of water is kept playing. Meanwhile the prints are continually rolled with a glass roller mounted in a fork handle, like a printer's inking roller. This method, now employed in many establishments, seems to rapidly and repeatedly re-move-by the pressure of the roller-the saline solution from the pulpy mass of the paper, replacing it by water each time. Indeed, there are several systems for washing prints which involve the same principle of action of water.

Some Curious wills.

The St. Louis Republic, some time ago, had a chapter on wills, showing the testators to have possessed minds singularly constituted.
Of ten quoted is the remarkable will of Solomon Sanborn, of Medford, Mass., who died about fifteen years ago. Sanborn was a great patriot, and specially gloried in the part Massachusetts took in the revolu tionary struggle. In his will he left h. body to Dr. Oliver Wendell Holmes and Prof. Agassiz, not, however, without imposing some of the most unheard of provisions and conditions. His skeleton he desired prepared in the most artistic manner known to the profession, and placed with the many others in the anatomical department of Harvard College. While preliminary preparations were being made in carrying out this extraordinary request, he desired the surgeons to be very careful with the skin so that it could be tanned in pieces of sufficient size to make a pair of drumbeads. Upon one of these drumheads the "Declaration of Independence" was to be written, and upon the other Pope's "Universal Prayer." . Fitted in its proper wooden rame this ghastly relic was to be presented to a locai drummer, whom the testator designates a "distinguished friend," upon condition that he woild promise to carry it to the foot of Bunker Hill monument on each succeeding anniversary of the battle, at sunrise, and beat upon it the invigorating strains of "Yankee Doodle."
The skeleton of Jeremy Bentham, in the Hospital Museum, London, is there at the request of its owner, who made a special provision in his will to have it presented to the curators of the hospital, who, upon accepting the gift, were to have the skeleton mounted and put in the presidential chair at each meeting of the hospital directors.
Dr. Wagner, an American, is up to or even ahead of the English precedent in the dismemberment idea. During his life his relatives had given him but little thought. When it came time for him to die-he had a little money, about $\$ 1,000$-his brothers became very kind. After his death, when the will was read, the following remarkable clause was disclosed
"To my brother, Napoleon Bonaparte, I bequeath my left arm and hand; to George Washington, my second brother, my right arm and hand; to my other relatives my legs, nose, and ears. My money, $\$ 1,000$ cash, now in the B-Bank, I bequeath to the physicians and surgeons who carry out my request by dismembering my body and giving to each of my relatives the pertion allotted to him or her."

Horatio G. Onderdonk, a brother of the Bishop of New York, made provisions in his will which would have turned old Draco green with envy. Draco was
strict, and well understood the meaning of the expression "ruling with a rod of iron;" but had Mr. Onderdonk lived at the time the old man was preparing his fainous code, he could have helped to make it more binding. The last paragraph in the Onderdotik will "Noad as follows
"No heir must be an idler, sluggard, profligate.
drunkard, gambler; use liquors or tobacco ; go hunting or fishing on Sundays; attend races; enter a barroom or porter house; neglect to rise, breakfast, and be ready for business by \mathbf{g} o'clock; or get married before he or she arrives at the age of 25 years."

Great Fires at Lynn und Boston.

On November 26, the city of Lynn was visited by fire, and some eighty acres were swept by the flames, and property estimated at five millions of dollars was destroyed. Lynn is devoted to the shgemaking industry, and has ranked as the largest shoe manufacturing city in the world, and the factories of this and allied industries were the heaviest sufferers.
'Two days later, on Thankspiving day, November 28, the city of Boston was the sufferer. At 8 A . M. fire was discovered in the upper story of a building on the corner of Bedford and Kingston Streets. From the same box which had been used in the great fire of November 9,1872, an alarm was sent out, but before the flames could be subdued a large number of buildings in the dry goods district were destroyed and damages to the extent of over five millions of dollars were inflicted.
In the fire of 1872 much damage was done by escaping gas. The Boston Gas Company, ad one of the outcomes of that experience, put in a number of valves in the line of their street mains. The precantion proved to have been well taken, and the gas was shut off from the burning district in time to avoid any additional rouble from its presence.
The recent fire has been attributed to the electric overhead wires. The crossing of an electric light wire with one of the wires of the Boston Time Company has been assigned as the cause. Many or all of the clocks manufactured by this company stopped a few minutes before seven o'clock in the morning. During the progress of the fire, the overhead wires were found to interfere very seriously with the firemen's work, emitting sparks and scintillations freely. This proved there were plenty of live wires at the hour in question.
The overhead system of distribution of heavy curThe overhead system of distribution of heavy cur-
rents, whether of low tension or high tension, is a rents, whether of low tensio
menace to life and property.
Any system of electric distribution in which crossing of wires carrying modern light or power currents is possible involves danger to the community. As long as such systems are permitted to exist, their dangers will receive additional illustrations.

Heaith and Spirits.

Whatever may be thought to the contrary, the standard of health is as liable to fluctuations as the weather The barometer is, in a measure, the gauge of the state of the weather, but we have no instrument for estimating even with an approach to the truth the state of the vitality of any individual. The customary salutation, eveu when replied to in the usual adverbial manner, is certainly no accurate criterion of the state of the health, since a general paralytic often feels much better than he has any physiological right to do And, in opposite fashion, a man who does not know how he feels may be in first-rate health, or at least in a splendid condition for opposing those forces which are constantly tending, lìke the force of gravity, to bring a man to earth. Every one knows, in greater or less degree, that which makes for his physical welfare, but it is not always realized to the fullest extent that an improvement in the feeling of health is by no means always desirable in the interests of longevity. 'To feel extraordinarily well costs much, and the excessive expenditure of mental force may derange a considerable number of corporeal functions. The desire to want to be in good "form" requires restriction in the case of many nervous individuals, whose powers are not always equal to their appetite for high spirits.-Lancet.

Importance of the South American Trade.
No other country in the world can manufacture such excellent tools and machinery as the United States, and in no other country are the prices for high grade articles of that kind lower than they are in the United States.
Yet of the $\$ 2,219,000$ worth of tools and machinery that the South American republic of Chili purchased in 1882 , only $\$ 211,000$ worth, ${ }^{*}$ or less than one-tenth of the whole, was purchased of ufs. More than $\$ 2,000,000$ worth was purchased from England, Germany, and France.

On such a showing as this, is there not something manifestly wrong somewhere? Ought not our manufacturers and merchants make more of an effort to obtain this trade than they have done? It would seem to be the best foreign market open to us.

To prevent oilcloth, patent leather, and similar materials from sticking together when rolled, purchase a few sheets of paraffine-impregnated or otherwise prepared paper, and roll with the material. This will prevent the sticking. It will also prevent the fading of the colors or gloss by keeping out air and moisture : the evaporation of the oil is likewise prevented to a great extent.

AN IMPROVED BRICK MOULD.

A simple and durable brick press box, arranged to take up all wear, is shown herewith, and has been patented by Mr. Alexander Paul, of Meyersdale, Pa. The sides and ends of this box are preferably made of cast iron, with the inner faces chilled, or of steel, the parts being fastened together by bolts or wedges and keys, or by both, as shown, while at the bottom, on the sides, are the usual ears for securing the box to the bed plate of the brick-pressing machine. The bolts pass through corresponding apertures in the sides and ends of the box, and the wedges through

PAUL'S BRICK MOULD.
apertures in lugs extending from the ends, the wedges lying in grooves formed on the outer surfaces of the sides. Each of the ends has on its side edges transversely extending lugs or projections fitting into corresponding grooves in the sides, and at this joint are placed strips or liners, with wedges on the outer sides, permitting of easily refitting the box when its sides and ends are worn out. Between the ends and the sides are additional strips adapted to serve a similar purpose. The wedges serve to hold the ends of the box tight in the grooves in the sides, and also to keep the strain off the bolts.

AN IMPROVED GATE HINGE.

The accompanying illustration represents a simple form of gate hinge, which has been patented by Mr. Peter C. Zimmerman, of Harrisburg, Pa. (lock box No. 49). The hinge is made in two sections, the section carried by the gate having. two downwardly extending pintles, about which there are concentric flanges, each connected to one of the pintles by a projection, and each of the flanges having an opening on the side

zimmerman's gate hinge.

toward the post to which the gate is hinged. Between the pintles there is also a recess, centrally in which is a downwardly extending projection. The hinge post secion of the hinge has end recesses, with upwardly extending end projections and a similar central projection. When the gate is closed the pintles rest within the recesses, and the central projection of the hinge post section rests in one of the recesses of the other section. As the gate is turned, in either direction, the pintle upon the side toward which the gate is swung will enter the corresponding recess in the hinge post section of the hinge, the projection on the same side of the latter section passing through the flange opening and into the annular space between the pintle and flange, while the opposite pintle on the gate section and projection on the post section swing apart.

How Railways Increase Trade.

The following shows the great increase of trade in one branch of merchandise only between Mexico and the United States since the opening of railway communication between the two countries: In 1880 the value of American machinery imported into Mexico was $\$ 462,384$. In 1887 the value of the same class of imports was $\$ 4,000,000$.

AN IMPROVED LATHE ATTACHMENT.

A lathe attachment to facilitate the turning of crosshead wrist pins and similar articles, the mechanism being simple and positive, and such as can be used in connection with any style of lathe, is illustrated herewith, and has been patented by Mr. Pliny F. Cole, of No. 1318 Water Street, Warren, Pa. Upon one side of the bead,stock is bolted a bracket from which two arms project upward, there being pivoted on the longer arm a spur wheel in which is a diametrical slot, and on the shorter arm a pinion meshing with the teeth of the spur gear. This pinion also meshes with a small spur wheel rigidly secpred to the live spindle in front of the head stock, and in the inner end of the spindle is tightly inserted a live center upon which a pinion is loosely mounted. The latter pinion meshes with the teeth on the inner upper edge of a horizontal reciprocat ing link, as shown in Fig. 1, this link being guided in its lateral movement by an integral shank which passes downward between the shears of the lathe, where its lower end is pivoted in base blocks. This Jink is reciprocated through connecting rods, the wrist pin of one of which travels in the slot of the spur wheel pivoted on the longer arm of the bracket, while at the other end of this connecting rod is a longitudinal slot, where the two connecting rods are attached by a set screw and bolt. By varying the shape of the bracket and shortening or lengthening the connecting rods, the attachment may be readily applied to almost any form of lathe, and a long or short motion of the link obtained. In Fig. 2 the attachment is shown applied to a lathe in which the crosshead of an engine is secured, and a cutting tool is in contact with the pin of the crosshead. The crosshead is clamped to the pinion loosely mounted upon the center, and as this pinion is given a rotary reciprocating movement by the link, a similar motion is imparted to the crosshead, whereby the cutting tool is made to travel over more than half the circumference of the pin, so that when the crosshead is reversed the pin will be finished perfectly round. The loose pinion is so secured upon the live center that it may be readily removed from its place in the link and its position work.

COLE'S LATHE ATTACHMENT
the shore end toward the channel, the sill and brace timbers also being of increasing length, and the faces of the front timbers are concaved on the up-stream side, where a face plate is secured, formed preferably of metal plates, this face plate being a water current deflector. To the lower edge of the deflecting plate is hinged an apron, which swings down with its free edge close upon the river bed, preventing currents from cutting under the dam. The construction of the smaller dam sections is substantially the same, except that the small dam has a like width and depth for its whole length, and the top of the front timbers, supporting the current deflector, is convexed, so that the water currents will easily flow along it, and pass over it at high water. Fig. 3 shows the use of the two kinds of dam sections for changing the current of a stream, the main dam section being placed at a suitable angle across the river, and the auxiliary dams ranging from its two ends in such way that the current will be forcibly directed against the main dam, to be deflected thereby against the opposite bank and cut a new channel. In Fig. 4 two main dams are shown ex-

LUMMER'S PORTABLE DAM
tending from the opposite banks to small dam sections ranging centrally down stream, for deepening the channel, and in Fig. 5 a main dam is laid to direct the water currents against a sand bar. Fig. 6 shows a series of small dams set along a caving bank to protect it against the current, and hold the sedimentary deposits washed over and behind the dams.

A Deep Gas Well at Niagara Falle.

The Buffalo Courier says : The test well of the Niagara Falls Natural Gas and Fuel Company, in the eastern part of the village, work upon which was begun July 16, had reached a few days ago a depth of $2,010 \mathrm{ft}$., without any great amount of gas having been found. A $5 \frac{8}{8}$ in. drill is used. At the start rock was found at a depth of 17 ft . Then the drill passed through 260 ft . of limestone and 65 ft . of slate and shale mixed. Then came about 35 ft . of what is known as the Tonawanda gas sand, but it was as hard as granite, and minus that porous formation in which gas deposits are found. The drill passed out of the Tonawanda sand into red rock, and went through over 700 ft . of it, into a layèr of white slate about 200 ft . thick. Beneath this stratum of white slate the first sand was found, and there was about 75 ft . of it. Then came about 550 ft . more of white slate, beneath which a bed of red rock was struck, about 30 ft . in thickness. Next came a 50 ft . vein of silician rock, about the same as razor hones are made of. From this the drill went into a sort of a shale, for about 28 ft . This stratum is generally spoken of as the Utica shale. A 6 in . casing lines the hole for 300 ft . The fresh water was cased off at a depth of 180 ft ., and salt waterat 280 ft . At a depth of 180 ft . the first gas was
chains and fore and aft chains. By this means $1,500,000$ feet of lumber can be brought down, or much more, if the circle is enlarged. The largest Joggins raft, constructed in the shape of a cigar, contained $3,500,000$ feet of logs. If this method is successful, a large sawmill will be built on the water front, probably at Ala meda. It will reduce the expense of shipment $\$ 2$ or more a thousand feet.

NEW SPANISH GUNS.

The Spanish government, determined to emancipate the country from its dependence upon foreign nations for its munitions of war, has of late years displayed great enterprise in the establishment of works for the building of war ships and cannon.
At Trubia the government has erected an immense concern for the production of heavy guns, and is now about to put in Siemens furpaces for the casting of high grade steel for new ordnance.
Among the guns lately turned out at Trubia are four which form part of the armament of the new Spanish steel cruiser Pelayo. Of these two are 49 ton 13 in . guns and two are 11 in . One of the 49 ton guns, shown in our engraving, was lately proved. The

They are constantly experimenting in the laboratory, investigating and demonstrating the practicability of the inventions which reach them, and possess a larger knowledge of that class of inventions than any persons living. It becomes a hobby with them, and, although the pay is small, the field for continuing their studies is so large that in their greed for scientific knowledge they sacrifice their pecuniary interests. Professor G. D. Seely, who is the examiner in electricity, knows more of the art, probably, than any man in the coun try. He has covered the field of electrical science thoroughly. His division is one of the most important in the office, and requires thorough expertness in dealing with the problems which it is called upon to decide. At the head of the division of chemistry is Dr. Thomas Antisell. He is another expert in his particuar line. Several years ago the office established a laboratory, provided with suitable chemical and physical apparatus, such as balances, batteries, filter pumps, microscopes, spectroscopes, platinum ware, gas assaying and melting and other furnaces to enable the examiners to conduct such experiments as they saw proper in passing upon the applications of in ventors. Whenever it is necessary the office furnishes

NEW 49 TON GUN MADE AT TRUBIA, SPAIN.
struck, and at 192 ft . the second vein was found, while at a depth of 227 ft . the third vein of gas, together with fearfully strong black salt.water, was found. From the three veins, gas enough to supply a couple of families could be obtained, but there was not sufficient volume to stop drilling. In the Utica shale, in which the drill is working, the hole is being sunk at the rate of 7 ft . an hour. So far the drill has been lowered 208 ft .

While gas in paving quantities is found in Tonawanda at a much less depth than that at which this well now is, the sand in which it is found there was really granite here. It is confidently expected that the gas in paying quantity will be found in the Trenton rock, which it is thought will be reached at about $2,400 \mathrm{ft}$. or perhaps a little deeper. A well at Thorold, Ont., about eight miles from here, was abandoned when the Trenton rock was reached, at a depth of $2,346 \mathrm{ft}$., but a lack of cable was given as a reason of the abandonment by the contractor. S. E. Humphreyand George Raymer are the men working at the well.

An ocean Lumber Raft.
The Fort Bragg Lumber Company, of San Francisco, is now about to try the Goldy boom, which has been in successful operation on the great lakes for about three years. According to this plan, says the Pacific Iumberman, a raft will be constructed of thirty-two pieces, each composed of seven sticks chained together and arranged in a semicircle, within which the logs that are to be towed will be placed. The Goldy boom will be supported by strong cross
charge of 440 lb . prismatic powder, which gave an initial velocity of about $2,000 \mathrm{ft}$. per s
The guns are built on the Hontoria system. The penetrating power at short range is 32 in . of wrought iron. Length of gun about 40 ft .

The Patent office Examiners.

"Experts ?" said a prominent official of the Patent Office recently. "Why, they are as thick as blackberries in the summer, and you can hardly enter a room in this building without meeting one or more. The work here is of such a technical character, embracing as it does the entire domain of inventive knowledge, that unless the men who decide upon the newness and practicability of the thousands of applications for patents, which they receive annually, did not thoronghly understand the state of the art, the court dockets would be crowded with the cases of litigious inventors."
Many of the examiners in the different divisions are men of deep learning. Especially is this true of the divisions where the class of applications are out of the usual run, and represent. the greater inventions, such as the telephone and the recent advances in electric lighting. The experts who are called upon to pass upon the claims of Edison and others, in regard to new electrical devices, must of necessity be men who thoroughly understand the subject. With them it has been almost a life study, and there is no branch of the art that they are not thoroughly familiar with.
is hardly aday but what some examiner is busy in the laboratory.
But the experts of this office are by no means confined ta the divisions of electricity and chemistry. Every branch of science is treated of here, and the examiner must, of necessity, to be competent, be tho roughly familiar with their subjects.
Theinventive faculties of the country seem to run in shoals, and just at present the subject of naval projectiles is receiving a great deal of attention at their hands. This requires that the man who passes upon their claims should know his business thoroughly, and he does.
Mr. P. B. Pierce, who has charge of the sewing machine division, is another man who can be considered an expert. He knows more about sewing machines than any man in the country, and has made the sub ject a life study.
And so it is throughout the office. Every examiner is an expert in his particular line, and some of their. places would be exceedingly difficult to fill. The pay of these men is entirely disproportionate to the invaluable services they render. Every one of them could make a great deal more out of the office as an attorney, but they seldom leave. Why this is, nobody seems to know, unless it is that the work is congenial, and they are so wrapped up in it as to be willing to sacrifice their other interests for the sake of the opportunity for scientific ressarches which their position so abundantly gives them.-Washington Post.

The mistory of a star

One of the strangest discoveries made by Sir William Herschel was that of "fire mist" in the heavens. With his giant telescopes he could discern, besides unknown planets, stars, and nebilæ, certain faintly luminous spots in the sky caused, apparently, by the existence of scattered nebulous matter. This mysterions appearance seems now, under Mr. Lockyer's new meteoritic ance seems now, unditr.inr. Lockers constial bodies, to theory of the constitution of the celestial bodies, to
range itself quite naturally in the regular sequence of phenomena by which we are able to trace the life history of the universe. But it is only fair to recall the fact that Herschel himself assigned to the nebulous mists of celestial space a place in the development of the material creation precisely like that which they occupy in the new hypothesis. Only, Herschel dealt with a supposed self-luminous substance of a highly attenuated nature instead of with swarms of clashing meteors or meteoritic dust. According to either theory, however, we find in those glimmering clouds of space one of the earliest forms in which the great celestial bodies make their appearance-forms no more resembling the blazing suns or the encrusted planets ultimately to be developed out of them than an acorn resembles an oak, but representing a stage of creation as far transcending in remoteness of time the first geological period of a body like the earth as that surpasses in the ratio of antiquity the records of Adam's career in Eden.
In the Nineteenth Century for November, Mr. Lockyer has published, under the caption adopted for this article, what is perhaps the best popular statement he has yet made of his meteoritic theory. It is a theory that has not been accepted by all astronomers, and in some of its aspects has been sharply contested, but it supplies an orderly account of phenomena that have not been so well linked together in any other way, and in many respects it is a decided advance upon the old nebular theory of our origin.
The earth is journeying through space in two ways. First it is circling around the sun, going more than a million and a half of miles in a day. But the sun itself is in motion, flying a.t the least half a million milesin a day in a direction not quite at right angles to that in which the earth travels, and the earth has to accompany the sun. In consequence our planet is rfally gyrating through space in great spiral sweeps around the sun, and so advances from the southern toward the northern part of the firmament. If the aturosphere were renewed every day, we should be constantly breathing the air of new regions. And, in fact, there is one way in which we do come in contact with the
contents of the unknown parts of space into which we are hourly adrancing, although we may be unconscious of it. That is by the fall of meteoritic matter upon the earth. Taking no account of the ether, space is no more absolutely empty than the air of a room is perfectly clear of impurities. As the air is filled with floating dust, so interstellar space abounds with dust of a dif ferent kind, the scraps of the unfinished universe. As the earth speeds along, this dust of space continually falls upon it, the larger particles catching fire from friction as they rush into the atmosphere, and thus ap pearing as falling stars or meteors; the finer grades simply sifting down through the air, and making their presence visible on the snows of mountain peaks and in the ooze of the ocean's bottom. Occasionally a meteorite more massive than its fellows survives the fiery passage through the atmosphere, and falls a blazing mass upon the earth.
It was a striking idea of Mr. Lockyer's to take one of
these messengers from outer space and submitit to the analyzing powers of the spectroscape. Why might not this tiny inhabitant of the heavens fallen upon the earth have some secrets to reveal concerning the constitution of the other bodies from the midst of which it came? Upon the result of this experiment Mr. Lockyer founded his theory. The result of the experiment in brief was that when a meteorite was reduced to dust, and that dust was submitted in the laboratory to a low temperature, and the light emitted by it was examined with the spectroscope, its spectrum was found to be identical with that given by the faintly glowing nebulw seen in the heavens. With higher temperatures the meteoritic matter gave spectra agreeing with those of many of the stars. The resulting theory is that the nebulæ are clouds of meteorites or meteoritic dust heated, and so caused to glow, by their mutual collisions, and that many stars are not globes of gaseous matter like our sun, but meteoritic swarms so compacted that a fierce light is caused to blaze from then by the constant and violent clashing of the meteorites. With this idea in mind we can then range the nebulm and the stars into a continuous series, according to the de gree of density that the meteoritic swarms have attained, and the consequent intensity with which heat and light are developed in them. Their varying spectr give a clew to their condition in these respects.
Beginning as far back as we can go, we find that the wonderful power of photography takes us a step be yond the utmost reach of the most powerful telescopes There are nebulons objects.in the heavens fainferevon
thas thome uysterious clonds of fire mist that the
enormous reflectors of Herschel revealed to his astonished eyes. The forms of nebulm that the most gigantic telescopes cannot reveal to the eye have already impressed themselves upon photographic plates exposed to their strange radiations. The reason they can thus be discovered even when too faint to make any impression upon the eye is because the photographic plate possesses the property of accumulating the effect of radiations falling upon it, which the human retina canradiations falling uponit, which the human retina can-
not do. The longer the plate is exposed, the more it not do. The longer the plate is exposed, the more it
detects. According to the theory we are considering, these photographic nebulæ must be regarded asswarms, whose component meteorites are so scattered that collisions are comparatively rare, and the consequent radiation is so slight as to be unable to impress the eye with a sense of light.
Next come the nebulous mists of Herschel, in which the condensation has progressed a step further and the meteorites are firing up with the heat of more frequent and more violent collision; then the various classes of brighter nebulæ, wherein the condensing process has become more pronounced; next star-like swarms so separating them fiom us they cannot, by the eye alone be distinguished from stars resembling the sun. The stars divide themselves into several classes, each successive class being characterized by a spectrum which indicates that it is denser and hotter than the preceding class, until we reach the hottest stars of all, in which the meteorites, rushing and swirling and grinding ever closer and closer in the resistless embrace of gravitation, have, in consequence of the resulting heat, been reduced to vapor
It is believed that our sun has not only reached but even passed this stage, for, as we shall see, there is a downward as well as an upward course in this strange history. Following the hot and gaseous stars, we find another series in which the evidence is of decreasing energy and of gradual extinction. The heat is radiated away into space, the outside of the star cools first, a cloud-like shell surrounds it and slowly extinguishes its radiation, the whole character of its spectrum changes, it glares with a red light, showing the absorptive infunce of the gases that are, so to speak, smothering it, and finally it shines no longer. According to Mr . Lockyer the fate that awaits our sun (and it has already progressed half way down the shady side of solar existence) is to be put out by an excess of carbon vapors in its atmosphere. But after a star has thus been extinguished, the process of cooling and condensing goes on within its core until it is ehanged to a solid globe of metals and minerals like the earth and the moon. Such is the life of a star.
The stars we have been describing exhibit a regolar equence of events throughout their history. They are the orderly and well-regulated citizens of the celestial empire. But space contains erratic stars which cannot be classed with our own benignant, well-mannered, and still sufficiently warm if rapidly aging sun. They are the variable stars, which in many cases increase and decrease enormously in brightness in more or less regular periods, and the so-called new stars which suddenly blaze out in the heavens and then slowly fade from sight, never to appear again. The meteoritic theory undertakes to account for these irregular varie ties of stars also. According to Mr. Lockyer's idea, variable stars are formed by two swarms of meteorites, one revolving close around the other in an elliptic orbit, so that when their centers are nearest together, more meteorites come into collision than when they are further apart. The outburst of a new star he supposes is caused by the meeting of two elongated swarms n space, like railroad trains coming into collision at there will be a dazzling display of light owing to the crashing together of the meteorites, and this will last s long as the swarms are passing their common met ng point, after which the "star" will disappear.
It has long been known that comets are condensed warms of meteors, and Mr. Lockyer, of course, includes them in his theory. The most mysterious thing about a comet is its tail, which is evidently composed of something that the sun drives off from the body of the comet as it approaches. As the comet swings around, the tail al ways keeps on the side away from the sun. It is significant that comets which have cone permanently under the government of the sun's attraction, and continue to revolve around it in regular periods, gradually lose their tails, the apparent reason being that the material which the sun rejects finally becomes eliminated from them. According to the Lockyer theory, the tails of comets are probably composed largely of gases existing in meteorites, and which can be driven out by comparatively slight heating. This
gaseous matter is repelled by the radiant energy of the sun, which is the very life blood of the solar body since it also prevents the sollection of absorbing vapor in its atmosphere. When the energy begins to fa:l, the permanent gases begin to close in upon the doomed tar, and its final extinction is only a matier of time. How different is the aspect in which such studies as these present the universe to our view from that in which it appeared to men in former times! Then the
celestial bodies were looked upon as something differ ing in their very essence frow terrestrial phenomena A complete distinction was imagined between the heaveus and the earth. But now we see that they are continuous-one in composition, identical in origin, united in destiny. We are in touch with the whole creation. Stars have a beginning, a development, a noontide of life and energy, a period of decline, and an ending that we may call their death, like all other things ; and, thanks to the telescope, the spectroscope, and the photographic camera, there is not a stage in their marvelous history in which we cannot recognize the operation of Nature's most familiar laws transforim ing the common substances that compose the earth into all the wonder works of the heavens.-Garret P. Seroiss, in the New York Suin.

Professor Gale the Discoverer of Electric

 Telegraphy?In a cabinet in the Western Union telegraph office in his city may be seen the crude apparatus, his own handiwork, with which Samuel Finley Breese Morse made the first practical demonstration of his conception of recording signals by the action of electro-magnetism at a distance, the distance being not greater than across a large room. When the length of the wire was increased, the action was so enfeebled as to render the apparatus inoperative. Leonard A. Gale afterward suggested to Morse to wind his electro-magnet with a ine wire (of high resistance) and thus adapt it to the purpose for which it was intended, viz., the transmission of signals to great distances.
But suppose Morse did construct a telegraph consisting of a stylus moved by electro-magnetism, which was exhibited in actual operation for days or weeks or months, was it a successful invention? Would the Western Union Telegraph Company purchase or use such a machine now? Did it not lack an essential in gredient which was necessary to its commercial usefulness? Did he go any further in principle, if he did in degree, than did Henry in 1831 ? It wodld seem that he was following a wrong principle, the principle of small resistance in his electro-magnet and a strong cur rent of electricity; and that the great discovery in the art of telegraphy was that of emploging high resistance' in the electro-magnet, with a small core, and a corresponding diminution in the strength of the current required. This was accomplished by Gale, in his filamental, thread-like magnet wire, rendered practicable by the placing of the battery elements in series. With such a battery, the slender filamentary magnet wire, attenuated to the last degree of fineness, may be made to do its work through a circuit of handreds of miles with a small expenditure of electric force. This was really the grand discovery in the art of electric telegraphy. without which it could not have become a practical art.
Of course, the form into which the wire iscoiled may be varied at pleasure; it may be wound upon a cylinder or a horseshoe, or it may surround a galvanometer needle. All these forms are old. The principal and great thing is the attenuated conductor, and its use in connection with a series of many cells. There may be a preference in the metal from which the attenuated conductor is made. Practice will evolve all these collateral adrantages.
We think we are not mistaken in saying that, but for this.discovery, electric telegraphy never would have become a fact. We may suppose it to have been the discovery of Professor Gale. It may not have been so; it may have been the discovery of Professor Henry. But whoever discovered it, it is undoubtedly the great discovery in the art of communicating intelligence to a distance by electricity. We have given a more detailed account of it, in order to illustrate what we mean when we raise the question whether the claimed invention of Morse was ever successful. He may have made a telegraph that would record arbitrary signs, capable of being interpreted; but was it a success, or was it a failure? Did it ever go into use? What was the object of all the experiments made by him and others? Was it not to make an electric telegraph that could be successfully used by the public, and have a commercial value? Did he succeed in making such a telegraph or in finding out.ountil Gale told him, the principle upon which it could be made? We do not so read the evidence. In view of the most recent decisions, Gale, and not Morse, is the man to whom we are indebted for the art of transmitting telegraphic signals to a sufficient distance to be of any practical utility.-The Electrical Engineer.

A natural gas field which was lately discovered a few miles east of Welland, Ont., is being developed with energy by the company of which Mr. Eugene Coste is manager. The second well, which was completed a few days ago, has been torpedoed with 40 quarts of nitroglycerine, and the result, after careful measurement by Mr. Coste, shows a production of over $500,000 \mathrm{ft}$. of gas per day. .The closed or rock pressure of the two wells now completed is 475 pounds to the of the two wells now completed is 475 pounds to the
square inch, which would allow the gas to be piped 100 milen.

©orrespondence

To the Editor of the Scientific American.
Observing that you quote with approval, in jour issue of November 2, the utterance on the part of the International Marine Conference that "The term 'starboard your helm' shall mean that the wheel or tiller, rudder, and bow shall go to the starboard," etc., it occurs to me to be surprised that you do not comment upon the confusion of ideas which, it seems to me, is likely to be caused by the words "wheel, tiller, radder, and bow shall go." Except in the construction of some steam vessels, where the tiller is placed abaft the rudder post, so that it goes as the rudder does, the rudder and the tiller manifestly cannot go in the same direction, and to the helmsman of a sailing vessel which is steered by means of a tiller, "Port your helm!" means that the tiller goes to port and that the rudder and the bow go to starboard. Strict adherence to the letter of this article is therefore impossible, and if an article or rule cannot be so adhered to, it is dangerous ! If no attempt at strict definition was made, and "starboard" was taken to mean the direction of the bow, each steersman could settle for himself the side to which he shall put the " wheel or tiller or the rudder." So long as the ship heads rightls, what matter how she gets there?
A. S. G.
[We only quoted the terms as they were given in a proposal before the conference. As the steering rules are to be passed upon for amendment, the absurd terms will no doubt be discussed and the word tiller placed in its proper relation.-ED.]

To the Editor of the Scientific American:
I have read your account of the doings of the International Marine Conference, and am reminded of some early experience. When a boy and "in swimming" in Lake Erie, I have many times put my head under the water and distinctly heard the pounding of the paddles of sidewheel steamboats long before the boat was in sight, and could easily tell from which direction it was coming.
Now we know that water trunsmits sound with great rapidity as compared with air, and sounds so transmitted would not be liable to interference by storms such as the air offers; and it seems to me that if a box containing a diaphragm similar to that of a mechanical telephone, with sufficient projection to protect the diaphragm from disturbance by the motion of the water, was placed deep in the water, say one at the bow, one at the stern, and one at each side, and a wire attached to each diaphragm, or, perhaps, even a speaking tube, and all leading to the pilot house, a listener could distinctly hear such sounds as would be made by the strokes of a paddle wheel or the roar of a screw propeller, and could determine the direction from which they cane. Exploding bombs dropped into the water would surely give such shocks as could be heard many miles away. Perhaps the scheme is very old, and has long ago been determined to be impracticable. Please give me your opinion of it.
R. W.
[The transmission of sounds through water has been long known, and through the earth has been in prac tical use, since our early history, by the Indians, who trace footsteps by placing the ear upon the surface of the ground. Its application on board of a moving steaner, or even sailing vessel, would probably be impracticable, from the presence of local noise and tremor.-ED.]

Rope Driving.*

by louis le. beymour, plymouth, mase.

The difficulty heretofore experienced in transmitting large powers from a central station to a number of buildings lies chiefiy in the fact that shafting must be ran at various angles with the main shaft of the prime mover, necessitating quarter turns in belting, bevel gears, or other similar arrangement, usually placed in subways, where adjustment is not easy and the atten tion given is only casual.
Now that the transmission of large amounts of power by manila rope is carried on successfully in turers are
What is the first cost of the transmitting apparatus ? How long do ropes last?
How far will they carry power without serious loss in the transmitting apparatus?
Assuming the Corliss engine at the Nourse Mills to be a fair sample of direct belt transmission, we find that a belt fiywheel thirty feet. in diameter and 110 inch face is used to transmit a thousand horse power at a speed of fifty-seven revolutions per minute. Eighteen $1 \frac{1}{4}$ inch ropes would be required to transmit the same powier on a flywheel forty-six inches wide, while a rope wheel 110 inches in width would carry forty-four ropes, transmitting 2,400 horse power.
In a rope drive recently planned by the author, two hundred horse power is conveyed from a ten foot rope sheave on a jack shaft running 123 revolutions per
minate, to a driven sheave, sixty inches diameter, by five wraps of $13 / 4$ inch rope, each 178 feet long, requir ing in all 930 feet of rope weighing 815 pounds and costing $\$ 130.40$.
To transmit the same power, a 27 inch double leather belt would be employed, at a cost of $\$ 725$ or nearly five and a half times as much. Taking Lockwood \& Green's estimate of rope sheaves at the Washington Mills, their cost was found to be $\$ 5,686.10$, while for belt pulleys the cost would have been $\$ 6,846$: 75 , leaving difference of $\$ 1,150.65$ in favor of rope sheaves.
The conditions necessary to a successful rope transmission are properly grooved iron sheaves and a rope of uniform diameter.
According to Unwin, the coefficient of friction for a rope on a metal pulley=28, and with this form of groove the normal pressure between the rope and the sides of the groove is greater than the force pressiag the rope into the groove in the ratio of the cosecant of 45° : rope into the groove in the ratio of thes
1 , hence the coefficient becemes 0.7 .
A usual mistake in the form of groove consists in making it round bottomed and slightly smaller than the diameter of the rope.
This form of groove has never failed to wear out a maximum amount of rope in a minimum amount of time, and its use is largely responsible for nuinerous failures of ropes to drive satisfactorily.
Cotton ropes are much used in foreign countries for driving purposes, and when treated weekly with a compound of pitch, wax, and lampblack work very suecessfully.
Probably the most satisfactory rope for driving purposes is composed of manila whose fibers have been treated with an emulsion in the process of manufacture which effectually prevents the internal wear and lessens the fuiction of the fibers upon themselves when passing around a sheave. The emulsion also acts as a lubricant between the rope and the groove in which it runs. Such a rope needs no after application to make it pliable, and after a few months' usage becomes
glazed on its bearing surface, when all external wear glazed on its bear
apparently ceases.
Ropes having four strands around a central core are used in sizes of $11 / 4$ inch diameter and upward, those of three strands without a core being used in smaller sizes for facility in splicing.
Proper rope driving is of so recent date in this country that no reliable data are available regarding its life.
Judging from the appearance of some ropes which have run over three and half years, after transmitting more than twice their rated capacity, the life of a ope would be not less than seven years.
In earlier drives much difficulty was encountered in the selection of the proper splice. Both the ordinary short and long splices caused a jerky motion in the rope, and they were finally discarded for what is now known as the English splice.
From experiments recently made at the Watertown arsenal the breaking strain of manila transmission rope is 9,500 pounds per square inch of section and about 7,000 pounds at the splice.
Taking the case of a $13 / 4$ inch rope traveling 5,000 feet per minute, the initial tension necessary in belt driving is entirely absent. Its weight being only $\overline{3}$ of a pound per lineal foot, the tension due to its weight is very small. The tension due to the power transmitted is 330 pounds, and that due to centrifugal force is 216 pounds, making a total of less than 550 pounds, or 3.4 per cent of its strength, at the weakest point, the splice.
The centrifugal force, when passing around a sheave at such a rate of speed, is so great that the tendency to hug the sheave is entirely overcome and the "loss of work caused in pulling the rope out of the groove," mentioned by some writers adverse to rope driving, is een obviously not to exist.
Where a number of ropes are used side by side for a single drive, they should be in one piece, wrapped as many times around the sheaves as may be necessary to transmit the power required, with a single take-up sheave, when the pulleys are of the same diumeter. When the diameters vary greatly, the double take-up rrangement should be used.
Such a warp has but one splice, and the slack caused by the stretch of the rope can be taken up without resplicing, and the loss of power when several ropes of varying diameters are run independently on the same heaves is avoided.
For long out-door transmissions the movable takeup sheave (usually set in a frame sliding in ways) has a weight attached to its carriage, which takes up the slack and gives it out, alternately, in dry and moist weather.
Where the driving and: driven pulleys are of the same diameter, a wrap is not a necessity, as each ope, no matter what its size, drives its share
The length of span for long drives should not exceed 150 feet, ordinarily, and when this rule is ob served, power may be easily transferred two or three thousand feet with but slight loss.
The take-up sheave is placed in a frame sliding in ways, to which is attached a weight of 400 pounds, on
a strain of 200 pounds per lay of the rope or 35 pounds less than the actual working strain when transmitting. 100 horse power. The friction of this trans mission, at 3,500 feet velocity per minute, is 4.94 horse power, and it is difficult to see how any other form of transmission could be applied, with so small loss from friction, even at a much greater first cost. In conclusion, the advantages of manila rope trans mission are :

Small first cost.

Slight attention required.
Close alignment unneceseary.
Transmission of large amount of power in small space.
Adaptability to transmission at any angle, in any diection, and at any ordinary distance, without serious loss from friction.

The Edinburgh Electrical Exhibition of 1890. In its general appearance, says Engineering, the building somewhat resembles the structures now asso ciated with exhibitions, and yet there are one or two distinctive features indicated in the perspective view. The characteristics of Moorish design are borrowed to give itw light and attractive decorative appearance, particularly in the case of two towers, which form a prominent feature in the elevation, as they fiank the principal entrances, and in thre series of domes with turrets at either end of the building. The Union Canal passes between the public road and the exhibition grounds, and the main building is built parallel with the canal. From the main road a steel girder bridge carries the entrance way over the canal, and this way, which, like the bridge, is covered in with a light awning, diverges in circular lines in two directions to the main entrances. The main building, which is 170 ft . from the canal, is 700 ft . long and 200 ft . in width. Running across the center of the building at the entrance is the principal court, with a high arched roof, and on either side of the ceremonial entrance are to be reception rooms. The general courts right and left of this principal one are 50 ft . wide. The total floor area is 177,000 square feet. There is to be a large concert hall 200 ft . long and 100 ft . wide, which will have the distinct advantage of being separated from the general exhibition courts. There will, of course, be the usual dining ànd refrėshment saloohs. At the west end of the building there is to be a promenade with veranda, from which a fine view of the grounds will be had. The suburban railway intersects the grounds, and is to be bridged by a strong timber structure 30 ft . in width. On the side of the railway opposite to the main building is to be the general machinery hall, 700 ft . long and 150 ft . wide, having a floor area of 99,600 square feet, and in close proximity there will be a boiler shed. Throughout the buildings there will be the usual structures. When the plans were before the Dean of Guild Court at Edinburgh, the Lord Dean of Guild complimented the civil engineer and stated that he thought the plans were admirable. It may be added that the executive are trying to arrange that several typical American locomotives will be exhibited alongside engines of British build, and that if possible several runs will be made between Edinburgh and London with these locomotives, to test the relative efficiency of British and American engines on English railroads. The results will doubtless be very interesting. This shows the desire of the executive to produce something distinctly new. Mr. W. A. Bryson, a member of the Institute of Electrical Engineers, has been appointed engineer and electrician, and his connection with the Glasgow and other exhibitions gives a guarantee that, so far as his efforts are concerned, the exhibition will be a success. Arrangements have been made for forwarding to Edinburgh exhibits at the Paris exposition from Russia, Italy, Austria, China, and the East Indies.

Elevators-Liability-Carriers.

An important decision was recently rendered by the Supreme Court of California in the case of Treadwell vs. Whittier et al. The case arose upon an action to recover damages for personal injuries caused by the falling of an elevator in which the plaintiff was riding in the defendants' store building. The Supreme Court held, in affirming the judgment of the trial court, that the defendants, in operating their elevator, were carriers of passengers, and the same responsibilities as to care and diligence rested on them as on carriers of passengers by stage coach or railway; that, while they were not insurers or warrantors of the safety of passengers to the same extent as common carriers of goods, i. e., insurers against all injuries except by the act of God or by public enemies, still they were liable for the slightest neglect and were held to extraordinary diligence and care; that the manufacturer of the elevator was defendants' agent or servant in its construction, and that they were responsible for any want of care of the maker or builder ; and that, like common carriers of passengers, they must keep pace with seience, art, and modern improvements in supplying safe obtainable vehicles, machinery, and appliances for their use, and must use every precaution which human skill and fors-

THE BOSTON MARITIME EXHIBITION.

Thelighthouses of the coast, with their great lenses, clockwork oil feeds for lamps, and revolving curtains or turrets for flash lights, are objects familiar to many. So are life-saving stations, life boats, life rafts, mortars, rockets, life lines. Many have gone up into the towers of the Weather Bureau's signal stations,visited navy yards and ship yards. Few, however, have seen them all, while many have seen them without under standing.
In the big Maritime Exhibition at Boston, in the Mechanics' building, are grouped together the most interesting objects of this kind, together with all the new apparatus designed for use on sea or coast, the various and curious furnishings for ships of war, mercantile and fishing fleets, guns, torpedoes, buoys, instruments for surveying the sea and sounding its depths, for the study of live forms of the ocean as it is carried on in the curious craft of the Fish Commission, and-much else pertaining to seafaring life or looking to the governance and protection of sea industries and the mariners engaged in them.
Entering the main hall, the first object that attracts the eye is a graceful schooner yacht in full figure. (See main view, first page). It is the Quickstep, built by the famous Burgess, and, like all his boats, having a noble sheer and lines so delicately drawn, so true, it seems as though they would scarce disturb the play of ripples upon a summer's sea. The pitch pine spars tower aloft and lean rakishly backward, a glistening main boom shows its length over the stern, and an enormous jib boom stretches far outward over the bow. Her dimensions are: Length over all, 78 ft.; water line, 58 ft .; beam, 14 ft .; height of masts, 84 ft . The 7th Regiment band, N. G. S. N. Y., plays from her main deck. A very proper exhibit is this noble craft nor too prominent, either seeing it represents the only class of Yankee craft that has of late borne our colors to the fore. To re gain a maritime ascenden cy, or, at least, to make an effort in that direction, is one of the purposes of the present exhibition.
The models of the Fish Commission's steamer Fishhawk and Albatros (see upper left hand corner of front page) are about seven feet long, thus making it possible to study their details-the tanks for fish and spawn, the drag nets for catching shell fish, crustacea, sponges, gulf weed, and the like, the nets for big and little fish, mi croscopes for studying mi nute sea forms, self-regis tering thermometers and hydrometers. These steamers have floating anchors, raft-like looking objects, which, drifting much slower than a vessel, hold her head up to wind ward when her zoological commander would lie by in a seaway for observation and study.
From right to left, in \cdot the great hall, many large objects attract the eye, Now
it is a barbarian proa of the Ladrone Islands or an Arab dhow ; now a Chinese junk or a Genoese fisher bark, xebec or polacre, with lateen sails and bamboo booms. You can study the progress of sail making and setting, from the earliest times; the ancient square-sail cut, the rise and progress of the fore and aft rig. Here is the North Sea fisherman and our own banker, here a faithful image of the lugger, the Snow, and so on.
To the American ambitious, like the projectors of the exhibition, to see our flag once more taking its rightful place in deep water, the more modern craft, handiwork of American builders, have a peculiar interest. He will find exact models of the new cruisers, of ships, barks, brigs, schooners, steamships, and steamboats. He will find a section of a rope of 120 fathoms of the largest size hempen hawser known (see illustration). It was made at the rope walk of the Charlestown navy yard, and is 25 inches in circumference, weighs 15,000 pounds, and will resist a strain of $212 \cdot 58$ tons.
He may also see how ships are constructed, the great marine engines for steamers in their various stages of construction, and view the ponderous ma-
chinery used. A notable exhibit of this kind is fur nished by the famous Atlantic Works of East Boston. Turning to the left as you enter the building there is an inclosure where, arranged side by side, are photographs, some of them six feet across, being exact re presentations of the interior of the Atlantic Works ship yard and its various workshops. A view of the interior

HAWSER, 25 inches in circumference.
general view of the yard and shops of these works are shown at the bottom of the first page.
This corporation, organized in 1853, has an extensive plant, on deep water, directly opposite the Charlestown na y ard. Their specialty is marine work, and they have excellent facilities for handling this class of

miniature canal at the boston maritime exhibition. foreign and domestic steamships. purity, 100.
cellent record for themselves. They have since built several sloops-of-war and revenue cutters, but the great increase in facilities for building steamships, etc., in Philadelphia, Wilmington, Chester, etc., has, of course, interfered with successful competition in this line of work by New England concerns. The Atlantic Works have turned out a large number of ferry boats, taw boats, steam yachts, etc., and have a reputation for first-class work. They also have done a very large amount of repair work upon hulls and machinery of

Pure drinking water for those who go to sea is a necessity. On land, especially in crowded cities, how to obtain it has come to be one of the most important problems of the day. Organic matter and other impu rities are discovered by analysis in the drinking water furnished to all cities. A new process has been dis covered of purifying water. It is shown here in the machinery section, by a working model of what is called the cold blast water still (see front page). Its most striking feature is the simplicity of its parts and the thoroughness with which it does its work. It is quite unlike other stills. With this (the Chase system) the water is clear as crystal, and its purity may be in ferred from the following analysis: Oxygen gas, $331 / 3$ per cent; hydrogen, $662 / 3$; sulphate of potassa, . 00 ; chloride of sodium, .00 ; carbomate of soda, .00 ; carbonate of lime, .00 ; carbonate of magnesia, .00 ; oxide of iron, .00 ; silica, .00 ; organic matter, $.00=$ absolute

The water is received in the bottom compartment, where is a steam coil for vaporizing. The steam rises into the top dome. Air is first admitted to central upright column, from there being drawn into the dome and mingling with the vapor, thus aerating the water and giving it life and sparkle. The water jacket condenses the vapor in the dome, and the condensed water passes off through the inclined tube into the reservoir or receiving tank. The impurities settle to the *bottom. The still runs itself, and will purify any kind of water, salt or fresh ; the capacity of the largest kind being sixty gallons per hour. Thisadmirable still is made by the Cold Blast Still Company, Swett Street, near Albany, Boston, Mass.
In the basement of the exhibition building there is a canal, quadrilateral in shape, 565 feet long, 12 feet wide, and 6 feet deep. Over its smooth surface glide graceful gondolas, and an electrical launch darts hither and thither,' while a naphtha launch, that triumph of Yankee cunning. circles round and. round the course, a practical exhilit of the most economical and convenient of marine motors. It requires no engineer nor fireman nor iandling of fuel, and gives off no smoke. You have but to strike a match, touch a lever, and you are off and spinning away. You touch the lever again and reverse the screw, and you stop. This launch is have erected a model shop, consisting of two brick 25 feet long, clinker built, of 4 horse power. It is manu buildings, 90 feet by 200 feet and 70 feet by 87 feet factured by the Gas Engine and Power Company, Morrespectively, which are fitted with the best of tools ris Dock Station, near High Bridge, New York City.
and appliances, including a Sellers traveling crane of One of the most interesting exhibits is the collec15 tons capacity, shown in the right hand cut. The tion of signal buoys, including bell buoys, whistling,

NAPHTHA LAUNCH FOUR HORSE POWER. spar, and other varieties of buoysa collection that is quite complete, and attracts a good deal of attention. It has been loaned by the government. Many varieties of canoes, sail boats, and row boats are also exhibited. In the main hall near the yacht Quickstep is a very interesting collection of photographs illustrative of the work connected with the Fish Commission.
The Navy Department exhibit an important collection of hemp and wire rope, the latter containing ex amples of wire rope that is now being
orge shop, boiler shop, and patt she buildings. Upon the end of the wharf is a pair o hears, made of plate iron, 120 feet in height, and capa ble of lifting 150 tons (see cut).
During the war of the rebellion, this company executed a large amount of work for the government, em ploying about 800 men continuously, and made an ex-
manufactured by the government. The Massachusetts Humane Society have an exhibit of various life-saving devices, such as a life boat mounted on a beach wagon of the usual type, motors or throwing the life lines, night signals, and other ife-saving paraphernalia.
The attendance at the exhibition has been very eatisfactory, and in conjunction with the Maritime Congress
recently held at Washington, bespeaks an increasing interest in maritime matters in this country that promises well for the future of shipping in this country

a mammoth cactus.

The accompanying engraving, from La Nature, represents a specimen of a Cereus growing against the wall of a house at Antibes, in the Maritime Alps.
The species of this genus of the Cactaceæ, which is an extensive one, are remarkable for the singularity of their form and for the beauty of their flowers. While young, their stems are fleshy, but many of them become hard, and woody even, in the course of time, and vary much in form, those of some species being cylindrical, ribbed, and fluted, while those of others are angular or nearly square. Some grow erect, others creep along the ground or up trees, and send out roots from their sides. Some are unbranched, while others have numerous branches, and some are jointed. Most of them are armed with spines, which radiate from small cushion-like tufts placed at regular interval along the ridges or angles of the stem. The tubes of their flowers are funnelshaped, and usually armed with small spines.
The "suwarrow" or "saguaro" (C. giganteus) of the Mexicans is the largest and most striking species of the genus. It is a native of the hot, arid, and almost desert regions of New Mexico, extending from Sonora to Williams River, and found growing in rocks valleys and upon mountain sides, often springing out from mere crevices in the hard rock, and imparting a singular aspect to the scenery of the country, its tall stems with upright branches looking like telegraph poles for signaling from point to point of the rocky mountains. While young, the stems are of a globular form, but gradually become club-shaped, and ultimately almost cylindrical, and from 50 to 60 feet in height, with á diameter of about 2 feet at middle height and gradually tapering out upward and downward to 1 foot. They are most frequently unbranched, but some of the older plants have branches, which issue at right angles from the stem and then curve upward and grow parallel with it. The stems are regularly ribbed and fluted. The flowers are produced near the summit of the stems and branches, and are about 4 or 5 inches long by 3 or 4 in diameter, and have light cream-colored petals. The fruit is about 2 or 3 inches long, and, when ripe, is made into an excellent preserve by the Pimos and Papajos Indians. This plant is sometimes facetiously called the " Arizona shade tree."
Cereus Thurberi is commonly called pitahaya by the Mexicans, and this is the name by which it was known to the Aztecs. It grows in the Papajo Indian country, on the borders of Arizona and Sonora, to a height of 20 feet, and bears two crops a year. The fruit is better than that of the giant cactus, and is used for the same purposes.
Certeus MacDonaldica is one of the night-flowering kinds, and is very beautiful. Its flowers, when fully expanded, are as many as 14 inches in diameter, and have numerous radiating red and bright orange sepals and delicate white petals. The stems are cylindrical, creeping, and branched, not much thicker than the little finger, and having here and there small swellings with a spine in the center. It is a native of Honduras.

The most common night-blooming cereus is the C. grandiflora, a native of the West Indies. All the Cactacem are indigenous to America, no species appearing to be native of any other part of the world.

Some people denounce labor-saving machines as an evil. They notice that a few individuals are put out of work for a time by the introduction of some device, but they ignore the greater benefits which the whole community obtain.
"Gas veinns have been struck here at different places years ago, but there is considerable more pressure and quantity in this well than in any of the others. It is estimated that gas sufficient to illuminate the entire city can be obtained from this vein."
The gas well struck just outside the city limits of Ogden City, Utah, recently, is creating much excitement there.

Colloidal Cellulose
Guignet states in the Comptes Rendus that cellulose is converted by sulphuric acid of $50^{\circ} \mathrm{B}$. into a gelatinous transparent mass, which, when washed and dried, forms a milky solution with water. This solution contains colloidal cellulose, is unchanged on boiling, and is slightly dextro-rotatory. The cellulose can be precipitated from the solution by the addition of salt, sulphuric acid, or a large quantity of alcohol ; it does not reduce copper solution, and gives no coloration with iodine. If the water be evaporated, and the residue touched with a drop of sulphuric acid, the colloidal cellulose is transformed into the insoluble variety. Artificial parchment, or parchment paper, seems to consist of ordinary cellulose in which the pores are filled with this colloidal variety, and can be prepared from filter paper by coating both sides with a solution of the colloidal cellulose, and then subjecting the coated paper to prèssure between zinc plates.

A. LaRGE CACTUS AT ANTIBES.

Glants of the Forest on Puget Sound.
A strong flow of natural gas has been struck at a point three miles northeast of Salem, S. D., at a depth of 60 ft . The pressure is strong enough to throw grave and sand 30 ft . in the air. It has been tested and burns excellently.
A strong flow of natural gas was found recently in a well about two and one-half miles south of the city of Mattoon, Ill. The drill had penetrated but 100 ft .
A dispatch from Salinas, Cal., says :
" While boring for artesian water, recently, on a lot near the court house, a vein of natural gas was struck at a depth of 84 ft . At the application of a lighted match, the flames rose to a heiglit of 10 ft . The gas also escapes around the pipe at the surface, and doubtess also at all of the different joints on the pipe, as they are not sufficiently tight to hold it. There is about 70 ft . of mud and slush in the pipe, and of course the quantity of gas that would necessarily be required below the mud to force to the surface what is constantly arising can only be conjectured.

Plying on Puget Sound is a boat 122 feet long. The timbers of which the hull is built run from stem to stern, and not one is spliced. As a specimen product a Washington lumberman sent to San Francisco last year a beam 24 inches thick and 152 feet long, writes a correspondent of the St. Louis Globe Democrat. He explained that his intention was to make it 190 feet long, but the end ran into a bank and the \log had to be cut. Spars for ship yards on the Clyde, in Scotland be cut. Spars for ship yards on the Clyde, in Scotland.
are shipped from Puget Sound. At a mill in Portland you may see the timbers, sawed, mortised, painted, and numbered, for bridges to be put together in Michigan, Ohio, and Indiana.
Puget Sound cedar shingles are used in New York State. Four ships are loading to-day at a Sound wharf, all with lumber. One goes to London, the second to Melbourne, the third to Valparaiso, the fourth to San Francisco. A test was made not long ago of 4 inch sticks of Washington fir, Michigan pine, and good white oak. The pine broke at 1,700 pounds, the white oak at. 3,500 . pounds, and the Washington fir at 4,300 pounds. Engineers say the straining force and endurance of this fir lumber is greater than that of any other. When one of these monarchs of the coast forest goes down, it shakes the ground like an earthquake. Let it fall across a canyon, and it doesn't snap under the tremendous shock, but lies intact and rigid.

There is a bridge in Ore gon across a ravine 60 feet deep, made by spiking a plank on a tree where it fell by accident. Where a windfall in the forest has occurred, these great tim bers lie so thick that the onlyway to cross is to walk on the trunks from 10 to 30 feet above the ground. Lumbermen tell of traveling for miles and not once putting their foot on the soil. In the old town of Tacoma, where the settlement was before the land company and the railroad made a city, there is a church with a fir tree for a steeple. St. Peter founded his church on a rock. St. Peter's Church of Tacoma has a tree for its corner stone. This tree has been cut off at a height of 50 feet, and upon the top is the belfry.

Mines of Bolivia.

M. A. Carion, Belgian Consul-General at Santiago, in the last report to his government, states that the soil of Bolivia contains antimony, sulphur, bis muth, cobalt, cinnabar copper iron niekel ochers, gold under differ
ent forms, silver, saltpeter, salt, etc.
Discoveries of coal have lately been reported from Calacots and Achumani, which are situated at a little distance from La Paz. Copper is frequently found under a form called charqui; this consists of sheets o copper similar in appearance to thin slices of sun-dried meat, which is known as charqui, hence its appellation. Marble, and more particularly that transparent de scription resembling alabaster, and which is called berenguelas, is frequently found, as are also earths suitable for the manufacture of faiences, tiles, etc., also kaolin, mineral waters, etc.
The principal copper mines are at Corocoro; these yield from 1,500 to 2,000 tons annually. In the Roya or Central Cordillera there are the silver mines of Esmorace, Santa Isabel de Potosi, Chocaza, Huanchaca, Potosi, Colquechaca, Portugalete, Poopo, Huanuni Antequera, Colquiri, Illemani, Guania, and others.
In the mountain chains of Lipez there are the mines of San Antonia, Ascotan, etcc. Tin often accompanies silver in these various mines. Thus at Potosi there j a rich vein known under the name of La Bel Estano at Oruro also there is one known as San Louis, and there are others at Huanuni, Colquiri, and elsewhere The silver mines at Bolivia may be classed as follows (1) Huanchaca, the production of which is steadily increasing; (2) Colquechaca, (3) Oruro, (4) Portugalete, and (5) Potosi.

Anthrax Albumase.

In a communication to the British Medical Journal, (October 12, p. 811), Mr. E. H. Hankin claims to have isolated from anthrax cultures an albumose that is capable of exercising a marked influence upon the development of the anthrax disease. He states that when this albumose is injected into an animal in too large a quantity, it appears to cause death more quickly than an injection of the most virulent anthrax spores; but that when only a very small dose is injected, the system appears quickly to establish a tolerance of the poison sufficient to protect it against the subsequent action of the anthrax bacillus. If his conclusion proves to be correct, it would seem to point to an improvement in the method of vaccinating animals against anthrax and possibly against other diseases.

Mr. Hankin states that he isolated the albumose from anthrax cultures by the ordinary chemical method of precipitating it from solution by the addition of a large bulk of absolute alcohol, washing the precipitate thoroughly with absolute alcohol to remove ptomaines, drying, redissolving, and then filtering through a Cumberland filter. A rough colorimetric determination of the quantity of the albumose in solution was made by comparing the biuret reaction with that of a peptone solution of known strength.

The Ingersoll New Catalegue.
The Ingersoll-Sergeant Rock Drill Company, of New York, has just issued a new catalogue, No. 8, in their series, covering the most important features in the mining of ores and coal, railroad tunneling and quarrying.
It is largely illustrated, not only with mining and quarrying machinery of the latest and most approved patterns, but also illustrates the American method of tunnel driving and submarine blasting, together with descriptions and adaptations of this class of machinery to the varions conditions required in drilling hard and soft rock, such as granite, limestone, marble, sandstone, etc. A most important feature, that has heretofore been left out of catalogues of this class of machinery, is the price. In this catalogue the price, at a small advance on the cost, is inserted throughout the whole list of articles needed for mining and quarrying purposes, so that miners at a distance and in foreign countries can make up the cost of a complete mining plant without a tedious correspondence. The estimate sheets, with prices and shipping weights, are also a novelty in cataloguing this class of machinery.
The record of experience is so arranged as to give a a glance the prominent points in the progress and cost of mining and tunneling.

THE MOVING STONE OF BUENOS AYRES

The remarkable geological phenomenon which we reproduce in our engraving is located on the mountain of Tandil in the southern part of the Province of Buenos Ayres. It is called the moving stone, and is famous throughout South America.
This enormous rock appears to be sustained on its base by an invisible axis, and has an oscillating movement from east to west to and from the mountain, the power of a single man being sufficient tọ putitin motion. It cient to put it in motion. It
measures 24 feet in height, 90 feet in length, and 18 feet in breadth. It represents a volume of over 5.000 cubic feet, and its approximate weight, as calculated, is 25 tons. Its figure is that of an irregular cone, and the base on which it rests has also the form of a it rests has also the form of a
cone which has a diameter of cone which has a diameter of
about 10 inches. When the wind blows from the south: east the movable stone sways, rises, and falls after the manner of the branch of a great tree.-La Ilustracion Espanola.

Rolling stones of Nevada.
These stones are spheroidal, about the size of bickory nuts, of magnetic ferruginous composition, and are found in comparatively level regions where the surface is of rock.
Where the surface is of rock.
They collect in the bottoms of shallow basins that abound in such localities, and lie huddled in bunches like eggs in a eot
Distributed on a floor or other level surface, at distances not exceeding two or three feet, they immediately commence moving toward a common citer with amusing celerity, caused, doubtless, by the material of which they are composed.
It is needless to add that they are usually devoid o

THE MOVING STONE OF BUENOS AYRES.
here strongly. This experiment succeeds in a vacuum, showing that atmospheric pressure plays no part in holding the glasses in contact.
In the arts, examples of adhesion are found in claes, cements, and solders.

Chloralamide.

The results following the administration of the new hypnotic, chloralamide, to a number of hospital patients have been communicated by Dr. D. R. Paterson of Cardiff - (Lancet, Oct. ' 26, p. 849). It was given in fourteen cases of insomnia, including simple sleeplessness and that consequent upon phthisis, heart disease, and enteric fever. Upon the whole the results obtained were encouraging, for although theaction of the amide is not, quite so rapid as that of chloral hydrate, sleep coming on from half an hour to an hour after its administration, this is considered to be more than com pensated for by the almost entire absence of action upon the circulation. The new hypnotic, however, appears to be not quite free from some of the disadvantages attending the use of others, since in some in stances doses of 30 grains and 45 grains were followed by giddiness, feeling of sickness, dryness of mouth and even slight delirium. As a rule, sleep lasting about eight hours followed its administration, and in cases of phthisis its influence in restraining sweating was very marked; but the insomnia and restlessness due to pain were little, if at all, affected by it. Dr. Paterson thinks some of the published doses to be much too large, at least to begin with, especially if the patient has been ill some time. He has found that usually from 30 to 45 grains is sufficient for a man, while 20 to 30 grains will give si tisfactory results in a woman.

Prevention of Subway Explosions.

The frequent explosions of gas in the electrical sub ways in Chicago has led Professor Barrett, the city electrician; to devise a system of ventilation that has been put into use and found to work well. One of the canses that led to the active effort to find a way to ventilate the subways was that the escaping gas was finding its way, to a dangerous extent, into the city hall building. The Western Electrician says that the arrangement is now in operation in the basement of the city building, and consists of a chamber at the end of a tunnel entering the building, through the sides or walls of which the cables are carried for distribution, this chamber being provided with an air inlet and a vent connected with a flue, and so arranged that all objectionable gases coming through the tunnel will be carried off through the flue without being disseminated through the building. It will be understood that the tunnel is laid from the main conduit of the system, and is designed to carry the necessary conductors to the building. This conduit opens into the chamber or apartment. A door is provided, so that entrance may be had to the chamber. The cables are carried through the walls or sides of the chamber in any convenient manner, all spaces about the cables as they pass through the walls being practically air-tight, so that there may be no escape of gas into the building. An opening is provided between the chamber and outside, and a flue leading to the top of the building carries away the gas. This flue is preferably one of a stack of chimneys, so that it. may be heated, thus causing a strong draught of air though the chamber. Any gas which may enter the chamber will thus be carried off through the flue. The gas in the conduits is also caused to circulate, and dangers from explosions throughout the system, as well as in the building, are avoided; while at the same time any annoyance from small quantities of gas entering the building is prevented. It is of importance to cause the gases throughout the system of conduits to circulate, since they are usually of such specific gravity that ventilation at the manholes does not have the desired effect. This inventior is applied to the Chicago sys tem of underground conduits and not only prevents the ex plosions in the building fo: which it was specially de If the moistening of the disk by the water is prevented /signed, but is also beneficial throughout the system by lycopodium distributed on the surface of the water, here can be no adhesion.
Two pieces of plate glass pressed firmly together ad\# From "Experimental sclence." by George M. Hopkins. Munn et
OO. publithorn NTiW Yotk.
since no explosions have taken place at the manhole or at other buildings connected with the same systev since its application, and the injury to the cables here tofore caused by the action of the gases has pract: cally ceased.

RECENTLY PATENTED INVENTIONS. Engineering.

Rotary Engine. - John B. Harris, Entaw, Ala. The cylinder of this engine has radial slots into which inlet and outlet ports lead at opposite
sides, the cylinder heads forming with the cylinder annular grooves into which the ports sead, and connecting with inlet and oatlet pipes, while the piston is made star-shaped.
Ore Separator. - Alonzo C. Campbell, Nashville, Tenn. This separator has a reciprocating pan with a perforated false bottom, hinged gates
resting on the upper face of the bottom, while there is a pipe for conducting water or air in the pan below the pipe for conducting water or air in the pan below the
false bottom, with other novel features, the invention being an improvement on a former patented invention

硅
Vibration Recorder. - John Milne, Croydon, England. This is an instrument to be used on locomotives and cars to detect imperfections in the ings, there being a pendulum to be operated by vertical vibrations, another pendulum by horizontal vibrations, and a third pendulum by horizontal vibrations in a plane at right angles to that of the second penduam, all working in combination with a record cylinde

Railway Appliancea

Dumping Car. - John Voegtline and Gustaf Bergstrom, Repablic, Mich. This invention provides an attachment designed to be readily applied to the ordinary form of platform car, whereby all such ine being attached to a series of connected cords, when slight forward pall of the engine is sufficient to dump all the cars.
Car Coupling. - Andrew Drengson, Thompson, North Dak. In the drawhead of this conping a coupling hook is pivotally mounted, and there is nother car, a hook-raising device being arrang within the drawhead, the coupler operating automatically, and being arranged for manipulation without the trainmen going between the cars.

Mechanical.

Screw Driver.-Charles G. Teubner, Lexington, Mo. This is a tool designed to clamp the head of a screw and hold it in fixed position while it is
being driven in, the rod forming the body of the screw driver being adapted to fit a brace or to be received in a rew driver handle.
Foot Power - James E. Adams, ocean Beach, N. J. A drum is rigidly connected to a shaft on which a driving. wheel is loosely mounted, a
jointed lever being connected to the drum and a link connected to the drum and to the lever, the latter carrying a shoe arranged to engage the driving wheel, while bands connect the drum to the treadle and a spring, making a simple and
run with little power.

Saw Table. - Joseph M. Baker, Louisville, Ky. This invention provides a méchanism whereby the material to be sawed may be automatically ed to the saws and suitably supported, there being a hopper at one side of a guide adjustable laterally, and having spring presses adjustably supported at its op posite side, the hopper beng adjustable both as to
length and width, and to permit the feeding of thick or thin boards, one or more at a time.

Agricultural.

Hay and Straw Sling.-Joseph W. Wood, Baraboo, Wis. This invention covers a combiation of an improved form of hook with a bottom
trip hay and straw sling former!y patented by the same nventor, making a simple and effective device for binding and elevating hay or straw, affording space to receive the various ropes and chains, and whereby the
load may be readily released after it is deposited in the load may be re

Check Row Planting.-Franklin L. enefee, Aurelia, lowa. This invention provides a taking up the check wire, and means for automatically shifting the wire as it is wound upon the reel, and the reel is journaled upon a transverse bar rotating in the
cear end of the truck frame of the planter, such har being preferably the marker bar.

Miscellaneous.

Spoke Drawer.-John M. Germann New York City. This is a machine for drawing broken or damaged spokes from the hubs of wheels while re
pairing them, and has but few and simple parts, con sisting of a couple of screws fitted to opposite threaded eyes of a spoke clamp, with foot or pressure plates adapted to bear upon the hub of the wheel.
Horse Detacher. - William B. Walker, Nevada, Mo. The slafls hul recesses in which are fitted spring bolts, guide pulleys being ar
ranged on theshafts and cross bar and each bolt con nected to a cord passing to an operating cord, whereby the breeching straps and traces of a harness may be quickly released should the horse become refractory and uncontrollable.
Remedy for Dyspersia.-Oscar F. George, Black Brook, N. Y. This is a medicine made
up of three different mixtures, separately compounded and mixed together as described, and containing glycerine, pepsin, hydrochloric acid, oil of anise seed oil of gaultheria, cabebs, simple sirap, hydrastis canadensis, and other ingredienta.

Life Boat.-Peter F'. Schenck, Nave-
ink Highlands, N. J. This invencion covers a rowing boat having an oar opening in which is fitted a flexible diaphragm, while an oar with a hinged blade is ful ramed to the hall and passed through the diaphragm, there being a latch on the oar operative within the boa lock the blade in alignment with the oar body.
Riding Saddle. - Jesse D. Padgitt, Dallas, Texas. In this saddle the cree is divided, with a shortened seat leather, and the stirrup leathers, having a metalic straining piece upon item, pass en
irely across the tree in front, against the front edge the seat leather.
Riding Sadduc. - Henry $\dot{R} \mathbf{u} w a r t$ tree having a combined wood and metal fork and hor that is very strong in proportion to its weight, the meta fork being so made as to require but little metal to give the necessary strength to keep it from spreading apar or breaking.
Grain Turner.-Siegfried Hirschler Worms, Germany. This is a machine for turnin during the manafaciure of malt, the machine traveling on rollers supported by longitadinal rails at the sides of the floor, and its carriage having a wheel with shovels
branching in opposite directions, to turn the grain on the backward

Baling Press. - Philip Steuerwald and Albert Cording, Sannemin, II. In this press the pivoted centrally to a cross bar secured to the fram the inner end of a sweep being connected to the head in such way that animals hitched to the sweep will
rotate the head, the press being designed for easy operotate the head, the press being designed for easy ope
ration by farm hands or ordinary laborers.

Beam Compasses. - Henry W. Oliver New York City. This is an improved drawing imple beam combining various instruments, the extensio knob tarning loosely on the leg, a holder carrying a pen, pencil and other point,
tarn loosely on the holder.

Button Fastener.-John P. Hickey for fastening buttons to trousers and other garments, the shank being adapted to carry the button at one end and having its other end bent in peculiar shape, to be he fabric and locked thereto
Lace Fastener. - Martin N. Bailey, New York Gity. This is a fastener for laced shoes and a partial coil integral therewita, to rest on the outer side of the shoe fiap, a hook like extremity pass-
ing through the flap, and a coil resting upon its inner ing throngh the flap, and a coil resting upon its inner
side, whereby with a single motion the lace is securely clamped.
Baker's Oven.-John Raney, Brookyn, N. Y. This is an oven in which there is no communication between the baking chamber and furnaces througb the floor of the chamber, and is so constructed
that the temperature of the baking chamber may be that the temperature of the baking chamber may be
easily controlled, as required for different articles, witheasily controlled, as required for different
out undue disturbance of the furnace fires.

Wall Pocket. - George Baldwin, Willimantic, Conn. This pocket has an essentially U shaped bottom to which standards are secured with grooves apon one face, into which fit detachable front
and rear boards, making a simple and economical

Window Screfn.-William D. Graves, r., Presque Isle, Me. This is a screen which may be extended lengthwise and have its sides continuous frame adjacent to the sash will fit, and prevent th
freal ingress of fies or other insects, the screen having end
pieces attached to the sections offeetted to project the pieces attached to the sections offsetted to
face of the screen cloge to the lower sash.

Shutter Fastiener. - George Bense and Otto T. Maier, New Orleans, La. This is a fastening which permits the opening of doors and shutters on which it is used from the outside in case of fire, pins
supporting the lock and projecting to the outside, and having an annular groove near the o the outside, and having an annular groove near the outer end, a colla
on the outer end of the pin terminating at the groove.

Rotary Fan. - Oscar S. Heckle Macon, Ga. This invention covers a construction by Which the entire fan shafts and fans, in a serves of fans readily secured and raised or lowered as desired, and screws, the fans being adjustable to stand at any desired angle, while the construction is strong and CLimple.
Clothes Pín.-Charles Barlow, Cookshire, Quebec, Canada. This invention relates to wire
clothes pins, and is designed to so improve the conclothes pins, and is designed to so improve the con-
strnction of the pins as to provide for the ready and efstrnction of the pins as to provide for the ready and ef-
fective clamping of heavy and light garments on the fective
line.

Colored Firie.-John G. Stuttz, San Diego, Cal. This invention relates to a compoond con-
atituting a body for illuminating or colored fires, the body being a hard, compact mass that is harmless in burning, makes little or no smoke, and is also a good righter, and stronger than any similar burn the composition not being affected by weather, and giving out little or no odor in barning.
Animal Trap. - James F. Warnick, Engene, Ore. This is a self-setting device by which ants and other rodents may be captured alive or thrown pivoted at the front end of a frame, a screen-covered cylindrical roller engaging a pin in the trap board and there being a pivoted bait box in the rear of the trap,
with other movel features.

NEW BOOKS AND PUBLICATIONS. Ghemical Technology, or Chemistri M ANU APPLICAS Edited by Charl Edward Groves, F.R.S., and Williain Edward Groves, F.R.S., and Willian
Thorp, B.Sc. Vol. I. Fuel and its applications. By E. J. Mills, D.Sc.,
F.R.S., and F. J. Rowan, C.E.
Philadelphia: P. Blakiston, Son \& Philadelphia: P. Blakiston,
Co. 1889. Pp. xx, 802. Price $\$ 7.50$. This the first volume of what will be one of the most mportant contribations to technical literature of the ay. In it we find treated in detail and with very nuerous illastrai ons, tablar suat aitagrams, and ous modifications as reards honses, factories, blast as modifications as regards houses, factories, blast
urnaces, boilers, kilns, cupolas, etc., finds a place The methods of using liquid fuel are treated in great detail, and nataral gas is included also. The subject of coal is supplemented by very numerons analyses of he coals of all parts of the world, and a considerable portion of the book is devoted to direct experiments, a onducted in England and America, with varions coals, The present volus which the entire as a sample of the echnology promises to be covered in this series.

THERMODYNAMICS, HEAT MOTORS, Refrigerating MaCHINES. By De Volson Wood, C.E., M.A. Third edition. New York: John Wiley \& Sons. 1889. Pp. xi, 452. Price \$4.

The subject of thermodynamics is treated in thi work by the higher mathematics. Professor Wood is
well known already to our readers from his importan ontribations to the Scientific American on thi qualities as mathematician, reasoner, and expounder of engineering science are found that have always bee recognized in the articles above referred to. An exceedingly interesting portion of the work, and one
which deserves special consideration, is Appendix I which deserves special consideration, is Appendix I.
on the laminiferons ether and the theoretical proper on the laminiferous ether and the theoretical proper
ties of this hypothetical body. The second law of ties of this hypothetical body. The second law of
thermodynamics is treated in considerable detail, and as there is no subject in thermodynamics more worthy of study than this, its full treatment adds considerably to the value of the work. It is illustrated where re quired, and forms a very important contribution to the Every Day Biography. By Amelia J Calver. New York : Fowler \& W
Co. 1889. Pp. 378 . Price $\$ 1.50$.
This compilation is one which is of interest to all. In it, under every day of the year, are given the dates o especially those of literary men and women. Thus
, ander each day are found one or more names of notabes born upon that day, with an abstract of the life o each, and date of death, in case the person or person have expired. An analytical index and a separate al-
phabetical one make all the names given easy of refer ence and quickly to be found.
Recent Economic Changes and their EFFECT ON THE PRODUCTION AND WELL-BEING OF SocIETY. By David D. Appleton \& Co. $\mathbf{~ C o l l}$
493. Price $\$ 2$. 493. Apprice $\$ 2$.

The science of political economy with reference t reated in this work. It is made of concrete and immediate interest by the consideration of the developments of modern times, such as the use of natural gas for fuel, chanues in former industries, overproduction of ion, evolution in the carrying trade, the evils of the bounty system, influence of machinery on wages, and other live the ground covered by it of what general interest it is Mr. Wells is such a well-known anthority on the sub ject of which his book treats, and has passed so much of his life in stady upon the great political and nationa questions of the day, that this work will be sought afte and read with erpecial relish by those who are interested in the well-being of society and who lonk to the con-
tinuance and fortifying of our best methods and th tinuance and fortifying of our best methods and the

Transactions of the Eighterenth AND NINETEENTH ANNUAL MEET
INGS OF THE KANSAS ACADEMY O INGS OF THE KANSAS ACADFMY OF
SCIENCE. Vol. X. Topeka, Kansas 1887. Pp. 155.

The tenth volume of the "Transactions" shows wel he active scientific life of our Western centers. It is devoted largely to geology, and
teresting scientific information.
Chemistry : General, medical, an pharinaceutical, including the chemcoperia. By John Attfield, F.R.S. Philadelphia: Lea Brothers \& Co
\& $880 . \quad$ Price, cloth, $\$ 2.75$ leather \$p.25.
Although the present work is primarily a manual of chemistry for the physician and pharmaceatist, the topics it covers really include all chemistry, with ampin cal and pharmaceatical work; in fact, the ground which is somewhat neglecterl in the geteral works is found covered here. The book, while in a certain sense will be found an larger chemistries for the superal chemist. It is ill larger chemistries for
trated where required.
Cycling Art, Energy, AND Locomo-
TION. By Robert P. Scott. Phila
delphia: J. B. Lippincot
1889. Pp. 305 . Price $\$ 2$.
The art of cycling is properly one of the developments tion for men and women that in every region where the roads are at all suitable it has acquired astonishing ex-
manner that is at once lively, interesting, and scientific. The possibilities of the art are given due space, scribed, many ideas of inventors are illustrated and deplays fally the cases with a slight sarcasm that disThe book is illustrated with a great many diagrams and views of different types of wheels, not the least interesting being a portrait of the author upon his original
velocipede of 18688^{-69} and one of GavinDalzell mounted on the "original rear driver safety" of 1845 . The meon the "original rear driver safety" of 1845. The me-
chanics of cycling are here given in admirable shape, and all scientificcyclers should read the book.

Practical By F. Clectric Bell Alsop. London and New

 By F. C. Allsop. London and NewYork: E. \& F. N. Spon. 1889. Pp. York: E.
xii, 142.
Price
\$1.25.
The title of this work sufficiently indicates its scope. ting houses with electric bells and general fire signaling devices: 141 illustrations are embodied in the text in the proper places to illustrate the matter treated. Received.
World Almanac. Burean of information, nearly
300 pages paper cover. Published by the New
York Worla. Price 25 cents.
 yxizamian Any of the above books may be purchased through
this office. Send for new book catalogae just pubshed. adeas Munn \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

buildina edition.

NOVEMBER NUMBER.-(NO. 49.)

TABLE OF CONTENTS.

1. Hegant plate in colors of a Gothic cottage to cost
$\$ 1,950$. Perspective elevation, fioor plans, and details.
2. Plate in colors showing a cottage to cost $\$ 1,300$. Floor plans, perspective elevation, and details.
3. A residence at Soath Orange, N. J., to cost from
$\$ 4,000$ to $\$ 6,000$. Perspective and floor plans. F. W. Beall, architect, New York city.
4. The Cathedral of Seville. Fall of interior portions.
5. A residence for $\$ 3,800$ recently erected at Chester
Hill, Mount Vernon, N. Y. Floor plans and perspective view.
6. Perspective view and floor plans of a colonial
honse erected at Larchmont Manor, N. Y., at a cost of $\$ 8,500$ complete.
7. A very attractive cottage for $\$ 1,950$. built at West New Rochelle, N. Y. W. A. Robinson, architect. Perepective and floor.plans.
8. A cottage for $\$ 2,000$ at West New Rochelle, N. Y. Plans and perspective.
9. Dragstore architecture and decorations, with illustrations.
10. A colonial honse recently erected at Chester Fill, Mount Vernon, N. Y., at a cost of $\$ 4,000$. Plans and perspective.
11. A very attractive residence at Chester Hill, Mt.
Vernon, N. Y.: from plans by H. S. Rapelye, Vernon, N. Y., from plans by H. S. Rapelye, architect, a
tive view.
12. Ornamental corner and band for ceiling decoration. By J. Barrett.
13. Christ Church, East Orange, N. J. R. H. Robert-
14. A cottage for $\$ 5,000$, recently erected on Chester Hill, Mt. Vernon,
15. A residence for $\$ \mathbf{5}, 500$ recently erected at Mt . Vernon, N. Y., from plans prepared by J. C. Brown,
plans.
16. New Post Office and United States Court Hoase, Asheville, N. C.
1r. Group of ornamental villas and grounds in Han18. Hall chimney piece,
17. Hall chimney piece, executed by Messrs. Walker \&
18. A pigeon honse with view showing inside and ground plan.
19. Sewage works for large and small towns.
20. Miscellaneous Contents : Brown and red sandstone, of Connecticut.-Raising grape vines, with Scaffold bracket, with illustrations.-The first American marble quarry.-Wood carving and farniture. - Trees growing in towers. - Black granite.-Building in Colorado.-Improved road roller, illustrated.-Strength of stone masonry.An interior enamel.-The "Amines" process of
sewage purification.-Responsibilities of French architects. - The barning of Rome. - Antique arved furniture and woodwork.-Rock asphalt pavement. - The black birch (Betula nigra).arpenters, illustrated.-Ratchet auger handle, illustrated.-The roof.-Mammőth walnut burl.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies 5 cents. Forty large quarto pages, equal to about two handred ordinary book pages ; forming, practically, a large and splendid Magazine of Architec-
TURr, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting xamples of Modern Architectural Construction and allied subjects.
The Fallness, Richness, Cheapness, and Convenience of any Architectural pablication in the world. Sold by all newsdealers.

Business and $\Re_{\text {ersonal. }}$
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line. Advertisements must be received at .publication office
as early as Thursday morning to appear in next issue. Capital will be farnished to place on the market a patented article of undoubted
ticulars. box 123, Cleveland, 0 .
"How to Make a Patent Pay." Treats on how to in vent. how to interest capital, how to estimate the value of a patent, hints on selling patents, on formation of
stock companies, forms for assignments, licenses, etc. stock companies, forms for assignments, licenses, etc.
Price, $\$ 1$ J. F. Davison \& Co., publishers, 120 Broadway Price, 81. J. F. Davison \& Co.,
New York. Send for circular.
Best Ice and Refrigerating Machines made by David Boyle, Chicago, Ill. 140 machines in satisfactory use.
For best hoisting engine. J. S. Mundy, Newark, N. J. Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap.
pumps, acid blowers, filter press pumps, etc. For the latest improved diamond prospecting
address the \mathbf{M}. C. Bullock Mfg. Co., Chicago; In. Presees \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works man
chinery, and containing reports of tests, on application. hinery, and containing reports of tests, on application.
Tuerk water motors at 12 Cortlandt St., New York. Screw machines, milling machines, and drill The Garvin Mach. Co., Laight and Canal Sts., New York. Hoisting Engines, Friction Clutch Pulleys, Cut-off
Couplings. The D. Frisbie Co.., 112 Liberty St., N. Y. "How to Keep Boilers Clean." Send your address
or free 96 p. book. Jas.C. Hotchkiss, 120 Liberty St., N. Y. for free 96 p . book. Jas. C. Hotchkiss, 1200 Liberty St., N. Y. Views illustrating every subject for public exhibitions, etc. CT a proftable business for a man with small capi-
tal. Also lanterns for home amusement. 180 page catatal. Also lanterns for home a musement. 180 page cata-
logue free. McAllister, Optician, 49 Nassau St., N. Y. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Split Pulleys at low prices, and of same strength and apearance as Whole Pulleys. Focom \& Son's Shafting Norks. Drinker St., Phpedelphia. Pa.
Rubber Belting, all sizes, $771 / 2$ per cent from regular list. All kinds of Rubber Goods at low
Buckley, 156 South Street. New York.
For low prices on Iron Pipe, Valves, Gates, Fittings, ron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St., New York. Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York.

HINTS TO CORRESPONDENTS.

(1567) W. S. asks : 1 . What is Paris and acetic acid. Sulphate of copper 50 pounds and lime 10 pounds are dissolved in vinegar 20 gallons, and a
boiling hot solution of white arsenic 50 pounds is added thereto, the mixture is stirred, allowed to settle, and the residue is ground and powdered. This is Schwein arth's green, and adulterated forms Paris green. I
Copper oxide..
Arsenious acid
What is London purple? A. London purple is residue from the manufacture of aniline. Its color is
due to the dye, and it consists essentially of arsenic acid.
(1568) S. asks: Can a man by applying che same power on a 36 inch screwdriver turn a large than he can with one one-half that length? Both screwdrivers are to be of the same material, the same size handle, and same at point. A. Yes. The large size
ives a better scope for power and grip. According to gives a better scope for power and grip. According to
one theory, the handle of the screwdriver, from its out side edge to a line parallel with the center of the screw forms a cranklever. With the longer handle the lever age thus obtained can be proportionately increased by a
hardly perceptible inclination of the tool, not affecting hardly perceptible inclination of the tool,

(1569) G. W. asks if it is necessary for a

 free hand sketches of wooden models, such as cubes and prisms and vases. Would it not be better to make free hand sketches of parts of machinery and tools? A. The method of teaching shonld be adapted somewhasto the student's abilities. For a beginner the block system 18 used to rectify the eye. When the eye become schooled to bring out hlock figures with their edges straight and at the proper angles, or in perspective, it
is time to attack more complex parts. If you have is time to attack more complex parts. If you hav
reached the stage of correct delineation, a higher styl of free hand sketching is in order.
(1570) J. T. F. asks: How can gas be separated from water and be stored up in a reservoir
so as to be under pressure to be reed as fuel and light? For instance, in the Brazos Bottoms (Texas) there are
many artesian wells which throw forth a stream of water and gas mixed. There is enough gas to light
with a match. A. The well should be piped, the same
as usual with gas wells, so as to lead the gas and wate
into a large tank, where the gas will separate from the water and occupy the upper part of the tank, while the
water settles at the bottom and may be discharged water settles at the bottom and may be discharged
through an inverted siphon, so as to retain any desired through an inverted siphon, so as to retain any desired
pressure in the tank. The tank should be strong enough to resist the pressure of the well, when the ontlets are closed. In this way the flow of gas need not he
wasted, and the well be made to flow only when the gas is required for ase.
(1571) V. M. writes : I have a new engine $31 / 1 \times 5$, to run about 300 revolutions, takes steam 2/ pressure: I want to get up a 1 inch coil pipe boiler. How many coils and what length must they be to supply this engine and not foam or prime injuriously? A You will be able to develop about 5 horse power with your engine, and will not need less than a four horse
power boiler. SeeScientipic American Supplement, No. 702, for illustrated description of small coil and pipe boilers, which may be made on a larger scale for your purpose. See our advertising columns for houses fur-
nishing materials.
(1572) F. Van den B. writes: At a depth of 2,000 feet here in drilling oil wells we strike salt water,
which rises to a height of 1,800 or 1,900 feet in the well. which rises to a height of 1,800 or 1,900 feet in the well.
We are here about 1,000 feet above the level of the ocean, We are here about 1,000 feet above the level of the ocean,
about 200 feet above Pittsbarg, Pa. Now, where doess it come from, and whence its pressure for such an eleva
tion? A. Water seeks its own level not come from the sea, but probably from the Alleghany montains and perbaps other hills, finding its
way through pervious strata, on the principle of the arway through
tesian basin.
(1573) P. S. asks for a receipt for making brower's pitch. A. We give two formulas: a. Light yellow.-Melt in an open boiler 100 pounds of pine pitch, and add with constant stirring 5 to 6 pounds of caustic soda lye of 10° Baume. When frothing ceases and the pitch is in quiet fusion, it is poured intoiron moulds. b. Brown.-Melt in an open boiler 30 pounds pine pitch, 175 pounds brown resin, and 10 pounds
heavy rectifed resin oil.
(1574) W. H. H. M. asks : 1. What preparation is used to give a glaze on enameled cards,
etc. $\%$ A. The glaze upon enameled cards is made by pressure upon a polished plate or rollers. The composition is chalk, clay, and a little starch. Good work is
not possible without elaborate accessories. 2 A not possible withoat elaborate accessories. 2. A good as clean as before coloring. A. Try acetic acid, or solution of chloride of tin (stannous chloride).
(15i5) F. W. D. asks for a cheap alloy that will run sharp, and not stick to an iron mould. Should be a litule harder than lead, and less expensive
than the bismuth alloys. A. Two parts tin to 1 part lead makes a fine alloy, a little harder than lead. But for
very fine and sharp lines there is nothing better than very fine and sharp lines there is nothing better than
type metal; 3 parts lead, 1 part antimong, and 1 to 2 type me
parts tin
(1576) J. W. C. asks the correct way of spelling the name of Stubs as related to the wire
gauge. A. Stubs is the proper name. Stubs' gauge is gauge. A. Stabs is the proper name. Stubs' gauge is
correct, but as Mr. Stubs has made various gauges, such designation always requires explanation. As
it generally signifies the Birmingham gauge.
(1577) J. G. W. asks for the cabic contents of a hot air balloon to lift 200 pounds. A. A fair supposition each cubic foot would have a lifting power of 2688
The Then each cubic foot would have a lifting power of 268
grains, or for 200 pounds nearly 5.300 cubic feet would be required. 2. The best low-priced material. A. Cotton sheeting. 3. Quantity of material? A. About 1520 square feet. 4. Whether gores should run horizontal or perpendicular? A. Perpendicular. 5. What dressing
for material? A. Good quality of varnish. See SuPPlement, No. 726, for an excellent paper on balloon construction
(1578) C.
(1578) C. M. H. and C. C. B. are referred sue of September 28, 1889
(1579) C. E. P. writes: Can you advise me about procuring a" No. 1 "receipt for manufac-
turing cider without apples, and also what is nsed to make it keep for any length of time without becoming sour?
Soft water...
Tartaric acid.
Tartari
New Or
Yeast.
.25 gal
22 lb.
21 b.
1 pt.
Yeast 1 pt
put into clean cask with bang out, and allow to stand let stand forty-eight hours. It will keep well if not left exposed to the air, and if the cask is sweet. There are
other and more complicated receipts in Dick's Encycloedia, which we can supply for $\$ 5$.
1580) R. A. H. and others.-To get a ine polish on suchstones as quartz, granite, etc.., grind the surface on a grindstone, the last grinding being very
light, and then rub with ground pumice stone and light, and then rub with ground pumice stone and
water on the end of a piece of wood or on a piece with oxide of finishing with a piece of sole leather will answer for polishing geological specimens, such as coral, onyx, jasper, etc. A piece of felt or heavy
woolen cloth tacked on a board also makes a good woolen cloth tacked on a board also makes a good
polisher. An ordinary lapidary's outfit consists of appliances not usually kept on sale, bat which any machine shop can readily farnish. You will need a frame
with wheel shaft and spindle, with several lead laps, with wheel shaft and spindle, with several lead laps, for polishing, also a lap made with end wood on a chnck ounded work. A thin disk of copper mounted on ordinary lathe spindle is used for slitting with emery. In using diamond dust, which is employed in working on diamonds and in some other cases, a sheet steel
(1581) J. M. S.-You will probably not eaking. It is with much difficulty that pure tin can be made to stick to cast iron; it will not flow into and
(1582) W. L.'B. asks : Will the following engine yield four horse power: Diameter cylinder steam pressare, 40 lb .; cutting off at $1 / 4$ stroke; auto matic cut-off. Please show figuring by which you ar
rive at rating of engine. A. The clearance should be siven. It may be taken as 5 per cent for so small an
$\mathbf{P}=$ total pressure $=40 \mathrm{lb}$.
$\mathbf{C}=$ clearance $=88 \mathrm{y}$
0.25.
$\mathbf{C}=$ clearance $=$ say 0.25 .
$e=$ length to cut-off $=125$ inches.
$\mathrm{L}=$ length of stroke $=5$ inches
Then mean pressure is equal to

then hyp. $\log \frac{5}{1 \cdot 25}=1 \cdot 3863$, and
educing, we have as mean pressure $28 \cdot 63 \mathrm{lb}$.
A rea of cylinder $=12.56$ square inche
Piston travel $=\frac{3000}{12}=250$ feet.
$12.56 \times 28^{68} \times 250$
里
dicated hore
$33.000=2 \cdot 534$ indicated horee power. From
his about 10 per cent must be subtracted for friction
(1583) J. L. writes : A manufacturer, burning a large amount of soft coal has five chimneys a row about fifty feet apart, with two kilns leading
nto each chimney, and the chimneys are about sixt feet high. The smoke from the chimneys carries a over the immediate neighborhood, making a great
nuisance. Now, if this party should baild one large nuisance. Now, if this party should build one large
stack one hundred and twenty-five feet high, the kilns all leading into it, would the smoke nuisance be maerially lessened, or would the same nuisance be more distributed A. The one large chimney will not make
less smoke, although it will carry the smoke to a higher point, so that it would be carried away in windy ing the fires. There are smokeless furnaces for sof coal in use. See Scientific American. Supplement, naces.
(1584) W. H. B.-The government has not offered any reward for the discovery of perpetual average of actual trials is $20,000 \mathrm{lb}$. raised one foot high per minute, for continual work, the mechanical horse
power being 33.000 lb . raised one foot per minute. power being 33.000 lb . raised one foot per minute.
There is a strong possibility that iron fence posts will There is a strong possibility that iron fence posts will
come into more general use in a few years. They are come into more general use in a few years. They are
now used to a limited extent for wire fences, and are sabjects of several patents. Useful effect of wind
mills varies with their size; small mills obtain about 40 per cent of the wind force, larger mills 50 per cent. (1585) G. H. N. asks: Which is the most expansive when heated-soft-drawn iron, soft
drawn Bessemer steel, hard drawn Bessemer sol drawn Bessemer steel, hard drawn Bessemer steel,
or ordinary machine steel? A. There is very little difference in expansion by heat for iron or low steel with so little difference in the carbon element, which less than robor of an inch for each degree of difference in temperature for 100 feet in length, the pure iron
having a greater expansion than the Bessemer and mahaving a greater expansion than the Bessemer and ma-
chinery steel. The difference between hard and soft eel is imperceptible.
(1586) C. J. writes : Will you inform me how to take glass stoppers from bottles which are
so tight that the hand cannot turn or twist them. so tight that the hand cannot turn or twist them.
They were used to hold potassic carbonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$. which is in them at present, also baric hydrate, B $\mathrm{H}_{2} \mathrm{O}_{y}$. A. The most radical way is to heat the necks in while doing this. If carefully done, this will somewhine doing this. If carefuny done, this will some-
times succeed where every other method fails. There is great danger of cracking the bottles. A string may be secured loosely between two fastenings on the same of the bottle, which is then pressed down and rubbed strongly back and forth until the neck is very hot
(1587) G. M. T. asks for the best means of boring rubber stoppers. A. Use a sharp-
dged brass tabe as thin as possible, and lubricated with soap and water. The hole will be a little smalle than the tube. It may be done by hand, or the tabe may be chucked in a lathe. The
and pressed against the stopper.
(1588) K. B. writes : Would you inform me as to the best method of producing a solid or imi-
tation gold plating, to be used cold (without battery)? tation gold plating, to be used cold (without battery)?
Durability is not essential. A. Use an ethereal soluion of gold chloride. A bsolutely neutral gold chloride in a separatory funnel with three times its volume of ether. The funnel is closed and the whole rolled about
a few minutes, allowed tostand 24 hours, and the liguids separated. The ethereal liquid is kept in tightly closed
(1589) A. L. S. asks: What to use to color leather a blood red, as nsed in making saddles. A. 'Brush the leather with a solation of sulphate of ammonia, and apply the dye. Use either aniline red
extract of alkanet root (alkanine). Work rapidly to prevent the dye penetrating the leather
(1590) G. H. B. asks if salt added to whitewash will make it more adhesive, and if glue
would still farther improve it? A. Salt is often added would still further improve it? A. Salt is often added,
but does not Improve it much. Glue is useful only in indoor work. See answer to query 97%.
(1591) A. B. F. asks if it pays to tar manila ropes which are exposed to the weather and in
constant nee, such as hoisting electric street lamps. A.

Running ropes should not be tarred. They do net lat as long as the untarred ropes.
(1592) F. B. asks: 1. Is the Sharpie pacht boiler described in Supplement, No. 182, large nough for a 234 by 3 engine? A. Yes. For a trifie less
peed than the Sharpie yacht. 2. What size feed pipe will it need? A. $3 / 2$ in. feed pipe. 3. How heavy, and what diameter, should the fiywheel be? A. Flywheel size should be governed by the room that you can make for 1 t; 10 in . is large enough; a bout 15 lb . 4. Is a pump 4 by $11 / 2$ the right size, or would it be better to run it
from the crosshead, and what size plunger? A pump; from the crosshead is best. 5. What pressure properly made, should be safe at 125 lb . pressure. 6. At what speed should the engine be run? A. Engine shonld run 250 revolutions per minute. 7. What power will it
be? A. Two horse power. 8. Will it be necessary to have a heater? A. Not necessary to have a heater, but a heater properly constructed would modify the noise
and nuisance of the exhaust. 9. What will destroy and nuisance of the exhaust. wart on the eyelid, without injury to the eye destroy a do not know. Better consult a physician if the case is a very bad one. (1053) W. G. H.-We know of nothing better to varnish new copper work than boiled linseed
oil. It stands the weather as well as the best coach surface, it is mnch cheaper. Two coats are sufficient. Let one dry thoroughly before the second is applied.
(1594) R. M. asks for a good gold or gilt lacquer for polished brass work. A. Use lacquy
made of shellac and alcohol colored with dragon's (159) or turmeric to suit your taste
(1595) J. N. H. asks: 1. How are tubes bent so as to have a curve devoid of seams? A. They
are generally fllled with lead or resin before bending are generally filled with lead or resin before bending,
and afterward melted out. A spiral spring mandrel is ften used. 2. What can I do to make cast iron field agnets compete in efficiency with wrought iron in an lectric motor? It is not convenient for me to make the cores of wrought iron, on account of shape. A. A field magnet of soft gray cast iron answers a good .parpose,
(1596) Galatea.-The illusion of Galatea, a living head, changing into a plaster bust, then into a
bunch of flowers, etc., is fully illastrated and described our Supplement, No. 630.
(1597) J. B. S.-The earth is assumed o be a great magnet, or to have currents of electricity
ontinually circulating around it, to which the magnet rranges itself at right angles. The magnetic pole is onstantly changing its position. No cause for these
(1598) J. E. B. - We believe the min-
(1599) H. S. asks if there is any chemical that is sensitive to red light and not to actinic. A.
Not as regards chemical change. Of course the heat of the red rays being greater than that of the more actinic rays may bring about chemical change by increase of
(1600) W. S. D. asks: Is there any way o clean gold or gilt military braid? A. This is a somewat uncertain operation. One old method was to
bake the articles in a loaf of bread. This was used for paulettes. On extracting them from the bread, they came out cleaned. Another receipt is to rub the braid
stretched out flat with the finest powdered and sifted burned alum, applied with a soft rag.
(1601) W. H. H. asks how the following inks are made: Green, violet, scarlet, black, blue.
and brown, for automatic shading pens. How to put nd brown, for automatic shading pens. How to put up the powders for making them; and how waterproof
inks are made, and how is adhesive ink made? A. All these inks are made with aniline colors for a basis, mixed with gum arabic and water. The powders are simply mixtures of aniline colors with powdered gum arabic. Adhesive ink contains enough gum arabic to give it body. For waterproof inks substitute for
(1602) I. H. H. asks: 1. Is there any practicable method of extracting the moisture from a
current of air without the application of heat or cold, o that by circulating in a circuit it could be applied for drying purposes? A. By passing the air over dry hil of Oil of vitriol will give the same result. From time to of calcuum may be revivified by drying at a high heat. Is there any means of cleaning a plaster cen that has been discolored by smoke? A. Have it not stand hard scrubbing, and the smoke can never be perfectly removed.
(1603) Ignorant asks : 1. How to cure corned beef? A. There are many receipts. We give ne. To each gallon of water add $11 / 2 \mathrm{lb}$. salt, $1 / 1 \mathrm{lb}$.
$\mathrm{ngar}, 1 / 2$ ounce saltpeter, and $1 / 2$ ounce potash. Boil, skim, and when cold pour over the meat. 2. If when in pickle it should freeze, would it injure meat any? A. Freezing will not be likely to affect it if properly cured.
A very severe cold will be resisted on account of the A very severe cold will be
presence of so much salt.
(1604) M. J. B. asks how to keep store windows from sweating; our windows are closed on in-
side from top to bottom, and we use Siemens-Lundgren side from top to bottom, and we use Siemens-Landgren
gas burner. A. Ventilate your windows from he top, gas burner. A. Ventilate your windows from he top,
or if possible arrange a ventilating hood over each burner, carrying the products of combustion into the cal cares
(1605) H. P. says : 1. I desire to experiment with a simple acoustic telephone. What amount No. 20 in the change of temperature from coldest win er to heat of summer? A. 534 inches for 100° change in temperature. 2. Can an electric bell be successfully rung over such a wire? A. Yes. 3. What woutd be the best way to arrange the battery, and what kind of
hattery would be best? A. Use an earth connectionfor one circuit, and any of the batteries described in Scres -
tipic American and SUPPLement, Nos. 369, 388, for electric bell work. 4. What is the best method ot
turning corners in such a telephone? A. Turn the turning corners in such a telephone? A. Turn the
corners with a double sling of rubber, so as not to make a sharp or right angle. 5 . How long a line can be used successfully A. 500 to 800 feet. 6. What is best Very thin steei or tin plate No. 30 to 32 wire gauge, varnished, 3 to 4 inches diameter. 7. Where can I find a description of the simplest method of operating a number of dials from one clock movement by electricity A. See Scientific Amerioan Supplement, No. 198, for illustrated description of electric clockwork. 8. I the use of platinum wire absolutely necessary in elec-
tric bells where there is slight friction between contacts, tric bells where there is slight friction between contacts,
or in single-stroke bells? A. Platinum contact points or in single-stroke bells? A. Platinum contact points
are not necessary for experimental work. 9. What is are not necessary for experimental work. 9. What is
the price of platinum wire, say about 16 gauge, and er ounce can be procured from H. M Raynor 25 Bond Street. New York. 10. Is it true that common flat irons do not retain heat as well after having been in ase a long time? A. It is generally conceded. There is some molecular change by long heating of iron. 11. Does the recoll move the barrel of a gun at all before the charge ha eft it? A. Yes; the recoil commences at the instant o ignition or first movement of the ball. 12. Is the movement caused by the inertia of the charge or by
the gases blowing out of the mazzle? A. The pressure caused by the burning of the charge acts upon the ball to push it forward, and upon the breech ares to push th gun backward nearly in the ratio of their weights, and continued in a less degree while the gases are blowing from the muzzle. 13. Are there other causes? If so, please state them, and tell which i
A. Reaction is the principal cause.
(1606) J. L. W. asks: Is there any way of holding a fountain pen, the nozzle of which ha become fastened : Have not sufficient grip in fingers to
hold. A. Try a small flat piece of India rubber band. Or cat out of two pieces of wood two grooves that will almost ezactly fit the circle to be gripped, and grip it shape. If the grooves are too large or too small, th rrel may break
(1607) W. G. M. asks : 1. Was the Ser pollet boiler $\dot{\text { described in the SUPpLEmENT of September }}$
22,1888 a a success? A. We do not know. That class of injection boilers have had many trials and as many ailures. They choke up with the solution of mineral and ther substances in ordinary water and burn out. 2. Ca a barrel be made airtight so that froit can be sealed and preserved in it, and can it be filled full of cold water and sealed so to exclude all air and not be in danger of barsting, being kept where it will not freeze? A. Pro bably not, at least in a practical way. It is difficalt t make an absolutely perfect vacuum, even for experi ments, and there is air in the pores of all fruit, as well
as in water in its natural state. 3. How long from the seed will it take the mahogany tree to attain twelv ches in diameter, and at what size and how long til the tree cannot be grown here. It requires a tropica or sub-tropical climate. It is of comparatively quick growth, but this varies according to the location and the kind of mahogany, some Gescriptions being spongy and of little value. Some trees attain an age of two hundred years. 4. Can iron be melted by using char the best heat for melting iron, and was always used be fore the discovery of other kinds of coal. 5. If a horse power engine propels a boat ten miles per hour at what speed will a four horse power engine propel it A. The 4 horse power engine will propel the boat about 13 miles per hour, provided that you also increase the (1608) T. S. K proportionally.

otgun ki. S. K. asks : 1. What makes a | shotgun kick? A. The reaction of the shot and gase |
| :--- |
| dinlyexpelled. 2. How does a spider | tretched of a spider's ways have not yet been explained. He is supposed to take advantage of wind in some of his

(1609) L. F. asks for a receipt for mak ng baking powder. A. Mix 9 parts bicarbonate of soda
(1610) C. G. H. writes : A claims that he compression curve of an indicator diagram from a of the vacuum in the cylinder, which raises the penci of the indicator to the atmospheric line, and that compression does not begin until the pencil reaches tha point, the atmospheric line. B claims that the com pression curve is caused by a portion of the exhaust steam being imprisoned in the cylinder by the closure
of the exhaust valve before the piston reaches the end of its stroke, and is compressied into the clearancespace, and that compression does begin as soon as the exhaus cylinder; the expansion line falling below the atmo spheric line is the effect of the vacuum in the condenser Which is right? A. A is right. There is no compres sion on the vacuum side. The loss of the vacuam which may be by leakage after the closing of the valve makes the appearance of compression, but which is only a relief. With a 27 inch vacuam there is too little exhaust steam left in the cylinder at the closing of the port to produce compression, especially if there is any material clearance. Leakage often makes very in
work with theoretical lines on an indicator card.
(1611) E. W. McD. asks for a formula for the preparation of liquid glue for tableting purposes ticity. A. Use solution of gutta percha in bisulphide
(1612) J. H. C. asks if there is a mounain peak J. H. C. Mar is the highest, 29,002 feet. There was a report of a
higher mountain in the Himalaya group, of which we higher mountain in the Him
(1613) F. R. asks for a formula for making an ink from which a copy can be taken, by using
the copying paper simply as though it wére blotting paper, i.e., no press, no wetting. A. Use aniline ink containing a large proportion of glycerine.

TO DNVEATORE.

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prioes,
which are low. In accordance with the times and our exensive facilities for conducting the business, Address
MUNN \& CO.. office SCIENTIFIC AMRRICAN, 301 Broadray, New York.

INDEX OF INVENTIONS

For which Lotcors Patent of the United States were Granted

November 19, 1889,

AND EACH BEARING THIAT DATE.

 [See note at end of list about copies of these patents.]Acid, making dioxynaphthaline monosulpho, M
Ulrich.............. cid, making paratoluidine sulpho, e. Elise......... 415s.257 ir brake. F. Lansberg......... ...415,513 to 415,517, 415,522 Alkallies, electrolyzing
Marx. electrolyzing salts of the, Kerner

the, H. schneider

Alloys of cast iron and nickel, manufacturing the
H. Schneider

Alloys of steel
Schneider..
alloys of steel and nickel, manufacturing the,
Animal trap, G. W. Ruda.........
Armature core for dynamos and motors. F. Loomis...
Axle, divided car, o. a. anorman.

Aiken

Axles, manufacturing, H. Aiken.
aling machine, cotton, J. I. Boyer.
Banjo, J. F. Bower.
Basket, fruit, W. Pattin..
Battery. See Electro-m
battery. Secondary battery.
Bed bottom, spring. J. Hancock.
Bevect, s. Francls..
Blackboard and game board, combined, L. Smith..
Bleaching,
leaching, L. Q. Brin.................................. 415,608
Block. See Building block. Wig block.
oiler. Suee Steam boiler.
Bolting reel, J. E. Welch
B.
ottle stopper, E. W. H. G. Swarts
box. See Cash box. Fire alarm box. Journal ox pax. Buinng box.
Box pasting machine, C. e. Titu
Bracket. See Curtain bracket
Braiding machines, bobbin carrier for, B. Oriol
Brake. See Air brake. Car brake. Vehicle Brake app. Wagon brake.
inghowe

Brick drying rack, J. Dennis.
Brick kiln, Thissen \& Arnold.
rick machine, C. H. Horton
Brick machine, W. Johnson
son.........
Brush. blacking. C. N. Wilcox..
Buckle, L. selling.
Buggy boot, C. Bauer
Burner. See Gas burner.
Button, J. T. Thornton.......
Button fastener J. P. Hickey
Button
Button hole strips, making, J. Stone..........
Cable curve, carrier track. S. D. Northcutt.
Can testing machine, W. Hipperling.
Can testing machine, w. Wippering............
Cans, tesparamachine. tin, w. Hipperlink for drying tin, W. Hipperli
ans, expansion clamp for sheet metal, Long
ans, safety nozzle for ke
Cane, mea
Marsh
Car and motor for electric railways, suspended
Car brake, fluid pressure. A. P. Massey
ar.coupling, R. H. Dowlin
ar coupling. A. Drengson.
Car coupling, I. M. Jones.....
Car coupling, M. J. Lorraine.
ar coupling, Randlett \& Smit
ar coupling, J. Schultes.....
Car doop fastener, grain, C. H. \& J. P. Emer
Car door, grain, C. D. Pettis.
Car, dumping, Voentline \& Bergstrom.....
Car, stock, W. G. Avery
Craver
ar, stock, H. W. Smith
 Cars, pipe connection for rallway
Card, busteness, W. W. Cald well..
Card holder. Mckenzie \& Gibson................
Cards, top strippling winder for revolving flat,
A. Mason......................................

Carrner. See Straw carrier.
Cartridge ejector for revolving firearms, H. M.
Caldwell...............................
cash recorder, C. E. Stone
Caster, H. V. Smith.

Casting plates for use as electrodes of stora basteries, mould for, C. Payen

 Catamenial sack, W. R. \& C. Steinmet Chain, drive, M. M. Shellaberger.. Chair. See Dental chair.Checking and inchecking device, J. Roby..
Checkrein operative device, J. W. McMah
Checkrein operative device, J. W. McMahon...
Chisel for forming mortises for drawer locks,
C
Cigar trimming and marking machine, F. E.
 Clasp, J. H. Pilkington...
Cleaner. See Tube cleaner.
Cloth for the purpose of testing it, apparatus for
withdrawing a thread from woven, M. Moura-
dian ...
Clothes pin, C. Barlow....
Coach gear, c. E. Wruck.
Coal convering device, L..............................
Coffee and tea pots, attachment for, E. U. T. Th.
Collar pad, F. Altheide.
Color, azo-blue, M. Uliricz
Colored fire, J. G. Stutz.
Combing machines, nipper mechanism for
McQueen \& Moores
Compressor regulator, B. C.
Conveyer, spiral, H. Birkholz.........................
C. Damm................
Cooler. See Water cooler.

Cooling buildings, etc., device for, J. E. Kea...... Cord hook, H. W. McIntir
W. Avery.
Cot, folding, G. H. Wilso
Counterabaft, F. Hart...............................
Coupling. See Bridge coupling. Car coupling.
Hose coupliag. Pipe coupling. Shaft coup-
Hose
ling.
Crate, A. E. Hawes....
Crupper, W.
Crupper, W. E. Becker.
Crutch, J. W. Howgat

Cup. See Dental impression cup.
Cupola and blast furnace G. Ihsse
Cupola and blast furnace. G. Ihssen.
Curtain bracket, adjustable. G. McKe
Curtain bracket, acjustabie. G. McKe
Curtain ring attachment, N B. Allen.
Curtain rink attachment. N B. Allen...............
Cutter. See Cane cutter. Feed cutter. Krau
cutter. Paper cutter. Twine cutter. Wire

cutte Cuttink

Delivery maching is 8. Heath
Dental chair, T. J. Carrick..

Dental impression cup, G. M.
Dental plugzer, B. s. Byrnes.

Dish drainer, D. Guptill...
Distilling apparatus, A. J. Swe
Door check. W. W. Atteberry
Door kock, I. R. L. Lash...................................
Draught attachment for vehicles, spring, H. Bar
braur.............................
Drawing table, J. A. F. Svenson...................
Dredking nachine, T. Z . Cole......415,501, 415,619
Drier. See Clothes Dust collector, D. G. Reitz

Electric meter, P. 8. Bates.....
Electric meter, E. W. Siemens
${ }_{\text {Electric }}$ Electric motor, H. B. Pullman
Electric switch, antomatic. G. H. Whittingham.
Electric wires, pole for Electric wires, pole for, L. R. Greene. 14.
Electro-medical battery, F. Moreton...... Electrodes for secondary batteries, constructing w. H. Allen.

End gate, wagon, A. E. Beason (r)....
ngine. See Gas engine. Hydrocarbon or gas
engine. Pumping engine. Rotary engine.
Steam engine. Traction engine.
Engine safety stop, L. E. Learoyd...
Eraser, H. C. Broun
Evaporating apparatuis; G. W. Lee.....
Evaporator. See Sugar sap evaporator
Extension table, H. Bauer
Fabric. See Wire fabric.
Fan, rotary, O. S. Heckle.
Feed cutter, P. Bostrom...................
Feed water heater, G. W. Penn...........
Feeder, automatic horse, W. P. Kellogg
Fence, w. Cline
Fence. C. F. Darnel
Fence, Parsons \& Prickett............
Fence machine, wire, P. W. Cook
Fence
Fence post. $\mathrm{J.A}$.
Fence wire
File for locomotive engineers, train order, H. C
File or doccument holder, E. W. Woodrự.
Filter, self-cleaning, W. Mather
Fire alarm box, G. L. Foote
F.
Firearm, breech-loadding, C. J. Ehbets.
Firearm, breech-loading
Firearm, breech-loading. B. S. Herrmann............
Fire escapes, expanding apparatus for, G. Ed

Fire, water system for
aiasinst, M. Maginn.....
Fish globe, G. A. Gunther.
Fishing rod and reel. E. P.
Flag staff holder, E. Ried..
Floors, construction of freproof, M. Fawcett.
Flue scraper, V. Radspinner
Flushing device, automatic, H. C. Weeden..
Foot power, J. E. Adams....
Foot power, J. E. Adams...........................
Footstool and cuspidor, combined, C. Golden....
Frame. See Photograph frame. Ratchet dril
Frame. See Photograph frame. Ratchet dr
frame. Spinning frame.
Fume, apparatus for refning, F. L. Bartlett
Fume, apparatus for refining, F. L. Bartlett
Funnel, measuring, M. B. Schneider..............
Furnace. See Boiler furnace. Cupola and blas
furnace.
Furnace, \mathbf{G} A. Clart.

\section*{| 415,332 |
| :--- |
| 415,455 |
| 415,5656 |
| 415,300 |
| 415,284 |
| 415,681 |
| 415,636 |
| 45,356 |
| 415,557 |
| 41,644 |
| 415,237 |
| 415,633 |
| 415,557 |
| 415,416 |
| |
| |}

Beot holder Card holder. Copy

holder. Cow tail holder. File or document
holder. Flag staff holder. Paper bag holder.
Paper holder. Paper roll holder. Racket
holder. Ribbon holder. Sash holder. Twine
hook. See Cord hook. Snap hook.

Ken, W. M. Mehron.......
Kiln. See Brick kiln.
Kinn. See Brick kiln.
Knife. See Fingernail knife.
Kraut cutter, J. L. Parker........... 415.682
Lace fasteuer, M. N. Bailey...................... 415,433
Lamp. arc, C. E. Scribner415,571, 415,572

Lamp headight, electric arc, McDonald \& Cain...
Lamp, incandescent, J. Rees
Lamp, spray, A. Shedlock
Lamp wick raiser, A. Taplin............................... 415.400
Lamps, spark arrester for electric, J. R. Farmer.. 45,628
Lanolin powder, J. Quaplío.......................... 415,351
Lañtern, N. M. Crawford................. 45,289
Lantern, N. M. Crawford.
Lantern, signal, J. A. Hyd
Lathes, counter rest for, J. J. Peard...................... 415.219
Life-boats, rowing apparatus for, P. F. Schenck.. 45,474 Lifting jack, C. Tindall................................ 415,687
Light. See Lamp headlight.
Liguid receptacle F. W. Wolf
Liqul receptacie, F. W. Wolf.................... 415,42
Permutatior lock. Indicator lock. Nut lock.
Permutation lock.
Log turner, T. S. Wilkin
Log turner, T. S. Wikin 415,31
Loom shedding mechanism. . W. Staford....... 41568,
Manure. liquid, J. J. Hanselinan................ 45,246
Measure. grain,. . W. Gipple.............................. 41 ,
Measuring and examining cloth. machine for, \mathbf{w}.
Hebdon....................................... 415,508
Mechanical movement, J. C. Fowler415.630
Metal plates, mamufacturing poror, 45.6.630
Metal plates, producing crystallized, c. Payen,
Metal plates, producing porous crystallized, c. ${ }^{415,37}$ to 415,349
Payen... 455,38
Metal post, . B. Hall...........
Metals, electro-deposition of, W. Siemens 415,576
Metals, electro-depolic meter.
Meter. SPe Electric
Mill appliance, H. Aikeu.....................,401, 416,6
Mitering machine Haueisen \& Boberge........ 415,
Mitering machine, Haueisen \& Boberge............ 415,6:37
Mould. See Sectional mould.
Mop wringer, C. Gillmann.......................... 415,195
Mop wringer, C. Gillmann...
Motor. See Electric motor.
Mower, A. Ryan..415,369
Nail machine, wire, W. Taylor........................ 415.48
Nailing machine, . E. Kimbail. 41072
Needie, hooked or throated. J. M. Merrow........ 415,310

Ordnance, hydraulic drake for checking and con-
trolling the recoil of, H. Schneider
Ore concentrator. J. Gray....
Ore pulverizer, J. E. Westlak
Ore pulverizer, J. E. Westlake.
Ore separator, A. C. Campbell.
Orkan attachment, R. B. Stone....
Ornamenting surfaces, P. S. Wick.
Ornamenting surfaces, P.
Oven, baker's, J. Rayney..
15,679
15,512 ,601 5,676 415,418 . 1970

28
.519 15,460

9
eating railway cars or other structures, G. A.
Houston 415,272 71 .74 560

Hose coupling, F. Lansberg.	
Hub, wazon,	
Hydrocarbon or gas engine, J. Ckiarter	
Indicator Iocter, I. E. Bourquin	
Inkstand, J. H, H	
Insulated conductor, J.	
Insulator, J. Fow	
Insulator for electric batteries, C. Payen..........Ironing table and clothes rack, combined, E. 0 .	
Jacz. See Lifting jack.	
Jars, means for closing the mouths of fruit or other, C. Moore.	
Joint. See Furniture joint. Railway rail joint. slip joint.	
Jollie and jollie mould, T. C. Budd........ 415.443	
Journal box and bearing, J. F. Morell 415,547. Keir, W. Mather.................... 415,545	

Plow, E. B. James
Plow, wheel, L. Luppen

Popcorn, medicated. W. M. Evans..
Post. See Fence post. Metal post.
Potato digger, C. J. Cummings.....
Potato digging and gathering machine, I. \mathbf{I}. \mathbf{w}.
owder. See Lanolin powde
Owwer. See Foot power. Horse power.
Press. See Baling press. Cutting press
Pressure regulator, volumetric flatd, w. D.
House................................25,2i3,
Printing machine, rotary, J. L. Firm..............
Propeller for vessels, reciprocating, s. Snellen
Protector. See Plant protector.

Pump, F. Cavallaro
umping engine, steam. F. Lansberg
Rack. See Brick drying rack
aill
for, Pendleton \& Bryson, Jr
Railway rail joint, D. Rohlifng
Railway raill or other joint, A. J. \& G. W.
Rake and ground leveler, combined, O. H. Wood

corder. Vibration recorder
Reel. See Bolting reen
Regulator. See Compressor regulator. Pressare
Ribbon holder, O. G. Simith
Rod. See Fishing rod.
Rotary engine, J. B. Harris
Rotary engine, W. Webster
Saddle, J. D. Padgitt.
3addee, riding. H. Ruwa
Sawe alarm, A. D. Miller.
Saw filing device, H. O. Gadberry.
Baw scargng machine, A. S. Parke
Sove.table, J. M. Baker
caffold, R.O. seat
scourer. See Wheat scoure
Screen. Siee Window screen.
Screwdriver, C. G. Teubner.
ceythe fastener, G. \mathbf{s}. Cor
econdary battery, Kennedy \& Dis
econdary battery. C. Payen
Sectional mould, F. A. Meyer
shatt coupling or clutchi tor.
Sheep shearing machine, R. Monday
Shingle bawing machines, anti-friction way for
C. M. Frank..........
Shirts, making open front bosom, R . Cluett
Sifter, ash, J. Dillon.
Slignal system, electric police, C. E. Scribner.
Singletree, F. Heyberger
Sleigh gear, Coddington \& MeGeorge
Slipp joint for sheet metal cornices, pipes, etc....
Bmith
Bmith...................
Snap hook. P. A. Waldron.
Snap hook, P. A. Waldron.............
Snow plow, rotary, A. S. Bakkethun.
Sple machine, J. W. Bowmar,
Splke machine, J. W. Bowmar ,
ppindie and bearing therefor, J. W. Wattles
Spinning frame, ring; A. J. Nichols.
Spittoon, G. D. Swartwout.
Spring. See Vehcre spring.
Spittoon, G. D. Swartwout..........................
Spring. See Vehicle ppring. Watch case spring.
Springling machine, a<ricultural, G. F. Strawson.
Stave jointink machine, k. \& B. Hotmes..
Stave making machine, J. Pleukharp.....
Stave making machine, J. Pleukharp...............
Steam boiler, J. P. Simmons...........................
Steam engine, 4.
Stave making machine, J. Pleukharp...............
Steam boiler, J. P. Simmons............................
Steam engine,
Steam engine. E. M. Birdsall..
Steam generator,
Stereotype forms, interchangeable plate for, J.
Stereotype forms, Betercha
C Carke..............
Stoeking. Sleeper \& Miller.
or, J. L.
.115,581, 415,582
Stockiags, manufacturing, Sleeper \& Milier 15,58 ,
anism for feeding
sand and water to, Frenier \& Leblan
Stop or shut-otr, incased. S. Smith........
Stop or shut-off, Incased. S. Smith.:.
Stopper. See Bottle stopper.
Store service apparatus, J. M. Calll
Stopper. See Bottle stopper.
Store service apparatus, J. M. Calle
Stove grate, W. A. Church
Stove rrate, W. A. Charch ...
Stove hat blast, V. Strobel.
Stove, vapor burner, H. Ruppel
Stove, vapor burtier, H. Ruppel....
Straw carter, endiess, J. S. Baker.
studs, manufocture of lacing
Studs, manufacture o
etainaniz box, t

SWtat Sou Automatie switch. Electric switoh
. See Drawing table. Extenalon table
Troning tablec Saw table.

..
415,417
415,588

Ventilating, mines, cellars, etc., device for, W. E
Hoadley...................
Hentilator. See Car ventiliator. Wi..........................
entilator.
tilator.
Ventilator, J. Blahm..
Vibration, recorder, J. Miline.
Voting booth, portable, J. Payne
Voting machine, J, H. Myers.
Wagon brake, E. H. Higby
Wagon brake, E. H. Higby...
Weston......................................
Mineral water, natural, E. Von Ech
Remedy, headache, C. W. Preston
Remedy, headache, C. W. Preston
Balve for healing frozen flesh wounds, H. C. Vo
der Lahe...
Soap, tooth, C. Wright
Tea in packaces, M. Gillet \& Co.
hermometers, elinical, Taylor Bros.................. 17.19
obacco, smoking and chewing, Terry \& Porter
fetd Tobacco Company....
Tripe, hocks, feet, and tongues, cooked, T. M. 17,19
Tripe, hocks, feet, and tongues, cooked, T. M. Sin-
clair \& Co.... 17.2
A printed copy of the spectication and drawing o
any patent in the foregoing list wll be funitished from
his offlee for 25 cents. In ordering please state the
Munn \& Co., 301 Broadway. Xer Yort.

```
Telegraph repeater, R. J. MoUlhenny...
```

Telegraph repeater, R. J. MoUlhenny...
A..........
A..........
Telephan, rexchange fre alarm, F. A. Skgitem, C E. Scribner.
Telephan, rexchange fre alarm, F. A. Skgitem, C E. Scribner.
Tenoning machine, L. F. Parks.
Tenoning machine, L. F. Parks.
Therapeutic appliarce, electro, H. H. Kane.
Therapeutic appliarce, electro, H. H. Kane.
Ticket case, F. I. Hart...
Ticket case, F. I. Hart...
Tobacco hanger, W. H. SDow
Tobacco hanger, W. H. SDow
Tobace, peckage for cut, F. Grill
Tobace, peckage for cut, F. Grill
Traction engine,, E. E. Calli
Traction engine,, E. E. Calli
Trap. See Animal trap.
Trap. See Animal trap.
Trousers shaping device, I.. Selling
Trousers shaping device, I.. Selling
Tube cleaner, W. H. Wheeler....
Tube cleaner, W. H. Wheeler....
Tug, harness, W. .s. Cussady.
Tug, harness, W. .s. Cussady.
Twine cutter, D. McDonough.
Twine cutter, D. McDonough.
Twine holder, J. C. Patterson....
Twine holder, J. C. Patterson....
Typewriting maghi
Typewriting maghi
Valve-actuating device, M. L. Harris
Valve-actuating device, M. L. Harris
V Valve-actuating device, M. L. Harris......
V Valve-actuating device, M. L. Harris......
V Valve for air brakes, F. Lansbberg
V Valve for air brakes, F. Lansbberg
Vapor burner attachment, W. P. Butler.
Vapor burner attachment, W. P. Butler.
V Vapor burner attachment, W
V Vapor burner attachment, W
Vehicle, C. M. Blydenburgh

```
Vehicle, C. M. Blydenburgh ..........
```



```
Vehicle gear and spring, E. F. M
```

Vehicle gear and spring, E. F. M
Vehicle spring. E. F. Morse....
Vehicle spring. E. F. Morse....
Vehicle spring, S. H. Raymond.....
Vehicle spring, S. H. Raymond.....
V Vehicle, two-mheeled, R. D.
V Vehicle, two-mheeled, R. D.
Vehicle wheel, J. B. Lott
Vehicle wheel, J. B. Lott
V Velocipede saddie. S. E. Gilbert......
V Velocipede saddie. S. E. Gilbert......
|

```
|
```


THE MODERN 1CE YACHT，－BY

M上又思R Wall Plaster\＆Ferilizers Alexander，Bradley \＆Dunning， Syracute．N．Y．，U．S．A．

NoO OTHER Life Policies as liberal cost as little money，no others as cheap give as much for the money，as those of

The Travelers OF HARTFORD，CONN．

 Best either for Family Protection or Investment of Savings．Non－forfeitable， world－wide，lowest cash rate．
Wick raiser, W, Donaldson
Wick raiser, W, D. Donalda
Wind wheel attachment. Ium \& Liscom
Wind wheel attsehment. I.am \& Liscom
Window or door button, F. W. Quitma
Window screen, W. D. Graves, Jr..
Window ventilator, G. R. Bumam.
Wire cutter, o. Collins...............

Wire during the process of annealing, de...........

supporting, C. E., Matteso:..
Wire fabric and making the same, I. Kinney.
Wire fabric and making the same, I. Kinney
Wre rod coiling mechanım, F: H. Daniels.
Wood surfaces, flisishing, J. C. Orth
Wood surfaces, finishing, J. C. Orth................
Wool, apparatus for cleansing, Singer \& Judell..
Wrench, H. W. Burleigh..
DESIGNS.
Badge, F. A. Bernhard.
Badge, F. A. Bernhard... 19,430
Card or envelope, business, W. C. Gleason....... 19, 433
Crest
Caster, J. Lawson.........
Eraser, ink,.L. L. Thompson........................... 19,440
Fencing strand, W. E. Hathaway et at.....19,434 to 19,43
Fencing strand, W. E. Hatha
Fireplace lining, J. A. Read....
Hat and coat raek, c. T. Fowler
Hat and coat rack, C. T. Fowler.
Hub, wheel, W. P. Bettendorf...
Tile, D. H. Watts
Tile, D. H. Watts.

15,481
15,422
15

,265
... 415,423
415,248
$.451,196$
415,500
smith.
Steani generator, E. E. Roberts....................
......... 4
,
415,579,
feeding

Ovens，heat equailizer
Pad．See Collar pad．
Paddiewheel for vessels，
Padiock，W．H．Beasley
．． 415,849
．415，611
Paper，apparatus for delivering sheet，F．Hart．
Paper baa holder，G．L．Kennedy
Paper cutter，w．W．Drosten（r）． Paper cutter， 1 ．W．Drosten（r）．．．．．．．．．．．．．．．．．．11，0
Paper holder and cutter，roll，L．Ehrlieh（r）． Paper holder and cutter，roll，L．Ehrieh（r）．
Paper holder and cutter，roll，A．F．Henders
Paper roll holder and cutter，E．B．Weston． Paper holl holder and cutter，e．B．Weston．
Paerfume distributing device．automatic． Perfume distributing device，automatic， \mathbf{L} ． Noble． 415,287
415633
1104 Permutation lock，C．M．Billimer
Permutation lock，E．A．Lapp．．．． Photograph frame．L．H．Orr．．．． iano action，Stuart \＆Willard． Bartlett．
Pin．See Clothes pin．
Pipe coupling，cone and screw．J．J．Hogan．． Pipe expander， z．L．Chadbourne． Walter．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Plant protector．folding，W．K．Hawks．．．．．．．．．．．．．．．．． low，J．L．Dykes．5，622c． e．seribner．415，452

415,665
45,286
41550
$.415,228$
$+45,568$
$.415,44$
4
4

．．．415，297
．．，415，483415,483
415,636
$.45,699$Thet mat tenely，comblnedi H ．Wollbelm．

TRADE MARES．
Bakers＇productions，E．Benge \＆Co．． Canned veretables，fruits，fihh，oysters，and meats，
H．C Cotton goods，Lesher，Whitman \＆Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19 Flour．wheat，Moseley \＆Motley Milline Company．17．20 Food for infants and invalids，farinaceous，Trigge Gloves，B．Altma
Maple sirup．J．P．M．Perham． Medicinal compounds in liquid or solid form，vene－ table．Creasinger \＆Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Medicine for blood，skin，and nerve diseages，H． \mathbf{E} ．

Caniadian Patenty may now be obtained by the
inventors for any of the inventions named in the fore inventors tor any it the inventions named in the fore－
going list，provided they are simple，at a cost of sto each．If complicated the cost irill be a little more．For
fall．instructions sderess Munn \＆ 00,301 Broedway fall．instructions sadress munn \＆Oo．． 301 Broedway 3
Wagon，skeletoton，C．Abresch
Wall pocket，G ．Bald win Washer．See Gas．washer W ashing machine，Hart \＆Bartholome Washing machine，D．H．Sherwood． Watch cuse．F，Mink
Watch，stem winding and settlag，Gerber \＆Aude－

$$
\begin{aligned}
& \text { mars. } \\
& \text { Water cool }
\end{aligned}
$$

Water cooler and filter，F．G．Winnec．．．．．．．．．．．．．．．．．
Water cooler and giler，combined，Morrow \＆
 Ing，J．Ligh Water wheel，W．H．Ridgway Weather boarding，earthen tile，A．T．Bl．．．．．．．．．．．．415，561 eighing machine，coin－controlled ticket print－
ing，e．G．He $.416,24$
$.415,465$
$.85,595$
41549
4

489

Wells，strainer for，J．H．\＆E．Boone．Jr． Wheat scourer，J．B．M．Kehlior．．．．．．．．．．．．．．．．．．．．．
Wheel．See Paddle Wheel．Vehicle wheel．Whiffetree，C．K．Fickes．

AND ASSAYINC.

Mining. Compriping suggestions as to Mines, and

NEW YORK BELTING AND PACKING CO.

NOW READY.

TSxperimental $<$ cience,

GEO. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00.
MUṄN \& CO., Publishers,

$$
361 \text { Broadway, New York. }
$$

This book treats of the various topics of Physics in a pular and practical way.
It describes the apparatus in detail, and explains the
experiments in full, ers interested in physics may persorally make the apparatus and perform the experiments without difficulty. It ls a book full of interest and value for teachers, students, and others who desire to impart or obtain a prac-

> HEADS OF THE CHAPTERS.
I. Properties of Bodies. II. Rest, Motion, and Force. The The Groscope. 1V. Farling Bodies, Inclined Plane,
Thentulum. v. Molecular Actions. VI. Llatd VII. Gases. ViII. Sound. IX. Experiments with the Scientific Top. X. Heat. XI. Light. XII. Polarized Light. XIII. Microscopy. XIV. The Telescope. XV Photography. XVI. Magnetism. XVII. Frictional
Electricty. XVIII. Dynamic Electricity. XIX. Elec-tric Lighting. XX. Induction by Electric Currents.
X PI. Telephone, Microphone, and Electricul Mas. XXII. Lantern Projection. XXIII. Mechanical Opera-

Each chapter is full and complete. Under the head of Sound, an extended description of the new Phonograph on Polarized Light is superbly illustrated and contains many simple experiments explanatory of this difflcult subject. The chapter on Photography is a manual of the art. Electricity in all branches is fully treated. The namic Electricity will give the reader a practical knowledge of electricity in its modern mplications. The part devoted to Electric Lighting gives a clear understanding of all the principal systems. The chapter on The book closes with a chapter on Mechanical Operations, containing information of great value to the experimenter. Each experiment described has been sub-
mitted to a practical test. send ar

MUNN \& CO., Publishers,
\& . S61 Broadway, New York.

STANDARD TOOL CO., ATHOL, MASS. ICE-HOUSE AND COLD ROOM.-BY R

FIRE FELT.
THE NEW NON-CONDUCTING MATERIAL

Thomas Hall, 19 Bromfield Sc., Boaton, Mnss.
Manufacturing Electrician and Optician,

DERFECT NEWSPAPER ILE

Didvertisements. Inside Paze, each insertion : : : ös centsatinne.

 star and bearing our name are warranted to give full
satisfaction, wherever bought. 93 Reade street, New York.
Wheeling is Better than Walking. Victor Bicycles Catalogue Free. rerman Wheel Co., Makers,

 43. Price 10 cents. For sale at this
newmdealers in all parts of the country.

ICE-HOUSE AND REFRIGERATOR.

TUE KODAK CAMERA

A

ESPARTO--AN INTERESTING PAPER

JENKINS' AUTOMATIC AIR VALVE

Scientific Rook Ratalogue

> RECENTLY PUBIISHED.
 MUNN \& CO., Publishers Scientific American,

EI W JO酉INSS

Asbestos Sectional Pipe Covering

-

A Non-Conducting Covering for Steam and Hot Water Pipes, etc. Asioestos Boiler Coverings. EI. W. Johne Mannufacturing Company H

87 Maiden Lane, New York.
CHICAGO. Philadelphia. london.

atig\% on.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such
unlawful use, and all the consequences thereof, and liable to suit therefor.

PATENTS!

MESSES. MUNN \& CO, in connection with the publi
cation of he SCIENTIFIC A MERICANL continue to ex
amine improvemeats, and to act as Solicitors of Pateut

Wine ROPE

 atitat.and Best hade OTTO GAS ENGINES.

 OTTO GAS ENGINE WORKS, CHICAGO, PHILADELPHIA. New York Agency,
FELOCITY OF ICE BOATS ton of interesting letters to the editor of the Scirificimi

NO BONGINE NO ENGINEER. Extra W ATER RENTI or INSU RANCE or INSU RANCE. INSTANTLY STARTED. D.URABLE, RELIABLE, SAFE and ECONOMICAL send for description and prices. Yan Duzen Gas Engine CO, E. 2nd St., CINCINNATI, \mathbf{O}.

 The Largest Passenger and Freight Blezater Works in the World OTIS

Trimitib

Scinutific simerican
 ESTABLISHED 1846.
 The Most Popalar Seientific Paper in the World.
 nis 83.00 a Year, including Postage. Weekly.

This widely circulnied and splendidly illustrated ten pages of useful information and a large number of riginal engravings of new inventions and discoveries, Eepresenting Engineering Works, Steam. Machinery,
ew Inventions. Novelties in Mechanics, Manufuctures, hemistry, Electricity, Telegraphy, Photography, ArchiLecture, Agriculture. Horticulture, Natural History, etc. omplete List of Patents each week Terms of Subscription.-One copy of the Scien-
IFIC ANIERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollnrs by the pub-
lishers; six montts, $\$ 1.50$; three months, $\$ 1.00$. Clubs.- Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order. Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Adseldom goes astray, but is at the sender's risk. Ad-
dress all letters and make allorders, drafts, etc., pay-

able to MIUININ \& CO.,

 361 Broadway, New York.
Scientific American Supplement.
This is a separate and distinct publication from in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. Feekly, and includes a very wide rangent is publishe weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy. Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geokraphy, Archæology. Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical neering. Steam and Railway Engineering, Mining, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestre Econo ny, Biography, Medicine. etc. A vast amunnt of fresh lication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the Supplement.
Price for the SUPPLEMENT for the United States and
Canada. 85.00 a year, or one copy of the ScI ERICAN and one copy of the SUPPLEMENT, both mailed tor one year for $8 \pi .00$. Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y..

Building Edition.
THE SCIENTIFIC American Archirects' AND
Builders' Edition is issued monthly. 82.50 a year. Single copies, 25 cents. Forty large quarto pages, equa
to about two hundred ordinary book pages; forming large and splendid Magazine of A rchitecture, rich Iy adorned with elegant plates in colors. and with othe fine engravings; illustrating the most interesting ex allied subjects.
A special feature is the presentation in each numbe dences. city and country, including those of very mod erate cost as well as the more expensive. Drawings in
perspective and in color are piven together with full Plans. Spec fications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent wor have won for it the Laruest Circulation of any
Architecural publication in the world. Sold by all MUN N \& CO., Publishers,

361 Broadway, New York.
PRINTIING INKES. THE "Scientific American", is printed with CHAS.
ENEUJOHNSON \&CO.'s INK. Tenth and Lom.
bard Sts., Phila., and 47 Roee St., opp. Daane St., N. Y.

