a WeEkly Jourval of practical information, art, science, mechanics, chemistry, and manufactures.

1. Longitudiual Section of Tunnel and Shafts. 2. Perspective and Plan showing Difference in Alionment in Shaft, East End of Siphon. 3. Building Inverted Arches, Shaft $\%$. 4. Pump, Aqueduct Slafts, THE NEW CROTON AQUEDUCT TUNNEL UNDER THE HARLEM RIVER.-[See page 165.]

ฐ̌ientific बhmericau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S. or Canada..One copy, six months, for the U. S. or Canada
One copy, six months, for the U. S. or Canada......................... 1500
One copy, one year, to any foreign country belonging to Postal Union, $4 \mathbf{0 0}$ Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the SCIENTIFIC AMERICAN, for a
Colonial bank notes. Address
anial bank notes. Address

The Scientific American Supplement

is a distinct paper from the Scientific amprican. The supplement is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, with Scientific american. Terms of subscription for SUpplement,
85.00 a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belongIng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers Ing to the Postal Union.
throughcut the country.
Combined Rates.-The Scientific american and Supplement
will be sent for dolars.
The safest way
registered letter
Australia and New Zealand.-The Scientific American and
SUPPLEment will be sent for a little over one year on receipt of $£ 2$ current Colonial bank notes.

NEW YORK, SATURDAY, SEPTEMBER 14, 1889.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT

No. 715.

For the Week Ending September 14, 1889.

Price 10 cents. For eale by all newsdealers.

STRONOMY.-A Portable Sun Dial.-A simple sun dial deter
mining the time by the altitude of the sun irrespective of th mining of the compass. -1 illustration.
II. biography.-Elias Loomis, the Physicist.-By H. C. Hover.An interesting note of the life and achievements of the eminent astronomer and meteorologist.
III. CIVIL ENGINEERING.-The Manchester Ship Canal.-The famous Manchester canal now approaching completion, the pro-
babilities of its future traffic, the docks in connection with it, and general notes of the progress of the work. -2 illustrations..
iv. mechanical engineering.-On Gas Engines.-By edward Delamare-peboutteville. - Commencement of an elaborate paper upon the history and progress of this line of in vention,with description of differentdevices.-15 illustrations.....
Recent Improvements in the Pulsometer. - Description of six new pulsometers of various construction, with illustrations of the same in section or elevation. -9 illustrations.. Wire Straightening Machine.-A wire straightening machine utilizing pulleys instead of dies for the purpose, avoiding the w
ing out of dies and the injury of the wire. -1 illustration.. ing out of dies and the injury of the wire.-1 illustration..
WHTALLURG Y.- Process of Preventing the Oxidation of Metals
while in a Heated Condition.-ByGEORGE W yckoff CumMIN and James henry coleman.-A process for heating iron o steel without injuring it by oxidation, preventing scaling of the surface and ot her deteriorating effects. -1 illustration.
VI. METEOROLOGY.-Luminous Night Clouds.-An appeal from the Berlin Observatory for volunteer observations of luminou the months of June and July.
Vil. military tactics.-Military Velocipede in France.-Pro posed use of the bicycle in war.-An article of much interest a the present day, describing the experiments now in progress in II. NAVAIL ENGINEERING.-Armor Plate.-The conclusion of his elaborate article, giving the further results attained wit tillery. -13 illustrations..
ix. PHYSICS.-Thermometers.-By Frank Browne.-An elaborat paper on the subject of the manufacture of thermometers, their uses, the differe
2 illustrations...
x. statistics.-The United States-Their Growth in Population in-Two Hundred Years.- A very interesting note of the increase extent 100 years from now
XI. TECHNOLOGY.-On the Puriftcation of Alcohol by Means of Hydrocarbons.-By W.S. Squire, Ph.D.-An exhaustive paper on this important subject in technology. disclosing a method of
purifying alcohol by the use of hydrocarbon oil. 6 illustrations.. purifying alcohol by the use of hydrocarbon oil.- 6 illustrations..
The Areing of Logwood.-An important article for the dye The Ageink of Logwgod.-An important article for the dyer
upon the importance for his uses of the age of logwood and influ-

11422

the new jet boat evolution.

A few weeks ago we gave an account of the new ex perimental 100 ft . boat Evolution, which is to be propelled by a high pressure water jet, and from which greatly improved results are expected by Dr. Jackson, the projector, and his friends. The propulsion of boats by expelling a jet of water from the stern is a very old idea and has often been tried, but heretofore with loss of speed as compared with the ordinary screw or wheel propeller. In all of these jet experiments, a large jet of water has been used at a comparatively low velocity. Jets varying from $51 / 2$ feet area to $71 / 2$ inches have been used.
In this new boat, the Evolution, now nearly ready for trial in this harbor, the propelling jet of water is to be only three-fourths of an inch in diameter, delivered under the enormous pressure of 2,500 pounds to the inch. This is a novel and striking departure from the old methods. The builders confidently expect the new system will revolutionize the art of steam navigation and render useless the employment of the present cumbersome forms of marine engines, propelling screws and wheels. That a tiny stream at high pressure should be more effective in propelling boats than a large stream at low pressure is generally denied by the best engineering authorities. The new boat has been constructed to work in almost direct contradiction to the theories and calculations of Rankin and other naval scientists.
The following, by Mr. S. Alfred Varley, may perhaps be regarded as an explanation of the scientific basis upon which the new enterprise rests.
"In the transmission of energy hydraulically, there is a loss of useful energy arising out of the fact that the energy has to move the vehicle of its transmission bodily, and this general law would seem to prevail in all cases, viz., the higher the potential, i. e., the greater the amount of energy to the weight of its vehicle, the more complete is the transmission.

As an example of what seems to be a general law, consider the transmission of energy mechanically by means of a long wire passing over pulleys and moved rapidly in alternate directions; the overcoming the inertia of the wire and the pulleys, and the friction encountered, will consume energy. Let it be assumed the waste from the above causes equals 50 per cent of
the energy, if the wire and the pulleys can be reduced to half their weight, the inertia and the friction will be correspondingly reduced, and 75 per cent, instead of 50 per cent, would be transmitted
'The same general principle to that above mentioned, in reference to the transmission of energy by means of a wire, holds good with hydraulic transmission, and also with steam engines.

When energy is transmitted to a distance hydraulically, the greater the amount of energy associated with the water moved, in other words, the higher the potential or pressure employed, the greater the percentage of energy transmitted and developed as work at the distant station."

THE SCIENTIFIC MEETING AT TORONTO.

The American Association for the Advancement of Science proves its continental character by occasionally crossing the line into Canada, and whenever it does so, it is sure of a hearty greeting. Nowhere has this important society met with a more cordial welcome. Toronto has 180,000 inhabitants, every one of whom believes the Behring Sea to be an open sea and the British flag to be the most glorious of all national emblems. And yet at the grand reception given to their guests, August 28, at the Pavilion in the Horticultural Grounds, they found a number of star-spangled banners, which they alternated with their own with beautiful effect. This was all the more appropriate because every State in the Union and every Province in the Dominion was represented in this scientific congress. It may be added that many of the master minds of the age were in attendance.
Conspicuous on the platform were seven individuals who had been honored as presidents of the Association, namely, Professors Dana, Hall, Barker, Newton, Dawson, Morse, and Mendenhall. In the absence of the retiring president, Major Powell, whose duties in connection with the reclamation of arid lands detained him, the chair was taken by the venerable Prof. Dana, who, after brief remarks, surrendered it to the president, elect, Prof. Mendenhall, recently of the Rose Polytechnic Institute of Terre Haute, but now at the head of the United States Coast Survey.
The Association was formally welcomed to Toronto by the mayor of the city, the Minister of Education, the Chancellor of the University, and other dignitaries. To these the chairman replied. Of course these speakers could hardly avoid making some reference, mostly in a humorous vein, to the existing complications between the two adjacent countries.

But Prof. C. S. Hill, vice-president of the section of economics and statistics, made quite a sensation by his opening speach on the "Relations of the Canadian States and the United States." He thought it remarkable that the former people should not unani-
terprising people as ourselves. There can be but three Americas-north, central, and south; and eventually there will be but one people from the Atlantic to the Gulf, bound by inseparable ties of language and consanguinity. He denounced strongly the policy of free rade as long as Canada remained a part of the British empire, and contrasted the bitter racial and religious antipathies existing under a cold monarchical sway with the obliteration of such rivalries in a republic. And so he went on to prove conclusively that "there is no future for Canada but in union with the United States, which is to-day the first in industry, education, and wealth among the nations of the world "-all of which is doubtless true enough, but of a nature to provoke sharp criticism from the Toronto pres.
The other opening addresses before the several sections were on less exciting topics. Prof. Woodward addressed the section including mathematics and astronomy on the "Mathematical Theories of the Earth," as to its shape, size, constitution, distribution, of its mass, internal heat and secular cooling, crust movements, and sundry theories of cosmogony. Prof. Carhart, before the section of physics, reviewed the "Theories of Electrical Action." Electrical applications increased so rapidly that only experts could keep pace with them, although they awoke universal popular interest. He expressed the hope that electricity and magnetism might yet be obtained from sun light. He gave a retrospective view of work done by electricians during 225 years, most of which period was barren. Maxwell's translation of Faraday's ideas into mathematical language, 16 years ago, marked an epoch. Nothing further seems to be necessary to prove the electro-magnetic theory of light than the astounding facts that electro-magnetic waves are reflected from the walls of a room, and that an iron post casts an elec tro-dynamic shadow. Electricity annexes the domain of light and radiant heat. Henceforth, luminiferous ether must always have place in language describing electrical phenomena.
In the section of anthropology, the opening address by Vice-President Garrick Mallery was an effort to show a strong similarity between the Israelite and Indian races. He discussed their ideas of religion and planes of culture, announcing the fact that revelation, which is usually claimed as antedating religion, is the last step in its evolution, being the point where the mind clings to faith as a final refuge from doubt, that is for so many the synonym for despair.
In the chemical section, Prof. Dudley, of Nashville, discussed "Amalgams." His paper was highly technical. He asserted that work done hitherto on amalgams was very desultory, zealous investigations being usually cut short with lame results, whereas it is vitally important for us to continue our own lines, as well as those begun by others, to legitimate conclusions.
'Protoplasm, or Living Matter," was the theme on which Prof. G. L. Goodale opened the biological section. He said that the term protoplasm was familar to all. He reviewed the history of researches as to cellular tissue from 1667 down to the present time. Cohn and Unger have shown that the protoplasin of vegetable cells was identical with what had been already observed in animal structure. Recent observers have made fresh examinations throwing light on the mechanism of its movement and its mysterious power of spontaneous motion.

The address before the section of geology and geography, by Prof. C. A. White, was on the North American Mesozoic, a subject he has made his special study. The rocks occur along the Atlantic and Pacific coasts as well as in the interior, and rest unconformably upon various formations. The Atlantic Mesozoic consists of a representation of the Upper Trias of Europe, the Upper Jura, and Middle and Upper Cretaceous. The Mesozoic rocks are so widely separated that, as we go westward by way of the Gulf States, we find none till we face the 100 th meridian. No Triassic rocks exist within the 30,000 square miles of Texas and the Indian Territory which some geologists say are wholly occupied by such rocks. The "red beds" upturned against the Rocky Mountains, which by common consent have been referred to the Trias, and are several thousand feet thick, are non-marine and as a rule barren of fossils. The evidence is meager to prove their Trissaic age. The break between that age and the Paleozoic of North America occurred while the living forms of the latter were far in excess of the former. Hence the Mesozoic limit must coincide with the earlier or later Trias. We are unable to designate closely its upper limit in the interior and Pacific regions, but in the Atlantic coast region it is where the marine Eocene rests on the UpperCretaceous. The speaker in conclusion advanced certain propositions which involve the common methods of paleontologists, who assume to be able to determine precisely the age of any and all fossils without reference to stratigraphy, and who also use European classification as if it were of infallible application to all other parts of the world. The forma. tions of any given continent ought to be first inves. gated with relation to each other, and afterward in correlation with those of other continents.

Major J. W. Powell's address as the retiring president (read in his absence by Prof. Gilbert) was heard by a vast audience convened in the Pavilion. It was on the "Evolution of Music-from the Dance to the Symphony." It was an hour and three-quarters long, and abounded in learning, wit, and poetry. Indeed, the remark was made by one of his illustrious predecessors, in whose footsteps he did not tread, that the address would have been more suitable for an association for the advancement of poetry than of science. Among the things said by Major Powell were these : The laws of biotic evolution do not apply to man. Human classification is by culture, and culture is the product of endeavor. Of this the evolution of music is an illustration. In it there is no survival of the fittest, for many a screaming soprano holds her own in opera, and many a wretched fiddler ranks as first violin in orchestra. No adaptation to environment, for many a choice musician comes from families where music is lightly prized, while thousands of dollars are vainly lavished on those that "have no ear." A Jenny Lind or a Nilsson will sing as sweetly in Louisiana as in Sweden.
The fact is that music is the invention of mankind. There are four germs for the four fine arts. Fetish carving is the germ of statuary; tattooing of painting; mythology of the drama; and the dance of music. All art is symbolic. How did music grow? The rhythm of motion became the rhythm of emotion. The rockleaved bible of geology tells us of the sylvan man who moved in figures of harmony while his voice kept time. Then came stress. Then pitch. The egg of poetry was laid, and of melody; for they were both born of the dance chant. At last the child is emancipated, and music is no more chained to terpsichorean feet. Savages see mystery everywhere and people earth, air, and sea with gods, whose acts are presented in the drama. Even in civilized lands the highest and best men ponder the problems of creation ; and the mythic dramas of savage life become the oratorios of the Christian. Harmony is the combination of melodies; and symphony is a sequence of harmonies. Science comes to make music sublime. Instruments are made that go beyond the limits of the voice and thus enrich all occasions.
From the primitive fire-light dance come the folksongs, cradle-songs, love-songs, war-songs, songs of patriotism and songs of Christian hope. Music thus comes to be the language of the soul as stirred by the glories of the universe. Is there a new music of the future? Science says yes. We know that music has been chained to form and imprisoned in the Bastile of musical intervals and guarded by the henchmen of dogmas. But a few great composers, like Wagner, have broken the chains, and burst the bars and killed the gaolers, and they sing their liberty in strains of transcendent music.

the sewage disposal problem.

As cities increase in size, the problem of sewage disposal becomes a more and more difficult one to solve. The English sanitary engineers, with a densely populated country, including the largest city in the world, as a field for experiment, have probably performed more experiments on an actual working scale than have those of any other nation. Chemical treatment has been tried in an endless variety of forms. The A B C process, named from the initials of the substances used in carrying it out, alum, blood, and charcoal, at one time had an extensive application. Now the tendency is toward the use of chemical salts alone, aluminum, iron, and calciuin compounds being most in favor. Precipitation is assisted by the addition of comparatively small amounts of these salts, perchloride of iron, alum, milk of lime, and others being in use in various places. After treatment with chemicals, the sewage is left at rest to deposit its solid matter. The effort is to obtain the latter in as compact a form of "sludge" as possible, and during its precipitation to deodorize the liquid portion, so that it may be disposed of without offense.
The engineers interested in this problem seem to have had very Utopian ideals. Their object has been to dispose of sewage without offense and at the same time profitably. The first of these ends is easy of attainment, the latter is probably impossible to achieve. The great problem is how to separate liquid and solid. This once done, the solid can be desiccated and disposed of as easily as ashes or any other form of refuse. The liquid can be used for irrigation.

Where chemicals are not used, the separation can be effected mechanically. Upward and downward filtration may be used in connection with and supplement ary to settling in subsidence tanks. The trouble in purely mechanical treatment is the odor of the effiuent water. A proper and sufficiently thorough application of chemicals only can remove the odor. The necessity of perfect deodorization is most felt in the case of towns and cities in the interior. Dilution is a great panacea for this trouble, but is only practical near large bodies of water. Inland cities have to produce
as clear and innocuous a filtrate as possible. Mechanical filtration alone will not effect the desired result.

In England the disposal of the effiuent from filtraion or precipitation is conducted by irrigation to a very large extent. On the Continent the same system has been adopted, notably in the case of the city of
Berlin. Overground irrigation upon plowed field Berlin. Overground irrigation upon plowed fields seems to be very effectual. In this country subsoil
irrigation is used in an immense number of localities, principally by private houses and hotels, and meets with excellent success.
The sludge or solid matter remains to be got rid of. The constant effort to make sewage farms profitable and to make sewage a source of revenue to the corporations of cities producing or disposing of it, has to a certain extent caused an erroneous view to be taken of the matter. The conclusion is gradually forming in the minds of engineers that sewage sludge is of little value. The hopes so long entertained of putting it into marketable form, so that it would be in demand as fertilizer, seem doomed to disappointment. From many places the same story comes; that sewage works
are a source of expense, and that the sludge, fortunately very small in amount, is of practically very little or no value. In London the same attempt has been made to profitably dispose of the solid matter, but it has had no success. It was collected and pressed into blocks at a cost of $4 s .6 d$. a ton. In this form it could not be sold at even a nominal price. Farmers would
have none of it. Pressing was abandoned, and some of it is now delivered in the wet state as compactly as possible into tank steamers. In this way some three thousand tons a week are carried beyond the Nore and are deposited in the German Ocean. The cost is put at $6 d$. per ton. This is by no means all of the solid matter of the London sewage. A great quantity still goes into the Thames, polluting its waters. In the case of a vessel that went down in the river below London, some years ago, it was related that the death of some of the passengers was caused by the poisonous exhalations from the water rather than by simple drowning.
Sludge from a chemical precipitation works in the neighborhood of this city was recently tried upon a farm in comparison with ordinary manure. The conclusion reached was that it was of more harm than
good, and that the land without manure did better good, and that the land without man
than that which received sludge alone.
This, then, may be said to be the present aspect of the sewage problem. Money must be spent to get rid of it. The efforts of engineers should be in the direc tion of economical disinfection and deodorization; profit should be out of the question. The problem is one of growing importance. If the facts above nutlined are realized, the problem will be more effectually grappled with than where the idea of sewage having a monetary value prevails.

The Mexican Tuna.

In the West American Scientist Mr. Edward Palmer writes entertainingly of the fruit of the opuntia, or tuna, as it is called in Mexico, where it forms the principal article of food for many of the natives during several months of the year. The tuna of the Mexicans
must not be confounded with the opuntias found in southern California and Arizona. Many valuable varieties of opuntia are found growing in the cactus belt of Mexico, and seeds of some of the most desirable were furnished originally by the United States Department of Agriculture. When new varieties are produced by artificial crossing and selection, as great improvement may be expected as has been made with other
cultivated fruits, but the different varieties now have cultivated fruits, but the different varieties now have no distinctive names. This cactus requires little care, and thrives on almost any soil, but it reaches its best condition on the table lands of Mexico. A piece of the plant laid on the surface of the ground will take root and grow; it will endure considerable cold, and the most protracted drought only seems to increase the sweetness of the fruit. When gathered, the fine spines
on the surface of the fruit must be removed, so that it on the surface of the fruit must be removed, so that it can be handled without inconvenience. The skin is then removed, leaving the pulpy meat exposed in a most tempting manner. It is specially adapted to the
breakfast table, having something of the watermelon breakfast table, having something of the watermelon
flavor, with a suggestion of strawberry. Tuna is abundant and cheap in the market from June till November. It is finding its way along the frontier of
the United States, and is already on sale in Jacksonville and other Southern cities.-Garden and Forest.

Egyptian Discoveries.
Before the Victoria Institute M. Naville recently gave an account of his latest Egyptian discoveries.
The lecturer gave a description of his discovery of Bubastis, where he unearthed numerous inscriptions dating back to the Fourth Dynasty, among others some referring to Cheops, showing that he reigned over all Egypt, some to the invasion of the shepherds of hyksos, who. from some of their monuments found, were clearly highly cultivated, and came from Mesopotamia. Among their statues unearthed were two of
Apepi, the Pharaoh of Joseph, also inscriptions in reApepi, the Pharaoh of Joseph, also inscriptions in re-
gard to the Pharaoh of the Exodus, and others of high interest.

Albumen Transparencies.
Transparencies by the albumen process are still unsurpassed by those of any other, and it is in this direction that the process has mainly been employed since the introduction of collodion. The famous stereoscopic slides of the late M. Ferrier, made more than thirty years ago, are as good as, if not better than, any that are made now, notwithstanding all the modern improvements in photography. Indeed, even now, albu men transparencies are looked upon as the standard of perfection, for it is seldom that more is claimed for any process than that "it is nearly, or quite, as good as albumen" - never that it is superior.
A glass plate, after being carefully cleaned, is coated with iodized collodion of a somewhat porous or rotten character. It is then washed in water to remove the ether, alcohol, and iodide. After draining, the iodized albumen is poured on and allowed to soak well into the film. The plate is then reared on end to dry. By the way, all these operations may be conducted in open daylight. .The collodion, it may be mentioned, acts purely mechanically, and takes no part in the formation of the image. The plate, when dry, is sensitized in a silver bath, strongly acidified with acetic acid. Forty-five grains of nitrate of silver and forty-five ninims of acetic acid to the ounce of water are the proportions usually adopted. The plate is then washed and again dried. The exposure is generally made by contact printing. In the earlier days of the process
the development was by means of gallic acid, but the the development was by means of gallic acid, but the more modern method is with acid "pyro," used warm. After fixing in hyposulphite of soda the image is toned with gold to the color desired.
The principal charm in albumen transparencies is the extreme brilliancy and transparency of the shadows. -British Journal of Photography.

A Spider-hunting Wasp.*

Not long since, while I was enjoying a siesta on the porch, my attention was suddenly attracted by seeing a very large spider running up the body of a tree about ten feet away. The spider seemed to be very much excited, and, after he had run up the body of the tree about six feet, he ran out on a side limb, and, after he had gone about eight feet out on this limb, he dropped off to the ground. No sooner had he struck the ground than he commenced a headlong flight through the grass of the lawn. After he had run about five feet on the ground, I saw a very large wasp, about two inches long, following the track of the spider on the tree. The wasp was running and flapping his wings in a nervous manner, but was not flying at all. In a few minutes the wasp arrived at the spot where the spider had dropped off, which, by the way, was about ten feet from the ground. Here the wasp became very much excited, and ran rapidly back and forth about a minute. Then he took flight, flew to the root of the tree, where I saw him at first, and ran up the track
again. Soon he arrived at the jumping-off place, and again boon he arrived at the jumping-off place, and and flacame very excited, running round and round, stopped, and appeared to be thinking. Certainly his actions bore out this conclusion, for he closed his wings and dropped off the limb, just where the spider had dropped. A rriving at the ground, he recommenced the search, and, after a few futile attempts, he struck the scent, and away he went, just exactly as a hound would have followed a deer. After running about ten feet on the ground, he overtook his prey.
The spider either saw or heard his enemy coming, for, without waiting to be overtaken, he threw himself upon his back, with his feet in the air, and in this posture awaited the attack. The wasp lost no time in beginning, but, to my surprise, seemed to be somewhat afraid of the spider. The wasp took to his wings, and would fly round and round the spider, and would now and then make a sudden thrust at him. The spider would, at these times, jump forward and seemed to be trying to catch the wasp. The wasp was too agile, however, to be caught. Suddenly the wasp made an attack, stung the spider, and in less than half a second the spider was perfectly dead. Electricity could not have killed him quicker. The wasp, after satisfying himself that his prey was dead, sat on the grass near by and proceeded to rest himself, for his violent efforts had exhausted him. After resting about two minutes he approached the spider, and, after examining him critically with his antennæ, straddled him, and proceeded to bear him away.
Just here I put in a say-so, and captured wasp and spider, and immolated both to my scientific curiosity. This occurrence would seem to show that the wasp can track by smell, and can likewise reason, else why did he drop from the limb? I regret to say that I neglected to keep the spider and observe whether he had been really killed, or only put into the lethargic condition into which our dirt daubers put their spiders.
I am not versed in entomology sufficiently to give the technical names of either wasp or spider. The spider was very large, his abdomen being about half an inch long.
*By L. S. Frierson, Frierson's Mill, La., in Popular Science News.
an Improved road cart.
A two-wheeled vehicle designed to greatiy lessen the disagreeable jogging motion ordinarily imparted by the movement of the horse is illustrated herewith, and has been patented by Mr. E. W. Doo-

doolittle's road cart.
little, of Garden Grove, Iowa. By this invention short shafts, secured to the axle and supporting the seat, arepivotally connected with long shafts, springs being interposed between the long and the short shafts, and the lugs by which the pivotal connection is made have different apertures for changing the pivotal point to regulate the pressure on the springs. The latter are attached to the short shafts just back of the ends of the long shafts, on the ends of which they bear and are held in place by a hook-like iron strap. To a transverse beam connecting the ends of the short shafts are similar springs, which are connected at their other ends with the bent bars that support the platform or foot rest, these bars at the rear of the platform being bent upward and then rearward, where they carry the seat. The latter is slotted, and attached by bolt with thumbscrews, to allow for shifting it forward or backward as desired. The rear of the platform or foot rest is hung from the short shaft by means of a coil spring, such attachment being adjustable in different positions on the shaft by means of a ring bolt and thumbscrew, whereby the position of the spring may be changed according to the weight carried. The principle of this invention is also intended to be applied with a pole as well as with shafts.

AN IMPROVED DUMPING CAR.

A car arranged to be dumped from the engine, by means of compressed air or steam, is illustrated herewith, and has been patented by Mr. Joel H. Gearhart, of Leadville, Col. The car body is hinged to the platform or truck, and beneath the platform, to one side of the center, is mounted a vertical cylinder in which works a piston having an outwardly extending stem to which there is hinged a connecting rod or link, the outer end of this link being hinged to the car body. In connection with the cylinder are arranged two systems of pipes, a pipe from one system entering the cylinder above the piston and one from the other system entering the cylinder below the piston, and these systems are connected with a compressed air reservoir carried by the locomotive, or with the steam supply. In the two systems are arranged valves, preferably such as employed with the Westinghouse automatic brake, whereby, on the admission of steam or compressed air to the bottom of the cylinder, the piston will be raised

gearhart's dumping car.
to tip the car body, as shown in the illustration, the car body being returned to its normal position by the admission of steam or compressed air to the top of the cylinder. Couplings are provided whereby any number of cars may be connected in such a system, and the engineer can dump the cars and return them to normal position while the train is in motion as well as when it position w

king's bridge gate for drawbridges.
plate of the boiler, these pipes having downwardly opening apertures. The arrangement of the valve is such that by moving its lever into one of the notches in the segment, the water and steam from the boiler pass into the transverse pipes and are thrown down on

MICHELL'S BLOW-OFF COCK AND FIRE EXTINGUISHER. to the track over which the locomotive is passing, as shown in the illustration, while by moving the lever to another notch, when it is desired to use the device as a blow-off cock, the larger part of the water and mud will pass out through the front open end of the valve body. For further information as to this invention address Messrs. Geo. M. Dilley \& Son, Palestine, Texas.

AN IMPROVED ROOFING TANK APPARATUS

An apparatus especially designed for transporting tanks or kettles for melting tar or other substances employed in roofing or sheathing buildings is illustrated herewith, and has been patented by Mr. Charles Burkelman, of No. 32 Sullivan Street, New York City. The apparatus includes a main four-wheeled truck, with its rear axle bent downward at the center to permit of the entry of a tank or kettle, for which there is an opening made in the rear part of the truck platform, there being a removable tail board to be applied after the tank is in place on the truck. The tank is supported at the place of use by a detachable truck, the bed of which has a general triangular form, and is sustained on a skeleton frame by two wheels at the front, and at the rear by a pilot wheel journaled in a bearing swiveled to a bracket bolted to the narrow end of the triangular frame. The bed is made of metal plates turned upward and inward at their ends to form hooks adapted to receive a flange formed at the bottom of the tank. The main truck is to be backed on to or around the detachable truck containing the tank, the main truck platform being cut away at each side of the opening the lever, and the weight of the bridge bar or barrier for the tank to permit of its easy entrance. Four carries it down to the position shown in dotted lines, to close the bridge to travel. A prop is provided on which the extended end of the bar or barrier rests when in position across the roadway, such a gate being arranged in connection with each end of the draw

AN IMPROVED BLOW-OFF COCK AND FIRE EXTINGUISHER.

A device to be used on locomotives for cleaning the boiler, and at the same time serving to sprinkle wooden structures in the track, such as bridges, ties, trestles, etc., to prevent their being set on fire, is illustrated herewith, and has been patented by Mr. Lucius E. Michell, of Palestine, Texas. The device, shown in section in Fig. 1, is preferably secured to the lower part of the front end plate of the boiler, and has a valve body provided on its inner end with a valve seat leading to a longitudinal central opening. An inwardly opening valve is held on the seat, and has wings extending inward into the central opening, the inner ends of the wings being connected with a central valve stem, carrying a piston sliding in the central opening. The outer end of the piston rod is pivotally connected with an arm secured on a shaft mounted to turn in suitable bearings on the front plate, as shown at 2 in the main figure. On this shaft is also an upwardly extending lever carrying near its hundle end a catch adapted to engage a notch formed in a segment projecting from the front plate of the boiler. In the valve body is an annular chamber connected at its bottom with a hollow offset from the ends of which extend pipes in opposite directions across the lower part of the front end

BURKELMAN'S PORTABLE ROOFING TANK APPARATUS.
sustained in bracket bearings bolted to the truck platform. Both ends of the transverse shaft are squared to receive the eye of a crank for turning the shaft and operating the screws to raise or lower the truck platform. The screws will ordinarily be turned to lift the platform and tank from three to five inches, or sufficient to take up the depression of the truck springs from the weight of the tank, when the detachable truck may be rolled out from under the tank and placed on the main truck.
rheostat and resistance column.*
Besides the carefully constructed resistance boxes ased in making electrical measurements, the electrician

Fig. 1.-German silver rheostat.
requires adjustable resistances for heavy and light currents, which need be only approximately accurate. These instruments are also a necessity to the electroplater and to users of dynamos and batteries generally.
Fig. 1 illustrates a simple rheostat for heavy currents. It is designed to be introduced into the field magnet circuit or the external circuit as circumstances may require.
This rheostat consists of a series of Ger man silver spirals arranged in a circle, beginning at b and ending at c. The lower end of the first coil is connected with the upper end of the second, the lower end of the sec ond is connected with the upper end of the third, and so on throughout the series.
On the top of the wooden frame which supports the spirals is arranged a switch formed of a series of brass or copper blocks arranged in a circle and separated from each other by a space, and a swinging arm pivoted at the center of the box and carrying at its free end contact springs adapted to press upon the blocks.
The block, a, is isolated from the other parts of the rheostat, and serves as a rest for the switch arm when the circuit is open. The block, b, is connected electrically with upper end of the first coil, and the next block is connected with the top of the second coil, and through the straight wire with the lower end of the first coil. The spirals are all connected in this way.
The rear binding post is connected with the pivot of

Fig. 2.-Resistance column.
the switch arm, as indicated by the dotted line, and the one at the front of the frame is connected with the block, b.
When the swith arm is on the block, a, the circuit is broken; when it is on the block, b, the current passes from the farther binding post to the switch arm, thence through the block, b, directly to the first binding post without passing through any of the coils. When the switch arm is placed on the next block, the current passes downward through the wire connected with the ower end of the first coil, then upward through the coil to the block, b, thence to the binding post.
By moving the switch arm forward, the contact *From "Experimental Science," by Geo. M. Hopkins. In press. Munn \& Co. publishers, New York.
springs carried thereby are made to touch one block after another, thus introducing more resistance with each additional coil included in the circuit.
The first coil thrown into the circuit should be of heavy wire, say No. 14 or No. 16, and the second, third, and fourth should be somewhat smaller. The wire of the entire series of coils might be graduated to advantage if the various sizes required are available.
The resistance of German silver wire is about ten times that of copper. If German silver wire cannot be conveniently procured, iron wire may be substituted. In this case the coils will have to be longer.
Eisenlohr's column of resistance, shown in Fig. 2, is inexpensive and very convenient. It consists of a cylinder of mahogany or other compact wood, having six or more grooves cut in it. The cylinder is saturated with paraffine or varnished with shellac, and the spaces between the grooves are bound with brass bands. A little brass bar, turning on a screw, is made to extend from one ring to the other, as shown. These bars are slightly bent so as to press with some force upon the bands. Covered wire of a known resistance is wound in these grooves, the shortest length containing the given unit once or an even number of times.
The length of the coils of wire in the successive grooves increases from 1 to 6 ; the ends of each wire are soldered to the two nearest bands, the upper band being connected with the screw, a, and the lowest with b. When this column is inserted in a circuit, the current passes from one ring to another through the bars, whose resistance is inconsiderable, but when one of the bars is turned aside, as shown in the engraving, the current passes through the intervening coil.
Coils of approximately $1,2,3,6,12$, and 24 ohms resistance may be made by winding copper wire of the sizes and lengths given in the successive grooves as follows :

Ohms.	Ft.		Ohms.	Ft.			
1...	3712 No. 24	Am. W. G.		56	No. 30	Am.	. G
2.	75 No. 24	" "	$12 .$.	701/3	No. 32		"
3.	28 No. 30	" "	24.	1401/2	No. 32	"	"
4.	3714 No. 30	" "					

AN IMPROVED OIL CAN.
The accompanying illustration represents what is

the rau patent oil can.
styled the "Perfection" oil can, of the Rau Patent Oil Can Company, Nos. 42 and 44 Michigan Street, Chicago, Ill. It is designed to save the time of the engineer and the mechanic using it, and to absolutely prevent any waste of oil. The construction of the can will be readily understood from the view given, the interior being shown within the broken-away lines, while the thumb piece by which the valve is operated is shown in the small view. The practical operation of the can is based upon the well known fact that, owing to the normal air pressure, the flow of any liquid from a closed vessel is almost entirely dependent upon the simultareous admission to the vessel of a volume of air equal to that of the liquid discharged. Without such coincident admission of air, it would require a pressure of from fourteen to fifteen pounds per inch to force the liquid out of a closed vessel. In this can the admission of air to the interior of the can is effected by air holes in the push stem, by which the lever is operated to open a valve covering the inner end of the spout. The valve is mounted upon the end of a lever pivoted upon a center rest, the valves being made of polished brass, white metal, or leather, as preferred, or brass faced with leather, and are absolutely air tight, so that the instant the thumb pressure is removed from the button on the push stem, not a drop of oil can escape. The valve is firmly held to its place by lateral springs, made of a single piece of fine piano wire, coiled around the outer ends of the center rest for valve lever, the valve, the center rest, and the valve lever being all carefully grooved and fitted, so that the operation will be perfect and there will be no side motion lost. The end of the lever connecting with the valve is so made that no pressure is put on the rivet, the lever itself resting on the valve, and not on the rivet, when the can is closed, and should the valve become detached, it could not rest on the valve seat. The spring upon the push stem is of brass spring wire, so gauged and tempered as to retain its elasticity in any position, and it has a play of five-eighths of an inch, thus giving a similar play to the valve to allow of a full flow of oil when the stem is pressed down. With this can, no matter in what position it is held, the oil does not flow until the push stem is pressed down, affording great advantage in oiling
parts of machinery difficult of access, where the engineer or machinist frequently has to waste oil, when using the ordinary cans, in order to reach the parts desired. Also on the removal of the pressure from the push stem the flow of oil instantly ceases, the amount

CARSON'S ARC LAMP.
[For description see page 164]
of oil remaining in the tube being held there ready to drop immediately when the tube is again pressed, thereby effecting a great saving of time. The oval shape in which the can is made is said to give general satisfaction, and they are regularly manufactured of the best charcoal tin, although special sets are made to order of brass or other metals.

IMPROVED LOCK AND SHACKLE FOR RAILWAY SWITCHES.
The device illustrated herewith is designed to prevent the possibility of switches to sidings being left open by switchmen and train hands, providing for holding the operator at the switch until it is moved to a position to open the main line. This invention has been patented by Dr. William H. Caine, of Stillwater, Minn. The switching rails are connected by a tiebar that leads to a crank on the target rod, the latter being supported by a switchstand having an operating lever formed with a folding handle adapted to enter recesses in the table of the stand. Beneath the stand is a box or case, preferably of sheet metal, into which the lower end of the target rod extends, where it is connected to a disk having a notch or recess in its peripheral face. In connection with the disk is arranged a vertical locking bar, with a key adapted to enter the recess in the disk, the lower end of the bar being pivotally connected to a lever. This lever is fulcrumed horizontally in the case, its other end being connected to a vertical plunger, on one end of which is a spring abutting against the bottom of the case, the upper end of the plunger extending through the top of the case and carrying a step or platform. At each side of the plunger are pivoted shackles, with inwardly extending arms, and jaws which close as the plunger is depressed, and open as it rises. To open the way to the siding, the switchman places his foot on the step, when the depression of the plunger causes the shackles to grasp his ankle, and the simultaneous lifting of the locking bar at the other end of the horizontal lever lifts the key out of engagement with the disk connected with the

(CAINE'S SAFETY LOCK AND SHACKLE FOR SWITCHES.
ower end of the target rod, when the switch rails may be turned, and may be locked in such position by turning the handle of the operating lever downward to enter a recess in the table of the stand. The shackles
will thus be locked upon the ankle of the switchman until the switch rails are again moved back to a position to open the main line, when the key of the vertical locking bar again enters the recess in the disk connected with the target rod, the spring forcing the plunger rod up, and the shackles opening to release the switchman.

NEW ARC LAMP.

The most prominent feature of all modern lamps is their vertical height, and yet where a lamp is required to burn all night this height is insufficient to permit of using carbons long enough for all-night illumination. In such lamps two pairs of carbons are used, one pair being burned until exhausted, when the other pair is automatically switched into the circuit, thus necessitating the adjustment of two carbons, and involving a serious waste in the way of carbon stubs.

The accompanying engraving shows a lamp recently invented by Mr. R. D. Carson, of Philadelphia, Pa. In this lamp a great length of carbon is contained in a small space, thereby permitting of the construction of a compact and symmetrical lamp which will burn throughout the night without the necessity of employing two pairs of carbon rods and shifting mechanism for transferring the regulator from one pair of carbons to the other.
Owing to its compact form this lamp is well adapted for indoor lighting. It has the advantage over the ordinary arc lamp in forming the arc in a horizontal plane, with nothing below the luminous point to obstruct the light. Its small size permits of making it very ornamental, and the length of its carbons renders it unnecessary to renew them oftener than once in two or three evenings, unless the lamp is used for all-night illumination. The vertical height of the lamp permits of using it in places where lamps employing ordinary straight carbons would be inadmissible.
The lamp is arranged to hold two curved carbon rods at an angle in relation to each other. Fig. 1 shows the complete lamp in operation, and Fig. 2 is an enlarged detail view of the interior of the lamp and the carbons, showing the arrangement of the regulating mechanism. The solenoid in this lamp is composed of two parts, the outer one being of coarse wire and arranged in the main circuit, the inner part being made of fine wire and connected in a shunt around the are in the usual way. The two coils of the solenoid are connected so as to produce opposing effects upon a soft iron core.
The core carries a plate which supports a friction disk by means of springs, and a prolongation of the core carries a pinion which engages the bevel wheels on the carbon-supporting shafts. When the current is normal, the friction disk is carried upward by the movement of the core as it is drawn into the solenoid, thereby bring ing the friction disk into contact with a frictional sur face upon the lower end of the solenoid. This holds the carbons in a fixed position until the arc lengthens, when a greater proportion of the current goes through the fine wire of the solenoid, thus neutralizing the effect of the coarse wire coil, releasing the friction disk, and allowing the carbons to approach each other by their own gravity.
As soon as the resistance of the are is reduced, the amount of current passing through the fine wire is diminished, when the current in the coarse wire of the solenoid draws the core up and checks the movement of the carbon rods by frictional contact of the disk against the frictional surface of the solenoid. When the carbons are in contact, the arc is formed by the upward movement of the core of the solenoid after the friction disk is in firm contact with the lower end of the solenoid.
The core is provided with spiral ribs which are capable of sliding through slots in the friction disk, so that after the latter comes to rest, the further upward movement of the core causes it to turn sufficiently to separate the carbons and form the arc.
Further information regarding this compact and simple lamp may be obtained by addressing Mr. R. D. Carson, Zoological Garden, Philadelphia, Pa.

Cotton Manufacture in Brazil.

The manufacture of heavy brown cotton goods in Brazil is developing gradually and successfully, says Industries. Even now both Great Britain and the Uuited States of North America are considerably in jured in their sales of such goods. It is feared, when the manufacturers in Brazil have attained a little more skill and perfection in this industry, that their goods will drive all others out of the native market. And this observation applies almost equally to all other kinds of cotton products. The raw material in use in the empire is brought from Pernambuco, and costs

THE NEW U. S. CRUISER PHILADELPHIA.
silver which had been exposed to the vapor of iodine The coating of iodide of silver thus formed was acted upon by the light in much the same way as the dry plate or stripping film of the present day."
"That was the beginning of all things, then, was t.
' By no means. Previous to that-in January of the same year-Fox Talbot's process was given to the Royal Institution aud to the world by Faraday. In the same month, Talbot read a paper on 'photogenic drawing'-so he called his new process-before the Royal Society. Talbotemployed the chloride of silver, which he made by dipping the medium used, first in a solution of sodium chloride, or common salt, and then in a solution of silver nitrate. We do not claim that no photograph was produced before 1839 ; on the contrary, we know that Wedgewood and Sir Humphry Davy produced some long before. But they could not fix the fleeting image; a few hours of bright sunlight caused it to vanish without recall. In 1819, Herschel successfully employed the sodium hyposulphite for fixing ; Talbot used it in 1839, and finally tried to patent it in 1841 , but failed.

So this is why you speak of 1889 as the jubilee year of photography?"
"There is yet another reason. In 1839 Mungo Ponton discovered the action of certain chromates upon gelatine. That gave rise to numerous processes, and is also the basis of an immense number of the photomechanical printing processes now in vogue. The first undoubted record of the use of a gelatine emulsion is that of Harrison, in 1868. He did not persevere in his labors, however, but left them to be taken up by Dr. Maddox in 1873. Maddox perfected the gelatine bromide process, which, with certain alterations and improvements, has been in use ever since."
"One may take it, I suppose, that great advances have been made since the tentative efforts of Daguerre and Fox Talbot fifty years ago?"

Yes; but the advances have been made not so much in the direction of results-though these, of course, are remarkable - as toward the convenience and rapidity with which these results are obtained."
"What about the future ?'
"Well, our great aim at present is to devise some method by which photography may be able to render in monotone the visual brightness of certain colors of the solar spectrum. For example, the deeper blues--indigo, violet, etc.-are largely used by painters to represent the darker shades of a picture. These colors, however, constitute the actinic rays of the solar spectrum ; they have a more powerful action than any other upon the ordinary sensitized plate; consequently, they come out in the photograph
off the ways, and the engine shafting has been put in place. The San Francisco, a sister ship now being built at the Union Iron Works, San Francisco, which should be completed one day earlier, will probably be aunched about a month hence.
In the Scientific American of August 10 will be found an illustrated description of the Philadelphia, showing the several stages of her construction.

The Photographic Convention in London.

The photographic convention of the United Kingdom meets in London this year. An exhibition of photographic apparatus and photographs is now being held at the St. James' Hall in Piccadilly; excursions are being made daily to places of interest in or near Lnndon.
The photographic exhibition appeals as well to the general public as to the professional or amateur photographer. Upstairs in the balcony is a very fine and representative collection of "pictures"-photographic portraits of more or less pretty women, pictures of babies, interesting landscapes, historical buildings, etc., etc. Below, on the floor of the hall, are exhibited cameras, lenses, and plates, negatives of historical interest, enlarged pictures, chemicals, and the rest. As to the former, we may mention that it includes photographs by such well known artists as Friese Greene and Byrne \& Co., of Richmond, as well as some interesting "platinotypes" by Keene, of Derby ; among the latter is found apparatus from every well known optician and photographic chemist in London
Being anxious to discover the objects and aims of the convention, a representative of The Pall Mall Gazette waited upon the president, Mr. Andrew Pringle, who was good enough to afford him a brief interview
"This is the jubilee of photography, is it not?" asked the representative.
"Yes," replied the president. "It was just fifty years ago that the first account of Daguerre's process
was published in France. Daguerre, as you may be aware, used by way of sensitized plate a plate of
pretty much as if they had been white. We want photography to be orthochromatic, or color correct; and I may tell you that our aim is so far within our reach that plates have been prepared which prove to be more sensitive to the yellow rays than the blue."

American Association for the Advancement of
At the session of this association recently closed at Toronto, Canada, the following officers for the ensuing year were unanimously elected: President-George L. Goodall, Cambridge, Mass.; Vice-Presidents-S. C. Chandler, Cambridge, Mass., mathematics and astronomy ; Cleveland Abbe, of Washington, physics; R. B. Warder, Washington, chemistry ; James E. Denton, Hoboken, N. J., mathematical science and engineering; John S. Brauner, Little Rock, Ark., geology and geography ; C. S. Minot, Boston, biology ; Frank Baker, Washington, anthropology; J. R. Dodge, Washington, economic science and statistics; Permanent Secretary-F. W. Putnam, Cambridge, Mass. ; General Secretary-H. C. Bolton, New York; Secretary of Council-James Landon, Toronto : Treasurer-William Tilly, Mauch Chunk, Pa.
The association will meet next year at Indianapolis, on the third Wednesday in August.

The Pittsburg Commercial Gazette says: Few persons are aware that an aluminum-making plant is now in full operation in this city. This industry was established here during the winter by the Pittsburg Testing Laboratory Company, and has proved a decided success. The product is obtained by a process of which electricity is a great factor.
About fifty pounds of aluminum metal are produced daily. It is worth about $\$ 4$ per pound, and this is a very large single output when compared with the product of the factories in other parts of the world. The material is used for various purposes. It has taken the place of silver leaf in sign painting, and in that parplace of silver leaf in sign painting,
ticular has proved a great success.
the harlem river aqueduct tunnel and its APPROACHES.
When the subject of crossing the Harlem River by the proposed new aqueduct was considered, various means were discussed, one of them that of a viaduct, similar to High Bridge, and while it was believed that of the two methods the viaduct was thought to be the most costly, it was not so much on the score of economy as on that of safety that the method of a siphon tunnel was preferred.
Our first cut shows a longitudinal section of the tunnel and the shafts which were the base of operations during the long months of construction. The sections shown seem to be two in number, the upper one in coming to a stop at crevice in the river bottom, and the lower one running entirely across. Before the upper section was started, soundings were taken in the river bottom, and the indications of a firm bottom seemed conclusive. After the tunnel had been driven quite a distance, the roof appeared wet and heavy, and water seams became more and more troublesome. Prior to this the drill had been run down, with courses crossing from both sides of the river, so as to determine, if possible, the feasibility of going ahead. The indications from the drill were more encouraging than the work directly in hand; but it was thought best to persevere, as the enormous expense of sinking the shafts deeper was fully realized. So the upper tunnel was pushed ahead from the south side until the water came in such quantities, not from a crevice, as our artist has with some license suggested, but from innumerable small openings in all directions, that finally became too great to be successfully resisted. A strong bulkhead was then built in the upper tunnel, and the shaft known as No. 25 was sunk to a depth of 307 feet below mean high water. At the pointindicated in the cut it had reached a depth of 157 feet. It was, therefore, finally put down 150 feet deeper. The distance from center of shaft 24 to that of 25 is 1,812 feet, and the internal diameter of the tunnel, which was circular in section, was 10 feet 6 inches, with an area of 86.59 square feet. This shaft is the deepest one on the new aqueduct, and altogether i its depth amounts to $419 \frac{7}{10}$ feet. The pressure of the water on this part of the tunnel is enormous, and the circular form is chosen because of its greater resistance. We have been informed that a steel shell made of riveted segments will be built as a lining to the brickwork, to add material resistance to this pressure. For some time experiments have been making, looking to the discovery of a substance with which all the circular sections of the new aqueduct may be lined, so as to diminish the great loss of water due to the perviousness of brickwork. It has been found, after repeated tests of many alleged superior washes, paints, gums, etc., that a thin coating of neat Portland cement of good grade, so thin as to be put on with a brush, is the most effective. We understand that these experiments are still going forward, and that no final report with recommendations has yet been made.

When shaft 25 is completed, it will be of a twofold character. It will be divided by a brick wall into two separated shaft chambers, one the aqueduct shaft and the other the pump shaft. In the latter will be constructed two inverted arches, the first one about 47 feet below the roadway, and the second one 16 feet lower.
Our second cut shows the operation of building a pair of inverted arches. The object of the lowest one is to resist any sudden upward pressure of water that may arise, and the upper is to re-enforce the lower one.
Passing from shaft 25 to 24 , a point of striking interest is shown in our sketch, figured 3 and 4. Looking at Fig. 1 again, on the right hand, a jog or offset is shown in the vertical continuance of the shaft. Horizontally, it becomes a turn in the course, and it was done, we believe, in the hope of getting better ground to work in. This hope proved delusive, and it is now to work in. This hope proved delusive, and it is now
believed that it would have been better to have gone further north and sunk the shaft directly down, as an offset in a shaft of this character interferes with pumping or lifting. In the opening to the left the entrance to the lower shaft is seen. This jog in the course of the shaft is due, not to the reason assigned above, but to bad engineering. The alignment of the siphon tunnel deviated so much from its proper direct course as to make the turn horizontally necessary, as the siphon leg was progressed from the south northward entirely beneath the river to what was supposed to be its inter section in a vertical plane. Having ascertained the true position of the tunnel below, shaft 24 was turned and then driven down to meet it. This turn in the shaft necessitated two lifts to remove the excavated material, and also imposed the burden of emptying the siphon upon shaft 25.
In the fifth sketch is a view of the pump and aque-
duct shafts, with four-foot blow-off pipe connections duct shafts, with four-foot blow-off pipe connections
with a gate house. The blow-off pipes, which primarily are the outlets when the tunnel is to be emptied, also add to the safety of the shaft by providing means of relieving it of an excess of pressure should such ever occur.
The pump shaft is provided for the purpose of emptying the section of the tunnel between shafts 24

To this end great cylindrical iron buckets have been constructed, capable of lifting 1,350 gallons at once. They are shown in our sketch. The advantage of these huge buckets over pumps is as follows: The siphon will be emptied and cleansed out not oftener probably than once in nine months or a year, and this operation will occupy but a small interval of time. They are operated either by windlass or by a pony engine winding a cable about a drum. Attached to the cable, they are ready for instant action. Pump action is found serviceable only where there is some degree of constancy; irregular work promotes rusting of parts and damage to the operating machinery. The buckets are of the simplest construction, being made of boiler iron sheets of a cylindrical form and bolted together at the joints.

The reason assigned for sinking the shafts to such a great depth was that the bad character of the material made it necessary. This would be a sufficient answer if it were not true that much more difficult ground had been successfully tunneled by means of the freezing process. Why this process was not tried has not been successfully explained, the plan followed having added greatly to the expense of the whole undertaking and constituting one more addition to the sum of bad engineering.
The special provisions pertaining to the execution of the work are of the most approved character. All brick masonry shall be laid to a line, with the beds in the line of the radii of the curves and with joints not exceeding $1 / 4$ inch for either face or arch work. The inside faces of the joints shall have all the joints cleaned off, pointed, and left in a neat condition. The mortar and cement requirements are fully up to the standards established in this great work. In regard to the tunnel lining, the provisions of the contract call for cast iron rings $21 / 2$ feet long, measured along the axis of the tunnel. The rings will be composed of ten pieces, put together by bolted flanges. The joints will be made with strips of lead, three inches wide and one-quarter of an inch more or less in thickness. The open horizontal joints on the interior face are to be filled with rust joints. All pieces to form rings are to be so formed as to be interchangeable. The joints between rings will be hub and spigot joints.
Shaft 25 was begun March 21, 1886, and sunk to a depth of 385 feet below river level, or the point at which the siphon tunnel started northward, July 1, 1887, or one year and four months. The siphon tunnel began August 1, 1887, and progressed as far as the vertical alignment of shaft 24 , a distance of 1,312 feet, vertical alignment of shaft 24 , a distance of 1,312 feet,
February 9,1889 , or about one year and six months. These figures do not give any basis for calculation as to the rapidity of excavation. Shaft 25 was begun March 1, 1886, and 261 feet had been excavated up to October 30, 1886. Time occupied 7 months and 29 days. Subsequent progress was delayed for reasons other than that of necessity, and are not to be considered in such an estimate.

The work under the Harlem and its approaches is no doubt the most difficult work undertaken on the new aqueduct, and from an engineering point of view perhaps the most unsatisfactory, either in its installation or economical execution.
Classification of Patents of Thomas A. Edison.
Telegraphy.-Printing and automatic, 52 : chemi cal and perforating, 34 ; perforating machines, 6 ; chemical stock printer, 1 ; multiplex, 17 ; relays, 8 ; switches, 2; phonoplex, 3; induction relay tel., 2 ; acoustic, 2 ; amr. and ind. signal app., 4.
Electric Lights.-Incandescent lamps and manfr 104 ; arc lamps, 4.
Distribution.-Systems of regulation and indicat ing devices, meters, sockets, switches, 66.
Generation.-Dynamos, motors, 3 ; transmission of power, 54 ; regulation, 50.
RAILWAYs.-Electric motor and tracks, 8.
Conductors, Underground and Overhead, 3.
Telephones. -Transmitters and receivers, 32
Batteries, Galvanic and Secondary, 3.
Phonograph, 21.
Ore Milling, 4.
Miscellaneous.-Electric pen and stencil app., 66 ; ypewriter, 3 ; shafting, 1 ; malleabling iron, 1 ; vocal engine, 1 ; preserving fruit, 1. Total, 493.
Besides these he has over 300 applications for patents pending on all subjects.
The various interests bearing his name own many hundred other patents covering details and modifications of Mr. Edison's inventions.-W. J. Hammer, Elec tric World.
Incombustible Textiles - There are many substances which have the property of rendering the fabrics to which they are applied incombustible, but they usually spoil them, either by changing the color or stiffening them to such a degree that they cannot be used. An easy and safe way of protecting curtains and mosquito nets against fire is said to be by steeping them in a solution of phosphate of ammonia, obtained
by mixing $1 / 2$ a liter of water (1 pint) with 100 grammes by mixing $1 / 2$ a liter of water (1 pint) with 100 grammes
(about 3 ounces) of phosphate. In this way the color (about 3 ounces) of phosphate. In this way the color
and texture remain unaltered.

Correspondence.

Astigmatic Eyepiece for Optica
To the Editor of the Scientific American
Your issue of August 31 contained a reference to myself which is so preposterous that to the initiated it contains its own refutation. Nevertheless, to prevent possible misconception on the part of those who do not know me, I beg to be permitted to express my exceeding regret and annoyance at my name being used in your columns, as it certainly was, without my permission or knowledge.
J. A. Lippincott.

To the Editor of the Scientific American:
The article in the Scientific American of August 31, 1889, on "Astigmatic Eyepieces for Opties! Instrunents," should have read 28,000 prescriptions from Dr. Lippincott and others.
Pittsburg, September 1, 1889.
Sugar as a Remedy for Boiler Incrustations. To the Editor of the Scientific American:
It is now nearly three years since you brought to notice the experiment of an Italian engineer, employing sugar to prevent boiler incrustations. I tried it immediately afterward, with the success claimed, and have employed it ever since. Our feed water coming from a well, being excessively bad, we had great trouble to get rid of the scales. The boiler was very old, about thirty years, and we intended to buy a new one. So I thought, if any harm should come out of the sugar, there would be not much lost. With the sugar, of which I employed three pounds of the brown kind, and a handful of wash soda, in four weeks, we found a heap of sandy mud on the second sheet or above the grate, the flues being covered with scales as usual, but the scales were soft and easily removed The same thing happened with new tubular steei boiler. We find most of the solid matter above the grate, and the tubes and boiler sheets covered with a thin adhering film of scales as high as the water reaches. Above the communication with the mud drum the tubes are thickly covered with soft scales after heavy rains, but under the scales the metal is as sound as when Tell City, Ind., August 13, 1889.
A. Bonenblust.

PHOTOGRAPHIC NOTES.

The Pyrocatechine Developer:-Dr. Carl Irna gives the following formula:

Solution A.	
Sulphite of soda. 100 grammes.
Hot distilled water. 400 c. c.
	Solution B.
Carbonate of soda	. 100 grammes.
Water	400 c. c.

Take 30 c. c. of $A, 60$ of B, and add one gramme of pyrocatechine.-Revue Photographique.
Prevention of Blisters in Albumen Prints. - Dr. Vogel recommends the use of a bath of alcohol, after toning and before fixing, as a remedy in obstinate cases of blistering. He advises alcohol at 70°. With our ordinary methylated spirit we should get at something near enough to this strength, by adding one part of water to four parts of the spirit at the strength at which, on the average, it is sold. An immersion of the prints for three minutes in this liquid before fixing will generally suffice to prevent blistering in cases when other means fail. Of course, if the spirit is used for more than one batch of prints, the water taken in with the photographs must be taken into account when reckoning the strength of the solution; and when any large number of pictures are to be immersed in a
limited quantity of the diluted alcohol, it will be desirable for the prints to have the excess of water removed by lightly pressing a pile of them first. The alcohol itself then may be somewhat stronger to begin with.-Photo. Review.
Ink for Writing on Photographs. - The following answers very well for numbering and marking proofs, the writing being executed on a dark portion :

The lines soon bleach under the strokes by the conversion of the silver into iodide.

Natural Gas for Balloons.

Prof. Carl Myers, who lately made a balloon ascension from Sandy Creek, N. Y., had the balloon inflated with natural gas from the gas well there. Nearly 1,000 people witnessed the ascension. Prof. Myers had been invited to Sandy Creek by the directors of the gas well for the purpose of testing the supply of the well. The experiment proved eminently satisfactory. The capacity of the balloon was $11,500 \mathrm{ft}$., and it took just thirty minutes to fill it, which would show an average flow of over $500,000 \mathrm{ft}$. per day. According to the present showing the well is a very valuable one, and the prospects are very flattering for a much larger flow as the drilling continues.

WITH MR. EDISON ON THE EIFFEL TOWER.
R. H. Sherard, representing the Pall Mall Budget (London), relates as follows his interview with Mr. Edison in Paris
This is what Edison wrote to me, says Mr. Sherard, when I proposed he should grant me five minutes talk with him
"All right. Friday about eleven in morning. I'll be sane by that time. My intellect is now making 275 revolutions a minute."
I called at the Hotel du Rhin at eleven o'clock, and was shown up to the handsome drawing room on the first floor. Edison was standing by the mantelpiece. At a secretaire by the window were Colonel Gouraud, Mr. Durer, and others; at the far end the sweet girl wife Mrs. Edison, surrounded by various persons. It is always difficult to begin, for one who has come to annoy, but I plunged into matters at once.
the ore-extracting and the far-seeing

machines.

"About this ore-extracting machine," Edison said, " it's going to be a great thing. Already we have eighty machines at work in the iron mines. Yes, it is adapted for iron ore only as yet. I am studying the question of a machine for treating both refractory silver ore and gold ore, and shall get them out by and by. Then we shall make more money."
"The far-seeing machine ?"-" I have heard," he said, "that some European inventors claim to have preceded me in this, but I do not know anything about their inventions. My machine is getting on very nicely. I do not think it will ever be useful for very long distances, and it is absurd to say that it will enable one to see another ten thousand miles away. In a city, however, it will be of practical use. I don't look for anything further, at least at present."

THE PHONOGRAPH AND THE PRESS.

"The phonograph ?"-"We have got it into practical form. Already 1,800 machines are in use in commercial houses, and our factories are now turning out forty machines per diem. I have also, at last, been able to make a perfectly solid mailable cylinder, which can go through the post for any distance without risk of damage. All this has been very hard work. On the tools for making the big phonograph alone we spent $\$ 5,000$. I have also created a small model-a pocket phonograph, if you like to call it so-the cylinder of which will take 300 words, the length of an ordinary letter, and which will be very practicable for ordinary correspondence. I have the model here, and you can see it any day you like. These are not, however, yet ready for sale."
" What use can newspaper people make of it ?"-"Oh, plenty. It is already used in the World office. The machine is placed downstairs. The reporters come in and talk into it. The cylinder is taken upstairs to the composing room, and the compositors set up from its dictation. They attain much greater speed, make more ems in an hour than on the old system, and earn more money."
IMPRESSIONS OF PARIS-"WHEN DO THEY WORK?"
How are you impressed with Paris?"-"Oh, I am dazed. My head's all in a muddle, and I reckon it will take me at least a year to recover my senses. I wish now that I had come over in my laboratory blouse, and could have gone about unknown and have seen something. The exhibition is immense, larger than our Philadelphia exhibition. So far, however, I have seen but very little of it. This morning, however, I saw a tool which will save me $\$ 6,000$, clear, a year. It is a chisel worked by hydraulic pressure. I just saw it, passing by-just a glance. I shall order some, and send them out. They will enable us to reduce our labor by eighteen hands." "That's a good morning's business,"
said Colonel Gouraud. "Yes," said Edison, and continued: "What has struck me so far chiefly is the absolute laziness of everybody over here. When do these people work? What do they work at? I have not seen a cartload of goods since I came to Paris. People here seem to have established an elaborate system of loafing. Some of these engineers who come to see me, fashionably dressed, walking stick in hand-when do they work? I don't understand it at all."

EDISON'S RELIGION OF WORK.

"Over here we hear wonderful stories of you working. You have the reputation of being able to work twenty-three hours a day for an indefinite peri-od."-"Oh ! I have often done more than that, haven't I, Gouraud ? As a rule, though, I get through twenty hours a day. I find four hours sleep quite sufficient for all purposes."
Edison pronounces the words "work" and "working" as some do "prayer," "religion." It is also a religion, it is true.
"I see you smoke. It does not harm you ?"-" Not at all. I smoke about twenty cigars a day, and the more I work, the more I smoke." Some one remarked, "Mr. Edison has an iron constitution, and does just everything contrary to the rules of health. Yet he is never ill."

UP THE EIFFEL TOWER WITH EDISON.

I asked: "Beyond the far-seeing machine and the est, are there projects?"-"Any number," said Edison. ' When we make our big exhibition in America, I shall have to have several new things." It is perfectly use less to ask Edison for information as to ideas. In him everything is so practical that it seems he cannot talk about what is phantom merely. It is the "what is" with him, and not the " about to be."
Mrs. Edison then asked the Cavalier to do her the pleasure of lunching with her, chez Brebant, on the party tower. Colonel Gouraud asked me to be of the En route the Colonel asked me to contradict a story which has appeared that he brought to Edison a phonographic message from the Queen. "Mr. Edison received messages from the Queen of Italy, from the King, and from the Prince of Naples. I suppose that is what the story was based upon."

PREPARING TO OUTTOP THE TOWER
"When on board the ship," said Edison, as we sat down to dejeuner on the terrace of the Eiffel tower premiere etage, " they put rolls and coffee on the table for breakfast. I thought that that was a very poor breakfast for a man to do any work upon. But I sup pose one gets used to it. I would like one American meal for a change-plenty of pie for a change." He then smashed the roll with his fist.
There were six of us-Mr. and Mrs. Edison, Colonel Gouraud, the Cavalier, and Mr. Durer, the author of a very remarkable brochure on Edison. And we had the world at our feet. There were shrimps among the hors d'ouvre. Edison had never seen any. "Do they grow larger ?" he asked, and added, "They give a great deal of trouble for small results."
"This Eiffel tower?" I said.-"The work of a bridge builder," said one. "No," said Edison decisively. "No. It is a great idea. The glory of Eiffel is in the magnitude of the conception and the nerve in the execution. That admitted, and the money found, the rest is, if you like, mere bridge building. I like the French," he added. "They have big conceptions. The English ought to take a leaf out of their books. What Englishman would have had this idea? What Englishman could have conceived the statue of Liberty?"
"Will you beat the tower in New York?"-"We'll build one of 2,000 feet. We'll go .Eiffel 100 per cent better, without discount."

IS A THOUGHT-RECORDING MACHINE POSSIBLE?
"Could not," I asked, " a machine be made which could be adapted to the head, and which would record one's thoughts, saving the trouble of speaking or writing ?" Edison reflected. "Such a machine is possible," he said; "but just think if it were invented. Every man would flee his neighbor, fly for his life to any shelter."
As they brought in the filets a la Brebant, I said and thought of little Dombey, "What is electricity after all ?" He said, "It is a mode of motion, a system of vibrations. A certain speed of vibration produces heat ; a lower speed, light ; still lower, something else.'
the reign of humbug.
"Is there anything in electricity as applied to medicine ?"-" There is a great deal of humbug in all that," he said. Then as a careful maitre d'hotel brought in the cradled Clos Vougeot, and served it with exaggeration of anxious ceremony, he added, "There is a great deal of humbug about wine too. And about cigars. Men go by cost. The connoisseurs are few. At home, for fun, I keep a lot of wretched cigars, made up on purpose in elegant wrappers, some with hairs in them, some with cotton wool. I give these to the critical smokers, tell them they cost 35 cents apiece. You should hear them praise them."

THE EDISON "SANATORIUM."

We talked of cooking and of famous chefs. Also of one who recently engaged a French cook at a bishop's salary. "Bright's disease of the kidneys is all the dividend that man will draw," said Edison. He seems to take delight in commercial phrases. It is comfortable to hear him pronounce the words " make money.' Commerciality with him is dignified and impressive vulgar as it is with others. The breakfast was recherche in the extreme, but Edison barely touched anything. "A pound of food a day is all I need when

I am working, and now I am not working." One could not help thinking of Chatterton and his crust. After dessert there was champagne, and toasts were runk. The Cavalier began. Edison said: "The Cavalier is profuse, but not so much so as another Italian gentleman who once proposed my health, and remarked that even the chickens in his country knew my name.-It's a regular sanatorium," he remarked later on, "so much 'health' being distributed." Again, "All this is new to me," alluding to the ceremonial of our festivities. "If I stay long here I shall too soon be able to get up and make speeches and wave my arms." When the coffee and cigars came in his face brightened up. "Mr. Edison is beginning to breakfast," said the Colonel. 'Yes," said Edison, taking an Havana; "my breakfast begins with this."
the man and the monument.
A few minutes later, happening to pass the tower, I aw at its foot again the man, with his face boyish almost for its openness, and the gray hairs over the unwrinkled iorehead. Then I looked at the monument first and then at the man. The monument thus contras ${ }^{2}$ ed appeared infinitesimally small.

The Deadly Alternating Current.

The East River Electric Lighting Company, at its dynamo'house, East 24th St., this city, employs the Thomson-Houston system of electric lighting, using in all its outside lamps the direct current. But in the dynamo room is one machine which generates the alternating current, and this is used to supply the incandescent lights in the building, and, recently, for experiments by the Perry Motor Company. This one machine generates $1,0.0$ volts power, and has not been long in the building.
On September 2, says the N. Y. Times, something went wrong with the switchboard connected with this machine, and Darwin A. Henry, the superintendent of construction of the company, undertook to set it right. He climbed up on the short ladder used to reach the switchboard, and started in on his work. He had been thus engaged for about five minutes when he attempted to turn part way around on the ladder. In some way one of his feet slipped, and for an instant he was in danger of losing his balance. Instinctively his arms were thrown up to recover himself. One hand came in contact with the negative terminal on the board, and hardly had he touched it when the other had struck the positive pole. 'The effect was instantaneous. The unfortunate man's hands remained as if glued to the death-dealing wire, his head dropped over on one shoulder, and in that position he remained for some moments. He did not utter a sound. There were two other men, named Thomason and Smith, working in the room, and one of them after a few seconds caught sight of his chief resting apparently with all his weight against the switchboard. Both men rushed to his assistance, but the man was dead. They tore his hands from the wires and lifted his body down and laid it on a bench. One of his hands-the right one-was terribly burned, the flesh having been consumed to the bone. The other hand was burned, but not so very badly.
Medical help was at once summoned. Dr. L. D. Henderson and Dr. W. C. Feeley were at the superintendent's side within ten minutes, and worked hard in trying to restore animation, but they might as well have tried to put life in a stone. They injected, hypodermically, quantities of brandy. Syl vester's system of artificial respiration was called into use, and they tried with a galvanic battery to bring the man back from death. But all efforts were absolutely useless, and after two hours of hard work the weary physicians were obliged to abandon their task and declare their patient dead.

There had not been a single evidence of life in Henry from the time he touched the wires. When the doctors reached him, the heart had ceased to beat and there was no sign of respiration.
In the opinion of both physicians, Henry's death was instantaneous, and, if the absence of any contortion either in body or face proved anything, it was a painless one. The burns in the hand, both the physicians and the employes in the building believe, were caused when the hands were torn away from the wires and after the man was dead. The separation created an arc, and without an are there can be no burns.
Mr. Henry was about thirty years old, unmarried, and had been a practical electrical engineer from his boyhood. He was a capable electrician, and had much experience in handling electric apparatus, and was highly regarded by his employers.

The final argument on the question of the constitutionality of the new electric execution law, a question which involves the disputed power of an alternating current to kill, will be held at Buffalo within a fortnight, and this case may have considerable weight in the argument. It is proposed to use an alternating current of from 1,500 to 2,000 voltage in these executions, and it is contended that that force would not be sufficient to kill. In this case a 1,000 volt current, even when only accidentally applied, did its awful work when only
effectually.

AN ATTRACTIVE CHEAP DWELLING HOUSE. Illustrated herewith is a commodious dwelling house erected on Armory Hill, Springfield, Mass., and at a cost of $\$ 3,600$. Width, $31^{\prime} 6^{\prime \prime}$; depth, $44^{\prime} 6^{\prime \prime}$, not including piazza. Height of first story, 9^{\prime}; second story, 8^{\prime} $6^{\prime \prime}$; contains all the latest improvements and conveniences. There is a cellar under whole of house, containing a furnace and laundry; all furnished in the best manner. The exterior is covered with beveled white pine clapboarding, gables filled with shingles. white pine clapboarding, gables filled with shingles;
slate roof. The hall is furnished with an ornamental slate roof. The hall is furnished with an ornamental
staircase, with newels, posts, balusters, and rail, all handsomely turned of ash. The landing on staircase contains a pretty window glazed with stained glass. The door and window casings are neatly beaded, and turned sunk angle blocks are provided at angles. The trim is of ash. Open fireplaces provided with hearth and facings of rich tiles and handsome hard wood and facings of rich tiles and handsome hard wood
mantels. Five bedrooms on second floor, and bathroom. Large closets well fitted up with drawers and shelves. From front bedroom, door to veranda. The bathroom is fitted and finished in the best manner. The engraving was prepared from a photograph of the building taken specially for the Architects and Builders Edition of the Scientific American, and appeared in the August, 1889, number of that pub-
take better care of his money than the insurance company can, generally proves to be the man who is not able to take care of it at all. 6. Why some men, who say that their whole lives are devoted to laying up a competency for their families when they are gone, never seem to think of the simplest and quickest method of accomplishing that object-taking out a policy on their lives and paying a weekly premium. 7. Why it is generally necessary to carry the blessings of life insurance to a man's house and thrust them up on him, while he is frequently ready, unsolicited, to spend his money for things that are not blessings at all.

Mexican Maliogany.

The other day The Timberman visited Mr. Fred. Schindler, who has recently returned from Mexico, and learned something about the fine mahogany logs which that gentleman secured for the firm of J. Ray ner during his sojourn in the sunny southern climes. Mr. Schindler is a close observer, and his comments on the manners and customs of a race we know little about are interesting in the extreme. On his first visit to Mexico he was greatly surprised to find how little was known about it in the United States. The portion visited by him has been invaded by very few foreigners, and is about two hundred years behind the

Mr. Schindler has secured some very fine logs, which are now on their way to this market. Upon their arrival he promises to show some of the finest mahogany ever brought into this city.
The scarcity of mahogany at the old points of supply is leading to research into new fields. Some stock is now being cut in South America, but the quality is not up to the Mexican. It is probable, however, that as the hunt is carried further into the vast and hardly explored forests of this country, better results will follow.

Aluminum.

At a recent meeting of the Academy of Sciences, San Francisco, F. Gutzkow delivered an address upon the subject of the manufacture of aluminum. He claimed that no real progress had been made with this metal, and that the only chemical achievement of recent years was to reduce the heat which permits the use of cast iron. It is a comparatively unknown metal of great lightness, being one-fourth the weight of silver and one-third of that of iron. Its lightness makes it especially desirable in the construction of mathemati cal instruments.
It is very malleable, and is of a clay color. Sulphuric, nitric, and like acids have no effect upon it.

AN ATTRACTIVE CHEAP DWELLING HOUSE,
lication, together with the plan views of the first and second floors. The same number also contains engravings of several other attractive d welling houses, costing from one thousand dollars to eight thousand dollars and upward.

Life Insurance.

Under the heading "Seven Things Hard to Explain," the Insurance World copies from The Metropolitan the following seven queries, which are calculated to set heads of families to thinking.

1. Why some men who are willing to toil and strive and save, that their families may be comfortable while they are alive, are not willing to pay a few dollars a year that their families may be kept from want after they are dead. 2. Why some men who are so prudent that they will not trust the welfare of their loved ones to the strongest life insurance company, in the land, are, nevertheless, willing to trust it to the most uncertain of human chances-the contingency of their living long enough and being fortunate enough to earn and save a competency. 3 . Why, on the other hand, some men who are so unsuspicious that they will trust an acquaintance who has not a dollar in the world to almost any extent, will, nevertheless, hesitate to trust a life insurance company that guarantees its promises with millions of assets. 4. Why some men who could not rest a moment if their houses and stores and factories were not insured, never think of the importance of insuring their lives, by whose productive power those houses and stores and factories were acquired. 5. Why the man who refuses to insure his life because he can
times. But northern capital and energy is gradually
stretching out in that direction and finding an ample field. Strangers are still looked upon with distrust, and are not admitted to domestic relations with the natives. The agricultural possibilities are almost unbounded. Anything can be raised except the northern fruits, and so prolific is the soil that three crops of corn are frequently harvested a year. The climate is very unhealthy, and sickness prevails in all localities. Mahogany in Mexico is becoming very scarce, and one is now obliged to go two or three hundred miles from the coast to secure first-class stock. The logs are cut during the summer months, hewn square, and then lie in the woods to await the fall freshets. These begin about the first of October, and the rivers, which have been dry for months, become rushing torrents. The logs are then thrown in and tumbled down the mountain sides until they reach more level country, where they are collected into rafts and continue their journey to the gulf. Here they are loaded into ships and thus reach the American market.
As to the size of the logs there is, to use Mr. Schinder's words, " practically no limit," some cut by him being 100 feet long, and will square four feet at the top. Of course, such logs as these are too unwieldy for transportation, and are therefore cut into fourteen or sixteen foot lengths. The export duty on logs is $\$ 2$ a ton, and this is charged on the tonnage of the ship. If there is any deck load, it must be paid for extra, at the same rate. And for every dollar of duty paid there must be affixed to the certificate a two cent revenue stamp.
but it makes no resistance to hydrochloric acid or to alkalies. In its alloys the best is made with copper, the color being gold. It is used largely in making watch cases and chains. As it does not corrode, it can be used in cooking, but its dirty appearance, together with its liability to become perforated by soaps, which eat it very rapidly, renders it quite undesirable. Its manufacture out of clay the speaker ridiculed as an impossibility, and he claimed further that there had never been an authenticated case of such manufacture. -Pac. Lumberman.

Continental Wages.

A stay-at-home man can have only a very vague idea of the position of England as compared with foreign countries. Especially he can have little idea how much leveling up has to be done with the wages of most Continental workers. If we say that from a half to one-third of our wages is the rate over vast regions of the Continent, we should not be far wrong. They are excessively low in some districts of southern Italy, as on the plains below Vesuvius, where five shillings a week for a man is not uncommon, and the agricultural laborer of Bohemia is not much better off. The normal condition, almost everywhere, is so far below ours that it constitutes a danger to us and a cause for the migration of trades, which are always seeking the easiest and most profitable lines.
A traveler who during the last three years has traveled over 30,000 miles of various European countries, declares that he has not once seen wages equal to those at Nottingham.-Manchester Textile Mercury.

The Meeting of the American Geological Society

 at Toronto, Wedn28 and 29, 1889.
A movement for the formation of an association to include all the geologists of North America has been on foot some years, but actual organization was not effected until last December, and the first meeting at which papers have been read has just been held at Toronto, Ontario, in connection with the thirty-eighth annual meeting of the American Association for the Advancement of Science. The formation of the American Geological Society was first seriously suggested at the Cincinnati meeting of the A. A. A. S. in 1881, with the result that a committee, consisting of J. Proctor, of Kentucky, C. H. Hitchcock, of New Hampshire, H. S. Williams, of New York, N. H. Winchell, of Minnesota, and S. A. Miller, of Ohio, was appointed to get suggestions as to the new society. The circular which this committee issued received wide and cordial response. At Montreal the following year the committee reported results, and another committee, of which N. H. Winchell was chairman and C. H. Hitchcock
tion.
tion.
Several of the older and more conservative members of the A. A. A. S., however, at that time were opposed to the formation of a geological society, thinking that it would operate disastrously to the association at large, so that the only thing that was accomplished at Montreal, besides the drawing up of a provisional constitution which was not really adopted, was a resolution recommending the establishment of a geological journal. Soon afterward the American Geologist was established to supply the demand thus expressed.
For several years nothing further was done toward
rganization, though the matter was kept alive by organization, though the matter was kept alive by fairly established, a renewed appeal was published in that journal by the Montreal committee that all persons interested in the formation of a geological society should meet at Cleveland, in 1888, in connection with section E of the A. A. A. S. This time the movement was destined to be a success, for most of the prominent geologists of the country who had formerly opposed such a society or had been indifferent to it were now urgent advocates of it. This decided change was brought about by complications which had arisen in connection with the International Geological Congress and the American committee thereof, partly on account of the cumbersome machinery of the great American Association for the Advancement of Science. From the Cleveland meeting of the A. A. A. S., therefore, dates the actual existence of the American Geological Society. The meeting at Ithaca last December was merely to complete the organization, and has received due notice in the columns of the Scientific american.

Last week, Wednesday morning, after the geological section of the A. A. A. S. had completed its organization for the Toronto meeting, it adjourned temporarily and Prof. Alexander Winchell, of the University of Michigan, called the Geological Society to order and gave a very encouraging report of progress. The 112 "original fellows" have received additions, until now the society has 175 members, and a good working surplus in the treasury, and includes within its ranks all the noted living geologists in the United States and Canada, with one exception. When Prof. C. A. White, vice-president of section E, had concluded his interesting and valuable paper on the Mesozoic rocks of North America in the afternoon, a provisional constitution was laid before the Geological Society. One of the main features of this was the provisions for membership. Members are of four classes : Original fellows, fellows geologists resident in North America, corresponding members geologists residing outside of North America, who have rendered special service to the science, and patrons, those who have done some great favor to the society. The matters of voting by proxy and publication aroused some discussion, but were referred back, together with the remainder of the constitution, to the committee to be laid before the society again at the annual meeting in the winter with whatever suggestions might be offered by fellows in the meantime.
Thursday was the day for papers, and section E had adjourned out of respect to the society; indeed, this step was almost necessary, for most of the members of the former belong also to the latter. Many of the most noted geologists on the continent had gathered together when the meeting of the society was called to order in the theater of the Normal School; among them were the world renowned Prof. James D. Dana the equally celebrated paleontologist. Prof. James Hall, the president of the society; the great paleobotanist Sir J. W. Dawson; Dr. A. R. C. Selwyn, director of the Canadian survey ; Prof. G. K. Gilbert, assistant
director of the U. S. Geological Survey ; Prof. T. C. director of the U. S. Geological Survey ; Prof. T. C.
Chamberlin, president of the University of Wisconsin. Chamberlin, president of the University of Wisconsin.
Between forty and fifty fellows were in attendance, all of them earnest workers in some department of
their great science.

President Hall's opening address was an interesting statement of the origin and history of geological so-
cieties and associations in America. The first society cieties and associations in America. The first society
for furthering geological science was formed in 1824 by a few enthusiastic students, but it was short-lived In 1840 the scientists engaged in the State geological surveys throughout the United States united themselves into the American Geological Association, with the especial object of devising a suitable nomenclature for the formations of this country. After a few years this society was united with a society which had been formed by the naturalists, and the new body took the name of the American Association of Geologists and Naturalists. The physicists and chemists soon joined this society, and the present great Association for the Advancement of Science was the result. Out of this assosiation again has sprung the new Geological Society.
After Professor Hall had concluded his address, Professor Dana gave an elaborate paper on "Areas of
continental progress in North America, and the influence of those areas on the work carried on in them. In the first part of his communication the author described the three great Archæan and Paleozoic depres sions or valleys of the Atlantic ; the inland sea of cen tral New York and eastern Ohio, which in later Paleozoic times was partly shut off by the island of the Cincinnati uplift from the remainder of the great continental ocean; and the great regions of the Rocky Mountains and the far West. On account of the great development of Silurian rocks near Lake Ontario and the perfection of their fossil remains, he suggested that the term Ontarian be substituted for Silurian in local phraseology. Especial interest attaches to this paper because in it Professor Dana practically reviews his own "Manual of Geology," bringing out his conclusions from recent observations all over the world, and showing wherein important statements and theories given in the manual must be modified. Professor Dana has attended none of the meetings of the A. A. A. S. for several years, and his presence at this meeting and active participation in the session of the Geological Society were a great encouragement to the new society.
The next two papers were by Professor Hall, and were entitled "Some suggestions regarding the subdi-
vision and grouping of the species usually included under the generic term Orthis, in accordance with external and internal characters and microscopic shell structure," and "On new genera and species of the family Dictyospongidæ." Professor Hall contented himself with giving a mere sketch of an elaborate memoir which he has prepared on these subjects.
The figures illustrating the morphology of different species now included under Orthis, and thos showing the recent and great enlargement of the family Dictyospongidæ by the discovery of new genera and species, were examined with great interest by the fellows present. The Dictyospongidæ include forms that aroused much discussion when they were first discovered, which were called hydnoceras by Conrad, in the belief that they belonged to the cephalopods, but were named dictyophyton by Hall, because he thought them to be plants. Later discoveries proved the existence of siliceous spicules, and showed the true position of the strange organisms to be with the hexactinellid sponges. In discussing this paper Sir William Dawson pointed out that though these sponges are confined to the Devonian in New York,
they have been found as far back as the Cambrian in Canada.

After the noon recess Professor Alexander Winchell occupied the chair in the absence of the president. The first paper on the programme was by Professor G. K. Gilbert, on " The strength of the earth's crust." The treatment of the subject was mathematical and theoretical. The author's observations were made largely in connection with tracing the histhe phenomena of that locality and elsewhere, Professor Gilbert deduces the theory, which he holds only tentatively, that mountains are sustained by the strength of the earth's crust, while broader elevations, such as continents and continental plateaux, are sustained by virtue of the fact that such parts of the earth's crust are of lower specific gravity than those beneath the oceanic depressions. This communica-
tion naturally aroused some discussion among the tion naturally aroused some discussion among the
fellows, the general tenor of which seemed to be that the strength of the crust was greater than Professor Gilbert's calculations made it.

In the absence of Professor Joseph Le Conte, his paper "On the origin of normal faults and of the structure of the basin region" was read by Professor J. J. Stevenson, the secretary of the society. Normal faults are those in which the downthrow of the strata is on the upper side of the plane of faulting or hade. Professor Le Conte would assign these faults to the oscillations of a somewhat mobile crust floating on a liquid interior. Without discussing this communication, the society passed to President ' I . C. Chamberlin's paper on " Bowlder belts distinguished from bowlder trains; their origin and significance." This
gentleman has made especial study of the glacial geology of this country for the U. S. G. S., and probably knows more about the drift than any one else in the land, so that his remarks were listened to with great interest. He said that for obvious reasons bowlders were among the first phenomena of the drift to attract attention, but afterward study was diverted to other phenomena of this formation. Recently, however, much work has been done on bowlders. Bowlder trains had their origin in knobs or prominences of rock which gave off fragments as the ice passed over them The bowlders decrease in size with the distance from their source, and are arranged in somewhat divergent lines which might appropriately be called bowlder fans. In a particular fan the bowlders are usually of similar material. Bowlder belts lie transverse to the direction of motion of the glacier, and are commonly associated with terminal moraines. Their striking characteristics are that the bowlders are of many kinds of materia and that they are superficial and do not mingle deeply with the drift, as do those of the trains or fans. A glacier deposits material in three ways: 1. It pushes matter forward mechanically, ridging it at its edge, forming what may be called push moraines. 2. A glacier may fail to carry forward to its actual ex tremity the material which it is pushing at its base, and this may lodge under the margin, forming a submarginal accumulation, which may be called a lodge moraine. 3. A glacier carries forward the material embraced within the ice or borne on its top until it reaches the extreme margin, when it is dropped, forming what may be called a dump moraine. The bowlder belts are held to belong to the third class. Most of the bowlders in Illinois, Indiana, and Ohio come from the Archæan rocks 300 to 500 miles northward, and are arranged in belts.
Professor C. D. Walcott's paper on a "Study of a line of displacement in the Grand Canon of the Colorado, Arizona," was read next. It was well illustrated by maps and diagrams, and showed how the dip of horizontal rocks might be made almost vertica near displacements or faults. Following this was an elaborate and valuable paper by Professar J. F. Kemp on "Trap dikes near Kennebunkport, Me.," which gave the results of much careful work in the field and with the microscope.
Papers by Messrs. J. S. Newberry, J. W. Spencer, D. Honeyman, and P. Neff were read only by title, and one by Mr. E. O. Hovey was referred to section E for reading. The Geological Society of America then adjourned to meet in the American Museum of Natural History, New York City, on the 26th of December next
E. O. Hovex, Ph.D.

Free Baths at Milwaukee.

Milwaukee is never behind in anything, not even when it comes to a public natatorium. The new free bathing establishment has been completed and turned over to the city.
The building, which is located on Prairie Street, near Seventh, is a handsome structure, and is very conve-
niently and neatly arranged, says the Evening Wiscon niently and neatly arranged, says the Evening Wiscon-
sin. It is a solid brick building with stone trimmings The visitor enters the building in the front, passing through a short hall between two rooms into the natatorium. A wide walk leads around the tank, which occupies nearly all the ground floor space. The tank is about 3 feet deep in front, the bottom sloping to the rear, where it is 9 feet deep. It is 32 feet 6 inches wide and 80 feet 6 inches long. Long lines of steam pipe run along the walls above the ground floor to heat the building, and above them are rows of ventilators. Two tiers of galleries run around three sides of the building, which are reached by eight flights of stairs. Each gallery on the sides is filled with a line of dressing closets, while the galleries at the rear end are fitted up with shower baths.
There are 108 of the dressing closets and 16 of the shower baths. 'The baths on the outside are counterparts of the dressing closets, but are different on the inside. They have zinc floors and the rose is elevated slightly above the top of them. Warm and cold water can be showered at the will of the bather.
Light is obtained through a long skylight running down the center of the roof. Closets of improved pattern have been arranged in a room to the left of the entrance. The room at the right of the entrance will be used for the office. On the second floor, at front of the building, is a suite of rooms for the janitor. A big boiler in the rear will furnish the steam to warm the building and the hot water to warm the water in the tank.
Relief of Deafness in Old Age.-Sapolini, of Milan, has described a method of his which he states he has successfully employed in sixty-two cases of deafness of old age. It consists in mopping the membrana tympani with a weak oleaginous solution of phosphorus. He claims that the treatment diminishes the opacity of the membrane, increases the circulation, and improves the hearing.-Kansas City Medical Index.

the paris exhibition.

Paris, August 25, 1889.
I hear from many quarters that there is great satisfaction at the sales of machine tools by the exhibitors. Some, indeed, have sold nearly the whole of their ex-hibits-an example in point being G. Lomont, who has sold a dozen.machines out of the thirteen he exhibited. Wm. Sellers \& Co., of Philadelphia, Pa., have sold their tool-grinding machine and their twist drill grinder to the Northern R.R. of France. Warner \& Swasey, of Cleveland, Ohio, could have sold their exhibited machine two or three times over if they had a good attendant interpreter in charge, and it seems a great pity that so fine an exhibit should be left without anybody to show it.
There are very few machine tools shown at work in the exhibition, I am sorry to say, those of J. A. Fay \& Co. and Wm. Sellers \& Co. forming the praiseworthy exceptions. There are plenty of visiting mechanics here who have used twist drills, but never appreciated the advantages of a twist drill grinding machine until they saw one ground on the Sellers machine and put to work in this exhibit. The fact is that grinding a twist drill correctly by hand is one of those things that cannot be done, no matter what the experience or how skillful the mechanic. Sometimes one cutting edge only will cut. At others, each cutting edge will cut for a part only of its length, the amount of the clearance will be variable on the two cutting edges or at different points along the same cutting edge, and so on: But in the Sellers exhibit one sees that from the moment the drill point begins to cut, two distinct shavings of equal thickness and length are cut, and their strength is such that they will remain intact while emerging five or six inches from the mouth of the hole, and require quite some force to break them, whereas a badly ground drill will break up the shavings or chips, doing less work, and requiring more power to drive.
In an exhibit by P. Hure, of Paris, I find some milling cutters in which the front face, instead of being a radial line, has rake given to it, by making its plane on a line behind the center, after the manner of the teeth of a skew bevel gear wheel. For wrought iron, cast iron, or steel this is doubtless an advantage, but it is decidedly detrimental if the cutter is to be used for brass work. In this same exhibit I found a lathe in which, the slide rest being of the usual square top pattern, the tool is clamped to the underneath iace of the square top, thus making the top surface of the tool steel the base from which the height of the tool steel with reference to the work is determined. The tool is held to the rest by two clamps, each having two screws. One of these screws (that nearest to the tool) passes through the top of the slide rest, and threads into the clamp, while the other threads through the top of the slide rest, while its point acts against the clamp. The first named is screwed up to lightly grip the tool, and the other is then screwed up, causing the clamp to act on the tool as a lever whose fulcrum is the front screw.

This is of course a very firm method of gripping a tool, being, in fact, that employed on what is known here as the Maudslay slide rest. It has not found favor, however, in the United States, and is not likely to do so, because it can only be applied to a compound slide rest, and small lathes are much better, if made on the American plan (as pointed out by me in a previous article), without any compound rest. While on this subject, let me say that the objectionable feature of the upper slide of a compound rest coming so close to the back head of the lathe that the upper feed screw of the rest cannot be worked without taking its handle off at every half revolution, is overcome in two exhibits here by the employment of a pair of gear wheels, one of which is on the end of the feed screw, and the other geared into it, the band being on the shaft of the lathe, and hence thrown out toward the workman. In one of these devices the gears are of equal diameters, while in the other, that on the feed screw is twice the diameter of that which the handle drives. The latter is, I consider, preferable, because it throws the handle well out from the tail stock of the lathe, while it enables the slide to be fed very finely to the cut.

In the exhibit of E. \& P. H. Bonhey, there is a lathe in which what is usually the live center is a fixed dead center, a plan that certainly insures true work, whatever disadvantages in other respects it may possess.
On some of the small lathes for fine work the fit of the slides to the slide rest ways are made by gibs of brass or bronze, a plan adopted by Holtzaphel in his expensive lathes. My experience is, however, that cast iron is a better and more durable material, because the duty is not sufficiently heavy to cause the surfaces to cut, hence the cast iron gets a hard glaze that prevents wear. It must not be forgotten too that these gibs are right under the eye of the operator, hence their lubrication is not likely to be neglected or forgotten.
A point that seems to be overlooked in most slides and sliding heads is that there is, if the top face of the slideway is left a full plane surface, the sliding rest
is sure to get loose in the middle, because it is more used there than at the end of the slide, and it becomes obvious that instead of the surface in contact being greatest at the end of the slide, it ought to be the

least there, so as to equalize the wear. This is ac complished in one of the exhibits here by recessing down the slide faces at the ends, making the width of bearing at the ends rather less than it is in the mid dle of the slideway length.

My attention has been called to the samples of vise work exhibited by the French technical schools, and the following examples will give an idea of the whole and show their applications in practice. One of the simplest of these exercises is shown in Fig. 1, in which

the bedding ofl the surfaces b is an easy operation, but the fitting of the parallel faces a requires considerable skill. Figs. 2 and 3 are examples in the fitting of dies in connecting-rod straps, such as have already been referred to and illustrated in my previous letters. Fig. 4

Fig. 1
is an example such as is met with in bedding the brasses of pillow blocks and locomotive axle boxes, and teaches that the patterns for such work should be so made or shaped that the surfaces a should, when the first bedding contact occurs, be quite clear of bedding,

or, in other words, that the surfaces b should not meet when surfaces a come into contact. The reason for this, the student soon discovers, is that it requires more metal to be cut off a and to let the top piece c down a given distance than it would be required to cut

off b to let c the same distance; and if, when bedding first occurs, it is at b, then but little will require to be taken off b to let a and d come into contact. This is a point often overlooked by pattern makers when inak-
ing the patterns, and by fitters or vise hands when fiting such pieces together. Fig. 5 is an example in which a is a bolt whose head b fits into a recess in \mathbb{C}, and unless the sides c, d, bear with equal force of contact, the body of a will bind in C, and there will be a tendency to cause the head of a to bed unfair. Fig. 6 is a nut with a triangular hole passing through it, and from it the student learns how difficult it is to file up a true hexagon, and also to file out a triangular hole without cutting too deep into the corners. Triangular file: with a safe edge are rarely kept, save in shops where very small work is done, and it is a frequent occurrence for the workmen to have to grind the teeth off one face of file in order to get a sharp corner to file out the triangle corners with. Fig. 7 is a strap key and gib for a connecting rod, and illustrates the point mentioned in one of my former letters that the French and Belgians sometimes use much less taper on their connecting-rod keys than is the practice in either America or England. As a natural result of this it takes more down ward motion of the key to take up a given amount of wear, hence the employment of the piece or sleeve a in the figure, which takes up the length occupied by the long thread on the key end.

Joshua Rose.

The Porpoise.

The French Journal Officiel, says Nature, recently ontained a report which Prof. Edmond Perrier had sent in to the French government on the subject of the best means of protecting fishermen against porpoises. Although the depredations of these creatures have been exagerated, it is certain that they do considerable damage, especially on the Mediterranean coasts of France, by tearing the nets. For at least a quarter of a century past efforts have been made to lessen the numbers of the porpoises by offering a reward per head and by other remedies. In 1865 the government invited the fishermen themselves to organize a seine net fishery for porpoises, and they were offered special nets, and sums of from 5 to 25 francs for each animal. It was, however, found in practice, that as soon as the porpoises felt themselves to be surrounded, they simply jumped over the seine nets and were at large again. Some years later the fishermen of Cannes, Saint Tropey, and La Ciotat petitioned government to lend them a gunboat, filled with torpedoes, for the purpose of firing at the porpoises. This was dgne, and the cannon and the torpedoes scared away the porpoises for about eight days, but they scared away the fish as well, so that there was no fishing for at least a week. The porpoises, moreover, are too numerous and too agile to be shot, one by one, in an effective manner. The report sums up that the employment of artillery against porpoises is perfectly useless, that a reward for killing them singly is equally unavailing, and that the only thing to do is to encourage the fishermen to unite in chasing the porpoises, and in forming a mutual insurance guarantee against their depredations. In the neantime the Department of the Marine might con tinue to indemnify, to a certain extent, the proprietors of any nets that have been very seriously injured.

Electric Car Lamp.

One of the latest novelties in the application of elec tricity consists of an electric reading lamp, which is being fitted to the carriages on the main line of the Southeastern Railway. It is on the principle of the "put a penny in the slot" automatic machines. The apparatus is situated immediately over the passenger' head, and under the rack, and is contained in a smal box 5 inches by 3 . The light is of five-candle power and is obtained by the introduction of a penny at the top of the box, and by a subsequent pressure of a knob, and will last for half an hour, extinguishing itself at the end of that time automatically. If the light be required for an indefinite period, a penny every half an hour will suffice. The light can be extin guished at any moment by means of a second button provided for the purpose. One of the special features of the invention is that, if the instrument is out of order, the penny is not lost, as it is in the present machines. It drops right through, and comes out at the bottom of the box, so that it can be recovered, and the same result happens in the case of any coin other than a penny. Each carriage is fitted with an accumulator which supplies the electricity. This inven tion, so Nature says, will add greatly to the comfort of passengers during night journeys.

Progress of Beet Sugar.

Already more than half the world's sugar is derived from European beet root. Science, chemistry, and mechanical skill have combined to transfer the habitat of a prime necessity of life from the tropics, where only it was supposed it could be produced, into the northern latitudes. Science has shown the way to prepare the soil for it, has overcome all the mechanical problems necessary to the extraction of the sugar, made its cultivation profitable, and given employment to tens of thousands of wage earners, and all this within the last twenty years. The future of this great industry seems almost boundless in its possibilities.Tribune, Chicago.
recently patented inventions. Engineering.
Locomotive. - James Des Brisay Vancouver, B. C., Canada. This locomotive has two high pressure cylinders, both controlled by a rotary valve, a passage from which leads to the smoke box,
and a low pressure cylinder to which a passage leads and a low pressure cylinder to which a passage leads
from the rotary valve, with other novel features, frum the rotary valve, with other novel features,
designed for the more economical use of steam, and to designed for the more economical use of steam, and to
condense it and return the water of condensation to the

boiler if desired.

Feed Water Purifier for Boilers. -Ludwig H. Thielmann, Brunswick, Germany. A pipe is connected with the lower part of the boiler and
extends through the furnace or flue to a vessel arranged above the water level of the boller, another pipe connected with this vessel extending into the water space of the boiler, whereby a circulation is maintained in the vessel or puritier which carries the water upward thereto, deposits the impurities, and returns the water to the

Steam Generator.-Doc W. Fletcher, St. Louis, Mo. This is a water heater formed of vertical transverse spaced sections having longitudinally
extendıng interlocking pockets forming zigzag flues, esigned to use a minimum anount of fuel with large heater capacity, and provide independent water
for each radiator or each section of a building.

Mechanical.

Pulley.-Nathaniel P. Smith, Mem phis, Tenn. This invention covers a combination, with split pulleys, of pivoted and adjustable spider sections by the pulley may be adjusted to large or small shaft by the pulley may be adjusted to large or small shaft
without a bushing, or may be adjusted to run true whe the shaft is eccentric, or may be eccentrically fitted if
desired.
Gauge.-Thomas E. Cassidy, Hoosick Falls, N. Y. This is a combination tool capable of quick and easy manipulation for use as a surface,
scratch or depth gauge, with clamp and scriber arms which may be used alone as dividers, as a compass, or which may be used alone as dividers, as a compass, or
as inside or outside calipers, and as trammel points.
Decorticator for Ramie, etc. Michel J. Leruth, New Orleans, La. This machine and stems, points to receive the crushed fiber, decorticating cylinder with teeth and beater ribs, rotary brushes for cleaning the tiber as it is carried forwar cylinder, etc., being designed to efficiently decorticate dry fibrous plants in large quantities.
Plaiting Machine. - William B Paris, Tenn. A perforated metallic sheet with textile facing piece is secured to an open frame, to the forwar edge of which is hinged a metallic frame, the materia to be plaited being placed over the textile facing piece
and the plaits turned with the ordinary knife, when the and the plaits turned with the ordinary knife, when the
frame is thrown over the ironing board, the plaits rame is thrown over the ironing boara, the plat
moistened, and a hot iron passed over them.
Ring Spinning Machine. - Ernst Gesener, Aue, Saxony, Germany. This invention re-
lates to spinning machinery with a driven spindle and traveler rotated by the strain of the thread seated on and carried up and down by a ring, the winding being
accomplished by the difference in speed between the spindle and the winder lagging behind, the object being to adapt this class of machines to yarns of little trength.
Spinning Machines.-The above inspinning machines, the first referring t.o spindles with rotary winders rotated similarly to travelers in ring frames, by the tension strain of the thread, for continually spinning and simultaneously winding the thread, an arm carrying the thread guide being pivoted or hinged in the plane of the spindle, to allow of its being rotated round the spindle, and oscillated between th spindle and the outer circle of its rotary motion from thread; the second patent embracing a winder consisting of an arm or bow carryingthe thread guide attached to a socket or disk encircling the spindle below the cop,
and capable of being oscillated in its motion round the spindle, the socket-bearing part of the winder being in frictional contact with the spindle-while by the other patent the arm or bow connected with the thread guide has its upper and lower ends held and carried on the spindle above and below the cop, so as to be in fric only by the strain of the thread, but being aided by friction from the spindle, diminishing ther material to be spun on the bare spindle.

Agricultural.

Hay Binder. - Ephraim R. Kugler, Kingwood, N. J. This binder consists of a post adaptcd to be set vertically in the load, and on which
wind ropes secured at their ends to the wagon and passing over the load, with a lever for turning and locking the post, so as to wind the ropes, thereby
quickly and securely binding the load of hay to the quickly a
wagon.
Stack Fastener.-William L. Murdy Albia, Kan. In carrying out this invention the stack made longer than it is wide, and stakes are inserted passed through apertures in the outer ends of each lin passed through apertures in the outer ends of each lin
of stakes, and the ends of the ropes brought togethe at each end of the stack, where a weight is suspended from them.
Sod Cutter. - Lewis T. Price, Endicott, Washington Ter. The frame of this sod curter is being means for raising and lowering the frame, and locking. it in the position to which it is adjusted, the
construction being specially designed for cutting heavy
soil on which " nigger wool grass" grows, with many
Rice Hulling Machine.-Arthur A. Bourgeois, Ariel, La. This machine is made with two ing from one plate up through the hopper, in conne ing from one plate up through the hopper, in connec
tion with which a slide or trap is arranged, and one the corrugated plates being connected with a cran shaft, the machine being simple, cheap, and durable.

Miscellaneous.

Shutter Fastener. - Lewis Whiteouse, Easton, Md. This device has a catch plate comhrough the wall, and having its inner end passing through the wall, and having its inner end passing
through an apertured end of the hook, a spiral spring being employed, whereby the shutter fastens automatically when opened and is unfastened from the
inside of a room by pressing a knob in the wall at one inside of a room by p
side of the window.
Wire Tightener and Splicer. Shapley P. R. Taylor, William T. Sharman, and Joseph L. Jamison, Denison, Texas. This device consists of disk slotted to form wings, the points of which are bent up out of the plane of the disk, with a perforated
stem, and adapted to be rotated to secure it in position, stem, and adapted to be rotated to secure it in position,
the disks being cheap and light, and left permanently the disks being cheap and light, and left permanently
on the wires, where they are applied with a hand lever.
End Gate for Wagons.-Samuel J. ason, Mead, Neb. This device is made with a flat inge plate called the gate hinge plate, and a combined e-enforcing and hinge wagon plate extending the full
width of the rear end of the wagon, and serving also to protect the rear end of the wagon body from wear, in ombination with levers pivoted to the wagon body, and con
levers.
Lumber Wagon.-William and John H. Leonhardt, Baltimore, Md. The main frame of the wagon body has a windlass mechanism, and there is a supplemental frame with movable bearing connected
with the windlass mechanism, whereby the body may with the windlass mechanism, whereby the body may ferent lengths, and its forward end elevated for the
ready discharge of lumber at the rear end of the wagon.
Folding Crate.-James W. Brook, ynchburg, Va. The end sections of this crate are hinged the bottom, and a hollow ventilating partition is provided, serving to divide and give strength to the box, while eyes or staples are arranged on the inner
sides of the end uprights to be connected by hook rods extending diagonally between the front and rear sides, he crate when ready for use presenting the appearance of an ordinary crate with hinged top.
Basket.-Irwin H. Spelman, Cortland, hio. This is a splint basket compor aving at the corners re-enforcing splints whose lower ends are interwoven with and placed upon the main splints of the basket body at the lower corners, while
the upper ends are extended between the divergent he upper ends are extended between the divergent
main splints of the basket body to fill the interstices.
Combined Table and Chair.-Willie o. Whitney, Glens Falls, N. Y. This invention provides an article of furniture which may be used inter-
hangeably as a takle or chair, the chair back being dapted to form the table top, and the different adjust ents being readily effected.
Padded Hat. - Jesse H. Mo y e r, Temple, Texas. This invention provides a strip of
fibrous material to be placed between the sweat band nd hody of the hat, and having hooks projecting from ne edge to engage the body of the hat and hold the can readily be made to fit.
Drapery Trimming. - Paul Gumbinner, New York City. This is a fabric trimming for raping furniture, clothing, etc., and is made of woven
abric, sacks or bags, connected at one end in a series to a suspensory band, and gathered or shirred at their

Corset Clasp.-John M. V. Le Beau, New Orleans, La. This clasp consists of two spring series of upper fastening devices, all of the fastening being held to the face of the busk, and engaging headed ins or buttons which are fixed to the busk to lock or clasp the corset to the body of the wearer.
Toy.-George W. Nusbaum, Lehighton, a. This toy consists of a fanged board with certain balls or marbles bearing also corresponding designa tions, and the board having depressions and pockets around its edges, with balls or marbles corresponding
to these pockets, the depressions and pens defining the to these pockets, the depressions and pens defining the
portion of the board to which the different marbles portion of the board to which the different marbles
belong, and to which they are to be brought without belong, and to which they are to be
directly moving them with the fingers.
Ice Pitcher. - Edward Play ter, Ottawa, Ontario, Canada. This is a pitcher in which
water, milk, etc., may be cooled without the ice being brought in contact therewith, the pitcher being pro vided with internal sockets, and an ice receptacle
being provided with trunnions adapted to be journaled in the sockets, the ice receptacle being readily removable from the pitcher when desired.
Apparatus for Delivering Coal, erc.-Charles S. Schenck, New York City. This is an veying materials from vessels to various points, or fo use in factories or other structures, an endless belt conveyer discharging into a well or pocket, in combination with a bucket elevator lifting the material from the well, and a chate receiving the material and delivering it to
belt works.
Cistern Cleaner. - William A. Palmer, Plymouth, Mich. This device has a hollow
body with an open lower end, to which a plate having
an inwardly opening valve is adjustably hinged, wit from the upper end of the body, the device being capable of ready manipulation for cle
without fouling the water it contains.
Bottle Stopper. - Finley Y. Clark Saratoga, N. Y. Comhined with the stopper head and the bottle head is a bail pivotally mounted at the bottle head to swing above and against the top of the stopper head, to hold the stopper in place, a hifting leve pivotally engaging the stopper head and the bail, the device making a convenient stopper for bottles desi
Enfleurage. - Gysbert D. Nellen teyn, Amsterdam, Holland. This invention relates to ing ethereal or volatile oils and substances contain ing ethereal or volatile oils and aromatic parts, an perfumes or extracts by a single operation in a cheap,

Plumb Bob. - John M. Cameron, hiladelphia, Pa. This bob is axially bored, and withdrawn, the bob also being provided with a clamp for holding a needle point, and a needle fitted thereto, whereby the point is readily adjustable to adapt it to
Pallet for Drying Brick.-Charles T. Fitch, Elizabeth, N. J. Combined with the head united by horizontal connecting bars is a benc horizontally supported upon the heads and secured to ment on a former patented invention of the same in-

SCIENTIFIC AMERICAN

buildina edition

SEPTEMBER NUMBER.-(NO. 47.)

TABLE OF CONTENTS.

. Elegant plate in colors of a house recently erected at Easton, Pa., for twelve hundred dollars
Messrs. Munn \& Co., architects. Perspective ele Messrs. Munn \& Co., architects. Pers
vation, floor plans, page of details, etc.
Plate in colors of a residence recently erected Natchez, Miss., from plans prepared by Messrs. floor plans, details, etc.
3. A ten thousand dollar residence recently erected floor plans.
A very attractive cottage for six thousand dolla erected at Jersey City Heights, N. J. Floor plan
5. Engraving of the U. S.

A house at Woodlands, Sevenoaks.
7. Church of the Angels, Los Angeles, Cal
8. A cottage recently erected at Jersey City Heights N. J., at a cost of seven thousand seven hundre A house for five thousand five hundred dollars a Jersey City Heights, N. J. J. C. M
tect. Elevations and floor plans.
10. A modern house at Bridgeport, Conn.. built at a cost of six thousand six hundred dollars. Plan
apor
11. A block of six apartment houses lately erected at Bridgeport, Conn., ata cost of five thousand doand perspective elevation.
12. A Queen Annecottage recently built at Englewood N. S., at a cost of three thousand
13. A dwelling for thirty-five hundred to thirty-eight hundred dollars, recently ere
Conn. Plans and elevations.
14. Perspective view and plan of the new depot recently erected
Englewood, N. J
15. A London fire engine house. Cost six thousan dollars. Elevation and ground plan.
16. Engravings of the royal dairy, Windsor Park The handsom
in the world.
17. The temple of Marcus Aurelius, at Dugga. Page engraving.
. Monament to Admiral De Coligny
9. Miscellaneous Contents : Mohammed II. and his architect. - Building trades associations. - The
separate sewer system. - Examine the school baildings.-Experiments with hedges, illustrated with 8 figures.-How creosote affects chimney flues.-Potsdam red sandstone.-Chicago foun-dations.-The tomb of Alexander the Great.Large , Wrought iron fence picket illustrad cline in immigration.-House heating boilers, illustrated.-Mental sanitation.-Flooring.-Improved hot water heater, illustrated.-Improved sash pulley, illustrated.-The arch of Aurelius at
Tripoli. - Government tests of wood. - New station at Hartford, Conn.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copie 25 cents. Forty large quarto pages, equal to aboat two hundred ordinary book pages ; forming, practi-
cally, a large and splendid Magazine of Architec cally, a large and splendid Magazine of Architec with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by of any Archite
all newsdealer

MUNN \& CO.. Publishers,
361 Broadway, New York.

The charge for Insertion under thes head is One Dollar

 a linejor each insertion; about eight words to a line. Advertisements must be received at publicalion officeas early as Thursday morning to appear in next issue.

Air navigating machine-Capital wanted. Great sucThe Little talls used. "J. R.," box 7ī3, New York. he popular water motors have adopted those made by信 Whant., New Yor
Wanted-A young or middle aged man to take charge is foreman in erecting department of machine shop enSouthern Pennsylvania. Pay, \$18 per week; no lost time, and extra for overtime. Must be familiar with
valve motions and know how to set them, and would prerene who understands the indicator. Permanent employment to a competent, energetic man. Send refer-
ences and state age. One who has had experience preferred. Intemperate men need not apply. Address,
Fore
Model steam engine. Cir. free. Edgar Side, Phila., Pa. Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, alr For the latest improved diamond prospecting drills, ddress the M. C. Bullock Mif. Co., Chicago. Ill.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The Holly Manufacturing Co., of Lockport; N. Y., will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Screw machines, milling machines, and drill presses. Iron, Steel, Copper, and Bronze Drop Forgings of Ronn.
Rubber Belting, all sizes, $771 / 1 /$ per cent from regular ist. All kinds of Rubber Goods at low prices. John W.
Buckley, 156 South Street, New York. Buckley, 156 South Street. New York.
Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York.
Hoisting Engines, Friction Clutch Pulleys, Cut-off ouplings. The D. "How to Keep Boilers Clean." Send your address
or free 96 p. book. Jas.C. Hotchkiss, 120 Liberty St., N. Y. The best Cottee roasters, coolers, stoners, separators, polishers, scourers, glossing apparatus, milling and
peaberry machines: also rice and macaroni machinery, are built by The Hungerford Co., Broad and Front Sts. For steel castings of best quality, write the Buffalo teel Foundry, Buffalo, N. Y.
Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
ST Send for new and complete catalogue of Scientific nd other Books for sale by Munn

HINTS TO CORRESPONDENTS.

(1263) L. R. asks how to make the luminus substances used for match safes, bell push buttons,
tt., to make them show in the dark. A. For Balmain's uminous paint we refer you to our Supplement, Nos 229 and 497 , which we can send by mall for 10 cents. 2 How to clean a plaster of Paris statue. A. Plaster of Paris casts can be cleaned by careful brushing with a
little ground pumice stone or other detergent. Organic little ground pumice stone or other detergent. Organic
pots can sometimes be removed by painting with spots can sometimes be removed by painting with
turpentine and water and exposing to the sun under ${ }_{(1264)}$ W. G. C. asks: Is there any anger of explosion in a hot water coil in cooking stove,
y the pipes becoming choked up with sediment or formationes becoming choked up win sediment o kettle used for boiling water. A. There is a possibility of the pipe becoming closed where hard water is used and it may then burn out. There is very little dange with an open boiler. Make the coil longer or larger. 2. Will copper studs placed in coil pipe assist in heating the water? If so, what size and how should they be pu
in? Pipe is $3 / 4 \mathrm{in}$. inside and about $1 / 8$ in. thick. A Copper studs will not pay for the trouble of putting in
(1265) E. S. L. asks if there is any way in which a handle, broken from a cast iron skillet can again be welded or fastened to the skillet. A. I can be attached by riveting a strap to body and handle
Usually the metal is so hard that this will not pay, on account of the difficulty of drilling.
(1266) W. D. G. writes : I had occasion ome time ago to take out some iron rods which had had been constantly under water for some years, but were very little rusted except about three inches of the he botta, which was driven into the planks formin where inclosed in wood (spruce) than above it, whe the whole was constantly covered with water? A Probably there was some acid reaction upon the iron in
(1267) T. S. V. asks : In rolling hot iron or steel, does the elongation of the bar take place elsewhere: Does the metal flow forward or backward? A. The elongation takes place along the surface of con-
tact with the rolls. The rod moves from the rolls with tact with the rolls. The rod moves from the rolls with
the same velocity as the periphery of the rolls inside of the same velocity as the periphery of the rolls inside of
the grooves. It approaches the rolls with less velocity han the speed of the row,
(1268) T. H. K., Jr., asks how brass gas fixtures are brightened and lacquered. I have used
nitric acid and then dipped them in water, but just as soon as they are exposed to air they discolor again. A. Have the water clean and boilng int two vessels. Dip from the nitric acid bath so that there shall be no races of acid on the fittings. Dry in boxwood sawdust while hot, and place upon a piece of hot sheet ron over a stove. As soon as all traces of water have left, quickly lacquer with very thin shellac varnish, using a camel's hair brush. You can make the laquer by dissolving shellac in best alcohol, or you can obtain a lacquer for such purpose from some of the firms
whose cards appear in our advertising columns. Do not toach the metal with the ingers before lacquering.
(1269) St. G. J. asks how to make a cheap pump for supplying water to mains with a 12 If you have tools for log boring, a log lift pump is probably as cheap as any. They can be made of 5 in ore with safety as to pressure. If you wish to utilize
he whole power of your engine, we suggest a box made by bolting four planks together so as to make a square bore six inches in diameter, in which a square bucket can be operated. The bucket and foot valve should be made of hard wood and leather, with iron or lead
weight on top of the valves. A clever carpenter should be able to devise the details. Operate the pump rod, which may also be of wood, by a bell crank lever in th
(1270) S. asks: 1. Is the atmosphere lighter or heavier in damp weather? A. Lighter for after a rain? A. No. 3. Has the atmospheric pressure any effect on the barometer? A. Yes; the baromete Meteorology, by Loomis, mailed by us for $\$ 1.75$. See
(1271) R. asks how to keep tin from being rough or lumpy on articles plated by the dipping
process. Also what temperature molten tin should be process. Also what temperature molten tin should be
kept. A. Put a little clean tallow upon the surface of the melted tin when dipping. Make the tin just ho enough to give a clear, shining surface.
(1272) J. H. B. asks how to melt gold into moulds in the form of bricks. A. If you undertak to melt the gold amalgam in an open crucible, you will lose the mercury by evaporation. The proper way is to a pipe leading downward from the top of the retort in a receptacle for the condensed mercury. Heat the retor over a furnace to about 660°, when the mercury distills over into the receptacle. The contents of the retort can
be placed in a black lead crucible, melted, and poured into an ingot of gold.
(1273) T. S. asks a formula for making solution for coating small iron castings with copper A. Such deposits are generally wanting in lasting
qualities, since they are too thin to protect the iron qualities, since they are too thin to protect the iro
from atmospheric influences. Dip the articles in a solution of sulphate of copper $31 / 2 \mathrm{oz}$., sulphuric acid $31 / 2$ oz.. water 1 to 2 gallons, and it will give them a coat of pure copper. If the articles remain a few minutes in the solution, the deposit becomes thick and muddy and does not stand any rubbing. Small articles are sometimes coppered by jerking them about in saw-
dust impregnated in the above solution further diluted with water
(1274) "Crescent." - We know of no better way to make snow by an ice machine than by
placing coils of pipe on the walls of a room and circu lating the brine in the coils. Feed the room with moist air, which will congeal upon the pipes as a light frost by scraping this off you will have an approach to art
ficial snow.
(1275) J. M. B. asks: Is pure aluminum as good a conductor of electricity as platinum? A. I facture of electrical instruments instead of platinum? A. It may where it is not exposed to heat or to the ation of the spark of the extra current, etc.
(1276) J. S. O. asks whether a good ball batter with the same force in the stroke can knock ball? A. We should say the slow ball would be sen the farthest, and that a ball batted from a state of absolute rest, if that were practicable, would go farthe still, equal force being in the bat in each case.
(1277) T. H. R.-We know of no dif ference between a marine glass and a field glass. The glass. Try the dial of a watch at 500 yards, and see if you can tell the time. Good field glasses single may be had from $\$ 5$ to $\$ 10$. Double from $\$ 10$ to $\$ 15$. The ordinary power of the Lick telescope is from 300 to 2,000
times. Divide two miles by these numbers times. Divide two miles by these numbers for the dis
tance.

TO INVENTORS

An experience of forty years, and the preparation of more than one hundred thousand applications for pa tents at home and abroad, enable us to understand the equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and al foreign countries may be had on application, and persons
contemplating the securing of patents, either at home or broad, are invited to write to this o Which are low, in accordance with the times and our ex
tensive facilities for conducting the business. Addres munN \& CO.. office Scientific American, 361 Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

August 27, 1889,

and each bearing that date.

[See note at end of list about copies of these patents.]
Adding machine, J. H. Schnarrenberger...........
Agitator and conveyer, combined, V. D. Ander-
 Aluminum chlorides, purifying, H. Y. Castne Aniline black, J. Bracewell.
 Artist's field and material case, C.
Axle lubricator, A. A. Gregory....
Axle nut, carriage. A. E. Herman Axle, vehicle, A. E. Herman.... Axle washer, vehicle, C. C. Jerome.
Backband hook, J. A. Elliott....... Backband hook, J. A.
Bag. See Feed bag.
Bą holder, J. Feess.......
Baling press, E. P. Jaqua
Baling press, \mathbf{T}. Tebow...
Bar. See Horseshoe bar
Barrel cover, J. Moosbrugger
Barrel cover. T. E. Ragland
Batteries, apparatus for charging secondary,
P. Kookogey
Batteries, containing cell for secondary, c .
Waldron
Bearing, anti-friction,
Bed lock, \mathbf{C}. White
Beer, etc., racking-off apparatus for, J. Johnso Bellows, double-acting, H. Kohn.
Belt, electric, C. Everett. Belt, electric, C. Everett
Bending metal bars, mach

Blower for furnaces, C. A. Goyne.
Board. See Bosom Board. See Bosom board. Ironing board.
Boiler. See Steam boiler. Boiler. See Steam boiler.

Boilers, means for utilizing radiated heat of

 H. Butts... beater...................Bolts, machine for turning tapered, S. M. Vau-
clain
Bookbinding, L. Brainard..
Book, black leaf check, T. McDowell..
Book, manifold memorandum,
Boot or shoe sole protector, J. W. Bertsch
Bosom board, T. J. Jackson...
Bottle
Bottle stopper. J. H. Christman
Bottle stopper. F. Y. Clark
Bottles, sponge holder for mucilage, J.er.
Box. See Flower box. Money box. Neck we box.
Box, M. Benas.
Box blocker, C. Gail...................
Box for tobacco. etc., D. . Ripley..
Bracket. See Lamp bracket.
Brake. See Car brake. Wagon brake.
Brake adjuster, automatic, E. D. Eame
Brick drying pallet, C. T. Fitch.......
Brick machine, Leyson \& Thomas
Bridge, G. H. Pegram
Reid...................
Bun, barrel, W. H. Bunday
Bureau
Bureau, Miles \& Scollay
Burglar alarm, E. Carter
Burner. See Stove burner.
Butter press or printer, J. M. Criley
Button strip, Warren \& Ames..... .
Calipers and dividers, M. L. Connett
Camera. See Photographic camera.
Can. See Creaming can.
Can nozzle, oil, C. B. Underhill
Cane and camp stool, combined, A. B. B. Puring......n.
Car bearings, machine for lining railway.
McCulloch............
Car brake, J. W. Hurst
Car coupling, R. J. Edwards
Car coupling, Q. J. Hoke....
Car coupling, C. D. Moore.
ar coupling, w. T. Sims.............
ar coupling tool, O. D. Woodruff
Car, dumping, J. H. Gearhart.
Car for transmission of specie, G. T. Yost.
Car seats, ticket casing for, R. J. Smith...
Cars, pilot, or wheel guard for street, G. H. Bahr
Cars, safety attachment for railway, R. G. Riera Cars, safety zuard for, c. H. Ohm..
Cars, station indicator for
Cars, station indicator for railway, E. Verpillier
arding engines, means for fastening card clot
ing to the top flats of, E. Tweedale.
Carding machine, F. H. Carpenter....
for delivering, A. Tabour.
arpet stretcher, Henshaw et al.
Carriage, child's, T. K. Forman
Carriage spring, G. Langbein.
Cart. self-loading, J. C. Kelehe
arving machine, S. F. Moore...............
Case. See Artist's field and material
Cash carrier apparatus, J. G. Davis.
Ceiling, metal, F. G. Caldwell
Ceilng, metal, F. G. Caldwell........................
Centrifugal machines, gearing for driving
Laidlaw.........................
Check, service, cash, and pass, G. D. Smith Chemical reactions, facilitatin
Chenille fabric, J. Crabtree.
Chimney cowl and ventilator,
Chopper. See Cotton chopper
Chopper. See Co
Churn, E. Michaels............
Cigar bunching machine, F. A. Schutz
Cigar machine, M. Greensfeld
Cistern cleaner, \mathbf{W}. A. Palmer
Clamp. See Dental bit clamp.
Clamp. See Dental b
Clarionet, C. G. Conn
Clasp, S. B.
Clasp, S. B. Ferris.........................
Cistern cleaner. Knife cleane Clock pendulnm, G. P. Ree
Clothes drier. L. R. Studley
Clothes hanger, H. Hennig

409,915

409846
409696

410,051
409,824
410,003

410,079

...... 409,999
$10005,410,00$
.. ... 409,80
Cigar machine, M. Greensfeld
Cistern cleaner, \mathbf{W}. A. Palmer
Clarionet, c. G. Con
Clasp, s. B. Ferris
Cleaner. See Cistern cleaner. Knife cleane
lock pendulnm, G. P. Ree
Clothes drier, I. R. Studley
Clothes hanger, H . Henni.

9,661
9,743
9,804

Cotton chopper, A. Chambers.......................... Coupling. See Car coupling. Pipe coupling. Shaft coupling. Thill coupling.
Creaming can, P. S. Fowler
Crib or cradle, P
Crusher. See Grinding mill
Cu
Cultivators, spring tooth fastener for, E. P. Ather holt.
Curtain fixture, J. Shin
Cutter. See Meat cutter. Sod cutter. Stalk cutter.
Cutting wooden dishes, machine for, D. H. Brenner.
Decorticator for ramie, etc
Dental bib clam
Desk, school, C. B. To
Door check, C. H. Dixson
Door check, pneumatic, T
Door hanger, P. H. Murphy
Door, screen and storm, C.
Door spring, F. W. T
Drawer, E. J. Brown
Drier. See Clothes
Drying apparatus, J. F. Gent.
Dummy or motor engine, J. T
Dumping platform, E. Burns
Dust collector attachment, I. E. B
Dye, making orcine, R. Greville-Williams.
Electrode, secondary battery, с. H .
Electrode, secondary batterv, J. F. McLa
Electrode, secondary battery, F. H. Sm
Elevators, speed controlling device Melrose.
Emery wheel, R. W.
Enfleurage, G. D. Nellensteyn
Engine. See Rotary engine. Ste
Engines, automatic lubricator for steam, J. H Stegrist, Jr.
Engines, stock or tool holder for A. Barth.
Extension table,
Extension table, W. H. Bur
Fabric. See Chenille fabric. Twilled woven fabric.

Dental bib clamp. J. D. Enne
Desk, school, C. B. Towle...
Door check, C. H. Dixson...................
Door check, pneumattc, T. Goodenough.
Door hanger, P. H. Murphy.............
Door spring, F. W. Tobey
Drawer, E. J. Brown......
Drier. See Clothes drier.
Drying apparatus, J. F. Gent

Dye, making orcine, R. Greville-Williams..410,057
Electrode, secondary battery, C. H. Carter.......
Electrode, secondary batterv, J. F. McLaughlin.
Electrode

0,003	$\begin{array}{c}\text { ric. } \\ 9,768\end{array}$
Farm gate, T. A. Tweedy.............................. 40	
Fastening device, M. C. Somborn...........	

Fence wire holder and stretcher, B. Doud...........
Fibrous lubricator, J. Williams, Jr...............
Fifth wheel, vehicle, A. O. \& R. N. Clemons, 2d...
File or holder, paper, J. B. Brown.................
Filtering medium. water, J. B. \& J. F. Ziegler.
Filtration, J. W. Hyatt..
Firearm lock, E. L. Pupk
Firearm, magazine, C. M. N. Wetherby..............
Fire extinguisher, M. Magaldi................
Fireplace for burning gaseous fuel, R. Young....

Frame. See Hay frame.
Fruit box head, B. Shunk
Fruit box head, B. Shunk....................
Frait cleaning machine, Phelps \& Burdon.
Fruit picker, s. Brazee..................
Furnace. See Boiler furnace.
Furnace, E. W. Jones.......
Furnace grate, G. L. Allen.
Gauge. See Recording gauge. Surface, scratch,
and depth gauge.
Gauge knife, F. W. Lowe.
Game apparatus, H. S. Kenney,\ldots.
Gas, apparatus for the manufacture of, w.
Stewart..................................
Gas, automatic safety lock for, McClure \& Ho
land
Gas lighter. s. B. Batte
Generator. See steam generator.
Glass. See Opera or feld glass.
Glass panels, making ornamental, Endres
 Grain scourer, J. M. Case................................... 410,06 Grate for refuse burners, P. Keene.......
Grease and oil separator, E. H. Murphy...
 Emmens..
Guns, wind ga
Guns, wind gauge sight for, J. W. Soule............... $40.90,039$
Halter, J. H. Philpott

Hanger. See Clothes hanger. Door hanger.
Harness attachment. I. D. Saxton...............
Harness loop, J. N. Barr....................
Harness loop press, C. Pelissier
Harrow, M. J. Frank..
Harrow, D. McHugh..
Harrow disk, .J. T. Bell....
Harvester attachment,
Harvester, corn, B. B. Leedy...
Harvester attachment, E.
Harvester, corn, B. B. Leedy..
Hay binder, E. R. Kugler.....
Hay binder, E. K. Kugler.......
Hay distributer, A. McCollum

heat. water heater.
heel, G. Schmidt......

Hoist operating mechanism, J. S. Ebert............
Holder. See Bag holder. Cuff holder. Fence
wire holder. Order. Cuff holder. Fenc
Shade or klobe holder.
Shade or globe holder.
Hoof expander, B. Stewart
Hoof pad, A. D. Hamlin...
Hoof pad, A. D. Hamlin......
Hook. See Backband hook.
Horse detacher, C. D. Hill...410,090
410,025
409,737
thes line stretcher, H. Hennik.
thes pin J. A. Stewart

Stegrist, Jr.........
Ensines, stock or tool holder for direct-acting,
A. Barth..............................

A. Barth.................

 Extensio tabe, W. Blanker...........................Extenion table, w. H. Burk..........
Fabric. See Chenille fabric. Twilled woven fab-
409,716

| |
| :---: |409,716

Paper bag machine, C. B. Stilwell.................... 409,904
Paper bag machinery, C. B. Stilwell......410,122 to 410,125Paper box making machine, Sheldon \& Bailey....
Paper, machine for coating continuous strips of,
41
O. \& H. O. W ood worth ...
Pegn, fountain, A. M. Fox.................
Pen for holder, electric, W. C. Holmes.
Pen
Pencil shapener, E.G. Phillips
Pen, fountain, A. M. Fox.................................... 409,
Pen holder, electri, w. C. Holmes........... 409
Pencil sharpener, E. G. Phillips................. 409
Photographic camera, G. Shorkley. 409
Photographic camera, G. Shorkley...................... 409, 409,
Photographic lens, C. H. E. Krogmann......... 409
Photographic lens, C. H. E. Krogmann................ 409,981
Pianos, device for cutting damper felts for, J.
Swenson...810
Pigment-resist, J. Bracewell.................

410,029 Pipe coupling, E. U. Scoville...................................409,092 4032

Plaiting machine, G. C. Parker......
Platform. See Dumping platform.
Plow, M. L. Rinehart ...
Plow, W. H. \& H. Smith
Plow, W. H. \& H. Smith.
Plow, sulky, E. A. Raath
410,121
410.022
409.97
409.937
Pool rezister, automatic, T.Printing aniline bl409,966
409,821

co
cole
col
col
co
co
co

.... 409,
c.. ${ }^{409}$

.... 409, | 409,8 |
| :--- |
| 410,0 |
| 410,65 | Horseshoes, removable calk for, J. Neuss, Sr......

Hot air and hot water heater, F. Farquhar et al...
HJdrat 409,890
40,008
409,710

Hydrant, E. L. Rowe.................................. 410,026
Indicator. See Thermometric indicator.
Induction coil, E. Thompson...................... 409,714
 Iron. See Soldering iron.
Ironing board and table, D. Fetters................. 409,947
Jack. See Lifting jack.
Jay.
olumn, compound fireproo...................
H. Drake.

Pegking machine, J. E. Bickford........................ 4099,72
Pen, fountain, A. M. Fox..................... 4099
Pen holder, electric. w. . Holme.ob

Abstract

TO BUSINESS MEN.
tising medium cannot be overestimated. Its circulation
ismany times greater than that of thy similar journal
now published. It goes into all the States and Territonow published. It goes into allt the States and Trerrito
ries, and is read in all the principal libraries and reading
rooms of the world. A business man wants something

 fress rates see top of first column of this page, or ad-

DRY AIR REFRIGERATING MACHINE.

THE ARMSTRONG MFG.CO. WATER, GAS AND STEAM FITTERS' tools.

THE EIFFEL TOWER.-AN EXCEL-

OIL WELL SUPPLY CO. LId.

ARTESIAN

 THE PHONOGRAPH.-A DETAILED

Texwleal bours

THE COPYING PAD.-HOW TO MAKE

PERFECTHWSPAPER

The Koch Patent File, for preserving newspapers, Mag
azines, and pamohlest, has been recently improved and
price reduced. subscribers to the Scitentiric

CURE DEAF:

New York Belting and Packing Co. for Sale--Special Bargan.

G. Hatfleld.

KEEP COOL!
Light-Running Ventilating

- HE PENNA. DIAMOND DRILL \& MFG. CO. MIRDSBORO, PA., Builders of High Class
Stean Engines, Diamond Drilting and Genera

hars
THE W A'TER SUPPLY FOR NEW YORK

Absolutely Fire Proof. SING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPECIALTIES.
 The Paris Exposition--Illustrated.

MENT subscription list at once, so as to secure all the
illustrated exposition numbers for preservation (rice
\$5 a year, $\$ 2.5$ for six months. News anents everywher
WEBSTER

Has been for many years Standard Authority in the Gov't Printing Office and U. S. Supreme Court. Itis Highly Recommended by 38 State Sup'ts of Schools and the leading College Presidents.

Nearly all the School Books published in this country are based upon Webster, as attested by the leading School Book Pbubishers.

3000 more Words and nearly 2000 more Engravings than any other American Dictionary.

```
GET THE BEST.
```

Sold by all book sellers. Illustrated Pamplet with specimen pages, etc., sent free.
MERRIAM \& CO., Pub'rs, Springfield, Mass.

2nd LCST MACHINERY
THE HEAT TREATMENT OF STEEL

AUTOMATIC REGISTER
 Counts accurntely the movements or production
of machinery. Saves labor and time. Send for circular
GEO E IVE, PIPE COVERINGS

$\$ 10.00$ to $\$ 50.00$

VOLNEY W. MASON \& CO. FRICTION PULLETS CLUTCEES and ELEVATORS

MODERN SMOKING PIPES

$\overline{\text { ELECTRO MOTOR. SIMPLE HOW TO }}$

THE BOOKWALTER STEEL AND IRON CO

oh cale speal bahaik.

 ELECTRIC TRACTION ON TRAMWAY

 The S cientific $A=$ merican PUBLICATIONS FOR 1889.

The prices of the diff erent publications in the United
States, Canada, and The Scientific American (weekly), one year . $\$ 3.00$ can Supplement (
 She Scientitic American, Architects and Builders
Edition (monthly), one year.
The Sclentific A merican and Supplement, . . $\$ 1.00$
 This includes postage, which we pay. Remit by posta
or express money order, or draft to order of MUNN \& CO., 361 Broadway, New York

WDvertisements.

Wheeli
Victor Bicycles Low-Priced Typewriter First-Class, Rapid, Durable, Business WORLD TYPEWRITER, 44 chara ters, \$10; 77 characters, \$15 Catalogue free. Typewrite
Boston, New York, Chicago.

PAINT YOUR ROOFS

cover two or three times more surface and last four or

 y heat ond for circular JOS. DIXON CRUCIBLE CO., Jersey City, N. J JAMES B. EADS.-AN ACCOUNT OF the life and labors of this eminent engineer. Withportrait. Contained in SCIEETIIICAMERICAN SUPPLE
MENT, No 59.2 Price 10 cents. To be had at thi T프 KODAK CAMERA

HI工TH上_ BRIGHTSPARKLING WATER LARGE SIZES FOR MILLS AND WATER WORKS. NATIONAL WATER PURIFYING CO.,

THF BOOKWATHMR CASMING CO

THEAMBRTHANBHLL THRPHONE CD
95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequence thereof, and liable to suit therefor.

ANNOUNCEMENT!

 or us to manufacture Elevators, to be operated fromine of shafting at
Pure
 All (or Eleetatarte. machinery is made of the very best
materias, and skilled workmen.
Also manu macturers of Hydraulic Passenger

BASE BALL - A DESCRIPTION OF
 EN cents. To be had at this office and from ail news-
doealers. INVENTORS and otners desiring new articles manufac-
tured and introduced, address P. O. Box 86. Cle veland, 0 .
TTAT CTCTOTPTA

SIX REASONS WHY
YOU SHOULD BUY IT.

It is Up With the Times."-President Seelye, Smith College, Mass. It is Remarkably Accurate."-EDWARD Everett Hale, Boston, Mass. Its Wide Range of subiects is of In
F. SMITH, Vanderbilt University, Tenı. t Gives Buthes t Gives Both Sides of Mmportant Questions and Decides Nothing." No One Can Mhake a Mistake in Purchasing This Work."-Presiden Address Subseription Dept, DODD, MEAD \& COMPANY, Publishers, 753 \& 755 Broadway, New York.

 ELEVATORS OF THE EIFFEL TOWERE

TO INVENTORIS

 AND MANUFACTURERS The 58th Annual Exhibition American Institute of the City of New York Will Open OCTOBER $2,1889$. Intending Exhibitors must make early application to

 Scinntifir sumpican

ESTABLISHED 1846. The Most Popalar Scientific Paper in the World.

This widely circulnted and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions. Novelties in Mechanics, Manuf, ictures,
Chemistry, Electricity, Telegraphy, Photography, Archi-
 Complete List of Patents each week.
Terms of Subscription.-One copy of the Scien-
tific Anerican will be sent for one year-5 postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollares by the pub Clubs.-Special rates for several mames, $\$ 1.00$.
Clixd to Pos Masters. Write for particulars.
The safest way to remit in
The safest way to remit is by Postal Order. Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Ad
dress all letters and make all orders, drafts, etc., payable to MIUINLV \& CO.,

361 Broadway, New York. TIET
Scientific American Supplement.
This is a separate and distinct publication from
THic Scientific American, but is uniform therewith In size, every number containing sixteen large pages full
of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. The Scientific american Supplemient is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in
all the prinsipal Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geography, Archwoogy, Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical EngiChemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photogriphy, gineering, Agriculture, Horticulture, Domestic Econo-
my , Biography, Medicine, etc. A vast amount of fresh and valuable information obtainable in no other pub
The most important Engineering Works, Mechanisms, and Manufactures at home and abroad are illustrated Price for the SUPLIEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AM
RRICAN and one copy of the SUPPLEM ENT, both mailed or one year for $\$ i .00$. Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y..
Publishers SCIENTIFIC AMEITCAN.

Building Edition

The Scientific american architects' and Single con' Edition is issued monthly. \$2.50 a year to about two hundred ordinary book pages; forming a
large and splendid Magazine of A celintecture, rich large and splendid Magazine of A rchitecture, rich fine engravings; illustrating the most interesting exallied subjects.
A special feature is the presentation in each number
of a variety of the latest and best dences. city and country. including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given together with full perspective and in color are given, together
Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of The elegance and cheapness of this magnifleent work
have won for it the Largest Circulation of any
Architecural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to
MUNN \& CO., Publishers, 361 Broadway, New York.
PRINTING INKS:

