

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, AUGUST 24, 1889.	

THE CITY OF ABERDEEN, A GREAT LUMBER CENTER, The town has already three churches, two schools, foundry, boiler and machine shop, two ship yards, one WASHINGTON TERRITORY. one bank, nine saw mills, daily capacity 450,000 feet, weekly paper, two steamers connecting with Portland The accompanying illustration is from a photo. and is four salmon factories, one furuiture factory, one (outside), two hotels, etc. Two railroads connecting a correct view (see page 118) of the town as it appears today. The town was founded in 1884 It now has a population of 1,600 , a gain of more than double in twelve months. The view is looking west erly toward the Pacific ocean, seen in the distance. At the base is the narrow but navigable Wiskah, which, with the broader and more capacious Chehalis river, empties into Gray's harbor, the three formlng their junction at the town affordtown, afforddeep water dock front, several miles in extent.
Mr. Samuel Benn, the present pioneer resident and the original
proprietor of the entire neighbor hood, came here thir-ty-three years ago and bought 700 acres of gov ernment land, costing him $\$ 1.25$ per acre, which he would several times have been glad to have sold out for $\$ 1.50$ per acre if he had had an opportunity. To-day the less desirable sections of it are held at $\$ 50$ per acre, and many village lots that he sold recentlyat $\$ 10$ each have changed hands at $\$ 1,000$ each.
There is 22 ft . of water on the harbor bar at low water. A sailing vessel càn leave here, and in three hours, and without the aid or expense f a tug, be sailing on the broed Pacific.
 with the North Pacific Railway are in process of con struction. One of the views represents a scene in a logging camp near Aberdeen.
In these camps the labor is subdi vided, and the wages are high. A fore man will re ceive per month $\$ 150$ teamsters or bull punchers, $\$ 125$; axmen and sawyers $\$ 80$; greasers, who swab the skidswith grease, $\$ 35$ hook tenders, $\$ 80$; cooks \$60; boomers, who float logs to mills, $\$ 85$.. Bull punchers here are ne cessarily men of ability. Some receive as high as $\$ 150$ per month. Men that are able to handle a dozen yoke of cattle; and get all there is out of them when a pinch comes, are scarce.
For obvious reasons, cattle alone are used as motive powerin the woods. It will be noticed that the operators each stand on spring boards set in notches about five feet from the ground. This is done to save labor of cutting through the swell at the butt end, the diameter of which at the ground is frequently double that of the log 20 feet higher up. Thus, in looking over a camp stumps 20 feet high are often seen, and one is curious to know why such an apparent waste of timber is
(Continued on page 118.)

§rientific ghmericau．

ESTABLISHED 1845.

MUNN \＆CO．，Editors and Proprietors． published weekly at

No． 361 BROADWAY，NEW YORK．

O．D．MUNN．	A．E．BEACH．

TERMS FOR THE SCIENTIPIC AMEIRICAN．

One copy，one year，for the U．S．or Canada．．．
One copy，six months，for the U．S．or Canada．
One copy，one year，to any foreign country
One copy，one year，to any foreign country b
Remit by postal or express money order．
Australia and New Zealand．－Those who desire to reeive the Scientific American，for a little over one year，may remit $£ 1$ in curren ank notes．Address

Co．，sil broadway，corner of Trankin Street，New York． The Sclentific American Supplement
is a distinct paper from the Scientific Amrrican．THE SUPPLEMENT （issued weekly．Rivery number contains 16 octavo pages．uniform in size
with Scientific American．Terms of subscription for Supplement 85．00 a year，for U．S．and Canada．\＄6．00 a year to foreign countries belong－ Ing to the Postal Union．
throughcut the country．
Combined Rates．－The Scientific ambrican and Suppiement weven dollars．
The safest way to remit is by draft，postal order，express money order．or
epistered letter
Australia and New Zealand．－The Scientifig American and
Suppiement will be sent for a little over one year on receipt of $£ 2$ cur－ SUPPIEMENT will be sent for a little over one year on receipt of $\mathbf{e} 2$ cur NEW YORK，SATURDAY，AUGUST 24， 1889.

Contents．	
（Illustrated articles are marked with an asterisk．）	
erdeen，Wash．Te	
Am．Assoc．Adisisi．．．．．．．．．．．．． 112	Lantern，scientific＊＊．．．．．．．．．．．． 115
Arms and powder，new．．．．．．．．．．．． 116	Logs，transportation＊．．．．．．．．．．．．． 111
soc．，Am．Ry．Mas．Mes ．．．．．．． 115	Magnesium
Attachment，microscope ${ }^{*}$ ．．．．．．．${ }^{115}$	Mill．planing．
	Navication，steam，progress．．．．．． 112
	Packing，piston rod，Ǩeiliogg＇s＊．： 114
Camp，logrinp＊＊．．．．．．．．．．．．．．．．．． 111	Patents．．．．．．．．．．．．．．．．．．．．．．． 120
Candie．electric＊：．．．．．．．．．．．．． 115	Polariscope，lantern＊＊．．．．．．．．．． 115
Commerce． courage	Prism，${ }^{\text {Pre }}$
Cooking by electricity ．．．．．．．．．．． 121	Prism，course of light t
op，hen，Butte	Railway，
her，tile，Po	Seymou
rk，	
bition，Paris	Sn
esis，stat	$\begin{aligned} & \text { Ste } \\ & \text { Sul } \end{aligned}$
es． 11	Sy
Guns，cast st	
14	Te
entions，akricultural．．．．．．．．．． 122	Teutoni
entions，index of．．．．．．．．．．．．．123	Tree，fr，fellin
entions，mechanical．．．．．．．．． 122	
k，thill coupling，	ells，artesian，Memphis

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT NO．712．

For the Week Ending August 24， 1889 ．

 Price 10 cents．For sale by all newsdealers． Assyria to Ekypt，with M．Naville＇s remarks on the buried cities．．
ASTRONOMY．－The Planet Uranus－－The anomalies of this dis－
tant planet．－Its figure，rotation，satellites，and physical constitu－

 Zoological Society by the eminent biologist ．．．．．．．．．．．．．．．．．．．．．．．．．．
V．CHEMISTRY－Industial Applications．of Thermo－Chemistry．－
By SAMUEL RIDEAL．－Elaborat review of the connection be－ ween theory and practice，in the galvanic cell．Bessemer pro－
cesse etc．e．Arussian Biue．－Notes on Prussian blie und some new sol－ vents for the same．－Of interest to micruscopists as affording an
injecting fluid $\ldots \ldots . . \begin{gathered}\text { and }\end{gathered}$

 I．ELECTRICITY．－Constant Current vs．Constant Potential Motors．
 Telephoric Vibrations．－Experimental method of iilusiationg
and studying these obscure movements ．．．．．．．．．．．．．．．． 11 VII．MECHANICAL．ENGINEERING．－The Eqglish Engine on the
Pennsylania Rairond．A practical view of the Englinh ennine．
－Its defects and nerits．－The advantare of the compound system
 lustrations．．．
VIII．METALLURGY．－Alloys of Nickel and Steel．－By JAMES

Ix．MILCEL．ANEOUS．－Ehnongy of the Caist Rnan Tribe of

the american association for the advance－

 ment of science．The Toronto meeeting of this scientific body，to be held from August 27 to September 7，promises feature of unusual interest．The general sessions will be held in Convocation Hall，University Buildings．Major J．W．Powell，the retiring president，will give his ad dress on the evening of the 28th inst．，and the vice presidents of the various sections will speak before their sections during the afternoon of that day．Special meetings will be held of the Entomological Club，the Botanical Club，the Agricultural Society，and the American Geological Society during the sessions of i ．e A．A．A．S．Papers will be read by Prof．J．D．Dana， Dr．E．O Hovey，Prof．Gilbert，Prof．Newberry，Prof J．LeConte，Prof．A．Winchell，Mr．C．D．Walcott，and others．The president－elect of the association is Prof． T．C．Mendenhall，of Terre Haute，Indiana，at the head of the Rose Polytechnic School．The usual facilities have been secured as to transportation，mail，telegraph， and express，and by courtesy all articles for use at the meeting will be admitted free．Excursions are planned to Niagara Falls，Montreal，Quebec，and Muskoka，and arrangements are being made for one to the Pacific coast．

REPORT ON EXPLOSIONS IN THE ELECTRIC SUBWAYS

 A special committee of the Board of Electrical Con trol of the City of New York has presented its re－ port on the above subject．It appears very evident that the electric subways are a perpetual menace to the lives and property of the inhabitants of this city It was eminently proper that，in view of the recent ac－ cidents，a special investigation should be made of the subject．The report deals with the mysterious explo sions of the last year，and offers a plausible cause for one of them，known as the Fifth Avenue explosion． It appears that the wires in the exploding subway were all dead at the time of ignition．But an open distributing duct led from the subway into a cellar under the Fifth Avenue Hotel．The suggestion is made that the gas may have ignited here and carried the flame back into the subways．The remedy for the trouble is to exclude gas from the ducts and manholes．This ground is taken by th report．The engineers of the Subway Construction Company have done their best to effect this by adopt ing as tightly sealed a system as possible，but without avail．The next most obvious method of excluding an accumulation of gas was ventilation，and of the various means tried，only one proved really efficacious．This consists in blowing air into the subways by force blowers．This maintains a slight excess of pressure in them which insures ventilation through the inevita ble cracks and leakages in the structure，and also ex cludes gas by reason of that excess．This system is analogous to that adopted by the gas companies in distributing their product under pressure all over the city．
The root of the trouble is the presence of gas due to leakage．The streets of this city contain the dis－ tributing mains of a number of gas companies．Most of them are of cast iron with tamped or calked lead
joints every twelve feet．Many miles were laid with joints every tweive feet．Many mils．Some of the have been in use for perhaps fifty years．In this sys tem there is ample chance for leakage．Yet，owing to the great resistance of cast iron to underground cor rosion，the mains themselves，if properly calked at the joints，might be regarded as secure．But many are very poorly laid．Not only is there every certainty that there are hundreds of badly calked joints，but the system of service pipes for individual houses is the occasion of much leakage．These are of wrought iron welded tubing，that corrodes much more rapidly than cast iron，and to them a great deal of the leakage is to be traced．

Every one who passes excavations in our streets can notice the characteristic odor of the gas－saturated soil． Gas is everywhere underground．Several hundreds of millions of cubic feet escape annually from the gas pipes into the soil．The report we are considering very consistently places the onus of the subway ex－ plosions upon the shoulders of the gas companies，and affirms that they should cure the evil by preventing the escape．
Logical as this sounds，it opens up a dire possibility． Should the gas companies attempt the work of renew－ ing service pipes，replacing them with less perishable ones，and of recalking the joints in their mains，the streets of New York would witness such an upturning as they have never yet seen．The remedy would be worse than the disease．

What the outcome of the whole matter will be it is not easy to say．The present wost advisable course would seem to be the establishment of numerous venti－ lating stations．A minimum excess of pressure might be assigned that should be maintained throughout the entire system．This could be made so low that the few open manholes would not affect it．Then，when the subways were safe，the gascompanies as the originators of the trouble could be made the topic for after con－ sideration．
progress of ocean steam navigation．
A very interesting conntest showing the comparative speeds of some of the latest and best examples of pas－ senger steamships took place recently on the route be－ tween Liverpool and New York．＇Three of the greatest steamships started from Liverpool on the same day for New York．These were the City of New York，built in 1888，the Teutonic，a brand－new vessel，this being her irst voyage，and the City of Rome，now eight years old．We present a table giving chief dimensions of notable Atlantic liners ：

	营	㥻	$\begin{aligned} & \text { 咅 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { an } \end{aligned}$	损	
＊Great Western．．．．	1855		ft．in．	${ }_{\text {flt }}^{\text {fis：4 }}$ in．		
＊Great Mritian．．．．．	${ }_{\text {1851－3 }}^{1881}$	${ }_{\text {3，500 }}^{13,500}$	\％ $274{ }^{272}$		${ }_{24}^{31.5}$	
＋Britannic．asgow．．	1884	${ }_{5}{ }_{5}^{1,004}$	455	${ }_{46}$	${ }_{34}^{24}$	
－+ ＋Gity of Berin．．．．．	${ }_{189}^{1875}$	${ }_{4}^{5,899}$	${ }_{438}^{488}$		${ }_{36}{ }_{36}{ }^{363}$	
tArizona．．．	1879	${ }^{\text {5，147 }}$	${ }_{450}^{450}$	${ }_{45}^{45}$	$371 / 2$	${ }^{6,300}$
	1881	${ }_{\text {7，932 }}^{\text {7．392 }}$	${ }_{500}^{515}$	－50	${ }_{39}^{40,4} 7$	10．500
＋City of Rome．．	${ }_{188}^{1881}$	${ }_{7}^{8.141}$	$\stackrel{546}{470}$	－${ }_{5}^{52}$		－11，890
forezon．．．．．．	－1883	${ }_{7}$	500	${ }^{54}$	3934	
	1884	${ }_{7}^{6,7800}$	${ }_{\text {a }}^{43}{ }^{432}$	$\stackrel{51}{57}$		\％ $\begin{gathered}7,3,384 \\ 1 ; 32\end{gathered}$
ESalle．．．．．．．．．．．．	${ }_{1}^{1885}$	${ }_{\text {5，}}^{5.381}$	$\xrightarrow[465]{455}$	${ }_{49}^{48}$	${ }_{36 / 2}^{36}{ }^{3}$	9，500
\＃City of New York，						
\＃Teutonic．．．．．${ }^{\text {and．}}$	1889	${ }_{\text {l }}^{\text {9，685 }}$	（ $\begin{gathered}560 \\ 588\end{gathered}$		${ }_{42}^{43}$	20，000 17,000

The City of New York and the Teutonic have twin propellers．
The City of Rome has a single propeller and but little Teutonic．
All three ships left Queenstown on August 8．The New York arrived at this port first，making Sandy Hook on the 15th inst．，in 6 days， 14 hours， 20 minutes． The Teutonic arrived not quite half an hour later Her time was 6 days， 14 hours， 45 minutes．
The daily runs compare as follows in nautical miles

The Teutonic was obliged to slow down for seventee hours on account of fog．The City of New York was delayed by fog and the heating of her machinery The delays were pretty evenly balanced．
It is to be noted there was a gain every day in the peed of the Teutonic，which seems to have been in proportion as her new machinery worked easier．
On the other hand，the New York appears to have been pushed for all she was worth，as she had fre－ quently to slow down，owing to the heating of journals． The City of Rome arrived at Sandy Hook at $\cdot 2.40$ p．m．，Aug．15，having been about 17 hours longer making the voyage than the other two ships．
Considering the great superiority in the machinery of the new vessels over the City of Rome，the gain in speed during the past eight years，though important， has only been attained by an enormous increase of engine power and corresponding consumption of fuel．

SECONDARY BATTERY SUB－STATIONS．

The system of electric lighting by storage batteries， now being tried in Chelsea，England，while not wholly novel，having originated here，is nevertheless a nota－ ble one，possessing as it does important advantages over the earlier systems of lighting by storage bat－ teries．By its employment that steadiness and cer－ tainty which the most advarced system of feeding di－ rectly from the dynamo to the light will not assure is obtained，and yet without the expense of supplying batteries to every patron．Powerful secondary bat teries are placed in the sub－station instead，where are also steam engines and dynamos for recharging houses and offices，thus requiring no other fixings than are called for in the ordinary systems．Mr．W．H．Preece， the English electrician，who recently examined the practical working of the new system，says it is pos sible to construct a long main circuit of small service wires，with a current＂of high E．M．F．，which at differ ent points can charge a secondary battery of a small number of cells，so as to＇transform＇the dangerously high E．M．F．into one of a low and harmless charac ter in the building to be lighted．＇
Describing the operations of the system，he says ＇It distributes its currents to the houses from sub－sta－ tions where the batteries are kept，and maintains a continuous supply of electric energy．Each sub－sta tion，of which there are three，supplies current for 2,00030 watt 10 candle power lamps．There are 265 31－L cells，divided in two sets of groups of 53．Each set is charged separately and alternately in series from the central generating station．While one setis being charged the other is supplying currents to the con－ sumer．The main charging current of 60 amperes has
an E. M. F. of 500 volts per distributing station, or 1,500 volts for the circuit, and the secondary discharging supply into the houses has a pressure of 100 volts." Here, as will be seen, the advantages of secondary battery service are obtained, yet without any batteries on the premises of the consumer and without the large outlay which such a service demands. A primary advantage of battery service is steadiness.
In matheinatical ratio it gives out its energy, little or In mathematical ratio it gives out its energy, little or
much, according as is the demand; being constant to much, according as is the demand ; being constant o
the last mounent of effectiveness and unvarying when the process of reharging is regularly maintained, as in these Chelsea Hiphting stations. Night and day it is the same with the lanps, not being affected by every slight mishap at the central station, as is the case where the energy of the steam engine, transformed into electricity the interposition of dynamos, is into electricity diransmitted diredty to the lamps. Indeed, the wire transmitted direety to the lamps. Indeed, the wire
connection betwean sentral station and lamps may be broken and remain so for hours, yet there is no diminution of intensity in the light, no change. A constant and varied current like this adds, so it has been found, to the life of the lamp, investigation long since showing that lamps of a maximum life of 900 hours lose, on the average, from 20 to 30 per cent of vitality when fed with a varying corrent. Another advantage is in the low E. M. F. maintained, no danger to life attaching to its use.

- It must be said against this ingenious system of light distribution that, though not by an y means as costly as that necessitating batteries in every house, it is not so economical as the direct supply system. Not much more than 65 per cent of the power applied in charging the battery can be recovered in effectiveness, and ing the battery can be recovered in effectiveness, and
from this must yet be subtracted a not inconsiderable from this must yet be sub
amount for depreciation.
Quite as much, indeed more, might have been said once about electrical systems which now are highly economical. Experimentation and study will, no doubt, increase the efficiency of the secondary battery, which, as an agent of power, has no rival in point of convenience. The smoke and dust of the steam engine, the buzz and vibration of the dynamo, may be gine, the buzz and vibration of the dynamo, may be
afar, and yet the potency of the secondary battery reafar, and yet the potency of the secondary battery re-
main, requiring only a connection by wire for recharging.

```
Lspecial correspondence of the scientific american.]
            The Paris Exhibition.
the stationary engine exhibits.
```

Paris, August 1, 1859.
The first thing that strikes an American engineer with reference to the stationary engines in the Palais des Machines is the slow piston speed of the French and Belgian engines as compared with American practice. The other exhibits of stationary engines possess the same feature, but they are not sufficiently numerous to entitle them to any partcular attention. That class of engine in which a Meyer valve gear or a gear having a riding cut-off valve, or separate expansion valve, as it is termed here, appears to have gone out of use, as has also the commou D slide valve engine, save for small engines, as say up to 15 horse power. The wheel governor engine has not found the favor here that it has in the United States, if the French, Belgian, and Swiss exhibits are representative of the practice of these countries. The Armington \& Sims (Providence, R. I.) wheel governor engine has found a great deal of favor in England for electric lighting purposes, but there are no stationary engines of any design in the English exhibits in the Palais des Machines, the principal exhibit in this line being a traction engine of very creditable design and workmanship. The ongines driving the electric light installation outside the Palais des Machines has a fixed eccentric for the steam admission valve and a wheel governor for the cut-off valve, but the piston speed is not what we would expect in the United States froman engine having a wheel governor.
The Corliss engine entirely rules the roost here so far as number is concerned, and as one passes by engine after engine of this type among the exhibitsof various great achievements of that eminent and representative American engineer George H. Corliss, who was the American engineer George H. Corliss, who was the
father of a distinct type of engine and not a copyist in any sense of the word. Even his engine frame was an original idea and one that is very much in evidence in the exhibits from all countries. As I stood to-day looking at a fine example of a Corliss engine, I could not help thinking of a paragraph I read some few years ago in John Bourne's catechism of the steam years ago in John Bourne's catechism of the steam
engine (which may claim, I believe, to be one of the most successful technical books of modern times). It was to the following effect, but I do not rememker the exact words:
Q. What is a Corliss engine?
"A. An engine with a lot of useless mechanism in its valve gear."
The fact was that he, like many others, failed at first to grasp the full significance of Corliss' great invention. There are of course some modifications of the Corliss engine among many of the foreign exhibits, but they
are all definable under the heading of engines with r easing valve gears, of which Corliss was the father.
In the examples of Corliss engines pure and simple find some in which four arms are employed instead of a wrist plate, but I do not think much of this substitution. The arms are of course lighter than the plate, but they look spider legged in the first place, and in the second I doubt if the holes can be made as true because of the difficulty of holding such a weak casting without springing the arms. Of course the arms may be set after being bored or even after the pins are in but this requires skillful and careful workmanship and is expensive, and even then it would take but little to set them out of true again. On these engines there are various forms of trip motions, some of which are rather complicated.
Two French firms exhibit engines under the patents of Jerome Wheelock, of Worcester, Mass., and as examples of engines with releasing mechanism they are unsurpassed; the simplicity, the ease of handling, the compactness without crowding, and the efficiency of the Wheelock gear place it in the foreground of engines with a marked individuality and originality of design. There are but three representative engines in the American section of the Palais des Machines, viz., the straight line engine by Professor Sweet (Syracuse), the Brown engine (Fitchburg, Mass.), and the Arming ton-Sims engine (Providence, R. I.) The first is a 100 horse engine having some recent improvements in it, and is the only representative of high piston speed American engines. It attracts a good deal of attention, not only on account of its piston speed, but also for its novelty of design, in which the framing and all parts that resist strains are straight and in the same lines as the strains. When a frame has a bend or curve in it, it compele a strain that would go naturally from the point of departure to the point of resistance to pass around a corner in its passage, and, from
the weakness of the frame, deflection, to a certain ex tent, is inevitable. So verfectly has this idea of resist ing strains of metal exactly in line with the strains been carried out by Professor Sweet that he has had engines running, I am told, under load without being secured to any foundation, and the movement on the flooring was too slight to be of practical moment. The
engine exhibited is bolted to the foundation at the crank end only, the cylinder end simply lying free in its foundation, but you could not tell this from the running of the engine.
The Brown engine is essentially the same as it was when illustrated in the Scientific American, and is the best example of stationary engine having a cam
motion in the exhibition. motion in the exhibition.
The Armington-Sims engine is driving the dynamo for the electrical welding process. It is of the well that is original. The employment of twoeccentrics (on within the other) for shortening the valve travel to regulate the point of cut-off was a new motion when the Armington-Sims Company brought it out. The nethod of double porting the piston valve was also new, ingenious, and simple.
Many of the French and Belgian engines have what may be called a double frame, consisting of a part of a Corliss frame mounted on a separate bed. An idea of the construction may be had by supposing a Corliss bed to be cut off at the end of the crosshead slide and bolted to a bed which carries the pillow blocks or pedestals for the crank shaft. I cannot see where they get an equivalent for the increased quantity of iron in this construction.
Throughout the details of construction there are elements that are anything but pleasing to the eye from a mechanical standpoint, or at least frow an American, and in many cases an English point of view, and the more prominent of these I propose to treat in a separate letter, giving sketches, so that the reader may form his own opinions.
The employment of several separate ropes rumning in grooves on a flywheel, instead of having a wide leather belt for the transmission of power from the en gine to the shaft, appears to be quite successful, the ip of the ropes in their V-shaped grooves (even when the driven pulleys are of comparatively small diamete in order to increase the shaft revolutions sufficiently
above that of the engines) being sufficient to render it immaterial whether the tensions on the various ropes are equal or not. I noticed one flywheel pulley hav ing 8 ropes (each about $1 \frac{1}{4}$ inch diameter), one of which was very slack, having a good deal of belly to it, and I made a mark on it and its neighbor, both marks being in line, and half an hour afterward I found the marks still in line, evidencing that the slack rope had not slipped.
The taper of the connecting rod keys in the French, Belgian, and Swiss engines is very much less than is usual in either American or English practice, and this makes it more difficult to obtain an exact adjustment of the fit of the brasses to the journals. I am well aware that the exact opposite is often supposed to be he case, but I hold to my opinion neverth
Some years ago a correspondent of the Scientific

AMERICAN who was in charge of a vessel wrote to say that he found it very difficult to properly adjust the connecting rod brasses of his engine so as to prevent a knock or pound, or on the other hand to prevent heating of the journal and brasses. In reply to a request, he sent a sketch of the rod end, and it was found that there was very little taper on the key. He said in his letter that if he merely pushed the key home with his hand, the bearing would heat. He was duly advised to putina new key and gib, with more taper on the key, and wrote about six months afterward, saying that he had no further trouble.
The Cie. de l'Horme (Loire) exhibit an engine with a turning gear for moving the flywheel around when there is no steam on the engine. The gear consists of a screw and worm, the wheel being about 22 inches in diameter. The worm is operated by a ratchet operated by a hand lever. This construction, which is expensive for its purpose, is not found necessary on engines in the United States that are very much larger and have very much heavier flywheels than the engine having this turning gear.
On other engines there is a ratchet cast inside the flywheel rim, and a pawl and lever is used to turn the engine, a similar construction having been employed by Ericsson on the large sizes of his hot air engines made in the United States. But in the case of a stationary engine it is so easy to stop it in the right position for starting again that a turning gear is not found to be necessary upon engines of ordinary sizes.
The crank-pin oiling device brought out originally by the Buckeye Engine Company, of Salem, Ohio, and exhibited by them at the centennial exhibition, is in use here quite largely in its original form, that is, without the stand, which, however, will doubtless soon find its way here.
On a pair of engines exhibited by the Society Suisse (Winterthur), I notice the nuts are chamfered on both sides-a plan that looks bad, because the nuts never seem to bed properly, and one cannot see if they do or not. If the marks left on the cylinder corner faces by the corners of the nuts are considered unsightly, it is better to use washers beneath the nuts, and, in fact, washers look more mechanical than bare nuts anyhow.
Of the workmanship of the Belgian, French, and Swiss engines, as well as those of Alsace, one can hardly speak too highly, especially of the first named. The fits are close everywhere, the curves true and without waves, the joints true and even. It is all hand finished and delightful to the mechanical eye. I very much doubt if such samples of workmanship can be found anywhere else, or indeed anything approaching them.
The finish is also superb. It is not the bright finish of the burnisher, but that of the dead smooth file supplemented by the finer and finest grades of ewery cloth, more worn as the finishing proceeds, until the final piece is glazed with a coating of metal. This class of polish shows the correctness of draughtsmen in coloring the parts of a drawing that represent wrought iron blue, for under polish the iron looks distinctly and decidedly blue.

Joshua Rose.

Photographe of Lightning Flashes.

In our number for August 3, we gave illustrations of some remarkable lightning flashes, seen in Iowa and by an inadvertence omitted to state that the original photographs were taken by Mr. George E. Davis, of Dubuque, an amateur photographer of skill and experience. Mr. Davis states he will be able to furnish a number of duplicates of the photographs at a nom inal cost. They are among the finest examples of lightning photos that have come under our notice. The wood engravings of course give little or no idea of the vivid and peculiar effects realized in the photograph.
"In building a planing mill," says C. E. Tompkins, author of "The Planing Mill," "never forget that time is money, and have careful and accurate plans made, locating each machine exactly where it should be to give the least handling of the lumber. Where the lumber is to pass from one machine to another, arrange the machines so that when it has passed through one it is delivered convenient to the other, without carry ng. Then, again, take all possible precautions against fire and dust explosions. It is not only the duty, but it is greatly to the advantage, of every mill owner to inform himself concerning the most effective device to secure the safety of his mill, and to allow no niggardliness to prevent his securing the same."
The advice above, relative to treating the machinery so as to avoid unnecessary handling of the lumber, applies equally well to the locating of machinery for other purposes, so as to avoid unnecessary handling of the products as much as possible.

IT is said that rats are so iond of sunflower seeds that they will, if plenty, flock into the wire cage kind of a trap in such quantity as to nearly fill it. But they should be fed awhile on the seed before introducing the trap.

an Improved lens.

The accompanying illustration represents a lens in which the intensity of light will be equal throughout the entire field, and the sharpness of the image uniform, being designed for use both for portraits and views, and adapted for telescopic, microscopic, and

RROGMANN'S PHOTOGRAPHIC LENS

other uses where an achromatic objective is required. A patent has been allowed on this invention to Mr . Charles H. E. Krogmann, of Nos. 2245 and 2247 Spring Grove Avenue, Cincinnati, O. The figure to the right represents a longitudinal section of a photographic lens tube constructed according to the invention, the figure to the left showing a modification, and the bottom figures showing different mountings. In the rear of the tube is an achromatic lens formed of a double convex lens, and a meniscus concave lens of flint glass, the two lenses being connected together in the usual way, and in the front of the tube is a single meniscus concave lens of crown glass, a diaphragm being arranged between the lenses to screen off some of the marginal rays. In the modified form of this lens the construction is substantially the same, except that the front lens is a small single plano-concave lens of crown glass, and the diaphragm has a smaller aperture, a shorter tube being used with this form. The inventor styles this lens an electroscope, claiming that it represents an electric light battery, in which lenses of different foǘo represent negative and positive elements and take the place of the two electrodes of the battery, the atmosphere serving as conductor.

AN IMPROVED THILL COUPLING JACK

The accompanying illustration represents a device to facilitate the attachment of the thills to the axle, against the tension of the anti-rattler spring. It has been patented by Mr. James M. Smith, of Greenwich, Conn. The device consists of a strap-like clamping frame having an adjustable screw in its rear end, the screw being fitted with a loosely attached bearing block, faced with suitable material, so as not to mar the paint on the surface against which it bears. This screw adjusts the jack to different sizes of work, and when in position its block bears against the rear side of the axle or clip. The operating lever of the jack is fitted to work within upturned arms of the clamping frame, with which it is connected by a fulcrum bolt capable of adjustment up or down in a slot in each of the arms, and resting in notches therein, a thumb nut holding the bolt in position as adjusted. The operating lever is suitably bent to provide for its easy manipulation, and its inner end is made chisel-shaped where it bears against the thill when the jack is applied to compress the rubber and spring by pressing upward on the outer end of the lever. This brings the joint hole of the thill in line with the joint hole of the coupling for the insertion or removal of the pin. A single movement of the lever

SMITH:S THILL COUPLING JACK.
serves to keep the jack to its hold without the necessity of a continued pull of the lever, which automatically locks itself and holds the thill in position for inserting or removing the coupling pin.

The principal medical periodicals of the world are about 266 in number, of which 174 are published in the United States and 92 in all other countries:

The Horn Snake Myth.

F. F. B., of Poplar Mount, Va., sends the Scientific American a long description of a wonderful snake-like reptile killed by a resident of Greensville Co., Va: The strange creature is said to have had "a cow's horn. tip to its tail, which contained a sharp sting." But after giving the startling description our correspondent ends by saying, "I did not see the snake myself, but got these facts from the man who killed it." 'Thus it is with all horn snake stories that have come under our notice; they all end in "I was told so."
Large rewards have been offered for specimens of a snake with a poisonous sting in its tail, yet notwith standing the stories that "the woods is full of 'em," not a single individual has yet been captured.
Specimens of the red-spotted black snake, Farancia abacura of Holbrook, and of the Abastor erythrogrammus of Daudin, have been taken in North and South Carolina, labeled "horn snakes, very poisonous," and sent to museums and collectors in the North. That the tails of these serpents do end in a horny tip is per fectly true, yet I need not add, they contain no sting nor venom apparatus of any description, and the ser pents are harmless in every way. The sting-tailed horn snake is a myth.
The little black snake described by F. F. B. is the ring-necked snake, Diadophis punctatus. It is com mon in many localities from Maine to Florida.
C. Few Seiss.

AN IMPROVED SAFETY HARNESS.

An attachment specially designed for single harness, to serve for the subjection of vicious horses and for the breaking of colts to work in harness, is illustrated herewith, and has been patented by Mr. Robert M. Reid, of Ann Arbor, Mich. A rod having at each end a T is passed through the harness back strap and over the rump of the horse. On each T hooks the end

reid's safety harness for vicious horses.
of a link having a laterally extending part, in which is buckled a strap connected at its lower end with a link by means of which a clip is suspended. This clip is shown in the middle figure at the top in the illustration, the mode of its attachment being shown in the side views. The clip has a bottom plate, to bear on the under side of one of the shafts, and on its upper side is a metallic band adapted to pass over any sized shaft, and be held in engagement therewith by a screw nut, the lower end of the band being formed into a threaded bolt, and passing through a slot in the bottom plate of the clip. The link by which the clip is connected with the leather-covered rod acting as the rump strap of the breeching may be readily attached or detached, and on the hooking of the link, the clip having been fastened to the shaft and the straps adjusted as desired, the animal is prevented from kicking, as any upward motion of the hind feet would necessitate the lifting of the shafts and part of the vehicle.

How the English Encourage Steamer Lines.
Measrs. Anderson, the managers of the Orient line of steamers to Australia, have entered into a contract with the Canadian government to provide a weekly service of express steamers between England and Canada. The subsidy is $\$ 500,000$ yearly, and the steamers are guaranteed to be of 19 knots speed and to complete the passage within six days. They will sail from London for Cherbourg, making Plymouth the final port of call before steaming away for ontreal or Halifax. The steaming time will be taken from or arriving at Plymouth, which will be the first and final port of call. It will be fully twelve months before the arrangements are sufficiently complete to permit of the service being started. It is stated that this route has been started in conjunction with the Canadian Pacific Railway.

AN IMPROVED PISTON ROD PACKING.
A metallic piston rod packing, designed more particularly for piston rods of steam engines, steam pumps, etc., is illustrated herewith, and has been patented hy Mr. F. G. Kellogg, of Brainerd, Minn. In the cylinder head screws a box with a central aperture for the pis-

KELLOGG'S PISTON ROD PACKING.
ton rod, the outer end of the box having an enlarged central opening on which screws a head having on its upper end a cup in which to place the lubricant. The bottom of the box is concave, and into it fits a ring with an upwardly extending annular flange fitting closely against the piston rod, a coil spring resting on the ring and carrying at its upper end a flanged ring pressing against the under side of one of a series of packing rings fitting into a conical aperture in the outer head. The small end of this aperture is of the same diameter as the piston rod and opens into the oil cup. The packing rings, as shown in the small view, have their peripheries inclined to correspond with the conical opening, and they are made in sections, the several rings being arranged one above the other so as to break joints.

Useful, if True.
Some one has made the discovery, or rather makes the assertion, that a fly always walks upward. Put a fly on a window, and up he goes toward the top; he can't be made to walk downward. So an inventor has made a screen divided in half. The upper part laps over the lower, with an inch space between. Well, as soon as a fly lights on the screen, he proceeds to travel upward, and thus walks straight out doors. By this means, a room can bequickly cleared of flies.

AN IMPROVED HEN COOP

A hen coop and run-way especially designed to facilitate the breeding of young chickens has been patented by Mr. F. Butterick, of No. 406 Franklin Ave., Brook lyn, N. Y., and is illustrated herewith. The main or covered portion of the coop has a slatted front and rear flap door for the admission of the hen, the runway at the front having its sides at their inner ends overlapping the sides of the coop, so that the run-way and coop may be set at different inclinations without causing an open joint between them. The run-way has a vertically swinging door to incline against the front of the coop, and prevent rain from driving through its slatted part, while also facilitating the feeding of the chicks. The bottom of the coop has remor able boards, whereby more or less of the ground may be exposed. With this coop and run-way, the hen may be kept in place while the chicks are allowed the benefit of sun and exercise inside the run-way, which also protects them from hawks, cats, etc. The run-way

BUTTERICK'S HEN COOP.
may be readily removed from the coop, allowing the little chicks the desired liberty, and one hen will with this coop and run-way take care of a number of broods.

IN che patent suit of A. L. Ide \& Son against the Ball Engine Company, of Erie, Penn., for infringendent of use of dash pot in flywheel governor, Judge Blodgett, of Chicago, on July 22 handed down his opinion in favor of the Ball Company.

THE SCIENTIFIC LANTERN.*

In lantern projection, as in all other scientific work, the best results can be obtained only by employing the best means. While a cheap lantern may have considerable utility, it cannot fully satisfy modern requirements in the line of scientific projection. In Fig. 1 is illustrated a lantern which is adapted to all kinds of projection, and which may be readily shifted from one kind of work to another. It is provided with an oxyhydrogen burner and with an electric lamp, either of which may be used at pleasure. It may be very
about 2 inches, measured from the plane face of the ear lens.
Prof. A. K. Eaton, of Brooklyn, has devised a condenser in which the inner lens is a meniscus and the outer and larger ones are crossed lenses. It is used in many scientific lanterns and is very effective.
The outer or movable lens cell projects beyond the hinged plate, and receives a split ring provided with shallow internal groove, which fits over a corresponding circumferential rib on the lens cell. This split ring has a tangent screw for drawing it together, so as to cause it to clamp the lens cell. It is also furnished with an ear, into which is screwed a bar parallel with the axis of the lens cell. To this bar are fitted the slide support, the supports of the projecting lenses, the apparatus for microscopic projection, the polariscope, the adjustable table for holding tanks, pieces of apparatus, etc.
As represented in Fig. 1, the lantern is arranged for the projection of pictures, diagrams, and such pieces of apparatus as will go in the place of an ordinary lantern slide. The objective is a one-quarter portrait lens of good quality. For the support of tanks and other vessels for projection, the table shown in Fig. 2 is used in place of the slide holder.
The attachments shown in Fig. 2 are employed for the projection of microscopic objects. The engraving shows the polariscope in place; but this may be removed by simply taking the short tubes which contain the prisms of the polarizer and analyzer out of the sleeves, g, f. The stage is arranged so that it may be revolved either with or independently of the polarizer, and the latter may be revolved independently of the stage. The objectives are supported by a movable plate, which swings so as to bring either of the objectives into the position of use. A small conically-pointed spring bolt locks the plate in either of its three positions. When it is desired to use a larger objective, the plate may be swung below the supporting bar, when the objective may be inserted in the quickly arranged as a vertical lantern, and all of the sleeve, f. This arrangement admits of applying a sysattachments are constructed so that they may be placed tem of lenses for wide-angled crystals. at once in the position of use without the necessity of alignment and adjustment in each case.
The frame of the lantern consists of cast iron end pieces having rectangular legs attached to the base. To the sheet iron top is attached a tall chimney, having a cowl at the upper end for confining the light. Opposite sides of the upper portion of the frame are provided with hinged sheet iron doors. The lower part of the lantern frame is provided with hinged removable doors, which may be used to close in the light.
The front is furnished with a plate hinged to swing in a rertical plane, and provided with a cell for containing the outer lens of the condenser. The axis of this lens cell coincides with that of a similar cell supported by the front end piece of the frame and containing the inner lenses of the condenser. The inner lens of the condenser is a plano-convex 4 inches in diameter and of 8 inch focus, arranged with its planeside toward the light. The two outer lenses are plano-con-

Fig. 7.-ARRANGEMENT OF ELECTRIC CANDLE FOR LANTERN USE.
vex, 5 inches in diameter and 8 inches focus, arranged with the convex faces adjoining. The distance between the lenses is $1 / 8$ inch. The combined focal length is * From "Experimental Science," by Geo. M. Hopkins, in press. Man \& Co., pablishers, New York.

In the projection of microscopic or polariscopic objects it is advisable to always interpose the alum cell or water tank, h, between the condenser and the Nicol prism or the object, to intercept the heat, and thus prevent injury to the prism or object.
The table, i, which supports the tank, h, is made adjustable as to height to accommodate different objects or pieces of apparatus. In front of the microscope attachment is supported a centrally apertured disk, which prevents stray light from reaching the screen.
The sleeve that supports the objective holder and the sleeve, f, slides on the tube, a, fitted to the support bar, and is provided with a pinion which meshes into the rack on the tube, a. By means of this pinion the objectives, together with the sleeve, f, are moved out or in for focusing.
In Fig. 3 is represented a polariscope for large objects, which is constructed according to the plan of Delezenne, but modified by the writer so as to utilize a right-angled totally reflecting prism, such as is used for presenting objects right side up on the screen; also for throwing the beam horizontally from the vertical attachment, as will be described later on.
The black glass polarizing mirror, d, is arranged at the polarizing angle in the path of the cone of light proceeding from the condenser. Below the mirror, d, is supported the right-angled prism with its reflecting side parallel with the mirror, d. The beam of light thrown downward by the black glass is thrown forward by the prism. A revoluble stage, c, and a tube, d, containing an objective and analyzing prism, are supported with their axes coincident with that of the light beam proceeding from the prism; \dot{e}. Focusing is effected as in the other case. This arrangement is particularly adapted to the projection of designs in selenite or mica, mica cones, semi-cylinders, and specimens of strained glass.

- There is an inappreciable loss resulting from the angle formed by the 90° sides of the prism with the incident and emergent beams. The polarizer works very perfectly, and costs only a small fraction of the amount required to purchase a Nicol prism of the same capacity. It cannot, of course, be revolved; but the object and the analyzer can be turned, which is sufficient. Very good results can be secured by employing a plane mirror in place of the reflecting prism. The bar which projects from the front of the lantern is made in two sections, connected by a close-fitting bayonet joint. For such objects as must lie in a horizontal position when projected, the hinged plate which supports the
outer half of the condenser is raised into a horizontal position, and a triangular casing containing a mirror is placed underneath it. The attachment is provided with short studs, which enter the front of the lantern and the hinged plate, and hold it in position. The reflecting prism (Fig. 5), or a plane mirror, is placed over the object to direct the light to the screen.
The improvements in the lantern and the attachments thus described are the result of a long experience with lanterns of various kinds. It is believed that it fulfills most requirements. It can readily be adapted

Fig. 5.
Fig. 4.
APPLICATION OF THE 90 DEGREE PRISM.
o all the uses for which a scientific lantern is required.
To prevent the escape of stray light a wire frame is attached to the body of the lantern, so as to support a black cloth canopy, which covers the entire front of the lantern and extends downward below the support bar. It is provided with an aperture in front for the passage of the projected beam. In addition to this protection, the larger objectives may be provided with disks like that shown in Fig. 2. These precautions in regard to the escape of light are particularly necessary in microscopic and polariscopic projection, which require a thoroughly darkened room. In the projection of plain microscopic objects, it is found advantageous to place a plano-convex lens of three-fourths inch focus behind the stage.
An analyzer, formed of a series of three glass plates,

Fig. 6.-COURSE OF THE RAYS THROUGH THE ERECTING PRISM.
and arranged to show both transmitted and reflected beams, is desirable. By a second reflection of the reflected beam it may be combined with the transmitted beam, showing that the reunion of the complementary colored beams produces white light.
In Figs. 4 and 5 are shown two applications of the 90° prism. In Fig. 4 it is shown in position for erecting the image produced by the lantern. The course of the rays is clearly indicated in Fig. 6.
The totally reflecting prism, when used to render the beam horizontal in a vertical lantern, is arranged as shown in Fig. 5; i. e., with one of its faces at right

Fig. 1.-SCIENTIFIC LANTERN.
angles to the beam, and with its refecting face at an angle of 45° with the beam, or approximately so.
Probably the most desirable source of light for all purposes is the oxyhydrogen or calcium light. The burner shown in Fig. 1 is an excellent one. It is pro-
vided with a platinum-tipped jet and is arranged for every adjustment. The lime cylinder can be revolved and raised or lowered. The jet may be adjusted relatively to the lime so as to secure the best results. As the gases are mixed inside the burner, they should be taken from tanks or cylinders in which considerable pressure is maintained. Gas bags are unsafe when used in connection with a burner of this kind.
In the electric lamp shown in Fig. 7, a Jablochkoff candle is employed. It is superior to the calcium light, and gives very little trouble when an alternating current is available. The carbons being presented end on to the object yield nearly all their light in one direction, so that the loss of light is less than in the case of the ordinary arc lamp. The candle is coincident with the prolongation of the axis of a helix supported near the luminous point. The current that supplies the candle passes through the helix. In consequence of this the arc is drawn to the end of the candle in opposition to its tendency to follow the carbon rods. The candle can be moved forward as it is consumed by grasping the insulating handle at the rear end. Electrical contact is established with the rods by two copper springs contained in the revoluble support of the candle. When a direct current is used, a quick-acting current-reversing switch is required, as in this case the current must be reversed frequently to cause the carbons to burn evenly.

Memphis Artesian Wells.

We have heretofore given a somewhat succinct account of the discovery of artesian wells in this city. We have also given the analysis of the water. by Dr. Charles Smart, Major and Surgeon U. S. Army, Washington, D. C.; Prof. J. W. Mallett, of the University of Virginia ; Prof. E. H. Bailey, of the Chemical Laboratory of the University of Kansas, all aitesting its remarkable purity. The city of Memphis has been
enjoying this water now for nearly one year, using enjoying this water now for nearly one year, using
from eight to ten million gallons daily, and there are no signs of exhaustion of the wells. The increased demiands, however, of a rapidly growing city have rendered it necessary to largely increase the pumping capacity, and in view of this the water company is placing an entirely new plant.

The pump house being constructed will be 75 by 170 feet in dimensions, having two smokestacks of solid masonry, each 13 feet in diameter at the base, 9 feet at the top, and 125 in height. The pumps will set in a dry well, 45 feet deep and 38 feet in diameter, taking water from a well 10 feet in diameter, into which the mains from all the wells will discharge the water to be distributed by the pumps to the great standpipe on distributed by the pumps to the great standpipe on
Shelby Street and throughout the city. The standShelby Street and throughout the city. The stand-
pipe on Shelby Street is a grand piece of work, and constitutes one of the features of the artesian water plant. It has been constructed of steel plates $11 / 4$ inches thick and having a diameter of 20 feet, and stands 160 feet above the level of the street. It will contain over 500.000 gallons of water.

Two tunnels are being constructed 80 feet below the level of the streets. The shaft leading to these is navigated by a steam elevator, and the tunnels are traversed by a narrow railway track, over which the visitor may travel. The tunnels are 5 feet in diameter, and cased in brick laid in cement, and will be, when completed, about 3,000 feet long. The water is conveyed from the wells by means of laterals to these tunnels, and by them is carried to the pumping station.
The company is now putting in position, on a foundation that alone cost $\$ 30,000$, three of the Worthington compound condensing high duty engines.-Med. Monthly.

American Railuvay Master Mechanics' Association.

A list of committees has been appointed by President Briggs, of this association, to collect information and present reports to the next convention of the body on the following topics-the name given in connection with each subject being that of the chairman of the committee on that branch of inquiry :
Exhaust pipes, nozzles and steam passages; best form and size in proportion to cylinders, C. F. Thomas. Compound locomotives; their efficiency as compared Compound locomotives; their efficiency as compared
with simple engines, J. Davis Barnett. Testing laboratories, chemical and mechanical, Philip Wallis. Efficiency of the link as compared with other valve motions, James M. Boon. Advantages and disadvantages of fire box above the frames, Fred B. Griffith. Relative value of steel and iron axles, John Mackenzie. Brick arches in locomotive fire boxes, T. W. Gentry. The best means and the economy of preserving locomotive tanks from corrosion, W. J. Robertson. Purification or softening of feed water, W. T. Small. The best form and size of axlesforheavy tenders, W. Swanston. The present status of the "automatic car indorse the action of the Master Car Builders' Association in recommending the vertical plane type as a standard, from a mechanical standpoint, John Hickey.
The rooms of the association are at No. 140 Na
treet, New York City, Angus Sinclair secretary.

An account of the recent death of the metallurgist Frederick J. Seymour, at Findlay, Ohio, coupled with the statement that with him perished a secret for making aluminum, has been going the rounds of the press, and although containing many erroneous statements, has awakened widespread interest, particularly as at present the production of this wonderful metal is absorbing a great deal of attention from scientific men, and as through the discoveries of quite recent times the cost of aluminum is being so constantly reduced as to rapidly bring it within the reach of usage for industrial purposes. In 1854 aluminum was rated at $\$ 15$ per ounce. It is now sold for less than $\$ 5$ per pound. It must needs be brought far within the dollar mark beore it can obtain general use.
The late Frederick J. Seymour was probably one of the best practical metallurgists in the country, as well as an inventor and a mechanical engineer of attainment. It is very little known that the Seymour fam ily, which has produced so many distinguished men for this country, numbering among them Horatio Sey mour, of New York, and a number of noted men in Connecticut and elsewhere as governors, judges, divines, and statesmen, are the descendants of Richard Seymour, who came to the colonies somewhat late in their history, and who was one of the younger sons of the noble Seymour family, whose estates and castle are at Berry-Pomeroy, in Devonshire, England, and who trace their ancestry direct to the Duke of Somerset Edward Seymour, the Lord Protector of England under the reign of Edward the Sixth. Jane Seymour wife of Henry the Eighth, was of the same family. Be yond this the family origin goes back to the time of the Roman conquest, when the name was St. Maur The Bible of Richard Seymour, first to come to this country, bearing on its cover the well known family coat of arms, is now in the museum of the Connecticut Historical Society at Hartford, Conn.
The subject of this sketch, Frederick Julius Seymour, was one of his descendants. He was born at Farring mon school education as was to be obtained at tha time. In early manhood, after his marriage with Florentine Migeon, the daughter of a French gentleman who came to this country with Lafayette, and by whom he leaves one son and two daughters, he was placed in
charge of one of the rolling mills of the Waterbury Brass Company, at Waterbury, Conn. The production of sheet brass was comparatively in its infancy then. Mr . Seymour filled the position with credit and faithfulness for ten years, and during this period a genius developed in later life led him by study and application to lay the foundation of a wide knowledge of met als that made him a scientific authority in the working
of brass, copper, and zinc, and their alloys, as well as the wachinery for their development into commer cial uses. He was the inventor of many machines for working these metals and the originator of alloys.
On the breaking out of the war, as first lieutenant Co. C, 14th Regiment Connecticut Volunteers, he was among the first to respond to the call for volunteers. He participated in the Peninsular campaign, and was promoted captain for gallantry at Antietam. Shortly after he was honorably discharged, his health having been nearly wrecked by exposure. Returning, he organized and as president he managed for a number of years the Seymour Manufacturing Company, now the
Turner \& Seymour Manufacturing Company, of Torrington, Conn., and Chambers Street, New York, manufacturers of metal goods. He was later interested with Hon. L. W. Coe, his brother-in-law, in starting the Coe Brass Co., of Torrington, Conn., now the most extensive brass rolling mills in the world-a company lions of tons of high grade metal for cartridges. Mr. Seymour was also one of the organizers and for a time president of the Union Hardware Company, of Torrington, Conn., and was connected with various other enterprises, to all of which his inventive genius and knowledge of metals contributed to their success. Mr. Seymour was also the constructing engineer of several volume to chronicle all the results of his busy and restless life.
Two things elementary in his complex character barred him from becoming a famous man. With a brilliant mind, inventive genius, and acute judgment, he lacked commercial instinct. Generous to a fault, he gave away his ideas as freely as his money-alike careless of fame. The wild scramble for gain going on around him in the world was to him a mystery and an unsolved problem to his dying day. Possessed of intense energy and application, so rich was his mind in
ideas that, like a child going from flower to fiower in the fields, he sometimes failed to complete one idea before the attractiveness of another seized his attention. Careless of pecuniary reward, careless of credit for what he accomplished, his life might be summed up in a very few words, did not every hardware store contain
contain records of his patents amounting to over a hundred.
For a number of years his laboratory experiments had been very extensive. His attention early called to aluminum, he devoted several years to the subject of its reduction. It is well known that this metal, while the most common on the surface of the globe, is one of the most difficult to reduce. Success meant fame and fortune to the fortunate inventor. The Patent Office records bear to-day sixteen American and six foreign patents granted to Mr. Seymour on this process of aluminum. His experiments early became known, and his reputation as a metallurgist was, such that capital was attracted, and a large stock company of $\$ 2,000$, 000 capital, called the American Aluminum Company, was formed before his experiments were complete. In the hands of speculators, the stock was somewhat distributed, every development made being used to give it a new boom. Owing to the advantages of natural gas, the laboratory was located at Findlay, Ohio. As step by step Mr. Seymour met success in his work, it was covered by patents. However, during the past year, he was much hampered by sickness and irritated by having been placed in a false position by boomers and other causes, and while death found him with his process incomplete, it was complete as far as it went, and though he doubtless carried into his grave much knowledge of its future development, the wild stories so generally circulated in the papers throughout the country about high picket fences, the exclusion of workmen at a critical point, etc., have no foundation in fact, except the ordinary precautions to preserve information before being patented; and while, as before stated, except in the fact that doubtless a great deal of information as to the completion of his process went down to the grave with him, yet it is said that among his papers, now in the hands of his executor and son, Mr. Frederick H. Seymour, of Detroit, Mich., is a complete record of the uncompleted part of his process. The present American Aluminum Company will be wound up. What the future will be cannot be told now.
In the Scientific American Supplement for this week we give a paper hitherto unpublished, written by the inventor himself a short time before his death, and containing a full description of his process. Mr. Seymour's processes were such a new departure in metallurgy as to excite incredulity among metallurgists, and his developments have upset many theories heretofore held concerning aluminum, and some of his claims for his patents appeared so irrational to the experts of the Patent Office that they made a special visit to the laboratory at Findlay to verify them before al lowing them, and were then convinced of their truth.

Now Arms and Powder

"After long expectation," says Captain Studor, in the Allgcmeine Schweizerisch Militarzeitung, " there has appeared a useful type arm, the introduction of which will be welcomed by those who hurried us into arming. But first a word on the commission of arms. Why is there here the universally forbidden copper covering to the bullet? Not copper, but steel and nic kel is the proper material for this covering or jacket In the cylinder four rounds are better than three. The shell might be smaller; and in the magazine, would not six shots be sufficient in time of war? A round dozen is too much, according to our idea. And why is the nagazine encumbered with the packet loading? It will bring no advantage, but only confusion. The progress has been great in the development of smokeless powder and in the control of the pressure in the bore. In proof, we give the following surprising results com wunicated from reliable sources, but, nevertheless, not official :
' Caliber, $7 \cdot 5 \mathrm{~mm}$. ($0 \cdot 295 \mathrm{in}$.); weight of shot, $13 \cdot 1 \mathrm{gr}$. nickel steel " mantel," shot ungreased; charge, $2 \cdot 4$ gr.; volume of the shell $=3.3 \mathrm{~cm} .^{3}$; velocity, $\mathrm{V} 25=61 \mathrm{i}$ n. ($2,018 \mathrm{ft}$. per second); maximum pressure, only 1,300 atmospheres. For a small arm this is almost too much but what a magnificent prospect for artillery with such a powder! For the manufacture of collodion, or gun cotton, we still, alas! have to go to a foreign country. They are afraid of the cost of going thoroughly into the matter. Now, however, it is worth while, as quickly as possible and at any price, to stand on our own feet. Let us not economize in the wrong place Of our neighbors, France is naturally ahead of all, yet the German kingdom is strongly placed, thanks to its intelligent private industries; from it has come salva tion, now for powder; as earlier for arms, shot, and armor. The stimulus of private enterprise does more for progress than all state commission."

85 Miles in 82 Minutes.

The New York delegation of the Ancient Order of Foresters lately arrived at Minneapolis to attend the National Convention there. They traveled in a special train, and on one part of the journey made the renarkable speed of 85 miles in 82 minutes or at the rate of over 62 miles per hour.

The *Training of Teachers.

At no time has there been a livelier interest among educators in this country concerning the adequate training of teachers for public school work than at present. In considering educational questions the comparative method is always profitable, and in this connection a very brief description of the fitting schools of Germany as observed by the late Matthew Arnold during his third official investigation of public school work on the Continent for the English government may be helpful.
The pre-eminence of school instruction in Prussia for the last half century renders his report unusually suggestive. One of the four points he was instructed to observe during his investigation was the status, training, and pensioning of teachers; and as a type of the training received, the course of a fitting or normal school in Saxony is described. The training course lasts six and may require seven years. As the government (free) schools are not above what corresponds nearly to our grammar grade, the course includes an academic as well as professional course. To the training school is attached a practicing school. In this school the students see and learn the practice of teaching. Their own instruction they receive in small classes which may not have more than twenty-five scholars.
Their hours in class may not exceed thirty-six a week, not counting the time given to music. The matters of instruction are religion, German language and literature, Latiu, geography, history, natural science, both descriptive and theoretical ; arithmetic, geometry, pedagogy, including psychology and logic, music, writing, drawing, and gymnastics. All of these are obligatory ; but, after the first year, students of proved incapacity for music are no longer taught it. One-third of the teaching staff of the training school may be distinguished elementary teachers without university, the remaining two-thirds being university graduates, but this proportion is never to be exceeded. There are half-yearly examinations. The six years may be lengthened by one year for a student who is deemed not ripe for the leaving examination, which comes at the end of the course. At the end of the course the student undergoes examination for office. The examination is both written and oral; and turns upon the work of the student's course in the training school. If the student passes, he receives a certificate of ripeness and is now qualified to serve as assistant in a public popular school, or as a private teacher where his work has not to go beyond the limits of popular school instruction (grammar grade). After two years of service as assistant, the teacher returns to the training school and presents himself for the examination for "definitive posting." This examination is also both written and oral. Mr. Arnold attended such an examination and heard candidates examined in religion, music, German language and literature, the history of education and pedagogy, psychology, logic, and school law. In general, Mr. Arnold rewarks that instruction is better in foreign schools, because the schools are better organized and the teachers better trained.
Only such teachers are eligible to positions as possess certificates of graduation from an authorized training school. One can but observe the adequate provision for successful training and note in comparison the need of similar regulations in our own State schools-namely, a uniform, good standard of academic study to precede the training course, the high quality of the training staff, the two years course of strictly professional study - theoretical and practical, although open to the chatge of being impracticable with us. If thoroughness and completeness in the training of teachers are desired, one can hardly forbear the suggestion that two or three, at most, of the most advantageously located of our normal schools could, with greater economy and efficiency, be made to accommodate and prepare for teachers the 1,000 students in attendance at the five institutions. The amount usually appropriated to the five, if divided among the three, if divided among the three,
would or could be made at once would or could be made at once
to greatly increase their efficiency of equipment, while in time higher standards, superior facilities, and satisfactory results would bring credit to the State.-Springfield Mass., Union.

The city of Brooklyn can probably boast of having the largest bread bakery in the world. Seventy thousand loaves a day it usually turns out, requiring three hundred barrels of flour. Three hundred and fifty persons are employed in the bakery, and for delivering the bread in New York, Brooklyn, and adjacent places over one hundred wagons, constructed for the purpose, are in constant use.

AN IMPROVED STEEL BELT LACING.

A recently patented lacing for leather driving belts for machinery is shown in the accompanying illustration, one of the views showing the lacing placed in po sition upon a belt to be joined, and the other represent ing the finished joint after the spurs have been driven through and clinched. This fastener is made of steel, and is designed to afford a smooth and elastic joint, as well as one of great strength. It is easily and quickly applied, without any special tools, the spurs being driven through upon a soft piece of wood, after the ends of the belt to be joined have been brought evenly together. The smooth side of the joint is then laid upon the pulley, or any convenient piece of iron, and
the points clinched. These lacings are furnished in lengths varying
from one to three inches, by quarter inches, t wo or more lacings being used for belts wider than three inches. They will undoubtedly prove a great con venience about a machine shop or factory, and save much of the time heretofore ex pended in lacin belts by the ordi nary way. This
THE BRISTOL STEEL BELT LACING. belt fastening was
devised by Prof. W. H. Bristol, of the Stevens Institute of Technology
after a course of experiments to determine the best rel ation between the width of the spurs and the spaces between them, and some of the fasteners have been in use in work calculated to test their efficiency for the past five months. They are made by the Bristol Manu facturing Co., Waterbury, Conn., or 132 Nassau Street, room 56, New York City.

THE WHITE STAR LINER TEUTONIC.

The new steamship Teutonic, of the White Star line, is the first merchant vessel built to comply with the conditions of an Admiralty subsidy. She took par in the recent review of the fleet at Spithead, when she was fitted with four of her complement of twelve 5 inch guns. The guns are to be placed six on either side upon the promenade deck; those in position at the review were fixed at the extremities of the ship.
The vessel has been built by Messrs. Harland \& Wolff for Messrs. Ismay, Imrie \& Co., and, according to the London Engineer, may be regarded as absolutely the safest ship afloat. She is fltted with twin screws; and the whole of the machinery, engines, boilers, and coal for working either screw independent completely from its neighbor by a fore and aft bulkhead, which extends from the after end of the engine room to the forward end of the foremost coal bunker, and, in fact, intersects the six largest of the twelve watertight compartments made by the eleven ordinary transverse bulkheads. This fore and aft bulkhead is pierced by only one locked door, the key

THE WHITE STAR LINER TEUTONIC

of which is held by the chief engineer The doors between the engine rooms and the stoke holes are in every instance duplicated, and the duplicate door is in every case under the control of the captain on deck. When liberated, they close by their own weight, but they are fitted with glycerine cataracts to ease their descent. In the event of water fiowing into the ship, the doors will close antomatically. As the water rises in the bilge, it will buoy up a hollow piston attached to a rod. This rod on being pashed up about one foot removes the catch that holds the door.
The engines are triple expansion, with three cylin-
ders of $43 \mathrm{in} ., 68 \mathrm{in}$., and 110 in . in diameter, and they have been constructed to develop 17,000 horse power. The pistons have a 5 ft . stroke, and the machinery, in accordance with Admiralty requirements, has all been placed below the water line. The boilers are twelvein number. Some are 12 ft . and some 12 ft .6 in . in diameter and 17 ft . long, with six furnaces in each, and a grate area of $1,163 \mathrm{ft}$. The furnaces are fed with forced air to a moderate extent above the fuel and under the grate, and the boilers are designed to work up to 180 lb . The initial pressure in the intermediate cylinder is 80 lb ., and in the low about $16 \mathrm{lb} .$, with a vacuum of 27 in. The full pressure was not reached during the experimental cruise.
The propellers, which are 21 ft .6 in . diameter, with a pittch of 28 ft .6 in . and a superficial area of 128 ft ., orm a subject of special interest in this ship on account of the unusual manner in which they are placed. They overlap each other to the extent of 5 ft .6 in ., or, n other words, they each extend over the center line 2 t. 9 in . The centers of their axles are 16 ft . apart, and the port side propeller is 6 ft . forward of the starboard, measuring from boss to boss. The port propeller is a eft-handed screw, and the starboard a right-handed. Thus both work away from the ship, and the port propeller working in the loose water of the after screw makes two revolutions a minute more than its twin The propeller shafts are 199 ft . and 205 ft . long respecively, and are entirely incased to the boss of the screw. The hull is very much cut away under the stern, and a large space has been cut in the frames to admit of the massive casting that carries the screw shafts. The stern post is connected with the rudder post by a bar on the ine of the keel in the ordinary way, the scheme of allowing the rudder to be suspended without support below having been abandoned as dangerous.
The vessel herself is 582 feet long-the longest ship afloat-57 feet 6 inches broad, 39 feet 4 inches deep, and has a gross tonnage of 9,685 tons. She has a cutter stem, and, relying wholly on her two sets of engines, the masts are little more than three bare poles without yards. Thirty feet up the foremast is a sort of crow's nest for the lookout. Accommodation is provided for 300 first class, 150 second, and 750 steerage passengers. She has a promenade deck 245 feet long, with a clear way of 18 feet on each side of the deck houses. Some portion of this promenade;is covered by an awning deck, which is used for stowing the boats. For tiie fittings and decorations throughout the boat, it must suffice to say that they are unusually lavish, even in these days of sumptuous ocean traveling.

A Quick Trip from Japan.

A consignment of silk and first-crop teas, occupying sixteen cars, arrived in New York on July 29 from Yokohama, via steamship to Vancouver, B. C., and transcontinental rail route to New York. The total distance was nearly 8,000 miles, and it took twenty-one days to accomplish it, including a delay of about one day in loading on the cars at Vancouver.

The Hydranlic Railway.

The hydraulic railway is a novelty attracting much attention at Paris just now. It is the development of an old project of Girard, the well-known French hydraulic engineer. The trains are without locomotives and the carriages without wheels, being supported on broad rails raised some distance above the ground by metal blocks. Before the train is set in motion, water under pressure is forced through valves in these bearing blocks, so that the latter are lifted off the rails and are carried on a thin film of water. The same agency is employed to propel the trains, a pipe, conveying water under pressure, being laid in the center of the track; from this pipe at short intervals rise stand-pipes with peculiar shaped nozzles controlled by a tap. Beneath each carriage is a long frame in which are a number of pallets, the surface of which can be acted on by the jet escaping from the nozzles. The action is extremely simple; the train being waterborne, and therefore having its friction reduced to a very great extent, is set in motion, and as soon as it passes the first stand-pipe opens the valve controlling the nozzle, when a stream of water under pressure is forced against the pallets under the carriages, accelerating the speed of the latter. As soon as each carriage passes, the valve controlling the nozzle is shut, and remains closed until the succeeding carriage opens it. The plans of M. Girard have been worked out in their present form by M. Barre, who claims manv advantages for the system. The length of line laid down on the Esplanade des Invalides is about 200 yards, and the speeds attained are very considerable.

THE CITY OF ABERDEEN, A GREAT LUMBER CENTER, WASHINGTON TERRITORY.
(Continued from first page.)
allowed. The tree in this view is about an average size. Many run from 10 to 20 feet in diameter.
The logs are carried over cross timbers laid on the ground, about 4 feet apart. These are called skids, and are kept well greased. Over them are hauled to the water the immense logs, which are then floated to the mills.
The photo. represents a dead monarch of the forest. Here lumber is king, same as cotton at the South and corn in Iowa.

Cast Steel Guns.
In the last issue of Proceedings of the Naval Jnstitute, Lieut. Comdr. J. G. Eaton presents the results of a practical experience as inspector in several of the largest and best equipped steel works of the United States. Lieut. Comdr. Eaton's statements as to the two 6 inch experimental steel cast guns tried at Annapolis are valuable as being the first critically correct statement of the physical characteris-
tics of the Pittsburg gun of the physical characteris-
tics of the Pittsburg gun

POTTER'S TILE DITCHER.

earth can be deposited on each side of the ditch in such a way that it can be readily replaced. This improved machine is in successful operation, and will be tested at the State fair, Toledo, Ohio, where it will be on exhibition from September 9 to September 13.

Bark Dust Explosion at a Tannery.
An explosion and fire occurred at the Eagle Valley sole leather tannery, Ridgeway, Pa., July 19, by which five workmen lost their lives and a considerable amount of property was destroyed. The building in which the explosion occurred was 40 by 200 feet ong and only one story high, mainly occupied by bark leaches, and with mills at one end for grinding the bark. 'The explosion raised the roof from the whole building and drove out the gable ends, fire issuing so suddenly from all the doors and windows as to prevent the escape of the men employed, while a team of horses just about to enter were so much injured as to re quire their death, and the driver, ten to fifteen feet further off, was seriously disabled. The explosion of Bessemer steel. It shows that the metal was much|same inventor, the improvement reducing the cost of occurred about $7: 30$ A. M., just after the machinery more unsatisfactory in structure at the breech than manufacturing the machine and rendering it more easy had been started, although it is stated that the bark at the muzzle, the transverse elongation at the of control and more effective in operation. The frame former being almost nothing. The gun was cast of the machine consists of two pairs of side bars conwithout a sinking head, which to a degree explains nected at their rear ends by a curved or upright bar, the sponginess of the metal, but not the remarkable and at their center by standards carried upward above variations in a comparatively small cun casting "That the upper set of side bars to form essentially an arch such a gun should enter the lists and go upon any record as an exponent of any steel cast system is worse than a travesty. Its utter failure has proved that poor steel, poorly treated, cast without any of the usual safeguards, and afterward annealed, tempered, and the manager as it was to the metals will not bear strains which call upon the best steels for all their strength and elasticity:"
With regard to the Thurlow gun the "case is different and the results important." In this instance, metal and processes of casting being presumably correct, the cast steel theory was fairly subjected to trial. But though the gun endured the ten staed the ten stawithout bursting, the serious enlargement of the bore was conclusive againstit. cithe elastic limit of $t h$ imit of the metal has been exceeded and the gun, for ordnance purposes, irreparably injured." As to the trials of t he $t w o$ uns, the writer conclu-

ABERDEEN, A CENTER OF THE LUMBER INDUSTRY OF WASHINGTON TERRITORY. mill was not running. The coroner's jury attributed the fire to spontaneous combustion, but as it was admitted that a man who was there to clean up the bark dust, and who was killed, might have had an "inclosed" lamp in his hand, and as at any time his hand, and as at any time a piece of netal in a running bark mill may cause a spark capable of producing an explosion, it was perhaps hardly necessary to go so far for a possible cause, when no direct testimony was available. The explosion is the most severe and remarkable one that ners should take as much precaution in caring for the dust made by their bark mills as millers are now generally doing in their work to guard against dangers whose real nature has not been definitely understood :until within a few years past. \mathbf{A} preventive for preventive for plosions is to keepthe atmosphere about the bark mill saturated with steam.

Magnesium

 is one-third lighter than aluminum, at the same time more dense; harder, and tougher. An article made from German silver weigh. ing 5.5 kg . weighs only 1 kg . if made of magnesium. Atmospheric Atmospheric influence is same on magnesium and des the paragraph with the observation that the results inner end of this spout is formed to fit into a channel aluminum, but while alkalies, such as ammonia orproved that the system of built-up guns must be our reliance, "for the present, at least."

INK and rust stains are removed easily by a solution containing ten parts each of tartaric acid, alum, and distilled water. The solution has the trade name of "enerivoir."-Pharm. Ztg.
n the wheel and serve as a scraper to remove the dirt therefrom. Only one man is required to operate the machine and two or four horses mar be employed, ac cording to the nature of the soil. It is light and strong, being made of steel and malle able iron, and is designed to cut, at the will of the operator, from two to four inches each time it passes through the ditch, while the
soda, attack aluminum considerably, magnesium is not affected by them at all. Magnesium is worked into objects having sharp edges, screws, etc., more readily and with better results. It takes a high polish, is readily hammered and rolled ; can be swaged or pressed like tin into any shape. It is at present about one-fifth cheaper than aluminum.

Trout Culture.

A trout preserve requires a permanent supply of pure, cold water, and a sufficient feeding ground, where animal food-as aquatic insects, crawfish, frogs, and such minute creatures as exist in running streams -can be procured. Otherwise, these fish must be fed upon such food as nilk curds, waste meat, and offal, finely chopped. Where a trout stream can be diverted in part into a pond, or a succession of them, an exce]lent preserve can be made.
Just now the eggs of these fish can be easily procured, either by purchase from dealers or through the fish commissioner at Washington, who is the agent for the public, who support a very complete establishment for this purpose. I have a fine trout stream running through my land here, which is doubtless the finest locality for this fish in North America, as the climate is cool and equable the whole year, and the copious rainfall (60 inches in the year) provides a large supply of spring water, containing an inexhaustible quantity of the best kind of food. Being a popular pleasure and health resort, a large number of visitors come here to enjoy the fishing and hunting, and were it not that the streams are restocked by spawn gathered at the proper season, and hatched artificially in suitable apparatus, the sup ply would soon be exhausted.
The hatching troughs are quite simple affairs. For 10,000 eggs, a wooden box 14 inches wide, 12 inches deep, and 6 feet long is sufficient. Mine are prepared as follows: The box, open on the top and at one end, is divided by cross cleats, 3 inches wide, set 16 inches apart in sections. A one-inch rustless ir on pipe brings pure cold water from a spring into the troughs, the water flowing through the box so as to overflow the cross cleats and run off at the lower end, or it may pass from trough to trough through several of them. The sections are covered one inch deep with coarse, clean washed gravel, and the water is filtered gravel, and the water is nitered
through a flannel screen at the upper end of the trough. The lower end of the trough is open, but covered with a wire gauze strainer. The eggs are divided so as to put about 2,000 or 3,000 into each section, and are spread carefully with a feather, to prevent them from lying upon each. other. Only pure water is used to flow over the eggs, and freezing is to be avoided as fatal to them. To prevent freezing, the troughs may be suak a.few inches in the ground and covered by a close shed, which need not be

lighted.
The eggs, in a dormant condition, maynow be procured. They are shipped by some rapid tran=sit in boxes with damp.moss. As soon as they are received, they are carefully transferred into: pans of cold spring water, and the moss floated off without handling them. When quite clean, they are gently poured from the pan into the trough, and spread with the feather over the gravel, so as to lie closely, but not touch or overlie each other. They will hatch in thirty to forty-five days, as the temperature is warmer or cooler, when the tiny fish gets outside of the egg, but still adheres to it, and it may be seen swimming about with the egg still attached. The young trout are supported by the egg, which is all absorbed in course of time and disappears. When this happens, they maybe turned into the stream to take their chances, or they may befed for a few weeks until they are larger and stronger.

The food may be curd of milk rubbed up with water into a thin paste, which is quickly diffused in the punning water of the troughs; or fresh liver or lean ieat, pounded or chopped into very flne particles. The small fragments of food are picked up voraciously by the hungry infants, which grow very fast, and when an inch long arequite capable of taking care of themselves, along with other trout, in a stream or pond where there is plenty of room for them. They seek the shallow places, where larger fish do not venture, and shoals of the tiny things may be seen on the shallow, sandy banks. By falt they will be three inches in length, after which they will disappear in deeper water.

Some kinds of trout grow with amazing rapidity Three years ago I put 100 California or rainbow trout into a millpond on the stream mentioned, in the fall; they were then "fingerlings," or three incles in length. A year after, I took one eight inches long, weighing half a pound. Last year some were taken fourteen inches long and weighing twenty ounces. The back is a deep purplish black, the belly silvery white, and the sides scarlet and crimson in various shades, melting into other colors. The flesh is as good as the best of the common speckled trout. The two species breed together, as I saw them last season pairing on the spawning beds on the bright gravel in the clear water, as I stood on the high bank of the stream. What the cross will be of course will not be seen until a year or two to come.
Trout may be preserved in a stream if the small fish taken are always returned to the water without serious inj ury. They seem to be but little hurt by the hook
if it is carefully removed. I have released a small

FELLING A MAMMOTH FIR TREE.

trout, hooked through the jaw or the nose and have taken it again the next cast. Fish are cold-blooded and have a low nervous organization, and do not suffer pain as warm-blooded animals do; hence, when released after having been caught, go on their way without trouble. The loss of an eye by the hook is not any serious injury to them, and if the smalt ones under sis inches in length are threwn back, the stock will soon be visibly replenished. I would like to impress this idea on those interested in the stecking of strea mis, so as to procure a law to prevent the killiag or sale of trout less than six inehes in length. I have taken trout no longer than this that were full of eggs folly two monthe before the spawning season, and on this account the close season for this fish might be anticipated by a full month earlier than it now is with much advantage to the future supply.
Trout will do well anywhere in streams which are supplied by springs, and are ne ver warmer than 80° in the summer, and-have deep holes and shaded banks and an outlet into a lake. They are found in the bighest perfection in the Northern Statee, espeeially where they can winter in large lakes, or can ran down in the fall to deep pools and estuaries; and especially in the Southern mountain region, where the clear, cold,
pure water gives them the brilliant hues and firm flesh which I have not seen surpassed, excepting in the treams of Lake Superior. In ponds that are devoid of shaded banks, the required protection from the sun may be afforded by large plank floats, moored to stakes, under which they will gather at the heat of the stake
day.
In
In feeding fish, care is to be taken not to foul the water with the refuse that is not eaten, and to give no more than will be consumed at one time. The newly hatched fish should be fed every two hours, with a very little food at a time. And it is indispensable that all sediment in the hatching troughs should be prevented, or removed if any should get in through the strainer; any dead eggs, which areopaque and discolored, should also be removed.-Henry Stewart, in Country Gentlemun.

English and American Tailors.
For several days (says the New York Star) a neatly dressed, urbane gentleman, with an English accent and a large number of trunks, has been stopping at a Fifth Avenue hotel, where he has luxurious quarters and a good many visitors. Very few people know what his business is or anything about him, further than that he appears periodically in the spring and fall of the year, pays his bill, and departs for Europe. He is the agent for a fashionable tailoring establishment in London. So soon as he arrives in New York with his samples of goods he notifies some fifty or one hundred old customers, who live in New York or near by, that he is ready to call at their houses and take measurements, first sending for their inspection a large bundle of samples of his goods. After a couple of weeks in New York, the quiet gentleman takes passage for London, and in three or four weeks more the clothes begin to arrive, areassessed at the Custom House, the duty paid, and then delivered to their owners. There are many hundred men in New York who buy all their clothes in London; and others in different parts of the country, and they say that the Englishmade clothes do not cost any more than if made in the United States, after the duty is paid; and are, in fact, cheaper in some instances, while they possess all the advantages of London clothes, whatever those may be.
You can always tell an American who has just returned from Europe by the cut of his coat. No matter what else he may or way not buy while he is in Europe, our fellow countryman always makes it a point to lay in a supply of clothes when he reaches London. They always seem to be so very much cheaper there. You go about among the shops "pricing" things, and you find an English tailor charging twenty-five dollars for a suit of clothes for which a New York tailor would eharge fifty dollars, using the same material. The same difference is observed in the price of nearly every article of clothing-overcoats, hats, gloves, shirts, flannels, etc. -and the temptation to buy is too strong to be resisted. One thing which always astonishes the American who orders clothes in London is the tremendous rapidity with which they are made. You have your measure taken in the morning, and a pair of trousers is delivered at your hotel before dinner time. Two or three suits can be made in twenty-four hours, and an overcoat in a day and a half. It would almost sem if the various parts of the garments flew together; and in some tailoring establishments they actu aly advertise to make clothes "while you wait."

More slow and Obsolete War Ships.
On August 22, proposals are to be opened at the navy department for five new cruisers, to be built on plans copied from what are now obsolete English ships; low in speed, lacking in offensive and defensive means, not the latest and best designs. It is to be hoped the Secretary of the Navy will-be able to defer the award of construction until Congress meets and ime is given to modify the proposals so as to substitute later asd better designs.

Patents.*

The earliest laws of which we have any knowledge, that granted privileges and favors to persons who had made valuable improvements or inventions to relieve suffering and benefit humanity, were enacted in England less than one hundred years ago.
There was a system established during the reign of Elizabeth and the Stuarts that became odious. It was not a legal right, but a royal favor, and related to other things besides inventions, and extended to many articles in common use.
In the reign of James the First a law was passed known as the Statute of Monopolies, declaring all monopolies illegal and void, except copyrights and patents, which were granted for fourteen years.

This system, though somewhat modified, has become the established policy in this country, and is substantially a copy of the English law, in order to secure reward to the inventor.
There are some persons in our profession who think it is unprofessional to take out patents, but what would have been the status of dentistry to-day without the stimulus of reward for useful and improved appliances in the dental art ?
Our country is a new world, and the American dentist is comparatively a new man; and the sooner he learns to do business on a plan that corresponds to the age in which he lives, the better it will be for himself and those who seek his services.
The men who invent are thinkers; they are persons of adaptation and consecration; they are, and have of adaptation and consecration; they are, and have
been, benefactors to their brethren, and, as a rule, been, benefactors to their brethren, and, as a rule,
they suggest and give away to their co-workers little suggestions without money and without price, to make dentaloperations easy, more than all the money they receive for their patents.
Inventions are the products of the brain, and they are just as legitimate as the labor of the hands. A certain orator was once asked how long it had taken him to prepare his oration; he replied, "Just fortyfour years, for I am just forty-four years old, and I have given my whole life to this work."
I do not wish to be understood as advocating the giving patents away, for it is never best to give something for nothing, and the Creator does not deal in of nature. Everything is dual, and in ventors are seers in meehanics, their minds become illuminated with visions of uses for the benefit of their fellows, and usu ally the whole working of the improvement is wrought out in the night, when the body is at rest, and we commune with ourselves without interruptions.
Almost all the improvements that have benefited the race have been first thought out and then wrought out to make us great as individuals or a nation.
It is the function of the brain to think, and the hands to execute the thought. The older men of the profession will recollect the ridicule that was hurled upon Dr. Atkinson and the use of the mallet in impacting gold in filling teeth some thirty years ago, and now we bring to its aid the various machines and electricity.
The unprecedented growth of our profession over either of the older professions is due largely to our freedom from the conventionalities that bind all professions to the past. Any innovations to long-time usages are almost certain to prove disastrous to
those who discover the "new and more excellent way." those who discover the "new and more excellent way."
The things we invent are children of the intellect and the affections. Man bas no power to make or improve a thing without a love manifested toward the thing he desires to make better. The man who invents sees the improvement he wishes to make as we see the solar light before the sun makes his appearance in the morn ing.
One of the hindrances to our free use of improvements is that they have been bought up and laid aside by monopolies because they interfered with the sale of
goods already in the market, and that has discouraged goods already in the market, and that has discouraged would benefit the profession.

Success of M. Pasteur, System.

At the Academy of Sciences M. Pasteur recently presented a note of the results observed in the Pasteur Institute from May 1, 1888, to May 1, 1889 (La France Medicale, No. 73). During this period 1,673 persons bitten by rabid or presumably (tres suspects de rage) rabid dogs had been treated-1,487 French and 186 foreigners: Of this nupber-viz., $1,673-118$ had been bitten in the head or face. Six persons (4 bitten on the head and 2 on the limbs) had been attacked with rabies during treatment; 4 others were attacked within a fortnight after the close of the treatment. Three persons bitten on the head died after the treatment had been completely finished, and these, therefore, represent the total eases of failure-viz., in the ratio of 1 in 557. Or if, "which would be illogical," adds M. Pasteur, to these 3 cases were to be added the 10 above
mentioned, there would still be a mortality of only 1 mentio
in 128.

The First steamboat.

The idea of steam navigation, or at all events of navigation by mechanical means, seems even to have presented itself to Roger Bacon, for he made the fol
lowing remarkable prophecy: "We will be able to construct machines which will propel large ships with greater speed than a whole garrison of rowers, and which will only need one pilot to direct them ; we will be able to propel.carriages with incredible speed without the assistance of any animal ; and we will be able to make machines which by means of wings will enable us to fly into the air like birds." We may safely say that we have attained to the first two prophecies of Bacon, but, with regard to the third, I think the idea of aerial navigation by mechanical means is now very much in the same position as that of steam navigation before Symington produced his Charlotte Dundas. We want a man to put it into a practical shape. In this sense Symington was the inventor of steam navigation; he put theories into practice, and embodied in a patent taken out in 1801 the arrangements that are still in use at the present day in paddle wheel propulsion.
Symington was born at Leadhills, in Lanarkshire, in 1764, and, though educated for the ministry, he showed an early talent for mechanical pursuits, which he eventually followed. In 1786 he made a model of a steam carriage which he had invented, and exhibited it to the professors of Edinburgh University. Among others who saw this model was Mr. Patrick Miller, of Dalswinton, a wealthy gentleman who had experimented in naval architecture and the propulsion of small vessels by means of paddle wheels driven by manual labor. Mr. Miller was much taken with Sy-
mington's invention, and approved of his suggestion to substitute the steam engine for manual labor in driving his vessels. An agreement to make an experiment, at Mr. Miller's expense, was accordingly come to, and in 1788, after one of Mr. Miller's experimental boats had been fitted.with Symington's patent engine, the first successful experiment in steam navigation was performed on Dalswinton Loch, the little boat attaining a speed of something like four miles an hour. The experiment was repeated on a larger scale in 1789 on the Forth and Clyde Canal, the engine used being Symington's patent, with ratchet wheels and chains for converting the reciprocating motion of the pistons into rotary motion, on the same principle as adopted in the Dalswinton experiment, but on a larger scale, the two cylinders in the first case having been each four inches in diameter by eighteen inches stroke, and in the second eighteen inches by three feet stroke. Neither of these vessels was of any practical value, however, beyond having demonstrated that a steam engine could be safely applied to propel a vessel ; and after the 1789 experiment Mr. Miller unfortunately abandoned steam navigation altogether.
Symington returned to his occupation as a civil engineer, but still nursed the idea of introducing steam navigation, and in 1801 he found a worthy patron in Lord Dundas, of Kerse, near Grangemouth. Under his patronage he produced the Charlotte Dundas, designed for towing vessels on the canal, in order to do away with horses for that purpose ; and this vessel, which was at work on the Forth and Clyde Canal from 1801 to 18i3, has earned the well merited distinction of having been the first practical steamer. In this vessel Symington abandoned his old style of engine, and adopted the crank and connecting rod for producing rotary motion of the paddle wheel. The Charlotte Dundas was builf at Grangemouth by Alexander Hart, in 1801. She was 56 ft . long, 18 ft . beam, and 8 ft . deep. She had a paddle wheel at the stern. The cylinder, which was 23 in . diameter by 4 ft . stroke, lay horizontally on the deck, and the piston rod was coupled direct by a connecting rod to a crank upon the paddle haft. This vessel obtained a speed of about 6 or 7 miles an hour upon the canal, and towed upon one oc-
casion two fully laden sloops--the Active and Euphemia -each about 70 tons burden, from Wynford to Port Dundas, a distance of $191 / 2$ miles, in six hours against a strong head wind. The wash from the paddle wheel, however, had a tendency to destroy the banks of the canal, and Symington was interdicted from using his steam vessel on the Forth and Clyde canal. Previous to this interdict the Duke of Bridgewater, having heard of the success of Symington's steamer, gave him an order for eight similar boats for the Bridgewater Canal; but unfortunately for Symington, on the very day on which he received the notice of interdict from the manager of the Forth and Clyde Canal, he also reeived the intelligence of the Duke of Bridgewater's death, and the order for the eight steamers was never executed.
From these disappointments, combined with the pecuniary losses which Symington suffered by his.experiments, he never quite recovered. He died in in the churchyard of St. Botolph, Aldgate, London. Not even a simple stone marks his grave!-and yet this man produced the "patent boat" of paddle wheel steamers, and got up steam specially for the great Robert Fulton in July of 1801, in order that he might
back again in an hour and twenty minutes-six years before Fulton ever produced a steamer in America, and eleven years before Henry Bell (who frequently saw and inspected the Charlotte Dundas) produced his Comet on the Clyde. Neither of the steamers which these two men produced was so complete in its me chanical arrangements as the Charlotte Dundas, and instead of being improvements upon Symington's ideas, they were rather the reverse, for in them small engines were geared up to drive the paddles, whereas Symingtou's plan was the bold, simple, and straight forward one that is in use to-day in some of the swiftest paddle steamers on the Clyde-viz., the large cylinder acting direct upon the crank on the paddle shaft.-The Steamship.

the electric rolling bridges of the papis EXPOSITION.

Visitors take great pleasure in being carried from one end of the Machinery Palace to the other on the elec tric rolling bridges, a general view of which is given in our engraving. In fact, they are not indifferent, whether on foot or on this original vehicle, to traversing the 1,300 feet of the colossal gallery in which are accumulated so many wonders of mechanics. More over, many of the visitors, if not all of them, experience an intelligent satisfaction in thinking that the motive power necessary for this aerial trip is furnished by elecricity, and constitutes an interesting example of the transmission of electric energy to a distance-that problem which is now in a large measure solved.
Rolling bridges are reckoned among the most imoortant installations of the large mechanical works of nodern times. In order to respond to the ever-increasing needs of the industries, our engineers have further and further increased the dimensions and weight of the parts of machines. The area of the works where such parts are elaborated has increased in proportion, and it is a genuine voyage that the pieces have to make in passing from the rough to the finished state, through the lathe and the drilling, bending, mortising, polishing, and other machines which constitute the present improved stock of tools.
The first care of the engineer is to arrange things so that the piece to be finished, starting from one end of the works, shall, as far as may be possible, reach the other end without having to turn back on the way. A return, in fact, presents a double inconvenience. It occasions a loss of time and force, and the risk is run of blocking the way of the piece that follows and of interrupting the work of the machines and their opera tors. Now, in well conducted manufacturing there is not a minute to be lost.
For small, light pieces that can be maneuvered b. \mathbf{v} hand, the "circulns" that we have just described is easy to realize. For large pieces, which require for their handling the use of considerable mechanical power, recourse is had to lifting apparatus, pulleys, windlasses, cranes, and rolling bridges. Well equipped works should contain these in all directions, so as to permit of a rapid longitudinal or lateral transfer from one tool to another.
As for cranes, things are so arranged (as may be seen in foundries, for example) that the circle of revolution of the jib of each crane around its pivot shall intersect that of the adjoining crane. The piece thus passes Wom one hook to the other as far as to its destination.
When the arrangement of the works does not favor
this, by reason of the supports of the framing, the cranes are placed upon rails so that they can go to get the piece, and, moving around the obstacles by means of turntables, carry it to its destination.
Rolling bridges are a recent and very useful modification of lifting apparatus. They consist of a strong, cross-braced platform, to which are attached the suspension pulleys, and which can be moved through the works. The bridge is of various forms. It may be supported by a large framework, movable on rails, or else may roll from one end to the other of the room, whose entire width it occupies when such width is not too great. In this case, iron girders placed under the framework serve as a track. Rolling bridges of small size are moved by hand through gearing. For large ones, recourse has hitherto been had to a steam engine carried upon the bridge and serving at the same time for lifting purposes. From the title of this article, we have
seen that electric energy can hereafter be utilized with seen that electric energy can
success for the same purpose.
The Machinery Palace of the exposition contains, as is well known, four rows of shafting girders supported by cast iron columns. Hangers fixed to these girders receive the horizontal shafts that are actuated by the engines, and by which the machines exhibited are driven. Mr. Vigreux, superintendent of the mechanical and electrical department of the exposition, conceived, at the beginning, the idea of utilizing these transmission girders for the running thereon of rolling bridges designed to maneuver and put in place, during the period of installation, the heavy parts of the mahines to be mounted.
Messrs. Bon \& Lustremant, on the one hand, and Megy, Echeverria \& Bazan on the other, manufacturers at Paris, made proposals to furnish the apparatus, and

It was decided to employ electric energy instead of steam as a motive power. These rolling bringes, 59 leet in length and 16 in width, present a utilizable surface of nearly 900 square feet. The ideathen naturally occurred to keep them running after the period of installation and to use them for carrying visitors, at an elevation of 25 feet from the floor, from one end of the hall to the other. The idea was a good one, for, as we have said, the visitors crowd into them with curiosity. The following is a brief description of these apparatus:
Bon \& Lustremant's Rolling Bridge.-Like analogous apparatus, and to answer the industrial requirements that we alluded to at the beginning of this article, the bridge is provided with three movements: (1) lifting of the load ; (2) transverse carriage of the same, through a hook and wheels; (3) longitudinal carriage along with the bridge itself.
The framework consists of two large, solid, longitudinal girders of iron plate and angle iron, of two lattice girders connected with the latter by

Fig. 1.-THE ELECTRIC ROLLING BRIDGE-PARIS EXHIBITION

Megy, Echeverria \& Bazan's Rolling Bridge.-We shall pass more rapidly over the second bridge. Constructed upon the same programme as the preceding, and responding exactly to the same needs, it resembles it in all its principal elements. Let us state only that the transmission of motion, instead of being effected through friction disks, is effected by simple gearing by means of couplings, called progressive. This system consists of a circular spring, which, pressed by a lever in the hands of the mechanician, bears internally against the drum carrying the sleeve on which is keyed the gearing that transmits motion. It must be noted, too, that in order to diminish the tension, to equalize the parallel motions and diminish the resistance to
ence to a new hypo or alum bath. For the latter I do not recognize a necessity, and so in the few trials made omitted it, substituting for it, after a thorough wash and soak, an acid bath to remove any traces of insolu ble compounds that may have remained on the print. A personal preference for less marked tones than the deeper browns given by employing the solutions at the strengths suggested led me to considerably weaken them. By this means I obtained what I aimed at, namely, an alteration of the cold black of the untoned print to a less determined hue, brown black, of greater range. I agree that a bromide print may be consider ably improved in this latter manner by the application of the uranium-ferricyanide toning solution, which, moreover, possesses great lat itude of power in inparting a well graduated series of pleasing tones.

Another useful application of the uranium-ferricyanide toning solution is in the modification of the color of gelatino-bromide opal pictures. Here, as with paper positives, one may run up and down the gamut of the brown group of shades and tones
brackets, and of two trans verse girders resting upon rollers. At one end of the bridge are united the mechanisms of the various novements, all actuated by electricity. The electric energy necessary is produced outside of the Machinery Palace in a special building, and is furnished by a Gramme generating dynamo, actuated through the intermedium of a belt by a 25 horse power high speed Westinghouse steam engine.

Two copper conductors supported by insulators lead the current to the receiving dynamo carried by the bridge. This dynamo transmits its motion to the various parts of the bridge through friction. The shaft of the receiving dynamo, prolonged to this effect, actuates, at high or low speed, through the intermedium of two rollers, a shaft that gi ves the three movements mentioned above. This shaft moves' always in the same direction. The backward and upward movements are obtained by means of other friction disks, one of which is keyed to a shaft of the windlass, and the two others to a sleeve revolving with the shaft and capable of sliding on it. Upon leaving the sleeve to slide to the right or the left, one or the other of the disks of the sleeve is brought into contact with the
traction, the transverse motive shaft of the bridge engages with the gearing at its center through an intermediate shaft that receives the motive power. This latter is furnished by a receiving dynamo constructed by Mr. Miot. The transmission of electric energy is effected as in the preceding apparatus.
Such, in its main features, is the installation of the electric rolling bridges of the Machinery Palace of the exposition. Aside from the pleasure experienced by the visitors, we see in it with interest the application of the transmission of electric energy to large lifting apparatus of this kind-a principle that has already been applied with success to ordinary cranes, hoists, etc.-La Nature.

Toning Gelatino-Bromide Prints

Something extremely interesting to me was the appearance of a communication to a metropolitan society, embodying some experiences of the toning of silver bromide emulsion pictures with uranium nitrate and potassium ferricyanide, the constituents of Dr. Eder's negative intensifier. If one may presume to criticise Mr. Elder's remarks, they struck me as being very
with perfect success. I have so employed the formula detailed with satisfactory and pleasing results. For those who do not like blacks or cool grays, this me thod of toning may be confidently recommended. It will, of course, not escape remark that with bromide paper and opals that are developed with oxalate of iron very stringent care is required to free the film from ferrous compounds before the application of the uranium-ferricyanide solution, otherwise ruinous blue stains are sure to appear. I attach little, if any, importance to the danger of yellow stains from the toniug solution if its action be not protracted beyond a few minutes. In my trials some opals, with plenty of virginal margin, came out of the treatment quite immaculate, although only ordinary precautions were adopted to preserve their whiteness.-Thomas Bedding, in Br. Jour. of Photo.

Cooking by Electricity.
The Hotel Bernina, at Samaden, has for some time been lighted with electricity, power being supplied by a waterfall. As during the day the power is not required for lighting, and is therefore running to waste,

Fig. 2.-GENERAL VIEW OF BON \& LUSTREMANT'S ELECTRIC ROLLING BRIDGR
disk of the windlass, and this is carried along in one|lucid, and I was able without difficulty to arrive at the proprietor of the hotel has hit upon the idea of direction or the other. The levers controlling the satisfactory modifications of the tones of bromide utilizing the current for cooking when it is not required various movements are situated beneath the girders
of the bridge, in a small compartment, and under the following his instructions. That gentleman
recommends 10 per cent solutions of both salts. The of the bridge, in a small compartment, and inder the eye of the mechanician.
The total weight of the apparatus, with its accessories, is about 22 tons. Its platform holds from ninety to one hundred visitors by a little crowding.
picture after firation is to be washed in acidulated water and then freed of the acid and treated with water and then freed of the acid and treated with water. After toning, another washing and transfer-
for lighting, and an experimental cooking apparatus has been constructed. This contains German silver resistance coils, which are brought to a red heat by the current, and it has been found possible to perform all the ordinary cooking operations in a range fitted with
a series of such coils. the ordinary cooking
a series of such coils.

RECENTLY PATENTED INVENTIONS.
Rallway Appliances.
oupling. - Alfred R. Heath
CAR Coupling. - Alfred R. Heath, Covington, Ind. The design of this invention is to
provide an automatic coupling of simple and durable construction, by means of which cars may be coupled well as with those provided with this improve as well a
coupling.
Railway Signal.-Joseph W. Riggs, St. Paul, Minn. Between the tracks is a central rail having in its upper edge a groove in which are placed three conductors arranged in groups, to divide the track np into sections without any compiciced swithen or
track instruments, the signal to be used for signaling from one train to another in case of accident, and for the prevention of co

Mechanical.

Toothed Wheel. - John T. Reding ton, Ambler, Pa. This is a wheel in which removable
toothed sections are employce, adapted for insertion in the eriphery of the wheel, so that one or more sections may be taken out and others inserted when desired, on account of wear or accident, without disturbing the
other sections.
Car Wheel Chill. - Ferdinand E. Canda, New York City. This chill has two or more
outer rings and a segmental inner ring, some of its outer rings and a segmental inner ring, some of its
segments being connected to one of the outer rings, and the others to the remaining outer ring or rings, whereby the heat of the molten metal will cause the inner peripheral chiling afce approach rather than
recede from the axis of the chill, while providing sdequate egress for the heat, steam, and gases generated by the molten metal.
Sheet Heating Furnace.-Evan J Francis and Charles Banfield, Leechburg, Penn. By this invention the bottom for the heating chambers is forned of segregated mases, broken pieces, or frap-
ments of non-combustible materias having interstitial passages, and presenting a broken or uneven surface, whereby the sheets are heated to be annealed very uni formly.

Agricultural.

Hay Stacker. - Arthur E. Platt, Ottumwa, Iowa. Combined with horizontal and up.
right frames is a beam having an axle and reduced right frames is a beam having an axle and reduced
curved forward part, a fork formed with a shank frame and having curved and straight teeth, and an operating rope, the construction being particularly adapted to and also aadapted to take straw away from a thrashing machine.
Lawn Mower. - Charles A. Olcott, North vernon, operated machine having few and simple parts, , and
adapted to cut underneath fences and over walks where mowers having revolving cutters woold be useless, the
machine cutting very fast with the expenditure of bat machine cuttin
little power
Churn.-Hale E. Hawk, Bucyrus, and Wesley Smith and Joseph F. Fox, Pierce, Ohio. This body is reciprocated, a to the dasher, the churn being so made that its frame
can be readily folded when not in use, while the dash an be easily remoed to 1 . ing the butter.

Miscellaneous.

Astronomical Mirror. - Dennis with a Oswayo, Penn. Combined with a pan formed threaded sleeve being held in the aperture engaged by disks on the opposite sides of the mirror, the object
being to produce concave mirrors of long focus from being to produce co

Roll Holder for Cameras.-Erastus B. Barker, New York City. Combined with a plate or or boxes for carrying the sensitized paper and for supplying and taking up the exposed portions of the roll, the roll to be drawn upon as required to expose succes
sively different portions of its surface for the purpos sively different portions of its surface for the pur
of making a series of pictures, one after the other.

Book or Music Holder.-Susan M. Perkins, Lansing, Kansas. This is an improvement in that class of book or music holders which consist of spring clamps adapted to slide toward or from each
other upon a flanged or slotted bar, a stretched wire being employed to sipport the clamps instead of the
Grain Weigher and Register.August H. W. Droste, St. Charles, Mo. The grain receptacle is formed in two compartments and is
mounted to slide vertically, a tilting grain bucket discharging alternately into the compartments, a pivoted arm being connected with the grain receptacle and a
weighing beam connected with this arm the machine weighing beam connected with this arm, the machine
being adapted to be easily and conveniently attached to a thrashing machine.
Method of Operating Gas Engines. -Henry Hoelljes, New York City. This invention provides for using lower temperatures in gas engines, avoiding dissociation of the products of combustion, by employing compressed air kept teparate from the
explosive mixture until the combustion takes place. diminishing the loss of heat through the cylinder wall and avoiding the use of water jackets.
Ore Roasting Furnace. - David R. S. Galbraith, Anckland, New Zealand. This is a abaft
furnace having feed openings at the top, with inclined
and apertured offsets, and gas inlet openings near the
bottom of a rotary shaft on which are dished disks, the furnace being portable and specially adapted to secure the suspension of the finely divided ores in a gas or
misture of gases, and at the required temperature, mixture of gases, and at the
during a certain length of time.
Weighing Oil Tank. - Elmer N. Bachelder and Fred E. Lovejoy, Portland, Me. A weighing tank is supported upon one arm of a scale
beam fulcrumed below a reservoir, a latch engaging with a weight carrier being pivoted upon the other arm of the scale beam, with a connection between the reser oir and weighing tank, whereby oil may be delivere rom one tank to anoth
Automatic Ratchet Cock. - James . Powers, Brooklyn, N. Y. This invention consists of a combined pivoted arm or float and ratchet device to
act in connection with a suitable wheel for operating act in connection with a suitable wheel for operating
the valve, designed to cause an intermittent flow from a cock and be perpetual in its action.
Automatic Disinfecting Tank. James J. Powers, Brooklyn, N. Y. Combined with a sewage tank, an elevated reservoir, and a measuring
box connected to the reservoir by a conduit and valve casing, is a cock fitted in the valve casing, formed with hrree passages and having a float arm, whereby the rise
and fall of the sewage in the sewage tank automaticall and fall of the sewage in the sewage tank automatically
admits chemicals in the requisite proportion aud with

Disinfectant. - Charles F. Bond, dicago, Ill. This is a compound for disinfecting and deodorizizg purposes generaliy, and consists of certain
proportions of slaked lime, red ocher, carbolic acid, te, bichloride of mercury, salicylic acid, etc.

Street Washer. - Juan B. Arei Brooklyn, N. Y. In this device a cast iron box is se int de pavement, with cover to prevent surface water
and dirt from entering the box, into which projects a pipe connecting with the street main, and an operating dor turning the water on and off, and also for tur Ing on and off the water from the house, all danger o

Brebch Loading Gun. - Gustave S. Boesch, Freetown, Mass. In this gun the .hammer provided with a catch separate and independent from the bolt, and adapted to engage it when thrown forward
and retract it and become disconnected therefrom when raised into the firing position, whereby the gun may be be effected without closing and locking the breech
Lock.-Oluf Valkerts, Sac City, Iowa his lock has a bolt provided with a rack, the tumble wase having teeth which engage the rack, the tumbler within tre case in connection with pprings engaged on each side of the tumbler case, all corresponding parts being interchangeable, while the lock can be set o a variety of combinations almost innumerable.
OAR. - Horatio F. Hicks, Ashland, fregon. This invention relates to metal-bladed oars
for rowing and sculling, the blade being curved or dish haped, and having a longitudinal groove or channel on convex side, which forms a stiffened rib on the on its surface from near the channel to the edges of the blade.
Vehicle Brake.-John Mani, French Gulch, Cal. Combined with a brake-operating slide and adjacent rack is a latch lever or pawl pivoted to members of the slide and latch lever having foot piece one above the other, the construction being such that the foot rail may be used for the operating lever, and
the entire surface of the shoes brought in contact with the entire surface of the shoes brought in contact with
the wheels when the brake is applied, and entirely rethe wheels when the brake is applied, and en
moved therefrom when the brake is taken off.

Draught Spring for Vehicles.James A. Robson, New York City. This invention provides a sliding plate in a support adapted to carry
a whiffletree, a casing inclosing a spring projecting from a whiffletree, a casing inclosing a spring projecting from
the support, there being in the casing a sliding plate gainst which one end of the spring rests, the attac ment being such as can be easily applied to all vehicles,
to regulate and even the draught.

Motor for Vehicles.-Jonas Potter, Johnstown, Pa. This motor is designed for use gen-
erally with machinery as well as vehicles, in connection erally with machinery as well as vehicles, in connection
with prime movers, for increasing their efficiency, and consists in the combination of long and short levers and of sprocket or gear wheels for transmitting pow the mechanism in which the power is utilized.

Radiator. - Joseph Liedl, Fergus Falls, Minn. This invention covers an apparatus adapted for attachment to a heating or cooking stove, designed to cause a circulation of the cold, stagnant air designed fo cause a circulation of the cola, stagnant air the temperature of the room,

Fufl Cartridge. - William Daly, New York City. This is a cartridge adapted to be placed in an upright position on the grate, and is com-
posed mamly of a cylindrical casing, whose outer portion is filled with asbestos, the casing having a cenral bore, the cartridge being adapted to be charged with kerosene oil, etc., and to burn without smoke, air onsumed with the oil.
Knockdown Furniture. - Arthur White, Sheboygan, Wis. This invention covers a novel furniture, so that the articles may be easily and quickly set up for use, and will be strong and darable, while in knockdown condition they may be packed in small pace for economical handling, storage or shipment.
Clothes Horse and Ironivg Board.
combined device, consisting of a main frame with
apper and lower brackets, clothes frames being hinged on the main frame, while an ironing board has pins a iss inuer end adapted to be hooked on the brackets, and is provided with a leg, the device being foldable i
Sun and Vapor Bath. - Edwin D. Babbitt, New York City. This is a box with side re fectors and a glass pane in its inclined front, colored strips of glass being placed on the pane for subjecting held in front of the head, that it may receive only the cool rays, while the box has a wire mattress, and adapted to receive a steaming pan.
Bougie. - George Morlot, Paterson N. J. This invention relates to depurators coated wit medical composition, and consists of a fexible cor nd a medicated composition extending ower the core
nd head.
Cough Sirup. - Francis M. Jaques, New London, Conn. This sirup is made of rock poly pody, wild cherry bark, hoarhound herb, rock candy
ranulated sugar, glycerine, and other ingredients, in pecified proportions, and prepared and administered in a manner described.

SCIENTIFIC AMERICAN

BUILDING EDITION
AUGUST NUMBER.-(No. 46.)
table of contents.
Elegant plate in colors of a cottage for twelve hundred dollars. Persp
2. Plate in colors showing perspective elevation and floor plans for a small frame cottage to
thousand dollars. Page of details, etc.
3. Page engraving of the new and elegant Trinity church at
4. A New England mansion. W. B. Tubby, New York,
5. Elevation in perspective and floor plans of a co tage at Jersey City Heights. Cost twelve thou sand dollar
6. A cottage recently erected at Bridgeport, Conn. Floor plans and perspective.
A handsome country residence at Belle Have Park, Greenwich, Conn. Cost elev
dollars. Perspective and floor plans.
8. A house for eight thousand dollars, recentlyerecte at Brid
9. The New United States court house and postofice Charleston, S. C. Cost three
dollars. Perspective and plaus.
10. A cottage at Bedford Park, New York. Cost thre thousand five hundred dollars, Plans and per ective.
11. House for three thousand six hundred dollars, re cently erected on Armory Hill, Springfield, Mass
12. Page of designs of ornamental well curb
13. Brick dwellings recently erected in Jersey City N. J., at a cost of three thousand eight hundre rspective
14. A corner residence on Jersey City Heights, N. J. spective.
15. The great chapel, cathedral of Toledo, Spain drawn by Antonio Hebert. Full page engraving 16. Engraving of the Lessing theater in Berlin.
17. View of the new electrical labratory of Purdue University at La Fayette, Indiana.
18. View of the street front of the handsome Brooklyn N. Y., library.
19. Miscellaneous Contents : Hints to architects. Iron bricks.-Hard woods.-Prevention of diph-theria.-Overthrowing a chimney.-The manu-
facture of Roman bricks.- Woods for inside finish.-Jim Fisk's monument.-Experiments on mortar and concrete, with illustrations.-Clamp for pulling street piling, illustrated.-The Eiffel tower.-Sisteen stories the limit.-A singular fireplace explosion. - An ornamental stairway,
illustrated.-The Hess system of ventilating and warming.-Hints about lawns.-Hot water heat ing, illustrated.-The "Timby " automatic sash plates.-High speed automatic engines.--Metalli shingles and roofing tiles.-Electrical appliance for houses, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness;
The Fallness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.
ew York.

ヤusiness and Persomal.

he chargefor Insertion under thes head is One Dollar

 a linejor each insortion, arout eight words to aline. Advertisements must be recived at publication office Important-The whereabouts of one Stephen G. CanId is wanted. Address. Palmer Canfield, isterFor Sale-Potter's tile ditcher. Patented. For decription see page 118.
Wanted-A man
Wd man to act as superintendent of a sash men, make drawings and estimates to take charge of men, make drawings and estimates on all classes of
work. Best of references required. Address B. Ed-
wards, 59 Chicazo St., Buffalc. N. \mathbf{Y}. Model steam engine. Cir. free. Edgar Side, Phila., Pa. Wanted-An expert mechanic to take charge of a facory making electrical and mathematical instruments. ne who has good business tact, and can invest some capital, or who can furnish security and take the fac-
ory on contract, preferred; advertiser to take entire ory on contract, preferred; adveriser to ake entire
product. Address $\mathrm{W} . \mathrm{H}$. Stevenson, care Thomas A. helan, 93 Front St... New York.
Soft, pliable leather coats, $\$ 6.50$; pants, $\$ 5.50$; vests,
3.50. Delivered. Perfect Clothing Con 83.50. Delivered. Perfect Clothing Co., P. O. box 2638 ,
N. Y. For Sale or Royalty-Baling press, patent No. 406,680, described in SCIENTIFIC AMERICAN. No. 5. Vol. 61. Has
great compressing power; light and easy to operate. reat compressing power; light and easy to operate. Meets a long felt want of farmers, broom corn, cotton,
and wool growers. Manufacturers on royalty can have and wool growers. Manufacturers on royalt:
a bargain. W. E. Walter, Silver City, Idaho.
Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum apparatus, air For the latest improved diamond prospecting drills, ddress the M. C. Bullock Mfg. Co., Chicago, III.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works mahinery, and containing reports of tests, on application. Screw machines, milling machines, and drill presses. Planing and Matching Machines. All kinds Wood
Working Machinery. C. B. Rogers \& Co.. Norwich, Conn. Billings' Double-acting Ratchet Drills. Drop Forgings. Bronze Forgings. Billings \& Spencer Co., Hartford,
Conn.
The Improved Hydraulic Jacks, Punches, and Tube xpanders. R. Dudgeon, 24 Columbia St., New York. Safety Elevators, steam and belt power ; quick and Veneer machines, with latest improvements. Farrel
dry. and Mach. Co., Ansonia. Conn. Send for circular. Tight and Slack Barrel Machinery a specialty. John and fruit package machinery. E. Merritt Co., Lockport, N. Y .

Wardwell's patent saw benches. All sizes in stock.

HINTS TO CORRESPONDENTS. Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid hereto.
information, and not for publication.
References to form is or our Rererences to former articles or answers should
give date of paper and page or number of question.
Inquiries not answered in reasonabible time should
be repeated; correspondents will bear in mind that
sone though we endeavorire not reply a to little research, and, either by letter
or in this department, each must take his turn. special Written In formation on matters of
personal rather than general interest cannot be
expected without remuneration.
 price.
wineraln sent for examination should be distinctly
marked or labeled.
(1173) B. \& Co. write : In shipping car of goods we paste advertising posters on the
des of the cars. We have been using gum tragacanth, but it does not stick so but that the wind blows the posters off. Can you suggest some cheap, easily made, and convenient paste which will over-
come the difficulty? A. Use a cheap, hard-drying varish, and varnish the face of the circular as well as the ar body under it.
(1174) G. S.-All clays contain alumium, hut its extraction is difficult, expensive, and re uires special skill in manipulation
(1175) J. S. asks: Is there any cheaper lectric telephone than the Bell? A. The Bell tele phone is protected as a monopoly by patent right. It ade still cheaper. As receiver and transmitter it reresents about the cheapest type.
(1176) J. D. McD. asks for information J. D. We refer you to the files of the Scientific American, where
arious attempts have been described. No boat has ween yet in practical use in this country, though is to be hoped that under the new appropriations or the navy one will soon be bnilt. Steam, naphtha, lectricity, and Honigman's soda engine have all been
(1177) J. W. G. writes: Can you tell me of a silver-plating bath that is not so poisonous as the
cyanide and that will give as good a plate with a batery, while it is, at the same time, easily handled? A. yanide solutions are universally used, and give the est results. A solution of sulphate of silver in cara a certain amonia solution has been recommended adding sulphate of soda to nitrate of silver, both in so(1178) L. D. P.-The proper rating of maicroscopes is by the number of diameters that they
magnify, The other rating, which is made for effect on purchasers, is the area, which is equal to the square of
(1179) J. H. K, asks how to make cloth silk or heat the linings in melted paraffin.
(1180) S.-Shears are made of wrought ron drop-forged, finished, and case-hardened, also of ble iron with steel facing welded, also of all steel.
(1181) W. S. R.-For method of etching on steel see Scientific American, April 23,1887, Notes and Queries, No. 21. The sponginess or honey-comb-
ing of alloys is caused by the metals boiling. The metal that melts at the highest temperature should be meltell first, or as soon as it begins to melt add a little of the metal melting at the next lower temperature,
which will facilitate the melting. When just melted, which will facilitate the melting. When just melted,
the balance of the misture should be gradually added the balance of the mixture should be gradually added
and thetemperature lowered by slackening the fire; pour the metal at as low temperature as will allow it to run and fill the mould.
(1182) C. A. B. asks the best way of cleaning pressed brick and stone, and the best oil to
use on them. A. Water and a stiff brush is all that is use on them. A. Water and a stiff brush is all that is
needed, unless the bricks are stained with something needed, unless the bricks are stained with something se boiled linseed oil.
(1183) G. W. G. asks a receipt for cleaning a badly rusted gun barrel. A. There is no way of properly restoring a badly rusted gun barrel save by with a steel scratch brush and oiling with linseed oil will make it passable.
(1184) B. W. E. asks what sign of the zodiac belongs to each month of the months of 1890. A. January 20 to February 19, Aquarius; February 19 to
March 20 , Pisces; March 20 to April 20 Aries; April 20 to May 20, Taurus; May 20 to June 21, Gemini; June 21 to July 22, Cancer; July 22 to August 22 , Leo August 22 to September 22 , Virgo; September 22 to
October 23, Libra; October 23 to November 23 , ScorOctober 23, L Libra; October 23 to November 23, Scor-
pio; November 23 to December 21, Sagittarius; Depio; November 23 to December 21, Sagittarius; December 21 to January 20 , Capricornus. The constelia-
tions are about one month later now than when this tions are about one month later now than when this
system was first adopted, due to the precession of the equinoxes.
(1185) G. W. K. \& Son ask : 1. What is the greatest known depth that oceans have been
sounded? A. Over 4,000 fathoms. 2. Has life been discovered at the very lowest soundings? A. Yes Animal and vegetable life has been found at the greatest
(1186) J. B. T. asks if there is any effective way of ridding a cellar of fleas that have literally overrun everything. A. Il my cellar were infested a hand atomizer of large size, spraying every inch of hand atomizer of large size, spraying every inch of
space and particularly cracks and corners. I should be very careful, however, not to introduce a light into the cellar until the benzine had been given a number of
hours or days to become thoroughly dissipated.-L. O Howard.
(1187) H. L. writes : Early in the fall of 1886. I made up a lot of cider, which proved not very palatable, and it was turned into vinegar barrels, with the expectation that it might prove of some value in
that direction. It has been coaxed since with yeast to promote sound fermentation, with straw paper and molasses, etc., and it is about as insipid as ever. Is
there any way the stuff can be converted into vinegar? there any way the stuff can be converted into vinegar?
A. The originai cider was probably at fault, and by its deficiency in sugar and alcohol produces a very weak vinegar. We do not see that anything can be done unless you add sugar, glucose, or molasses, and carry it through the alcoholic and acetous fermentation. The addition of alcohol or alcoholic spirits would be more direct, but also more expensive.
(1188) C. A. B.-The proper magnif ying power of microscopes is expressed in diameters, while the extravagant expression of millions occasionally appears in newspapers. Good microscopes-and there are
none better than those made in the United States-magnify all the way up to 2,000 , which, when squared, means the magnification of areas, which for the above num ber of diameters amounts to $4,000,000$. No micloscop-
ist or scientist uses these expressions without explaining their meaning.
(1189) W. T. B.-For shellac varnish, dissolve shellac in 95 per cent alcohol in quantity to make the varnish of the proper consistency for the use
that you require. For metals it should be very thin, for woodwork should be thin enough to spread easily with a camel's hair brush. Stratena is a liquid glue. Use charcoal or gas retort carbon only for batteries.
(1190) R. J. C. asks: What is the evapration per pound of coal in a run of eressure 82 , temperature of feed aver age pressure 82 , temperature of feed water 210°, coa
burned 480 pounds, water evaporated 4,500 pounds. A. $9 \cdot 37$ pounds of water evaporated per pound of coal.
(1191) J. B. C. writes: Suppose a canal nd 20 feet deep, with a sectional measure of 1,600 square feet, that the canal has a regular fail of 12 mehes o the mile. Is there any formula hy which may be calculated the velocity of the current? A. The formula is $\sqrt{\frac{\text { Area }}{\text { coefficient } \times \text { length } \times \text { perimeter }} \times 2 \text { gravity } \times \text { hgt.of }}$ fall. For your statement the velocity is $5 \cdot 2$ feet per second. See Haswell's Engineer's Pocket Book, which we mai for $\$ 4$.
(1192) J. F. L. asks how to make a good polish for lead pipe, one that will keep its luster and not injure the pipe. A. Rub the pipe with a wet woolen cloth with ground pumice to take off dirt and oxide
Then rub with whiting on a cloth wet. It will not tay bright unless varnished or lacquered, for which yo might give it a coat of mastic.
(1193) S. G. D.-The stays for boiler heads are made to meet the strain due to each size head at the test strain, with a proper allowance for safety
See Sexton's book on steam boilers, $\$ 2$, whicb we mail See Sexton's
for the price.
(1194) W. H. W.-You cannot make good engine brasses from old brass. A good mixture should have 80 per cent copper to 20 per cent tin. For cheap br
y weight.
(1195) C. A. writes: I have sun dial which has engraved upon it north latitude $31^{\circ} 3 V$, range 30° to 33°. Would that dial give the correct time at this place (Kansas);which is about north latitude 39? How should the dial be set so as to give correct sun time? A. If it is a verical dial, the stile is probably $58^{\circ} 30$ from the vertical. By changing the angle to 510 , it will be right for your latitude. Set the face vertical and the
stile pointing to true north. (1196) V. F.-All pressure gauges are marked in pounds per square inch. The siphon gauge Sindexed by inches, which is equivalent to pounds per quare inch, the real difference being 2 inches by the allo of the mercary in the other leg. Vacuum gauge read by inches, which equal a half pound to the inch, in pounds of vacuum.
(1197) J. B. asks : What will prevent the sal-ammoniac in a Leclanche porous cup battery fo jar? A. Use a weaker sal-ammoniac solution. One jus below the point of saturation is the best. Dry your (1198) W H ars: Can I make the
$\underset{\text { namo-electric machine described in Supresment, No }}{\text { (119) }}$ 600 , run easier by reducing its candle power to 2 or 4 16 -candle lamps? A. You can make the machine rue
easier by connecting all the wires of the field magne in series, and arranging the connections as in a shunt machne. Introduce a variable resistance into the field
magnet circuit, and the machine will operate two or Sour lamps and run proportionately easier.
(1199) D. J. J. asks how to make the quickest drying ink. A. For quick drying ink use alco-
holic solution of desired aniline color. This will have honic solution of desired a niline color. This will have
the great objection of drying rapidly in the ink bottle. An aqueous solution of nigrosine, the latter being first
dissolved in alcohol and then added to water, should answer every purpose as regards quick drying.
(1200) E. P. asks what kind of coal ignites the quickest and, at the same time, makes the
largest volume of blaze. A. The cannel coals or bitunous, used by blacksmiths.
(1201) J. F. G.-You can retain the Kaster on copper ondy by repeated polishing, or lacquer-
ing with very thin shellac varnish. Thin with alcohol (95 per cent) untili it is nearly transparent or of a wine color, in a clear bottle, and allow it to settle. Warm the
articles to 200° or nearly the temperature of boilin water, and apply the varnish very quickly with a camel' hair brush.
(1202) E. S. R. asks the resistance by wind against the end of a passenger car running at the
rate of forty miles an hour. pounds per square foot, or about 700 pounds. The skin friction of the top, sides, bottom, and wheels should also be
train.
(1203) S. E. G.-The term " pivotal mo tion " is applicable to all motions or movements that are governed or constrained by a pivot or fixed hearing.
al circular motions are not necessarily pivotal, and All circular motions are not neceesarily pivotal, and
many may be more properly styled axial. nany may be more properly styled axial.
(1204) W. S. D. S. asks: What becomes of the sap that rises in the trunk or stem of a plant? Does any portion of it return to the roots of the plant after it has matured or at the close of the summer season? A. The water constituent of the sap is eliminated
through the surface of the leaves and stalks, while the solid solubles of the sap are absorbed in the development of the plant or tree. The sap does not return, but
(1205) A. W. W., of Alma, Mich. planted two white pines last fall, and they gre beautifully until about a month ago, when a borer or black bug attacked them, and they are slowly dying.
Can you tell me anything I might apply to prevent this, and you tell me anything I might apply to prevent this A. The specimen sent was referred to Prof. L. Howard ho says: It is one of the common pine bark borers which has been called the fine writing bark beetle Tomicus calliaraphus). I regret very much to state that here is nothing which Mr. W. can do to save his trees after they have been once attacked. As a matter of fact these beetles prefer diseased or dying wood, and in
the woods they never attack healthy trees, butare always found in those which are dying from some other cuyse found in those which are dying from some other cause.
They are brought into cities with fire wood, and, escapng, find no trees just suited to their purpose, and so attack the next best thing, which is some healthy dooryard pine. As a preventive it would be well to purchase only pine kindling or fire wood from which the in some place in the yard, a few pine branches from dhe woods, which should be renewed from time to time nd the old ones burned. Such branches will not at-战tat beetles from the trees in which they have once beetles which may be around, and which might otherwise attack the ornamental trees.
(1206) W. A. C.-Water freezes down from the surface. It freezes at the bottom first, only
when anchor ice is making in a swift and rough, shalow stream, when the temperature of the water gets be low the freezing point, but is prevented from congeal. ing by its agitation. The stones under water become colder than 32° when the cold water in contact begins o congeal. See Scientric American Supliement,
Vos. 771 and 406 , for interesting articles on the physical 406, for
(1207) F. D. S. asks a recipe for making court plaster. A. Isinglass 125 grains, alcohol 134 fluid onces, glycerine 12 minims, water and tincture of benzoin each sufficient quantity. Dissolve the isinglass
in enough water to make the solution weigh four fluid in enough water to make the solation weigh four fuid
Gunces. Spread half of the later with a brueh upon
successive layers of taffeta, waiting after each applica-
ion until the layer is dry, singlass solution with the alcohol and glycerine and apply in the same manner. Then reverse the taffeta, coat it on the back with tincture of benzoin, and allow it to become perfectly dry. There are many other ufficient to make a piece of court plaster tifteen inches

sufficien

(1208) E. J. B. asks how a ball in a base ball game can be curved, and whether it can be curved not. A. You will find base ball science fully displement, Nos. 402; 410, 423.

TO INVENTORS.

An experience of forty years, and the preparation of An experience of forty years, and the preparation of
more than one hundred thousand applications for pa-
ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and al
foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
broad, are invited to write to this office for prices abroad, are invited to write to this office for prices which are low, in accordance with the times and our ex-
tensive facilities for conducting the business. Address MUNN \& CO.. office Scientific American, 361 BroadMUNN \& CO... oftren
Way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

August 6, 1889,
AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Boiler. See Steam boiler.

Book and index, combined, H. Pra
Book or music holder, S. M. Perkin
Book, stub envelope, W. A. Rabor
Boot or shoe last, G. A. Reynold
Boring machine, A. D. Pentz
Botitle stopper, J. A. Traut.
Bottle stopper fastening, A. Leforestier
Bottle trap, R C Clarke
Bottles, label holder
Bougie, G. Marlot
Box. See Axle box. Journal box. Miter box
Shaft cooling box.
Shaft cooling box.
Brake. See Car brake. Lathe spindle brake. Ve
hicle brake.
Brick mould, E. B. Carter...

Camera. G. Eastman.................................
Can ending and crimping machine, E. Norton....
Can flling machine. S. Norris.................
Can for coffee, grain, etc., S. A. French..........
Cane mill, sugar, A. Leblanc...
Car brake, automatic, C. L
Car coupling, A. A. H.s. Davis.
Car coupling
Car coupling, J. A. Fleming.
Car coupling, A. J. Gunn..
Car coupling, A. R. Heath
Car, hand, W. H. Envels....
Car, railway, M. A. Garrett..
Car step, railway, F. W. Jone
Car step, railway, F. W. J
Car seal. L. A. Foote......
Car wheel. W. E. Smith...
Car wheel chill, F. E. Can
Car wheel chill, F. E. Canda
Cars, signal for railway, A. A. Robinon.
Cartridge shell, W. R. Lindsey.............

Catte while being dehorned, device for holding,
A. C. Pattee...........................
Chair. See Barber's chair. Child's adjustable
Chair. See Barber's chair. Child's adjustable
chair.
Chalk holder, C. Duisdicker.......................
Child's adjustable chair, Gifford \& Allen........

Cothes-line stretcher, S. Dobb
ock or valve, J. Powell............
ock, self closing stop. J. F. Larkin
Cock, supply and waste, C Hay
Composition of matter, M. L. Deering
Contact arm for electric railway motor cars, C. Van Depoele..
Cork branding device, A. R. Weisz
Corns, remedy for, A. Larochelle.........................
Cotton gin, C. Young
Coupling. Sea Car coupling. Hose coupling. In
sulating coupling. Pipe coupling.
ranberry picker, J. R. Jenney
Cranberry sorter. A. S. Prickit

Crupper. L. S. Ellis
Crushing

Crushing and grinding mill, J. F. Winchell............. 4088.448
Crushing bones
Chillips
Phes. minerals. etc., mill for, c.
Cuff holder, H. B. Williams.
Cultivator, F. P. Craig.
Cutlery, motor, alteranating, C. J. Van De..............
Cutter. See Straw cutter.
Dental engine, L. T. Sheffield
Digger. See Potato digger.

Door, sliding, J. H. Morley ..
Draught spring for vehicles, J
Drawing hoard, E. A. Newnan..................... 408,437
Dress waist., J. o. De Caracena Drier. See Oothes drier
Drill. See Electric drill.
Drinking vessel, electric, F. W. Flint............... 448,607
Drying or evaporating apparatus, A. Herr
Drying or evaporating apparatus, A. Herr........... 408,607 600
Drying or otherwise treating materials, apparatus
for, E. M. Cook.............................. 408,217
Drying warps, piece goods, etc., device for, F.
Haskell.. 40
Dust collector, w. F. Boehning........
408,235
408,285
408,388
Dyeingl yarn in cops, hollow spindle for, l. F.
Peck.
Peck.. 408.668
Electric conductors, device for suspending, T. E.
Adams... 408,334
Electric drill, I. E. Storey....................... 08,269
Elpetric lighting, carbon for, c. A. J. H. Scher

Electric machine, dynamo, S. Z. De Ferranti,
Electric machine regulator. dynamo. 4. K . Bois-
Ele,
sier... ...
Electric machines, commutator f
Electric meter. S. Z. De Ferranti.
Electric motor, S. C. C. Currie....
Electric motor, , c. c. C. Currie.....................
Electric motor governor, , H. Whittingham..
Electric motor, inductional, C. J. Van Depoele. Electric motor, inductional, C. J. Van Depoele..
Electric switch, w. Thompson.................. Electrical distribution, system of, F. L. Perry...
Electrical:resistance, F. O. Blackwell. Electrode for galvanic batteries, zinc, , J. B. Wil-
liams ...
vator.
Elevator alarm indicator, E. Axthelm.............. 408,3
Ela
Elevator,doors, device for operating, w. E. Nick-
erson.................................
Engine. . See Dental:engine. Gas engine. Steam
engine.
Engines, condenser head for the exhaust pipes
of steam, A. M. Doane.....................

Eraser holder, C. A. Holmes....
vaporator, W. \& W. A. Wilcox
Exercising machine, J. P. Nichol
Eyeglass holder, S. R. Stibgen
Fans, appliance for rotary, c. E. Walde
Feculent receiver, O. D. McClellan.....
Feed trough, W. Andrus.....................
Feed water heater and purifer. G. B. Field Feed water heater and puriA
Fence. wire, D. H. Allen.....
Fertilizer, J. A. Lighthall... Firearm, revolving, H. M. Caldwell..................
Fire extinguisher, automatic, J. R. Gray.........
Fire extinguishers, discharge cock for, J. M. Mi1Fire extinguishers, discharge cock for. J. M. Mil- ${ }^{408,302}$
ler.....................................408,423
Fire extinguishing apparatus, automatic.. O. B. $13 \begin{gathered}\text { Hall.. } 408,615 \\ \text { Fires, giving alarms, etc., apparatus for ex- } \\ \text { tingushing, J. H. Radecliffe................. 408,325 }\end{gathered}$ Fishing snood, F. Hubbard..................................... 408,347
Flanging apparatus, I. B. Coleman............. 408,58 Floral letter or design, w. C. Krick................
Frame. See Grindstone frame. Slate frame. Friction, magnetically reducing. M. W. Dewey...................408,220
Fuel cartridge, w. Dals................. Furnace. See Bagasse furnace. Boiler furnace.
Glass furnace. Heating furnace. Ore roasting furna
furnace.

Gauge. See Measuring gauye.
Garlic from wheat, machine

Herr.................... 408,619
Garlic from wheat, separating, A. Herr........ 408,618
Gas, apparatus for the manufacture of. J. M.
Rose.................... 408,533, 408,536,
Gas engine, D. S. Regan...............................
Gas engines, atomizer for petroleum, E. Capi-
Gas engines, atomizer for petroleum, E. Capi-
taine.................................
Gas engines, igniting device for petroleum, E.

natural, E. A. Cook
Gas, manufacturing, J. M. Rose........................ 408,53,
Gate, A. Fawcett.....
Gate, E. Kelsey.......
Gelatine. making, F. W. P. \& L. P. Swinborne..... 4088,549
Gelatinous matter from hides or sixins, prea.
ing, F. W. P. \& L. P. Swinborne
Gelatinous product, F. W. P. \& L. P. Swinborne..

rain heater, A. Wassmund...
Grate, T. T. Rockett
Gun, breech-loading, G. S. Boesc
Hammocks, makink, J. Brays
Harness-D, J. R. Kennett....

Harvester, J. W. Latimer.................
Harvesters, carrier belt for, J. . D. Davis..
Barvesters, reel adjusting mechanism f Harresters, reel adjusting mechanism for, H. F. Harvesting machine, J. H. Adamson................. Hats, matking, H. Partrick
Hay carrier hook, T. J. Hitchcock....
Hay, device for sampling, T. B. Drape Hay rake and loader, combined, Long \& Walker.
Hay ataeker, A. E. Platt...................... teader and thrasher, B. Holt.. Portabe Feater. Water heater. Grain heater
Water......... Heating.apparatus, P. Fox......
Heating apparatus, C. A. Sawin. Heating apparatus, water. N. A. Boynton. eting fornece blat Francis Banfer Hinge, lock, H. W. Steiner. Holder. See Book or music holder. Chalk holder hamp wick holder. Paper holder Sas holder. Lamp wick holder. Paper holder. Sa Holder for letters, papers, cards, etc., D. A Hook. See Case hook. Hay carrier took. Horseshoe machine, Taylor \& Povey...........
Horseshoes, blacksmith's Horseshoes, b
R. Murph
Hose coupling, W. W. Hanscom.
Hose coupling, J. Pringle
Hoae, knit tabric for, H. F. Herkner. Hydraulic press, C. D. Davis........
Hydrocarbon burner, S. Bennett... Index. H. A: Stephenson.
Insect destroyers, can for distributing, R. S. Pey
Insulating co............................. Fring for pipes, E. Erick.... introducing molten, D. Brooks, Jr ..
Insulator, line wire, C. G. Graham..... Iron. See Soldering iron.
Ivory,
Ivory, etc., substitute for, F. Greening
Jack. See Lifting jack.
oinner's set, H. Focken
Joint. See Rail joint
Journal box, Hayes \& Read
Jourial box, anti-friction, J. Brewer.
Knitting machine, croular, J. H. Reed.............. 408,52 ,
Knituing machine for making figured knit
atraight, E. Tiffany...............................
Kniuting machine, straight, F. Wilcomb. 408,560 to Knitting, machines, falling bar for straight, E.
Tifiany.. Knitting machines, sink
 for straight, E. Tiffany
Knockiown bench for dogs, etc.,.,. A. Cruft. .
Lindley
Ladder, extension, C. Frizell.
Ladder, extension, G. L. Wrigh
Lakp, Arkand, W. C. Homan
Lamp burner, L. R. Oakes...
Lamp flaments, manufacture of incandescent,
Lamp wick holder, G. E. Messer.
ampps, burner for ceetral draught, Z. Davis.

tric. G. Gibbs.
 Lamps. wick raiser for ce

Lathing, metal, I. 8. Flkins
Leed press, H. B. Cobb.
8omme
Dolter feeding and separating machine,.......
Lifting jact, H. H. Clever
Lock. See Combination lock. Electric lock.
Locks, rod handle for, W. H. Taylor
Lacks, rod handle for, H. R. Towne...................
Loom picking motion, J. Monk...............................
Loom take-up mechanism
Loom temple, T, Norton.
Looms, dobby and jacquard machine for, A. A. In
singer
Looping machines, trimming
H. Bruce................
Lubricature. C. H . Parshall, sr . Mangle, G. K. Geige
Measuring gauge, threshold, D. W. Macker
Mechanical moverent
Medicine, cough sirup, F. M. Jaque
Meial founders' patterns, making, H. Tabor.
Metal, machine for finishing and ornamenting,
M. Quackenbush................ Meter. See Electric meter.
Milh. See Cane mill. Crushing and grinding mill.
Miling cutters, making. C. c. Tyler.................
miter boxand picture frame clamp, combined, \mathbf{H}
Mointerer pad, C. A. Pratt.
Minlding, J. J. Carr....
Mớidinq machine, san
Motor. Soe Current motor...................... Electric motor
Bteam motor. Vehicle motor.
Mower. lawn. C. A. Olcott.
Mower, Iawn,
I. Wennega.
Manical instrument, Deagan \& Carroll.
Mackiace clasp, A. Kelle
di. renning mineral, J. к. Field

Grdnance breech-looding. H. T. J. Thronsen.
Paeking for stuffing boxes, Ensign \& Wright
PRa, SQ9 Moistener pad.
Paper teeding machine, R. Burnet.
Paper hoider and cutter, roll, L. Ehrich.... Puper holder side eutter, roll, Tivy \& Elarlich. Phopr bolder, eutier, stamper, and neuina combined roll, C. K. Wililanion....

08,541

ne sawing machine, θ. Dalrymple 40.228	Drovertisements.
Stoper Se Bittle stopper	
Stove or air teating apparatus, S. C. Davidson.... 408.402	
Straw cutter, W. E. Davis......................... 408,221	words per line. This notice shows the width of the line,
Street washer, J. B. Arci 408.646	and is sot in asate type. Hingravings may head adder-
String stretching and tuning device, A. Felldin	
Sucker rodelevator, H. Knox.................. ... 408,4]	received at pubilication office as early as Thursday morn-
Sun and vapor bath, E. D. Babbltt................. 40,204	
Surgeon's silk or catgut, package of, R. W. John- son. ... 408,625	
Suspender attachment, J. P. Rummel......... 408,588	
Swaging machine. W. H. Dayton................... 408.2	
Switch. See Electr	
Switching	
Table.	I hours. It can be applied in
Tag, w. D. Smith............................... ... 408,359	
Tank. See Disinfecticg tank. Water closet tank. Weighing oil tank.	uranted for the mixing
- ${ }^{\text {anning apparatus, G. S. Tunstead................ 408,395 }}$	Step
Tap, collapsible, A. B. Babbitt.................... 408,570	e street,
Telegraphic apparatus, mechanical, A. Cazana.... 408.214	
Tellurian, J. A. Boyce........... 408,335	ICE-HOUSE AND COLD ROOM.-BY R.
Tenoning machine, o. McCullough 408,352	G. Hatfield. With directions for constructio
Thrasher, traveling, Bolt \& Draper................. 408,413	engravings Contained in Scievtipic American sop-
Thrashing machine, A. L. Gill..................... 408,382	end of all newsdealers.
Tide power, device for utihzing	
Tights, bicycle, R. G. Roper....................... 408,438	
Tire heating furnace, J. Kiefer..................... 408,349	
Tobacco pipe, Emery \& Christian....... 408,341	
Tongue support, vehicle, W. W. Mayne............ 408,312	
Tool, socket, R. E. Breed.......................... 408,336	
Toothed wheel, J. T. Redington................... 408,435	
Toy, musical, F. A. Sommer....................... 408,635	
Trace holder, G. L. Hydorn........................... 408,2 Trap. See Bottle trap.	
Tray, jewelry, L. Burt.	ralls Mig. co., 695 Water St., Seneca Falls, Nı Y.
Tricycle, G. Johnson............................... 408,624	
Trolles track, J. H. Morley... 408,503	SEBASIAN, MAY \& COS Mets 位
Trough. See Feed trough.	proved screw cottin
Truck, stove, G. W. Amos........................., 408.568	1
Trunk, P. Cagpeles.	
H. B. Cobb \qquad 408,374	
H.ing, manufaeturing, H. B. Cobb................... 408,376	s, ${ }^{\text {Presses, }}$
Turn table, cable railway, J. c. H. Stut. 408,443	
Twine, manufacturing pinder. J. Lyall.............. 408,247	$\begin{aligned} & \text { Catalos } \\ & 1655 \end{aligned}$

Typewriter cabinet, J. Kiefer.
Typewriter desi, C. H. Tyler...
Typewriting machines, ribbon
 Valve gear for steam engines, A. Blaha...............
Valve seat blanks, die for compressing, J. Powell. Valve, wasteway, J Powell
Vehicle brake, J. Mani
Vehicle brake, J. Mani
Vehicle motor, W. W. Griscom
Vehicle motor. J. Potter.......
Vehicle spring, W. E. Powers....
Vehicle wheel and axle, G. John
Vehicles by secondary batteries, me
pelling, w. w. Griscom.........
pelling, w. W. Griscom...........
Vehicles, shifting rail for, S . Burdsal
Veil fastener, P. N. Tryon....
Velocipede, Phillips \& Smith.
Velocipede, W. H. Rudy

Waistband fastener, J. Ewig.
Washer, See Street washer,
Washing machine, P. W. Rodeck
Washing machine, P. W. Rodecker...............
Watch, stem winding and setting, E. . Bord. Watch, stem winding and setting, A. Troller. Water closet. W. Bunting, Jr....
Water closet tank, H. H. Craigie
Water elevator, A. H. Eifers....
Water heater, T. G. G. Mouat.......................
Water meters, apparatus for constructing, L .
Nater meters, case for rotary, L.....................................
Weather strip. O. B. Hathaway.
$\underset{\text { W. Droste }}{ }$

Wheel.
Whistle.
E. s. Russell.
Windmill, Mast \& Croft, Jr.

DESIGNS.
Car dash, street, J. W. Fowler.
Dish cover, T. B. Atterbury..
Druggist's sign, W. G. Walter..............
Fan appliance, rotary, C. E. Waldeck
Fence gate, R. B. McMullen
Grate, freplace, $\mathbf{\text { E. I. Calel }}$
Grate, ireplace, E. I. Calely..............
Mariner's clock dial. s. . H. Harding, Jr.
Tea pot, J. E. Jeffords
Tyea pot, font of printing,
Wall paper. c. Bordan....
TRADE MARKS.
Boots and shoes, Bemis \& Fletcher....
Company...................................... 16.902
Comer,
Buttons, shoe, F. Fournier \& Knopf.................
Canned vegetables, fruits. fish, oysters and meats, J. H. Brookmire \& Co
Clothes wringers, Colby Wringer Company... Cothes wringers, Colby Wringer Company....
Complexion. preparation for the. H. R. Eaton.
Cream, remedial and cosmetic, N. K. Gentry. Finger rings, Sinnock \& Sherrill.
Paper clothing, Mudke \& Wasson.........
Plasters, medicinal, Potter Drug and Chemical Co. Shoes for men, women and children, Peters \& Miller Shoe Company.
Shoes, men's, J. Meter Valves, and water valves, steam, Fairbanks \& Co..
Yeast, dry hop, Chicago Yeast Company........... 16,89
16,

A Printed copy of the specilication and drawing of
any patent in the foregoing list will be farnished from
 o., 361 Broadway. New York.

2HDectisements.

Recierer. $\begin{gathered}\text { Send for mananacturerss catalogue to } \\ \text { Standard Thermometer Co., Peabody, Mass., U.S. }\end{gathered}$.

Edco System.

A New Book on Assaying.
The Nevost and Best in the Enolish Lansuape. It Leads all others!

JVST R曰ADY.

The Assayer's Manual

PAINT YOUR ROOFS
 five times longer than any other paint. Not affec
by heat or cold or acids. Send for circular. JOS. DIXON CRUCIBLE CO., Jersey City, N. 1

 MADE WITH BOILING WATER.

 GRATEFUL-COMFORTINC. COCOA MADE WITH BOILING MILK.

KEEP COOL!
Light - Running Ventilating

$\underset{\text { Adapt }}{\text { in }}$

HARRTSON CONVETOR!

$\underset{\text { Handing Grain, Coal, Sand, Clay, Tari Bark, Cinders, Ores, Seeds, \&C. }}{\text { For }}$

HYDRO - PNEUMATIC DREDGER.-
Perforated Leather Belting CHAS, A. SCHIEREN \& CO., Manufacturers,

OIL WELL SUPPLY CO. Ltd.

A NEW CATALOCUE I VALUABLE PAPERS

ARTESIAN

TO INVENTTOR and manvilitivers

Tho 58th Annual Exhibition American Institute of the City of New York Will Open OCTOBER 2, 1859. Intending Exxititors must make early application to
secure proper space and classifcation. Fior blanks and
information, address General Superintendent

羅The BURGESS Patent Folding Clothes Frame For the Laundry,
as a cothes Drer, Wwis execelt manilitaturera

FOREIGN PATENTS

THEIR COST REDUGED.

Tbe expenses attending the procuring of patents in
most foreikn countries having been considerably re duced the obstacle of cost is no longer in the way of a arge proportion
tions
abroad.
CANADA.-The cost of a patent in Canada is even
less than the cost of a United States patent, and the
formerincludes the Prind former Includes the Provinces of Ontaric. Quebec, New
Brunswick, Nova Scotia, British Columbia, and Mani-
tuba.
The number of our patentees who avall themselves of patents in Canada is very large, and is stendily increas ing.
torce in J ND. 1 .-The new English law, which went into
to in Great Britain on very moderate terms. ABritish patent includes England, Scotland, Wales, Ireland and the
Channel Islands. Great Britain is the acknow iedged fna ticial and commercial center of the world. and he invention is likely to realize as much for the patentee in Knaland as his United States patent produces for
him at home. and the small cost now renders it possible for almost every patentee in this country to secure a pa-
tent in Great Britain. where his rights are as well pro Jected as in the United States.
OTHER COUNTR
n very reson Austria, Russia. Italy. Spain (the latter includes Cuba
ano all the other spanish Colonies), Brazil, British ludia Australia, and the other British Colonies.
An experience of FORTY years has publishers of THe Sctentific Anericanto ented the oreign countries, and it has always been their aim to have the business of the r clients promptly and properIs done and their interests faithfully guarded of all countries. including the cost for each, and othe curing of patents abroad. may be had on application to this office.
Tific amern editors and Proprietors of The Scl any information re ative to patents, or the recistry o
trade-marks. in this country or abroad, to call at their rrade-marks. In this country or abroad. to call at their
offces, 361 Broadway. Eramination of inventions, con-
sultation, and advice free. sultation, a Address. MUNN \& CO., 361 Proadway, New Yort
3 Bolicitors, BRanct orficis: No. 62 and 624 F Street, Paciti
Bullding, near 7 Th Street. Washington, \mathbf{D}. C .
DEAF

THE BOOKWALTER STEEL AND IRON CO. lich now prepared to grant licenses under the Bookwalter, Robert, and other patents owned by it. Parties desiring
licennes to operate under theese patents will ploease state. in their application, for what purpose they deesinn using
the process, whether for steel castings, for ingots of dead soft steel, Tor tool steel, or for ordnance purposes,

The Paris Exposition-Illustrated

 MACHINERY. bupfalo, n. x. ELECTRO MOTOR. SIMPLE. HOW TO

2nd ESE MACHINERY Ti

EidTCDETORUN

ICE
Dlreetions and Dimensions for construction, with on

BERFECTKNSPAPER ILE

ROLLEE FLOUR MILLING.-A PA

E PENNA. DIAMOND DRILL \& MFG. CO
 EVERY USER OF MACHINER DRY ATR REFRIGERATING MACHINE

SBESTOS Fire Felt Coverings, The CHALMERS-8PENCE COM, Mrs.
$419-425$ 8th Street, East River, N.

EMICNIEERNIG DEPARTMENT, VANDERBLTT-

ARCHITRECTRRLL BOOKS.

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta-
e, either in the country or city, or any builder wishing oxamine the latest and best plans for a church, school house, club house, or any other public building of high
or low cost, should procure a complete set of the ArCHItects' AND BULDDERS' Edition of the Scientific

The information these volumes contain renders the work almost indispensable to the architect and builder, nd the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ags of almost every class of building, with specificaon and a pproximate cost.
volumes are now ready and may beob-
 èmit MUNN \& CO., Publishers, 361 Broadway, New York.

MODEL MAKERSN

 The S cientific $A \xlongequal{\text { merican }}$ Publcations for 1889 .

The prices of the different publications in the United
States, Canada, and Mexico are as follows:
RATES BY MAIL.
The Scientifc American (weekly), one year
The Scientitc American Supplement (weekly), 83.00
The Scientitic American Supplement (weekly), one $\quad \$ 3.00$
year. The Scientific American, Export Edition (monthly)
one year,
5.00 The Scientitle American, A rchitects and Builders
Edition (monthly), one vear. The Scientific American and Supplement
The Scientffic American and Architects and Build- 87.00
The Scientific American, Supplement, and Archi- 9.00
tects and Builders Edition Proportionate Rates for six Month.
Thitidicludes postage, which we pay. Remit by postal

MONN \& CO., $\mathbf{S K 1}$ Broadway, Now York.

FITTED WITH FILMS.
THE LIILIPUT
A Miniatare Detective Camera. Makes a Picture two and
a half inches square. Uses transparent films, which are lighter, quicker, an Nine dozen films weigh eight ounces and necupy the
space of one dozen plates. Price complete. i.e.,
Cancera, Lens, 6 Double Holders, 9 dozen Films. 12 Film \$25.OO.
E. \& H. T. ANTHONY \& CO.

NTMWheeling is Better than Walking Victor Bicycles verman Wheel Co., Makers, THE PHONOGRAPH.--A DETAILED

THE KODAK CAMERA

moving objec -Operator of Lan finish
his on pictures. or
send them to the
 The Eastman Dry Plate \& Film Co Rochester, N. Y. 115 Oxford St., London,
Send for copy of Kodak Primer with Kodak Photograph,
 OIL ENGINES,

ANNOUNCEMENT!

DUEENEO MAGIC LANTERNS

 AND
 ENTERTANMENT ogant
 GRAPHOPHONE AND PHONOGRAPH.

MALLEABLET

 PATENTS.MESSRS. MUNN \& CO., in connection with the publi-
amion of the SCIENTIFIC AMERCAN. continue to ex
amor Inventors.

 MUNN \& CO., Solititiors of Patents,

THE EIFFEL TOWER- -AN EXCEL

The value of the SCIENTIFIC AMERICAN as an adver-
tising medium canot beoveretimated. Its inculation
is many times greater than that of any similar journal

BOSTON WOVEN HOSE CO. 234 Devonshire Street, Boston. JENKINS' AUTOMATIC AIR VALVE

 $\underset{\text { ror res }}{\text { ra }}$ MUNN \& CO Publers pake, or a
$10 S^{\circ} \sim$ WATER RELIEF VALVE USB) (IMPROVED STEAM GAGE Qingle Bell Chime $\mathbf{W h}$ ENGINE INDIOATOR

THE COPYING PAD.-HOW TO MAKE Ond how to use, with an engraving. Practical directions

PUSLEYS. Chaeapest. Lightest. and Beat. Made by

TYUTLER DE TYPEWRITERS

 Nachines Rented in any partof ton country. NATIONAL TYPEWRITER EXCHANGE
161 La Salle Street, Chicago, Ill.

THEAMERGCAN BELL TEP RPHONE CD.
95 MILK ST., BOSTON, MASS
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish unlawful use, and all the consequences thereof, and liable to suit therefor.

ALUMINUMSETEOUTHACK SAW

ICE and REFRIGERATING MACHINES
The Pictet Artificial lice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

COMPTOMETER ALL ARITMMETHLCAM Solved rapidly and accurately
by using the Complometer. by using the Complometer.
Sa e es 40 per cent. of time.
Entire relief from mental strain Adapted to all commercial and
scientititc computations. Send
for FELT \& TARRANT MFG. Co., 52.56 illinois St. Chicago THE STORAGE OF ELECTRICITY.

NICKEL ELECTPOPDALATMG MATEMAL

Zriantific American

The Most Popalar Scientific Paper in the World.

Only 83.00 a Year, including Postage. Weekly.

This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery. New Inventions. Novelties in Mechanics, Manuf:actures, Chemistry, Electricity, Telegraphy, Photography, ArchiComplete List of Patents each week. Terms of Subscription.-One postage prepaid, to any subscriber in the United States or Canada, on recelpt of three dollins by the pub-
lishers; six months, 81.50 ; three months, 81.00 . lishers; six months, \$1.50; three months, \$1.00.
Clubs.- Special rates for several names, and to Post Mast
The sa Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Adseldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., pay-

LIUININ \& CO.,
361 Broadway, New York. T 토표
Scientific American Supplement. This is a separate and distinct publication from In size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers, and accompanied with translated descriptions. papers, and accompanied with translated descriptions.
THE SCIENTIFIC AM ERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in
pll prl the prinzipal departments of Science and the
all
Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History Geokraphy, Archæology Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining Ship Building, Marine Engineering, Photogriang,
Technology, Manufacturing Industries, Sanitary EnTechnology, Manufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Econo$\left\lvert\, \begin{aligned} & \text { my, Biography, Medicine, etc. A vast amount of fresh } \\ & \text { and valuable information obtainable in no other pub- }\end{aligned}\right.$ The most important Engineering Works, Mechanisms, and Manufactures at home and abroad are illustrated Price for the SUPPIEMENT for the United States and Canada. \$5.U0 a year, or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPLEM KNT, both mailed ERICAN and one copy of the SUPPLEM KNT, both mailed
for one year for 9 i.0. Single copies 10 cents. Address

> Building Edition.
the Scientific American architects' and BuILDERS' EDITION is Issued monthly. $\$ 2.50$ a year.
Single copies, 25 cents. Forty large quarto pages equal to about two hundred ordinary book pages forming to about two handred ordinary book pages; forming a
large and splendid Magazine of A rchitecture, richIy adorned with elegant plates in colors. and with other fine engravings; illustrating the most interesting ex amples of mod
allied subjects.
A special feature is the presentation in each numbe of a variety of the latest and best plans for private resi-
dences. city and country, including those of very moddences. city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full perspective and in color are
Plans, Specifications, Sheets of Details, Estimates. etc. for it the Largest Circulation of any Archrecuural publication in the world. Sold by a MUN N \& CO., Publishers,

361 Broadway, New York.
PRINTIING INRES,

