A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECFANICS, CHEMISTRY, AND MANUFACTURES.

UTILIZING WAVE POWER AT THE SEA BEACH.
Ocean Grove is a popular summer watering place on the New Jersey coast, nearly fifty miles south of New York City, and here, during the past season, the plant represented in the accompanying illustration has been put in place, and seems to have performed the work for which it was designed in a very satisfactory manner. The pier has several gates, of which only one is shown in our illustration, each of the gates bein swung upon a steel rod, so that the lower part of the gate will be submerged at all tides-two feet submerg ence at low tide and seven feet at high tide represent ing the average calculated upon. At the top of the gate is secured one end of an arm, whose other end is pivotally attached to a jointed connecting rod, which extends beneath the platform of the pier to the piston rod of a pump, as shown in Fig. 1. Each gate is 13 feet long, and the waves, as they strike the gate, swing it inward, the force of each wave sufficing to effect a stroke of the piston, whereby water is lifted from a sunken well beneath the tower to a tank 40 feet high.
It is easy to see that, with the connections so made as to utilize the power obtained a little farther from the water's edge, or by carrying the well far enough down, it would be possible to supply the tank with fresh water, but this has not been sought in the present instance. The water here has been principally used for sprinkling the streets, and it is stated that in one day 40,000 gallons were thus supplied for this purpose. Opinions are somewhat divided as to the ad-
visability of generally using sea water for street sprinkling, but nothing can be said against its employment for flushing sewers, extinguishing fires, etc., and the construction herewith represented offers what appears to be a practical means to facilitate such use.

The Insulted Chinese.

The Rev. Charles H. Fowler, D.D., of San Francisco, a bishop of the Methodist Episcopal Church, who has ust completed a trip around the globe, expresses the belief that ten years hence America will pay for its anti-Chinese laws with the blood of her citizens. He occupied the entire session of the Methodist ministers at Chicago recently in speaking about his observa tions of missionary work abroad, the object of his trip being to personally inspect the workings of foreign nissions.
In speaking of the law prohibiting the Chinese from coming to America, Bishop Fowler said it was the most dastardly and disgusting thing that America ever did "and," he said, with a slow emphasis which was very impressive, "it will be paid for some day by the blood of some of America's best men." He thought every American should blush for shame when he thought of the violation of the treaty with China, whereby Chinamen were refused permission to land on our shores. "China is not asleep," he said. "They talk little, but they think. In some of the interior towns I met Chinamen who would surprise you by their knowledge. 'You lowed landee in China?' they ask. 'Yes,' I re
reply; 'why you lowed come here?' One man said to me one day : 'Me no Clistian or me sendee you way.' tell you they are thinking, and trouble is brewing. The greatest prince in China said to me oue day: 'We are looking after our home interests now. Ten years will put China in shape as to her interior arrangements; then we will look after her outside interests.' They are making great guns and ironclads, and are manning them. In ten years a country with one-third of the inhabitants of the globe will be ready to ask what we meant by trifling with her treaty."

A NEW cement, for securing iron into stone, is decribed in some of the foreign papers. The cement is made by melting resin and stirring in brick dust which must be finely ground and sifted, until a sort of putty is formed, 'which, however, runs easily while hot. In using, the iron is set into the hole in the stone prepared to receive it, and the melted putty poured in, until the space is filled; then, if desired, bits of brick, previously warmed, may be pushed into the mass, and a little of the cement thereby saved. As oon as the whole is cool the iron will be firmly held to the stone, and the cement is quite durable and uninjured by the weather, while, unlike lead and sulphur, it has no injurious effect on the iron.

Ninety-nine per cent of ambition to try, and one per cent of talent, is all that is necessary to success in whatever we undertake.

Fixientific gemmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUblished weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copp, one year. forthe U. S. or Canada.
One copy, six months, for the U. S . or Canada
One copp, six months, for the U. S. Or Canada...................... 1
One cony, one year, to any foreign country belongingto Postal Union, 4 Remit by postal or express money order.

- untralia and New Zealand.-Those who desire to receive the SCIENTIFIC AMERICAN. for a little over one year, may remit $t 1$ in current
Colonial bank notes. Address
of Franklin Street, New York.
The Scientific american Supplement
is a distinct paper from the Scientipic Amrican. THe supplemhet
 With SCIENTIFIC AMERICAN. Terms of subscription for SUPPLIEMENT,
\$5.00 a year, for U. S. and Canada. 86.00 a year to foreign countries belong ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
Uumbineil Rates.-The Scientific ambrican and Supplement will be sent for one year, to any address in U. S. or Canada, on receipt of Beven doluars.
The safest
The safest may
rexistered letter.
Australia and New Zealand.-The Scientific American and
SUPLLEMENT wille rent Colonial bank notes.

NEW YORK, SATURDAY, SEPTEMBER 28, 1889.

table of contents of
 SCIENTIFIC AMERICAN SUPPLEMENT
 NO. 717.

For the Week Ending September 28, 1889.
Price 10 cents. For eale by all newedealers.

 Eiectric Motor for Alternating Currents. A motor on an en
tirely new principle for the aplication of the alternating cur
rent with results obtained, and the economic outlook of the in
vention

successful trials of the new cruiser

 bALTIMORE.The four days' government trials of the Baltimore were completed Sept. 15, when she returned to Phila delphia from her run off the Delaware coast. She came up the Delaware river with a broom fastened to the foremast and another to the mainmast-public evidence of the success obtained by the builders of the vessel. Her commander, Captain Schley, said that the trip had been entirely successful, and that the engines were all right and had worked admirably. The vessel went eighty or ninety miles out, and is a beauti-
ful sailer. "You can be perfectly confident in saying ful sailer. "You can be perfectly confident in say
that she is the fastest man-of-war afloat," said he.
All data and indicator cards were taken every fiftee minutes from both ends of every cylinder on the ship, which made for three hours an average of about twenty and two-tenths knots an hour in a moderately rough sea. Many of the people on board thought she was making better time; but, aliowing for all errors in calculation, log lines, etc., she is believed to have made twenty and two-tenths knots. The trial indicates, it is said, that she is the fastest vessel of her tonnage afloat, and the fastest man-of-war of any country. The Baltimore ran straight ahead all the time. There was nothing from the time she left the dock until her return that occasioned any stopping. It is also stated that the Baltimore will probably show more than 10,000 horse power ; 9,000 horse power was the amount contracted for.
She was built by Messrs. Cramp \& Sons, of Philadel phia. The principal dimensions are :

The armament consists of four 8 inch breech-loading rifled guns mounted in barbette, two on the forecastle and two on the poop, each having a train on their respective sides from a line parallel with the keel to 60° abaft and forward of the beam respectively. The re maining battery is composed of six 6 inch breech-loading rifled guns, three in a broadside, mounted on platforms having semicircular galleries projecting from the vessel's sides. The secondary battery consists of eight 6 pounder rapid-firing guns, mounted four in broadside, two on the bow and two on the stern, having commanding positions, with the most effective range possible. Five torpedo tubes are fitted, two in the bow with direct fire ahead, one on each side in wake of conning tower, and one at the stern with direct fire aft, all located on the protective deck. Two hollow steel masts with machine gun tops are fitted, and also act
as ventilators to the lower part of the ship. Two as ventilators to the lower part of the ship. Two Gatlings in each top.
The propelling power of the vessel consists of two horizontal direct-acting triple-expansion screw engines and boilers capable of developing 10,750 I. H. P. when making about 110 revolutions of the screws per minute, or a speed of 20 knots. The two high pressure cylinders are each 42 inches diameter, intermediates 60 inches, and the two low pressures 94 inches, having a piston stroke of 42 inches. The main steam valves are double-ported slides working on hard cast iron seats.
The screw propellers are made of manganese bronze having three blades each, 14 feet 6 inches in diameter, set to a mean pitch of 20 feet, with a variable pitch between 18 feet 6 inches and 21 feet 6 inches. The starboard propeller is right-handed, port one left-handed.
Her contract price was $\$ 1,325,000$, and it is said the contractors will receive an additional bonus of $\$ 135,000$ in consequence of the development of a greater horse power in the engines than was called for by the contract. It is understood the Navy Department is very jubilant over the results of the trial, as the ship is considered to be fast and formidable.
The Baltimore is one of the series of ships built on English drawings, for which Mr. Whitney, the late Secretary of the Navy, paid a large sum. We have heretofore called attention to the fact that the plans for all these vessels had become, in a measure, obsolete at the time the drawings were purchased. It is true every one of these ships when completed forms an addition to our navy far ahead of any of our old wooden boats. But the fact cannot be disguised that the new ships are lacking both in speed and defensive power as compared with some of the latest vessels of other nations. This ought not to be. A great nation like ours, in building new ships, should take care to obtain the latest designs, and build the fastest and most effective vessels.
The Baltimore, although a fine ship, will have to sail in the wake of the new Italian man-of war Piemonte, which was completed last April.

The official trials of the Piemonte show that during a natural draught trial of four hours' duration, a mean speed of $20 \cdot 4$ knots was attained with about 7,000 indicated horse power ; and during a forced draught trial of one and one-half hours' duration, a measured mile speed of $22 \cdot 3$ knots was attained with a mean power of 12,700 horses, the maximum power which was main-
tained for a considerable time exceeding 13,000 horse
power. The displacement of this vessel is only 2,500 tons, yet she carries six 6 in. quick-firing guns, six $43 / 4$ tons, yet she carries six 6 in. quick-firing guns, six $43 / 4$
in. quick-firing guns, and a large number of smaller guns. She is protected by a strong armor deck with sloping sides, and she has attained great speed.
The armor deck of the Piemonte has sloping sides 3 inches thick, as in the Admiralty cruisers; upon these coal can be carried, and in this condition it is claimed the deck is proof against the attack of modern shell guns up to guns of 6 inches caliber.
Speaking of her armament on a recent occasion, Lord Armstrong said : "She will be capable of discharging against an adversary, in a given time, twice the weight of shot and shell that could be fired by the largest war essel now afloat, not excluding the leviathan battle ships of five or six times her size, which could ill with stand the torrent of shell which the Piemonte could pour into the large unarmored portions of their struc ure.'
The machinery of the Piemonte is wholly below the water line.
Special arrangements have been made for securing good turning power in the ship, a large balance rudder is provided, and much of the after deadwood is removed, and at the trials made it was shown that the ship could maneuver exceedingly well, completing a circle of 508 yards in 3 minutes 24 seconds.

position of the planets for october.

venus
is morning star. She stands first on the October record, not only from her charming appearance in the morning dawn as the sun's bright harbinger, but also from her close conjunction with Mars on the 1st, at 8 h . 2 m . A. M., when she is 22^{\prime} south of him. The planets rise on the 1 st about $3 \mathrm{~h} . \mathrm{A}$. M., nearly three hours before the sun, and will be seen near each other,though the conjunction takes place in daylight. They must be looked for in the northeast soon after they are above the horizon. Venus will need no guide to point out her position, but an opera glass will probably be required to bring Mars into the field. Venus rises on the 1stat $3 \mathrm{~h} .10 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st she rises at 4 h .16 m. A. M. Her diameter on the 1 st is $13^{\prime \prime}$, and she is in the constellation Leo.
uranus
is evening star until the 15 th , and morning star after that time. He reaches an important epoch in his course on the 15th, for he is then, at $9 \mathrm{~h} . \mathrm{A} . \mathrm{M}$., in conjunction with the sun, rising and setting with the sun and passing to his western side. Uranus sets on the 1st at $6 \mathrm{~h} .7 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he rises at 5 h .10 m . A. M. His diameter on the 1 st is $3^{\prime \prime} .4$, and he is in the constellation Virgo.

MERCURY
is evening star until the 15th, when he becomes morning star. Two important epochs mark his course dur ing October. He is in inferior conjunction with the sun on the 15 th , at $8 \mathrm{~h} .10 \mathrm{~m} . \mathrm{P}$. M. He reaches his greatest western elongation on the 31 st , at 11 h . A. M., when he is $18^{\circ} 43^{\prime}$ west of the sun, when he is? visible to the naked eye as morning star, being 8° north of the sunrise point. Mercury sets on the 1 st at 6 h .11 m . P. M. On the 31 st he rises at 4 h .55 m . A. M. His diameter on the first is $8^{\prime \prime} .4$, and he is in the constellation Virgo.

saturn

is morning star, and will soon become a conspicuous object in the morning sky, for before the month closes he rises about one o'clock in the morning. He is still in the neighborhood of Regulus, though the distance between planet and star is increasing. Saturn rises on the 1st at $2 \mathrm{~h} .33 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he rises at 0 h . 50 m . A. M. His diameter on the 1 st is $15^{\prime \prime} .6$, and he is in the constellation Leo.

JUPITER

is evening star. He makes a close conjunction with the four days' old moon on the 28th, at $6 \mathrm{~h} . \mathrm{P}$. M., being 7^{\prime} south. The conjunction occurs before sunset, but moon and planet will form a charming celestial picture as soon as it is dark enough for them to be visible. Jupiter sets on the 1 st at $9 \mathrm{~h} .48 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st, he sets at 8 h .9 m. P. M. His diameter on the 1 st is $36 " .0$, and he is in the constellation Sagittarius.
mars
is morning star. He presents no interesting feature excepting his conjunction with Venus, but a better record may be expected before many months have passed. Mars rises on the 1st at $3 \mathrm{~h} .5 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st , he rises at 2 h .40 m. A. M. His diameter on the 1 st is $4^{\prime \prime} .2$, and he is in the constellation Leo.
neptune
is morning star. He rises on the 1 st at $8 \mathrm{~h} .13 \mathrm{~m} . \mathrm{P}$. M. On the 31 st , he rises at 6 h. 12 m. P. M. His diameter on the 1 st is $2^{\prime \prime} .5$, and he is in the constellation Taurus.
Uranus, Mercury, Venus, Mars, Saturn, and Neptune are morning stars at the close of the month. Jupiter is the sole representative of the evening stars. He alone is on the eastern side of the sun, and astronomical classification decrees that planets when east of the sun shall be called evening stars; and when west of the shall be called eve
sun, morning stars.

The Paris Exhibition.

the machine tool exhibits.
Paris, Sept. 15, 1889.
I stated in my letter giving an account of an inspecfion of the railway works (of the Northern Railway of France) at Hellemmes that there was only one planng machine in the whole shop, and I then stated that it appeared to me that milling machines were wore used upon large work in France than is the case i_{1} either America or England. This statement is now borne out by the fact that, notwithstanding the imorense exhibits of machine tools in the Palais des Ma(hins, I have only come across two planing machines (and one of these is American), while the milling ma chines may be counted by the score. If I am correctly informed, two of the largest milling machines exhibited are sold to go to the United States, both being designod to take the place of planing machines. There are, it is true, two planing machines in a large building outside the Palais des Machins, but in this exhibit there are a dozen milling machines. In this connection let me state that, notwithstanding the immense size of the Palais des Machins (it is over a quarter of a mile long), a very large quantity of machinery is crowded out of it. For example, the above-named exhibit fills quite a large building placed among the boiler buildings, where one would not think of looking for machines. The greater part of the locomotive and railroad car exhibit is in an annex outside of the Palais des Machins, while the agricultural machinery fills several large buildings at least a mile distant from the Palais des Machins. In other parts of the main buildings one comes unexpectedly across very large exhibits that Cught to be in the Palais; indeed, the whole of the ex-
hibits of the technical schools are separated from the Palais the full length of the main buildings. "There's oltogether too much of it. One cannot grasp it," is a remark frequently made by Americans here, and I know of men who have come here at considerable expensa ond gone away tired out without seeing the whole even those exhibits they were most interested in.
It is rumored that the exhibition may be kept open longer than was at first intended, because it is expected that the issue of tickets connected with the lotteries will be exhausted by the end ofiOctober, and it will then be possible to make an issue that will then sell for a franc instead of the half franc at which tickets can now be bought. Again, it is urged that so long as the exhibition is open money pours into Paris-a condition that will keep Paris satisfied, and therefore quiet, to the discomfiture of Boulanger; but, be this as it may, I have met many who have an idea that international complications are likely to follow the closing of the exhibition.
A few words may not be out of place here regarding the double price of admission exacted before ten in the morning and after six in the evening. The fact is that as far as the early mornings are concerned, but little if anything is gained, because but few of the exposed exhibits are visible, the attendants not getting the exhibits dusted and in order before ten. Many, indeed, do not attend before about eleven. In the Palais des Machins there is no power before twelve, and many attendants do not come until then; indeed, If find it almost useless to visit this part of the exhibition until about one, and the crowds are by that time so great as to seriously impede locomotion. At six o'clock in the evening an official is posted at every door, and nobody is allowed to pass from one building into another. Hence they pass out into the grounds. 'Those who intend to stay for the evening go to the restaurants to make out the time until admission is again permitted, and thus avoid the double price of admission. But the greater portion of the departments are closed in the evening, and even the Palais des Machins becomes to a great extent uninteresting, the chief attraction being the electric lights and colored fountains in the grounds. So far as the fountains are enncerned, the display is not equal to those of the Colonial exhibition held in London in 1886. In the first place, the main fountain does not play so high, and the fountains being more spread out, the effect is not so charming. Again, there are no electric lights showing beneath the water as there were in London; and finally, there is no steam let in among the water for the colored lights to play upon. The display as a whole surpasses anything that has heretofore been at tempted, because of the Eiffel tower, the statuary and the great size of the grounds.
The street in Cairo and its neighborhood is simply an immense fair, the noise, crowds, and bustle answer ing to what a crowded Sunday at Coney Island would
be if the hotels were turned into caravansaries, where be if the hotels were turned into caravansaries, where
fans, toys, pipes, tobacco, and Eastern fruits and curiosities were sold. I have not, as yet, been through one-quarter of the outside buildings, nor been from end to end of the Decazeville railway, which by the way is doing quite a large amount of passenger traffic. The outside buildings along the banks of the Seine, exclud ing the exhibits of human habitations, are largely
devoted to the agricultural exhibits. Beginning at the Jena bridge, there is first the retroleum exhibit,
consisting of a tank containing $2,500,000$ liters of raw petroleum, while in the rooms beneath it are drawings of the oil wells in various parts of the world, but more especially of Pennsylvania and Baku. Other exhibits are of oil-well drilling apparatus, with all the tools used. Models of tank steamers for petroleum. Pumping tations for pipe line. Photos. of petroleum refineries in America, France, Russia, and Austria. A Worthr ington pumping station. A geological chart of the oir regions in the United States. Various kinds of machinery used in oil pumping, and a carriage driven by a petroleum engine.
The next building contains exhibits relating to navigation and salvage, its contents being mainly confined to nautical instruments, models of ships, steam tinguishers, while in an inclosure on the Seine beside this building are various crafts, including a gentleman's private yacht. The panorama of the various parts of the world to which the boats of the French transatlantic steamboats ply fills the next building but as they make a charge for entrance, it is not so well patronized as the open buildings. French agricultural exhibits fill the next building, and among them there is one, on vegetable pathology, that attracts great attention. It consists of cases of leaves, small branches, ttc., in which various diseases are shown in differen stages of development. Next come some fine exhibits of long racemes of various fibers and different fertilizers the effects of which upon the growth of a plant which I assume from the sketches to be Indian corn (of which there are some fine specimens of French growth in their agricultural departments).
These sketches are on a board immediately over some bottles containing the fertilizers. The firs sketch shows a plant about a foot high grown in un fertilized soil or soil "without azote," as the sign has it ; next is a plant about 16 inches higher and slightly
more robust, beneath which is a bottle containing nore robust, beneath which is a bottle containing sheep manure. The successive increases in the sizes and robustness of the plant are in the following order: Dried night soil, disaggregated leather, cow manure, dried blood, torrefied horn, horn raspings, vegetable manure, nitrate of soda, and finally sulphate of soda the plant fertilized with which is the tallest, being about four feet high and of robust growth. This re minds me that in the neighborhood of Reading, in England, the farmers use the refuse rags from a neighboring paper mill, and state that they find no manure so efficient and so lasting in its effects. Some of them used other first-class manures in the same field as these rags, and say that from the luxuriant growth of the plants they can tell the next year what part of the field the rags were used on. Another exhibit of prominence is that of horseshoes, which are of every size and shape, and many of which have never come into use. There is one, for example, in which short screws are inserted, the heads which are of half inch square iron, and about three-eighths inch deep project to afford the horse a foothold. Several varieties of band-fastened
horseshoes are shown. while others are evidently designed to accommodate irregular or misshapen hoofs. There are in this building a great many skeletons of animals and of parts of animals, and paintings showing the appearance of various diseases of cattle and sheep. Among the exhibits of cereals there is shown wheat in the straw which is 8 feet high, the grain from its appearance weighing as much as 60 pounds to the bushel. It would be much more satisfactory if exhibits of this kind were accompanied with a state ment of the conditions under which the grain was grown. I have seen, for example, samples of wheat in the straw, the ears of which were at least twice the length and breadth of ordinary ears, the grain weighing 60 pounds to the bushel, but in this case the soil was dug a foot deep with the spade, and only half the field was sown each year, that is to say, a breadth of five feet was sown and then a space of five feet was left bare, so as to recuperate ready for next year's crop and more free circulation of air. On the other hand, crops of sixty bushels per acre and sixty pounds to the bushel are not uncommon in Kent, England, where the soil is a light-colored clay, not more than six or at most seven inches deep, and rests on solid chalk.
Some of the samples of oats exhibited are five feet in the straw, the weight of the grain being about 46 lb . to 48 to the bushel (the imperial bushel of 277 cubic inches is here referred to). Among the various samples of root crops exhibited are some fine samples of beet roots and turnips; but the latter do not equal those grown in England, nor the former those grown in the United States, especially those of Kansas. There is a large case here containing models in wax of apples and pears, with the names of each variety affixed, the only classification being that of table apples and cider apples. Hence whether the table apples are culinary or dessert apples it is hard to say. in the next class we find exhibits relating to the grape culture and wine manufacure. First come examples of the various methods of grafting, both Freuch and English; then young vines, with their roots sometimes not more than three-
fourths inch in diameter, having roots seven feet long
n them, the fibers running from one-fourth inch thick down to the thickness of sewing cotton. There is one ine stem four inches in diameter, which is considered very large here. Nothing approaching the California stems exhibited at Philadelphia in 1876 is to be found in Europe, except, perhaps, the celebrated vine at Hampton Court, in England.
Wine presses and cork-cutting machines form the most prominent remaining exhibits in this section
The next section is mainly devoted to biscuit manufacture, the whole operation going on daily. At the end of this section there is a room about 16 feet deep and 20 or 25 feet wide devoted to the manufacture of chocolate, and here a very curious effect is produced, by means of which the room appears to be at least 70 feet deep. This is done by hanging from the ceiling canvas, on which a sham roof is painted, showing rafters, etc. ; the end wall is painted to represent a continuance of these rafters, etc., and also a continuance of the side walls. The machinery also is painted on the back wall, with the operators all in their places, and so perfect is the deception that one has to get very close to discover it. On a raised flooring in this building, forming a sort of half landing, are large exhibits of confectionery, while the basement beneath is devoted to wine rooms, in which arches, pillars, and other dec orations are composed of bottles in quite an artistic nanner. In the Portugal exhibit an artificial vine runs around (on a lattice platform) a room about 40 fee square, the execution being exceedingly good.
In the next building are the agricultural exhibits of the Pays du Calais, in which we find grain in the straw and other agricultural products similar to those already described, including samples of tobacco and some clover very luxuriant and $21 / 2$ feet high. The succeed ing exhibits are similar, save that they include hard ware, leather, wool, pottery, wooden frame plows, and some geological exhibits in the way of limestones. In the matter of stoves, I may say that I have found American stoves in use in several parts of France, the "Crown Jewel" of the Detroit Stove Works being a case in point. The importer was Firmin Mignot, of Brussels. There are a great many stoves of American design in the exhibition having the shaking and dumping grates and most of the latest improvements. A great many of them, however, possess the advantage over stoves of American manufacture that the whole of the iron of the stove is enameled, some with a blue, some with a brown, and some with a black enamel; while on yet others the enamel has a colored pattern on it. This not only improves the appearance, but also saves much work in the way of stove cleaning. The cylinder stoves are very handsomely got up in enamel and have handles on them to facilitate moving them about. This is, however, quite an unnecessary refine ment.

Joshua Rose.

Patent office Annual report.

The Hon. C. E. Mitchell, the Commissioner of Patnts, has filed with the Secretary of the Interior the preliminary report of the operations of his bureau for the year ended June 30, 1889. There were received during the year 36,740 applications for patents, 808 applications for design patents, 101 applications for re ssue patents, 1,281 applications for registration of trade marks, 772 applications for registration of labels, and 2,345 caveats: raking a total of 42,047 . The number of patents granted during the year, including ressues and designs, was 21,518 ; number of trade mark registered, 1,111 ; number of labels registered, 312 ; mak ing a total of 22,941 . The number of patents withheld for non-payment of final fees was 2,858 ; number of patents expired, 11,920 .
Upon the subject of legislation the commissioner says: "Some of the provisions which should be altered are Section 4,885 , relating to the date of patents Section 4,887, relating to the duration of patents for inventions previously patented in a foreign country and Section 4,936, relating to reimbursement of money paid by mistake into the treasury." Mr. Mitchell thinks the policy of the Patent Office in adjudicating upon questions arising in the granting of patents should conform more nearly to the decisions of the federal courts.

Tight wooden Battery Boxes.

It has long been a subject of complaint with regard o wooden battery boxes, says La Lumiere Electrique, that, in spite of internal and external coats of varnish, they always begin to warp and leak after a certain time. With a view of remedying this defect the following process has been recently tried, it is said, with very satisfactory results: The boxes are dried and placed in a closed vessel, which is then exhausted. The protecting liquid is next allowed to run in. and when the boxes are well covered air is admitted, and the pressure of the atmosphere drives the varnish right into the pores of the wood, rendering it highly impermeable.
Of the twelve grand prizes granted at the Paris exhibition of 1889, four were awarded to citizens of the United States.

AN IMPROVED GOVERNOR FOR STEAM ENGINES.
The accompanying illustration represents a directacting governor for steam engines, which is positive in its action, and has neither pulleys, belts, nor gearing. It is the invention of Mr. J. W. Brown, of New Orleans, La., and an application for a patent therefor is pending. Fig. 1 represents the governor in perspective, as applied, Fig. 2 being a sectional view through the

BROWN'S STEAM ENGINE GOVERNOR.
steam inlet ports by which live steam is supplied to the engine on which the governor is placed, while Fig. 3 is a plan view of a turbine wheel placed in the path of the entering steam, the ports by which the steam is admitted to the engine cylinder being so arranged as to necessitate the passage of the steam through the turbine wheel. The shaft on which this wheel rotates extends upwardly and is hollow, and on this shaft are tends upwardly and is hollow, and on this shaft are
disks, by means of which the governor balls are supported, being connected therewith by thin straps of spring steel. The lower disk is rigidly connected with the shaft, and the upper one is free to move up and down thereon, so that the rapid rotation of the shaft tends to force the governor balls outward, in proportion to the speed attained, against the tension of the straps by which they are connected to the disks, and also against the pressure of a coil of spring wire surrounding the shaft and bearing against the upper disk. The amount of pressure to be exerted by this coil is adjusted according to the rate of speed it is deemed desirable to maintain. Secured to the top disk is a yoke, extending over the top of the shaft, and forming a bearing for a spindle which extends centrally down through the shaft to the live steam valve, as shown in Fig. 2. The top of this spindle is screw-threaded and fitted with lock nuts, by the adjustment of which the amount of steam to be admitted is regulated.
For further particulars with reference to this invention address the American Patent Operating Company, Limited, Thomas H. Underwood, President, No. 164 Common Street, New Orleans, La.

AN IMPROVED STORM APRON.

The accompanying illustration represents a form of carriage apron requiring less material in the process of

gibbons and shelly's storm apron for carriages.
at each side to form side flaps to go behind the dash, where their ends are united by a sprial spring or elastic webbing, as shown in Fig. 2, whereby the apron may be adjusted to a dash of any size. By means or leather straps on each side the apron is attached high up to one of the side sticks holding the curtain, and lower down it has an elastic strap on each side, with a hook,
by means of which the apron is made fast at the side by means of which the apron is made fast at the side or the seat. The apron also has a central aperture applied, as shown in Fig. 1, presents an inclined plane, free from all pockets or ridges, which will not hold water at any point, and from which the water will rapidly pass off. This apron will not mark or wear the dash, and when not in use may be folded up to occupy but little room.
For further information relative to this invention address the Doctors' Carriage Storm Apron Co., Pittston, Pa.

The Eiffel Tower Struck by Lightning.
A few days since the tall tower was, during a storm, hit by a thunderbolt, and many sensational stories have been circulated in reference to the occurrence. Some reports spoke of the lightning rod having been melted into a ball, others of a shower of molten iron dropping on the bystanders, and, again, others had dropping on the bystanders, and, again, others had
wonderful tales of sheet lightning and electric shocks. wonderful tales of sheet lightning and electric shocks.
In consequence the shares at the Bourse went down $60 f$. in one day, a result probably showing the "true inwardness" of the canards. At the last sitting of the Academy of Sciences, M. Mascart gave the true account of the incident, for accident there was none. The tower top is protected by three lightning rods, one vertical on the highest point and two oblique ones a little below, on the belvedere sides. Some time since, it seems, the end of the topmost rod was noticed to be slightly shaky, and as the piece weighs several kilogrammes, it was thought prudent to take it down for repairs, while the iron nut serving to hold it, screwed fast to the lower half, was left in place. It is this nut which was mistaken for a ball of melted iron. On examining it afterward it was found indeed that some particles had been struck off by the fluid, as when steel is struck with a flint, and to a like phenomenon the
flying sparks may be attributed, but no appreciable portion of the metal was melted off. While the storm was at its highest, aigrettes of light kept issuing from the three rods, and the keepers were surrounded with a luminous haze. They were startIed by the loud report when lightning struck the rod, but neither then nor at any time did they experience any shock. No harm befell any one on the tower at the time, and none can happen from thunderstorms, the conductibility being practically perfect.
Remarkable Career of an American Missionary.
The Department of State has received from the legation at Pekin, China, under date of July 3, an account of the death and extraordinary life-work of the Rev. J. Crossett, an independent American missionary in China. He died on the steamer El Dorado, en route from Shanghai to Tientsin, on June 21. He leaves a widow at Schuylersville, N. Y. In speaking of Mr. Crossett, Minister Denby couples his name with that of Father Damien, and says:
" Mr. Crossett's life was devoted to doing good to the poorest classes of Chinese. He had charge of a winter refuge for the poor at Pekin during several winters. He would go out in the streets on the coldest nights, pick up destitute beggars and convey them to the refuge, where he provided them with food. He also buried them at his own expense. He visited all the prisons, and often procured the privilege of removing the srck to his refuge. The officials hadimplicit confidence in hım, and allowed him to visit at pleasure all dence in him, and allowea him to visit at pleasure all

the prisons and charitable institations. He was known by the Chinese as the 'Christian Buddha.' He was attached to no organızation of men. He was a missionary pure and simple, devoted rather to charity than proselytism. He literally took Christ as his exemplar. He traveled all over China and the East. He took no care for his expenses. Food and lodging were voluntarily furnished him, innkeepers would take no pay from him, and private persons were glad to entertain him. It must be said that his wants were few. He wore the Chinese dress, had no regular meals, drank only water, and lived on fruit with a little rice or millet. He aimed at translating his ideal Christ into reality. He wore long auburn hair, parted in the middle, so as to resemble the pictures of Christ. Charitable people furnished him money for his refuge, and he never seemed to manufacture than has heretofore been employed, and want for funds. He slept on a board or on the floor \begin{tabular}{c|ll}
which can be quickly and easily applied to a dash. It \& Even in his last nours, being a deck passenger on the

has been patented by Dr. Peter J. Gibbons and Mr. \& EI Dorado, he refused to be transferred to the cabin,

has been patented by Dr. Peter J. Gibbons and Mr. \& EI Dorado, he refused to be transferred to the cabin,

David B. Shelly, of Pittston, Pa. Theapron is made of \& but the kindly captain, some hours before his death,

rubber, oil cloth, or other waterproof fabric, and is cut \& removed him to a berth."
\end{tabular} rubber, oil cloth, or other waterproof fabric, and is cut \mid

AN IMPROVED COCOANUT PARER.

A machine for paring cocoanuts after the shell has been removed is shown in the accompanying illustration, and has been patented by Mr. Abram W. Lewis, of Asbury Park, N. J. The nut is clamped to revolve between holders journaled in standards secured to a suitable base, one rigidly and the other by dog and rack, permitting of a sliding movement on the base to engage cocoanuts of different sizes. A suitable train of gearing is arranged to revolve the nut and the circular plate carrying the paring device. The circular plate is secured to a sleeve on central post projecting from the base, and receives its rotary movement from a bevel gear mounted on the sleeve. On

LEWIS' COCOANUT PARER.

the post immediately above the sleeve carrying the circular plate is a collar carrying the horizontal arm which supports the knife post, and works over the face of the circular plate. The horizontal arm has a depending lug at its outer end which engages in turn with opposite marginal apertures in the circular plate. The post carrying the box in which the paring knife is held is jointed to the horizontal arm, and at the junction of the two is a coiled spring to force the post against the nut. A coiled spring is also placed on the central post, one end being secured thereto, and the other end to the horizontal arm. In operation, the lug in the horizontal arm being in the aperture on the right, the circular plate carriesit in revolving and also the knife post; as the knife reaches the end of the paring on the left, the arm rides up on a beveled lug on the case, which forces the lug on arm out of the aperture, and the coiled spring on central post retracts the arm back to the first position at right, where the lug engages the aperture in advance.

AN IMPROVED SILL PLATE FOR RAILWAY CARS.

The accompanying illustration represents a doorway sill plate for railway cars provided with a roller along its upper front marginal portion, to ease the labor and quicken the work of sliding or passing freight in and out of the car, free from injury to the package. It has been patented by Mr. E. E. Jacobs, of Arcola, III. The plate proper has its floor and outside front portions cast or otherwise made in one piece, and is secured in a suitable way on and over the sills of the doorway. Its upper front marginal portion is formed with a recess to receive, with proper room for clearance, a roller made with journals, which rest and turn in suitable bearings, each of which is formed of a partial bushing and an

JACOBS' SILL PLATE FOR RAILWAY CARS.
outer strap fastened to the plate by screws or bolts, as shown in Fig. 2. The body of the roller projects slightly beyond the side and top surfaces of the plate and of the straps, making the roller the carrying surface for boxes or packages sliding in and out over it.

AN IMPROVED BACKBAND HOOK.

An improved device for securing the backbands of plow harness and similar gear, consisting of a simple form of hook, which may be easily applied, adjusted, and removed, is illustrated herewith, and has been patented by Mr. David D. Nolley, of Wilson, N. C. The hook is formed of stout wire of sufficient rigidity to resist the strains, and is approximately T-shaped,

Fig. 1 showing it on the backband and Fig. 2 showing it detached therefrom. The reins may be passed through the ring or loop at the upper part of the frame, and the two hooks forming the lower end of the frame, by means of which engagement is made with the trace links, may either lie side by side, as shown in Fig. 2, or they may be crossed over upon each other, as shown in Fig. 3. In connection with the hook a stout wire keeper is employed. The ends of the backband are doubled over the keeper, and the ends of the latter are made to embrace the edges of the band, when the band is passed into the skeleton arms of the hook and drawn through till the keep er strikes their outer sides. The hook is thus securely held to the band, and may be readily adjusted or removed by simply drawing the keeper away from the frame.

For further information relative to this invention address Messrs. George D. Green \& Co., Wilson, N. C.

A RAILWAY CAR FOR CARRYING WIDE STONES.

A car of special construction to adapt it for the transportation of stones of fifteen feet or more in width, and twenty-five feet or more in length, is illustrated herewith, and has been patented by Mr. James J. Treanor, of Hastings-upon-Hudson, N. Y. Upon the usual trucks are platforms connected by center and intermediate sills, the ordinary outer sills being cut away between the platforms. Above the center sills is mounted a heavy longitudinal girder, as shown in the sectional view, and upon the inner ends of the platforms are $\boldsymbol{\Lambda}$-frames, braced by struts, these frames supporting a heavy horizontal shaft which passes through caps carried by intermediate Λ-frames resting upon the central longitudinal girder. At either side of the intermediate frames are arranged knees, between each pair of which skids are held, the lower

THE JOHN GOOD FORCE DRAUGHT FUEL GAS GENERATOR AND SMOKE CONSUMER FOR STEAM BOILERS.
tie rods are provided for the proper bracing of the car, and in loading the stone thereon the knees are moved to the position indicated by dotted lines in th ectional view, in which position they are blocked.
After the stone has been placed the block is removed and the knees lowered, the horizontal arms of the knees being then brought into engagement with the vertical bars pivotally connected to the frames, while a bar or rail is placed against the outer face of the stone, the ends of the bar being engaged by links provided with turnbuckles, the links being connected to projections near the base of the opposite side of the frames. With this construction the car will carry a rery wide stone in such a way that neither edge of the stone will extend beyond the side edges of the car platform.

THE JOHN GOOD FORCE DRAUGHT FUEL GAS GENERATOR AND SMOKE CONSUMER FOR STEAM BOILERS.
The accompanying illustration represents a furnace construction whereby steam and air are superheated to form a fixed gas, and injected upward through the grates of the furnace by a steam jet exhauster, enabling coal screenings, etc., to be used, perfecting the combus tion, and almost wholly doing away with smoke. This invention has been patented in the United States and Canada by Messrs. James E. Herring and John Good, of Napanee, Ontario, Canada
A cast iron air pipe is placed lengthwise in the furnace, as shown in Fig. 1, to the outer end of which is attached a round pipe, through which air is drawn, indicated by the arrow, this pipe being fitted with a vacuum gauge. At the opposite end of the pipe is a downwardly pointing elbow with a T , one end of which

TREANOR'S RAILWAY CAR.
ends of the downwardly extending lengths of the skids having hook-like projections. The knees have semicircular recesses at the bend on their inner side, these recesses resting upon the horizontal shaft, and when the knees are in the position shown, their horizontal arms are engaged by vertical bars pivotally connected to the outer lower corners of the frames. Longitudinal
projects through the front wall of the furnace into the ashpit. A cast iron steam superheater is placed crosswise of the furnace, above the second row of grate bars, as shown in Fig. 1, and in the cross sectional view, Fig. 3, this superheater being flanged, and closed at both ends, and divided into three compartments, as shown in section in Fig. 2. Steam from the boiler is passed through this superheater to be formed into a fixed gas, and discharged into the \mathbf{T} at the front end of the furnace, thus constituting a steam jet exhauster, creating a vacuum designed to equal about twenty inches weight of water, and sucking the air through the central pipe in the furnace with great force. This heated air and superheated steam are together forced upward through the grates, mixing with the fuel thereon and creating a powerful heat. In addition to the ordinary row of grates is a second row just beyond the bridge wall, the superheated steam and air striking the fuel on the first grate with such force as to carry a portion of the fuel back to the second grate, where the combustion is further maintained and the smoke consumed, a system of dampers being so arranged as to admit air and superheated steam to this part of the furnace. With a furnace thus constructed and operated, it is claimed that the solid fuel need be renewed only at long intervals, and that all smoke will necessarily be consumed
For further information touching this invention address Mr. James E. Herring, Secretary Napanee Gas Company, Napanee, Ontario, Canada

AN Italian engineer has experimented with sugar as a means of preventing the incrustation of boilers, with satisfactory results. A boiler which used to be incrusted in six weeks, had two kilogrammes of sugar introduced every week, for four months, and then a film of incrus tations was found which could be easily washed off.

an Improved undulating furnace hearth.
A furnace improvement designed to facilitate the agitation of molten iron, and consisting of a centrally

barker's undulating furnace hearth.
supported hearth or basin, with means for undulating the basin, is illustrated herewith, and forms the subject of a patent issued to Mr. Anthony Barker, of Pittsburg, Pa. Fig. 1 is a central longitudinal sectional view of a reverberatory furnace having such a hearth, Fig. 2 being a cross sectional view with the basin or hearthin its position of greatest depression,
while Figs. 3 and 4 show bottom views of the hearth or basin and the roller-carrying disk. The hearth has a cast iron base with cast iron side walls bolted thereto, and is lined with refractory material, while a boss with a concave recess extends downward from the under side of the center of the base, and about the boss is formed a concentric cam-faced flange, the face of the flange being in a plane that is at a slight angle to that of the base. The hearth is centrally supported by a vertical post, the upper end of which fits within the recess of the boss, and a disk is loosely fitted upon the post to rest upon the bed plate, this disk having a bevel gear about the edge of its under side that is engaged by a pinion on a horizontal shaft, driven in any desired manner. This disk carries on its upper side four wheels or rollers, as shown in Fig. 4, two of the rollers, directly opposite each other, being of the same size, while one of the other rollers is larger and the other smalier. About the top of the side walls of the hearth are flanges with hook-like projections, engaged by corresponding hook-shaped projections upon plates lined with firebrick, a loose fold of asbestos cloth being attached. To the working door of the hearth is connected a working fore plate which rests against the top of the side walls and accommodates itself to the different positions of the hearth. By the operation of the shaft revolving the roller-carrying disk under the base of the hearth, the latter is tilted to undulate the molten metal, thoroughly agitating it so that all its particles will be brought into contact with the reagent employed for its purification. The rotation of the hearth may be prevented by clutches working in slots in the fire bridge and flue bridge.
Further particulars with reference to this invention may be obtained of the Barker Undulating Furnace Company, limited, Duquesne Way, between Third and FGurth Streets, Pittsburg, Pa.

Design in the surroundings of Houses.

A few months ago Mr. Charles Eliot, the well known landscape gardener, read before the Massachusetts Horticultural Society a most instructive paper with the above title. Assuming that every one desires to have his house and grounds beautiful as well as con-
venient; Mr. Eliot insisted (1) that the real beauty of venient, Mr. Eliot insisted (1) that the real beauty of
what he aptly termed the "house scene" is never derived from added decoration, but must spring directly from the scene itself, and (2) that this beauty can be attained only when the house and its surroundings are thought out together as one design and composition. These truths are fundamental, and yet the ordinary practice is to build houses without much reference to the land about them, and often with no thought of so essential a matter as the way of approach. After the building is complete, some attention may be given to making the scene a pleasant one to look upon, and this is usually done by inserting flower beds or specimen plants here and there, without reference to the nature of the ground.
Illustrations of the truth of both these propositions can be found in town and country, but it is our purpose now to present a portion of Mr. Eliot's paper which relates to the suburb-a district where roads and houses dominate the landscape. Generally the ground here is level, the boundaries straight, and the lots comparatively small. In such neighborhoods the architect's share in making the scene is predominant, and an error in the style of the house is fatal to the effect of the house scene. A many-angled and manygabled building on a smooth site, in a straight bounded inclosure. is out of keeping, and so is a tangle of bushes and bowlders, or a sharply curved approach road. This does not imply, says the editor of Garden and Forest, that the curve must be forbidden and the path made straight when the streets are curved or when the house door is reached most easily by a curved line, but it does mean that purposeless curvacurved line, but it does wean that purposeless curva-
ture, such as prevails in many suburbs, should be shunned. But, the editor adds, we leave Mr. Eliot to speak in his own language
"Awkward and breadth-destroying lines of approach are the rule in the suburbs, and the architect is often responsible for them, for he frequently places the house door in such a position that the path or road leading to it must necessarily cut the ground before the house into lamentably small pieces, and he does this, too, when a little thought might perhaps have brought about that happiest of all arrangements, in which a stretch of grass as long or longer than the building is brought without a break up to the house wall itself. No subsequent planting can obliterate mistakes in these controlling elements of the suburban house scene, the house and the approach, and no planting can accomplish what it otherwise might, if, by reason of unmindfulness of the effect of the house scene as a whole, the framework of the scene is wrongly put together.
"It is seldom that a suburban lot, after the house and approaches are built, retains much of its former vegetation. A few large trees may survive the neces erally killed out. On the completion of the grading, erally killed out. On the completion of the grading,
grass is sown, and from the resulting sheet of green, grass is sown, and from the resulting sheet of green,
the house walls and the boundury walls or fences rise
abruptly. It is surprising to see, as one may everywhere, well designed houses, adorned within with much rich ornament, and probably inhabited by people who appreciate art and nature, standing thus naked in naked inclosures. The contrast between a handsome building and bare surroundings is sufficiently obvious in summer, butin winter in this New England climate it becomes positively startling, so that it is difficult to understand how educated people can fail to be impressed by it, and how they can longer refuse to comprehend that the house and the house ground should be treated in the same spirit.

From another point of view this nakedness is equally surprising. Here in the suburbs is an opportunity for adding to all the usual advantages and ornaments of city life the new and delightful pleasantness of verdure, fragrance, and bloow. As a matter of fact, it is an appreciation of this opportunity that causes the first plantings in most suburban grounds. Trees and shrubs, selected for their profuse flowering or their striking habit, are set out here and there, and brilliant beds of flowers are perhaps added. Desire for ornament of this sort grows by what it feeds on, and causes the pressing demand upon the nurseryman for plants of marked appearance. The effect upon house grounds resulting from planting undertaken in this spirit is generally unfortunate. Specimens of many sorts planted promiscuously on a lawn compose an interesting though ill-arranged museum, but not an appropriate setting for a house. They wholly destroy all that breadth of effect which is so difficult but so important to preserve in small grounds. If they grow large, they interfere with the prospect and the aspect of the home, and, whatever their size, they give the scene the appearance of having been adorned to make scene the appearance of having been adorned to make
a show, and remind one of the saying of the Greek sculptor who charged his pupil with having richly ornamented a statue because he knew not how to make it beautiful.

An ambition to possess a collection of handsome, curious, and rare plants, like the similar passions for shells or minerals or precious stones, is entirely praiseworthy and honorable, and may well be indulged $a d$ libitum, provided a place can be set apart and fittingly arranged for the purpose, as cabinets are prepared indoors for collections of curios of all sorts. Out of doors a flower garden is such a cabinet, and there is no reason that tree and shrub gardens should not be similarly arranged by those who desire to grow many strik ing sorts. In formal and highly decorated pleasure grounds, specimen trees are already used in this way, and with good effect. Before stately buildings and in connection with terraces and formal avenues, appropriate specimens are always in keeping, but in New England house scenes not especially arranged to receive them, they destroy the last hope of good general effect.
"With what object, then, should the planting of the suburban house ground be planned?
"I answer, with the object of helping the building, and the other controlling parts of the scene, to form an appropriate and pleasing whole. In the very smallest front yards one thing which should seldom or never be omitted can be accomplished just as well as
it can be in grounds of larger area, that is, the con it can be in grounds of larger area, that is, the connecting of the house walls with the ground by means of some sort of massing of verdure. Shrubs planted near the base of the house wall remove at once all ap pearance of isolation and nakedness, and nothing can help a building more than this. Here, if nowhere else, some evergreens should be used, and it is fortunate that in a climate in which hardy evergreens are few, the stiff sorts, like the box and arbor vites and the junipers, are all entirely appropriate in close connection with a building. The more irregular the structure, the more varied in detail may be these wall plantings, but if the house is of formal design, a hedge-like row of bushes may be best. The older houses in many New England villages often have bushes set out thus along their walls, and at the Longfellow place, in Cambridge, the same purpose is accomplished by a low terrace balustrade half covered by creepers.
"In grounds a little larger than the swallest, the securing of some breadth of effect by means of grass should be attended to next after the wall plantings. If there is space enough to get this openness and, at the
same time, have some bushes near the street line as well as next the house, so much the better. Plant nothing which will grow to a size disproportionate to the scene. Large trees on sinall lots are not only inappropriate, but they shade the ground excessively and make it difficult to grow the indispensable ground covering of shrubs. Maintaining sufficient openness,
plant shrubs,also against the naked fences, or grow climbers on them if space does not perinit of anything more. In large grounds give the house a setting or background of appropriate trees. Where, as in New England, climate keeps deciduous plants leafless half the year, plant for effect in winter as carefully as for the summer, use all possible broad-leaved evergreens and all the cheerful fruit-bearing and colored-stemmed
and bloom, but keep the whole scene to its own appropriate style, admitting brilliant decoration only in detail, and conspicuous single objects only rarely, if at all. If many flowers are desired, they should be grown in a garden or in formal beds close beside the formal building. The permanent scene can be helped only in its details by the temporary beauty of bulbs and herbs.

To appreciate that a house scene depends for real effectiveness upon its general design and not upon decoration, one need only look upon some such ground as that of the Longfellow place, before mentioned, where the planting consists of two elms supporting the sides of the house, creepers covering the balustrade at its base, and lilacs flanking the balustrade and forming a hedge along the street wall. The open space of grass is well proportioned, and the whole scene is one which, in its formal, symmetrical style, is not surpassed for effectiveness in all New England. Suitable general design is just as effective in any other conceivable style."

Chloralamid, the New Hypnotic.

From the notices which are appearing all through he German medical press, it would appear that the new hypnotic, chloralamid, is destined to occupy a prominent and, perhaps, a permanent position among the popular chemical remedies of the day. It is pul; forward distinctly as a rival to sulphonal, and its admirers claim for it greater virtues than they allow to that remedy. Chloralamid is an addition product of chloralanhydride, $\mathrm{CCl}_{3} \mathrm{CHO}$, and formamide, CHON H_{2}. It has the constitutional formula:

$$
\mathrm{CCl}_{3} \mathrm{CH}<\underset{\mathrm{NHCHO}}{\mathrm{OH}}
$$

A first advantage which it is said to possess over sulphonal is its greater solubility. It dissolves in 9 parts of water, and $11 / 2$ only of alcohol, while its mild taste and freedom from caustic properties recommend it in preference to such bodies as chloral hydrate, etc. It is given in doses of 20 to 45 grains in an aqueous solution, and it is claimed that in half an hour's time it will induce a sleep lasting about eight hours, and leaving no bad effect on the heart. It is best dispensed in solution, care being taken that no alkali is present.
Although the remedy has only been known for a short time, very numerous medical reports hâve already been published in reference to it, and from these it appears to have been tried at the clinics of Strassburg, Giessen, Greifswold, Bonn, Erlangen, and other places. Drs. Hagen and Hueffler, of Erlangen, have prescribed it for 28 patients, in 118 single doses. They obtained excellent results in 16 cases, good results in 10, and in \mathcal{Z} only they were disappointed. Reischmann, of Giessen. has employed it in 52 instances, and gives as his opinion that "it acts well, will be very serviceable, and is free from undesirable secondary effects, having specially no action on the heart." Peiper tried it in 24 cases, and describes it as active, but not infallibly so, as, for
instance, in cases where insomnia was caused by severe instance, in cases where insomnia was caused by severe
pain. Headache sometimes followed its use. Drs. Hagemann and Strauss used it at the clinic of Bonn in 15 cases, and found 15 grains sufficient to cause sleep in the ailments for which they tried it, namely, nervous diseases, 5 ; heart disease, 2 ; phthisis, 2 ; anæmia, 2, and others. They consider it generally very effective, though they state that it had no effect in some cases; but, they add, some patients are in pervious to all hypnotics. Dr. Kny, of Strassburg, first made physiological experiments, and these being successful, he gave it to 31 patients, over one hundred times, in doses of from 20 grains to 1 drachm. According to him, the soporific effect is not so strong as with chloral hydrate, 30 grains of the latter corresponding to about 45 of chloralamid, which is what we should expect, as the relative amount of chloral is as 100 to 76.6 . Its chief merit is that it does not affect the circulation. He recommends it for sleeplessness caused by nervous excitation, but not when severe pain is associated with the sleeplessness. That it has decided merits seems evident from these reports. The investigators named are men of consid erable reputation, and the fact that they criticise its. weak points is evidence of the care they have taken irs testing it.-Chemist and Druggist.

The Green Fir.

A correspondent of the Northwestern Lumbermar. says green fir trees will burn like tinder. He saw a green tree of that species at Whatcom burned half down, by simply having an auger hole bored through it, with an upward slant on one side, so as to create an air draught, and stuffed with kindling. The interior of the tree being thus ignited, the trunk burned like a torch. That struck the correspondent as decidedly against fir timber as a permanent investment. He thinks that since numerous settlers have recently gone into the Puget Sound region, and are clearing farms, the liability of fires has greatly increased, and will continue to do so in ratio with the progress of settlement.
The electric light on the Eiffel tower, Paris, is reported to be visible at Orleans, $691 / 2$ miles distant.

A Sensible Hint from a Practical Source. The value to the mechanic of good periodicals and papers pertaining to the business in which he is engaged is often underrated by him, and he is apt to consider that he is none the worse for a lack of knowledge about the experience, opinions, and work of others. This is a most serious mistake on his part, and one which in the end will be suicidal to his best interests. One great reason why so much progress has been made in recent years lies in the fact that the ease with which men can give the results of their labors and experience to their contemporaries or leave them to posterity has resulted in a mucn greater diffusion of knowledge.

In the mechanical field this circulation of knowledge has enlarged and is still enlarging the circle of men who are well posted and fully alive to all that is going on. How then can a man neglect those very means of advancement by which others are progressing? It matters not whether he be a fireman, engineer, machinist, foreman, master mechanic, or superintendent of motive power, or whether nis natural abilities be great or small, if he wishes to advance with the rest of the world he must know what it is doing, and this knowledge must be derived from the pages of papers devoted to mechanical affairs. We recently heard a gentleman connected with one of the most progressive roads in the country say, "I am personally acquainted with a good many enginemen on our road, but I must confess that I don't know a single one who takes any mechanical paper regularly." We know that such an assertion would be too sweeping for general application; but there is no road on which a very large percentage of the enginemen are readers of papers pertaining to their business. Nor is this state of pertaining to their business. Nor is this state of
affairs confined to the trainmen, for we know of affairs confined to the trainmen, for we know of
master mechanics who "never have time to read the papers." In some cases, however, they do the next best thing; they turn the papers over to the "boys." We think we could suggest a still better method of procedure, namely, to read them first and then turn them over to others. There are many young men who would be glad to get such reading, but who may not be able to pay for it, and there are others without any desire for it who would wake up to a realization of the possibilities in life before them if their views were enlarged. For these reasons a man is to be highly commended for putting into the hands of those in his employ good engineering and mechanical journals, but he is not true to his own interests if he himself neglects to read them.-The Master Mechanic.

The Evolution of Music.

At the recent Toronto meeting of the American Association the address of the retiring president, Prof. J.W. Powell, was upon the above subject, and the following is an abstract.
At the outset Prof. Powell distinguished between biotic evolution and human evolution-the one being progress in bodily functions and the other progress in culture. To the latter class belonged the subject of which he was treating. Man as a musician had not developed by the survival of the fittest. There had been no natural system of laws by which the bad musician had been killed and the good musician permitted to live and propagate his kind. There had been no system of natural selection to kill poor singers and cheap fiddlers. These laws, however, were not transferred from man to music itself. The songs of barbarism were lost in civilization, and modern music was replacing the music of our fathers. So the old grew into the new by the survival of the fittest; not by natural selection, but by human selection, for men chose to keep the music they loved the best. Music was the invention of mankind; not of one man, but of all men, of composers, performers, and hearers. It had come down the stream of time, and as the rivers grow from source to sea, so music grows from primal time to vast eternity. The growth of music was seen in four stages: Music as rhythm, music as melody, music as harmony, and music as symphony. Rhythm was born of the dance, melody was born of poetry, harmony was born of drama, symphony was born of science. The motive of rhythmic music was biotic exaltation; the motive of melody was social exaltation; the motive of harmony was religious exaltation; the motive of symphony is æsthetic exaltation. It was thus seen that music developed from the emotional nature of man, as philosophy had its spring in the intellectual nature. The ear liest emotions arose from the biotic constitution-simple pleasure or pain, as felt in the body and expressed in rhythm ; they were mere feelings. The feelings were idealized and became emotions and were expressed in melody; then the emotions were idealized and became sontiments, and were expressed in harmony; then the sentiments were idealized and became intellectual conceptions of the beautiful, the true, and the good, and these were expressed in symphony. Was there a new music for the future? The science of music answered "Yes." Music had been chained to "form" and im-
prisoned in the bastile of musical intervals and guarded by the henchmen of mathematical doginas. But a few great musical composers, like Wagner, had breken
the chains and burst the bars and killed the gaolers, and they sang their liberty in strains of transcendent music. When it was desired to cultivate skill in musical performance, it was necessary to cultivate the art in the individual in the same order in which it was cultivated in the race; and he must first master rhythm, then melody, then harmony, then symphony. Then the love for music must be acquired in the same order. No one could love a symphony or an opera who did not first love song. If you would love the higher music, you must love the songs of the people; and to affirm that you loved a symphony or an opera or a cantata, but that you did not love a song, was like averring that you loved a garden, but do not love a rose; that you loved a bouquet, but did not care for a lily; for a symphony was but a bouquet of melodies, and an opera a garden of many flowers. Happy was the home that was filled with song, where boys and girls sang the melodies of the people, and where they made these melodies more musical with the violin, the piano, or the flute; for to music was consigned the purest joy.

THE VICTOR TYPEWRITER.

This is an ingenious little instrument, beautifully made, light and simple, yet capable of doing elegant typewriting with much rapidity. The register and alignment are perfect, the paper is easily putin and removed, all kinds of characters may be printed, and it cannot easily get out of order. There are less thanone hundred parts in its construction. Probably no other machine combining so many convenient and excellent qualities in so small a space is sold at so low a price, namely, fifteen dollars. It weighs only five and onequarter pounds, occupies $8^{\prime \prime} \times 12^{\prime \prime}$ space, and can be used on any desk or table, or even on the knee.
The general construction will be seen by reference the engraving. The letters of alphabet and cnaracters are arranged on the arc in front. In working the instrument, the operator moves the pointer over the

letters until the desired letter is reached. This movement turns the vertical printing wheel seen in the center of the cut. The printing wheel carries on its edge a series of springs, each of which has a printing letter on its extremity. The movement of the pointer gives corresponding movement to the printing wheel, and when the pointer is stopped upon or over a given letter on the arc, the corresponding letter on the printing wheel is brought into proper position for making an impression, which is done by pressing down the finger piece seen at the left. This pressure pushes a stud against the back of the spring letter, and makes an impression on the paper. The latter is carried between two rollers on a sliding carriage, that moves longitudinally behind the printing wheel, the relative positions of the parts being shown in the engraving.
This instrument is an admirable specimen of mechanism. It has eighty characters, embracing capitals, small letters, figures, fractions, etc. Its scope is extensive. Machines for the Russian, Spanish, and German always in have been constructed. The writing is envelopes, etc., without bending. It prints close up envelopes, etc., we paper.
to the edges of the pater
This machine is used in the Scientific American office, and the above remarks are based on our experience in the use of the instrument.
For further information address the Tilton Manufacturing Co., 115 Purchase Street, Boston, Mass.

New Semi-lncandescent Lamp.

M. Henri Pieper, Jr., of Liege, has brought out a new type of semi-incandescent lamp. The lamp consists of two horizontal rods of copper, set in line with each other, but separated by a space of about 3-16 of an inch. A thin fluted carbon rod is set vertically, and rests upon the ends of the copper rod, forming a bridge across. The current passes through the copper rod and through the point of the carbon rod, which is thereby rendered briliantly incandescent. The copper rods are supported on spring hinges, and if the carbon should break, they will rise slightly until two contacts at their outer ends come into action, thus automatically short-circuiting the lamp, The wear of the copper rods is exceedingly slight, the carbon only being consumed. Some lamps of this type have been
sent to the Paris exhibition.

©orrespondence.

Portable Sun Dials in Sweden.

To the Editor of the Scientific American :
In the Scientific American Supplement, No. 715, I saw the article about sun dials. Please let me tell you that those dials are not any curiosity by any means in Sweden. Fifteen years ago, when a boy and going to school, I had one, and a good many of my comrades had others, all similar to your illustration No. 1. Those dials had a movable narrow band that could be adjusted to every month or part of the same. I believe that said dials are yet in the market in Sweden, and could be bought for a few cents apiece.
Long Island City, N. Y.
Erik Enequist.

Artesian Wells in Iowa.
To the Editor of the Scientific American
In an article, "Artesian Wells'" in Iowa, in Scientific American, July 13, the writer was laboring under a misapprehension when he states "there are no artesian wells in Iowa west of the Wapsey River." I live in Wright County, on the banks of Boone River, near Eagle Grove Junction, and on our fourteen hunnear Eagle Grove Junction, and on our fourteen hun-
dred acre farm we have six artesian wells, one of them a real spouter, with a flow of sufficient force to throw water twenty feet high.
In townships Nos. 90, 91, 92, and 93, north of the base ine, and in range Nos. 24, 25, 26, and 27 inclusive, there are more than a thousand artesian wells, some of them with a pressure equal to two atmospheres.
On the low lands near the river the well drillers find it a difficult job to sink a well and pipe it successfully. This flowing water is generally found in the quicksand or water gravel which lies on the Keokuk limestone formation, from 100 to 200 feet below the surface of the upland prairie, and is supposed to have once formed the old ocean's bed. Resting on this bed of water gravel is a layer of shale, hard as a rock, and impervious to water, called by the well drillers hard pan, while above to the earth's surface it seems to be drift or conglomerate.
This stratum of quicksand seems to extend across the State, occasionally cropping out in the rivers and forming living springs---starting at Lake Okobiji, in Dickinson County, and running southeast to the Mississippi, with a fall of about seven feet to the mile.
This artesian water is strongly impregnated with iron, sulphur, and magnesia, in solution, and of a temperature of ten to twelve degrees above freezing, making it a cooling tonic to drink in hot weather, and a number one drink for horses and cattle in our long, cold winters.
N. B. Paine.

Eagle Grove, Iowa.

A New White Lead Factory.

The company formed to work the improved process of making white lead invented by Mr. J. B. Hannay, F.R.S.E., of artificial diamond fame, have acquired five acres of ground at Possilpark, a suburb of Glasgow, on which extensive works are now being erected. The plant to be installed is intended to deal with not less than 12,000 tons of lead ore per annum, and by Mr. Hannay's perfected method the finished product will be turned out in the short space of six days ; indeed, as a test of its expeditiousness the whole process has been completed, and the white lead ground in oil, three days from the arrival of the raw material at the works. By the Dutch method hitherto in vogue months were required to achieve the same
result, and a frequent handling of the lead and the result, and a frequent handling of the lead and the
chemicals used for its preparation by the workpeople - an obnoxious condition entirely obviated by the new method-so that the Possilpark works will not come within the scope of the White Lead Act. The now industry enters on its career under the most promising auguries.-Chem. and Druggist.

sawdust.

There is evidently great need for a new invention fur the cheap and easy utilization of sawdust, and if inventive people would study the subject doubtless something practical might be realized. In Canada the depositing of sawdust in the rivers is forbidden by law. Recently there was a conviction and fining of a prominent mill owner, at Peterboro, for depositing sawdust and mill refuse in the Otonabee River, in contravention to the regulations of the department. Mr. Irvine, the defendant in the case, was fined $\$ 50$ and costs or twenty days' imprisonment. In rendering judgment, the magistratesaid that the evidence showed that large quantities of sawdust escaped from the defendant's mill into the Otonabee River, which river contained valuable fish and was navigable for steamers. It was well known, he said, that the mill refuse from the Peterboro mills for the past forty years had been freely emptied into the river, and that for twenty miles below the town the banks of the river were lined with accumulations of sawdust, and that at the detrenchment into Rice Lake the mouth was almost entirely closed. It is understood that the government has instructed its inspectors to rigidly enforce the sawdust regulations.

THE WOODCOCK.

These long-beaked migratory birds, which are as interesting to the gourmand as to the hunter, are in Germany only for a short time in the spring and fall, during their passage through the country. The woodcocks remain concealed in the darkness of the woods all day and do not leave their hiding place until it begins to grow dark, then, in the spring, they first fly in zigzags around the edges of the woods, often in twos or threes, finally coming to the open, damp places of the woods, to the pastures, or to the edges of water lying near the woods, in search of food, which preferably consists of different kinds of worms and insect larve. In the morning twilight the woodcock repeats this zigzag flight and searching for worms. At their breeding places they fly in this same way again as soon as the young brood is able to take care of itself, but in the late fall the birds seldom movein this way. They then generally hurry to the feeding places.
In these places the ground is perforated by numerous small holes, each having a diameter about equal to that of a thin lead pencil, which are formed by the continuous pushing in and pulling out of the woodcock's long bill. The sensitive soft point of the upper bill forms a feeling apparatus with the help of which the bird discovers the presence of a worm under the surface of the ground. He possesses the power of arching the upper part of the bill from the middle of its length and then closing the points so as to grasp the worm. This curving is caused by the displacement of a part of the jaw bone, and the elasticity of the long upper jaw brings it back into place. This peculiarity was known to hunters as early as the seventeenth and eighteenth centuries. Von Gochhausen (Not. Venat. 1710) wrote as follows on the subject: "This bird can (when searching with his long beak in a swamp and finding a worm) press the points of his bill together for about a finger's width, and then separate it beyond like nippers," etc.
This and other writings have been forgotten, because the curving of the bill generally occurs while working under the surface of the ground, and conse quently tame birds are sel dom seen to do it. Long years ago the writer had the good fortune to see this movement made by a tame bird, and published an account of his observations in 1865. As already stated, the birds sometimes curve their bills when not working in the ground, particularly when devouring large worms. The accompanying illustration was taken by the writer from living specimen.
living specimen.
The woodcock
The woodcock does not live long in captivity, his inclination to migrate showsitself continually, but he is not afraid of men and never fails to eat the worm which is thrown to him. In spite of his voracity, however, the woodcock generally grows thin, when in captivity, and finally dies.-lllustrirte Zeitung.

Deep Sea Fishing with the Electric Light.

Every one has heard-of the Prince of Monaco, who reigns with great dignity, when he is at home, over a community of seven thousand souls, but much pre fers to sail about in his yacht, devoting himself to scientific investigations, which he carries on with an ardor and success which will probably make him the most famous of all his distinguished family
Among the peaceful exploits of the prince none are more conspicuous than his successful investigations into the natural history of the bottom of the sea, which have resulted in bringing to light, from regions where it was supposed that no life could exist, creatures of the most extraordinary character, huge, phos phorescent fishes, which illuminate the dark water through which they swim; crustaceans and mollusks of new and unheard-of shapes.
By a happy idea, the pavilion of the Principality of Monaco at the Paris exposition is in great part devoted to the display of the interesting apparatus used
in his researches by the prince, whose people seem pleased to identify themselves with his work, and thus share in the distinction which he has won.
In the investigations of the prince, which have extended from the banks of Newfoundland to the coast of Africa, one of the most important objects was originally the determination of the flow of ocean currents in the North Atlantic, and many hundred floats have been sent out and thermometric observations at different depths taken, to ascertain, for instance, the movement of the Gulf stream. Incidentally, it became necessary to make soundings at great depths, and an apparatus was invented by which not only the ocean was sounded with perfect accuracy in the deepest places, but thermometric observations of temperature were made at a depth of two miles from the surface, To make these observations nothing was needed, in principle, but a long wirire carrying a self-registering thermometer and a very heavy weight, several tons in some cases, secured in such a way as to detach itself on arriving at the bottom, and a delicate dynamometer, over which the wire ran, and which showed, by the sudden diminution of the strain, when the weight reached the ground ; but when the attempt was made to bring living creatures from such depths, great diffi

THE WOODCOCK
culties were encountered, and overcome by most in genious means.
The cage in which the submarine animals were caught, according to Le Genie Civil, consisted in a cylinder of wire having three conical entrances, like those of a lobster pot, and weighted, like the sounding wire, with detachable weights. It was, however, very unlikely that at these immense depths, where the dark ness is practically total, any fishes would voluntarily find their way into the trap, and steps were taken to attract them by a light placed inside it. Obviously, no light was available but an electric light, but to get an electric light to burn a mile or two under water was not easy. To send the current from above was impracticable, as the friction of the thick insulated wire would cause it to break before the trap could be drawn up, and the only resource was to supply the incandes cent wire from a battery in the trap.
Here, however, another difficulty appeared. The battery, which must be of considerable power, needed to be inclosed in a box of some kind to keep it from being affected by the salt water, and as the hydro static pressure at such depths was six or seven hundred pounds to the square inch, it was fonnd impossible to make a suitable box which was not crushed before it reached its destination. At last, however, this trouble was overcome by the curious device of connecting the box with a balloon.
The balloon was made of cloth dipped in India rub ber, and so arranged that the airin it was in commu-
nication with that in the battery box. On sinking the apparatus, the hydrostatic pressure, being virtually uniform all around the balloon, compressed it equally on all sides, forcing the air out of it into the battery box, until the pressure inside the box and balloon ex actly balanced the pressure outside.
This process went on to any extent, so that at the bottom of the sea, although the balloon was reduced by the enormous force exerted on it to a small fraction of its original size, it still kept the internal and external pressures equal. On raising the apparatus again it expanded as the pressure diminished, and brought the battery box to the surface uninjured.
So successful was this device, that, not content with capturing deep sea fishes with it, the prince and his assistants propose on their next expedition to send down a photographic apparatus and bring back negaives of the bottom of the ocean, as seen by the electric light.-Amer. Architect.

How to Succeed.

That is what every person wishes to know, and the Northwestern Mechanic has undertaken to inform one class of workers how to doit. The man who is to succeed as a mechanic, the writer concludes, must be queer wisture of go-ahead hess and conservatism. He must stick to the old ways, and yet be alive to all that is new and savors of advance. To hold to old methods and practice is to be left behind in the race, while to adopt everything new that presents itself would quickly relegate to failure $t h e$ unfortunate who attempted it. To sift out what is good, and to reject the worthless, is the problem the successful mechanic has to solve. It is but a continual example of the truth of Darwin's theory of the "survival of the fittest." The mechanic preserves the best methods, and is in turn kept alive by the very methods he has preserved and put to work. The successful mechanic was enabled to succeed because he possessed the faculties of perceiving what was useful and what was worthless. Once this point determined, the rest is easy. The good is to be kept, the worthless discarded, but in knowing what to keep lies the secret of success.
Must the necessary qualities be born in a mechanic, or can he be educated to it? Both. To be a successful mechanic a man must possess certain characteristics, but many kinds of men will make good and successful mechanics. To begin with, the would-be success must be a thinker. He must be able to reason clearly from cause to effect, and instead of sitting down and waiting for something to turn up, he must think out ways and means of forcing the desired results from the material at hand. He must be able to make the best of things, and all the born-in " characteristics necessary is that aptness for mechanics without which no man can put his heart and soul into it as a life work.
Some men are better mechanics than others. They obtain better results from the same material than some of their co-laborers. The reason of this is that the men in question are better adapted to the work they have to do. In other words, they are the "fittest," and will survive accordingly. They succeed better than we do because they have better things to work with, brains included. We might do better should we think more and study out better methods and opportunities.

The Rest Remedy for Venomous Snake Bites̀
L. G. Lincecum, M.D., writing from Texas to the Southern Practitioner, says : Permanganate of potash is a successful remedy. I have treated more than one hundred cases in Texas, and have used whisky, soda bicarb., spt. ammonia, turpentine, chloroform and other remedies, but have found that potas. permanganas in one or two gr. doses hypodermically, and chloroform, locally and by inhalation, are undoubtedly the most certain and successful remedies in bites of venomous reptiles I ever used. I have never seen a case treated with these two remedies result fatally.

Trial of the Charleston.

The inspector of machinery of the U. S. S. Charles ton, Chief Engineer Wm. Smith, U.S.N., in a report received by the Bureau of Steain Engineering, September 4, gives the first detailed and authentic intelligence concerning the official trial of that vessel. After giving the particulars of the preliminary runs during August 21 and 22 , he says of the official trial which took place August 23
At 1 o'clock the fire rooms were closed and at 1.10 a third trial was begun and continued without interruption for six hours, the machinery and boilers the whole time performing admirably ; the main engines with but little vibration-less than with the old screws; and the boilers furnishing more than sufficient steam, the safety valves blowing part of the time. The throttle and stop valves were not touched throughout the trial, nor were the cut-offs until 5.20 P. M., when they were changed on both engines from 0.7 to 0.74 in the horse power cylinders.
Between 2.35 and 2.45 P. M. it was necessary to open the starboard horse power cylinder drains a few times, which caused a temporary decrease in the speed of that engine.

During the first part of the six hour trial the sea was rough and following, and the wind, force $6-7$, on the starboard quarter. The engines raced constantly especially the starboard one, and the ship rolled heav ily. After 4 P. M. the force of the wind dropped to $2-3$, and the sea was smooth, the ship being in Santa Barbara Channel.
The average speed by the patent \log for the six hours was $18^{\circ 167}$ knots, and the maximum 18.75 knots. On August 21, during the second trial, the speed was measured by points on land at 19 knots.
After the trial the ship was run to San Pedro, where 50 tons of coal were taken on board on August 24, and at 5.25 P. M. the same day the ship left for San Francisco, arriving at 7.47 A . M., having been off the headin a fog during the night.

TYPES OF •RHE FRENCH NAVY-THE CONDOR.

The French government has lately constracted sev eral "croiseurs-torpilleurs," or torpedo cruisers, of this class, to act both as lookont ships and as torpedo boat catchers. The Condor, which was built in England at a cost of $£ 80,000$, and was launched in 1885 , is
that have been observed in the various stages of passage from the rude ore-lying useless in the earth-to the nail and the spike, the hammer and the saw, required for the completion of a modern dwelling.-Cary, Principles of Social Science.

Pilot Knob Iron Ore.

The St. Louis Ore and Steel Company have discovered a new, and perhaps very important, body of iron ore at their Pilot Knob mines. We are not in possession of all the facts relating to the matter, because the company have prospected with the greatest secrecy possible, and, furthermore, decline to give any state ment in confirmation or denial to the press at the present time.
From what can be gathered from other sources, however, it appears that the discovery was made on the northeastern side of Pilot Knob hill. Six holes were drilled on this part of the property in a "group" at distances of about 600 feet apart, with the result of encountering ore in each instance. That taken from the last hole put down assayed 63 per cent metallic ron. So pleased were the company with the result of these researches that, according to the Iron County

TYPES OF THE FRENCH NAVY-THE CONDOR, TORPEDO CRUISER.

There was no heating of slides, journals, or bearings, though water was turned on the crank pins and a drip on the slides to make a lather with the oil
The telescopic oilers on the crank pins worked well, except that the starboard oiler required watching and occasionally water.

The performance of the air pumps, crosshead slides, and thrust bearings showed the necessity for the changes which were made since the trial in May ; all the parts mentioned giving great satisfaction.

Live steam was admitted into the receivers and all the fire room auxiliaries, dynamo engine, etc., exhausted into the S. condenser.

Two or three rings of the port thrust heated slightly, but were easily controlled by a small stream of water.
Average from 1.10 to 7.10 P. M., August 23, $1889:$ S. engine-steam, 85 lb .; receiver, 23.8 ; vacuum, $261 / 4 \mathrm{in}$.; cut-off, 0.712 ; throttle, 8 ; revolutions, 114.7. P. engine -steam, 86 lb ; receiver, 22.8 vacuum, 26 in ; cut-off, 0.712 ; throttle, 8 ; revolutions, $113 \cdot 26$. Average revolutions per minute from 3.10 to 7.10 : S. engine, $115 \cdot 35$; P. engine, $113 \cdot 67$.

The boilers worked admirably and gave no evidence of priming. The blowers were run at an average of about 500 revolutions and the air pressure maintained at about two inches of water
From some of the cards which were worked up on board the horse power for main engines and auxiliaries showed about 6,700, and it is believed this will be close to the result which will be determined by the board.
constructed of steel. Her dimensions are 216 feet 6 inches length, 29 feet 3 inches breadth of beam, with a displacement of 1,280 tons, and 15 feet 5 inches draught. She has twin screw propellers, with engines of 3,800 indicated horse power, and attains the speed of $17 \cdot 70$ knots an hour. Her armament consists of five breechloading rifled guns with caliber of ten centimeters, six machine guns, and flve fixed tubes or light carriages for discharging Whitehead torpedoes. The sister vessels built in France, the Faucon and others, are of the same dimensions; the Faucon, designed by M. De Bussy and built at Toulon, has her hull divided into ten watertight compartments and protected by an armored deck from end to end. This vessel is not dependent on her canvas, but has three signaling masts carrying Hotchkiss machine guns, and fitted with steadying sails.-Illustrated London News.

Raw Materials.

All the products of the earth are, in their turn, finished commodity and raw material. Coal and ore are the finished commodity of the miner, and yet they are only the raw material of which pig iron is made. The latter is the finished commodity of the smelter, and yet it is but the raw material of the puddler and of him who rolls the bar. The bar, again, is the raw material of sheet iron, and that, in turn, becomes raw material of the nail and the spike. These, in time, become the raw material of the house, in the diminished cost of which are found concentrated all the changes

Register, they "have begun employing miners for the immediate working of the unearthed vein."
The Pilot Knob mine has an interesting history. When discovered some fifty years ago, it was supposed to be a solid mountain of iron, and that has been the text book and popular notion concerning it until very recent years. Hence, it was a surprise to a great many people when the report went out some two or three years ago that the ore had pinched out, and that the company were cutting out the pillars supporting the roof. That meant that the great mine, the producer of millions upon millions of the finest Bessemer ore ever known, had failed.
The old mine was an ideal iron property. The Knob itself, rising in the form of a frustum of a cone some 500 feet above the vanley, is easily " majestic." Near the top of it was what at one time appeared to be an inexhaustíble body of ore. The vein was so thick that in the worked-out portions the roof was almost as high as the ceiling in a cathedral. Moreover, the mine was at all times dry and comfortable; and when in recent years it was lighted by electricity, it presented a truly grand sight about the workings. The ore, too, was easily handled, since gravity furnished the motive power for running the ore down to the railroad tracks, about three-quarters of a mile distant. The cable returned the empty cars also. A furnace was operated at the base of the mountain for several years, but was finally closed down on account of the question of fuel. $-A g e ~ o f{ }^{\circ}$ Steel.

The Seychelles Islands.
 nicolas pike.

As the readers of the Scientific American have recently been interested in an article on the "Coco de Mer,"* one of the vegetable wonders of the world, and as I am aware but little is known here of this group of islands, I thought a sketch of them would be acceptable at this time. While at Mauritius I had long wished to visit the Seychelles, which were under my jurisdiction as consul of the United States, to study their fauna and flora. Chance gave me the longed for opportunity.

In 1871 the English frigate Forte, the flagship of the Asiatic squadron, Rear Admiral Cockburn, came to Port Louis, the capital of Mauritius. Soon after his arrival the admiral gave ine an invitation to visit the Seychelles and other islands in the Indian Ocean in his ship. I was but too glad to accept so good an offer, as it enabled me to carry out my wishes and transact some official business at the same time, and on the 19th of August we steamed away on our voyage.
In latitude about $16^{\circ} 15^{\prime}$, longitude $50^{\circ} \mathrm{E}$. we passed near the St. Brandon or Cargados Islands, inhabited principally by some fishermen, who salt fish, and a few Creoles, who make cocoanut oil to export to Mauritius. Our American whalemen cruise in these waters, and many of their vessels are annually laden with the spoils of the monster sperm whales found in this vicinity. The whole of these islands have dangerous reefs near them, thus compelling the most careful navigation. Many a fine vessel has come to grief on these treacherous rocks, and had to be abandoned, a total wreck

In about three days we sighted Agalega, which lies in $10^{\circ} 30^{\prime} \mathrm{S}$. lat. and $56^{\circ} 30^{\prime} \mathrm{E}$. long. We did not land, as the sea was breaking so roughly over the coral reefs which nearly surround it and extend far out. I regret ted this, as there are so many things of interest to be procured on it-among others, wild partridges, guinea fowl, and peacocks, rare shells, and seaweeds. After passing the island, soundings were made in a depth of 20 to 25 fathoms of water. Examination of the armature of the lead revealed that it contained coral debris and foraminiferous shells. These delicate shells exist in all parts of the ocean, and those who have never seen them may form some idea of their minute size when it is stated that 400,000 of them have been found in 46 grains troy of sand. Yet, minute as they are surely and steadily are they filling up the depths of the ocean. The great Atlantic telegraph plateau is a bank formed of the dead shells of the foraminifera.
The Indian Ocean swarms with them. The great The Indian Ocean swarms with them. The great
Sayha de Mala bank to the east lies in only five fathoms of water. Near this is a noted whaling ground and some of our old sailors who have cruised here declare that a large and extensive bank is gradually rising, and the day is not far distant when the sea will break over it, and another dangerous reef be added to the perils of these seas. It is supposed these foramin ifera feed on the infusoria which they have the power of electrifying or paralyzing by some hidden electric power. Thus these, the most microscopic of animals, are unpitying flesh eaters, becoming formidable destroyers by means of a homeopathic dose of poison. It is in a great measure from the myriads of these minute creatures that much of the dazzling light proceeds at night in various parts of the ocean.
On the 25th of August, after a most interesting and delightful voyage, we entered the bay of Mahe, its crystal waters smooth as a mirror, and as I gazed on the grand outlines of mountain and forest presented to our view, I was already reveling in the anticipation of pleasant hours spent in exploring the one and climbing the other. Before landing, I will give an outline of the position and g
The Seychelles
The Seychelles archipelago is one of the dependen cies of Mauritius, and lies about 930 miles from it, and about the same distance from Africa, a little north of the Zanzibar coast. There are about thirty five or thirty-six islands, of which Mahe is the principal. It is probable that this group was known to the early Phenicians, who were constantly trading up and down the African coast. There is certain evidence of their being visited by the Arabs, as in the lle du Nord there
are old Arabic inscriptions cut on the rocks. In cutting down a large tree in a forest at Mahe, an arrow head of hard black wood was found embedded in its heart. It must have lain there for ages, as the wound in the tree was so perfectly closed that the arrow was only discovered when sawing it into planks. It is possible that the Arabs of the Zanzibar coast manned their boats with slaves from the Lupata Mountains, who are well skilled in the use of similar weapons.
In 1502 Vasco de Gama, the Portuguese navigator, discovered these islands on one of his voyages to India but they were not considered worth colonization and were abandoned. 'The first authentic history of them began in 1742, when the French Capt. Picault, of the Elisabeth, rediscovered them and named them "Les iles de la Bourdonnais," and the largest one "' Mahe,"
after one of the best French governors Mauritius ever had-Mahe de la Bourdonnais. The name was afterward changed to "Les Seychelles," after Vicomte Herault de Seychelles. In 1792 they were captured by the British, but not fully taken possession of till 1815, when they were definitely ceded to them by the French.
These islands vary in their formation, some being entirely coralline, seeming to rest on a raised platform of coral and sand, while others are wholly granitic, thus differing widely from Mauritius and Bourbon, which are volcanic. Some of the group are little more than mountain tops. Silhouette rises above 2,000 feet,
Prashu and Ladigue to 1,500 , and the Morne Blane Prashu and Ladigue to 1,500 , and the Morne Blanc To return to the bay of Mahe. It is about five miles wide, with good anchorage within it, but the entrance through the channel between the coral reefs is so intricate as to render it difficult of approach without a good pilot in the day time and impossible to a stranger at night. We landed at Victoria, the only town of the group, which lies on the south west of Mahe, on a plateau between the Troisfreres Mountain and the sea. The houses are of wood, of one story only. The streets are short, narrow, and slope to the sea. A profusion of fine flowers and trees flourish here, but there is little or no order in the gardens. Streams of clear water flow through the town, and all the streets are planted with palm, badamier, and coral trees. There are both Protestant and Catholic churches, but the court house, post office, custom house, etc., had a very shaky look, and the government house resembled an old-fashioned farm house, with a wide veranda all round it, though it stood in an inclosure embellished with magnificent rees.
On the second day after my arrival I hired a pirogue and proceeded to make the acquaintance of the coral
reefs in the bay. The blocks of Astroeas and Porites reefs in the bay. The blocks of Astroas and Porites
are immense, and are sawed into shape for building, being more easily worked than the hard granite of the mountains. How little the fellows who were sawing up the giant blocks thought of the tiny architects of the ponderous masses and the ages that had elapsed since their foundations were laid! There is a hospital outside the town constructed of well sawn blocks of coral, and, strange to say, the usual discoloration by
the action of the elements on this material had not the action of the elements on this material had not taken place, as it was still as white as snow.
I visited the turtle pounds, which were inlets from the bay with the tide flowing and ebbing into them. They contained numbers of green turtles (Chelonia viridis) for market. The flesh of this animal forms the "beef" of these islands, and is in great demand. The shell, with the exception of the center plate, called caouane, is worthless, yet for the sake of this sniall piece, which is used for veneering, large numbers ar killed every year. In $1862,600 \mathrm{lb}$. of caouane were exported, for which 1,800 turtles were sacrificed, leaving $490,000 \mathrm{lb}$. weight of good flesh to rot on the shore. The valuable hawksbill turtle (Caretta imbricata) is also found here, and is caught both by spearing out at sea and turning them over when they come to the beach to lay their eggs. After killing the turtle, the
upper part of the carapace is taken off, a hole dug in the sand and a fire made in it, over which is placed the hollow shell. This is covered with seaweed, and the steam soon separates the laminæ or outer plates, the only parts used for commerce. These turtles in the Atlantic Ocean feed very much on the Zostera marina
or sea grass, but I saw none of it here, and their food in these waters appears to be the different species o Caulerpa and Sargassum. The eggs of both turtles are considered great delicacies and are diligently sought for, and fetch quite a high price in the market.
Only the littoral and a portion of the south of Mahe are available for purposes of agriculture, the rest being a series of lofty mountains, with here and there a pla teau cultivated by the natives. Near the town is a bridge that spans a deep ravine, and I paused there to
admire the rich and varied vegetation. There were dinire the rich and varied vegetation. Thy 40 to 50
large clumps of the feathery bamboo, many feet high, that give such elegance to tropical scenery. Ferns, flowers, and grasses were in profusion, with bright green lizards sporting over them. I wet group of Mozambique men and women going to work in the town. One man had a curious musical instrument
called a fiddle, but it was not like one, nor was it played with a bow. There was a straight piece of wood with three or four notches cut in one end, which served the purpose of frets on a guitar. Half a large gourd was affixed to it as a sounding board, the hollow ide being held against the breast when played on. Two banana fiber strings were fastened at one end and
then drawn tight and secured in the notches. They were struck by the fingers of the right hand, and the thumb of the left assisted. The music was plaintive, in a minor key, but not unpleasant.
I passed through a large grove of cashew trees (Anacardium occidentale) laden with fruit. I ate of the ripe ones, as they were old acquaintances in Brazil, but the natives were afraid and would not touch them. I saw cotton growing, but very sparsely, yet that pro-
duced here is said to be equal to the best Sea Island,
and the climate and soil are peculiarly suited to it. During the French occupation of the Seychelles, fortunes were made in cotton growing, indeed up to 1827 but at that time America began to fill the European markets, prices lowered, and the trade gradually dwindled away and is now neglected. Guavas and jamrosas gave grateful shade and fruit, for the heat was great. I had long known that these trees were the favorite food of the curious leaf fly (Phylium siccifolium) and their branches its especial habitat. So I began to hunt for it. The peculiar dress nature has bestowed on it enables it to elude the pursuit of the uninitiated. In form the flies imitate leaves, and the veining of their wings keeps up the resemblance. Some grow over three inches in length, and all have curious leaf expansions on the legs, and when disturbed have a queer way of doubling themselves up till they look like crumpled leaflets. The males are much smaller than the females. . I found some at last with their eggs, but the red ants destroyed half of them for me. Curious slowgoers, as the natives call them, but very wide-awake chameleons, were crawling over the grass and bushes. This is said to be a species peculiar to these islands and unlike the one on the African coast. I had been gradually climbing the mountain side when I came to a plateau where was a clean-looking hut, and behind it rose a giant granite cliff, precluding my further progress. A woman brought me out a bench and sent a boy up a tree to get me some of the coco tendre, or young cocoanuts, and then set herself to prepare a meal from the bread fruit she had been baking in the ashes for her husband's supper. The man arrived soon after, and instead of the. Creole patois of the natives he addressed me in English, as he had once served as cook on an American whaler. He showed me excellent tobacco he had grown, and while I smoked a pipe of it he told me his method of preparing it. When the plant shows flower, every bud and small shoot at the base of the stem must be picked off each plant, and this every twenty-four hours. By doing so the leaves acquire great breadth and all the vigor of the plant. When the leaf shows a thick, spotted appearance and has a gummy secretion on it of a brown color, it is fit to cut, when it is taken off about three inches from the ground and laid in the sun for a short time before being hung up to await its final preparation of having the veins of the leaves extracted. All injured ones are laid aside, and the good are rolled up tightly into carottes and bound together by being placed in a portion of the heart leaves of a banana and tied up carefully with plaited aloe fiber. If this ligature is kept tight, the tobacco will preserve for a long time; but if it becomes loose, it is exposed to the air and soon moulds.
The man showed me another kind of musical instrument, called a bobre. It is just the form of an archer's bow and about its size. The string is played with the back of the fingers of the left hand, and struck by the right with a little stick about a foot long, and on the end of it is tied a bundle of small pebbles that rattle as it touches the string. He played some merry tunes on it and the children danced, the mother figuring in at times.

(To be continued.)

Steam Plows.

That the method of plowing will soon be revolutionized to a great extent on the prairies of the West there can no longer be any doubt. The farmers are already ciamoring for a steam plow that will be simple and practical, and they are certain to get it sooner or later. In this age of invention and improvement it is said that whenever a want becomes general, there always springs up something to supply the necessity. Every mechanical implement now in use, calculated to cheapen production and save manual labor, has arisen from the urgent needs of mankind, and hence the steam plow, suitable to the farmer of a few hundred cres, will sooner or later be an assured fact.
The self-binder did not make its appearance in the harvest field until the Western prairies furnished more grain than could possibly be harvested by hand to a profit, and the steam thrasher soon followed because the same want was the parent of both. The same may be said of the broadcast seeder, the press drill, and the gang plow. The old-style grain cradle that our fathers used to swing, with their wide scythes and five crooked wooden fingers or prongs, is a thing of the almost forgotten past, and has been laid aside forever, with the old-fashioned wooden mouldboard plows. In agriculture, as in everything else, new methods have been naugurated, and in every step of progress the object has been to save labor and make farming easier and nore lucrative.
There is really little in the way of successfully applying steam power to plowing and harrowing, now that there are so few "stump fields," and a newspaper called Stoves and Hardware, printed in St. Louis, and principally devoted to the interests its title implies, thinks that the wonder is that some inventor, who would like to make his fortune out of it, has not come forward with a small and simple steam plow that will fully serve the purpose.

Natural History Notes.
The Speed of Fishes is almost an unknown quantity it being, as Prof. G. Brown Goode says, very difficult to measure. If, says the professor, you could get a fish and put it in a trough of water 1,000 feet long and start it at one end and make it swim to the other without stopping, the information could be easily obtained; but fish are unintelligent and will not do this. Estimates of the speed of fish are consequently only approximated, and more or less founded upon guessing. One can tell, however, at a glance whether a fish is built for speed or not. A fast fish looks trim and pointed, like a yacht. Its head is conical in shape, and its fins fit down close to its body, like a knife blade into its handle. Fish with large heads, bigger than their bodies, and with short, stubby fins, are built for slow motion.
The predatory fishes, those that live on prey, are the fastest swimmers. The food fishes are, as a general
thing, the slowest, and, consequently, are easily captured. Their loss is recompensed, however, by the natural law which makes them very prolitic in reproduction. Dolphins have been known to swim around an ocean steamer, and it is quite safe to say that their speed is twenty miles an hour ; but it may be twice as wuch. The bonito is a fast swimming fish, but just what its speed is is not known. The head of the goose tish is very large-twenty times as big as its body. It moves about very little, and swims at the bottom of the ocean. The Spanish mackerel is one of the fast est of food fishes. Its body is cone-shaped, and is as smooth as burnished metal. Its speed is as matchless as that of the dolphin, and, in motion, it cuts the water like a yacht.
Structure of Plant Hairs.-The structure of the hairs of various species of Urticacea, Moracea, Boraginacea, and Cucurbitacea, remarkable for their rigid character, has been investigated by Dr. F. G. Kohl. He finds that they exhibit a marked thickening at the apex, followed by a partial calcification or silicification. This thickening is due to the deposit of caps of cellulose placed one within the other, masses of protoplasm lying between each. This structure is easily seen in the hairs of comfrey (Symphytum officinale) after the. calcium carbonate has been removed by dilute hydrochloric acid. It is to the deposits of lime or silica that the brittleness of such hairs is due, and that they so readily, as in the case of the nettle, enter the skin, and, being brittle, break off and allow the poison to enter. being brittle, break off and allow the poison to enter.
Flants with Dulcifying Properties.-At a recent meeting of the Linnean Society, a specimen of the fruit of Sideroxylon dulcificum, the so-called "miraculous berry" of West Africa, was exhibited by Mr. D. Morris, the Assistant Director of Kew Gardens. He stated that the sweet pulp of the fruit, which is about the size of an olive, imparts to the palate a sensation which renders it possible to partake of sour substances, such as tartaric acid, lime juice, and vinegar, and gives them a flavor of absolute sweetness. The fruit of another plant (Thaumatococcus Danielli) possessing similar properties was also shown, living plants of both having been recently received at Kew from Lagos from Governor Moloney. The Sideroxylon is mentioned by Dalzell in his history of Dahomey, where it is stated to be used by the natives to render palatable a gruel made from bread after it has become too stale for any other purpose. Unfortunately the peculiar sweetening principle is soon dissipated if the fruit remains ripe for any length of time. Preservation in spirit, acetic acid, or sirup does not appear to favor the retention of the dulcifying principle, according to Dr. Daniell, since he found that specimens of the fruit brought to England became insipid and lost their properties. In the case of Thaumatococcus Danielli, however, the properties of the mucilage surrounding the seeds appears to be retained much longer when the fruits are preserved in sirup. It would be interesting to ascertain the nature of the sweet substance contained in the fruits, and it may be hoped that the Kew authorities will not let so interesting a question fall to the ground without some attempts being made in various ways, such as obtaining the dried unripe fruits, to extract the dulcifying principle of these fruits.
The Bower Bird.-At the monthly meeting of the Royal Society of Queensland, on June 14, Mr. De Vis read a most interesting paper on Priondodura Newtoniana (Meston's bower bird) and Acanthiza squamata, recent additions to the Queensland avifauna. The former was minutely described. It was first found by Mr. K. Broadbent in the scrubs on the Tully River, but its true habitat is now ascertained to be the highlands north of Herberton, where it was observed by Mr. A. Meston in the course of a short visit to the top of Bel-lenden-Ker. Mr. Meston brought down the first skin of a male bird, but not in a condition to permit full recognition. Excellent specimens, male and female, were afterward obtained by Mr. Broadbent near Herberton. Prionodura is emphatically a bower bird. Both its observers in nature met with its bowers re-
peatedly, and agree in representing them as of unusual peatedly, and agree in representing them as of unusual
size and structure. The bower is usually built on the ground between two trees, or between a tree and a bush. It is constructed of small sticks and twigs, piled
up almost horizontally round one of the trees, and ris ing to a helght of from 4 to 6 feet. A similar pile about 18 inches high is then built round the foot of the other tree. The intervening space is arched over with stems moss, and the arch with moss interspersed with bunche of fruit resembling wild grapes. The birds, young and old, male and female, play merrily under and over the archway. The completion of the massive bower so laboriously attained is not sufficient to satisfy the architectural impulse of the bird, for seattered immediately around are numbers of dwarf hut-like structures-gun yahs they are called by Mr. Broadbent, who remarks that they give the spot exactly the appearance of a blacks' camp iu miniature.
The Pressure exerted by Seeds.-Mr. Grehant has recently made known the results of some experiments undertaken for the purpose, of comparing the pressures exerted by seeds placed in a closed vessel in a current of water. The apparatus used consisted of a small cubic inches, and cast iron, having a capating of 48 held in place with screws and nuts. The vessel was filled with seeds up to the middle, then there was introduced in the center a rubber bag one inch in diameter tilled with mercury, into which entered a glass tube closed at the top. This tube, which passed through the cover, served as a compressed air gauge, while a brass tube extending to the bottom also traversed the cover and served to introduce the water that had to be closed.
With lupin seeds, Mr. Grehant found that the pres sure rose to 15 atmospheres. Upon opening the appa ratus he found the seeds very strongly compressed against each other, there being not the least interval between the flattened surfaces. With lentils placed
under the same conditions, the pressure did not exceed under the same conditions, the pressure did not exceed eight atmospheres.
Sharks in the Adriatic.-The canalization of the Isthmus of Suez has been followed by unforeseen reisthmus of introduction of sharks into the Mediterranean. Formerly the presence in this sea of a dog-fish that had passed around Africa and cleared the Strait of Gibraltar in the wake of some ship might have been observed every four or five years; but now the number of these terrible fishes is increasing in a remarkable manner, chiefly in the Adriatic Sea, whither the numerous ships proceed that pass through the Suez Canal. Some time ago, there was captured in the Gulf of Fiume a large female shark that had become entangled in the nets of the tunny fishermen. At the beginning of August a sailor of the floating light of Pola har pooned a young shark in front of the bathing establish ment of that city, and on the 14th of the same month another one, 7 feet in length, and about a month old, was taken in the waters of Medolino, not far from Pola. This young shark, the jaws of which were armed with teeth from $3 / 4$ inch to $21 / 2$ inches in length, had already become a wenace to bathers.
Plants protected by their Juices.-When a drop of the juice of sorrel, garlic, saxifrage, or nasturtion is put upon the tegument of a snail, the animal manifests pain and exudes abundance of its mucous secretion; yet it is not thus affected by a drop of water. When snails avoid plants marked by such juices, we have a right to regard the plants as defended by a chemical armor. The offensive substance may also be important to the nutrition of the plant, but that is not the question we are dealing with here. Many plants are evidently lacking in this means of defense; for, of some plants, all the animals experimented upon have been found to prefer fresh to dead parts. Others are never touched by them, whether living or dead. Hence we nay conceive that an infinite variety may exist in the degrees of chemical armoring between total absence of protection and complete protection.
Plants containing perceptible tannin are disagreeable to nearly all animals. Only swine will eat acorns as if they regard them as food. Other animals reject them, except when they cannot get anything else. Legumi nous plants containing tannin in weak proportions are eaten by horses and cattle, but snails are not fond of them. But the garden snail, which lets fresh clover alone, will eat it freely after the tannin has been extracted with alcohol-Popular Science Monthly.
Heat developed by Insects.-A correspondent of Insect Life states that having one day accidentally taken hold of a bag of peas infested with weevils (Bruchus), he was surprised to find how warm it was; and he found that, while the external temperature was 71°, that of the bag was 96°. The difference was due, as he ascertained, to the fact that the weevils developed,
through their work and exertions, a large amount of heat.
Medium Size as Regards A nimals.-The largest animal known is the rorqual, which is about 100 feet in length. The smallest is the twilight monad, whose dimensions are 12,000 th of an inch. It is evident that the middle term is one-third of an inch, about the length of the common house fly, which may, therefore, be con-
sidered as an animal of medium size in the creation.P. H. Gosse.

The Weight of the Whale.-Nilsson remarks that the weight of the great Greenland or right whale (Balena mysticetus, L.) is 100 tons, or 220,000 pounds, equal to that of 88 elephants or 440 bears. The whalebone in such a whale may be taken at 3,360 pounds and the oil at from 140 to 170 tuns. The remains of the fosil whale (B. prisca) which have been found on the coast of Ystad, in the Baltic, and even far inland in Wangapanse, Westergothland, betoken a whale which although not more than between 50 and 60 feet in length, must at least have had a body twenty-seven times larger and heavier than that of the common or right whale.
Origin of Man and the Other Vertebrates.-Prof. Cope, in a discussion of the origin of man and the other vertebrates, reaches the following conclusion: "An especial point of interest in the phylogeny of man has been brought to light in our North American beds.
There are some things in the structure of man and his hearest relatives, the chimpanzee, orang, etc., that lead us to suspect that they have not descended directly from true monkeys, but that they have come from some xtinct tribe of lemurs.'
In reply to an editorial in Science asserting that man is of those forms whose ancestry is unknown, Dr Theodore Gill says: "I cannot but think that the data at hand are already abundant for an answer, and that we can allocate his systematic relationships as well as
those of any other animal. It is difficult for me to unthose of any other animal. It is difficult for me to un
derstand how any one acquainted with the data could reach a conclusion other than that man is the derivative of a form very much like the chimpanzee and gorilla, and that could his remote ancestors be seen they would be placed not only in the same family, but in the same group with the African apes."

The work of cutting is all performed with a tiny ragment of diamond, known in the trade as a spark. It is not every spark, however, that will cut a lens. The sparks are mounted in the following manner: A piece of brass wire is selected, say $\frac{3}{16}$ of an inch in dia ineter, a hole is drilled in the end large enough to admit the spark, and it is set in the hole with the point up. The outer edge or shell of the wire is beaten inward and holds the spark firmly in place. The wire is then placed in the lathe and cut off just back of the spark, turning the end hemispherical, using the point of the spark that sticks through the brass as a center A piece of steel wire is next selected, of the same diameter as the brass wire, and the end is turned in. form-
ing a cup. The mounted spark is then soft-soldered ing a cup. The mounted spark is then soft-soldered into this cup and it is ready for the machine, which works automatically from a pattern, and can be set to cut larger or smaller than the pattern. Before the nounted spark is placed in the machine, however, it is tested by holding the handle upright. If it does not cutin an upright position, the point is unsoldered by means of the blowpipe and the handle resoldered, leav ing the cutting point at the required angle, while the handle itself is upright. When the spark is found to cut well in an upright position, it is then placed in the nachine for trial. The glass is placed upon a pad under the spark, the glass varying in form according to he kind of lens being cut. If the lens is flat, the pad is also, and if the lens is convex the pad is concave, and must be a perfect fit; for the better the fit, the more accurate will be the work. The pattern and glass travel around while the diamond remains stationary.
The life of a spark is short, some being only one day, while once in a while they can be worked for a year. The workmen average fifty dozen pair of lenses per day. A good diamond will cut on an average of 1,500 dozen pairs. The average lens measures four inches around, and a dozen pairs would be eight feet. In cut ting 1,500 dozen pairs the spark would travel over a sur face equal to a piece of glass 12,000 feet long. There are exceptional sparks that cut for months. I now have one which has been in operation for fifteen months and has cut 7, 200 dozen pairs, traveling about 57,600 feet. We use two kinds of sparks, the Brazilian and the African, and they cost from $\$ 3$ to $\$ 5$ each.-The American Jeweler.

Roller Journal Bearings.

Some interesting figures as to the work of anti-fricion roller journal bearings have been supplied during he past month. The Master Mechanic says
The Tripp anti-fricti \urcorner journal bearing was given a dynamometer test on the New York \& New England Railroad by J. B. Henney, superintendent of motive power, and other officers of the road. The test on cars numbered 150 and 156, having the master car builders' standard journals, showed a draughting strain of 600 and 800 lb . respectively, and on the 12 -wheeled Pullman car Calypso a strain of 700 lb ., averaging for the three cars 700 lb . Car 158, with Tripp bearings, commenced running January 28, 1889, and was guaranteed to run ne year without any attention or additional lubrication, and has now run over 18,000 miles. This car was moved with a strain of 250 lb ., showing a saving of ings.

RECENTLY PATENTED INVENTIONS. Mechanical.
Removing Broken Screws, etc.Maurice Cahn, Weatherford, Texas. This invention covers an improved bit, provided with an internal spiral cutting thread and external cutters, and especially
designed for extracting screws, taps, screw bolts, etc., designed for extracting screews, taps, screw bolts, etc.,
from iron, marble, or other hard substances, in case one from iron, marble, or other hard su bstances
of the articles is broken off in the material.
machine for Boring and Trinimivg SLars,-John Colville, Brunswick, Ga. This is
a machine for boring, drilling, and cross cutting, capable of receiving a number of slats and automatically delivering them to a series of drills cr bits and a series for treating slats in a crate patented by the same in-

Slab Sawing Machine. - David S. Abbott, Olean, N. Y. This invention provides a
"slab slasher" in which the material will be automatically fed to the saw for each successive cut, and a from feeding lengthwise while the saw is in the cut from feeding lengthwise while the saw is in the cut
and for holding the slab stationary while heing cut and releasing it to be fed forward for another cut.

Miscellaneous.

Washing Machine.-Luke L. Kellogg, eon, N. Y. This is a simple and strong machine, it parts being adapted to be readily secured for operation in an ordinary wash tub, and the machine is designed labor, and in a thorough manner.
Dado Guide. - Willie S. Comstock Binghamton, N. Y. This is a guide adapted for use in connection with a dado plane, the invention providin a portable device of simple and durable construction,
and conveniently handled, which may be readily applied to or detached from a piece of timber and guided to produce a straight or a diagonal cut.
Fence Building Machine.-John B. Kline, Sherman, Texas. Combined with a series o號 ing stops, and other novel features, for weaving picket fence and insuring the proper binding of the
pickets between the several strands of supporting wire
Windmill. - Benjamin F. Ham Cimarron, Kansas. This is a windmill in which a evoluble frame is mounted within the supporting
lrame a horizontal crank shaft in the frame carrying frame, a horizontal crank shaft in the frame carrying a wind wheel, with a shutter case at one side of the tion in so far as the regulation of the amount of current and the wheel is concerned
Windmill. - Solomon Harbaugh Geneva, Neb. This invention relates to that class of tical cylinder having vertical vanes and revolving about a vertical axis, the invention covering a novel construction and arrangement of parts designed to and its better regulation.
Car Door Fastener.-Thomas G. Ruffhead, Renovo, Pa. This fastener is made with a screw-threaded bolt having a projection at its inner
end, the faces of which are oblique to its length, in combination with a socket having inclined or tapere walls, being intended for use with doors which rest in the openings fush with the onter side of the car.
Clay Washing Machine. - Henery Woodcock, Perth Amboy, N. J. A vertical shaft is held to revolve in an open topped vessel having detach
able auxiliary bottom with upwardly extending pins arms being horzontally attached to the vertical shaft, and stirrer arms projected downward therefrom, the washer being adapted to receive clay directly from the bank, expeditiously cleanse it, and reduce it to th Brick Kiln.-Simon Dewhirst, Voris Mo. This kiln has combustion chambers in its side walls, with channels leading to the interior of the kiln above the floor, chimneys between the chambers combination with a series of furnaces outside the kiln, to permit of sending the heat evenly through all the brick at one time, thus greatly reducing the usual time of
burning.
Miner`s Candlestick. - Henry M Mixter, Montana Ter. This is a candlestick designe to be supported by thrusting its point into the earth or of the mine, consisting of a pointed bar with a loo handle at one end, a spring socket to receive a candle, nipper to compress the caps upon fuses, and a hoo and claw for attaching it to the mine wall.
Pipe Clamp. - William Walker and John B. Davis, Lackawanna, Pa. This clamp is made around the coupling, and having semi-annular flanges chamfered to form flaring openings, in connection wit a packing calked within the clamp, for use upon pipe in which a high pressure is maintained, for strengthen ing parts that have become weak, and for mending

Self-Sealing Bung. - Michael R. Maher, Zanesville, Ohio. This 18 a device for use with
ice cream freezers, being an improvement on a former ice cream freezers, being an improvement on a former patented invention of the same inventor, in which a cap plate has an inwardly projecting thimble to enter the gate covering the thimble and sealing the aperture the present invention rendering the sealing of the to hole more secure when the freezer is exposed to handling and rough usage.

Cabinet Clamp.-Wendell P. Tarbell, Milford, N. H. This clamp has a head and clamping
bar, with a joint bolt passing through the head and intothe clamp bar, a dowel being inserted in the head
and extending into the end of the clamp bar, by which pressure may be applied to the edge of the work without
the necessity of placing the clamping screw exactly opposite the center of resistance.
Waxed Paper. - Edward G. Sparks Brooklyn, N. Y. This invention relates to the pro duction of waxed or paraftin paper, and covers a novel the paper in a uniform manne and regulating its quantity, so as not to saturate the pores of the paper but apply only a thin coating to its exterior surface. Lemon Juice Extractor.-John L. Easley, New York City. This device has a cone with an abrading surface, a frame for supporting the cone, and an operating holder mounted on the frame for holding and turning a half of a lemon on the cone to break the pulp and extract the juice, the lemon skin
being readily lifted up after the juice has been exbeing readily lifted up after the juice has been ex
Spectacle Case.-Charles R. Long, Louisville, Ky. In this case there is formed on one
face an integral hollow enlargement forming a second face an integral hollow enlargement forming• a second
compartment, with a cover, for holding a piece of soft chamois skin or other material for wiping the glasses, Carrying Apparatus. - Nelson Weeks, Jr., Long Island City, N. Y. This invention relates to apparatus for conveying cash between the salesmen in a store and the cashier's desk, and consists in a track with carriage provided with carrier for
the cash pockets, the carrier being movable on the the cash pockets, the carrier being movable on the
carriage transversely of the track to successively arriage transversely of the track to succese trips
different stations, the trips being all in line.

SCIENTIFIC AMERICAN

BUILDING EDITION
SEPTEMBER NUMBER.-(No. 47.)

TABLE OF CONTENTS.

1. Elegant plate in colors of a house recently erected at Easton, Pa., for twelve hundred dollars.
Messrs. Munn \& Co., architects. Perspective elevation, floor plans, page of details, etc.
2. Plate in colors of a residence recently erected at Natchez, Miss., from plans prepared by Messrs.
Munn \& Co., architects. Perspective elevation, loor plans, details, etc.
3. A ten thousand dollar residence recently erected
at Bridgeport, Conn. Perspective elevation and floor plans.
4. A very attractive cottage for six thousand dollars erected at Jersey City Heights, N. J. Floor plans and perspective elevation.
Engraving of the U. S. court house and post office at Savannah, Ga.
Church of the Angels, Los Angeles, Ca
5. A cottage recently erected at Jersey City Heights, N. J., at a cost of seven thousand
dollars. Plans and perspective.
6. A house for five thousand five hundred dollars at Jersey City Heights, N. J. J. C. Markham, architect. Elevations and floor plans.
7. A modern house at Bridgeport, Conn.. built at a cost of six thousand six hundred dollars. Plans
and perspective elevation. A block of six apartment houses lately erected at Bridgeport, Conn., at a cost of five thousand dol lars each. Henry Lambert
8. A Queen Anne cottage recently built at Englewood, N. J., at a cost of three thousand dollars. Per spective elevation and floor plans.
9. A dwelling for thirty-five hundred to thirty-eight Conn. Plans and elevations.
10. Perspective view and plan of the new depo recently erected by the Northern Railroad, a Englewood, N.J
11. A London fire engine house. Cost sial
dollars. Elevation and ground plan.
12. Engravings of the royal dairy, Windsor Park The handsome
13. The temple of Marcus Aurelius, at Dugga. Page engraving.
14. Monent to Admiral De Coligny
15. Miscellaneous Contents: Mohammed II. and his architect. - Building trades associations. - The buildings.-Experiments with hedges, illustrated with 8 figures.-How creosote affects chimney flues.-Potsdam red sandstone.-Chicago foun-dations.-The tomb of Alexander the Great.Large girders.-Large contract for building stone

- Wrought iron fence pickets, illustrated.-De cline in immigration.-House heating boilers.
illustrated.-Mental sanitation.-Flooring.-Im-illustrated.-Mental sanitation.-Flooring.-Im-
proved hot water heater, illustrated.-Improved proved hot water heater, illustrated.-Improved
sash pulley, illustrated.-The arch of Aurelius a station at Hartford, Conn.
The Scientific American Architects and Bunders edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of architecrure, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting xamples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have wan forliction in the world. Sold by of any Architectu
all newsdealers.

MUNN \& CO.. Publishers,

Phusiness and Personal.

The charge for Insertion under thes head is one Dollar a line jor each insertion; about eight words to a line as early as Thursday morning to appear in next issue

Wire Rope Tramways for the economical transportation of ores and other materials. Quarry hoists. Wir rope of all kinds. The Trenton Iron Company, Trention,
N. J. New York office, Cooper, Hewitt \& Co., 17 Burling Slip. Western agents, Fraser \& Chalmers, Chicago, Ill. For best hoisting engine. J.S. Mundy, Newark, N. J Wanted-Partner. Capital. Sawmill. P. J. Dela nar, Oriental, N. C.
Wanted-Mechanical draughtsmen. Address, statin ., Dox 7 , New York City. anted-Railway engineer of experience, first clas for supervision of railway construction. One speaking
Cerman preferred. Write, stating salary expected, to W. W., box 7ij3, New York

> Eureka Cotton Machine Belting
cheap and perfect substitute for leather or rubbe
belting. Address Eureka Fire Hose Co., 13 Barclay St
Automaton Wanted-Any new and novel mechanical are-either working drawing, rough model, or comprice will be paid. Address Key, 94 Liberty St., 3d floor
Parties having a patent of merit for sale, or wanting an agency to sell patented articles, address, with par
ieulars, Chas. Babson, Jr., 24 Congress St., Boston, Mass
The Little Falls (N. Y.) Water Company in testing all the popular water motors have adopted those made by
the Tuerk Hydraulic Power Company. Address No. 1 Cortlandt St., New York
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus. a For the latest improved diamond prospecting drills, Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J The Holly Manufacturıng Co., of Lockport, N. Y. will send their pamphlet, describing water works ma
chinery, and containing reports of tests, on application Screw machines, milling machines, and drill presses. Billings' Patent Adjustable Tap and Reamer Wrench es. Bronze Forgings. Billings \& Spencer Co., Hartfor Conn.
Rubber Belting, all sizes, $771 / 2$ per cent from regula list. All kınds of Rubber Goods at low prices. John W Buckley, 150 South Street, New York
Steam Hammers, Improved HydraulicJacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St. New York Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city "How to Keep Boilers Clean." Send your address
for free 96 p. book. Jas. C. Hotchkiss, 120Liberty St., N. Y. for free 96 p. book. Jas. C. Hotchkiss, 120 Liberty St., N. Y Woodworking machinery, planers, surfacers, match-
ers, beaders, etc. Rollstone Machine Co., Fitchburg. ers, bea
Mass.
Split Pulleys at low prices, and of eame strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Send for new and complete catalogue of Scientıfic and other Books for sale by Munn \& Co., 361 Broadway New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information, and not for publication.
Rererences to former articles or answers should Rererences to former articles or answers should
give date of paper and page or number of question.
In quiries not answered in reasonable time should quiries not answered in reasonable time should
be repeated, correspondents will bear in mind that
qome answers require not a little research, and,
though we endeavor to reply to all, either by letter

expected without remuneration.
Scientilic A American Suppliements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of
Books referred to promptly supplied on receipt of
price.
Minerale sent for examination should be distinctly
marked or labeled.
(1297) L. B. H. writes : Will a coating of water glass on white paper form a surface similar to the white silicate slates of commerce? Or would a mix-
ture of clear varnish, such as dammar, with pulverized ture of clear varnish, such as dammar, with pulverized
pumice stone, answer the purpose? A. Use shellac dissolved in alcohol mixed with Chinese white and ground pumice. Water glass wnl not work. Dammar varnish would be slow in drying.
(1298) O. A. H. writes : 1. Find inclosed ravel bank. Some think it is gola. What is tit? It is mica, of no value. 2. Is the salt water of the ocea used in the boilers of sea-going vessels? A. Yes. The
bollers are occaslonally blown off to prevent the water bollers are occaslonally blown off to pre
from exceeding a certain specific gravity
(1299) S. F. L. asks : 1. How are rubber stamps made? A. See Supplement, No. 83, for a paper on this subject. 2. How can I melt rubber nown. See Supaily? A. No way of doing for full description of the India Rubber manufacturing pro esses. 3. How can I test a thermometer so as tonnow whether it is correct or not? A. Best by comparison
with a standard thermometer. ing point by exposing it to a vessel full of steam at sion in ice water.
(1300) F. V. H.-Bamboo can be ornamented by burning with a blow-pipe or hot iron. It ing a defnite form.
(1301) J. P. O'L. asks for a receipt for naking sirup of tar. A. Take of pine tar 3 ounces tilled water 20 fluid ounces; powdered sugar 28 onces avoirdupois. Pour the cold water upon the tar and stir frequentry during 24 hours; pour off and throw away the water. Pour the boiling distilled water
inon the tar, thus washed, and stir briskly for fifteen pon the tar, thus washed, and stir briskly for fifteen ily. Decant the solution and filter. Lastly in seven. ounces of the fitered solut (1302) H. J. K. asks if the armature described for the eight-light dynamo would work in sim-
ple electric motor. A. Yes.
2. Shonld I have 12 spaces ple electric motor. A. Yes. 2. Shonld I have 12 spaces
instead of 24 spaces? A. Twelve or more. The more he better. 3. How many cells of battery will it take, ch having an electrom Have there ever been any machines invented for
(1303) C. J. C. asks how to make the reverse of the blue print, that is, blue lines on white round. A. See Scientific
(1304) J. M. asks : 1. Can you inform me y your Notes and Queries column how flud and solid . By sare made, such as are used for medicines, etc.? alcohol, etc., followed by expression or filtration of he juice and evaporation to a pasty consistence. The latter operation may be conducted in vacuo. 2. How to tell the purest carbolic acid solution. A. Its color is simple criterion. It should be perfectly transparent and colorless. On evaporation and cooling it should Fah. An addition of 5 per cent $\mathrm{H}_{2} \mathrm{O}$ liquefies it. One volume of the liquefied acid added to glycerine should ive a clear solution, not rendered turbid by addition of volumes of water. If shaken up with chloroform in a graduated cylinder, the upper layer which separates is he water which it contained. 3. Of what power (focal distance) should a microscope be for ordinary to closer investigation, also how to determine the power of same? early or quite horizontal and focus the instrument so as to see it clearly By a camera lucida the image can be reflected to the eye so as to be referred to a sheft of paper placed eight or ten inches away upon a table. By having a scale laid upon the paper, the degree of mag nification can at once be seen. A simple slip of cover lass held at the proper angle can be used as a camera hcida. The power of the instrument should be chosen for its work. You will certainly need two powers, say
objectives of $1 / 2$ inch and 1 inch focus to begin with.
(1305) C. Holmes writes: 1. Electricians say that sheet, summer, or heat lightning is probably
due to the reflection of a distant storm. You have no doubt noticed that in such reflection fork lightning ap pears. Will yon please inform me how this double
effect is produced? A. The sheet lightning may be the reflection of the visible forked lightning or of a more dis tant discharge. 2. Why is it necessary that the second ry coil should be of such high resistance? A. It is ne cessary to have a great length of wire in as close prox mity as possible to the primary and its core. This can be done only by using fine wire, which necessarily has a high resistance. This resistance is not necessary, but it is unavoidable. 3. Is it healthy to sleep in a room
where electric batteries of any kind are placed? A. Many batteries, such as the gravity, the Leclanche, and He Fuller, are not deleterious. Only such as give of
hydrogen and acid fumes are undesirable. 4. Is No. 18 wire heavy enough for the primary coil of that ex plained in Supplement, No. 160? A. With a heavy battery No. 18 wire is liable to heat unduly. It will answer very well in connection with a current adapted
to it. 5. How many ounces of silk.covered wire ar sufficient for the secondary coil? A. It requires aboul pound of wire for the secondary. 6. Is there any dif lac varnish is gum shellac dissoived in alcohol. 7 Will the former suffice for the insulation on both coils, primary and secondary? A. Shellac varnish is one of
(1306) F
esuch an express. writes: 1. I frequently does this mean a 125 horse power electric motor, o does it mean a dynamo capable of supplying 94,250 electrical horse power, or the watts you specify. 2. Is it sufficient to speak of an electric current in ampere alone? Would it nor. ive more definite to give the voltage, as 20 amperes at 110 volts? A. As the current and its electromotive force are inseparable, it is proper to specify both amperage and electromotive force. 3 Is there any object in having such a high resistanc
in telegraph relays? Would not the same number in telegraph relays? Would not the same number of
convolutions of a heavier wire around the magnet core convolutions of a heavier wire around the magnet core
work on just as long a circnit? A. There is no particular object in having high resistance in a telegraph relay, but the same number of turns could not be secured with alarger wire within the same space. With the larg wire the outer convolutions would be too far removed from the magnet core to produce any marked effec (1307) G. D. W. asks: 1. What is the ap proximate internal resistance of a bichromate of pot-
ash cell of battery having 2 plates of zinc and 3 of carbon, each 3 by $31 / 2$ inches, kept about one-half inch of the battery. Probably $1 / 2$ ohm. 2. What is the elec of the battery. Probably $1 / 2$ ohm. 2. What is the elec
tromotiveforce of such a cell? A. Nearly two volts 3. With a given magnet (field for motor), which will give the more magnetism, a current from a battery of low internal resistance and the magnet wound with ver heavy wire, or a current from one of a high interna resistance with coils of finer wire, the former with greater and the latter with a lesser amperage? A. The current may be adapted to either winding so as to produce the same magnetic effect in either case. It al depends on the electromotive force of the battery Determine which magnet has the greater number of
ampere turns; such a one has the greater power. In ampere turns; such a one has the greater power. In
broad terms, resistance is always disadvantageous, and

rs on!y submitted to as size, etc., to be attained

(1308) F. H. B. wrices: 1. I have a bal10on six feet in iength and $31 / 2$ feet in the widest part.
It is cone shape for two-thirds of the way from It is cone shape for two-thirds of the way from
mouth up. The other portions are the same shape as any ordinary balloon. About how many cubic feet of any ordinary balloon. About how many cubic reet of
hydrogen will it take to inflate it? A. About 24 cubic feet. 2. Also, about how much acid and zinc? A. About $61 / 2$ pounds oil of vitriol and $41 / 4$ pounds zinc.
3. Will a balloon charged with hydrogen ascend much 3. Will a balloon charged with hydrogen ascend much
higher than if filled with coal gas? A. It will ascend higher than if filled with coal gas? A. It will ascend
no higher. 4. Is there anything that will prevent paper no higher. 4. Is there anything that will prevent paper
balloons from sticking after they are varnished with boiled linseed oll? A. You should keep them inflated boiled linseed oil? A. You should keep them inflated
while drying. If once well blown up they will collapse very slowly, and as they dry, their own stiffness will
tend to prevent the sides touching. 5. What will keep a large tin can from rusting after being placed in a cellar? A. Paint it thoroughly or varnish, and heat over a
stove until dry. Two or more coats may be applied stove until dry. Two or more coats may be applie
with advantage. Japanning would be still better.
(1309) W. H. A. asks the process of printing and lithographing sheet metal signs for advertising purposes, etc. A. The details of the art of printing on tin or other sheet metal have not been published, and are kept to some extent as trade secrets by the operatransfer processes by mons of andic roller which transfer processes by means of an elastic roller which
takes the print from the type or lithographic stone and transfers it to the plate in a roller press. Sheets of prepared paper are also used to take the ink from type or engraved plate and transfer it to the tin plate by roller
(1310) F. J. M. asks: How are toy balloons made and colored, and of what materials: A.
They are made of thin sheet India rubber, often colored with alkanet root extract, producing red ones. The India rubber is cut into disks and cemented by pressure and India rubber cement at the edges. The pro-
cess is described in our Supplement,
(1311) F. S. B. asks : It is said that zin burned in a stove will remove the soot from the chim-
ney. Is there any other substance in the form of a powder that would be cheaper, and answer the same purpose? A. We know of no substance that has any value
except some explosive. A little gunpowder exploded in a chimney will often loosen the accumulation, but its application is dangerous. To apply it place a tablespoonful on a cold brick placed within the chimney and touch with a hot poker, standing well back.
(1312) C. S. asks (1) for papers treating on mechanical engineering. A. In the Scientific ble information and many papers on the subject. 2 What would be the cost of a course in mechanical engineering in some good and reliable school? A. No
figure can be given. Address the different colleges fo figure can be given. Address the different colleges for
their prices. 3. How to wash flannel shirts to prevent them from shrinking. A. Wash in cold or lukewarm water in which some soap has been dissolved. Rinse
out in clean water, stretching well, and iron while quite wet. It is very dificult to entirely avoid shrinkage. (1313) A. S.-The distance of the horizon is governed by the height of the eye above the earth or sea. On the sea, with the eye at a height of 5
feet, the distance would be 3 miles; at 60 feet in height, 10 miles. $\begin{gathered}\text { (1314) J. H. S. asks : 1. Wh hat is catarrh }\end{gathered}$
1314) J. H. S. asks : 1. Whatis catarrh A. It is a disease of the mucous membrane diagnosed by
febrile symptoms and increase of secretion. 2. Is there
any known cure or preventive? A. Tonics are sometimes of value, but no cure in the full sense of the term is known. Climate has a very great effect upon its in tensity. 3. What is the cause? A. The cause is pro-
bably in many cases constitutional, and may be based bably in many cases constitutional, and may be based
on climatic extremes of temperature, etc. 4. What kind on climatic extremes of temperature, etc. 4. What kind imported by the Pennsylvania Railroad Company make? A. Its record we understand was an excellen
ne. 5. Do English railroad locomotives compare favorably with American, and are not the latter superior for durability and speed? A. They compare favorably, but are not well adapted to our roads, on acquestion of which is best has never been finally settled judse. In speed the English are certainly equal to the American engines. The quality of the roadbed has great deal of influence on the speed attained by either
(1315) G. W. \& Co.-Pick handles are nold so cheap now, that manufacturers utilize all the
wood possible by straightening curved pieces so as to pass through the automatic machines. This wood when exposed warps. They can be warped back by clamps, but will not stay so when in use.
(1316) W. P. W. asks the usual method
ar accurately determining the melting points of metals. A. Pyrometers of highly refractory materials as gra phite and platinum, are used for obtaining the tem perature of fusion of metals or the heat of fires. An electric pyrometer was also used by Pouillet and Becquarel for obtaining the temperature of furnaces.
See illustrated descriptions of pyrometers in Scer See illustrated descriptions of pyrometers in Scie
American Supplement, Nos. $33,172,198,288$.
(1317) R. G. asks the correct angle for hathe centers. A. For light work 55° to 60°, heavy
work 70°. The practice varies considerably among builders of lathes.
(1318) E. K. asks : I would like to know now concrete walksare made. A. Make a thick mor parts. Level off the gronnd. Spread the mortar three inches thick.
broken stone.
(1319) M. T. O. asks for a receipt for re moving ink from paper without staining the paper. A.
Use a mixture of equal parts tartaric or citric acid Use a mixture of equal parts tartaric or citric acid and to destroy the ink with a fine brush, and dry with blot ling paper before it evaporates. A second application of the sol
beneficial.
(1320) W. N. H. asks how plaster o Paris can be made to adhere to paper without cracking.
A. Mix it with a thin solution of glue coittaining one enth its volume of glycerine. This may answer your pnrpose, bnt you will h
trong degree of adhesion.
(1321) H. G. asks whether, supposing silk bag to be filled with hydrogen gas sufficiently to distend it to its full size under the ordinary pressure of force pump to force say half as without bursting the bag. A. The bag to effect this would be subjected to a pressure of $71 / 2$ pounds (about)
to the square inch. If of large size, it would not stand As is evident, it is all a question of size and strength the material. The silk would have to be thoroughly
(1322) E. E. S. asks why the divining rod so called turns in a medium's hands when he is
trying to locate a spring of water. A. It is done by moving the hand or fingers, and has no reference to
(1323) M. S. K. asks the meaning of degree as used in measuring the strength of aqua am-
monia. How many pounds of anhydrous ammonia are contained in one hundred pounds of aqua ammonia 26° ? A. The degree is an arbitrary scale for denoting the ronger is the solution in the case of amparavity, the reference is to the Baume scale, on which 26° correspond to a specific gravity of $0 \cdot 901$, containing between 28 and 29 per cent of ammonia at 57° Fah., or 28 to 29 pound
(1324) G. H. I. asks how to polish affalo or cattle horns. A. This has been answered in the queries column before. Several methods are recom1. The first thing to be done is to scrape the exterior of the horns, so as to obtain a perfectly even surface This may be done with a steel scraper, such as the edg of a knife held nearly upright, or with a piece of glass will still present a dull appearance, devoid of luster To impart the desired polish, make a pad of cloth or flannel, and having mixed some finely powdered bath brick and oil, rub the surface well with it. This will give smoothness to the horn, and all that is now neces.
sary is to make another mixture of rotten stone and oil, and apply with a flannel or cloth pad, rubbing for some time, as the longer the rubbing is continued, the
better will be the polish. Finish with dry flour or a better will be the polish. Finish with dry flour or
little whiting, applied with a piece of chamois leather or a piece of linen rag, fine, soft, and clean; and com plete the gloss which this will produce by rubbing with the palm of the hand, on which a little whiting has been sprinkled. If the polisher has a lathe, the polishing may be effected by a wheel covered with cloth; and with twisted horns this would be far more effectual, as
it would be easier to reach all the convolutions of the it would be easier to reach all the convolutions of the
horn in turn with a narrow wheel with a rounded edge 2. Having scraped the work perfectly smooth, rub it with very fine sandpaper or Dutch rushes, repeat the
rubbing with a bit of felt dipped in finely powdered charcoal with water, and lastly with rotten stone or putty powder, and finish with a piece of soft wash leather damped with a little sweet oil; or else rub it with subnitrate of bismuth by the palm of the hand. The powdered charcoal and bismuth can be had of any
chemist. 3. Smooth by scraping with a steel scraper or chemist. 3. Smooth by scraping with a steel scraper or a piece of broken glass; polish with a wet sponge
dipped in ground pumice stone; then with rotten stone oil alone followed by dry leather For finally with oil alone followed by dry leather. For all three me-
(1325) A. B. asks : 1. What weight will magnet whose poles are six mehes long and an inch pon the current and the winding of the magnet hould readily support two or three hundred pounds 2. Also would you advise tinning magnet and fitting poles with spools? A. There is noadvantage in tinning magnet. You may wind your coils upon thin card board tubes which will fit over the magnet poles. How long should a good bichromate solution last in pint cell with zinc and carbon two by three inches,
and what capacity ought two such cells to have? A. If the battery you refer to is a plunge battery, it will run at will probably give an output of three to four watts 4. What is the best way to make a mould to cast zinc plates? A. The moulds for zincs are usually made of cast iron, but sand moulds answer a very good pur-
pose. It is best to heat the mould well before pouring pose. It is be
in the metal.
(1326) F. E. asks for a solution or powder that would preserve skins of birds or animals, White arsenic in powder is often used for such pur poses. It kills any germs, and prevents the develop-
ment of insect life. Tannic acid or alum may be used
(1327) W. C. J. asks: Will you please inform me through your Scientific American, the correct, or as near correct as you know of, distance of
the Isthnus of Panama at the narrowest and at the widest parts? A. At the narrowest part, between the 0 miles; at the widest, through the peninsula 30 miles; at the
Azuero, 120 miles
(1328) J. B. M. asks : 1. What is the best text book on chemistry for a beginner in that
study? A. Fownes' Elementary Chemistry tudy? A. Fownes' Elementary Chemistry, $\$ 3.25$ in supply it by mail at price mentioned. 2. What newspaper (chemical) wonld be of nost service to a learner? A. The American Chemical Journal, edited by Prof. Ira Remsen, is the leading American chemical periodi-
al. In England, France, and Germany a number of cal. In England, France, and Ger
most excellent ones are published.
(1329) J. C. B. asks: What is the composition of the carbons used for the arc light, and in
what way are they made to be as firm as they are? A. what way are they made to be as firm as they are A.
A process of making them is described in the Scien
ific American, May 18, 1889, p. 307. In factorie
hey are shaped by machinery, and various formula are used by different makers.
(1330) E. W. asks: What oils, mixed . The drying oils, such as linseed oil, are the mastion? dangerous.
(1331) H. McK. asks : 1. Why is it ad sable to decamphorate and denitrate celluloid? The To prevent the possibility of chemical reactions and changes. 2. If a piece of sal soda is exposed to the air, it soon falls to a white powder. Is this powder bicar-
bonate of soda? A. No. The change is due to loss of water of crystallization, and the product is carbonate of da more or less dried
(1332) G. F. Y. asks: 1. Can I learn telegraphy without a teacher? A. You can learn a great cal, but practical experience in an office is requisite.
You must write a good hand to be a really good ope You must write a good hand to be a really good ope
rator. 2. What instrument and books will I want, and hat will they cost? A. Learner's sets are sold by dealers in electrical apparatus for $\$ 3.50$ to $\$ 5$. We can Telegraph, price $\$ 2.50$. Also Modern Practice of Elec tric Telegraph, by Pope, $\$ 1.50$.
(1333) P. F. D. asks for a good paste blacking for boots and shoes, one without acid, if pos3/4 oz.; thoroughly mix. The above is intended as the basis for a liquid blacking. If properly combined acids are harmless. The following is a simple example Animal charcoal, 8 parts; treacle, 4 parts; hydrochloric acid, 1 part; sulphuric acid, 2 parts. Also see Work hop Receipts, 4th series, for other formulas.
(1334) H. C. asks : 1. Is there a scien tific book, besides May's Ballooning, on the subject of ballooning or aerial navigation? A. We can supply you with Wise on Aeronautics, price $\$ 4$. This is a old book, tut the oniy other one on the subject that accessible. 2. Where can the uninflated rubber to balloons be procured? A. Address dealers in scientific apparatus or Colising colums. 3. When making hydrogen gas by heating slaked lime and zinc, what should be the proportions of lime and zinc, and how long should the mixture be kept at red heat? A. Use 85 to 90 parts zinc to 100 parts of lime, provided the latter does not
contain an excess of water. As it is very likely to be upersaturated with water, it is best to depart a litt1e from theory and use about 125 parts of slaked lime fo above. Theoretically, $75 \cdot 67$ parts of quicklime slaked
with 2493 parts of water would give the 100 parts of slaked lime for the first formula. All parts are given by weight. Keep up the heat until the gas ceases to come off. 4. How many pounds of zinc will be re quired to make 1,000 cubic feet of gas by the above mentioned process? A. 111 lu. avoirdupois. . Are A. Yes; if high enough heat is used. It is better, how(1335) T. H. writes: I have been try ing to use solution of nitrate of ammonia for the
purpose of condensing steam passing through a sma room, and can get no satisfactory result; in fact can get no more refrigeration than hydrant water. A Solution of nitrate of ammonia has little more refriger
ating power than water, not enough to be of any prac tical importance. When the crystals are 'put in water tical importance. When the crystals are put in wate
they absorb heat as they dissolve, thus cooling it.
(1336) O. H. W. asks: To what exten degree does mercury corrode or amalgamate with
ron or steel, as compared with brass or silver? Mercury under ordinary circumstances has no effect upon iron or steel. It is only by special methods of some difficulty that it can be made to form an amalgam
(1387) H. D. asks: In placing a school bell (in a town), will it sound to the best advantage placed on top of the building or near the ground? A.
We should recommend a moderate elevation, adove the We should recommend a moderate elevation, adove the
level of the roofs of the majority of the buildings Elevation is necessary to he above interference from bildings, but it weakens the effect.
(1338) L. D. C. writes : I wish to make ve, in ord to center, that : perature, and will have power enough to actuate a sys tem of levers for recording. Will you ad vise me in th form, or the spiral, such as in Breguet's (described in Ganot's Physics) be best? A. You can use a compound bar made of brass and iron supported at both ends and working a system of levers. See Scientific American,
January 29, 1887, p. 71. The Breguet spiral is still more sensitive
(1339) D. R. P. writes : I want to write a prayer book in stenography, and beg to ask you what
kind of ink (red and black) I must use, inks that will dry quickly, and that will not blur, even when a we inger would come in contact with the written sheet I would like to use very bright red and jet black inks. A. For black use Japan ink, coming in cakes. If yo
rub it up with a solution of shellac in borax water, it rub it up with a solution of shellac in borax water, it
will make it still more waterproof. For red use best liquid carmine (not aniline) ink; it is made from cochineal. Or you can buy a cake of carmine water
color and rub it up as above for red.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for pa tents at home and abroad, enable us to understand th laws and practice on both continents, and to possess un
equaled facilities for procuring patents everywhere. equaled facilities for procuring patents everywhere. foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, tensive facilities for conducting the business. Addres MUNN \& CO. office ScIENTIFIC AMERICAN, 361 Broad-
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted
September 10, 1889,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Abrasive surfaces, tool for dressing, G. G. Crow-
ell..50, 420,
A1r brake, .. J. Prithard.......
Alarm. See Burglar alarm.
Aluminum, obtaining alogss of, L. Q. Brìn....... 410.574
Anvil, norsesnoe, J. Houck...................... 410972
Armature, J. R. Jon nson.
Aurin derivatives, making, T. Sandmeyer.
Axle box, C. B. Hobron....
Axle lubricator, J. E. Shaw
Axle lubricator, J. E. Shaw..
Backband hook, D. D. Nolle
Backband hook, F. A. Yost....
Bag tying device, M. C. Kimball
Baking pan, J. J. Seifert.
Banng press, E. C. Sooy
Band cutter and feeder, H. C. Cook......
Bar. Saee Fire engine grate bar. Grate bat
Bar. See Fire engine grate bar. Grate bar.
Basins used in tip-up lavatories
bush for fixing the trunnions of, S. Jennings.. 410,795
Sattery. See Secondary battery.
Battery. See Secondary battery.
Beehive, C. H. Stump............................ 410,701
Beer extract, making weiss, Boefer \& Rruse 410,872
Belf, door, H. Leach...................................710,713
Belts, means for preventing the slipping of, F.
W. Nichols................................. 410,805
Benzoic sulphionide in oils, etc., solution of, A.
Senzoic sulphionide in oils, etc., solution of, A.
Smmer ..40
410,
Block. See Stereotype block.
Boats, apparatus for unloading. J. M. Dodge...... 410,883
oiler stand, J. Vosburgh............................. 410,
Bolt. See Rotary bolt.
Boot jack, H. W. Farley.
410.829

Boots or shoes, machine for uniting soles and up-
pers of, Robinson \& Watt..................
Boots or shoes, making heels for, H. C. C. Hart...........
Boring and trimming slats, machine for
Boring and trimming slats, machine for
ville.............................
Bottle stopper, B. F. Greene..............
Bottle stopper, alarm. R. M. Devereaux
ox. See Axle box. Merchandise box
Box covering machine, A. G. Potter................. 410,920
rake. See Air brake. Car brake. Carriage
brake. Wagon brake.
Brake adjuster, automatic, E. D. Eames........... 410,960

Brush, J. Repetti..................... 410,991
Buckle J. Kennedy.
Buckles, machine for attaching tongues to,

Burg lar ararm, E. M. Carhart........................ 410,0633
Butter Jars, sinker for, L. S. Hendrıx 410,893
Cabinet clami, W. P. Tarbell................... 410,815
able sheave and hanger for cable tramways,
Stmpson \& Waggoner......................410,700
an. See Oil can.
andlestick, miner's, H. M. Mixter.................. 410,802
Car berths, step for sleeping, J. J. Greenough..........................410,793 410,874
ar brake, H. A. Butterfield...410,81
Car orake, . . . De Foresta............................810,

Car coupnng H. H. Everett............................ 410,667
Car coupling, E. Ghirardi........... 410,753 to 410,755

Car door fastener, T. G. Ruffhead80,607
ar, electric and cable railway, Bemis \& Pfingst.. 410,871
ars, couplings for steam pipes of railway, R. I.
Hampton................................... 410,889
Cars, electric lighting of railway, T. M. Foote..... 410.556
Denton... 410,883
Carriage, baby, R. McMakin............
Carrage brake, I. Whater.......................................40,720 410,963
Carriages, recon spring for babs. J. L. Fay......... 410,817
case.
Cash inđicator and register, Farrow \& Carson..... 410,685
Cash indicator and register, T. Munnell............ 410,603 CastIng pnotographic dry plates, machine for, M.
Kattentidt............................... 410,898
Ciling and sheeting strip, metallic, i. L. Sagen-
dorph.............................856 410,942
Chains, apparatus for making solid link, J. Rin- ${ }_{\text {der }}$ 10,712
Chains, making solid link, J. Kinder 410,711
Chair. Se Car or other chair. Dentist's chair.
valid chair. Window cleaning chair.
Chart, dress, J. Penley.

Checking and recording deverice. F. Sult............... 410,695
Checkrein hook, C. H: Dow........... 410,824
10.

himney copper. See Meat and vegetable chopper.
Chuck, drin, E. Mosle.... 418,601
Chuck for rodstor tubes. H. Rung................. 440.738
Churn, J. P. Ferrenburg...................... 410,84
Churn, J. P. Ferrenburg...................88888
Churn, F. H. Haman............................... 410,949

Clamp. See Cabinet clamp. Pipe clamp.
Clay washing machine, H. Woodcock............. 410,819
Cleaner. See Pen cleaner.
Clock case, J. M. Durward.......................... 410,825
Clock, recording thermometer, w. F. Brewster... 410,664 Clothes line holder for windows, H. A. Denman.. 410,787 Clutch, friction, J. G. Moony.... 410,76
Comb. See Curry comb.
Commode, earth closet, J. W. Stowell................. 410,813
Cooking utensil. W. Ward....................
Copy holder, G. Muir... 41
Cotton cleaner and distributer, seed, J. W.
Elliott.. 410,962
Crane, H. M. Barnhart...00,641
Crusher, W. Johnston.............

Useful, Beautiful, and Cheap.

THE PROPELLING MACHI ERY OF

ARTESIAN

RABIES.-BY RUSH SHIPPEN HUIDE

The Paris Exposition--llustrated.

BARREL, KEG, Hogshead, STAVE MAND MINERY. E. \& B. Holmes, PUMPING MACHINERY-ANCIENT and Modern A lecture by J. F. Holloway, delivered in

DERFECTimNSPAPER ILE

New York Belting and Packing Co.
15 PARK ROW, New York.
VULCANIZED RUBBER FABRICS
RUBBER BELTING,
Packing, Hose,

 ITALIAN CRUISER PIEMONTE.-BY

VOLNEY W. MASON \& CO. FRICTION PULLETS CLOTCHES and ELEVATORS PROVIDENCE, R.

LEPIDOCHROMY.-DESCRIPTION OF

WATER SOF'TENING.-A PAPER BY

FOREIGN PATENTS their cost reduce.

The expenses attendirg the procuring of patents in
most foreign countries having been considerably reduced the obstacle of cost is no longer in the way of a
arge proportion of our inventors patenting theirinven-
CA NADA.-The cost of a patent in Canada is even former includes the Provinces of Ontaric, Quebec, New
runswick, Nova Scotia, British Columbia, and Mani-

The number of our patentees who avail themselves of
the cheap a and easy method now offered for obtaining
patents in Canada is very large, and is steudils increas
ing.
ENGI, in N.-The new English law, which went into
torce on Jan. 1st. 1885, enab es parties to secure patents in Great Britain on very moderate terms. ABritish pa-
tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknow edged
Chatial
fnaucial and commercial center of the world, and her goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee
in Englana as tis United States patent produces for him at home. and the small cost now renders it possible
for almost every patentee in this country to secure a patent in Great Britaiu. where his rights are as well pro-
jected as in the United states. OTHER COCNTRIES.-Patents are also obtained ano all the other spanish Colonies), Brazil, British ludia An experience of Forty years has enabled the
publishers of THE Scientific American to establish competent and trust worthy ageךcies in all the principal
foreign countries. and it has always been their aim to have the business of the.r clients promptly and proper-
Iy done and their interests faithfullly yuarded.
A pamphlet containing a synopsis of the patent laws of all countries, including the cost for each, and othe
information useful to persons contemplating the pro-
\qquad
\qquad trade-marks, in this country or abroad. to call at their
offices, 361 Broadway. Examination of inventions, conoffices, 361 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly Address. MUNN \& CO..
Publishers and Patent Soli
361 Braser

The Sfienntic Americian PUBLICATIONS FOR 1889.

The prices of the different publications in the United
States, Canada, and Mexico are as follows:
The Scientitic American (weekly), one year . $\$ 3.00$
The Scientific American, Export Edition (monthly) ${ }^{5.00}$

The Scientific American and Ruplement,
The Scientific American and Architects and Build- $\$ 1.00$

Proportionate Rates for Six Months.
This includes postage, hhich we pay. Remit by postal
or express money order, or draft to order of
Jones Bros. E Co., Cin'ti.

THE COPYING PAD-HOW TO MAKE

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th 1877. No. 186,787

The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequence thereof, and liable to suit therefor.

PAINT YOUR ROOFS
 cover two or three times more surface and last four or five times longer than any other paint. Not affected by heat or cold or acids. Send for circular. JOS. DIXON CRUCIBLE CO., Jersey City, N. J. rldidanufactured by Cushman Chneli Co.,

PATENTS.

MESSRS. MUNN \& CO., in connection with the publi-
cation of the SCIETIFC A AEREAN Continue to ex-
amine improvements, and to act as Solicitors of Pateuts
for Inventors.
 preparation of Patent Drawings, Specifications, and the
prosecution of Applications for Patents in the United
States, Canada and foreign Countries. Mess. Munn \&
Co.also attend to the preparation of Caveats. Copyrights Co. also attend to the preparation of Caveats. Copyrights
for Books, Labels, Ressssues, Assinnments. and Reports
on Infringementsof Patents. All business intrusted to
them is done with special care and promptness, on very Aeasonamphlet sert free of charge, on application, con-
tainamg full information about Patents and how to procure them; directions concernirg Labels, Copyrights,
Designs, Patents, Appals, Reisues, Infringements, As-
signments, Rejected Cases. Hints on the Sale of Patents, etc. send. free of charge. a Synopsis of Foreign Pa-
We also send
tent Lasw, showing the cost and method of securing
patentsin all the principal countries of the world. MUNN \& CO., Solicitors of Patents,
361 Broadway, New York. BRANCH OFFICES. - No. 622 and 624 F Street,
alfo Building, near 7th
Street, Washington,
D. C.

Switch Boards, Armature Sleeves, BatteryCells, Insulating Washers, Insulating Parts for arc lights Incandescent Lights, Motors, Chandeliers, Dynamos, \&C. SH. W. JORENS styles and shapes to order. Prices on application.

87 MAIDEN LANE, NEW YORK.

THE PHONOPORE. - DESCRIPTION

 MOST SIMPLE RELIABLE BOILER FEEDER KNOWN.
 THE PHONOGRAPH.--A DETAILED

HBE Rille
braided packing, mill board, sheatelablely Fire Proof. braided paiking, hill boind, sheathing, cement, fibre and spleialties. BRANCHES: Phila, 24 Strawberry St. Chicago, 86 E. Lake St. PIttsburg, 414 Lewis Biock.
 B) IMPROVED STEAM GAGE STEAM ENGINE INDIOATOR
 INV ENTORS and otners desirin. nem articles manurac
tured and introducedadadress P. 0 . Box 86 . Cleveland, O
 OTTO GAS ENGINES

OTTO GAS ENGINE WORKS, Chicabo, Philadelphia THE LABORER AND HIS EMPLOYER

VAN DUZEN QAS ENGINE NO BOILER. NOCOAL.
NO ENGINEER.
No Extra WATER RENT or INSURANCE.
INSTANTLY STARTED. DURABLE, RELIABLE, SAFE and ECONOMICAL. Van Duzen Gas Engine CO.,

JACKET KETTLEES,

CANES AND STICKS USED IN THE

THE ONLY PRACTICAL Low-Priced Typewriter First-Class, Rapid, Durable, Business WORLD TYPEWRITER, 44 characters, $\$ 10 ; 77$ characters, $\$ 15$.

ANNOUNCEMENT!

WHF BDOKWNATWFR GABNING GO,
 ese castings are guar anteed to be sound and true to the pattern, and of unequaled tensile strength änd ductily
Address THE BOOKW ALTER CASTING CO., Springfleld, Onio.

 TO BUSINESS MEN. ries, and is read in all the principal libraries and reading
roomsof the world. A busines man wants something

 for the reason toat tne agent pets a arger commisision
from the papers having a smand circulation than is allow-
ed on the SCIENTIFIC AMERIC MUNN \& CO.. Publishers,

WORKING MODELS And Experimental

Scientific ${ }^{\text {Pur }}$ Imerican
The Most Popalar Scientific Paper in the World. Only 83.00 a Year, including Postage. Weekly.

This widely clrculnted and splendidly illustrate teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Enginzering Works, Steam Machinery, representing Engineering Works, Steam Machinery,
New Inventions. Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archiecture, Agriculture. Horticulture, Natural History, etc. Complete List of Patents each week.
Terms of Subscription.-One copy of the SCIENpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub lishers; six months, 81.50 ; three months, $\$ 1.00$. Clubs.--Special rates for seve
M asters. Write for particulars
Masters. Write for particulars.
The safest way to remit is by Pal The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay

MIUINN de CO.
361 Broadway, New York T EXI
Scientific American Supplement.
THe SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full papers, and accompanied with translated descriptions. weekly, and includes a very wide range of contents. It all the principal departments of science and the Useful Arts, embracing Biology, Geology, Mineralogy,
Natural History, Geooraphy, r rchæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining,
Ship Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Econo gineering, Agriculture, Horticulture, Domestic Econo
my , Biography, Medicine, etc. A vast amcunt of fresh lication. The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPIEMENT.
Price for the SUPPIEMENT for the United States and Canada. $\$ 5.00$ a year, or one copy of the SCIENTIFIC AM
ERICAN and one copy of the SUPPLEMIENT, both mailed for one year for $\$ \tau .00$. Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y..

Building Edition.
The SCIentific American Architects' and
Builders' Edition is issued monthly. $\$ 2.50$ a year. single copies, 25 cents. Forty large quarto pages, equa to about two hundred ordinary book pages; forming a ly adorned with elegant plates in colors. and with other fine engravings; illustrating the most interesting examples of mod
allied subjects.
A special feature is the presentation in and of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Specifications, Sheets of Details, Estimates, etc. have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all MUN N \& CO., Publishers,

361 Broadway, New York.
PRINTAING INKG,

