

TELEMETER SYSTEM.

The uses to which the telemeter may be applied are so numerous and so varied as to render it impossible to describe them all in detail within the limits of a single newspaper article. Some of the more prominent uses to which this instrument is applied are the transmission to one or more distant points of the indications of thermometers, barometers, and pressure gauges ; also for indicating at a distant point the height of water or oil in open or closed tanks, or the height of gas holders. To accomplish the transmission of these indications two instruments are required, one for transmitting and the other for receiving and recording, the two instruments being connected by wires so as to form complete electrical circuits, which are supplied with a current from a suitable open circuit battery. A number of receiving instruments may be used in the same circuit. The telemeter system has been in practical operation for a number of years, proving itself to be accurate and reliable in all of its applications. It has recently been much simplified and improved, both mechanically and electrically.

One of the uses to which the telemeter has been applied is that of transmitting time from a master clock to a series of dials. In this particular application its merits have been shown to the best advantage. As a

Fig. 6.-TELE-THERMOMETER.
time system, it has proved accurate and in every way desirable.

The transmitting instrument is substantially the same for all uses, and the receiving instrument is, in part, a copy of the transwitter, with the addition in some cases of appara tus for making a permanent record. The receiver is also provided with an alarm for giving notice when the prescribed maximum or minimum indication is reached. As indicated by the illustrations, the mechanism of the instrument is very simple and of such a character as to require no attention after being placed in position for use.
Without going minutely into detail, the operation of the apparatus may be briefly described as follows :
The transmitter has a step-by-step motion, which is provided with two magnets, one for turning the step-bystep motion in one direction and the other for turning it in the opposite direction. These magnets are in separate local circuits, each of which is provided with an auxiliary armature and contact closer, so that when the current is supplied to the magnet its armature will be attracted, and through the medium of the pallets and motor wheel will rotate the index arbor. The transmitting instrument with the dial removed is represented in Fig. 1.
The apparatus thus described appears on the front of the base plate beneath the glass of the case. The

Fig. 1.-TELEMETER SYSTEM-THE TRANSMITTER.
arm provided at its free end with a pen which rests upon a graduated paper dial carried by a clock movement arranged in the lower part of the receiver case, as shown in Fig. 2. These graduated dials and the clacks to which they are attached are adapted to either daily or weekly records, as desired. A part of a day's record is shown in Fig. 3. The circuits are shown diagrammatically in Fig. 5.
These are described as follows:
a, hand carried by thermometer, and arranged to give the initial contact. $a^{\prime}, a^{\prime \prime}$, insulated spring-supported contact points. a^{1}, wire connecting contact point, a^{\prime}, to screw, 2 , and magnet, $\mathrm{M}^{\text {². }} a^{2}$, wire connecting contact point, $a^{\prime \prime}$, to screw, 1 , and magnet, M^{\prime}. 1,2 , contact screws insulated from the base of the transmitter. 3, 4, contact springs fastened to initial armature. 5, 6, light armatures connected together, pivoted between the plates of the transmitter, and normally held in the central position, so as to bear on the faces of their respective magnets. 7, 8 , insulated contact screws. 9,10 , contact springs fastened to the driving armatures and electrically connected to the base of the transmitter. 11, 12, armatures carried by the pallet lever for driving the machinery of the instrument. 13, circuit-breaking lever connected electrically with the plates of the instrument. 14; spring of the circuit breaker insulated from the base of the receiver and connected electrically to one pole of the battery, B.

Fig. 7.-TELE-MANOMETER.
15 , lever for holding the pallets in the central position. 16, pawl for holding the driving wheel, W, in its normal position. 17, 18, pins in the fork to act upon the incline of the lever, 15 . W, driving wheel pivoted between the plates and used in all instruments. L^{1}, line connecting magnets, M^{1} and M^{2}, of the transmitter to the base of the receiver. L^{2}, line connecting insulated part, 7, of transmitter with magnet No. 3 of the receiver. L^{8}, line connecting insulated part 8 of transmitter with magnet No. 4 of the receiver. 4 B , line connecting the base of the transmitter with one pole of the battery, B. $\mathbf{M}^{\boldsymbol{b}} ; \mathbf{M}^{\mathbf{b}}$, wagnets of intermediate receiver connected to lines connected with corresponding magnets of the receivers. The operation of the apparatus is as follows: The hand, a, which is always in connection with the battery, moves and makes contact with the commutator point, $a^{\prime \prime}$, thus closing the circuit. The current passes through the line, 4 B , thermometer hand, a, commutator, $a^{\prime \prime}$, wire, a^{\prime}, and magnet, M^{\prime}, then from the transmitter through line, L^{\prime}, to the base of the receiver; from thence through lever, 13, and spring, 14 , to the battery. The light armature, 5 , will be attracted by a feeble current; bringing the spring, 3 , in contact with screw, 1 , shunting the commutator, which will be moved away from its contact with the hand by the mechanism of the instrument. The armature, 11, being attracted by magnet, M^{\prime}, brings fie spring, 9 , in contact with the ferew, 7, dividing (Continued on page. 66.)

豹rientific ©

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors pUBLISHED WEEKLY AT

No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMIERICAN

 ne copy, one year, for the U. S. or Canada.Onecopy, one year, to any foreign country belonging to Postal Union, 15
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the SCIENTIFIC AMERICAN. for a little over one year, may remil colonial bank notes. Addresa
a distinct paper from the Scientific Amirican. THE SUPPLEMEN is issued weekly. Hvery number contains 16 octavo pares. uniform in siz
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMEN 5.00 a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belong ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealer throughout the country.
Ciombined Rates.-The Scientific american and Supplemen ill be sent for one year, to an zeven dollars.
The safest
registered letter.
Anatralia and New Zealand.-The Scientipic American and rent Colonial bank notes.

NEW YORK, SATURDAY, AUGUST 3, 1889

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 7O9.

For the Weok Ending Augnst 3, 1889.
Price $\mathbf{1 0}$ cents. For sale by all newedealers.

1. ASTRONOMY--The Constitution of Celestial Space.-A review of the muoh vexed problem of ponderable matter in interplanetary and interstellar space, a curious study in theoretical astronomy.. I. BIOGRAPHY.-Jenner and Vaccination.-Biography of Dr. Ed-
ward Jenner, the originator of vaccination, with account of the unfavorable reception his discovery met at the outset.-3 illustrations.
III. CIVIL ENGINEERING.-The New Pilatus Railway.-A graphic account of the new railroad leading from Lake Lucerne up Mount Pilatus, with
lustrations.
lustrations
Wooden
Weneral inspectornts in Paris.-An interesting letter from the general inspector of bridges, etc., of Pa
wooden pavements obtained in that city.
IV. ELeCTRICITY.-Some Applications of Electrical Tras -By Frank J. Spragur.-The conclusion of this important sibley Collere lecture by the eminent electric engineer, devoted
principally to the phases of tramway and railroad work.- -5 illus trations.
Windmill for Producing Electric Light at Cape de la Heve.An interesting instance of the employment of wind power for generating electric energy, with ntilization of ac
taining a constant current.- 6 illustrations.
taining a constant current. -6 illustrations........................ 11
On the Security against Disturbance of Ships' Compasse by Flectric Lighting Appliances.- - By Sir W. THOMSON. - An import Mlectric Lighting Appliances.- By Sir W. THomson.-An import-
ant essay on a new source of danger to ships in the effect of dynamos, etc., upon the adjustment of compasses
V. MATHEMATICS.-Radii of Curvature Geometrically Determined. -By Prof. C. W. MACCord.-The hyperbola and its radii of curva-

Belts on Pulleys.-By Scott A. Smith. - A thoroughly practical paper on this ever-interesting subject, treating of the diferent factors of efficiency existing in belts.
ViI. METEOROLOG Y.-Magnetic Storms and Their Astronomical Efiects.-A review of the connection between terrestrial mapnet sm and sun spots, with reference also to auroras On the Influence of Gas and Water Pipes in Determining the valuable essay upon protection of buildings from lightning., with an examination of the efficacy of grounding lightning rods on un derground pipes..
VIII. NA VAL ENGINEERING.-The Corrosion and Fouling of
.Steel and Iron Ships.-By Prof. V. B. Lewes-The areat question steel and Iron ships.-By Prof. \mathbf{l}
of the preservatiou of iron hulls of sea-koing ships discussed with an account of the various methods which have been tried in order to prevent exfoliation and rust.
ix. PHOTOGRAPHY.-Silver Prints on Rough Drawing Paper--An excellent hint for an effective novelty in photographic prints fo the production of a more artistic effect.
X. TECHNOLOGY.-Pazet's New Warp Weaving and Knitting Maable novelties of the Paris exposition, with illustrations of the machine and a full sccount of its manipulation and powers. -3 il astrations.

WORKING FOR KNOWLRDGE

James G. Blaine, Jr., son of the Secretary of State, is determined to become a practical railroad man, and is not afraid to.do any sort of work necessary to acquire actual knowledge of the business. Some time ago, he entered the Maine Central Railroad's machine shops a Waterville, under the immediate instruction of the most skilled mechanics in the employ of that great corporation. After mastering the business in its every detail, the young man has now made a new departure by entering the cab of a locomotive and commencing to " fire." He has been given a position on the fast ex press train between Bangor and Bar Harbor.
The mercury was away up among the nineties when oung Blaine made his first appearance on the engine. He was dressed in the ordinary coarse blue drilled over alls and jumper of a railroad fireman. His face had been changed by black coal dust and perspiration until his countenance was hardly recognizable. His hand were black and blistered, but he was sticking manfully to his task, and every one around the depot was crowd ing to the forward end of the train to get a glimpse o ing to
him.
Thi

This reminds us of the early career of young Mr Gilbert Jones, one of the proprietors of the New York Times. In order to become practically acquainted with the construction and operation of machinery, he enlist ed several years ago as a workman in the Novelty Iron Works of this city. At six o'clock every morning he donned his overalls and left home carrying his dinne pail, trudged down to the East River, and performed his full day's work among the other men. He was active, quick to learn, and was promoted to be boss of gang employed to put on board and connect th machinery of steamships. The knowledge thus gained has always been of the greatest service to Mr. Jones. The mechanical department of the Times has for seve ral years been under his personal supervision. It em braces many costly and complicated printing machines, but by his intelligent direction all are made to run a mooth as clockwork

THE NEW YORK WATER SUPPLY-HOW THE PEOPLE

 SUFFER FROM LACK OF PRESSURE.The Croton gravity system of 1837 has in recent years lost the greater part of its hydraulic pressure in consequence of the extension of service mains. The appar ent diminishment of pressure has been greater than could be ascribed to this cause alone, and is accounte for by the general adoption of the elevator system.
The surface area made available, or which may be said to have been added to Manhattan Island, through the means of the elevator is one-third of the whole, or about 4,500 acres. The height of this non-terrestrial acquisition of the property owners may be put down as averaging 70 feet above the ground levels of the city.
Accordingly, two features of importance in any scheme for an additional supply were to overcome the loss of head experienced from friction and to reach the lofty modern city with water under a head of at least 150 feet. The first of these requirements was met by the fallacious idea that if the aqueduct were doubled in size, the baffling effect of friction would disappear and the second, presumably because of its celestial as pect, was defiantly ignored.
Now, to what extent are the people doing the work of the municipal government? And what expenses are incurred through lack of provision in the new project for plenty of water under adequate head?
In the first place, the property owners are pumping five-eighths of the delivery, or more than $62,000,000$ gallons a day. To do this work, it is estimated, they have invested in pumps and machinery of various kinds about $\$ 6,000,000$, and they are under an expense for labor and fuel of $\$ 15$ per million gallons. A bette conception of what is thus done collectively will be had when we say that the volume of water daily raised by pumps is equivalent in weight to 260,000 tons.
If the city had three pumping stations with stand pipes, this same volume of water could be raised 100 feet for eight dollars and a half per million gallons. Whether the cost at present is greater or less than the above is of little pertinence. The fact remains that it is the duty of the city to furnish the water to all alike, and not discriminate against the majority.
Again, the deficiency of pressure operates in a way to increase the expense of the Fire Department-the engines having to supply the force that has been absorbed in friction; for as the town expands both laterally and vertically, the pressure grows more feeble, and, in a degree proportional to the high buildings, less available The disadvantage of this state of things to the taxpayers is shown by the high cost of maintenance of the Fire Department and the high rate of increase of the same. The expenses for 1889 were $\$ 2,136,043$-an increase over preceding year of $\$ 159,551$.

Then, too, the actual loss of property by fire is greater than would be the case if there were sufficient head to permit prompt application of streams.

Another result is the refusal of insurance. So apparent is the inadequacy of the supply that $\$ 150,000,000$ worth of property in the city is now unprotected by

In a large city there are besides many ways of utilizgmall power, such as would be afforded by water under reasonable pressure,tand various kinds of manuacture are better fostered by a quick and abundant low than by a scant and intermittent one.
All these disadvantages of an ineffectual gravity supply combine to make New York an expensive place for property owners. So far as the question of pumping s concerned, the tendency will be to make it still more so, since improvement is more general on high than on ow levels and since the new structures are invariably several stories higher than the ones they replace. For this reason it cannot be claimed that the proportion of water pumped will remain at five-eighths of the delivery
The fact that the new aqueduct has been built to ithstand no pressure shows that the builders never dreamed of procuring water from an elevated waterhed. So the most obvious sequel to this capacious conduit is a number of pumping stations; but in the contemplation of such a tempting local job as this would be, the people are confronted with the certain ailure of the Croton watershed to afford the volume emanded and the danger of the quality of the water growing inferior when the storage reaches three times ts present volume
What the city will have to come to is an auxiliary upply from an elevated watershed. This is manifest destiny, and will shorten the road to imperial destiny.

The International Exposition of 1892 in the City of New York.
The year 1892 will be memorable as the four hun redth anniversary of the discovery of America by Christopher Columbus. To fittingly celebrate the irth of the new land and its introduction to civiliza tion, it has been decided to hold an exposition. New York has been selected as the site. The matter was definitely settled at a meeting held in the Governor's room in the City Hall of this city on Thursday, July 25th. It was called by Mayor Grant, who issued per sonal invitation to representatives of the commercia and business life of New York, requesting them to at end at his office for the purpose of considering the advisability of holding the contemplated exposition.
The invitations, in spite of the absence of many who were included in the list, were responded to by enough to fill the room to overfiowing. Some two hundred were present, the mayor presiding. The project was warmly received, and at once the mayor was elected permanent chairman of the committee, and Mr. William McM. Speer permanent secretary. The name of the organization was selected. It is "The Committee of the International Exposition."
The question of organization of sub-committees was discussed, and after a sufficient deliberation, four such bodies were established, one on permanent organiza tion, one on finance, one on legislation, and one on sites and buildings. The selection of the member was by resolution put in the hands of the mayor.
This marks the first step in the work of establishing what should and will be the greatest exhibition in the history of the world. While the meeting was in progress at the City Hall, the Chamber of Commerce o the city of New York held a separate meeting indors ing the project, and added the weight of their influ ence to the movement.
It is unnecessary to mention the names of the par ticipators. It is sufficient to say that at both meetings commerce, official and political life, and the law were present in the persons of their leading members. Th occasion will be a historical one, and the date of the holding of the two weetings will be a day to be long remembered in view of the great results that will in vitably follow within the next three years.

Nitrates in Rain Water.

One of the stations of observation selected by the uthors is at Caracas (Venezuela), in $10^{\circ} 3^{\prime} \mathrm{N}$. lat., and at the elevation of 922 meters. The mean temperature is 218°, the rainfall is irregular, and the storms sever and frequent. The observations extend over two years, and refer to 121 samples. The general mean of nitric acid was $2.23 \mathrm{~m} . g r m s$. per liter. On one occasion it rose to 16.25 m .grms., and on another it was a low as $0.20 \mathrm{~m} . \mathrm{grm}$. On the contrary, at Liebfrauen berg, in Alsace, Boussingault found a mean of only $0 \cdot 18$ m.grm. nitric acid per liter, and at Rothamsted Messrs. Lawes and Gilbert obtained a mean of $0.42 \mathrm{~m} . \mathrm{grm}$. It we compare the total quantity of nitric acid thus brought down to the ground yearly, the difference appears still greater, as in tropical countries the annual depth of rain is generally greater than in temperate climates. At Caracas the rainfall is about 1 meter The quantity of nitrogen brought to the soil in the state of nitrate is 5.782 kilos. per hectare, while in Al sace it is only 0.330 kilo. and at Rothamsted 0.830 kilo In the Island Reunion the mean nitric acid per liter of rain is $2.67 \mathrm{~m} . g r m s$., or, taking the rainfall at 1 meter, 6.93 kilos. of nitric nitrogen per hectare. In such climates the rainfall alone supplies a nitrogenous ma nuring equal to about 50 kilos. of nitrate of soda yearly. -A. Muntz and V. Marcano.

Execution of Criminals by Electricity.
A murderer in New York named Kemmler has been sentenced to death, and his execution will be the first under the newly enacted law by which electricity is substituted for the rope, hanging being abolished. The lawyers for the condemned man are making strenuous efforts to save the criminal on the alleged ground that the new mode of causing death is experimental, is a failure, is simply a device for inflicting grievous bodily torture, not a legitimate mode of execution, and therefore should not be applied or tried upon the body of their client.
A reference commission has been authorized by the courts to examine witnesses and take the testimony of experts as to the probable value of the electrical machines as instruments for destroying human life. Much evidence has been presented on behalf of the doomed man. Several experts have testified that the action of the proposed electrical current upon the human system was uncertain ; that it might or might not kill ; but in any case would produce the most excruciating pains. The expert witnesses for the State testify directly to the contrary. Among the latter Mr. Thomas A. Edison appeared. His evidence was clear and straightforward. The following is an abstract :
"What is your calling or profession?"
"Inventor," briefiy replied the witness.
"Have you devoted a great deal of attention to the subject of electricity?"
"Yes."
"How long have you been engaged in the work of an inventor or electrician?"
"Twenty-six years." In reply to questions he said he was familiar with the various dynamos and their construction, and that they all generated either a conconstruction, and that they all gen
"A continuous current," he said, " is one that flows like water through a pipe. An alternating current is the same as if the same body of water was allowed to flow through the pipe in one direction for a given time and then its direction reversed for a given time."
The witness said he had been present when measurements were made in his laboratory to determine the resistance of human beings. Two hundred and fifty persons were measured, and their average resistance was 1,000 ohms, the highest being 1,800 ohms and the lowest 660.
"Will you describe the method of the application of your tests?" Mr. Poste asked.
"We took two battery jars about seven inches in diameter and ten inches high, and put in each jar a plate of copper. In the jar we put water with a 10 per cent solution of caustic potash. The parties we measured plunged their hands into the liquid so that the ends of their fingers touched the bottom of the jars. After waiting thirty seconds the measurement was taken. No one could go above eight volts."
"Where, in your opinion, is the major part of the resistance located?"
"I should say 15 per cent at the point of contact. The balance in the body.'
"What is the law that governs the passage of an electric current, when several paths of varying resistance are offered to it?"
"It divides in proportion to the resistance encountered."
"Please explain the burning effects sometimes produced in the case of contact with an electric wire."
"It is due to bad contact and the difference in resistance between the wire and the flesh."
"In your judgment can an artificial electric current be generated and applied in such a manner as to produce death in human beings in every case?"
"Yes."
"Instantly?"
"Yes." He advised placing the culprit's hands in a jar of water diluted with caustic potash and connecting the electrodes therewith, and he said 1,000 volts of alternating current would surely produce painless death instantaneously. He did not think so small a continuous current would, although by mechanically intermitting the continuous current it could be made very deadly.
Mr. Cockran, attorney for the prisoner, in his crossexamination laid much stress upon Mr. Edison's views as to the resistance of human beings.
' Did you make the experiments on men which you have mentioned with a view to ascertaining just how to measure the resistance of Kemmler and find out how men may differ in the matter of resistance?" asked Mr. Cockran.
"I did. I made the experiments day before yesterday," Mr. Edison replied.
"And you found out there were different degrees of resistance in different men? ${ }^{\text {n }}$
"Yes; but that does not mean that the same carrent would not kill all the men."
" What would be the effect of the current on Kemmler in case the current was applied for five or six minutes? Would he not be carbonized?"
"No; he would be mummyized. All the water in his body would evaporate in five or six minutes."
Wody would evaporate in five or six minutes."
With what he had found to be the averageresistance
of the human body, the witness said that 1,000 volts of the human body, the witness said that 1,000 volts times as much as any man needs to kill him.
In reply to a question by the r ieree he said there was an alternating dynamo in London that generated a 10,000 volt current, and he considered it safe to double up dynamos to increase the current for use in executions.
"This is your belief, not from knowledge?" Mr. Cockran asked.
"From belief. I never killed anybody," the witness quietly replied.

Visit of American Workingmen to Paris.

On Wednesday, July 24, the American Working. men's Expedition, sent by the Scripps League, set sail for Europe, to visit the Paris exposition and incidentally to inspect other features of interest in England as well as France. When the Centennial was in progress in this country, representative French workingmen visited it under the auspices of their government, and during the present year England has sent 100 men of this class to the Paris exposition. In order that America might not be behindhand, the Scripps League of American newspapers, including the News of Detroit, the Press of Cleveland, the Post of Cincinnati, the Chronicle of St. Louis, the Echo and the Sunday News of Detroit, organized this expedition. It includes some fifty representatives of many trades, among whom are four women. Their expenses are paid for them, and they are free each to study the progress of them, and they are free each to study the progress of
their own special technical art at the cost of the league. Thus they are at once a representation of American trades and a tribute to the progressive instincts and liberality of American journalists.

A very neat pamphlet has been issued apropos of their visit. It describes the origin of the affair, the programme, with brief biographical notes and portraits of the tourists. They are in many cases Knights of Labor or figure in trades unions and workingmen's associations. This gives a character to the party which it would lack were the participants present only in individual capacities. Without flattery it may be said that this body of trades people is in every way, by appearance as well as by record, well fitted to produce a favorable impression abroad, and to show how dignified are the positions to be attained by skilled manual workers in this country.

Is Ice Water a Healthy Drink?

In thc opinion of the editor of the Sanitary Volunteer, the official organ of the New Hampshire board of health, there is a great deal of sentiment and many opinions regarding the use of ice water that vanish when the light of reason and experience is turned upon them. The fact is that ice water, drank slowly and in moderate quantities, constitutes a healthful and invigorating drink. There is no doubt that ice is a great sanitary agent, and every family ought to be provided
with it during the warmer months of the year. It is with it during the warmer months of the year. It is
true that the inordinate use of ice water, or its use under some special conditions and circumstances, is attended with great danger; so is the improper use of any other drink or food. The assumption that iced water is dangerous, and that iced tea, or iced coffee, or iced lemonade is a harmless substitute, is simply a delusion. As the source of danger feared by some is the degree of cold, we fail to see clearly how flavor modifies the effect of temperature. There are individuals, undoubtedly, who cannot drink ice water without in-
jury, and who ought never to use it, but to a great jury, and who ought never to use it, but to a great majority of persons it is refreshing and healthful. Its use, temperate and discreet, is in no way to be con-
demned, which cannot be said of some of its substidemned, which cannot be
tutes.-The Sanitary News.

How to Lay Floors.

After the joist has been jointed with the fore plane or jointer and spaced on the wall, then place stay lath near where the bridging should be. One man should sight the joist; straight while another man nails the stay lath;down (temporary, of course). The joist should be beveled up with straight edge at wall bearings. Now when the building is ready for floors we will cut one course of boards the length of building, then strike a line on the joist to straighten the first course by next laying the boards to the line, and with the groove edge to the wall, and nail down on groove edge through
board, also nail over the tongue at an angle of 65°. If board, also nail over the tongue at an angle of 65°. If
there are any irregularities in the wall, support the starting course with some shingles where it is away from the wall, and after the floor is complete they can be taken out. Proceed with next course, drive up the board with a piece of hard wood laid against the tongue so as not to mar it, and nail over the tongue only as before. Continue so within six or eight inches of bridging line, then bridge the joist, take off stay lath,
and proceed with flooring as before. By laying floor up and proceed with flooring as before. By laying floor up should be any slight unevenness in them, and the bridging then holds them rigid.-A. Chip.

The Morphia Fiend.

Under this very suggestive heading, a writer in the Pall Mall Gazette gives us a very graphic description of the morphia habit, which is apparently growing among the community at an alarming rate, and causing devastation to body and soul in a degree which can only be estimated and realized by those who have the misfortune to witness its effects upon the unfortunate creatures addicted to its use.
Imagine (says the writer) an instrument about the Imagine (says the writer) an instrument about the
size of a pencil case, constructed somewhat after the size of a pencil case, constructed somewhat after the
model of a wasp's sting, and fitting into a tiny case which will go with ease in the muff, the waistcoat pocket, or the bosom of the dress. The instrument itself may be of gold, and the case may be fashioned like a jeweled scent bottle or other trinket, and hang suspended from a golden chatelaine with the most innocuous air. This is the injector, and a slight punctuation of the skin with the waspish point is sufficient to ation of the skin with the waspish point is sumcient to discharged into the system. Nor is the term magic an exaggeration, for not more magical was the effect produced by the pills which the travelers swallowed in the cave of Monte Cristo than that which results from the injection of morphia. It must be, however, observed here that there are three distinct stages of morphia absorption, all of them brief in duration, the last one briefest of all.
During the first stage the results are purely pleasurable, they bring a draught of fresh life into jaded limbs. The faculties receive a sudden stimulus, the callous sense of pleasure is sensitive once more, the vision of the world cast on the mental eye is drawn in rosy lines, the whole appreciation of things earthly is that of one who is prepared to drain the cup of life to the bottom and enjoy it to the full. The subject lives in glamorous sense of vague happiness, her half-closed eyes reveal the state of exquisite lassitude which laps her limbs, she feels that her one enemy is exertion, she is too happy to trouble about anything, all that she asks is that her friends should be happy around her, even as she is happy. Her hold on eternity loosens as her desire for it decreases. "Why take thought for the morrow?" would run her new reading of the text, "Sufficient for the day is the happieess thereof."
In time, however, a change comes o'er the spirit of this rose-colored dream. Its continuity becomes broken by dreadful intervals of reaction, during which the victim is oppressed by all the horrors of intense melancholy and weakness, and from which relief can only be obtained by continual repetition of the process of injection. The baneful habit acquires a firmer hold by counter-irritations. It is so easy to drive away the blue devils that are making themselves apparent, to check the reaction which has begun to set in, to change the dark shadows which are clouding over the vision of life into the rainbow hues of the morning, to transform the victim of melancholy, the prospective suicide, into the laughing child of pleasure whose creed is that of the half-pagan Leo X., "Let usenjoy what God has given us." So easy-but only by constant use of the fatal drug ; and as the former slight injections have lost their power, larger doses of the stimulant must be launched into the system before the desired effect can be produced.
The result, however, of the increase of the quantity injected is to develop the feeling of lassitude until in time-such a brief period !-it completely overpowers the senses, and the victim becomes practically lost to the world. She lives in a rose-colored world of her own, in which happiness reigns supreme and which she would not leave if she could; for her re-entry into the life she has forsaken can only be accomplished by
passing through a period of intense mental and bodily torture a period of intense mental and that she is slipping to extinction in a soulless, mechanical way, like a clock which inevitably runs down when its motive power is exhausted; but her appreciation of abstract ideas has become blurred; life has lost its meaning, death its terrors. Better it is, she thinks, so
far as she compares her condition at all, to fade slowly and happily out of life without a thought or a care to checker the last brief period of existence than to face the struggle by which alone she could be saved. Indeed, it is doubtful whether, even if she could be kept by force from the use of the stimulant, she would not feel its loss so acutely that she would die in horrible agonies almost as quickly.
By a curious perversion, therefore, of the original object, it has been reserved for modern science to bring into existence and use the dream of the ancient poetsthe drug which conferred happiness uncheckered and unalloyed. Were it possible, however, to analyze the mental condition of the victim during the hours of reaction, it might be possible to realize also the tortures of the damned in the mediæval hell.

The Supreme Court has repeatedly said that a man's right under his patent for an invention is as absolute as under a patent for lands, and no one would say that one should lose the right to his house because some

TELEMETER SYSTEM

(Continued from first page.)
the current which passes through the line, $I_{4}{ }^{2}$, magnets, M^{5}, of the intermediate inagnet, M^{8}, of the receiver to the base of both instruments; through the lever, 13, and spring, 14, to the battery. The armature of the magnet, M^{3}, is attracted, carrying the fork or pallets which propel the wheel, W, and also by means of the pin, 18 , pushes lever, 15 , so that it strikes the ad-

Fig. 3.-PART OF A DAY'S RECORD

justable screw in the lever, 13, throwing it away from its contact with spring, 14, breaking the circuit and allowing the instruments to return to their normal position.
In Fig. 6 is shown the application of the tele-thermometer to a japanning oven. The thermometer spiral extends into the oven, and its shaft passes through a tube to a transmitting instrument attached to the outer surface of the oven wall. This tele-thermometer with ordinary pipe fittings can be attached to any boiler tank or pipe to show the temperature of the liquid, gas, or steam contained therein. Wires leading out of the top of the instrument extend to a receiver at a distant station.
In Fig. 7 is shown one of the important applications of the telemeter. The transmitting steam gauge upon the boiler in the distant boiler house sends its indications through the wires to the receiving instrument, where it indicates the boiler pressure and also makes a continuous and accurate record, the receiver being removed to a safe distance from the boiler house, where the records will be out of danger of destruction by an explosion, should one occur. It will be noticed that in this, as in the other receiving instruments, an alarm bell is shown which is set in operation by an extreme movement of the index in one direction or the other.

A similar application of the telemeter is shown in Fig. 8. In this case the transmitting instrument is connected with a gas holder, and the indications of the height of the gas holder are transmitted to the receiver at the distant station. Here, also, a record is made from which at any time the cubical contents of the holder mar be determined.
In Fig. 9 is shown a tele-thermometer located in a mine, the receiver being above ground; ; and in Fig. 10 is represented a water level indicator capable of giving the height of the water. in reservoirs, dams, and streams, and showing the rise and fall of tides at distant points. This application of the telemeter will be readily understood from the illustrations.

It is obvious that there are various other uses to which these instruments may be applied. For instance, they will prove of great value in connection with

Fig. 8.-TELEMETER APPLIED TO GAS HOLDER.
meteorological instruments, transmitting dynamo meters, speed indicators, etc. They may also be utilized to advantage for indicating the height of wateror oil in boilers or tanks under pressure. They may also be employed as deep-sea thermometers and for indicating the temperature of the sea in the track of sea-
going vessels, keeping a record of the temperatur during their voyage.
These instruments are manufactured by the Stand ard Therinometer Company, of Peabody, Mass.

The Use of Dogs in War and in the Army.

A recent paper read before the Royal United Service Institution of England was devoted to a subject which to a certain extent is a novel one, the employment of dogs for military purposes. While it is by no means difficult to cite instances from history of the utility of dogs in the service of individual masters, in the averting of surprises, etc., in similar emergencies, yet the systematic enrollment of the animal in the ranks of a modern army is to a great extent a novelty. The dog possesses qualities which, if properly directed, would give him much utility. Hisspeed, small size, tendency to recognize a master, and capability of distinguishing between a friend and foe, are among these qualities.
As a sentry he could be employed to supplement the human soldier. The author of the paper we have alluded to considers that with a dog to help them, sentries need not be posted within 300 yards of each other. The scent and acute powers of hearing of the dog, he considers, would cover efficiently such an interval. The role of sentry is an old one for the dog, as he figures as such in country houses everywhere. Turning from so obvious a use, his scouting powers may be found avail-

Fig. 9.-TELE-THERMOMETER -A MINE. able. A body of men ad vancing in front of an army could, by the assistance of trained dogs, examine every suspicious locality that might be the site of an ambuscade. The experience of hunters in beating for game shows how thoroughly ground can be covered by these means. The finding of the larger and more conspicuous human game would try the sagacity of the dog much less than would the discovery of an inconspicuous game bird. It is suggested also that the m ain army could employ them to advantage in reconnoitering on the flanks and in the rear.
When a message or urgent dispatch was to be forwarded, the canine messenger could often be utilized. His speed and comparatively small size would render him a more difficult object to hit than the mounted soldier. The rapidity of conveyance of the dispatch would be important. A dog has run 2 kilometers, nearly $1 \frac{1}{4}$ miles, in 2 minutes and 45 seconds, on an ordinary road. This exceeds any available means of transportation except a very good horse or steam. The ordinary trooper could not ride it at anything like that speed.
Among the other services that of ammunition carrier has been suggested. The trouble in this case would be that the load would be light. It is at least one additional service. A reference to the record of the St. Bernard dog suggests the utility of the animal in such service as that of the Red Cross Society. He could be made to scour the battlefield after an engagement, rendering assistance in the discovery of the wounded and directing the relief parties to those needing their service. Many wounded soldiers lying on the outskirts of the field in isolated places might thus be found.
The subject has long attracted the attention of military men. The French and Germans have, it is said, many dogs in training. On the Belgian frontiers the smugglers have used them for years to transport dutiable goods, and the custom house officers have their own corps of dogs to counteract the smugglers' operations. They have, however, not yet been fully enlisted in the military service. It is not impossible that they may yet play an important part in war operations. The bicycle adds to the speed of a soldier where the
ground is such that it can be employed. But the dog is to a great extent independent of the nature of the ground, and can make rapid progress over fields and through forests where horse or bicycle would be seriously delayed.

New Labor Laws in New York.

A new law provides that the salary of laborers employed by the State or any officers of the State shall not be less than $\$ 2$ a day or 25 cents an hour. In all t

Fig. 5.-DIAGRAM OF CIRCUITS.
n this State, preference shall be given to citizens of New York State. Several other so-called labor bills of mportance became laws. One provides that every union or association of working men or women adoptng a label, mark, name, brand, or device intended to designate the products of the labor of members of such union or association shall, in order to obtain the bene fits of the act, file duplicate copies of such label, name, mark, brand, or device in the office of the Secretary o State, who shall under his hand and seal deliver to the party filing or registering the same a certified copy and a certificate. of the filing thereof, for which he shall receive a fee of $\$ 1$. Another amends the revised statutes so as to extend the exemption of household furniture and working tools over districts from warrant and sale under execution. A third law exacts that all corporations: shall pay the salaries due their employes each week up to within six days of the date of pay ment, and also that it shall not be lawful to pay their employes in their own scrip, commonly known as "store orders." The penalty for such offense shall be not more than $\$ 50$ nor less than $\$ 10$. The complain must be made within thirty days.

Liquefied Carbonic Acid Gas.

M. Gall has recently devised another method of pre paring carbonic acid gas, which, in its liquefied and solid states, is now pretty largely used. The gas is obtained by burning coke, about 18 per cent of the pro ducts of combustion being this gas. Any sulphuric acid is eliminated by washing, and the whole is then passed through a solution of carbonate of sodium or potassium. The nitrogen and any oxygen there may be in the gases pas through the solution unchanged and are allowed to escape into the air. The carbonic acid, however, is retained in the solution, changing the mono into a bicarbonate. This solution is afterward transferred to a boiler, where the bicarbonate is again reduced to the monocarbonate, the gas driven off is collected in a suitable receiver connected with the suction pipe of the compressing pump, while the

Fig. 10.-TELE-HYDROBAROMETER.
sodium carbonate is used over again to fix anothel supply of the gas. The compression of the gas is carried out in three cylinders, in the first of which it is raised to a pressure of 73.5 lb . per square inch, in the second to 367 lb ., and in the third to 883 lb . per square inch, under which pressure it liquefies.

AN IMPROVED BALING PRESS.

A portable hand baling press, designed for use in the baling of cotton, wool, broom corn, hay, etc., is. illustrated herewith, and has been patented by Mr. Willard E. Walter, of Silver City, Idaho Ter. It is a boa-like structure mounted on a bed frame of sills united by heavy bolts, the side and end walls also being connected by bolts. To each of the side and end walls are also hinged doors. The end walls are slotted to provide for the passage of a double truss upon which is mounted a follower, and between the ends of the sections of the truss are threaded shafts carrying double ratchet nuts that bear against wear sleeves extending upward between the sections. The lower ends of these threaded shafts are held by the bed plates, while brackets support their upper ends, to each of which is hinged a threaded rod passing up between the end sections of an upper double truss connected to the press head, the ends of the rods having hand wheels and binding nuts.
The double ratchets on each end of the press are provided with lever heads pivotally connected with lever arms. To fill the baling chamber, the side doors and press head are thrown open, and the ratchet nuts at the ends turned down, when the follower may be lowered nearly to the bottom of the structure. When the press is filled with the material to be compressed, the press head, threaded rods, and side doors are moved to the position shown in the engraving, the lever heads

WALTER'S BALING PREsS.

being applied to the ratchet nuts and the end levers operated to force the follower upward till the material is sufficiently compressed, when the binding wires or cords are fastened in place.

AN IMPROVED CULTIVATOR.

The accompanying illustration represents a combined cultivator and harrow, for the general preparation of land before planting, and for use afterward in the general cultivation of all kinds of crops. It has been patented by Mr. James Shoolbred, of Eastover, S. C. Fig. 1 shows the implement as a smoothing harrow, presenting an angle tooth at an angle of 45°, with flanged feet, to ride roots, rocks, etc., and cut through sod without dragging. Two or more can be connected to a pole and used as a smoothing harrow, and then as separate cultivators, the center tooth being adapted to any attachment. In Fig. 3 the harrow is shown as a scarifier, with teeth at right angles and flanges at 45°, for cutting through old sods or for deep tillage, the pivoted draught beam being thrown to one side to show its capacity. Fig. 2 shows the implement as a grass rake or wire grass extractor, the teeth being thrown forward, while Fig. 4 shows it as a cultivator, which, by removing the center tooth, cultivates both sides of a row at once. In Fig. 5 the harrow is represented as a cultivator for an entire alley, adaptable to any width of row, the pivoting of the draught beam allowing it to be thrown at any

गिं गुप त्राट
SHOOLBRED'S CULTIVATOR.
angle or position to the line of draught, whereby the frame may be drawn along longitudinally to the line of the draught beam, or at right angles thereto, or at any intermediate angle, for the purpose of securing a different action of the teeth. The frame for supporting the teeth is composed of a central beam and pivoted wings, the teeth having cutting lower portions and angular shanks, whereby the teeth may be adjusted to change their action upon the land. The teeth are changeable to eight separate distinct positions, affording opportunity for an indefinite number of combinations.

an Improved seed planter and fertilizer DISTRIBUTER.

A planter designed to drop the seed and fertilizer in holes any desired distance apart, adapted to drop two different kinds of seeds if desired, and in which the dropping device may be operated either automatically or by hand, is represented in the accompanying illustration, and forms the subject of two patents issued to Mr. Whitmon A. Holt, of Harrison, Me. A plow is held in the front end of the frame of the device, the driving wheel being in the rear, while a fertilizer hopper is held to turn on the frame by the rotation of the driving wheel, and a seed box is held stationary on the frame at the rear of the fertilizer hopper. A drop plate is held on the fertilizer hopper and operates under the seed box, a seat with apertures being secured on the main frame under the drop plate and fertilizer hopper, fixed arms held in the fertilizer hopper covering up alternately the discharge openings in the bottom of the hopper. Combined with the hopper is the seed box, secured on the apertured fixed seat, the drop plate held on the hopper projecting under the slotted bottom of the seed box, which is divided by a partition into two compartments, and rods connecting it with the hopper, cam wheels operating the rods, and these cam wheels being actuated by the main driving wheel. A rod connected with one side of the hopper is pivotally connected with a lever for turning the hopper by hand. On the main plow is pivoted a mould board, and covering shovels are pivotally connected with the mould board at its end, with means for connecting the rear ends of the shovels with each other.

The Society for the Preservation of Ancient Egyptian Monuments.
Egyptian archæology has unquestionably placed a plentiful supply of materials at the service of modern painters and writers of historical romances, enabling them to impart a charm of realism into their respective presentations of the life, arts, and customs of jthe Egyptians from the misty ages of Mena to the gorgeous periods of Cleopatra or to the times of Diocletian's implacable persecutions. Still, it cannot be said that the science of Egyptian archæology is complete and to be developed no further. Un worked veins of information exist in the remains of palaces, tombs, and temples erected in past times by a Thotmes, a Rameses, or a Ptolemy along the banks of the Nile. For the purposes of completing natural history, vestiges of extinct evolutions or creations are eagerly rescued and carefully preserved for successive investigators. The performance of a similar duty is surely due to Egyptian archæology. The sense, however, of such an obligation has not acquired strength enough to provide the necessary protection in situ of the monumental relics of ancient Egypt, and the consequence is that their gradual destruction has been reduced to a system through the combined operations of natural causes and of depredatory Arabs, tourists, and curiosity mongers.

To endeavor to arrest the progress of such irreparable mischief the above named society has been recently formed. Sir Henry Layard, Mr. Flinders Petrie, Lord Wemyss, Sir William Gregory, Sir Frederick Leighton, Mr. Le Page Renouf,Lord Wharncliffe, Iıord Carlisle, Sir Colin Scott-Moncrieff, and General Brackenbury are leading members of its executive committee. Mr. E. J. Poynter, R.A., is honorable secretary, and Mr. Bertram Currie is honorable treasurer.
Both Lord Salisbury and the Egyptian government have warmly testified their appreciation of the intentions of the society. The Egyptian government, indeed, have taken the important step of causing a careful survey to be made of those ruined temples and palaces which suffer more severely than others from perennial infiltrations of the Nile and from the destructiveness of human agencies. A full report has been drawn up by a French engineer, Grand Bey, and the estimated cost of propping masonry in imminent dainger of falling, of draining and clearing various sites, and of fencing round groups of ruins, from Philæ to Abydos, is
£8,500. The society proposes to raise this sum by public subscriptions, and to place it with the least possible delay at the disposal of the Egyptian government, who will thus be enabled to at once rescue the remains of some twenty most important monuments, such as the temples at Esneh, Luxor, and Karnak. The Egyptian government has given a further earnest of its desire to

HOLT'S SEED PLANTER AND FERTILIZER DISTRIBUTER.
do its utmost in the matter by undertaking to provide proper inspection and guardianship of the ruins in future.

AN IMPROVED CULTIVATOR.

The accompanying illustration represents a construcion styled by the inventor the "Texas Perfection Cultivator," which is designed to be adjusted laterally to any width and vertically to any desired height. It is a patented invention of Mr. John C. Benthall, of Schulenburg, Texas. The front cross bar consists of two spaced beams, near each end of which are metal boxes having each a vertical groove in which a tube is perpendicularly held by an eyebolt provided with a lock nut, so that the position of the tubes with respect to the length of the beams may be readily changed as desired by sliding the blocks toward or away from the center. Supported at their forward ends by rods carried upward through these tubes are two spaced longitudinal beams, these beams carrying. at the rear of the axle, on their inner and outer faces, vertically adjustable tubes, through each of which is passed the rod or standard of a share carrier, the lower end of which is curved, the blades being such as are

BENTHALL'S CULTIVATOR.
usually employed in cultivators, as shown in Fig. 3. The top of each standard is provided with an arched or curved iron by which the two opposing standards are adjustably connected, as shown in Fig. 1, one iron overlapping the other to form an arch, and each iron having a registering slot and bolts by which the two members are clamped together. The axle is arched, and consists of two transverse beams, on the rear face of which are adjustable boxes, each carrying a vertical of which are adjustable in which the vertical member of an angled spindle is inserted, upon the horizontal member of which the drive wheels are loosely mounted. By this construction the distance apart of the drive wheels may be readily arranged to accommodate the adjustments of the machine, and in working crops of considerable height the axle arch may be conveniently raised as desired. When the machine is used as a walking cultivator, it is guided by carrying the handles either to the right or left; and when employed as a riding cultivator, a lever is employed which is fulcrumed upon the axle arch near one end and connected by a link and rod with the opposite longitudinal beam.

If not already a subscriber, send 25 cents and hative a copy of the Architects and Builders Edition of the "Scientific American"s want all the back After seein

[bpiclal oorrbspondenor of the scientific amerionn.]

THE PARIS EXHIBITION

the locomotive exhibits-THE Italian section Paris, July 4.
There are three Italian locomotives here, all differing in their details of construction, while each detail has its counterpart in some one or other of the French or Belgian exhibits, and is, in the main, distinct from American or English practice. Beginning with one over which hangs the signboard Strade Ferruta Meridionale Bele Adriatica Italia, it is a four-wheel coupled

Fig. 1.-CROSSHEAD OF AI ITALIAN LOCOMOTIVE. ongine, has outside cylinders, say $20^{\prime \prime} \times 26^{n}$, and a single guide bar, which is the only feature about it copied from American practice.
The construction of the crosshead is shown in Fig. 1 , in which the pieces represented by A and B are of brass, while the rest is of wrought iron. A feature on this engine that requires attention (because I find it on several other engines, both English, French, and Belgian) is rod is enlarged to form the cone that goes into the crosshead. This necessitates that there be a bush or sleeve fitting into the gland and being put in in two halves, a construction for which I see no neressity. The only object there can be is to strengthen the rod cross section through the keyway; but piston rods do not break there if of good material and if the taper of the rod end is correct, because, if there is not too much taper and the cones are well fitted, the friction of the surfaces will almost hold them together; but if there is too much taper on the cones, the friction is diminished, more strain falls on the key and the metal on the sides of the keyway, and breakage is likely to follow. The connecting rod end of the engine is.shown in Fig. 2, in which the usual order of things is reversed,

Fig. 2.-CONNECTIITG-ROD END-ITALIAN LOCOMOTIVE.
since the bolt is put between the key and the brasses, necessitating that the bolt be slackened back each time the key is used, to adjust the brasses.
Again, in order to let the strap pass up the rod as the key is driven in, the bolt hole must be slotted either in the connecting steel end or in the strap. Hence the holding power of the bolt is confined to that of the nut, there being no grip of the circumferential surface of the bolt, as there is with a taper bolt filling and driven into its hole. We may now consider the key and gib arrangement, and it will be perceived that the gib extends upward to provide a slot to receive a pin projecting from the key, the nut on this bolt locking the key to the gib, which is a very expensive form of construction. In addition to this however, there re the two se crews also hold ing the key and a pin at the bottom, so 'that, taken as a whole, we have complicated as complicated a well as an un-
handy: design, without any compensating advan tages. The oil cup of this rod requires also attention, since it represents a construction found in many engines gere. Theinterior construction is, I am informed, simply a.siphon, sucb as shown in my

previous article on the locomotives here. Side and plan views are given in Fig. 3, in which a, b, c, d are four pins or studs, through which pass the long split pins, e, f, which hold down the cap or cover, g. At h is a circular projection forming a dish, $r r$, in the center of which is a button or disk held up by a spring, so. that to put oil in the cup this button must be de pressed. The object is, of course, so far as the button is concerned, to exclude the dust ; but the whole design is very expensive and with no compensating advanages.
The old form of oil cup, when forged solid on the rod,

Fig. 4.-SOLID OIL CUPS.
is as in Fig. 4, the objection to it being that it required turning inside and out, and to save some of this work English builders let the outside be square instead of round, which was easily done with the rest of the strap when on the planing and [slotting ma chine, and involved no extra chuckings. The English, however, use a round cap that screws into the square cup, and in place of the threads the Italians and French put on a square cap with four pins and two split pins, which is more expensive and no better, since a cork
 or plug screwed into the oil hole of the round cap is just Miani Silvestri, 1889, Milano," has a bogie or truck, outas good as the spring button of the square cup. There side cylinders, and is six-wheel coupled. The most are no locomotives here with the American form of notable thing about her is her coupling rod, a section sight lubricators, nor with oil cups that screw in or are fastened on to the straps, except the solid grease feeder shown in my last letter.
Another form of rod end is shown in Fig. 5, the promi-

Fig. 5.-COUPLING ROD END-ITALIAN LOCOYOTIVE.

nent features being that the back brass, b, can, when the key is out, be moved back far enough to let the crank pin, c, pass through the slot in the rod, and thus facilitating the putting on and taking off of the rod. The method of securing the key is by means of a plate, p, provided with a slot, through which passes a bolt which screws into the key. This is a more expensive construction than two set screws without the plate would be, while it is certainly no better.
Coming now to the eccentric rods, they are of srrought iron, with one-half of the strap forged solid on the rod, the strap being brass-lined.

The boiler has one water gauge glass and three gauge cocks, all three being within the same range as the
glass of the water gauge. The dome top is provided with a spring bslance, but a pop valve is provided separately. The boiler feed is by injectors situated under the foot plate. The engine brakes are operated from a hand screw, and act on one side of each wheel, only the force being applied to force the two wheels on one side of the engine apart.
The Giovanni Darco, No. 1,701, is an Italian engine designed this year, is a bogie engine with four wheels coupled, and has outside cylinders, ordinary crosshead and guide bars. Her connecting rod is a combination of several styles, as will be seen on reference to Fig. 6.

Fig. 6.-CONNECTING ROD ON AN ITALIAN LOCOMOTIVE.
The strap is held to the stub end by two bolts, as in ordinary English and some American practice; but a die, a, is introduced, which is a decided detriment, for a long experience of such dies taught me that they are very expensive to fit, very difficult to make a good job of, and get loose as soon as much duty is thrown upon them. They were first used on the Sharp-Roberts engines, but were soon discarded. The employment of a cap and collar for the wedge screw is also faulty, be cause it weakens the strap and does not look mechani cal. The rod is of similar design at the driving end. The valve gear has Crampton eccentrics (that is, ec centrics driven from a return crank arm) and Gouch links, the slide spindle being provided with a crosshead sliding in a guideway, the steam chest being at an angle of abont 40°. This engine has a hand screw brake which is shown in Fig. 7. I have not as yet been able to find an attendant at this engine, or I should have endeavored to discover the object of the second bolt (that at a) to the double eye. I presume, however, that it is to save wear at the joint, b, the tongue in the middle of joint, b, passing beyond a, and having a slotted hole to receive the bolt of a. To whatever extent the joint is made more rigid by this construction the body of the rod will have to bend in going round a curve. Hence there is no gain.
The method of securing the key is a decidedly expensive one, besides involving a good deal of trouble in getting the key in or out. The bolts, be it observed, pass through a slot in the key. It may also be pointed out that the keys are not given as much taper as in either English or American practice. I have not deemed the dimensions of the engine, or the construction of their boilers, etc., of sufficient importance to warrant my giving these details; indeed, I look upon them, the French, and the Belgian locomotives, as in a state of transition, not only so far as their general designs ure concerned, but also with regard to the details.
On some of ${ }^{\text {t }}$ the Bel-
gian engines here the smokestack is square, as in Fig. 8.

Fig. 8.-A SQUARE 8MOKESTACK ON A BELGIAN LOCOMOTIVE. Anything more unmechanical, as well as homely, it seems hard at first sight to imagine; indeed, one
hardly knows whether to laugh or to get mad at it, but as the days wear on, one gets used to it, although not reconciled to it.

Joshua Rose.

[special correspondence of the scientific american]
 The Paris Exhibition.

THE UNITED STATES SECTION-GENERAL
Paris, July 20, 1889.
There are two exhibits in the American department or section that go far toward redeeming its general dullness. One of these is the exhibit of the engraving and printing department at Washington, D. C., around which linger authors, editors, publishers, engravers, printers, etc., and a fair share of the general public; and the other that of the Drake Co., St. Yaul, Minn., whose exhibit consists of agatized woods from Chalcedony Park, Arizona. This latter exhibit stands out boldly in a glory and richness that draws the multitude at once, and makes it somewhat difficult to inspect it as one would like. The samples consist of sections of trees, ranging from 2 feet 6 inches in diameter, and say 2 feet high, down to pieces not more than 3 inches in diameter. Next come table tops of various diameters and disks suitable for ornamental work and clock faces, tiles suitable for interior decoration, door knobs, paper weights, etc. Of course it is the larger specimens that excite the most admiration, some table tops fetching from $\$ 300$ to $\$ 400$. I hear of its being employed for the decoration of mansions, especially for mantels, tiles for fireplaces, panels for over mantels, and other similar applications, where great durability combined with elegance is a requisite.
The geological interest in the exhibit arises from the fact that it is from the largest deposit (if it may be so called) of silicified wood in the world, containing, it is said, a million tons, covering a thousand acres, one of the fallen tree trunks being visible for a hundred feet in length, and forty-five feet of it forming a natural bridge. Thegeological interest in some of the samples lies in their having the bark on intact and perfect (which has hitherto been unknown) and in the remarkable brilliancy and beauty of the colorings, which is probably due to the exquisite polish they take. The colorings embrace every imaginable shade of the yellows, black, reds, grays, browns, white, and greens, combined in all sorts and manners of ways, not splashy as in marble, but sometimes blended, at othersmottled or spotted, as it were ; while in yet others they seem to radiate in circular waves from the center, almost like waved rays of colored sunlight. The specimens are solid to the core and without blemish. Some of them are small columns turned and polished ; but the greatest beauty is shown in the across-grain surfaces. The black specimens, I think, are what are called by the
West Indian aborigines tacuba posts, that is to say, in many of the hard woods the outside of the trunk is a light color, while the core (which is not usually more than about 8 or 10 inches in diameter) is dark, and in some cases a smoky black, just as the dark specimens here are.
Mr. F. C. Hatch, who is in charge of the exhibit, says they never find any bark on these dark specimens, and this lends probability to the supposition that they are tacubas or cores. There is one specimen attracting particular attention on account of its unusual degree of transparency in places, and in one of these places there is a coloring reminding one of the bloom on a well grown Hamburg grape or a luscious plum. A Russian dealer gave recently $\$ 500$ for a piece 28 inches in diameter and 30 inches long, to be cut into table-tops. Limb specimens are sold very freely at as low as $\$ 2$, the English especially being purchasers. The material is strong, of course, and exceedingly hard to cut and polish, and hence the expensiveness. To cut through a 2 foot log takes thirty days, and wears the saw down from 6 inches to 2 inches wide. Corundum and emery used in connection with a chemical are applied to the saws. The polishing is done on a large iron disk revolving horizontally and supplied with emery and a chemical. Small pieces are polished embedded in plaster of Paris. Some of the small specimens are cameo cut, and these are finding great favor as reminiscences of the exhibition.
The exhibit of the Bureau of Engraving and Print ing naturally contains a great many examples of bank note work, and also engravings representing the heads of all the presidents, generals, admirals, and prominent officials and public men of the United States. The beauty of some of the engravings cannot be seen without the aid of a magnifying glass. It seems a pity that one of the engraving machines is not exhibited. but there are only three or four of them in existence, I believe, and all of them are kept in locked rooms and very zealously guarded all day and night. I am enabled, however, to give an idea of their construction and some interesting facts concerning them. The depth of the lines of the border work say of a greenback is the one three-thousandth part of an inch deep, and the tool goes over the line thousands of times before it is cut to that depth. The tool-cutting edge is formed by grinding three flat facets at an angle of 45° to the center line of the tool. the cutting point thus

The engraved plates for printing bank notes ar inked with the palm of the hand (for which there has not as yet been found any substitute), and if the plates are left soft, about sixteen thousand inkings wear out the plate. Of course it would be out of the question to harden these plates in the usual way, as the warp ing alone would destroy them, but it is a fact that a process of casehardening them "cold" has been dis covered and practiced by a skillful mechanic in New York city named Whitely. I am not prepared to say that the term cold is strictly correct, although that is what is generally stated. I am of opinion, however, that a temperature of say about boiling point is employed. The process is of course a dead secret and is on doubt purely chemical. The specimens I examined were fairly well casehardened and had not been heated enough to change their color in the least. The casehardened plates will print about 50,000 or 60,000 impressions. The motions of a bank note printing machine may be very roughly described as follows A sliding table having rectilinear motion carries a compounding table having similar motion, but in a ine at a right angle to that of the first. The length of stroke and the speeds of these two tables may be varied at will, so that either of them may be made to have equal or unequal stroke in a given time, the range of combinations running into the thousands. The upper table carries the work-holding:chuck which may be an elliptical or any other kind of chuck suitable fo the class of work in hand. The tool is mounted in a rest on a slide that spans the tables.
The number of change wheels for setting the combinations for the table motions are bewilderingly numerous, and it requires a wonderful amount of skill to work the machine. It took the English a good many years to perceive or at least to acknowledge the su-
periority of the work of this engraving machine, but about six years ago an English firm bought from the maker in Newark, N. J., a maehine for $\$ 8,000$, but the maker refused to deliver the machine until a man had been sent out to learn to work it, which after much dis cussion was done; but the man, who was an expert upon English machines, didn't want to be taught, but to be left alone with the machine, so as to show how foolish it had been to bring him to the United States to learn how to use an engraving machine. So he was left alone with the machine for three weeks, after which time he gave it up and meekly requested to be taught. The work on these engraving machines must be of the very highest order, better than for any other machine that is made of metal. A rather curious fact with reference to this section of the exhibition is that while every State in the Union has appointed and has a commis sioner here, only one State (Florida) has a State ex hibit, the other commissioners having nothing what ever to do.
The Florida exhibit consists of cotton, tobacco, resin, wood, and sponges, with some photos and a few other unimportant items, occupying in all a small space of about 60 feet by 14 feet high. One thing that detracts from the United States general section is that it does not compare at all well in the matter of the general decoration or ornamentation, upon which a good deal has been spent in the general sections of other countries.
The brass work exhibited by the Robertson Lamp Co., of New York, contains some excellent exhibits, and there is no doubt that brass work for the household is one of those things that is bound to increase very much in the United States. Brass bedsteads are beautiful and elegant, and just the class of work on which Amer icans can bring self-acting machinery to bear so as to void expensive labor.
The Rookwood exhibit of art pottery, small as it is in comparison to that in some of the foreign sections, is quite upin quality to any of them. In one point the American sections surpass all others, and that is the visitor has no trouble in finding out anything he wants to know. One only has to show an interest and the at tendants are alert, in a moment giving every detail of information, pointing out this, explaining that, and referring to the catalogues, which are far better got up than those of any other nation.

Joshua Rose.

Dentistry in 1796.

American dentists of the present day may, with jus tice, lay claim to a high reputation for skill and ingenuity. The autograph letter of Washington, which appeared in the Journal of June 17, showed that considerable enterprise was shown also by our dental forefathers. We have before us an interesting document which gives quite accurately the degree of proficiency which had been reached in dentistry toward the close of the last century. It consists of an adyerwho "informs the public that he practices in all the who "informs the public that he practices in all the
branches with improvements, i. e., transplants both live and dead teeth with great conveniency, and gives less pain than that heretofore practiced in Europe or America; sews up hare-lips; cures ulcers; extracts teeth and stumps or roots with ease; reinstates teeth and gums that are much depreciated by nature, carelessness, acids, or corroding medicine; fastens those
lates teeth from their first cutting to prevent fevers and pain in children ; assists nature in the extension of the jaws for the beautiful arrangement of the second set, and preserves them in their natural whiteness, entirely free from all scorbutic complaints. And when thus put in order, and his directions followed (which are simple), he engages that the further care of a dentist, will be wholly unnecessary ; eases pain in teeth without drawing ; stops bleeding in the gums, jaws, or arteries ; lines and plumbs teeth with virgin gold, foil, or leads. Fixes gold roofs and palates, and artificial eeth of any quality, without injury to, and independent of, the natural ones; greatly assisting the pronun ciation and the swallow, when injured by natural or other defects. A room for the practice, with every accommodation at his house, where may be had dentirices, tinctures, teeth and gum brushes, mastics, etc. warranted approved and adapted to the various ages and circumstances; also chew-sticks, particularly useul in cleansing the fore teeth, and preserving a natural and beautiful whiteness; which medicine and chew sticks are to be sold wholesale and retail, that they nay be more extensively useful.
Dr. Flagg has a method to furnish those ladies and gentlemen, or children, with artificial teeth, gold gums, oofs, or palates, that are at a distance and cannot attend him personally.
"Cash given for handsome and healthy live teeth, t No. 47 Newburg Street, Boston (1796)."
The document is ornamented in one corner by very formidable and antiquated instruments, while in the other are to be seen tooth brushes quite of the modern pattern. It has been preserved by a descendant of one who, as may be seen on the back, purchased a brush and tincture from Josiah Flagg in the year 1800. Boston Medical Journal, 1875.

Sense of smell in the Horse.

The horse will leave musty hay untouched in his bin, no matter however hungry. He will not drink of water objectionable to his questioning sniffs or from a bucket which some other odor makes offensive, however thirsty. His intelligent nostril will widen, quiver, and query over the daintiest bit offered by the fairest of hands. A mare is never satisfied by either sight or whinny that her colt is really her own until she has certified the fact by means of her nose. Blind horses, as a rule, will gallop wildly about a pasture without striking the surrounding fence. The sense of smell informs them of its proximity.
Others will, when loosened from the stable, go directy to the gate or bars opening to their accustomed feeding grounds; and when desiring to return, after hours of careless wandering, will distinguish the one outlet and patiently await its opening. The odor of that particular part of the fence is their guide to it. The horse in browsing, or while gathering herbage with his lip, is guided in its choice of proper food entirely by its nostrils. Blind horses do not make mistakes in their diet. In the temple of!Olympus a bronz horse was exhibited, at the sight of which six real horses experienced the most violent emotions. Elian judiciously observes that the most perfect art could not imitate nature sufficiently well to produce so per fect an illusion. Like Pliny and Pausanias, he consequently affirms that "in casting the statue a magician had thrown hippomanes upon it," which, by the odor of the plant, deceived the horses, and therein we have the secret of the miracle. The scent alone of a buffalo robe will cause many horses to evince lively terror, and the floating scent of a railroad train will frighten some long after the locomotive is out of sight and hearing.Horse and Stable.

There was an interesting exhibition recently at the naval proving ground at Annapolis of the Maxim automatic machine gun, under the direction of Mr Hudson Maxim, a brother of the inventor. The Army and Navy Register says: Three guns were used, two rifle caliber guns and a 1-pounder, caliber 37 millimeters. These guns were built in England, and are much more perfect than those which were exhibited to our war and navy departments a year and a half ago, and at that time awakened so much interest. The rifie caliber guns yield 700 to 750 shots per minute respectively. The 1 -pounder yields nearly 400 shots per minute. Over 100,000 rounds of ammunition had been purchased for this trial, and a large party was present, including Commodore Sicard, chief of ordance. Two 6-pounder Maxim guns, built on the same principle as the smaller guns, are expected here soon, and will be tried on the same grounds. One semiautomatic gun fires 60 shots per minute and the other, which is fully automatic, will give 150 shots per minate. It is probable that a company will soon be estab lished in this country for the manufacture of the Maxim guns.

The best builders keep on file the Architects and Builders Edition or the "Scientific American." It enables a person about to build to select from the engravings the style of house suiting his fancy and purse.

This work is described in the Golden Era, San Diego, Cal.
The head of the system is in the Cuyamaca mountains, nearly $5,000 \mathrm{ft}$. above the sea. Here a reservoir tains, nearly $5,000 \mathrm{ft}$. above the sea. Here a reservoir
is formed by a dam 35 ft . high and 720 ft . long, impounding about 3,740 million galls. of water and covering 900 acres. From the reservoir the water passes down a rocky ravine about 12 miles to the San Diego river, and just below this point of juncture with the river is a dam of solid masonry diverting the stream into the flume through regulating gates. This dam is 400 ft . long and 35 ft . high, and cost $\$ 36,000$. Behind this dam is another lake of considerable dimensions.
From the head gates to the reservoir, 8 miles from the city of San Diego and 630 ft . above the city, is a distance of $353 / 4$ miles. This is the length of the flume proper. This flume is 6 ft . wide and 4 ft . high and is built of clear redwood plank 2 in . thick. At present but one tier of side planks is used, making the height 16 in . The full capacity of this flume is 5,000 miner's in. daily, or $65,000,000$ galls., a quantity sufficient to irrigate 100,000 acres. The trestle work on this flume line is very substantially built, and the Los Coches trestle, one of the largest, is 65 ft . high in the deepest part of the valley and $1,774 \mathrm{ft}$. long; the Sweetwater trestle is 81 ft . high and $\mathbf{1 , 2 6 4} \mathrm{ft}$. long, and many others assume very considerable proportions. The total number of trestles is 315 . The gradient throughout is 4 ft .9 in . per mile. In addition to the trestles a number of tunnels had to be driven, 6 ft . square, or arched where the rock was bad. The longest tunnels are Laukersheim, $1,900 \mathrm{ft}$; Los Coches, 313 ft .; El Monte, 290 ft.; Cape Horn, 700 ft.; Sauth Fork, 200 ft.; Anderton, 270 ft .; and Sand Creek, 430 ft . long.
Besides supplying the city of San Diego, through the distribution system of the Coronado Water Co., this water is to be utilized for irrigation purposes, the surplus supply being sufficient for 40,000 acres. The present watershed under control is set down at 150 sq. miles, and other storage reservoirs will be constructed as the need arises. One of these sites, near the La Mesa tract owned by the company, will impound $760,000,000$ galls. of water, and the other has a capacity of $1,250,000,000$ galls.

THE LIGHTNING FLASH

We illustrate in the accompanying cuts two very beautiful examples of photographs of lightning flashes. For many years a radical misconception obtained as to the shape of a flash. It was represented very generally by the artist as of zigzag shape. This is seen in old remains of art in the representation of the thunderbolts of Jupiter. Photography has done much to dissipate this erroneous view, but even without its aid the eye could, if prepared, see that the conventional shape was incorrect. Thus in watching the discharge of a powerful induction coil or of a Holtz machine, a certain sinuousity of outline can be recognized.
In the engravings the same form is to be seen. Nothing of the zigzag appears, and there is a total absence of anything approaching regularity. Onecut shows a discharge which is exceedingly curved, its curious path being traced out in relief against the dark sky; the reasons for its course being quite unknown. Prof. Lodge's char acterizations of the eccentric nature and ways of the flash seem quite warranted. In the other cut two flashes are shown, which exhibit the branching effect now often caught upon the sensitive plate.
The recent investigations by Profs. Herty and Lodge have done much to confuse as well as enlighten the mind upon this subject. The discharge of the Leyden jar can no longer be treat the Leyden jar can no longer be treat
ed as a simple action. On the contrary, it is complex and consists of a series of oscillations, first in one direction and then in the other, lasting but an extremely short time, but in a small fraction of a second beating back and forth many hundred times. Prof. Lodge, addressing himself to the practical view of the subject, studied lightning rods and came to several rather startling conclusions He decided that iron was a better ma terial than copper, and that slight imperfections or even breaks in its continuity did little harm.

So radical a departure from the views hitherto held by seientists was not allowed to pass unchallenged, and Mr. Preece and others have opposed them strenuously. At the recent meeting of the Society of Electrical Engineers held in this city, Prof. H. A. Rowland, of Johns Hopkins University, spoke againstthem. He expressed his doubt as to whether the discharge of a thunder cloud was, as a rule, oscillatory at all, and thought that no comparison could properly be drawn between
the natural and the Leyden jar phenomena. In regard to protection for a house, he expressed his opinion that a series of conductors crowning the roof in various directions and connected to copper wire conductors running ito the ground would be efficient. Copper wire one-fourth inch in diameter, he stated, would be the proper material.
We are indebted for the original photographs from which our engravings were made to Mr. G. E. Davis, who is an amateur photographer, residing at Dubuque, Ia. Much of the effect of the photos is lost in the cuts.

HOW TO PERFORATE GLA8S.
To make a small hoie in a plate of glass is a compara tively simple matter. All that is required to do it is

PERFORATING GLASS.
very ha:d, sharp drill, some means for turning it, and a lubricant, such as turpentine, for causing the dril to cut rapidly. A drill made in the usual form from steel wire and hardened by heating it until it is dark red and then plunging it in mercury, will be very hard, but not tough. Before the drill is heated it should be driven into a block of lead so that its point will just be inclosed by the lead, and after the drill has been hardened in the mercury its point should be inserted in the indentation in the lead, and the temper of the shank of the drill should be drawn over a lamp or gas flame to a blue. The lead prevents the drill point from becoming heated sufficiently to draw the temper, by conducting the heat away as fast as it arrives at the point. When the shank of the drill becomes blue to within a short distance of the lead, the drill, together with the lead, should be plunged into cool water
The drill prepared in this way should be wet with turpentine while in use to cause it to " take hold." It is advisable to drill from opposite sides of the.glass whenever this is possible. The hole may be enlarged by means of a sharp round file wet with turpentine.

PHOTOGRAPHS OF LIGHTNING
When larger holes are required these can not conveniently be made with a drill. A copper or brass tube charged with emery and water or emery and turpentine, and rotated in contact with the glass, will soon cut a hole a little larger than the tube.
Simple ways of guiding and revolving the tube are shown in the annexed engraving. The glass to be drilled, which may be the plate of an electrical machine for example, is placed upon a table with a few thicknesses of paper underneath its center. Two blocks are placed on the table at diametrically op-
posite edges of the disk, and a thick bar of wood, which is bored at the center to receive the copper or brass tube, is placed upon the blocks and clamped firmly to the table. The glass plate is arranged so that its axis concides with that of the hole in the bar. The plate is then clamped in place by gently inserting two wooden wedges between the wooden bar and the glass. The tube by which the cutting is done is stopped by wooden plug at the middle of its length, and in the upper part is inserted a soft rubber stopper which rests upon the wooden plug, also a piece of heavy rubber tubing which rests upon the stopper. In the rubber tube is inserted one end of a close-fitting metal shank, the other end of which is fitted to an ordinary drill stock. This arrangement provides for a certain amount of flexibility in the connection between the tube and the drill stock. The tube is revolved by the gearing of the drill stock while it is supplied with a mixture of No. 4 emery and water or emery and turpentine. The pressure on the drill stock should be light, and the tube must be lifted frequently to allow a fresh supply of emery to reach the surface being cut. This device makes a hole in the glass in a short time. If a larger aperture is desired the glass is first drilled in the manner described, and enlarged by careful cutting with a diamond.

The Stove Trade.

The annual convention of the National Association of Stove Manufacturers was held at Saratoga, N. Y., June 19. We take the following from the address of the president, Mr. Geo. H. Barbour : I have reason to believe that the spring trade, which has just passed, has been anything but satisfactory to many of us. Under such conditions will it not prove profitable to consider briefly the causes and see if we can point out some of the remedies? My first would be that merchants may have carried over a larger stock of cooking stoves and ranges from fall purchases than we may have esti mated.
Another, and perhaps the main, cause of a general shrinkage is the growing sale of gasoline stoves, for which we do not make sufficient allowance, and those of us who do not manufacture or sell this class of goods should take this into consideration. Allowing that the prices of pig iron have ruled low during the past six months, I do not consider this has any essentia bearing upon the present condition of business; a reduction of $\$ 5$ per ton in the price of iron only re duces the cost of a 200 pound stove fifty cents, and seventy-five cents on a 300 pound stove, and even this reduction is more than made up by your yearly outlay on patterns, additional ornamentations, etc. Who of us ten years ago would have thought stove manufac turers would be using ornaments to adorn our stove at a cost of one to two dollars? But such are the facts to-day, besides largely increased expenses in various ways. In addition to this, the weather has been against general business; but be this as it may, what are the remedies? I can offer but one, as this condition of things I have mentioned is liable to come up at any time. It is this: We as manufacturers, have got to watch our business all the more closely and endeavor to keep our production well in hand, so that if the demands de crease, we will not find ourselves with large stocks on hand.
I believe this subject of allowances has had a great deal to do in bringing about disappointment to many of us when the results of the year's business have been ascertained. We may some times conclude when some good customer asks for a special five per cent discount or for an allowance of freight, with no cartage, etc., to allow it, but let us see. what such decisions may cost us in our year's business.
Suppose Mr. A. has a business whose yearly sales average say $\$ 600,000$. He is anxious to largely increase his business, he wants to swell the volume up to $\$ 900,000$, and concludes, as an experiment, to reduce his prices five per cent; just see what this means; if he shonid only sell $\$ 600,000$ worth, it would cost him $\$ 30,000$, and if he sold $\$ 900,000$ worth, $\$ 45,000$.
The first named amount means ten per cent on a capital of $\$ 300,000$, and the second amount fifteen per cent. Now, is there any member present who be lieves that any stove manufacturer in this country could do business many years on any such a basis? I think not.
Now, just consider for a moment the reverse of this state of things, that on the above amount of sales he tries to get five cent better prices; see what a nice profit it is of itself.

THE so-called antique oak is ordinary American oak sawed in a peculiar way and stained to look like the ol-1.English oak.
the retsof salt mines at greigsville, w. Y. by s. i, sheldon
The Retsof salt mines are situated in the southern part of the town of York, Livingston County, N. Y. The name under which the works are conducted is The Retsof Mining Co. This company was formed in New York City, under the able management of Mr. J. W. Foster, after whom it was named, the name of the mine being the word "Foster" spelled backward. The great undertaking of channeling for salt was commenced in the fall of 1884 . A whole million was expended to accomplish the work, which occupied about a year and a half. Now, however, these mines yield bountiful returns, being one of the best paying industries in the country.
Five hundred tons are taken out daily and sent to all parts of our Union; to the West, for salting cattle; to the East, for making soda ash; to New York, for statuary ; and to many other places, for miscellaneous uses.
The supply seems to be inexhaustible. It is claimed that it will last for a thousand years.
In the vicinity of the mines a whole village of wooden huts and houses have been constructed, also boarding houses, stores, and offices have turned the once desolate place into busy bustle. In the midst of all rises a huge tower, which is the head house or entrance to the mines, and also serves as an elevator by which the salt is conducted into great chutes and store houses. At the east of this tower are the boiler and engine rooms, where twelve boilers, with a capacity of nine hundred and sixty horse power, furnish the force to run the powerful machinery. To run the twenty foot drum on which the cable is wound requires three hundred horse power. To run the blower, crusher, air compressor, and electro-dynamo also requires powerful engine power. Two hundred men are employed about these mines. Most of these are Italians.
At present the mines are reached only by one shaft, although the second shaft is down about two hundred feet. This entrance is a vertical shaft, 16 by 20 feet and 1,185 feet deep. It is provided with two cages, drawn up and down by cables, and these are so arranged that when one is ascending, the other is descending.
The sensation of descending into the mines is somewhat peculiar. For the first five hundred feet the descent is natural, but for the remaining distance one seems to be ascending. The descent to the mines, which are about 1,085 feet deep, occupies about a half minute.

At present the mines are located in the upper stratum. There are two strata of salt, the first about 9 feet thick, the second, separated by 12 feet of rock, is about 60 feet thick. Excavation is commenced at the top. Then, of course, when the second stratum is being worked, supports will be left at different points, so that there will be no danger.

The mine, which has been worked about three years, presents mainly such an appearance as is seen in the diagram, except the representation of numerous cross cuts, now all the time being excavated. The cross cuts represented in the diagram are those through which the rail cars run.

The main gangway extends due east about a quarter of a mile. This is about nine feet high and from four to high and from four to Leading off on either side there are 25 chambers at right angles to the gangway, on the north 13 , on the south 12. These chambers extend about 30 rods on either side the gangway and are nearly as large as the gangway. The chambers, as buildings of a city, are designated with even numbers on the one side and odd
numbers on the other.
The shaft enters the mine at the west of the main gangway, while a little to the north there is an air shaft in construction. Situated in No. 2 are the mule stables," which can accommodate 15 or 20 mules. In No. 6 is the blacksmith's shop. As this stratum is undulating and slopes toward the west, so also does the mine. It is calculated that half as much salt will be left in the pillars as there is taken out, i. e., one-third of the salt will be left for support.
The process of loosening the rock salt from its firm bed is accomplished by blasting. Holes made into the
salt with air drills are filled with dynamite, which is exploded by electricity. Then the loose salt, on cars holding about four tons, is drawn to the shaft over a railroad by mules. At present eight mules are employed in hauling the salt. They are kept in the mine all the time, either in the stables or in the barnyard. Nearly one hundred men are employed in the mine, either as foremen, mule drivers, miners, or their assistants.
In the mine the air is quite pure. This condition is

A DIAGRAM OF THE INTERIOR OF THE MINE.

obtained by drawing out the foul air and forcing fresh air in. The air is dry as well as the mine, and has a chloric smell and a saline taste. The temperature is about 60° Fahr. The most noticeable feature to a novice is its darkness and absolute stillness. It has a peculiar silence of its own. All disturbances, elemental and otherwise, which prevail in the open air are un known and unfelt. The nervous person can there fee secure from the feeling of alarm which a thunder storm excites.
The miners use tallow candles to dispel the depress ing darkness, the foremen, drivers, and shovelers use kerosene lamps, whi
One of the strangest sights to a visitor is the black smith's shop under ground. It is a very convenient and important feature of the mine, however, and Vulcan has a busy time indeed shoeing mules and sharpening the miners' drills.
The mine seems to be supplied with all modern conveniences. Among them is a telephone where one can converse with the superintendent above, an air whistle used as a signal for commencing and quitting work. There is also a system of pipes running to the different hambers which supplies the drills with compressed air. The largest part of the salt taken out of the mines is of a dark gray color, and is claimed to be purer than that of a lighter color, being free of magnesia. Other

THE RETSOF SALT MINE, NEW YORK STATE.
portions of saltare of a reddish cast, while occasionally clear crystals the size of a man's hand are obtained. These crystals are found next to the rock, and are fastened so tightly to it that they are usually destroyed in separation. The crystal salt is chiefly found on the north side of the mine.

Persons contemplating building will find it to their advantage to subscribe for the Architects and Builders Edition of the "Scientific tects and Builders Edition of the " Scientific
American." $\$ 2.50$ a year. Single copies $\mathbf{2 5 c}$.

Generous Gift for a Great Photographic Telescope. Dr. Edward C. Pickering, director of Harvard College observatory, sends us a circular stating that the astronomical observatory of Harvard College has received from Miss C. W. Bruce, of New York, a gift of $\$ 50,000$, to be applied " to the construction of a photographic telescope having an objective of about twentyfour inches aperture with a focal length of about eleven feet, and of the character described by the director of the observatory in his circular of November last; also to secure its use under favorable climatic conditions in such a way as in his judgment will best advance astronomical science."
This instrument will differ from other large telescopes in the construction of its object glass, which will be a compound lens of the form used by photographers and known as the portrait lens. The focal length of such a lens is very small compared with its diameter, and much fainter stars can be photographed in consequence. The advantage is even greater in photographing nebulæ or other faint surfaces. Moreover, this form of lens will enable each photographic plate to cover an area several times as great as that which is covered by an instrument of the usual form. The time required to photograph the entire sky is reduced in the same proportion. A telescope of the proposed form, having an aperture of eight inches, has been in constant use in Cambridge for the last four years, and is now in Peru photographing the southern stars. It has proved useful for a great variety of researches. Stars have been photographed with it too faint to be visible in the fifteen inch refractor of the observatory. Its short focal length enables it to photograph as faint stars as any which can be taken with an excellent photographic telescope having an aperture of thirteen inches. The eight inch telescope will photograph stars about two magnitudes fainter than can be taken with a similar instrument having an aperture of four inches. A corresponding advantage is anticipated from the increase of the aperture to twentyfour inches. Each photograph will be thirteen inches on a side, and will cover a portion of the sky five degrees square, on a scale of one minute to a millimeter. The dimensions will be the same as those of the standard charts of Chacornac and Peters. The entire sky would be depicted upon about two thousand such charts.
It is very important that the best possible location should be found for such an instrument. In Europe and in the eastern portions of the United States, where nine-tenths of the principal observatories of the world are situated, it is cloudy for a large portion of the year Great advantages are expected from a location where clouds and haze are seldom seen.
This generous gift offers an opportunity for useful work such as seldom occurs. It is expected that the Bruce photographic telescope will exert an important influence upon astronomical science by the large amount of material it will furnish.

Progress of the Metric

 System.At a recent meeting of the French Academy of Sciences, M. De Malarce, speaking of the extension of the metric system of weights and measures, gave some interesting figures. In 1887 the aggregate population of the countries in which the metric system was compulsory was over 302,000,000 , being an increase of $53,000,000$ in ten years. In 1887, in countries with a population of close on 97,000 ,000 , the use of the system was optional; and the countries where the metric system is legally admitted in principle and partially applied (as in Russia, Turkey, and British India) had, in 1887, a population of $395,000,000$, being an increase of $54,000,000$ in ten years. The increase is due to the growth of population in countries which had already adopted the system and to its adoption by new countries. The systems of China, Japan, and Mexico are decimal, but not metric. The metric system is thus legally recognized by $794,000,000$ of people, and the three last named countries have a population of about three last named countries have a population of about
$474,000,000$. So that only about $42,000,000$ of inhabi$474,000,000$. So that only about $42,000,000$ of inhabi-
tants of the civilized world have systems which are neither metric nor decimal.

simple scientific experingita

EXPERIMENTS WITH EGGS.
Some of the phenomena of fluid friction may be beautifully shown by very simple experiments devised by Sir William Thomson. The materials neceseary are two eggs-one raw, the other hard boiled; two rubber bands of such a size as to clasp an egg firmly when slipped on lengthwise; two thin steel wires, about the size of those sometimes used as E strings on guitars; and a mirror or a large plate, or other smooth surface,
 with a ledge around it to prevent the eggs rolling off.
From a gas fixture, or other convenient support, the two wires are hung, and to the lower end of each one is fastened one of therubber loops. Into these loops the eggs are slipped, with their long axes vertical, as shown in the figure. Grasping one egg in the fingers of each hand, they are gently turned once or twice round and
then let go. The eggs show a surprising difference in behavior. The boiled egg keeps twisting to and fro, after the manner of a torsion pendulum, while the raw one comes almost immediately to rest. The explanation is easy. The hard boiled egg, being rigid throughout, turns as a whole, while the raw egg, being soft inside, has only its shell moved by the torsion of the wire, the contents remaining stationary, because of their greater inertia. The shell is thus made to rub to and fro on its contents, and being very light, is soon brought to rest.
Sir William Thomson has used this experiment to illustrate one of the proofs that the interior of the earth is solid. If the earth consisted of a thin shell or crust of hard rocks surrounding a fluid or pasty nucleus, as has been until recently generally taught, he says that the observed swinging and swaying motions of the earth's axis in precession and nutation would be impossible. Any such motion would soon be stopped by interior friction

Place the eggs on the mirror or plate and try by a sudden t wist with the fingers to spin them on end like tops. With the boiled egg one readily succeeds, but the raw egg will hardly make a single rotation before it falls on its side. The finger twist has merely moved the shell, the inside remaining at rest. Professor Mendenhall has remarked that this experiment furnishes a solution to Columbus' problem-how to make an egg stand on end : first boil the egg hard, and then spin it.

The third experiment is the one that occasions greatest surprise. The boiled egg is spun on its side on the glass, and the palm of the hand is then gently brought down upon it for an instant. The rotation, of course, stops at once. But when the same thing is tried with the raw egg, as soon as the hand that stops it is removed, its rotation begins again. In this case, when the shell is stopped, its fluid contents remain in motion, and, rubbing against $j t$, set it in motion when the hand is taken away. It astonishes one to find how long the egg may be held still before this effect stops !

SMOKING AN EMPTY PIPE.
A neat adaptation of a familiar chemical experiment
 is now being shown by traveling conjurers. Theperformer comes forward with a common clay tobacco pipe in each hand, and after exhibiting them and blowing through them one
 at a time, to show that they
are empty, puts them wouth to
mouth, as in the figure, and at once proceeds to draw
volumes of smoke frow
them. The merest tyro in chemistry will at once rightly guess that one of the pipes is slightly moistened inside with hydrochloric acid and the other with ammonia, and that the clouds
of smoke are merely fumes of the salt ammonium chlo-
ride formed by the combination of the vapors of the two chemicals.
An effective way to show the same experiment to a class is to blow across the mouths of two bottles containing stroug ammonia and hydrochloric acid, and placed in line with the lips. A large room may thus be filled with dense fumes in a few minutes.
A. B. P.

The Making of Diamonds.

The practical production of the diamond by artificial means has been the theme of a great deal of thought and a good many experiments, but up to this time it has eluded all the efforts of the experimenters, though carbon crystals closely approaching the gem have more than once been secured, while many persons still think it is merely a matter of time, and not a long one at that, when this secret will have been wrenched from nature. In some receut experiments on the effect of high temperature and pressure on carbon, by C. A Parsons (Journal of Chemical Society), carbon rods were surrounded by benzine, paraffin, treacle, chloride or bisulphide of carbon, and submitted to great pressure in a hydraulic press, the rods being meantime heated by passing an electric current through them. In some cases a considerable amount of gas was evolved, and a soft, friable deposit of carbon produced. In no case was the density of the carbon increased. When the rod was surrounded with silica the latter fused, and the rod was largely converted into graphite; the same occurred with hydrated alumina in lime or magnesia, the rod being rapidly destroyed with evolution of gas. With layers of coke, lime, and silica, the rod was rapidly corroded, and was found after the experiment to be coated with a coke-like layer of great hardness, sufficient to scratch rock-crystal and ruby and to wear down the cut facets of a diamond. It resists the action of a mixture of hydrofluoric and nitric acids.

AN IMPROVED LIFTING JACK.

The accompanying illustration represents a device more particularly designed as a lifting jack for carriages, which has been patented by Mr. J. Merritt Smith, of Greenwich, Conn., Fig. 1 being a perspective

smith's lifting jack.

 and Fig. 3 a ver-tical sectional view. The vertical stationary post or standard of the jack is a solid flat bar having a vertical slot, in one edge of which is a series of downwardlyinclining branch slots or pockets, as shown in Fig. 2, the lower walls of these pockets forming rests or supports for the fulcrum p in of the operating lever. The hollow bar or case constituting the lifting upright of the jack slides up and down this stationary post, and is connected by opposite side links with the curved inner upper end of the operating lever, the fulcrum pin of which is placed in any one of the notches or branch slots of the standard, according to the height the lifting upright is desired to start from. The operating lever has a stop, in the slot receiving the stationary post, so that when the lever is fully down, the side links connecting it with the lifting upright will be in an approximately vertical position, or so that the line of resistance may be a trifle on the inside, to prevent shifting of the fulcrum pin, thus making the jack automatically lock itself when raised.

Peanute.

According to a correspondent of the New York Evening Post, 3,200,000 bushels of peanuts are consumed in this country every year. They come chiefly from Virginia and North Carolina, although Tennessee also produces a small crop. "Peanuts are planted at cornplanting time. Each kernel produces a running vine like crab grass, and each root produces about twenty pods. When ripe, the plow is run through the loamy soil, on a dry day, just before frost. The nuts are dried and shocked up like corn to keep dry before housing. When marketed, they go to a cleaner, where they are put through steam power machines and polished, after which they are graded according to size and variety. This year there is but two-thirds of a crop, and they are higher in price than since 1884. The crop begins to come into the market about the first of September. The Virginia nut is the largest and inest. The Wilmington is a smaller sort, and the panish nut, a still smaller variety, isjone whose kernels peel perfectly clean, thus making it valuable for confectionery."

AN IMPROVED WALL PAPER PROTECTOR.

A hand device to hold against the wall of a room when the base boards, door frames, etc., are being washed, to prevent soiling the paper, and allow the cleaning to be done close up to it, is illustrated herewith, and has been patented by Mr. Frederick W. Woodhull, of Lincoln University, Chester County, Pa. The body of the protector, A, is preferably made of sheet metal, with its ends, $b b$, turned outward or back, and its longitudinal marginal portions, ce, preferably set

WOODHOLL'S WALL PAPER PROTECTOR.

nclining outward from the face of the body. Two indentations, $d d$, are made in the body from its back forming partly spherical protuberances on its face, which rest on the paper to be protected, their form preventing injury, and giving the protector a slight pitch, so that its longitudinal margin will fit close to the woodwork. Upon the back of the body and extending its whole length is a handle, e, soldered or otherwise suitably attached. It is said that preparations are being made to manufacture these protectors in large quantities. See business and personal column.

AN IMPROVED FENCE.

The accompanying illustration represents a fence more especially designed for inclosing cemetery lots, but also well adapted for use in connection with lawns, gardens, and pleasure grounds, etc. It forms the subect of a patent issued to Mr. Henry E. Macrea, of Hudson, N. Y. Fig. 4 represents a fence constructed according to this invention, Fig. 1 being a broken and partly sectional elevation showing the manner of connecting the metal rods or tubes with the stone post. The post has tapering recesses or sockets of circular dovetail shape in its opposite sides, into which are nserted first one and then the other of two loosely fitting half sleeves encircling the rods or tubes, as shown in Fig. 2, each half sleeve rocking upon a pin or bolt passing transversely through the rod or tube, such pin or bolt engaging with notches in the faces of the half sleeves. An outer flange or nut is made to fit the rod or tube freely, and also to receive the outer end portions of the half sleeves, when these portions are brought together, as shown in Fig. 1, whereby the inner end portions of the half sleeves are spread out ward within the tapering sockets, forming locking devices. Fig. 3 shows a modified form of construction in which the outer flange or nut is screwed on to the half sleeves to hold the latter in locked position. This nvention is also applicable to fences or railings in which metal uprights or rods are secured at their lower

MACREA'S FENCE.

ends in stone sills, or may be used in fences in which the posts or supports are of other material than stone.

THE usual thickness of veneers for furniture is from ne-eighth to one-fortieth of an inch, but as a curiosity they are cut as thin as 160 to an inch.

REGEATLY PATEMTED DNVRFTIOMS. Enginooring.
Feed Water Heater and Con enser.-John Willenbrink, New Richmond, Ohio By this invention the water supply pipe connecting
with the pump discharging into the boiler is made with with the pump discharging into the boiler is made with
a number of vertical pipes opening into it, and connected a number of vertical pipes opening into it, and connected with the exhaust pipe of the engine, the constraction
being simple and effectively utilizing the exhaust seing simple and effectur to heat the feed water
Steam Whistle.-James R. Eldridge, Yarmouth, Nova Scotia, Canada. This invention provides a sound defector, consisting of a casting, either solid or hollow, having a curved under surface, whereby
the sound waves will be deffected horizontally over a the enand waves will be defected horizontally over a
large area, the device being of simple construction, and deeigned to be expeditiously attached to or detached from any form of whistle.
Safety Pilot for Locomotives.Norman S. Mussey. New York City. This is an apparatus having telescoping air chambers and telescopattached to the front of the train by which it is propelled, the apparatus being so arranged that in case of
collision it will act as a collapsible cushioning buffer to remove the shock of collision from the train.

Rallway Appliancor.

Car Coupling. - Edward E. Miller, Avenue City, Mo. The drawbar has a side opening and the end of a horizontal trip lever projects into the link throat, there being combined therewith a vertical lever
with a hook at its upper end and a horizontal hand lever fulcrumeo to the end of the car, having on its
fnner side a loosely connected coupling pin, whereby cars may be automatically coupled, and going between them for the purpose is avoided.
Car Coupling. - John M. Burden, Huntsville, Ky. This is a device by which cars may be coupled by simply securing the coupling bar in one
drawhead and forcing tre cars together, when the free drawhead and forcing the cars together, when the free end of the bar will enter the other drawhead and be en-
gaaged thereby, the invention covering various novel gaged thereby, the invention covering varions n
details of construction and combinations of parts.

Mechanical.

Mechanical Movement.-George W. Thomas, Ogallala, Neb. A pitman consisting of two prooved bars connected by teeth with each other is
combined with a gear wheel on a main shaft meshing combined with a gear wheel on a main shart meshing
lnto the teeth, while crank diske engage by their crank ins the grooves in the bars of the pitman, the device pins the grooves in the bars of the pitman, the device
being specially intended for revering motion and ap-
plying power in a direct manner tiroughout the length of the estroke.
Water Motor. - Louis P. Santy, Clements, Kansas. This motor consists of two endless with backets of special constraction pivoted on the chains and operated on by the force of the water, and
is especially adapted to he used onder waterfalls, in the 18 egpecially adapted to
currents of streams, etc.
Lubricator for Spinining Ma-Oninkrr.-Lazarus B. Sanford and Thomas Grisenth-
waite, Fall River, Mass. This is a lubricator hinged on waite, Fall River, Mass. This is a lubricator hinged on one of the links of the tension device, and has an aperture discharging into a concave recess formed on the Inside of the foot resting on the neck of the roll, thus sapplying the neces8ary labricant to the top rolls while round lap on the top clearer for mules.

Agricultural.

Lister and Drill. - William A. Longhry, Odessa, Neb. This is a combined machine by which the usaual subsoil plow is dispensed with, and the edice of the trench is left at an anglee instead of per-
pendicular, so that grase will not ooon appear at the pendicular, so that grass will not soon appear at the
Joint of the turn of the furrow, there being combined with the listung plow and drill concave and inwardly curved blades,
Roller Colter. - Sidney Cook, Orlando, Fla. This iis a plow colter to cut weeds, etc., in advance of the shaft, the colter head having rearwardly
exterding arms secured at their forward ends thereto extending arms secured at their forward ends thereto,
and the colter being joornaled in the rear of these arma, while wecd.depressing arms are secured to the colter head and curved downward and rearward under the colter arms.

Miscellaneous.

Rest for Packing Hats.-James W. Seymour, Brooklyn, N. Y. This is a device in which
hats may be expeditiously and conveniently placed, nnd, when packed, will ride independently of each other, consisting of opposed tubular columns having
upon one face transverse outwardly extending tongues, apon one face transverse ontwardly extending tongues, the device not marring or injuring the hats, and the
hats being so held that the devicemay be upturned without danger of spilling the contents.
Joint for Hollow Shells, etc.Lyman White, Waterbury, Conn. This is a joint for tanks, etc., the opposing cylinder sections having their contignouns ends turned inward, in combination with an interior peripherally grooved tie ring and an exterior
locking ring, whereby a simple and durable joint may locking ring, whereby a simple and dura
be conveniently and expeditiously made
Electric Horse Disconnector. Georgo A. Coulter, Omaha, Neb. This invention from their stalls in the fire engine hoone by the electric Impulse on the fire alarm circritl, and consistse in the
pecculiar construction amd arrangement of the devices peculiar construction and arrangempent of the devicees for locking and opening the
tripping and releasing them.

Solomring Clamp.-Henry C. Atkinon, scottville, Ky. This is a machine for use in solderalso for soldering the sections of spouting, the machine consisting of a body piece with a groove in one side and in the ottere side a trough-like cavity with a stop, t the opposite edge.
Window Screen.-William J. Horton, Halifax, Nova Scotia, Canada. The lower end of the screen, of fabric or woven wire, is nailed to the window sill, and its ateral edges are connected with and slide
on rode fixed vertically on the inner sides of the window frame, the upper edge of the screen being secured to the under side of a wooden cross bar detachably connected
with the sash, the screen being when the essh is raised, and partislly folded when th when the sash is
sash is closed.
Sewer Pipe.-John A. Missud, New Orleans, La. This sewer pipe is provided with a small sapplementary pipe on its lower inner surface through
out its length, such sapplemental pipe beng cast in out its ength, such sapplemental pipe belng cast in
togral with the main pipe, and provided with frequent tegral with the main pipe, and provided with frequent
perforations, whereby the main pipe may be effectively perrorations, wheriby the main pipe may
flushed when desired to remove sediment.
Waste Pipe Coupling.-William H H. Davis, Philadelphia, Pa. This coupling conists part provided with a lag for the passame of a bolt by which it is held to the capped end of o water pipe fitting the tapering nozzle of an ordinary kitchen sink, wash
bowl, etc., allowiug easy connection or disconnection, th economy of time, labor, and material.
Boot or Shof Last. - Arthur M. Leighton, Port Townsend, Washington Ter. This last
comprises a heel piece, foot piece, and novel connections comprises a heel piece, foot piece, and novel connections
between these parts, the foot piece being pivoted be between these parts, the foot piece being pivoted be-
tween its ends, so that it can be turned end for end and being shaped differently at its opposite ends so mas fit different s
respond therewith
adjustable Last.-Arthur M. Leighton, Port Towneend, Washington Ter. This inventio covers an improved adjustable cobbler's last, designed
to be readily adjusted to closely fit any size of boot shoe, whether with a pointed or wide toe, while it can be readily lengthened or shortened as desired, the last ng strong and simple in constractio
Windmill Posts. - Leonard J. M. Vehf, Sutton. Neb. This is an anchoring attachment without digging the large holes heretofore required, and consists of two leg portions, with a yoke for holding their apper ends apart, the legs having a pivotal bear-
ing in the yoke, while a wedge is forced between the ing in the yoke, while a wedge is forced be
lower ends of the legs to apread them apart.
Gate.-Amon W. Chilcott, Mattoon Ill. This is a gate adapted to be opened or closed withont dismonnting from the horse or vehicle, and anto-
matically lociked in either opened or closed position, maticaliy locked in eilher opened or closed position,
being a hinged gate with a lever pivotally connected to being a hinged gate with a lever pivotally connected to
it at one end, a triangle hinged at its base and pivotally connected at its apes to the lever, with a weight on the projecting end of the lever beyond the apex of the
triangle.
Cement.-Carl Straub, Syracuse, N. Y. This is a special composition, in which is used such
gypsum as found in Onondaga and Cayuga Connties N. Y., sulpharic or muriatic acid being used therewith, and a a retarder, such as aslae or oill, with the calcined
calcareous base and sillicate of potash or natron, the materials being compounded in proportions and after the manner desicribed.
Thill Coupling Jack. - James M. Smith, Greenwich, Conn. In this jack the strap-like clamp is combined with a lever having a changeable
falcrom to operate on the opposite side of the axle, a fulcrum to operate on the opposite side of the azle, a
single movement of the lever serving to keep the jack single movement of the lever serving to keep the jack
to its hold without a continued straiu or pall, thus to its hold withont a continued straiu or pull, thus
making the jack automatic, and affordiug increased facilities for adjuátment.
Pipe Damper. - Mark J. Liddell, Mount Pleasant, Mich. This is a damper applicable to the pipe or draaght fine of any stove, heater or farnace,
and consists of two platee pivoted at contiguous edges, and conists or two plates pivoted at coniguous edgeas
with a latch device connected to the plate pivots and with a arch device connected to the plate pivots and
adapted to hold the plates at any required adjustment the device being simple, inexpensive, and efflicient, af fording perfect control of the draught.
Ladder Platform Bracket.-Lewis B. Laskey, Dover, N. H. This is a device which may be
securely fastened to the rounds on any part of a ladder and is designed to afford an easy and firm footing for and ens. pisiters, etc., or to focilitate the picking of
meroit the device being readily placed on a a ladder standing at any angle, and so made that it can be folded up hen not in use.
Folding Soap Box. - Isabella B. Jones, New York City. This a box for holding soap conveniently at the side of a pail or other vessel, and is
made with a body of sheet or cast metal or waterproof paper, to be inexpensive and neat-looking, the body being open at one side and having a lower drip chamber while a soap tray is hinged to the body, and has a
chamber holding the drip when the tray is folded to the chambe
body.
QuI
Qullting Frame.-Uriah E. Miller Heilig's Mill, N. C. This is an attachment designed
to be readily connected with and disconnected from sewing machine, while being easy to handle and eff. cient in operation, the invention covering
arrangements and combinations of parts.
Phonogram Receiving Box.-Harry F. Searle, Brooklyn, N. Y. This is a box designed to conveniently storing and fitting the phonogram and prevent it from being injured on its delicate periphery while being stored and transported, the box having a cover and a circalar offeet held concentric in the box,
on which the cylinder is placed.: The cover locking the

Perforating Tool.-William Fallon, Newburg, N. Y. This is a marking wheel consisting of in the outer upon the periphery, ing edge the tool being pivoted in a shank having a shoulder piece swiveled to its apper end, whereby pres
sure may be exerted without inconvenience to the sure ma
operator
Photographic Camera.-Erastus B. Barker, New York City. This invention relates to magazine cameras in which a series of sensitized plates are
stored one in rear of the other for successive use, and stored one in rear of the other for successive use, and
provides for the ready adjustment of the plates to their laces, releasing them after exposure and throwing年m over into the receiving box, while light is effectuosure to take the image.
Photographic Paper Roll Holder. -Erastus B. Barker, New York City. Combined with and detachable from the holder is a spring carrie throw tension on the roller at its ends, with other novel features, whereby the paper may be conveniently rolled
upon one roller and unrolled from the other to make a apon one roller and unrolled from the other to make a
series of successive exposures throughout the length of he sensitized strip.
Album.-Christian Jaeger, New York City. This is a double-backed book in which the leaves are secured to the two backs to interlock and
support each other when the book is closed, the upper cover being by preference centrally and longitudinally divided, making an album not liable to get out of shape and in which there will be no undue strain upon th back.

SCIENTIFIC AMERICAN

BUILDING EDITION
AUGUST NUMEER.-(No. 46.)

table of contents.

1. Elegant plate in colors of a cottage for twelve hun dred dollars. Perspe
2. Plate in colors showing perspective elevation and housand dollars. Page of details, etc cost on
3. Page engraving of the new and elegant Trinity architect.
4. A New England mansion. W. B. Tubby, New York,
plans.
5. Elevation in perspective and fioor plans of a cottage at Jersey City Heights. Cost twelve thou sand dollars.
6. A cottage recently erected at Bridgeport, Conn. at a cost of two thousand th
A handsome country residence at Belle Haven dollars. Perspective and floor plans.
7. A honse for eight thousand dollars, recently erected at Bridgeport, Conn. Perspective view and floo
8. The New United States court house and post office Charleston, S. C. Cost three hu
dollars. Perspective and plaus.
9. A cottage at Bedford Park, New York. Cost thre thousand five hundred dollars. Plans and per spective
10. House for three thousand six hundred dollars, recently erected on Armory Hill, Springfield, Mass.
Perspectiveelevation and fioor plans.
11. Page of designs of ornamental well curbs.
12. Brick dwellings recently erected in Jersey City N. J., at a cost of three thousand eight hundred dollars each. Plans and perspective
13. A corner residence on Jersey City Heights, N. J.
Cost eighteen thousand dollars. Plans and perCost eigh
spective.
14. The great chapel, cathedral of Toledo, Spain drawn by Antonio Hebert. Full page engraving 16. Engraving of the Lessing theater in Berlin. 17. View of the new electrical labratory of Purdu University at La Fayette, Indiana.

N. Y., library.

19. Miscellaneous Contents : Hints to architects.Iron bricks.-Hard woods.- Prevention of diph theria.-Overthrowing a chimney.-The manu-finish.-Jim Fisk's monument.-Experiments on for pulling street piling, illustrated.-The Eiffel tower.-Sixteen stories the limit.-A singular illustrated.-The Hess system of ventilating and warming.-Bints about lawns.-Hot water heat-
ing, illustrated.-The "Timby " automatic sash lock, illustrated.-A solid guaranty for roofing
plates. -High speed automatic engines.-Metallic plates. -High speed automatic engines.-Metallic
shingles and roofing tiles.-Electrical appliances shingles and roofing ti.
The Scientific American Architects and Builder Edition is iseued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of ArchitectURE, richly adorned with elegant plates in colors and with ane engravings, illustrating the most interesting xamples of
allied subjecte
The Fullness, Richness, Cheapness, and Convenienc of this work have won for it the Largest Circulation of any Architect

MUNN \& CO.. PuBurbiegra,
O81 Brosdway, New Yor

NEW BOOES AND PUBLICATIONS.
SEVFNTH ANNUAL REPORT OF THE United States Geolofical SUR-
vey. J. W. Powell, Director, Washington : Government Printing Office. 1888.

Althongh this report only covers the work of the department for the fiscal year $1885-86$, one feels amply compensated for the seeming delay in its pnblication by pages of this magnificent volume, with its splendid
pare maps and plates and rich typography. In its geographic division the department has undertaken a to-
pographic survey of the whole country, of which but a little more than a commencement has been made, but the work is eventually designed to be the basis for all other maps. Among the principal papers in the volume are: "The RockScorings of the Great Ice Invasions," by T. C. Chamberlin; "Obsidian Cliff, Yellowstone National Park," by Joseph P. Iddings; "Geology of Martha's Vineyard," by Nathaniel S. Shaler; "Classification of the Early Cambrian and Pre-Cam brian Formations," by R. D. Irving; " Structure of the Triassic Formation
of the Connecticut Valley," by William Morris Davis; "Salt, Making Processes in the United States," by Thomas M. Chatard; " : Geology of the Head of Chesapeake Bay" "by WT J'Gee, with valuable report on the "Mineral Resources of the United States," by Mr. Albert Williams, Jr. A limited number of these volumes, and of other pablications of the Survey, are kept for sale to the public, at their cost price, and applications therefor should be addressed to the Director Daudet's La Belle-Nivernaise. The
story of a river barge and its crew.
Edited by James Boille, B.A., Senior
French master in Dulwich College.
Boston, U. S. A. : D. C. Heath \& Co. publishers. Paper. Price 30 cents.
This is one of Alphonse Daudet's prettiest short
stories, and pictures the life of a family living on the rivers and canals of France. Daudet's French is peculiar and full of idioms, and the editor has published an appendix of explanatory notes and full translations of the idioms. The book is intended principally for the use of schools or colleges.
DARWINISM. An exposition of the theory
of natural selection. By Alfred Russel Wallace. London and New York: Macmillan \& Co. 1889. Pp. xiv, 494.
With diagrams and illustrations. With diagran
Price $\$ 1.75$.
One of the most prominent of the advanced school of Darwinists presents in this work the arguments for
the truth of the theory of evolution. The defnition of species, as essential to the plan of the author, is first given. Then their struggle for existence among animals and plants is discussed. The variability of species and changes in animals, wild and domestic, with natural selection and the doctrine of the survival of the fittest, come next in order. The work goes on in this way,
giving an admirable exposition of the difflculties as giving an admirable exposition of the difficulties as well as of the more successful portions of the theory. The concluding chapter is devoted to man, and while man's bodily nature, he rejects it for the intelles and advocates the hypothesis of a spiritual world. This conclusion, coming from so pronounced a Darwinist, is of special interest as indicating the limits now being imposed by advanced thinkers upon evolution. A por-
trait of the author, forming the frontispiece, is of interest trait of the author,forming the frontispiece, is of interest Electro-Metallurgy, Practically Treated. By Alexander Watt. 1889. Pp. x, 278. Price $\$ 1.40$.

The title and author's name sufficiently vouch for the scope and quality of this book. To those who wish a thoroughly practical epitome of the art, and who do not feel disposed to go into the detail of the larger manuals, this addition to Weale's series may be con-
fidently recommended. It is illustrated with a number of cuts which are applicable to its purpose and increase

Thermodynamics of the Steam EnGINE AND OTHER HEAT ENGINES. By Cecil H. Peabody. New York:
John Wiley \& Sons. 1889. Pp. xviii, 470.

Professor Peabody, of the Massachussetts Institute of
Technology, in his preface announces that he proposes to offer a text book for students. But the high character of the work, its plain and practical nature, are sach as to make it of value to all who desire to stady the last views on the great question of thermodynamics.
Much of thespace is devoted to the more practical considerations, as of actual tests, methods of testing, etc., but the opening chapters give a good review of the theory, atilizing the calculus where required.
Twenty Years with the Indicator.
By Thoinas Pray, Jr. New York: By Thomas Pray, Jr. New York:
John Wiley \& Sons. Pp. 284. 8vo. Price $\$ 2.50$.
his is the only bo
This is the only book, we believe; that has ever been ator for the proper calculation of the work done by the steam in steam engines. It is a practical text book for the engineer, while it has no complex formule, and explains the subject in a manner to be readily understood y any student or mechanic. It is fully illustrated, and contains rules as to the best way of running steam nst valves and valve motions correctly, how to adpute wower by planieter and other methods, to wotb many tables and hints. The matter of the book has been gathered from the very wide personal experience of the anthor ever since the commencement of the ase practical service alike to the engine owner and the working engineer.
Any of the above books may be purchased through
this office. Send for new, book catalogue just pablished.
ßßusiness and Personal. 2
The chargefor Insertion under thes head is one Dollar The charge for Insertion under thes head is One Dollar
a line for each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue. Wanted-A thorough, scientific, and practical starch maker. One acquainted with new methods of
starch making preferred. Address The G. Fox Starch
.. Cincinati, ohi.
For Sale-Foundry and machine shops at Omaha,
Nebraska. Completely equipped and in frst class conNebraska. Completely equipped and in frst class con-
dition. A splendid opening for business in this line.
Address, A. C. Troup, Omaha, Neb. Correspondence solicited with parties interested
patent Wall Paper Protectoz described on page 72 . For the best Hoisting Engine for all kinds of wo
address J. S. Mundy, Newark, N. J. address J. S. Mundy, Newark, N. J.
Guild \& Garrison, Brooklyn, N. Y., manufacture
team pumps, vacuum pumps, vacuum apparatus. air steam pumps, racuum pumps, vacuum apparatus, alr
pumps, acid blowers, fliter press pumps, etc.
For the latest improved diamond prospecting drills,
ddress the M. C. Bullock Mfg. Co., Chicago, Ill. - Ball Engine. Chicago, Ill

Automatic cut-off. Ball Engine.-_Bene Co., Erie, Pa.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y.,
will send their pamphlet, describing water works mawill send their pamphlet, describing water works ma-
chinerg, and containing reports of tests, on application. Screw machines, milling machines, and drill presses.
E. E. Garvin \& Co., Laight, and Canal Streets, New York. Rubber Belting, all sizes, 771/2 per cent from regular
ist. All kinds of Rubber Goods at low prices. John \mathbf{W}. list. All kinds of Rubber Goods at low
Buckley, 156 South Street, New York.
Steam Hammers, Improved Hydraulic Jacks, and Tube Sofety Flevers, steam Safety Elevators, steam and belt power ; quick and
smooth. The D. Frisbie Co., 112 Liberty St., New York. "How to Keep Boilers Clean." Send your address "How to Keep Boilers Clean.", Send your address
for free 96 p. book. Jas. C. Hotchkiss, The best Coffee roasters, coolers, stoners, separators,
polishers. scourers, klossing apparatus. milling and polishers, scourers, rlossing apparatus, milling and
peaberry machines: also rice and macaroni machinery,
are buitt by The Hungerford Co., Broad and Front Sts., are built
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Worke, Drinker St., Philadelphia, Pa. Lathes for cutting irregular forms. H

Automatic taper lathes. Heading and box board ma-
hines. Rollstone Machine Co., Fitchburg, Mass.
Send fornew and complete catalogue of Scientific and Other Books for sale by Mun
New York. Free on application.

(2)
HINTS TO CORRESPONDENTS.

(1065) J. N. W. asks for a receipt for making an ale yeast or refer me to a work where I could
get it. A. Yeast collects as a solid precipitate during bottom fermentation on the bottom of the fermenting
val. In "Preparation of Malt and Fabrication of Beer," Which we can sapply for $\$ 10$, you will find the subject
treated in much detail.
(1066) M. V. asks: How much pressure would be exerted in a cylinder 5 inches by 7 inches (5)
inches deep and 7 inches diameter), the boiler to coninches deep and 7 inches diameter). the boiler to con-
tain 300 pounds to the would have a pressure of 11,550 pounds on each head
16,500 pounds on the sides.
(1067) C. R. P. asks
(1067) C. R. P. asks : Would you kindly violin resin boil down Venice turpentine with a little per consistency. During the boiling cold water must be added from time to time. When sumftciently thick porr into cold water, knead well, and when cold break
(1068) F. N. H.--It is against all sanipool if there are any wells in one in in the neilighborboobs.
One well as a cessopool in a village where the neighboring wells are in nee for household purposes may start typhoid fever. The water circulates in the ground, and
when the direction of the circulation is known, a deep cesspool may be safe on the leeward or down-stream
side of the town. side of the town.
(1069) C. I. W. Co. ask the cheapest
and best preparations for dipping the botoms of and best preparations for dipping the bottoms of
wooden fence posts in to preserve them. A. The beat
is oil of tar or creosote oil heated to 212°, dipping the is oil of tar or creosote oil heated to 2122°, dipping the
poest long enough for thorough surface saturation. poat ong enough for thorough surface saturation.
Coal tar or petmleam is the cheapest. Sulphate of
copper and salphate of iron solution in water, need copper and sulphate of iron solation in water, usee
boiling hot, and chloride of zinc solution in water, are also good. Satunate by dipping in hot solution.
(1070) F. A. McC. writes: We have
to the hoase. It is filled up to quite an extent witt
rust. Is there any means of cleaning out a portion o all this rust and allowing the water to run freely again? $\begin{aligned} & \text { A. Unse } \\ & \text { rod. } \\ & \quad(1071)\end{aligned}$
(1071) N. A. S. asks how many revolutions a worm would stand without heating. How would
it wear, and what kind of metal is best for gearing? Worm gear is much nsed for light work. The turns
required for heating depend apon the pressure, size, required for heating depena upon the pressure,
and speed of the worm. Hard gun metal or
makes
(1072) G. W. B., Jr., asks how to polis deer horns. A. Scrub them with a brush and sand to take off the dirt and loose fiber, then polish with ronge
and rotten stone and a cloth, and varnish with copal varnish.
(1073) J. B. P. writes : If the moon revolves on its axis once in 28.4 days, and the earth re-
volves on its axis each 24 hours why is it that volves on itit axis each 24 hours, why is it that we see
only one side of the moon? A. The axis of the moon's
rotetion rotation, of which you speak, is not within it, but is
nearly coincident with the earth' nearly coincident witht
rotates around the earth.
$\underset{\text { graphite thinned with torpentine mar and ground }}{\text { (1074) E. Co }}$ graphte thimed with turpentine make an excellent
piint for boiler fronts and pipes in boiler room, The steam pipes for heating should not be painted, or if required, should only have a very thin coat of lamplack
and lineeed oil. Tin is unft for roofs of boiler hooses. and lineed oil. Tin is unft for roofs of boiler bonges.
slate is best. You can make a temporary covering on Slate is best. You can make a temporary covering on
the tin roof with asphalt and gravel. This will not save the tin, which will soon give out entirely. The
cheapest way ont of cheapest way ont of
and slate the roof.
(1075) J. L. M. asks: What to use to give tin a luster atter it is dipped in the hot metal; have been using sal ammoniac water, but it does not give as good luster as I would like. A. The luster on
dipped tin work is made by the dipping process, and cannot be made by any chemical treatment afterward The work may be polished with a brush and whiting with good effect. To dip bright, the surface of the tin bath must be kept perfectly clean with powdered sal
ammoniac and skiming. The temperature should ammoniac and skimming. The temperature should
also be exactly right for the best effect.
(1076) J. A. B. asks: 1. How the wire solder is made that is sold by street venders and used
by holding a candle under the tin where the leak is, and rubbing the solder over it? A. The solder is what is called bismuth solder in the trade. Made by mixing
two parts tin, one part lead, one part bismuth. 2 . Detwo parts tin, one part lead, one part bismath. 2. De-
scribe briefly how I conld make a small battery for a door bell. A. See battery described in SciENTIFIC
Ament ©AN SUPPLEMENT, Nos. 157, 158, and 159.
(1077) C. J. asks the best way of in closing a ventilating fan. A. The blades shonld be very thin and light and inclooed at the periphery with
a light band, same width as badees, to which the
blades shonld be fastened. At speed stated 1 cioo revoblades should be fastened. At speed stated (100 revo-
lations a minute) the fan will deliver about 2,500 cubic feet of air per minute without pressure, and will re.
quire from 4 to 6 h . p . to run it. Everything in respect quire from 4 to 6 h . p. to ron it. Everytbing in respect
to power depends apon the weight and make of the to power rependescripan the weight and make of the
fan. Your desciption gives us but little information
(1078) L. O. H.-The pressure or resistance of air at twenty miles an hoor is two pounds per
square foot. At ten miles per hour, half a pound per square foot. At the latter rate two square feet will
(1079) W. G. M
ars. 1. How many with a steam dome would be required to generate steam for a four horse power engine, wood fuel, and
would you recommend such a boiler! A. It will rewould you recommend such a boiert A. I. win re-
quire 170 feet of one inch pipe as heating surface for a
four horse power boiler. See article on pipe boilers
友
7o2. We can recommend pipe boilers when properly
made, to give free circulation of water. 2 . How to made, to give free circulation of water. 2 . How
estimate the horse power of sails on a windmill. The horse power of windmills if computed from the
pressure upon the vanes, due to velocity of the wind, pressure upon the vanes, due to velocity of the wind,
the angle of the vanes, and speed obtained, or by apthe angle of the vanes, and
plication of the Prony brake.
(1080) E. P. asks : What kind of coal ignites the quickest and at the same time makes the
largest volume of blaze? A. Cannel coal, such as is nsed for making gas, is the easiest and most inflam-
(1081) M. \& M. write: We think of erecting a crossway over a river. The span is 300 ft .
We have a wire rope 1 in. in diameter, long enough to ooss twice, would it be advisable to stretch twostrands and hang a walk under, or one strand and hang a car
on it: We would like the walk if it would be safe. A. Yon clan make a very substantial foot briage with the donble cable, by giving the cables a defection of 20 ft . Irom the level of the piers. Lash slats of pine about
ft. long to the top of the wire ropes. Put bracket 4 ft . long to the top of the wire ropes. Put bracket
stays every 10 or 15 feet for rail ropes, which may be $\%$ hemp rope. Place guy ropes enough to steady the rridge from the effect of wind. The 1 in. wire rope, if in good order, is equal to 2 working strain of 6,000 lb.
The distributed load, including weight of rope, slats, gue distribued load, including weight of rope, slats, briage of two ropes.
(1082) B. I. asks : Is the discovery of natural gas confined to any particular geological form-
ation? And if not, do you think that there is any ation? And if not, do you think that there is any of Piedmont, Va.q A. The Piedmont region of Virginia, including your Bedford County, is not within the geological fild of oillbearing or gas-bearing rocks. The
new red sandstone belt, reeting apon the primary and tilted gneiss, on its western edge, is conceded to be a barren belt in regard to oil and gas. There is but little
donbt that the coal and as donbt that the coal and gas fields have a very close
connection. The Triassic coal beds of central Virginia
locality; but the fact that these coal beds belong to a
latergeological perioio than those forming the great interior geological basin is much against any such expectation.
(1083) Barber writes for a receipt for brightening tin bath tabs. Have tried varions liquids,
but cannot remove the brown color from the tin. A. If ground pamice, soop, and water will not do it, the stain is due to the destruction of the tin, and your only
(1084) R. C. H. asks: 1. How hard rubber is made, such as is used for making dranghting
triangles. A. For India rubber manufacture, we refer
 How transparent celluloid is made. A. For celluloid see
answer to query No. 996, in Scientific American answer to quer
June 13, 1889.
(1085) G. B. P. asks: If a lady and entleman meet on the street, who should bow first?
A. In this part of the world the lady bows first. In ther countries the gentleman bows frrs.
(1086) C. C. S. writes: How can I tan d remove the hair from a gopher or squirrel skin, to used in the construction of the telephone described in the Scientific American, May 18, 1889, page 3079
a. Treat it with lime water, or milk of lume, if the first too weak, and scrape. You must not \tan it, but while wet over the frame
(1087) J. B. writes : 1. I am engaged in oes not give satisfaction, on account of corroding the wood. I have tried sulphide of sodium (4 per cent sol.), but it seems to evaporate before doing the work. Would like to know what I can use as a body, to pre-
vent the sudden evaporation and not impair the strength of the sodium. A. You may mix milk of lime with it to keep up its strength. Sometimes it is mixed pipe clay as 'spread over the hides, which lime or folded and left for some hours. It is a powerfol agent and liable in unskillful hands to do injury. 2. How long should the skins lie before pulling? A. Three o four hours should suffice. 3. Is the solution indicated strong enough? A. You might use it three times as
strong. Allow 34 lb . to a bullock's hide, and pro rata
(1088) A. A. K. asks: Will you please ell me through your columns how many cubic feet of hydrogen gas is required to lift one pound (16 oz.)? A.
About 14 cubic feet. The greater the pressure to which subjected, the less it will lift.
(1089) N. A. E. asks for the best process or staining a violin, one that has just been made, and has not been shellacked or stained? A. The wood may
be stained to suit with aqueous or alcoholic infusion of loes, annatto, gamboge, turmeric or saffron for yellow with infusion of dragon's blood or red sanders wood
for reds. By mixture, any desired tint can be obtained. Perhaps the better way is to extract the coloring matte hat in this case each coat of varnish will intensify the color. The first method is said to give a painted effect
(1090) J. P. E. asks : How can I pretelephone transmitter, same as is used in ecircuit of Edison transmitters? A. Press it in a die by hydraulic
(1091) C. W. V. writes: I have some which are badlystuck ip with shoemaker's was What can I use to dissolve this offt A. Waeh off with kerosene oil, using a stiff brush. If this is insufficient, follow with spirits of turpentine.
(1092) C. A. S. writes: What are the preparation for sticky fly papers A. Melt making the presin with $31 / 2 \mathrm{oz}$. Knseed oil and $31 / 2$ oz. molasses. Ap ply while hot.
(1093) F. W. S. asks : 1. For a formula or white ink, for writing on ordinary dark and black paper. A. For white ink, use Chinese white, rubbed solution of ozalic acid (poison), using a gold or quill pen. The last is an excellent method of writing white on blue, and gives a permanent, ineffaceable record. 2 For making an ordinary dressing for buggy tops, etc.
A. Neat's foot oil is excellent, if only wanted as a dressing. A little turpentine and enough beeswax to give it the consistency of batter when cold may be
mixed with it by heat and stirring. One receipt for leather ointment reads as follows: Melt and mix yellow
wax, oil of turpentine, olive oil, castor oil, of each 25 wax, oil of turpentine, olive oil, castor oil, of each 25
parts, and pure boiled linseed oil 50 parts; add with contant stirring $371 / 2$ parts pure wood tar
(1094) W. S. asks: Can you give me the formula for the explosive used on tip of the ordinary parlor match? How is it prepared, and how
put on? A. Heat together on a water bath 3 parts red phosphorus, $1 / 2$ of gum tragacanth, 8 of water, 2 of fine sand, and 2 of binoxide of lead or of red lead. Dip the
sticks first into melted stearic acid, and then into sticks first into melted stearic acid, and then into
above. When dry dip into a solution of gum benzoin 4 parts in alcohol (40° B.) 10 parts
(1095) A. A. R. asks : Why do we not feel the heat of the sun as mach in light-colored
clothing as in black or dark-colored A. The lighter clothing as in black or dark-colored? A. The lighter
colored clothing reflects more of the sun's heat than does the blad clothing is the better radiator, and dis

the body.

(1096) W. A. R. asks: A process for welding iron and cast steel together? A. We know of
nothing better than borax and good management. Have the iron sparking hot. Steel bright cherry. ake the weld at first blow.
(1097) F. R. W. asks : 1. In steamboats which way should the steering wheel move, the same a
the rudder, or contrary? A. Wheel should tmove the the rudder, or contrary? A. Wheel should forve the
same way as the tiller, and opposite to the movemen
of the rudder. 2. In a side-wheeler, which way should
the reverse lever move, the same way as the boat moves, or the contrary? A. Reversing lever should move in the same direction that the boat moves, if convenient, otherwise to suit the necessities of construc-
tion. 3. Can we increase the speed of a side-wheeler by lightening her paddles and letting the engine run faster, fly wheels to the engine, Cannot say that lightening the wheels will give greater speed; better enlarge the wheels. 4. How deep should paddles dip, which are 18 wheels. 4. How deep shoald padales dip, which are 18
ft . diameter, make 25 revolutions per minute, on 100 ft . boat, and how far apart should the paddles be? A.
Paddles should dip $18 / 4$ feet. An 18 foot wheel should Padales should 16 paddles.
(1098) J. G. asks: How to make beeswax about the hardness of sealing wax. Also how to
color same red, brown, and black? A. It cannot be color same red, brown, and black? A. It cannot be
hardened. To color it, first bleach it, then incorporate hardened. To color it, frrst bleach it, then incorporate
with it dry colors by heat and rubbing; carmine, burnt sienna, and lampblack may be used. To bleach it, roll
(1099) S. asks: Will you kindly inform
e how many pounds of water a dynamo, driven!by me how many poonds of water a dynamo, driven!by . It depends on the resistance of the decomposing aporatus. Allowing two volts as the requisite intensity
of current to cover this resistance and the electrochemical decomposition coefficient of water, we obtain 4899 lb . avds. of water as the quantity that would be decomposed.
(1100) P. C. S. asks what to apply to a
 hereing It is about six years old, but was lined
hroughout two years ago. A. Put box with quicklime in it, and replace every few days as fast as it beomes slaked.
(1101) G. L. B. asks: What power would one $5-16 \mathrm{in}$. stream of water have impinging against a flat or covered surface under 150 in. pressure, nder the same pressure in an apparatus like the Barker mill? A. Each stream or jet would be equal to 2\%
(1102) C. O. N. writes: 1. Suppose canned fruit, which it is desired to heat to a certain
temperature, is placed in an oven, which will be the emperature, is placed in an oven, which will be the
oost effective, to heat from burning coal directly round the oven, or heat by steam let directly into the vise steam heat properly applied. 2. Why may not a high metal shaft, properly insulated, be effective for ather electricity in quantities sufficient for lighting or unning machinery? A. Any electricity thus collected would be too small in amount to be of any use.
(1103) W. S. asks: 1. Supposing you wanted a private telegraph line, would one wire be have to have two to complete circutt? A. A single wire grounded at both ends is perfectly efficient. 2. Would.
it do to connect the instrument of private line with it do to connect the instrument of private line with m
battery of another instrument so as to have the one battery work both of the liness If so, how could it be one? A. It is better to have a separate battery for
ach line. 3. Would it do to have the ground wire of his private 3. Would it do to have the ground wire of other line? A. Yes; if carrent in both lines was used in same direction. 4. Could you give me any idea how in same direction. 4. Could you give me any idea how
to guard against lightning without a switch board? A. Connect a metallic comb or toothed plate of metal with the ground. Have a similar plate close thereto with
teeth facing teeth but not touching, and connect the ne to the second plate. 5. Does it strengthen a batblue vitriol? A. No; it exhausts its strength uselessly
butting in it pieces of old zinc instead of lue vitriol? A. No; it exhaus
and interferes with its action.
(1104) J. S. S.-Nickel plating can be given the black oxidized appearance by dipping in a
solution of platinum chloride, or by the sulphide of lead solation of platinum chloride, or by the sulphide of lead
process, or by electro plating a thin covering of silver and then oxidizing the silver. Steel polished is cheapst colored by heat, but can be plated and the plating sidized. See Techno Chemical Receipts, which we
ail for $\$ 2$. Also Workshop Receipts, 1st series, $\$ 2.1$
(1105) A. H. B.-Long balls or shells red from rifled guns keep their axes parallel with the bore of the gun during their entire flight. Anything
hat will make a difference in specific gravity between he forward and rear end of a projectile will tend to seep jts axis in the line of the trajectory, as is the case with the projectiles of the pneumatic gan, which move With their axes coincident with their trajectories during
(1106) W. W. D. asks the best way of removing the slides or crooks from brass or plated
horns when they have corroded and stuck, without maring the instrument or injuring the plating. A. Kerone oil applied inside and outside will soon penetrate
(1107) R. P. A. asks: Which travels the fastest-sight, light, sound, thought, or electricity ? A.
Light and electricity may be said to travel the fastest. Sight aind thought only travel in a metaphorical sense. (1108) J. R. asks how cheap copper jewelry is prepared to appear like oxidized silver. A.
Give it a thin coating of silver by simple immersion or by the battery, and apply any desired oxidizing process,
(1109) C. R.-Sciatica cress is a name innted by Turner (an English herbalist of the 16th centary) for a cruciferous plant supposed, from his descripor Solomon's seal, that is the popular name of several pecies of the genus Polygonatum.
(1110) H. F. asks (1) a good receipt for an insect poison,something that will really exterminate.
Have tried Paris green and a host of other things, but they do not seem to take hold of them. A. Use Persian powder, also try powdered borax, or decoction of poke
micasol I can reduceitto a fine powder. A. Grind it in a mortar. 3. What is the dead oil you refer to in
your recipe for making roof paint with coal tary A. It your recipe for making roof paint with coal tary A. It
is a product of coal tar distillation. Apply to a coal tar is a prod
factory.
(1111) A. M. C. asks what the process is for dyeing pearl buttons the different fast colors so the dye will not rab off. A. Wash with lukewarm solution of potash, then place in a strong aqueous solution of
the desired color and let them stand, with frequent stirring, in a warm place. To cause the color to penetrate, an immersion of two weeks may be needed. Use the aniline colors.
(1112) F. F. S. asks (1) for good formulæ as cheap as practicable for colored chemical fre-red, nitrate. For green, use nitrate of barium, for red, nitrate of strontium, for white with a violet tinge, use 3 parts chlorate of potash. In the first two mistures a portion of the nitrate may be replaced by chlorate of potash.
2. Will not a riffe ball, fired perpendicularly, return with velocity and striking force equal to that at the muzzle of the gun at firing? A. It will not, owing
sistance of the air. In a vacuum it would.
(1113) G. B. S. asks for a receipt for making a liquid stenciling finid, both black and wite. A. Printer's or lithographer's ink thinned with tarpentine may be a Rub logether 1 part lampblack the followprussian blue with a little glycerine, add 3 parts gum arabic. This will be liable to be affected by moisture b. Dissolve 2 parts borax and 4 parts shellac in 38 parts water by boiling, dissolve 2 parts gam arabic in 4 parts water. Filter first solution and mix with the second. Stir in indigo, or lampblack or both, ontll proper consistency is a
permanent.
(1114) D. M. K. writes: I have a boxwood flute which I wish to stain black like ebony. What is the best stain to use? I want a stain that will
not come off or crack as shellac does. A. Boil 1 pound not come off or crack as shellac does. A. Boil 1 pound
logwood chips or dust in 4 quarts water, add a double handful walnut huske, boil a second time and remove he chids, add 1 pint vinegar and it is ready for applicawith a hot solution of copperas, 1 ounce to the quart.
(1115) O. S. F. writes: I have a number of coins which have lain embedded in the soil at sbout them. Is there any acid, or preparation of any kind, that will soften this coating withont eating the bronze and injuring the coin? It is diffcalt to cut the coating with a knife. A. You must experiment, as the nature of the soil wonld make a difference in the treatment. Try boiling with water, or heating with vinegar
(1116) R. O. writes for a practical pro cess for home use and in small quantity, for condensing preserving gkimmed milk. We buy wholesale at et less in the neigborhood, or keep it over two days A. Une an ice box for preservation of yoar milk Yon and scald all receptacles to be nsed for it, sind teep hem closely covered. Possibly the milk has begun to our before you get it, in which case your task will be harder. A little bicarbonate of soda may be tried stirred nto it as a preservative.
(1117) J. J. asks how to split sheets of paper is firmly glued to two pion both sides. A. The oneach side, and is allowed to dry. Then on palling hem apart the paper will split. The pieces are then removed by soaking. Sometimes two pieces of glass-
ware recommended instead of the cloth. Practice is neessury to determine the conditions for sucese as re gards quality and strength of glue and other details.
(1118) A. D. asks how to remove oil paint stains, varnish, and tar spots from different kinds of cloth. A. See answer to following query.
Scientific American Supplement, No. 158.
(1119) A Reader asks: 1. Will you please pubish a formula for making sticky fly paper: . We have recently published this. If raw linseed oil $31 / 2$ ounces is melted with resin 1 pound and molasses 31/2 ounces, a very good paper will be obtained. 2 Also how can I take grease spots ont of pantaloons,
coats, etc.? A. Use benzine or chloroform. First apply it in a circle all around the spot without tonching the atter, then sponge off the spot with fresh benzine or chloroform. Never put it directly on the spot or you will produce a ring-shaped stain.
(1120) W. D. asks in reference to production of cold: 1. What is the effect of nitrate of am monia on iron piping? A. It has but little effect in
producing rust or corrosion. 2. Is there any smel therefrom or any gas generated? A. No. 3. Will this solution produce a lower temperature in a given space
than can be obtained from tce and salt? A. Yes; if the than can be obtained from tce and salt? A. Yes; if the
water is cold to begin with. 4. How long will this sowater is cold to begin with. 4. How long will this so-
lution last without replenishing? A. It depends on the lution last without replenishirg? A. It depends on the
demands made upon it,on the insulating or non-conductive nature of the vessels, and on similar factors. 5 . 400 gallons of water? A. About 1,500 pounds.
(1121) C. S. N. writes: I purchased quantity of water, but it did not make the water any cooler. Can you tell me, through your paper, the reason? A. You probably did not use enough nitrate of ammonia. Use about one-half the weight of the of ammonia. Use aboot one-halif the weight of the
water. ntended for consumption.
(1122) E. J. F. aske : 1. Where, in the West. is the best school for becoming a thorongh machinist, and other particulars about such school? A. lour years' course in mechanical engineering. For particulars address the University, asking for catalogue
and circulars. Also address Pardae University Lafayette, Ind., and University of Notre Dame, Notr
est in general repatation. 2. How is the size of a shot-
gun determined, i. e, what regulates the size of the bore, or is it arbitrary? A. It is based on the size of spherical leaden bullet that would fit the bore. Thus,
a number 8 gun means that a spherical bullet of 8 to a number 8 gun means that a spherical ballet of 8 the pound would do this. Of course, on account of water boring, etc.. the rule is not absolute. 3. some claim, might it not be due to the sun's acting a direction most favorable in the night? A . It is no greater; therefore the need for a theory does no exist.
(1123) C. T. M. asks : Which metal ex pands most, gold, silver, copper, brass, German silver, ture? A. For one degree Centigrade the following ar oefficients of linear expansion:

Aluminum	22
Silver.	0.0000191 to 0.0000212
Nickel.	$0 \cdot 0000128$
Copper.	0.0000167 to 0.0000178
Zinc	0.0000220 to 0.0000292
Brass..	$0 \cdot 0000178$ to 0.0000193
Platinum.	0.0000088

We can give no reliable figure for German silver, whic an alloy of copper, nickel, and zinc.
(1124) F. T. asks : Can you cite me an athority on wells; the construction, and how best to Cleanliness is the one rule. The brick or stone lining hould be smooth and tight and should be carried foot or more above the ground, so as to exclude toad etc. If a pump is used, the top should be covered with a heavy cover, a flagstone being the best. This involves difficulty of access; so it is well to have the cover in sections for easier removal. Occasionally when the water is at its lowest it should be cleaned out. Lowe a lighted candle into it before descending so as to tes or carbonic acid gas. If the candle is extinguighed made may be thrown in along the walls until the gas
(1125) H. M. writes for a receipt for naking a good paste for pasting labels on wood. A Use fresily made solution of gum tragacanth. Paste purpose. Just enough oil of cloves may be added to give it a perfume; this last addition will check fermen-
(1126) G. W. G. asks how a bolt W. is a bolt of ure of rain clouds are, and their distance from sea level and their composition, if it is uncombined water vapor, or if there ancombined oxygen and hydrogen in them mired but ancombined. Can you inform me of an institation that would recognize such inquiries 28 I propose above and give me replies ? A. Lightning is due to the disturbance of the electrical equilibrium. Its origin is unknown. Clonds are comand altitnde vary. The:secretary of the Smithsonian Institation may be addressed for such information. Also the departments at Washington often ensurer queries in their peculiar lines. We suggest etedy and reading on your own part.
(1127) H. D. C. asks: Could you explain to me the reason why the rim of a wheel goes A. For discussion of the "wagon wheel problem" and the "squirrel problem" we refer you to Scientific amibican Supplement, No. 706.
(1128) E. K. asks: What paste or mucilage should I use to line a gaitar box with plush? Somewơod. A. Use rye throngh plash and hold welli to it about $3 / 4$ the weight of the flour of good glue. As your paste is for immediate use, there is no need of adding alum, gum dextrine, or any preservative

TO INVENTORS.

an experience of forty years, and the preparation of
ore than one hundred thousand applications for paents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A ynopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exensive faclities for conducting the business. Address MUNN \& CO., office ScIENTIFIC Amprican, 561 Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

July 16, 1889,
AND EACH BEARING THAT DATE.
 Boiler, W. Morrison.....
Boiler, F. L. Veerkamp....
Bottle stopper, R. Bloeser +......... 407.0153 40.157
ox. See Card or ticket box. Cigar box. Ie...ter
box. Phonogram receiving box. Soap box. box. Phonogram receiving box. Soap box.
Stuffing box.
Stuffink box.
Boxes, wire band for, C. W. Evang.
de............ Boxes, wire band for, c.
Bracket. See Holding bracket. Ladder
bracket.
Brake. See Car brake. Railway brake. Brake. See Car brake. Rain
Brake block. J. A. Jewell...
Branding chute, Leinard Branding chute, Leinard \& Sheets. Brick, ornamental, J. C. Anderson.........407,145 Brushand pad, hat, M. J. Sunderlin Brush, electric, H. P. Pratt Bucket, grab, A. E. Brown..
Bucket or tub, J. L. Zrauser

Buggy top rest, H. H. Allen....................... urner. Suee Gas burner. Ha
Oil burner. Vapor burner. Camera. See Photographic camera
Camera attachment, O. L. Munger Camera attachment, O. L. Munger......... Can filling machine, G.
Can opener,
G. H. Perkin Can opener, G. H. Perkins Candle, A. F. Baum
Car brake, T. P. Randall
Car brake, T. P. Randail.
Car brake, v. Rote....
Car coupling, J. M. Burde
Car coupling, J. M. Burden....
Car coupling; C. \mathbf{W}. Courtney
Car coupling, L. E. Hunt
ar coupling, c. Kunzler
Car coupling, s. Loe........
Car coupling, Morgan \& B
Car coupling, A. C. T. Thompal.....
Car
Car coupling pins, device for operating, ,
Car propelling apparatus, F . Main..............
Car seat, A. B. Macklin..............
Car signal, railway, M. E. Campany
Schenck.................................
mechanism for the steam or air pipes of, J. D.
Bagg.............
ars, regulating device for electric railway, W
M. Schlesinger.........................

Card or tlcket box, Stovel \& Corley
Carding cylinder cleaner, C. H. Fos
Carang engine, G. a E. Ashworth...........
Carding machine feeding device, J. Batty..
Whitten...
Carpet fasten

and purifying, T. \& A. A. Warsop............
Carriage, child's; M. M. Bear................
Cart, coal, J. R. Sarle....
Cement, etc., composition of matter for,
Straub.................
Chair. See Swinging chair.
Cigar box, J. H. Horwitz.
Cigar box, J. H. Horwitz.
Cigar bunches, device for
Cigar bunches, device for siltiting the ends of
Martyn......................... Cigar cutter, J. M. King
Clasp. See Corset clasp.
Clay grinding machine, \mathbf{D}. Kennedy,
Cleaner. See Carding cylinder cleaner. Type
writing machine cleane
Closet. See Water closet.
Clothes line support and holder, J. H. Garand..
Cock, gauge, D. H. Roberts.
Coiling apparatus, metal, F. Bracken.
Coin-operated machine, A. W. Roovers.
Colter, roller, B. Cook
Col
Comb. See Curry comb
Combination lock, J. F. Thompson..
Commutator brush holder, O. P. Loomis...............
Compound engine, single-acting, J. H. Fickers
hoff..................................
Converters, constructing lead lined, J. Merriman.
Cooler. See Water cooler.
Copy holder, H. H. Potter.
Copy holder and iline indicator, automatic, J. . .
Berry......................
Corset clasp, A. H. Dean.

apling. See Car coupling. Pipe coupling. Pole
coupling.
coupling. Thill coupling.
cupling, W. \& W. A. Wilco
Cultivator, R. Allstatter.
Cuitivator and

Cup. See Grease cup.
Curry conrb, J. Du Shane
Cut-ofr, automatic, Clark
............ 407,279 4
 cutter.
Damper, pipe, M. J. Liddell............
Decoratinn base metalis, glass, etc., with precious
metals, F. Roessler.......................
Decoratink base metals. glass, etc.
metals, F. Roessiler..........
Dial, teacher's, A. M. Fdwards....
Ditester. W. O. \& W. F. . Crockecer...
Direct-acting engine, H. C. Sergea
Direct-acting engine, H. C. Ser
Door fastener, C. L. Ward......
Door fastening, , N. N. Warner.
Door fastening, E. N. Warne
Drawer pull, C. F. Mosman..
Dredging machine, hydraulic, J. H. Von schmidt
Electric clrcuit cut-out, W. s. Hill
Electric cut-out, Kimball \& W irt.
Electric machine, E. H. Bennett, Jr.
Electric machine, dynamo, N
Electric motor, J. Buckles...
Electric motor. G. W. Mansfel
Electric motor, L. G. Wooll
Electric motor. L. G. Woolley...........
Electric motor regulation, D. Higham
Electric motor regulator, Kelly \& Brang Electric switch, T. F. Gaynor.
 W. Griscom...
Electrical distribution by secondary generators
R. Kennedy.............................. Hiectrical distribution, system of, D................... 407,224
Electro-therapeutic device, H. P. Pratt............ 407,216 Electro-therapeutic device, \mathbf{H}.
Elevator. See Water elevator.
Elevator wells, de

Measura，lumber，A．Cruikshank
Meat cutter，Brodesser $\&$ Ternes
Mechanical movement，G．W．Thomas

Hodason．．．．．．．．．．．．．．．．．．．．．．．．．or，Norton \＆ Het

 Hodgson
Marshall．

Metal surfaces，decorating，N．C．Duncombe．．．
Metals with zinc or other metals，apparatus fo coating，F．W．Koffer．
Microscope，s．Frost
Milk delivery and shipping can，Hinman McCracken．．．．．．．．．．．
Mill．See Rolling mill． Mill．See Rolling mill．
millstone，C．J．Potter Motor．Se Electric \boldsymbol{m}
motor．Water motor． of petroleum，N．A．Otto．．．．．．．．．．．． ovement cure apparatus，H．L．Hopkin Mower，lawn，L．S．Brown．
Music rack，knockdown，J． Musical instruments，touch re
W．H．Ivers．．．．．．．．．．．．．．．．．
Nipple holder，H．D．Harmer Nipple holder，H．D．Harmer． Oil burner，injector，W．N．E
Oils，retring，J．A．Dubbs．．．． Ordnance，operating，A．C．Koerne Ores，smelting，F．L．Bartlet
Oven，baking，C．F．Hubbard
Oven，cooking，C．F．Hubbard
Pan．See Dust pan．
Paper bag machine．F．M．McCulla
of，N．W．Helme et al．．．．．．．．．．．．．．reatment
Paper holder and cutter
ment，McRae \＆Baker．
Pedals，stop for．S．T．White．
Perforating tool，w．Fallon．
Petroleum distillates，purifying and devolatiliz
ing．H．R．Angus．
Phonogram receiving box，B．．．．．．．．．．．
Photographic camera，
Photorraphic paper roll holder，E．
Piano action，shifting，C．M．Richards．
Pick，J．T．Boen．．．．．．．．．．．．．．．．．．．．
Pigment，apparatuz for the manufacure of．
Pigments，manufacturing，F．L．Bartlett．
Pillow sham holders，combined bracket and clamp Pipe．See Sewer pipe．
ipe．See sewer pipe
Pipe coupling，E．Beck．．．．．．．．．．．．．．．．．．
Pipes or tubes for coupling，preparing，J．Robert
Planter，J．C．Lloyd．
Planter，check row corn，D．H．Dillon
Planter，corn，G．J．Cline．
Planter，seed，A．C．Smith．．．．．．．．．．．
Plow．C．C．Smalley．
Pocket knife，W．Bre
Pole coupling，carriage，Klotz \＆Kuschel． Portfolio，A．Edwards．．．．．．．．．．．．

ower transmitting connection forvehicles，

Main．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
$407,0055,407,1087,407,088,407,000$ ，to
Press．See Baling press．Filter press， Press．See Baling press．Filter press．
Pressure gauge and safety valve，combi

Printing machine，stop cylinder，c．．．．．．．．．．．．．．．．．．．．
Propeliling and ventilating ships，devitre Protector．See Wall paper protector Pulp engines，roll for Jordan，e．W．Barton．．．．．．．．
Punch．J．E．Quinn．．．．．．．．．．．．．．．．．．．．．． Quilting frame，U．E．Miller
Ruck．See Mail bag rack．Music rack．Towel Rail joint，M．C．Niles．．．．
r201，

Railway crossings，o．danger

McDonald．．．．．．．．．．．．．．．．．．
Rallway，electric，S．D．Field
Railway gate，McDonald \＆Bren
cturng，Nor
 Rallway systems，electric heating apparatus for Railway trains，safety pilot for，N．S．Musses．． Railways，traction gripper for cable，M．
Rake．See Hay rake．Horse rake．
Rand forming machine，F．P．Arnold
Refrigerating apparatus，
Refrigerator，G．W．Bullis
Reaulator．See Electric motor regulato
Retort for distilling wood and making charcoal，
Ring．See Yoke ring．
roller．See Cot
Rolling mill plant．F．H．Daniels
Rolling mill，wire rod，F．H．Daniel
ior E Norton
Roofling s
Rubber coats，pocket for，H．J．Miller
Rubber vulcanizing apparatus，L．K．Scotford．
Ruling machine paper，W．McNab
sad iron，Nickerson \＆Holman．
Sale slip．T．J．A．Macdonald
Sash balance，A．W．Biddle．
Sash balance，A．W．Biddle．
Sash fastener，H．B．Hebert．．．．．．．．．．．．．．． Saw kuard，band，A．P．Hyde．．．．．．．．．．． Screen．See Window screen．
crew heads，machine for slotin．
Seal for mail packares，etc．，E．J．Brooks seaming，trimming，and overseaming machine combined，H．H．Fefel． Beat．See Car seat．
Secondary battery，I．Kitsee ．．．．．．Coon．．．．．．．．．．．406．881 Secondary battery，I．Kitsee ．．
Secondary battery，c．H．Thom Boparator．See Grain separator．Magnetic sepa
retor． rator．

Sewer pipe，J．A．R9t sering machine． $\mathrm{H} . \mathrm{H}$ ．Fefel Bewing machine feeding device，M．Marcil． Sewing machine motor．J．M．Brosias．．．
Sewing machine，straw braid： \mathbb{Z} ．Marcil Sheet metal making apparatus，Norton \＆Hod Sheet metal structure，Orr \＆Brown Shipping case，E．，M．Thompson shoe uppers，machine for cutting，T．Brining． Shutter fastener，A．Van Wie Shutter worker，D．H．Royer．
Signal．See Car signal．Time signal．
Signaling apparatus，G ．F．Milikna
Signaling apparatus，G．F．Milliken．
Skelping or tube welding，apparatus for，
Simpson ．．．．．．．．．．．．．
Sleigh，bob，G．A．Bain．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Smoke and gas consuming furnace，A．Fickett Smoke consuming apparatus，Mohn \＆Yelles Snap hook，C．A．Mann．．
oap box，folding，i．B．Jones
Oap，machine for stamping and moulding，C ． ．
Soldering machine，can，W．D．Brooks．．．．．．．．．．．．．
Sole and heel trimmer，C．H．Trask．．．．．．．．406，944， Spinning machinery lubricator，Sanford \＆Grise
thwaite thwaite．．
Spring．See
Spring．See Wakon bolster spring．
square，level，protractor，etc．，combined，c．Ens
minger．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Stack，reducing，C．J．Eames
Stair rod securer，M．Rush．．．
Stapling machine，E．P．Donnell
Steam boiler，P．Roban．
Steam boiler，A．Stirling．
Steam or water trap，H．F．Leland．
Steam trap，C．A．Carleton Steel，mannifacture of，T．S．
Stopper．See Bottle stopper stopper．See Bottle stopper．
Store service apparatus，N．N． Stove，cooking，V．M．Barrett．．．．．．．．．．
Stove，heating，o．P．\＆G．O．Elterich
 Stoves or lamps for burning oil，feeder for，F． Stuffing bor，L．D．Copeland．
Swinging chair or hammock．H．W．Messer．．
witch．See Flectric switch．Rallway swit witch．See Flectric switch．Rallway switch． Tan liquor，apparatus for heating，O．F．Carley． Telegraph，automatic，F．Anderson
Telephonic apparatus，No．s．Fisk．
Thill coupling，T．Brinson．
Thill coupling Jack，J．M．Smith．
Time signal，N．H．Borgfeldt．
Tire bender，I．L．Anwerter
Tobacco pouch，C．L．Nesler．
Toboggan，J．R．Mclaren，Jr
Tobogkan，J．R．McLaren，Jr．．．．．．．．．
Toboggan，coasting，c．H．Emerson，
Tool，combination，Carter \＆Koepke
Tool holder，F．Muller
Towel rack，T．M．Dils
Toy，C．Wobito
Toy，automatic
rack sweeper，electric．W．H．K night．．．．．．．．．．．．
Steam or water trap．
Traveling bag，G．W．Strattan．．
rimmer．See Sole and heel trimmer． Truck and carrier，combined，F．P．Keller．．．．．． Trunk tray and cover，s．H．Davenport．
Tubes or pipes，coupling，J．Robertson． ubes or pipes，coupling，J．Robertson ug，hame，H．P．Jensen． ypewriting machine，I．B．Dodson Typewriting machine cleaner．A．T．B．
Umbrella runner，Josephs \＆O＇Neill．． alve，W．\＆W．A．Wilcox ．．．． alve，balanced，W．T．Reas
Valve gear．G．H．Helves alve gear，D．W．Payne
Vapor burner，G．s．Grimston．
Vehicle propulion，
 Vehicle，two－wheeled，W．Lauria． ehicle wheel，D．S．West．
Vinegar generator and filter，R．H．Herder Vise，C．H．Robinson． Wagon bolster spring，Cole \＆Dillmann
Wall paper protector，F．W．Woodhull Washing machine，G．M．Beck
Washing machine，J．L．Knoll Tashing machine，D．D．Shanio Washing machine，G．M．Miller． Watch，stem winding and setting，H．Remp Water circulating heater，M．Havey Water closet，W．Scott．．． Water coolerating apparatus，N．A．A．Conklin Water elevator and carrier， \mathbf{W} ．s．Talley． Waterfalls，apparatus for utilizing the force of H．Hamilton．．
Water motor，F．Johnson
Waterproof composition for pipe jo．．．．．．．．．．．．．．．．．．
non－conductive and elastic $\mathbf{B .}$ Overlack Waterproofing textile materials，composition
 Well drilling tool，H．H．McLane
ells，apparatus for drilling and pumping oil or
other，M．Harold
sinking．H．K．Goodrich
Whip and rein holder，J．L．Cavanaug
histle，J．R．Eldididge．
Nehf panchor attachment for，L．J．M．
nding thread or yarn upon bobbins，machine
Tindow screen，A．H．Cleaveland．
Windows，screen attachment for．W．J．Horton．． turing，Thompson \＆Willson．．．．．．．．．．．．．．．．．．．． 406,

T．W．Mellor．．．．．．．．．．．．．．．．．．．．．．．．．．．．19，40	
TRADE MARK8．	
Brushes，L．A．E．Robert．．	
Chemicals and drugs to produce laxative effects， Doctor Thorpe Medicine Company ．．．．．．．．．．．．．．	
Medical beverages from the soda fountain and tonics for the stomach and for the nervous sys－ tem，F．W．Healy．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16	
Medicinal preparation in the form of pastils for curing uterine diseases，W．A．France．．．．．．．．．．．16，8	
edicines for stomach and bowel dificulties，A．J． Rankin．	
Medicines to prevent unnatural accumulation of flesh，F．Potter．	
Mineral water，its salts，and compounds containing the same，natural，Apollinaris Company， 16，809 to 16,812	
Parasols and umbrellas，F．Revel Pere et rils．．．．．． 16,831Pills，dyspepsia．J．A．Deane．．．．．．．．．．．．．．．．．． 16.817	
Remedy for rheumatism and like diseases，J．A． Smith． \qquad	
Specifics for rheumatic，neuralaic，and scrofulous disorders and their related diseases，8．French．16．82	
Tonic and stimulant，a cleanser and purifier，and a balm for the skin，C．E．Draper．．．．．．．．．．．．．．．．．．．．16，81	
Wall finishes，plastic compounds，and cement．J． B．King \＆Co．	
Waterproof compounds for pulley belts，J．H． Faulkner \qquad	

A printed copy of the specifleation and drawing of
any patent in the foregoing list will be furnished from
the this office for 25 cents．In ordering please state the
name and number of the patent desired，and remit to Munn \＆Co．， 301 Broadway，New York．
Canadinn Patents may now be obtained by the
inventors for any of the inventions named in the fore－ going list，provided they are simple，at a cost of $\$ 10$ each．IC comphicated the cost will be alittle more．For
full instructions address Munn \＆CO．， 361 Broedway，
Nem York．

2tDvertisements．

USE ADAMANT WALL PLASTER

ICE－HOUSE AND REFRIGERATOR．

Patent Foot Power Machinery Complete Outfits．

ICE－HOSSE AND COLD ROOM－ $\overrightarrow{\text { PT R }}$

RALLWAY AND STEAM FITTERS＂SUPPLIES Rue＇s Little Giant Injector．
SCREW JACES，STURTEVANT BLOWERS，do．

The Countersink following the Drill，the job is Anish－ dat one operation，saving the adjusting of tools and
 GRAPHOPHONE AND PHONOGRAPH．

Spectal Machines for Car work，and the latest improved
Wood Working Machinery or ail linds．． PETROLEUM BOAT．DESCRIPTION

OTTO GAS ENGINES． を2＂aby ombined．．．．．．．Otto．．$\left\{\begin{array}{l}\text { and Pumps．} \\ \text { Gas Exping } \\ \text { and Dynies }\end{array}\right.$ OTTO GAS ENGINE WORKS， New York Agency， HARGREAVES THERMO－MOTOR－

ELECTRO MOTOR SSMPLE．HOW TO

Stored Energy

Edco System．

Rose's Mechanical Works MODERN STEAM ENGINES.

Mechanicni drawing soli-Taught, Comprike

 The i. 12mo, two proges.e.

 HENRY CAREY BAIRD \& CO., indugtaial Publighers, Boorskllers \&importers
810 Walaut St., Philadelphia, Pa., U. B. A.
The Paris Exposition--Illustrated.

 (c)
 ORK BELTING AND PACKING Co. B

15 PARK ROW, Now York.

Vulicanito Emery whols, Rubber Mats, mating \& Troads

OIL WELL SUPPLY CO. Ltd.

ARTESIAN

THE BOOKWALTER STEEL AND IRON CO

Prop osila for Ingatiliga Ma, kle tric Lizhting

 Proponis. Tor Consiruction of Abutment of

ARCHITEPTURLL BOKS.

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or stable, either in the country or city, or any builder wishing
to examine the latest and best plans for a church, school house, club house, or any other public building of high or low cost, should procure a complete set of the Archi-
TECTS' AND BUILDERS' EDITION of the ScIENTIFIO american.
The infor
The information these volumes contain renders the
work almost indispensable to te and to persons about to build for themselves they will and the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ings of almost every class of building, with specificatio tained, by mall, direct from the publishers or from any news, $\begin{aligned} & \text { ealer. Price, } \$ 2.20 \text { a volume. Stitched in paper } \\ & \text { covers. Subscription price, per annum, } \$ 2.50 \text {. Address }\end{aligned}$

MUNN \& CO., Publishers,
361 Broadway, New York.

 and are sold by the trade all over
the world.
The Cushanactured by
Hastimand, Connck Co., Hattord, Conn.

75. O0 to 250.00 A MONTH can be made
 SALMON FISHERIES OF THE COlumbia River.-A bstract of a report made to the Secre-
tary of
of ar by Major W.A. Jones, U.S.A. Description

MANGANESE STEEL AND ITSS PROP

KEEP COOL! Light-Running Ventilating Adapted for Ventilating and Dry
ing of every descrition.
Catalogue free. Catalogue free.
GEO. P. CLARK,

WAR SHIPS OF THE FUTURE.-AN

A VEW Catalo

4 ROCK BREAKERS AID ORE CRUSEERS

วfovertisements

 ment，as the letter press．Advertisements must be
reeevived at publication omice as early as Thursday morn－
ing to appear in next issue．

T른 PENBERTHY IMPROVED

 AUTOMATIC INJECTORWhy 20,000 have been sold in tro years
Because they cost lessthan others and do
equal
 150 lis．pressirese，Parts removavabe
without disonecting also inter
chankeable．Send for pamphet
Penberthy THE EIFFEL TOWER．－AN EXCEL

RIDE CYCLES！

VICTORS ARE BEST！ icccles，Tricycles，and Safeties Catalogue． man Wheel Co．，Makers，
boston，mass． THE COPYING PAD．－HOW TO MAKE and how to use；with an engraving．Practical directions
how to prepare the elatine pad and also the aniineink
by which the eopies are made；how to apply the written 438．Price 10 cents．For sale at this office and by ail
newsdealers in all parts of the country． TIIE KODAK CAMERA

 Price，825．00．Reloading，\＄\％．00． an Dry Plate \＆Film Co

For Home Cottage，Camp，or Yach The Arold Automatic Steam Cooker A novel invention of great merit，in
which anybody can cook a hole meal
over one fame without attention or
 Wilmot Castle \＆Co．
Rochester，
INVRNTORS and ornerg desirinM nepmatiolesmanfac
 Hard Rubber Pump Valves For Hot Water，Oils，and Acias

THE ARMSTRONG MFG．CO． WATER，GER LND STRAM FITTERS＇TOOLS

Stocks and Dies for Pipe，Bolts，and Brass Pi Wrenches，Pipe Vises，Pipe
talogues sent free on application．
ALUMIMUUETTEEL HiACK SAW

MALLEABLE

PATENTS．

tann pamphlet sent free of charge，on application，con－

 MUNN \＆CO．，Solicitors of Patents， $\xrightarrow{\text { BRANCH OFFICESS }} \boldsymbol{- N O}$

THE ONLY PRACTICAL THE PHONOGRAPH．－－A DETAILED Low－Priced Typewriter First－Class，Rapid，Durable，Business WORLD TYPEWRITER， 44 chara
ters，$\$ 10 ; 77$ characters，$\$ 15$.
 THOMPSON IMPROVED INDICATOR

American Steam Gange Co．
［1］ 2，000 IN USE．
daptod by the U． S ．Navy
on all the kovernment
cruisers
buats to
and gunt．
gult．
POP SAFETY VALVES， STEAM PRESSURE GAUGES，ET 34 Chardon Street，Boston，Mass．

Steam！Steam！

Quality Higher，Price Lower． 2－Horse Eureka Boiler and Engine，－\＄135

B．W．PAYNE \＆SONS， ra
 Composed of Asbestos，combined with water and acid－proof materials，compressed and vulcanized Parts for Arc Lights，Incandescent Lights，Motors，Chandeliers，Dynamos，\＆cic Special styles and shapes to order．Prices on application．
HI. W. TOXHNS MMAIVUPA PMUREING COMAPANY,

H．W．Johns＇Asbestos Mrillboard，Sheathings，Building Felts，Fire－proof Paints，

$$
87 \text { MAIDEN LANE, NEW YORE. AGICAGO, PHILADELPHIA, LONDON. }
$$

ANNOUNCEMENT！

 us to manufacture Elevators，to be operated from All our Elevator machinery is made of the very best
 WATCH CLEANING AND REPAIR

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7 th， 1876 ，No． 174,465 ，and January 30th 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right seçured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such thereof，and liable to suit therefor．

The value of the SCIENTIFIC AMERICAN as an adve

ed on
For
dress

MUNN \＆CO．．Publishers，

2nd RES MACHINERY P PIPE COVERINGS
Absolutely Fire Proof． BRAIDED PACKING，MILL BOARD，SHEATEING，CEMENT，FIBRE AND SPECIALTIES，

WORKING MODELS And Experimental or oiod madeto orien by

JACKET RKETTLES，

 Scientific Rook Gatalogue RECENTLY PUBLISHED Our new catalogue containing over 100 pages，includ－ing works on more than fifty difrerent subjects．＇Will be MUNN \＆CO．，

Expose an $\mathrm{Immen}_{\text {Hoated }}$ surface．
 Fiftoon Yand of teritit． Send for＂our furnace Book Abram Cox Stove Co．

KEY 8EATING M．Machines nud 20 e Drill．卫五曰
Scirntific American
ESTABLISHED 1846.
The Most Popalar Scientific Paper in the World．

 teen pages of ouseful information and alarrge number of orignal engravirigs of onem inventions and disuocoreres， representing Engineering Works，Steam Machinery，
New Inventions．Novelties in Mechanics，Manufuctures New Inventions．Novelties in Mechanics，Manufuctures，
Chemistry，Electricity，Telegrapby，Pbotography，Archi－ Chemistry，Electricity，Telegrapby，Pbotography，Archi－
tecture，Agriculture．Horticulture；Natural History，etc． Complete List of Patents each week．
；Ternis of Subscription．－One copy of the ScIEN－ ITFIC AMERICAN will be sent for one vear－ 52 numbers－ postage prepaid，to any subscriber in the United States
or Canada，on receipt of three dollara by the pub－ lishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs，－Special rates for several names，and to Post
Masters．Write for perticulars． Masters．Write for particulars．
The safest way to remit is
The safest way to remit is by Postal Order．Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes，astray，but is at the sender＇s risk．Ad－
siress all letters and make all orders，drafts，etc．，pay－ able to LIUNVIT \＆CO．，

361 Broadway，New York． T 포
Scientific American Supplement．
This is a separate and distinct publication from
THic Scientirio Amracin，but is uniform therewith on size，every number containing sixteen large pages ful of engravtngs，many of which are taken from foreign
papers，and accompanied with translated descriptions． The Scientific American Suppiementis published weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in
all the prinsipal departments of science and then all the principal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy， Useful Arts，embracing Biology，Gelogy，Mineralogy，
Natural History，Geography，Archæology．Astronomy， Chemistry，Electricity，Light．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photography，
Technotogy，Manufacturing Industries，Sanitary En Technology，Manufacturing Industries，Sanitary En－ my ，Biography，Medicine，etc．A vast amunnt of fresh
nd valuable information obtainable in no other pub－ ication．
The most important Engineering Works，Mechanisms and described in the SUPPIEm，abNT Price for the SUPPLEMRNT for the United States and Canada． 85.00 a year，or one copy of the SCIENTIFIC AM for one year for 8 r．i．0．Single copies 10 cents．Address and remit by postal order，express money order，or check． MUNN \＆Co．， 361 Broadway，N．Y

Building Edition．

 The Soigntific american architects＇and Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordinary book paees；forming a large and splendid Magazine of Architecture，rich I adorned with elegant plates in colers，and with othefine engravings；illustrating the most interesting ex ane engravings；illustrating the most interesting ex
amples of modern Architectural Construction and allied subjects．
A special feature is the presentation in each nomber
of variety of the latest and best plans for prive dences，city and country，including those private resi－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full The elegance and cheapness of this The elegance and cheapness of this naznificent worl Archirectaral publication in the world．Sold by al MUNN \＆CO．，Publishers，

361 Broadway，New York
PRINYTING INKES

