

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, JULY 6, 1889.	

BRIDAL VEIL FALLS, SNAKE RIVER.
Although the Columbia River is the most important of the great rivers emptying into the Pacific, the Snake River, its principal tributary, is probably the most remarkable of all the Western rivers. The Columbia River, owing to the fact that it is navigable for a distance of some 115 miles from its mouth, opens up the
heart of Oregon, and makes its inland towns accessible for some 180 miles above its point of juncture with the through the Paeific to all parts of the world. In the Columbia, although this stream is noted far more for course of time serious obstructions that are found in its remarkable physical characteristics than for its the Columbia River at the Cascades and at the Dalles commercial or utilitarian advantages.
will doubtless be overcome, and it is probable that The government is at present building a canal at the navigation will be possible throughout its course for Cascades which will connect the Lower Columbia with several hundred miles. The Snake River is navigable 45 miles of navigable water above that point. This

BRIDAL VEIL FALLS FROM ABOVE THE FALLS.-[From a photograph by Towne.]

would render the river navigable as far as the town of the Dalles. This work is well under way, and will be of great importance in developing the Upper Columbia. The canal will be 3,000 feet long, with a draught of at least 8 feet.
Surveys have been made above the Dalles with a view of conducting a similar work at this point, and thus connecting, by means of locks, the Upper and Lower Columbia. The government have been clearing away rocks and obstructions in the Upper Columbia and Snake Rivers, so that now the former has a depth of $51 / 2$ feet at low water and the latter $41 / 2$ feet draught as far as Lewiston
The Upper Snake River, however, is one of the most remarkable streams with which we are familiar. It offers an absolutely impassable barrier between North eastern Oregon and Idaho. It has cut its way through the black basaltic formations to a depth of from 2,000 to $\mathbf{5 , 0 0 0}$ feet, with walls so precipitous that ascent or descent is absolutely impossible, while the stream that hows at the bottom of this frightful chasm is a roaring torrent that is and must remain always unnavigable. We present herewith views of Bridal Veil Falls, on of the most beautiful and graceful sheets of falling water on the continent. A good idea of the nature of the cañon may be had from the photographs, although at this point nature is not as wild as it is at other places along the river.

An Important Electric Lighting Suit
On May 21, 22, and 23, at Pittsburg, Pa., before Jus tices Bradley and McKeenan, the final hearing in a suit brought to test the right to the modern incandes cent lamp occurred. It was brought by the Westing house consolidation against the Edison companies as infringers of the Sawyer-Man patent. This is the patent that was granted in 1885, after some five years nterference proceedings in the Patent Office between Edison and Sawyer. In the Sawyer lamp the fibrous loop-shaped conductor was used. Admitting the old lamps of the years 1841 to 1878 , it was contended by the complainant that the Sawyer-Man lamp of the latter year was the first successful one. The defend ants argued in opposition, claiming that Edison in 1877 gave the first successful lamp to the world. The case was notable, not only by the extent of the interests in volved and the fundamental nature of the patent contended for, but also by the eminence and number o the counsel. The Westinghouse interest was repre ented by a number of attorneys, among them Edmund Wetmore, Amos Broadnax, J. Edgar Bull, and Frank L. Pope, of this city; while Mr. B. F. Thurston, of Providence, Mr. B. P. Lowrey, of New York, with a umber of others, appeared for the Edison interests. Up to the present no decision has been rendered.

Successfal Trial of the Second ©

The official trial of the second Otis elevator in the south pillar of the Eiffel tower was successfully carried out on June 8, in the presence of M. Alphand, M. Eiffel, and the Lift Committee. Four hemp ropes, holding the cage-loaded, inclusively, up to eleven tons, on the first slope-were cut simultaneously at a given signal, and the cage descended q inches; but the safety ar rangement of compound wedges then acted, withou shock, and sustained the cage. Great admiration was expressed at the result of this crucial test, and the lift was formally taken over by the committee. On the following day, Mr. Gibson, president of the American Elevator Company, conyeyed the Prince and Princess of Wales and family from the first to the second floor of the tower.

The Joint Snake.

A correspondent sends us an account of a joint snake he with other school children encountered about twenty years ago, and he asks whether the existence of such a snake is denied. We reply
The so-called joint snake, or "glass snake," is known to herpetologists as the snake-lizard (Ophisaurus ventralis). For description and figure, see Scientific American, Vol. 57, No. 10, page 152 (September 3, 1887). Its tail is very long and brittle, and a slight blow will sometimes cause it to break into many pieces. When the tail has been broken and lost, a new one immedi ately begins to grow, and specimens with little sprout ing tails only a few inches in length have frequently been taken. These newly developed tails are lighter in oolor than the other portions of the lizard, and only assune the darker or normal color with age. The selfmending power attributed to the Ophisaurus is well known to be a shallow myth, yet notwithstanding there are some who pertinaciously believe in it.
C. Few Seiss.

When two or more colors ar used, it is necessary to keep in mind the laws governing the combination of colors. All colors in combination are beautiful, pro vided only that the combination is artistically managed If, however, a few light tints of red, yellow, and green are used, we are not likely to go very far wrong in the matter of combination.

MUNN \& CO., Editors and Proprietors. pUblished weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN.
ne copy, one year, for the U. S. or Canada.
8300
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the Colonial bank notes. Address

MUNN \& CO., 3fi Broadw

The Scientific American Supplement
a distinct paper from the Scientific Amrrican. THe supplement is issued weekly. Hvery number contains 16 octavo pages. uniform in size
with SCIENTIFIC American. Terms of subscription for Supplement, 5.00 a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belong hg to the Postal Union.
Combined Rates.-The Scientific amp̣rican and SUPPlemen Fill be dollar
The safest way to remit is by draft, postal order, express money order, or egistered letter.
Australia and New Zealand.-The SCiENTific Amirican and
SUPLLEMENT will be sent for a little over one year on receipt of 22 cur APPLEMENT will be se
rent Colonial bank notes.
Address MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.
NEW YORK, SATURDAY, JULY 6, 1889.

Contente.

(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 705.

For the Week Ending July 6, 1889.
Price $\mathbf{1 0}$ cents. For sale by all newsdealers.
CHEMISTR Y.-Determining Lithia.-By A. Carnot.-A method for the quantitative detern.
ammonium as the reagent.
ELECTRICITY ELECTRICITY.-Some Curiosities of Magnetism.-An important
lecture by Prof. SHELFORD BIDwELL, describing some of the less studied phenomena of magnetism, the permeability and oth features of magnetic metal.- 5 illustrations.:
The Beacon and Projectors of the Eiffel Tower.-Description of the electric lighting system in use on the great Eiffel tower, With Cllustration of the general effect produced by its ill
tion on the evening of the inauguration. -2 illustrations..... The Deptford Central Station of the London Electric Supply Corporation.-The new station recently erected in Loondon under the Ferranti system, with illustration of the interior of the sta tion and a general des
tion. 3 illustrations.

tion. - 3 illustrations

cient and Modern.-The continuation of Mr. J. F. Holloway's An cient and Modern.-The continuation of Mr. J. F. Holloway's Sib
ley College lecture on pumping machinery, describing the worthington high duty pumping engine as a representative American
 The Inspection of Riveted Bridge Work. -By CEARLES F. mportant subject, one of practical value to all who have to deal with riveted structures.
mISCelcianeous.-Comparative Heights of Celebrated Struc-tures.-Heights in meters of the notable buildings of the world.Notration.
The Eiffel Tower.-A very excellent and popular account of the great tower of Paris, with details of the peculiarities and interest ing features of the construction, with view of the same. -1 illusNaral
NA VAL ENGINEERING.-The Structural Strength of Sea-going Torpedo Boat No. 1.-By Lieut. F. J. Drake.-The continuation
of this exhaustive paper, one of the most notable studies recently made of the strength of a vessel. -6 illustrations.

1. PHYSICS.-Gas Scale.-By JAmes Aserr.-A simple scale for ase in the analysis of gas, supplanting the ordinary scale of the barometer. and simplifying greatly the calculations.
Recalescence of Iron.- By Dr. J. HOPKTNSON,-A amination of this curious phenomenon. so often observed in th past, with a view to determining its relations to magnetism... Scientiff Recreations.-A series of experiments In physice with out apparatus, illustrating curiosities of photography, concave an convex mirrors, and other parior experiments.-8 illustrations...
II. Technology.-A Neq Form of Regenerative Gan Lamp.The new Seimens regenerative burner described and iluastrated.

THE WATER SUPPLY FOR NEW YORK CITY.
In the course of municipal grow th, New York should absorb her suburbs in the order of their coming. This is the ideal conception of urban expansion; but if by order we mean regularity of position, we find that New Jersey and Connecticut already possess more than half of the neighboring territory which rightly belongs to the metropolitan area, and that Brooklyn will credit to herself the townships of Long Island, from mere proximity.
In the narrow tract extending north along the Hudson, we must, therefore, find the districts to be acquired in succession, one beyond the other. There is some likelihood even of this section becoming still narrower and partially unfit for occupation, for, as is well known, the supply of water for the city has been gathered here for fifty years, and work is progressing within the same limits to double the volume gathered and delivered. We published in the Scientific American Supplement, No. 697, an article by R. D. A. Parrott on the influence of water storage as exhibited by the condition of the Croton basin.
A comparison is here made between the three hundred and sixty square miles comprising the drainage area of the Croton river and forty-five hundred square miles of other suburban country in New Jersey, Connecticut, and New York.
Like all studies based upon the results of the various censes, this one is full of surprises, and brings in strong contrast the errors of imaginative opinion and the rulings of fact. The density of population in the Croton valley is first noticed to be relatively low, then to show an actual decrease-both in spite of the fact that thirty years ago the density was normal and the growth rapid.
So marked is the retardation in the whole basin, that the period of doubling in population is one hundred years longer than that of any division under consideration. Attention is also drawn to the lack of increase in the assessed valuation of property. The proof of actual retardation unaccompanied by an increase of valuation brings forward an inquiry as to the right exercised under the acts of the legislature of taking small areas for storage purposes and at the same time injuring large tracts.
The land so far condemned is insignificant in area as compared with that injuriously affected by such appropriation. To say that the working of the law is justifiable is a misinterpretation of the principle of eminent domain, while to claim that the city should buy every acre of the watershed is preposterous, since the city will soon have to go elsewhere for an adequate supply.
The deduction to be made from the tables and statements given is that the prosecution of the work has had a perceptible and measurable effect in preventing immigration and the increase of taxable property. The importance of this result as a lesson for the future can be understood when we say that the present storage capacity must be increased threefold before the supply of water can be doubled.
After showing the obvious detriment of water storage to regions which in the natural course of events should be occupied by homes, Mr. Parrott applies the data of recent census enumerations to some of the watersheds of the Catskill mountains, and points out a decrease of inhabitants here also, but from a very different cause. The reference to the Catskills strengthens the criticism very materially, inasmuch as it makes the present expenditure of the Croton aqueduct department inexcusable on the score of necessity.

Trade Mark-Firm Name.

The English Court of Appeal has rendered a decision of interest in a case involving the right of a man to the use of his own name in business. The case was that of Turton et al. vs. Turton et al. The principal appellant had for a considerable time carried on the business of a steel roller and steel manufacturer in Sheffield under the title of "John Turton \& Co." Last year he took two sons into partnership with him and changed the style of the firm to " John Turton \& Sons." For many years prior to that time the appellees had been doing business as steel manufacturers under the title of "Thomas Turton \& Sons," and they brought suit to restrain the appellants from trading as "John Turton \& Sons," on the ground that they, the appellees, had a property in the name as a trade name. The Court of Appeal reversing a decision of Mr. Justice North declined to grant the injunction asked for, holding that the appellants had a perfect right to trade under the name they used, it being exactly descriptive of the constitution of the firm, and there being no allegation that they endeavored to deceive anybody by taking that name.

Worsteds and Woolens.

The question is asked, what is the difference between korsted cloth and woolen cloth? The answer is: Worsted goods are composed of wool that has been carded and combed, while woolen goods are made of wool that has been carded but not combed.

[special correspondencer of the sieientific american.]

The Paris Exhibition.

french, english, and american lathes.
Paris, June 15, 1889.
The American lathe has, in its smaller sizes, not yet been copied in Europe, but that it will be there can be no manner of doubt when its advantages are understood here, and particularly on account of its handiness. The American lathe in the large sizes has not so much individuality about it, but it has in some of the minor details, nevertheless, as will be pointed out presently. "There is no American lathe. You are in a constant state of change, and I am informed that most of your changes are made, not to improve the lathe, but to have some particular selling point," remarked a machinist to me to-day. Now, there is just a grain of truth here, but it is a very small grain. No doubt dealers prefer to have some particular feature that they can dilate upon to make sales, but these new features are studied out by the designer, and no alteration of design is made without the conviction that it is an improvement. As to there being no Ameri can design of lathe, there are two or three distinct kinds, each of which has no counterpart in Europe, and all possessing advantages for the class of work for and all possessing advantages for thing cass or with lathes, say
which they are intended. Beginning win which they are intended. Beginning with lathes, say
up to 20 inch swing, or 10 inch centers, as such a lathe would be designated in England. As a general rule, such a lathe of English design would have a hand slide rest, and not a self-acting feed. Now, be it remarked that some (only a few as far as I have yet seen) of the new designs are provided with self-acting feed motions, but most of the lathes (within 20 inch swing) you find in the workshops have, as I have said, hand slide rests and are, as a consequence, as awkward as can be for the great majority of work they are used upon. All experience shows that at least nine-tenths (and I think I would be within the mark if I said nineteen-twentieths) of the work done between the centers of such sizes of lathes is of such a short length that it can be turned from end to end without moving the slide rest from its position, while all the boring or chucked work can of course be completed without moving the slide rest; but boring and face plate work form but a small proportion of ordinary work, and it is on ordinary between-centers work that the slide rest is so awkward; first, because the slide rest handle that works the screw for the longitudinal feed will not clear the tail stock of the lathe, and you can only wind this screw half a revolution, then you must take it off, this screw half a revolution, then you must take it off,
put it on again, and wind the screw another half revoput it on again, and wind the screw another half revo-
lution, and so on. It is positively aggravating, to one having used an American lathe, to go through this awkward and humbugging business every time a cut is set or after setting a tool. The worst thing is that on short work the slide rest smothers the work so that you can't get at it either to set the tool, see the cut, o measure the work.
With regard to the first named defect, it could be modified, to a certain extent, by putting the screw on the outside of the slide instead of in the middle of it, then throwing it further out from the line of centers of the lathe, and therefore more out of the way of the tail stock, but this is very rarely done. Now suppose that the lathe has a self-acting feed motion and a slide rest as well, as is sometimes the case in English and French practice, and you are no better off so far as the first named defect is coucerned, because the hand traverse to the lathe saddle (as the lathe carriage is termed in England) consists of a long handle operating the spindle of a small pinion gearing direct into the rack of the lathe; and the consequence is that, notwithstanding the awkward length of the handle, the carriage motion is too quick (moving the handle as slowly as you can) for the purpose of feeding, and, furthermore, as the rack is cast and not cut,the hand traverse of the carriage is too spasmodic and jerky to permit of its use for feeding; but supposing the rack and pinion to be cut, which is not often the case, and the conditions are not much bettered, for the motion is still too quick and the handle is so long that. the right hand has to reach out too far to admit of a close inspection of the work. Another annoying feature is the straps or clamps forming the tool-holding device, which are bulky and in the way. Again, no device for regulating the height of the tool is provided. Hence, slips of iron, pieces
of tin, iron washers, and other loose and odd pieces are used for this adjustment. Whatever the length of the work may be (when a slide rest without a self-acting feed is provided), the longitudinal feed handle will come in the way of the tail block, while the length of continuous longitudinal feed is limited to the length of the upper slide of the rest. Of course the slide rest can be moved along the bed and reset, but after a little wear it will be found that each turn you move the slide rest it requires to be adjusted for parallelism again, and this involves the loss of a great deal of time. When no self-acting feed is provided, all threads must be started and cut by hand. This involves a great deal of practice in order to be able to start, a true thread, and the removail of the slide rest and substitu-
tion of a hand rest when cutting the threads making tion of a hand rest when cutting the threads making
the operation slow and expensive.

On the other side of the question there is the fact that with a compound rest all ordinary tapers can be turned without setting the tail stock over, that is to say, all tapers that are not longer than the longitudinal traverse of the tool slide of the rest, and tapers can be bored with every facility. But taper work forms a very small proportion of the work done in such lathes, and, furthermore, facilities for its production are provided for in all American lathes for general work. Where there are several small lathes in a shop, it is Where there are several small lathes in a shop, it is
not essential nor even desirable that all of them be not essential nor even desirable that all of them be the use of either a compound rut or a taper-turning áttachment (the latter being the most desirable of the two).
Considering now the American form of similar sized
lathes, a self-acting or automatic feed is always provided, and the tail stock is made to set over for turnng tapers between the centers. As a result a continuous cut either taper or parallel, can be taken on work as long as the lathe will take in. If taper boring is to be provided for, a taper-turning attachment is provided for, or in some cases a compound rest is used, but this compound rest is not open to the objections shown to exist in corresponding English lathes, as the hand traverse of the carriage is slow enough to permit of hand feeding by means of the handle that works the hand feed of the carriage. This is accomplished by means of gearing in the carriage that reduces the revolutions of the rack pinion below those of the hand feed handle. This speed reduction is sufficient that a short hand feed handle can be used; and the position of the operator's body is therefore natural and not strained when using this hand feed. Hence, he can operate the cross-feed screw and watch the cut or neasure work with ease and comfort-a thing impossible in English or French lathes. By thus dispensing with the longitudinal slide of the compound rest, the work is in full view (no matter how short it is) and is accessible for tool setting or measuring. The American plan also of a tool post in a T slot leaves nothing but a simple cylindrical tool post in front of the work, and this tool post can be moved to either end of the T slot as may be most convenient for the kind of work in hand, hence the tool may be clamped as close to the work as possible and swiveled to any angle to
the line of centers, which is a great convenience, not the line of centers, which is a great convenience, not attainable where two clamps are used or a single too post in the center of a square slide. If the lathe has taper-turning attachment, you can change from taper lathe, whereas in the case of a compound rest and no automatic feed a great loss of time occurs in making these changes, because of the difficulty of setting the
top slide to cut parallel, and a great deal of skill is retop slide to cut parallel, and a great deal of skill is required. So much indeed are these two difficulties met with that, to avoid them, the workman is often in uced to adopt improper methods in doing his work. Thus, to take a common example, suppose a crank pin for an engine) with a taper on it is being turned, and
the taper part will be finished complete before the parallel part is roughed out, with the result that the wo parts will not be true, one with the other.
Let us now consider very short work of small diameter, and with the American form of lathe carriage and rest the tool need not stand far out from the tool post or rest, as there is nothing to interfere; whereas on the English or French lathe the top slide comes
butt against the tail stock, and the tool must be pushed out far enough to meet the work. The tool posts of all American lathes of the sizes under consideration are provided with more ready means of adjusting the tool height without using the slips of iron, etc., before referred to.
Objection has been made to me concerning the desirability of constructing the tail stock to set over for taper turning, as it is said to involve some trouble and
difficulty in setting it back true for parallel turning, but this is an unnecessary trouble, since it is not necessary to operate both set and tail stock screws. Indeed, only that screw should be unscrewed that will let the tail stock set over in the required direction, the other screw being allowed to remain untouched, and therefore set for parallel turning, the tail stock being pulled over by hand. All that will be necessary in that case for putting
the tail stock back true for parallel turning will be to screw up again the one screw that has been turned back. Workmen often overlook this wrinkle, and give loss of time.
We may now consider the chucks and fixtures for this class of lathe, and, beginning with the smallest sizes, there is a large sale here of both two, three, and four jawed American drill chucks, and as yet I have
not seen any Enclish or French imitations of them. In work-holding chucks, whether universal or combina tion chucks, the same remark applies, but, strange to say, the chucks are very little used, face plates with dogs removable from hole to hole being used, and bell chucks also. A dog chuck or a bell chuck for lathes of the sizes under consideration would be curiosities in
American workshops. The movable dog chuck belongs It a primeval era that has long passed away in the

United States, nor is there any occasional use for it. The bell chuck, however, can sometimes be used to advantage even where the most improved chucks are used, because it will grip firm enough with its double set of screws to permit work to be operated on a long way out from the chuck without the use of a steady rest. The cone plate for use in place of the steady rest is also a good English form of chuck for very true work, but, like the bell chuck, it can be done without, and the occasions for its use are so rare that it is not a good investment to either make or buy one, unless for special work done in quantities. There are no elevating rest or weight lathes used in England or France. Nor have I yet seen a small lathe with raised vees, all having fiat shears, with vee slides on the edges like the old style Sellers lathe or the Freeland lathe.
I am well aware that even in the United States there are some who decry the raised vee, and also at the elevating rest and at the New England lathe as a whole, but that is because they apply it out of its place. "How can you do goed boring on such a lathe?" I have been asked. My answer to this is that at the Ashcroft Manufacturing Company's works, in Boston, I saw chucked work that stood 18 inches out from the face plate on a 24 inch swing lathe faced and bored as smooth and true as could be, as pretty a piece of work as a mechanic could put his eye on, and the lathe was one of Sam Putnam's design. Now take a Pratt \& Whitney elevating rest lathe, with taper-turning attachment and stop motion, and it is all that can be desired; in fact, both these lathes are simply perfection, and their peers do not exist on this side of the ocean. I could name many more American lathes that are pre-eminent in their lines; and it must always be remembered that the shop system has got to be considered when the lathe is considered. A light lathe will do when the cuts are light and the feeds fine, but if you are going to spare blacksmithing and use the lathe to cut the work out of the solid, of course the lathe must be heavy and all its parts strong.

Joshua Rose.

Burning of Seattle.

About three o'clock in the afternoon of Thursday, June 6, fire broke out among some turpentine in a frame building at Front and Madison Streets, Seattle, W. T., and, fanned by a high wind, rapidly spread. The fire umped the street, and within a half hour had conumed another block of buildings. The opera house block, a fine brick structure, was the next one to go, and then, one after another, square after square of business structures of wood and brick succumbed, and the fire became a great confiagration, spreading with almost inconceivable rapidity.
The burned district covers an area of about thirtyone blocks, its boundary being University, Front, Spring to Second, James, South, Fourth, Wall, and Water Streets, comprising the business portion of the city, the residence district escaping. Every newspaper,
hotel, telegraph office, railroad depot, and wharf in the city was destroyed. The entire water front, including all wharves and docks, coal bunkers, and railway tracks, the wholesale quarter, and everything south of Union Streetrad west of Second Street, and reaching around to the gas works and above Fourth Street, on Jackson, was completely burned. No less than 280 firms and persons doing business have suffered loss.
The population of Seattle is estimated at 25,000, and the loss by this fire is reughly estimated at about $\$ 7,000,000$. Of this something over $\$ 2,000,000$ is covered by insurance.

Corporations Retard Inventions.

Mr. Erastus Wiman, on the subject of telegraphs and telephones, in an address before the New York Electric Club, recently said, among other things, that it was a great blessing that the telegraph and tele-
phone were early divorced, " because I do not believe phone were early divorced, " because I do not believe
that the telephone would ever have been developed to that the telephone would ever have been devoloped to one-quarter the extent to which it has been developed if had been dependent on the telegraph." To which The Electric World adds, "and those are exactly our sentiments." Mr. Wiraan goes on to show a little later how the Western Union Company discourages inven-
tion. "To-day the Lord help the man whogoes to the tion. "To-day the Lord help the man whogoes to the
Western Union with a new scheme," says Mr. Wiman. What electricity stands in need of to-day is not the repressive spirit that sits down at once on the man with the new idea, but the encouraging spirit that tenders a helpful hand to every inventor of genius and high aspiration. We shall never have too many inventions in electricity, the World adds, but under the regime of Mr. Wiman's trust there would soon be too few. Our patent record, week by week, shows how active is invention in the electrical fields. What would be the stimulus or encouragement to all these persevering inventors, producing new apparatus and appliances for the good of mankind as well as for their own benefit, if they were at the mercy of "a hard-headed set of men on new schemes" bent on "discouraging speculation
or inventive enterprises" by all means in their power?

EXPERIMENTS ON THE INEXPANSIBILITY OF WATER AND CONTRACTION OF ICE.

 r. o'conor sloane, fh.dWhen ice melts, the water produced is of considerably less volume than was the original ice. This is obvious from the fact that ice floats upon wate The reverse is a fact but too well known to housekeepers, who trace many broken vessels and fractured water pipes to the expansion of freezing water. The change in volume is

the contraction of melting ice.
a sudden one for the most part. At $39 \cdot 2^{\circ} \mathrm{F}$. water attains its greatest density. If the temperature is lowered it expands slightly, until $32^{\circ} \mathrm{F}$. is reached, when it freezes, if there are no causes to prevent. In freezing it suddenly expands about one-eleventh of its bulk with almost irresistible power. A pressure as high as 28,000 pounds to the square inch has been estimated as hav ing been exerted by it.
Many other substances in solidifying experience the same change. Thus solid cast iron floats on melted iron as ice does on water, and for the same reason.
This sudden expansion is the more impressive in the case of water, because it is ordinarily of comparatively constant volume. Its change of bulk by alterations of temperature or pressure is but slight. It resists compressive or expansive strains, yielding but little to very high pressures.
Both of these phenome-na-the reduction in volume experienced by melting ice and the slight expansibility of water-are illustrated by the simple experiments shown in the cuts. Nothing in the way of apparatus is required to perform them, unless a couple of wineglasses or goblets and an India rubber band can be termed such. The simplest one may be first described, the illustration of the slight expansibility of water. If two empty wineglasses are placed mouth to mouth, and a rather wide India rubber band is sprung around the junction, they will resist separation with some force. The glasses in separating slide, like the members of a telescope, through the band, and in doing so cause the air within to be slightly rarefied. A partial vacuum is produced, and some exertion is required to separate them. When they part, a slight report is produced by the inrush of the outer air. It is evident that if the glasses were filled with a non-expansible substance, they would adhere much more strongly. For air, therefore, water may be substituted.
The glasses are immersed in a vessel of water large

HUNstock * CHAVEZ's CLINICAL THERMOMETER.
enough to hold them mouth to month. The oand is sprung over them and is worked up as near the lip of one of them as possible. It is important that it should be wet, to facilitate its sliding. The glasses, immersed so as to be filled with water, are next brought mouth to mouth beneath the surface. The band is adjusted by sliding so as to cover the junction as evenly as possible. Care must be taken to exclude all bubbles of air. The glasses are then removed from the water when they will be found to adhere loosely yet strongly. They can be worked from side to side, but will resist a direct pull with great force. A very heavy weight can be sustained before they come apart. The water contained within them is practically inexpansible, and permits no telescoping of the band and glasses.

The second experiment may now be tried. The glasses are separated and emptied, and the band is sprung around one of the glasses and is brought down below the dge, so that only half of its width surrounds the edge, so the other half will now spring inward and form a horizontal diaphragm through which a large aperture extends. It represents a flat perforated washer. The glasses are again immersed in water and filled. A lump of ice as free from air bubbles as possible is introduced into one of them, and they are as before brought together under the surface of the water. The ce is, of course, rapidly melting. The instant they touch, they adhere strongly. The shrinkage of the water as it changes from the solid into the liquid state produces a vacuum, and the atmospheric pressure orces the glasses strongly together. They are now removed from the vessel. It will be found that they can be laid on their sides and rolled about; that they can be held by the base of one in a horizontal position, and that they will sustain a very heavy weight befor pulling apart. They will adhere thus for a number of days, until gradually enough air has leaked in to destroy the vacuum. The other arrangement of band could be used, and is to be advised when the edges of the glasses are not true; but the flat surface of con nection makes it much more impressive, and by doing away with any chance of telescoping, restricts the ex periment to an illustration of the shrinkage of frozen water on melting
The glasses should be selected of equal diameter at the mouths, and if ground and polished, they are much better. There is no trouble in finding such glasses at any dealer's. Even if the mouths fit poorly, the ex periments can be performed by having a wide enough band and by not attempting to use the flat washer arrangement.

Electrical Currents.

We have in the case of electrical waves along a wire a disturbance outside the wire and a current within it, and the equations of Maxwell allow us to calculate these with perfect accuracy and give all the laws with respect to them.
We thus find that the velocity of propagation of the waves along a wire, hung far away from other bodies and made of good conducting material, is that of light, or 185,000 miles per second; but when it is hung near any conducting matter, like the earth, or inclosed in a cable and sunk into the sea, the velocity becomes much less. When hung in space, away from other bodies, it forms, as it were, the core of a system of waves in the ether, the amplitude of the disturbance becoming less and less as we move away from the wire. But the most curious fact is that the elec tric current penetrates only a short distance into the wire, being mostly confined to the surface, especially where the number of oscillations per second is ver great.-H. A. Rowland.

AN IMPROVED CLINICAL THERMOMETER.

The accompanying illustration represents an im provement in clinical thermometers which has been patented by Messrs. Robert H. Hunstock, of San Antonio, Texas, and Emigdio Chavez, of Guanajuato, Mexico. It is an improved article of manufacture, in which the zero mark of the scale is placed at the nor mal temperature of the body. Each degree is divided into five or ten parts, according to the size of the instrument, those above zero reading supernormal, and those below that mark being subnormal. If desired one or two scales may be made to appear upon the same instrument.

At a recent meeting of the Manchester Section of Chemical Industry, Mr. William Thompson read a paper on the heat-producing powers of twelve samples of coal, determined by burning in oxygen (in the apparatus devised by him), compared with their theoretical values as calculated from their chemical compo sition. The coal which he found to give the highest results as regards heat producing was anthracite, which gave 8,340 Centigrade units of heat.

AN IMPROVED BURGLAR ALARM.

A device which may be readily attached to a door or window, and is adapted to explode a cap as the door or window is opened, has been patented by Mr. Neil McIntyre, and is illustrated herewith. It consists of a tubular cylindrical body with closed ends in which slides a pistou surrounded by a spiral spring, which has a bearing on a plunger at one end of the piston and against the inner side of the cylinder at its other end One end of the piston rod projects out of the cylinder and is provided with a handle, while upon the extremity of the rod is hinged or pivoted a thin wedge-shaped arm. The end of the cylinder opposite the handle has a transverse slot, and the cylinder itself is adapted to be attached to a door or window by means of a screw

MCINTYRE'S BURGLAR ALARM.

which forms an integral portion of the body at the back. The cylinder is screwed on the inner face of a door or window, an inch or so from the outer edge, and the piston rod is then drawn outward, by means of the handle, against the tension of the spiral spring, until the wedge-shaped arm can be carried inward between the door and casing, as the door is closed. A cap is then inserted in the transverse slot in the rear end of the cylinder, where it is violently struck by the plunger on one end of the piston rod when the door is opened, the wedge-shaped arm being thus released and allowing the spring to exert its tension on the piston rod. For further information relative to this invention address the Travelers' Pocket Burglar Alarm Co., No. 200 East Eighty-second Street, New York City.

AN IMPROVED PIANO LAMP BRACKET.

The accompanying illustration represents a piano lamp bracket designed for attachment to an upright piano, and conveniently and readily adjustable to any position desired. It has been patented by Mr. William A. Smith, of Butte City, Montana Ter. A T-shaped plate is attached by screws to the back of the piano, and projecting from this plate beyond the end of the piano is a short arm with a socket, in which is mounted a pivot pin projecting from a horizontal rod, the latter being of sufficient length to extend past the end and in front of the piano. This horizontal rod has a vertical sleeve, through which extends a vertical arm, adjustably held by a set screw. To the lower end of the ver tical rod is secured, by an elbow joint, a horizontal rod having at its outer end a socket, in which is secured

SMITH'S PIANO LAMP BRACKET.
the shank of a stand upon which may be placed a lamp. By means of such a bracket the lamp stand may be swung back out of the way when not required for use, or moved to one end of the keyboard, or raised or lowered in its position with regard to the music resting above the keys.

Arrow Poison

According to Mr. Stanley, the arrow poison used by the natives of the Lower Congo district is made from a species of red ants found in that locality. The ants are dried, crushed into powder and cooked in palm oil. "he exceedingly irritating properties of the poison are supposed to be due to formic acid.

an improved thill coupling.

The accompanying illustration represents a secure thill fastening, which will not rattle or jar, and with which the thills can be quickly locked in place or re woved from a vehicle. This invention has been pat ented by Mr. George W. Lee, of Homeworth, Ohio The front end of the coupling iron has a horizontal eye

LEE'S THILL COUPLING.

in which is a stub shaft, held in place by a set screw, the shaft being bored interiorly and longitudinally to afford facility for lubrication. The thill iron is prefer ably made of steel, and is bifurcated, having two rearwardly extending curved arms, on the extremities of which are heads, recessed in their inner opposing faces, the recesses being of a size to fit snugly over the ends of the shaft held in the eye of the coupling iron, the arms of the thill iron being sprung apart until they will clasp the ends of the shaft. A locking plate is placed between the arms of the thill iron, preventing the spreading thereof, this plate being attached to a spring bar whose other end is countersunk in the up per face of the shank of the thill iron. To unlock or disengage the coupling it is necessary to slightly separate the thill arms, to effect which a key or releasing tool is provided, which is shown in position for such use in our illustration. By turning the handle of the key upward and outwardly the thill arms may be read ily disengaged from the vehicle, a similar use of the key serving to facilitate the engagement of the arms.
For further information relative to this invention address the patentee or Mr. Herbert T. Gould, of Perry, N. Y.

IMPROVED FENDER FOR CAR WINDOWS

A fender for guarding railway car or vehicle windows from smoke, cinders, or dust is illustrated herewith, and has been patented by Messrs. E. Frank Waller, of Hanson, Ky., and Otto A. Carlstedt, of Evansville, Ind., the small figures showing sectional views of the device. The fender conforms in shape to the top, one side, and bottom outlines of the window, and is of concavo-convex cross-sectional form, preferably of metal, although it may be formed of a flat plate bent twice to the required shape. Each fender is hinged at top and bottom by hinge lugs fixed to the fender and the car body, the hinges being arranged at the cepter of the panel between two car windows, thus allowing the same fender to be swung around on the hinges to guard either of the two windows from smoke and dust. The lower hinge lug has sockets at its front and rear edges, into either of which a bolt held to the

WALLER \& CARLSTEDT:S FENDER FOR CAR WINDOW
lower arm of the fender may pass, according to which side of the window the fender may be adjusted. Thi bolt is guided in staples fixed to the fender, and at it rear end has a stem, on which is a spiral spring, a knob on the bolt providing for conveniently withdrawing it when it is desired to swing the fender from one side to the other. There is also a hook on the inner
face of the fender, adapted to be engaged with a staple in the car body, to hold the fender in close contact therewith.
For further information relative to this invention address E. Frank Waller, M.D., Hanson, Ky.

The Dreams of a Hasheesh Smoker.

Science describes the experiences of a gentleman who placed himself under the influence of a hasheesh. He smoked it until he felt a profound sense of a well-being and then put the pipe aside. After a few minutes he seemed to become two persons, he was conscious of his real self reclining on a lounge, and of why he was there, his double was in a vast building of gold and marble, splendidly brilliant, and beautiful beyond all description. He felt an extreme gratification, and believed himself in heaven. This double personality suddenly vanished, but reappeared in a few minutes. His rea self was undergoing rhythmical spasms throughout his body, the double was a marvelous instrument, prodiucing sounds of exquisite sweetness and perfect rhythm. Then sleep ensued, and all ended. Upon another occasion sleep and waking came and went so rapidly that they seemed to be confused. His double seemed to be the sea, bright and tossing as the wind blew, then a continent. Again, he smoked a double dose, and sat at his table pencil in hand, to record the effects. He lost all conception of time. He rose to open a door, and it seemed to take a million years. He went to pacify an angry dog, and endless ages seemed to have passed when he returned. Conceptions of space retained their normal character. He felt an unusual fullness of mental impressions-enough to fill volumes. He understood clairvoyance, hypnotism, and all else. He was not one man or two, but several men living at the same time in different places with different occupations. He could not write one word without hurrying to the next, his thoughts flowing with enormous rapidity. The few words he did write meant nothing.

A SPRING COVER OILER.

The illustration herewith represents an oiler the cover of which is self-closing, with out the screwing on of a cap, as is common with the ordinary oiler. It is manufactured by the Penberthy Injector Company, of Detroit, Mich As will be seen by this sectional diagram, the cover is held in place by a spring of fine wire which passes down through the oil way and is fastened in its concave, threaded base. The filling of the oil cup is readily effected by lifting the cover against the slight tension of the spring, which of course is always sufficient to keep the cover in place in ordinary use, or even against any considerable jar of machinery, while cover so attached cannot be lost.

Ten Good Things to Know.

1. That salt will curdle new milk, hence in preparing milk porridge, gravies, etc., the salt should not be added until the dish is prepared.
2. That clear boiling water will remove tea stains and many fruit stains. Pour the water through the stain and thus prevent its spreading over the fabric. 3. That ripe tomatoes will remove ink and othe tains from white cloth, also from the hands.
3. That a tablespoonful of turpentine boiled with white clothes will aid in the whitening process.
4. That boiled starch is much improved by the addi tion of a little sperm salt or gum arabic dissolved.
5. That beeswax and salt will make rusty flat irons as clean and smooth as glass. Tie a lump of wax in a rag and keep it for that purpose. When the irons ar hot, rub them first with the wax rag, then scour with a paper or cloth sprinkled with salt.
6. That blue ointment and kerosene mixed in equa proportions and applied to the bedsteads is an unfail ing bedbug remedy, as a coat of whitewash is for th walls of a log house.
7. That kerosene will soften boots or shoes that have been hardened by water, and render them as pliable as new.
8. That kerosene will make tin tea kettles as brigh as new. Saturate a woolen rag and rub with it. It will also remove stains from varnished furniture.
9. That cool rain water and soda will remove ma chine grease from washable fabrics.-The Sanitarian.

A curious instance of twins, in case of a hen's egg is reported to us from Crawiordsville; Ga. Mr. C. G. Moore of that city sent us a photograph of an egg that was served on his table and which apparently was perfectly normal, but which when broken open was found to contain a perfectly formed egg with a complete shell within the outer shell. Mr. Moore kindly had a photograph faken for our use, but we do not publish t, as we were unable to reproduce with sufficient ac curacy the peculiar formation of the egg.

AN IMPROVED CHILD'S SWING

The accompanying illustration represents a swing mainly designed to be used in the place of a crib or cradle for infants, as well as for amusement and means of exercise or place of rest for older children. It is a patented invention of Mr. James M. McCord, of Vincennes, Ind. Figs. 1 and 2 represent the upper and

McCORD'S CHILD'S SWING.
lower end portions of one of the suspension wires, Fig. 3 showing the swing carrying a box at its lower end, having fitted on it a removable raised frame, while the perspective view shows the swing with a seat mounted on the box in place of the removable frame. This frame may be of basketwork or other material of any desired pattern, and when in place is secured by hooks engaging with suitable catches, to provide for its ready re, moval. The chair has rabbeted cleats on its bottom adapted to rest on and fit within or lap over the sides of the box, to which it is held in place by hooks

New Process for Detecting the Presence Coloring Matters in Wines.

The author uses as a reagent the standard soap liquid used in determining the hardness of waters. Of this liquid 5 c. c. are placed in a small test tube with an equal volume of distilled water. From ten to twenty drops of the wine in question are added, and the whole is mixed by inverting the tube. With a natural wine the liquid remains colorless, but it is colored if some foreign coloring matter is present.-A. Pagnoul.

SIEVE ATTACHMENT FOR THRASHING MACHINES.
The invention herewith illustrated relates to an at tachment whereby the sieves may be regulated, moved, adjusted, or shifted, according to the work in hand, while the machine is in motion, and is also adapted for use in windmills, elevators, and other machines in which sieves are required. It has been patented by Mr. Wily K. Dodd, of Marengo, Iowa. The device is shown as applied to a thrashing machine having a forward and rear receiver, each furnished with a suitable conveyer, a shoe capable of a longitudinal or a transverse movement being held above the receiver. Front and rear shafts are journaled in the receiver, front and rear vertical slides, having grooves in their inner faces, being connected to the shafts, while a sieve and a tilting lever are connected with the shafts, an adjusting lever being linked to the tilting lever, and a tail board being operated from the tilting lever simultaneously with the slides. Parallel with the forward base of the tail board a rod is secured in the shoe carrying burrs at

DODD'S THRASHING MACHINE ATTACHMENT.
each end, one outside and the other inside of each side of the shoe, which serve to regulate the movement of the tail board in its groove, and by moving the adjusting lever either up or down, thesievesmay be raised or lowered.
For further information relative to this invention address Mr. Ralph H. Kirk, Marengo, Iowa.

IMPROVED LEATHER BELTING.

For high speed machinery, especially planing machines and dynamos, the very best possible article of belting is required, which shall combine flexibility and strength. The house of Charles A. Schieren \& Co., of this city, has devoted special attention to the production of this class of goods. The general routine to which the hides are subjected is as follows. Only the hich the hides are subjected is as follows Only the best selected and trimmed oak-tanned hides are used, the center portion of which is cut out and the rest dis-
carded. After soaking, the hides are cut into strips according to their thickness and are then softened by machinery, shaved by hand, and finally scoured. This removes all dirt or remnants of flesh that may be adhering and cleanses and opens the pores of the leather, which is then partially dried and treated with oil and tallow. As the water evaporates from the skin,

straightening and cutting machine.

the stuffing, as it is called, penetrates the pores and takes its place.
The material of a belt must be pre-eminently unstretchable in order to insure accurate running on the wheels. We give a small view of the machine in which belt leather is stretched. For 24 hours it is subjected to tension, after which it is polished and dried. By shears and cutting machinery it is now cut into the va rious widths that can be yielded by the skin unde treatment. It has next to be fastened. The leather is squared at the joints and carefully feathered off to a sharp edge; the pieces are then cemented and cut into rolls about 300 feet long each. So good and

achine for stretching BELT LEATHER.

ax Thread sew
perfect is the cementing that a belt secured by no other means is often used and found thoroughly efficient but to make it thoroughly reliable for heavy work a better fastening must be used. In the old way it was riveted with copper rivets and burrs, and much heavy belting is made up in that way by the house. But rivets are certainly clumsy, interfere with the smoothness of the belt, and impair flexibility. We

ENDLESS WIRE SCREW MACHINE.

therefore illustrate a machine which marks an impor tant improvement-the use of endless copper wire screws. This machine screws the belt together by small screws, which form extremely strong attachments, that can be multiplied to any desired extent The belt produced is perfectly smooth on both sides, is farmore pliable than one made with rivets, and the layers of leather are held more firmly together. The electric belts for dynamos and motors arenow all made in this way. As a special article for export, belts with joints sewed with waxed threads are manufactured also. The high speed belting is perforated in order to prevent air cushioning and to allow the belt to have a full grip upon the driving or motor pulley. This house also has extensive works in Brooklyn devoted entirely to the production of lace leather. Here the brands of Brooklyn and Gowanus raw hide lace leather are made and a special tanned lace leather. Electric engineers find the Schieren belting admirably adapted for their uses on motors and dynamos.

The Beat Form of Motor.

The introduction of motors for power transmission will soon be governed by their cost. The questions of reliability, safety, and convenience are all important, but dollars and cents, says Electric Power, are the most conspicuous consideration, and this point is by no means overlooked by the manufacturer of motors.
The evolution of a perfect machine of this character is necessarily a slow process. Its original design and construction is in the hands of the inventor and a few practical mechanics. When it is placed in actual service, the modifications begin. It is strengthened in one part and lightened in another. Its construction is gradually simplified. The arrangement of the parts is changed in order to facilitate examination and possible adjustment. Nothing but the lapse of time and the exigences of actual service will develop all the faults and suggest all the improvements which may be made. When practical perfection is eventually attained, special machinery may be devised, which will bring the cost of production down to the lowest point, greatly enlarging the sales, even if the profit on each motor is reduced. This is the natural course through which any line of manufacturing must pass in order to attain the highest degree of perfection.
So long as competition tends toward the production of a better article at less money, it is beneficial, provided it is done at a reasonable profit; when, however, an effort is made to reduce cost by introducing an insufficient quantity of material, or that of an inferior quality, the result is more likely to show loss rather than gain. The high speed at which dynamos and motors are run, and their susceptibility to damage if not properiy balanced and fitted, has led up to first class workmanship. Therefore, it seems reasonable to suppose that in this particular branch of the electrica business there is little apprehension of retrogression.

onsanguineous Marriages.

The author of a recent work on this subject calls attention to the curious ideas which have been generally received in reference to the infecundity.of and physical degradation consequent on consanguineous marriages. So far as the data given may be trusted-and it is hardly to be supposed that the author holds a brief on the opposite side-there is absolutely nothing to show that marriages between near kinsmen are lacking in fertility, or that they are peculiarly liable to give issue to deformed or diseased offspring. There is no lack of instances of enforced consanguineity, in the matter of marriage, in isolated communities, according to M . Huth, to disprove the assumption that physicardegene ration is likely to result from the practice. An investi gation into a number of unions between uncles and nieces, nephews and aunts, and cousins in the first and second degree, gives an average of children rather above than below the general average, though this is at tributed to some extent to the comparatively early age at which such unions are generally contracted.
Breeders inform us that the results are markedly in avor of consanguineous unions between healthy well bred animals. Unions between men or animals of widely different varieties, on the other hand, have a decidedly injurious effeci on the offspring, and beyond a certain limit are almost absolutely sterile. Mulattoes and the half-breeds ot India and America are striking examples of the deterioration to which such racial disparity gives rise. The great point to bear in mind is that the union of individuals with the same morbid tendencies intensifies the taint, and that, too, quite ir respective of any consanguineity. The moral, according to the author, is that the reasons which have led to the prohibition of marriages within certain degrees of relationship are social, and not physiological.-Medica Press and Circular

What will the End Be?

J. E. Thickston, a scientist and astronomer, living at Metuchen, N. J., while alluding to the Johnstown horror, said to a Herald correspondent that the dread ful catastrophe was as nothing compared to what might have occurred.

The news from Central Pennsylvania is awful," he said, " but this may be a very little thing compared with what may yetioccur. Near and west of the Alleghanies a great opening within the earth's crust must be made somewhere by the escape of natural gas. Will the earth settle and fill the empty places, or will air pass in and thereby make it possible for the immense reser voirs of gas, stored away, no one knows how far, to explode and make an upheaval? Many people believe there is gas enough under Western Pennsylvania and Eastern Ohio to blow the country from Lake Erie to the Monongahela into promiscuous fragments. When oil was struck at Oil Creek-in 1859, timid folks feared collapse and a sinking of the oil field, but that danger was obviated by water running into the wells as the oil ran out. The dreaded vacuiun never came, a water took the place of the removed oil. It is not so n this case. Water is not filling up the ges wells except to a limited extent. What the outodome may be is not really a very enjoyable thing to revclve in our minds these pleasant June mornings. A) Ahtnerged
valley, lined with the bones of fifteen thousand men, women and children is a fearful thing in the history of the human race, but what of that compared with a wrecked continent? What of that compared with a world blown open or blown to fragments? I am not an alarmist or a sensational Wiggins. I do not believe that old Mother Earth is about to be shot into smithereens, but there may be danger ahead in this direction, and although we grieve over the Conemaugh catastrophe, let us be thankful that there has not been a natural gas explosion out West, and that there are not two rings instead of one set of astoroids in the material heavens."

THE NEW RUBBER TIP PEARL MUCILAGE BOTTLE. In our issue of June 9, 1888, we described the new rubber tip mucilage bottle recently introduced by the Nassau Manufacturing Company, of this city. The tip is now perforated only on one side, so that no air can enter, and consequently no portion of the contents can possibly escape. This simple modification makes the Pearl Mucilage Bottle perfect. There is no evaporation, as the slit is always closed. The amount that is delivered in use is enough and not too much. No attention is required, and where real pasting in quantity is to be done, its good qualities appear best.

an apparatus for heating and steaming grain.

The apparatus represented in the accompanying illustration is more especially designed for treating wheat, so as to toughen its hull and produce a better bran, an increase of middlings, clearer flour, and whiter break-flour. The invention forms the subject of a patent issued to Mr. William H. Smith, of Hickman, Tenn. Fig. 1 is a sectional side view of the apparatus, and Figs. 2 and 4 are plan views in different sections. A central drying chamber is supported within an outer steam vessel, steam being supplied to the latter from any suitable source by means of two side pipes, the steam also circulating through pipes extending transversely through the drying chamber, as showa in Figs. 1 and 2, while the water of condensation is carried off by a pipe at the bottom. From the top of the steam vessel pipes lead to an upper steam chest above the drying chamber, the upper end of the steam chest being connected with a pipe extending a short distance into the grain supply pipe, this steam pipe being closed at its upper end. In the bottom of this pipe is a valve, and in the pipe are a number of horizontally extending perforated pipes, as shown in Fig. 3, whereby steam may be furnished as desired to steam the grain entering the supply pipe, or entirely cut off therefrom when

smith's apparatus for heating and steaming
GRAIN.
the grain is only to be dried. The arrangement of the pipes in the drying chamber permits only a slow move ment of the grain to its central discharge spout at the bottom, so that the grain is thoroughly heated and dried in its downward movement.

The New National Zoological Garden.
During the last session of Congress the sum of $\$ 200$, 000 was appropriated for the establishment of a zoological garden in Washington. The necessary site for it has pow been selected. It comprises about 150 acres, lies to the northwest of the city, about two mile rom the White House, along the banks of Rock Creek and is said to be admirably situated and in every way well adapted for its purpose. It is expected that before next winter the necessary arrangements will be so far advanced that the animals now inappropriately housed in the grounds of the Smithsonian Institution can be removed to their new quarters.

©orrespondence.

A Need for oride of Titanium

To the Editor of the Scientific American:
The oxide of titanium is essential in giving the yellow color to porcelain teeth. It seems of late to have become very scarce. It is not to be obtained in Boston, and a quantity lately purchased in New York is color less and useless. Can you help us out? T. H. C.
Cambridge, Mass., Harvard University, Dental Dept.

Tree Killing Composition Wanted.

To the Editor of the Scientific American:
A man or animal can be fatally inoculated with poison by a subcutaneous injection. Now, I want to know whether it is possible to do the same with a tree. To kill superfluous trees by girdling requires a good deal of labor. Is there not some substance that could be placed in an auger hole that would kill the tree Pueblo, Col.
an Old Reader.

The Bowers Dredge at Tacoma.

To the Editor of the Scientific American:
The Bowers dredge recently illustrated and described in the Scientific American is now in Tacoma, having arrived in tow of the tug Vigilant, after a perilous yoyage, in which the dredge narrowly escaped wrecking. It will be employed in channel work and reclaiming of land for the N. P. R.R. The owners expect to be employed in this vicinity for three years, or until the dredge is worn out.
Tacoma, W. T., June 12, 1889.
Bursting Dams and Floods in Geology. To the Editor of the Scientific American:

A question of geographical interestiarises out of the bursting of the Johnstown dam. The plains of the Upper Indus are said to be strewn with angular blocks -not rolled by ordinary river action-and their presence has been explained by the supposition that huge land slides, having from time to time formed dams across the mouths of mountain gorges in lower Cashmir, created temporary lakes, and that when these pent-up waters, overtopping the dam, let themselves loose they were mixed with sufficient earth to form a flood of density enough to carry with it debris equal to glacial moraines.
How far was this flood visible down the Ohio, and how far were heavy blocks carried by the muddy waters? 1 remember when Mt. Leathers dam burst above Sheffield, England, the flood wave was felt for a great distance.
G. Darbishire.

Zolfo, Fla.

The Recurved Double-Fanged Climbing Rattle-

To the Editor of the Scientific American:
In the recent issue of the Scientific American of May 11, on page 295, is an article from the pen of C. Few Seiss, Esq., on the poisonous serpents of the United States. He has omitted entirely to mention a very important species of rattlesnake, which was first described by Audubons and named by him the "Recurved Double-Fanged Climbing Rattlesnake." This snake has double instead of single fangs on each side of the upper jaw, and they are recurved in shape; and it also climbs bushes and small trees, in search of food, such as young birds, etc. I have myself killed and specially examined two specimens of this snake in my own immediate neighborhood.
The last specimen I killed only recently, and gave it to a gentleman who wished to send it to a friend in St. Louis. Will you please let me know if the snake I have described is really a rarity in the northern and western portions of the United States?

Rodney, Miss., June 16, 1889.

Machinery Wanted for Making Cassava Starch.

To the Editor of the Scientific American:

The cassava grown in Florida is of the sweet species. Its root yields tapioca-starch or gluten-and a nutritive bran for stock. Heretofore small patches of the prolific root have been dug when required for home con-
sumption, and occasionally an industrious housewife will grate by hand and clarify a few pounds of starch for the store. Now, however, the immense yield (about forty tons per acre) has led to the planting of considerable areas in Polk County, and the question of saving and systematically handling this weighty crop will puzzle the farmer this autumn.
Last year I rigged up a revolving grater to run by foot treadle, and kept a boy washing dirt off the roots as long as my legs would hold out. Now, I want some of your readers to suggest a machine (for one mule power) which will :

1. Wash the roots as they come from the field.
2. Disintegrate them (grating is preferable to slicing or crushing).
3. Saturate the pulp, and let the water full of starch
drain off into settling tanks through fine screens, which
screens must deliver the bran drained, to be dried ready for barreling.
4. To dry the settlings or cakes of starch after the clear water has been drawn off. Could chemicals be added to bleach and whiten the starch ?

G. DARBISHIRE,

Chief Engineerfor Peace River Phosphates. Fort Meade, Fla., June 17, 1889.

Facts Concerning Flour Production.
 To the Editor of the Scientific American:

We quote from your issue June 8: " 88,200 barrels of flour is the report of a recent one week's work for the mills of Minneapolis. Is there any other place in the world where such a large production is realized ?" Permit us to say that we think not. St. Louis, however, comes nearest, making, or having capacity to make, 12,025 barrels daily, or 72,125 barrels per week of six days. The Minneapolis mills, twenty-two in number, have a daily capacity of 37,475 barrels, or 224,850 barrels per week of six days. Pillsbury \& Co. and Washburn, Martin \& Co. can make respectively 10,900 and 8,300 barrels per day, or together 115,200 barrels per 8,300 barrels per day, or together 115,200 barrels per
week. Minneapolis' heaviest week was a little over 182,000 barrels, while the figures you give are below the average six days' work.

Hill \& Schaaff, Millers' Agents.
Richmond, Va., June 10, 1889.

Why Engineers Should Study.

Granted that owners are sometimes short-sighted and are over-inclined to value your services in inverse ratio to the money you demand for them. Do you intend always to work in the same place? Do you not rather cherish the honorable ambition to better your condition whenever opportunity offers? Do you ever stop to consider the great changes which have taken place in the character of the steam plants of this country, and that the change is still going on in a constantly accelerating ratio? Some one has well said that there is always room at the top; and in the stationary engineer's trade this room at the top is growing larger all the time. Think the matter over, and you will soon be convinced that not one of the mechanical trades has in it more of possibilities for the future, or offers more encouragement to hard study, patient industry, and steady application than the one you have chosen.
It is not so very many years since the old fashioned slide valve engine, with its box bed and throttling governor, was to be found in nearly every engine room. Now it is hardly thought of except for the smallest and cheapest plants. It is scarcely a dozen years since the first successful attempt was made to build Corliss engines in the West. To-day there are dozens of builders of this and other types of high duty engines. The automatic cut-off engine has driven the slide valve out of the market, except for small powers. Compound engines are common, and triple and quadruple engines are not only being talked of, but are being placed in operation, and will undoubtedly be as generally used in stationary practice as they are now in marine engineering. Thousands of first-class plants are in daily service, and the demand is growing steadily. Every one that is put in service calls for skilled attendance and furnishes work for a good engineer. The signs of the times all point to a continuance of the attempt at still further improvement in the economy and efficiency of the modern high duty steam plant. As a natural result the demand for skillful, educated engineers is increasing. Not only this ; but the number of first-class power plants is rapidly increasing to meet the manifold requirements of our later day civilization. Every new luxuries of life, every lighting station, every central power plant, every one of the thousand and one new developments within the bounds of near probability, calls for economical power, and every plant of this character furnishes employment for a good engineer. Naturally, the engineers who study the hardest, and are the most thoroughly posted in the practical details of their trade, will get the best positions; and the best positions are worth working for. Are these not good reasons why the engineer should educate himself in the
theory and practice of his trade ?-Stationary Engitheory
neer.

AN ingenious and determined attempt to intercept the signals passing along the Marseilles cable of the Direct Spanish Company was recently discovered in the course of some repairs to the underground lines in
the streets of Barcelona. The superintendent found that at one spot the ground had been undermined and the four cables cut, the conductors on both sides being connected to insulated wires, which were taken to the wall of the house opposite. Outside this house the leads from each cable were connected together by a binding screw, so that communication between Marseilles and Barcelona was not interrupted. A careful inquiry was at once instituted by the authorities, and it was speedily discovered that the wires had
cellar of the house opposite the mine, the hole in the wall having since been carefully bricked and plastered up.

PHOTOGRAPHIC NOTES

To Remove Yellow Stains from Negatives.-A correspondent in Sivas, Turkey, says it will require several days' journey in his distant land to consult a professional photographer in regard to the information he seeks, and asks the Scientific American to tell him how to remove successfully a yellow tinge on one end of a valuable negative.
The cause of the stain is probably due to insufflcient fixing of the plate originally. Hence the treatment is different than if it was a pyro stain caused during development. The latter stain can be removed by immersing the plate in a clearing solution composed of:

for several minutes. The plate should be soaked in water for 10 minutes prior to being placed in the above, provided it has been dried and printed from.
Another formula for removing silver stains produced in printing from ordinary silver paper is to mix two solutions:
a. Sulphocy
$1 / 6 \mathrm{dr}$.
b. Nitric acid.

Mix equal parts of a and b, fresh for each negative, and apply to stained portion or immerse the negative in the solution. When the stain disappears, the negative should be washed and followed by an application of a saturated solution of chrome alum.
When the stain is caused by insufficient fixing, it is said to be removed by converting the silver in the film into an iodide and then dissolving out by cyanide of potassium. The method recommended by Mr . Drake is as follows : Soak the plate for five minutes in clean water, meanwhile make a solution of iodide of potassium, 20 grains to the ounce of water, now put the plate in this solution, and let it stay for ten minutes. If the stain is very old, keep it in for half an hour. Now dissolve half a drachm of cyanide of potassium in one ounce of water. Take the plate and put into this, and gently rub the stains with a tuft of cotton wool (absorbent filtering cotton will ${ }_{j}$ do), free from grit, until they are quite gone. If the stains are very old, make the solutions stronger, and soak for a longer time.
The stain due from insufficient fixing is usually very difficult to remove. A plan which we have thought of, but not yet tried, is to change the color by slight intensification.
First immerse the plate in a weak solution of bichloride of mercury and water until the film commences to bleach.
Then wash and immerse in a solution of cyanide of silver similar to Monkhoven's formula. The cyanide of silver converts the film into a bluish color and might also transform the yellow stain in the same manner.
Black Negative Varnish.-A simple way is to dissolve two grains of lamp black in half a drachm of turpentine, then add it to the clear negative varnish, shaking well at each addition to insure thorough mixing. If the quantity is too small, add successive amounts of the black until the requisite color is reached.
A New Transparent Film.-We are informed that by a recently perfected process, transparent celluloid only 3-1000 of an inch thick can now be easily manufactured, capable of rolling up like paper. On the film thus made the sensitive emulsion is spread. The film is exposed in the camera and developed the same as a gelatine plate, and when done is ready to be printed from. It is to be made by the Eastman Company, of Rochester, N. Y., who have introduced bromide paper so largely in this country.
Platinum Toning Bathfor Gelatino-Chloride Paper. -In Dr. Liesegang's interesting journal, Der Amateur Photograph, Mr. Alfred Stieglitz gives the following platinum toning process for gelatino-chloride printing out paper (known as aristo paper) :

For use are mixed, just before toning, 6 parts of A with 1 part of B. The prints are as usually at first washed out, and then toned. To obtain a black tone, the prints are allowed to remain for twenty-five to forty minutes in the solution without moving. They will acquire in the toning bath a bluish violet tone. After fixing, however, the blackish tones will be observed. The prints treated with this bath will keep better than prints toned with gold, as they are notaffected by sulphureted hydrogen and similar gases. They are fixed and washed as usual. M. Stieglitz promises to continue his experiments.-Mr.H.G. Gunther, in Photo. tinue
News.

THE WASHINGTON ARCH OF NEW YORE.

We give in the present issue a view of the Washington Triumphal Arch, which, during the recent centennial and for some weeks thereafter, stood at the lower end of Fifth Avenue in this city. It was erected by residents of North Washington Square and of Fifth Avenue below Fourteenth Street. Mr. William R Stewart, who is now treasurer of the fund for the erec tion of a permanent arch, deserves much of the credit for originating the idea and for collecting the funds necessary for carrying it out.
The arch stood about 100 feet north of Washington Square, spanning Fifth Avenue from curb to curb. It was designed by Mr. Stanford White, of the firm of McKim, Mead \& White, architects, of this city. The material was entirely wood for the main structure while for its decoration papier mache was used. A frieze of garlands and wreaths of laurel were employed in this, carrying out the colonial style of architecture. The'general design, however, followed the regular type of triumphal arch. As it was necessary to avoid ob

A very interesting feature was the statue of Washing- slippery rails, etc., this time is reduced to 10 miles per ton which stood upon its summit. This was a painted hour.
wooden image, ten feet in height, representing Wash- "When the trains are running at full speed, they ngton in Continental uniform. He appeared as wearing a blue dress coat with brass buttons, buff breeches, and riding boots. This statue is a veritable antique. It is said to have been placed upon the Battery in 792. It was obtained as a loan for the purposes of the arch through Mr. Sypher, the well-known dealer in art roods, of this city.
The appropriate design and beauty of the arch were so manifest that the centennial committee on art organized a special committee to collect subscriptions for he permanent reproduction of the arch in stone. The new committee includes Henry G. Marquand, chair man; Louis Fitzgerald, vice-chairman; Richard W. Gilder, secretary; and William R. Stewart, treasurer The following determination has been reached and will be adhered to in the matter :
A total of $\$ 100,000$ is to be collected and devoted to
he erection of the arch; it is to be made of marble

THE WASHINGTON ARCH OF NEW YORK.

structing the sidewalks, the piers were made consider ably narrower than would have been in accord with the other proportions. If the same design precisely were carried out in stone, it is thought that a tie rod would be necessary to preserve its integrity and to resist the thrust of the arch. It was painted white, so that it re sembled a marble structure.
The general idea was to preserve the colonial type, itself a modified classic style of architecture, in order to make it harmonize, not orly with the days of Washington, but with the locality in which it stands, as the residences upon the park are among the oldest in the city, and present many features of the colonial epoch.
The dimensions of the arch were these: Width of archway, 41 feet; height to spring of arch, 22 feet; height of archway, 43 feet; height to cornice, 55 feet; entire height, inclusive of statue on apex, 71 feet ; entire width of arch, 51 feet.

During the centennial period the arch was illuminated by rows of incandescent electric lights driven from a dynamo placed in an adjoining yard; and four bunches of flags were arranged as trophies at the spring of the arch, containing the flags of many nations blended with our own. On the front and rear of the arch resting upon the keystone were placed two large stuffed specimens of the American bald-headed eagle, the larger of the two measuring seven feet six inches from tip to tip of the extended wings.
and is to be erected in the neighborhood of Washington Square; it is to be called the Washington Arch and is to be designed by Stanford White. The four last conditions are absolute. It will of course be somewhat modified from the present design, which could not well be reproduced in stone, and it may be erected on the other side of Waverley Place, in order to obtain increased room for the piers. The hope is expressed that, being placed so far south, it shall be the first of a series of civic decorations which shall ultimately extend throughout the length of the city. Over $\$ 46$, 000 has already been collected, and when $\$ 50,000$ shall have been accumulated, work will be definitely begun as the collection of the balance will then be a mat ter of time only.

The Elevated Steam Street Railways, New York
Regarding the speed attained on the elevated roads Mr. T. C. Clarke says: "The average of several trip on the Third Avenue elevated, between South Ferry and One Hundred and Twenty-seventh Street, timed by me, gives with ordinary five-car trains-seats filled but few standing-as follows: Distance, 8.40 miles total time, 47 minutes -10.89 miles per hour; deduct 26 stops at 20 seconds each (8 minutes and 40 seconds)38 minutes 20 seconds running time between stations equaling $131 / 3$ miles per hour. In this case there wer no delays and the train ran rapidly ; with heaver trains
spaces in between. When within one of these spaces, the sensation is that of being in a vault. With the solid snowy clouds below you and the smaller clouds around you being by perspective brought close around, t appears as if you were in a cavern. I have been above the clouds during a snow storm, and the light of the moon shining so brightly through the rarefied air produced an illumination rather supernatural. I have very frequently passed through frozen clouds. This is where vapor has fallen below the freezing point and been congealed into a substance resembling flour in appearance. This falls, and in doing so reaches a higher temperature, where the small particles are ag gregated into flakes of snow. Some clouds, however present very much the appearance of a veil, and ob jects on the earth can be distinctly discerned from a position above them. I have never known of an instance in which a balloon was hit by lightning. The thunder does not make a perceptibly greater noise than when you are on the ground. The sound proceeds from the upper layers of clouds, as does also the rain ; and in many cases, when the lower strata appear very violent, perfect quiet there reigns except for such motion as is produced by the rain falling through from above. The upper currents are most active, and a cyclone or a wild storm is perhaps produced according as those upper currents deseend to or remain above the earth.

THE VARI IN THE BERLIN ZOOLOGICAL GARDEN. The lemur may be considered the connecting link between the ape and rodents; the construction of the hands and feet reminds one of the former, and that of the body, and in some cases of the jaw, reminds one of the latter. The marking of the lemur is very striking; as is well known, the Romans believed that they were the departed souls of the dead, for the propitiation of which the lemuria-midnight fetes-were celebrated. Like true ghosts, these wandering souls shunned the daylight, carrying on their mischief during the night. From these creatures which shun the light the lemurs took their name; they are truly creatures of the night, and do not lose this peculiarity when in captivity. The lemurs in the Berlin Zoological Garden and the Aquarium sleep the greater part of the day, in spite of all the disturbance caused by visitors; when night closes in and the lights are put out, they become gay, rushing nimbly about their cages.
The vari (Lemur varius) belongs to the rarer speci mens of this family. It attains a length of about three feet, including the tail, which is about half the whole length. The marking of the specimen shown in the accompanying illustration is very regular, black and white alternating, for only the bushy tail is entirely black; but in many vari the distribution of colo varies. The face framed in long white hair and the sharp eyes give the animal a peculiar appearance. The black, dextrous hands bear an unpleasant resem blance to the correspond ing members of the human body, and everything done with them, even the catch ing of running and flying insects, is accomplished with absolute certainty The varis live in large com panies on the island of Madagascar, where they make nightly excursions, uttering horrible cries Their food generally consists of fruits, although they will gladly eat a live bird or other dainty mor sel. They are not very in telligent, and are always very shy, taking flight on the slightest provocation When in captivity they soon accustom themselves to their keeper, and are very gentle and good na tured, but a loud word is enough to confuse them.
All lemurs h ave $t h e$ power of creeping about noiselessly like a cat, going around straw, little stones and dried leaves so as not to disturb their prey.

The young vari, which is
perfectly developed at its
birth, clings so close to the mother as to almost dis appear in her fur.-Illustrirte Zeitung.

How to Make a Good Floor

Nothing attracts the attention of a person wishing to rent or purchase a dwelling, store room, or office, so quickly as a handsome, well laid floor, and a few suggestions on the subject, though not new, may not be out of place.
The best floor for the least money can be made of yellow pine, if the material is carefully selected and properly laid.
First, select edge grain yellow pine, and not too "fat," clear of pitch, knots, sap, and split. See that it is thoroughly seasoned, and that the tongues and grooves exactly match, so that when laid the upper surfaces of each board are on a level. This is an important feature often overlooked, and planing mill operatives frequently get careless, and in adjusting the tonguing and grooving bits. If the edge of a flooring board, especially the grooved edge, is higher than the edge of the next board, no amount of mechanical in genuity can make a neat floor of them. The upper part of the groove will continue to curl upward as long as the floor lasts.
Supposing, of course, the sleepers or joists are properly placed the right distance apart, and their upper edges precisely on a level and securely braced, the most important part of the job is to "lay" the flooring correctly. This part of the work is never, or very rarely ever, done nowadays. The system in vogue with carpenters of this day of laying one board at a time, and "blind nailing" it, is the most glaring traud practiced in any trade. They drive the tongue of the board into the groove of the preceding one by
pounding on the grooved edge with a naked hammer, making indentations that let in the cold air or obnoxious gases, if it is a bottom floor, and then nail it in place by driving a six-penny nail at an angle of about 50° in the groove. - An awkward blow or two chips off the upper of the groove, and the last blow, designed to sink the nail head out of the way of the next tongue, splits the lower part of the groove to splinters, leaving an unsightly opening. Such nailing does not fasten the flooring to the sleepers, and the slanting nails very often wedge the board so that it does not bear on the sleeper.-Exchange.

Electricity on War Ships.

Electricity on ships of war is purely an American dea, and was first tried on the United States steamer Trenton in 1883, says the New York World. Soon after the system had been tested the vessel sailed on a three years' cruise, and attracted much attention as the first vessel afloat to be lighted by electricity. The success of the Trenton's experiment practically settled the question in naval circles. Through the exertions of Lieut.-Commander R. B. Bradford, who was the Trenton's executive officer electric lights were placed on
long steel shot dart through space at the rate of 2,000 feet in a second. Bow, stern, and broadside respond in one terrific roar, and, crash! the fabric trembles 'neath the simultaneous explosion of 6,000 pounds of powder, and 12,000 pounds of metal are sent whizzing through the air by means of the electric slave of the dynamo.
The merest motion of the little polished lever directly in front of the capstan brings the powerful search light into action, and sends a dazzling beam through the dark void. To the left protrudes still another concave, innocent-appearing globe, which controls a silent though potent and death-dealing auxiliary. A slight click is heard, a puff of white smoke, and the Whitehead torpedoes glide from their smooth tubes, and are driven through the water at the rate of thirty miles an hour. An electric bell signals the officer in charge of the quick-firing and machine guns when to play his part, and ere the gong has ceased to vibrate, thousands upon thousands of explosive projectiles are flying through the air at the rate of 1,900 feet per second.

The latest electric appliance is a system of engine room telegraph, invented by J. B. Wallis, an Englishman. It has been thoroughly tested in the royal navy, man. It has been thoroughly tested in the royal navy and adopted on her Ma jesty's ships Camperdown, Rodney, and Aurora. It is also being fitted to the Magicienne and the Marathon, two second class twin-screw cruisers. The Wallis system comprises an engine room telegraph, a revolution-order telegraph, and a steering telegraph, the principle being the same in each case. The engine room telegraph cousists of a combined transmitter and reply indicator, inclosed in a case mounted on a pedestal. This instrument has a dial. around which the orders to be transmitted are distinctly marked, and a handle at the back turns a pointer to the desired command.
The moving of the handle or lever gives the "attention" signal to the engineer. The engineer putting his lever over causes a bell to be sounded on the bridge, which calls attention to the fact that he is acknowledging the order and repeating it back. The revolution telegraph is a simple means of transmitting to the engineer the number of revolutions at which the commander wishes the engine to run. The admiral may signal to the fleet that he is going at seventy revolutions,
the Vermont, New Hampshire, Omaha, Dolphin, and Chicago. The Baltimore, Charleston, Yorktown, Bennington, and Concord will be supplied with the latest improved plants, and there is nothing afloat that can excel the system. Each cruiser has about 500 lights, and the gunboats about 250 , with sufficient supplies to last three years. All the cut-outs and switches are made water-tight, and tested by turning a stream of water on any part of the circuit.

There are innumerable devices by which electricity is made useful on board ship. The value of the search light cannot be estimated, as scouting parties, torpedo boats, or swift steam launches can be detected a mile away on the darkest night. As a motive power for small machines it is invaluable, and on the Chicago will be brought into play for training the huge guns of the main battery. It is used also for discharging the ifled ordnance, and the entire system is under the absolute control of the commander from his position in the fighting tower. He requires no uncertain assistants to place him in communication with the various departments of the complex machine. Electrical devices perform all the duties, transmit the orders and control the movement with far greater accuracy and safety than would be possible by the old methods.
The simple pressure of a button endows the huge monster with life and activity, causing 10,000 tons to glide smoothly through the water at a speed of 20 knots. At the touch of a second button the grea shields swing noiselessly aside and the huge apertures are disclosed, filled the next instant by powerful rifled breech-loaders. There is a hush, a moment of expectancy, as the commander peers through the little slot on a level with his eye in the tower, touches a third button, and the cruiser vomits forth sheets of flame. The
which signal has to be repeated to the engineers, in order that all the vessels may keep in line with the flagship. The steering telegraph is another application of the same principle. The transmitter and receiver are similar to those of the engine room telegraph, the latter being ingeniously attached to the rudder, which makes the record automatically.
In connection with the steam steering wheel, which in the fighting tower of an ironclad is directly under the commander's control, he has at his disposal a terrible and decisive weapon, once it is put in motion. Projecting a number of feet in advance is the ram attachment, its proportions and deadly qualities concealed under water. Emerging from whirling clouds of battle, guided by the will of the commander, the great fabric, impelled by the combined strength of the immense engine, with furnaces glowing and steam hissing, the cruiser rushes straight onward, prepared to crush into its opponent.

The Egypt Exploration Fund.

Few educational enterprises have yielded larger results for the amount invested than the Egypt Exploration Fund. Expending annually since 1883 between $\$ 7,000$ and $\$ 8,000$, it has discovered or disclosed the following interesting sites : Pittrom (the treasure city of Exodus i. 11). Goshen Tahpanhes (the Daphnæ of the Greeks), the city of Onias, Zoan, Am, Naukratis, and latest of all, Bubastis (the Pi-Besetti of the Scriptures). These discoveries have been conducted in a thoroughly scientific manner and have yielded rich results regarding the sciences, arts, and industries of past ages, the early sources of Greek history, and particularly Biblical and secular history.-The Chautauquan.

RECENTLY PATENTED INVENTIONS.

 Engineering.Speed Indicator. - Albert R. Sher man, Pawtucket, R. I. Combined with a clock is a graduated traveling dial or scale of annular shape,
which rotates around the clock dial and is actuated by which rotates around the clock dial and is actuated by
the impulses from the eugine, there being novel means the impulses from the eugine, there being novel means
for transmitting the impulses of revolution from the for transmitting the impulses of revolution from the
engine to the annular dial, for comparing the speed of engine to the annuar aial,
the engine with that of the clock.
Piston Rod Guide. - Daniel W. Umstead, Earlington, Ky. This invention relates to an improvement especially adapted for nse with mining
machinery, dispensing with the crimp and crimp plate usually employed to prevent the air from escaping usually employed to prevent the air from escaping
around the piston rod and sleve head, and providing a sectional bushing at the outer end of the sleeve, with other novel features.

Rallway appliances.

Sanding Device. - James Ritchie, Flatuash, N. Y. This invention consists essentially of a sand-receiving box or hopper in connection with
which is arranged a gate or valve. with means for which is arranged a gate or valve, with means for
throwing the gate or valve, and a delivery spout or throwing the gate or valve, and a delivery spont or
chute, the construction providing for the delivery of chate, the construction providing for the delivery of
the sand, whether it be wet or dry, at the will of the operator.
Automatic Safety Switch. - John H. Wait, Junction City, Oregn. Combined with a main rail laterally movable and a parallel switch rail attached thereto and movable wrth it, is a stationary
outwardly curved main rail, an inner fixed guard rail, outwardly curved main rail, an inner fixed guard rail,
and a rail point intervening between the guard and fixed main rail at oue end, the construction being such as to prevenit derailment at the switch irrespective of the position of the switch.

Electrical.

Generating Elfctricity.-Timothy Gleeson, Brooklyn, N. Y. This invention provides an apparatus for generating electricity suitable for tele-
phonic currents or for operating bell signals, providing phonic currents or for operating bell signals, providing
means of vibrating a permanent magnet by clockwork means of vibraing a permanent magne
ur other motor to generate the current.
Carbon Filaments. - Theophilus V. Hughes, of Holywell, North Wales, and Charles R. Chambers, of South Kensington, Middlesex County,
England. This invention covers a method facture of the filaments by the destructive distillation of a gaseous carbon compound capable of yielding carbon whend decomposoed by haeat. the object being to
produce filaments of greater density and homogeneity than those made by the ordinary methods.

Mechanical.

Saw Dressing Device. - Walter Kirkpatrick, Marinette, Wis. This is an implement | Kirkparick, Marinete, |
| :--- |
| for side-dressing saw teeth, its body paving a handle e at | one end and a guide btocolk or fork detachably secured to the opposite end, while a lever fulcrumed upon the inner face of the body is provided with a guide screw

and a detachable file, the implement being one which and a detachable file, the implement being one which
can be applied to a circular or band saw while in can be
motion.
Loom Picker Staff Conneotion.John McGinnis, Valatie, N. Y. This is a combined metalic stirrup and strap of leather or other like fiexieach picker staff and its treadle, to prevent breaking of the strap and stopping of the loom, as is now common.
Paper Pulp Digester.-Henry W. Ptebbins, Monico, Wis. This is a novel constraction
of lead-lined boilers, dispensing with all hard metal rings between the sections of the body of the shell, rings between the sections of the body of the shell,
langes, and clamps, operating to compress and thin the lead lining at the joints and to bulge out the lead beyond the joints in the body sections, the expense of operating the digester being also reduced and leakage oided.
Sole Sewing Machine. - Johannes Albrecht, Carmstadt, Wurtemberg, Germauy. This in vention covers an improvement in that class of ma-
chines which produce a double lock stitch, and is chines which produce a double lock stitch, and is
designed to sew the sole on to the boot or shoe, etc., with waxed threads, by means of a hook necdle and a suitable shuttle.
Middlings Purifiers. - William Klostermann, Young America, Minn. Two patent fiers, the inventions covering various novel features and combinations of parts, and being improvements on
former patented inventions of the same inventor, designed to promote efficiency of their operation, and hereby the middlings are agitated over and over again in order to thoroughly purify them, always separating the worthless stuff from the middlings.

Agricultural.

Seed Planter and Fertilizef Distributrr.-Whitmon A. Holt, Harrison, Me. The frame has a central plow, with side plows held parallel
thereto, chutes opening on the rear end of the plows and supported by a plate from the main frame, while disk is also held to oscillate on this plate, the disk having openings registering with openings in the plate and a fertilizer and seed hopper are held on the disk the-machine being arranged for changing the distance between the several hills or drills.

Miscellaneous.

Album Clasp. - Ernst P. Hinkel, Offenbach-on-the-Main, Germany. This is a clasp designed to automatically adjust itself to the different hicknesses of the book as the number of photograph n tion of twotelescopic sections with a spring secured Piano Lamp Bracket.-William a.
sists of a four-armed base plate with a horizontal arm
on which is a sleeve pivoted to one of the arms, while on which is a sleeve pivoted to one of the arms, while
vertically adjustable arm is secured in the sleeve, and has a horizontally projecting member carrying a lamp Motor.-Charles J. B. Gaume, Brooklyn, N. Y. This invention covers a clockwork es-
capement mechanism of novel construction for operat ng swinging cradles, conches, hospital cots, etc. whereby power is economized and noise avoided, and
heavy bodies may be kept in swinging motion for a ong period.
Churn.-William M. Shira, Butler, Pa. his is a churn adapted to be worked while the operato is either standing or sitting, and is simple and cheap in
construction, while designed to make butter quickly, nd admit of the ready cleaning of its parts.
Cover for Butter Tubs.-Henry C Carter, New York City. This is an expanding an contracting cover composed of independent side sec tions, with a sliding wedge-shaped section betwee
them secured by slotted attachments, pins or studs con trolling the movement of the wedge section and side sections relatively to each other, and dispensing with nails, clasps, and other like fastenings.
Tank Heater. - Hanford Reynolds, Gifford, Ill. This is a device for heating or warming large quantities of water to prevent freezing, and the be raked and the ashes removed without taking th heater from the tank and without extinguishing the fire the device being especially applicable to tanks fo

Suspended Railway. - John Thomson, Kansas City, Mo. This invention covers an
mprovement in a class of excavating apparatus, includ improvement in a class of excavating apparatus, includ-
ing a series of carriages traveling on an elevated track ing a seriss of carriages traveling on an elevated track and a series of buckets suspended from the carriages,
to be raised and lowered by suspending ropes or chains, one such rope or chain only being employed by the series of buckets, and all the bucketa
Fluid Separator.-Thomas J. New some, Wilmington, N. C. This device consists of
vessel or tank with a two chambers, with a central tube, and a discharg pipe connected with the lower chamber, and one con nected with the lower portion of the upper chamber the invention affording a simple means for sepa
turpentine, oil, or other light fluids from water.

SCIENTIFIC AMERICAN

buILDING EDITION. JULY NUMBER.-(No. 45.)
table of contents.
. Elegant plate in colors, showing elevation in perspective and floor plans for a residence costing
three thousand eight handred dollars. Page of details, etc.
2. Plate in colors showing perspective and floor plans for a dwelling to
Sheet of details.
3. Engraving of the Washington arch, of New York designed by Stanford White, architect.
4. Perspective elevations and floor plans of three
frame houses, costing two thousand three hundred frame houses, costing two thousand three hundred and fifty dol
City, N. J.
5. Illustration showing a block of economical frame houses recently erected in New Jersey. Floo plans.
Perspective view and floor plans of a handsome
residence in New Jersey. 7. A Connecticut residence, with floor plans.
8. Plans and perspective of a compact and tasteful house recently erected at Brattleboro, Vt., C.
Howard Walker, architect, Boston, Cost about four thousand dollars.
9. A half bric
10. A residence in Bedford Park, New York. Plans
. A residence at Bridgeport, Conn. Perspective and floor pla
dollars.
12. A dwelling in Jersey City, N. J. Plans and per
13. A "Queen Anne" for six thousand five hundred dollars. Perspective elevation and floor plans. 4. Dining room flreplace, Gladswood, Wimbledon common. F. J. May, architect.
5iew of an!Aztec house.
16. Miscellaneous Contents: How we rid our vines of the mealy bug.-A light and effective lathe,
illustrated.-A new planer and matcher, illisnrated. - Electric tramways in factories. - Im-
Imchairs, rockers, and settees, illustrated.-The Keystone portable steam driller, illustrated.Heating buildings by warm air circulation. Metallic ceilings, illustrated.
The Scientific American Archttects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practitwo. hundred ordinary book pages ; forming, practi-
cally, a large and splendid Magazine of architeccurs, riehty adorned with elegant plates in colors and with fine engravings, illustrating the most interesting allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. Publishere,
381 Brosdway, Now York.

ЭBusiness and æersonal.

The charge for Insertion under thus head is One Dollar
a line for each insertion; about eight words to a line Advertisements must be received at pubication office as early as Thursday norning to appear innext issue.
A valuable patent for sale cheap, No. 393,300. Patented Nov. 20, 1888 . For particulars
Buchanan Street, Duluth, Minn.
Special facilities for manufacturing light machinery hardware, and novelties. Stamping, presswork, punches
dies, and special tools. Correspondenceinvited. Rockaas Manuf. Co., Rockaway, N.J.
For the best Hoisting Engine for all kinds of work
Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum apparatus, air
umps, acid blowers, fllter press pumps, etc. Engineers wanted to send their addresses and receive ree a 25 cent book, "Hints and Suggestions for Steam
sers." Lord \& Co., 11 S. 9th St., Philgadelphia Pa For the latest improved diamond prospecting drills, are
Automatic cut-off. Ball Engine.- Ball Engine Co., Erie, Pa.
Presees \& Dies. Ferracute Mach. Co., Bridgeton, N.J
The Holly Manufacturing Co., of Lockport, N. Y. ill send their pamphlet, describing water works ma-
Screw machines, milling machines, and drill presses. E. Garvin \& Co., Laight and Canal Streets, New York Perforated metals of all kinds for all purposes. The Rubber Belting, all sizes, 771/3 per cent from regular ist. All kinds of Rubber Goods at low prices. John W. Steam Hammers, Improved Hydraulic Jacks, and Tub xpanders. R. Dudgeon, 24 Columbia St., New York.
Hoisting Engines, Friction Clutch Pulleys, Cut-of Couplings. The D. Frisbie Co 112 Liberty St, N. Y.
"How to Keep Boilers Clean." Send your address
 The best Coffee roasters, coolers, stoners, separators,
polishers, scourers, klossing apparatus, milling and peaberry machines: also rice and macaroni machinery,
are built by The Hangerford Co., Broad and Front Sts are built
$\mathrm{N} . \mathrm{Y}$.
Lathes for cutting irregular forms. Handle and spoke thes. 1. E. Merritt Co., Lockport, N. Y
Rod, pin, and dowel machines. 1,000 to 3,000 linea Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker
Crisendfornew and completecatalogue of Scientific and other Books for sale by Mann \& Con 361 Broadway

NEW BOOKS AND PUBLICATIONS.

The International Annual of an THONY'S PHOTOGRAPHIC BULLETIN
Vol. II., 1889. By W. Jerome Harri son, F.G.S., Birmingham, England
A. H. Elliott, Ph. P., F.C.S., New
York. E. \& H. T. Anthony \& Co.
publishers, New York. Pp. 479 publisher $\$ 1$.
The second issue of this new annual is fully equal in nterest and quality to the initial work published in
1888. It contains eight illustrations by different processes. The frontispiece (a portrait study) is an ex cesses. The frontispiece (a portrait study) is an ex-
ample of the beautiful gloss and delicacy of detail to be obtained on Aristotype paper, while the two views
in the Tyrolese Alps, by Professor D. L. Elmendorf, in in the Tyrolese Alps, by Professor D. L. Elmendorf, in the center of the book, are fine specimens of photo grain
cuts produced directly from the photographs cuts produced directly from the photographs. An ex ing a portrait of Miss Lillian Seccombe, an actress also ing a portrait of Miss Lilian Seccombe, an actress, alse trations thereare many interesting and useful article on subjects of special value to amatear and professiona photographers. "Blue printing," with formulas and illustrations of apparatus for carrying it on, on an ex-
tended scale, is very comprehensively treated by C. B tended scale, is very comprehensively treated by C. B
Talbot. There are several articles on the new hydroTalbot. There are several articles on the new hydro-
quinone develuper and how to use it, the making of quinone develuper and how to use it, the making of
window transparencies and lantern slides, some conve window transparencies and lantern slides, some conve
niences for the amateur, orthochromatic photography photographic emuleions and machinery for making paper, hints in photo-micrography, and many usefu tables and formule. It is a mirror of the latest experi ences and progress of the science of photography, and
should be in the hands of every progressive photo should b
grapher.
Photographic Mosaics, 1889. Edward L. Wilson, editor and publisher,
York. Pp. 144. Price 75 cents.

Now in its twenty-fifth year, this book, containing a number of useful articles by well known writers, is a valuable acquisition to any library. Over forty pages graphy. An article on "A Potash Developer," by Charles Ehrmann, and others on "Suggestions fo Vignetting," by Karl Klauser, "Suggestions for Be
ginners," by Wallace Goold Levison, "Swelled Gela ginners," by Wallace Goold Levison, "Swelled Gela-
tine Process of Making Photo-Relief Plates," by W. T. Wrilkinson, and a valuable table, "Of Space Trav ersed, of Time Occupied, of Velocity Acquired, by a Falling Body," by J. J. Higgins, A.M., M.D... convey an
idea of the practical and scientific nature of the book. It is well printed, and contains five phototype illustra

ATH of the above books may be parchased through this office. Send for new book catalogne just published.

HINTS TO CORRESPONDENTS.

 Miler price.
marked or or labeled.
(968) A. H. H. asks : Would an arma ture constructed same as the one in the 8 light dynam
(SUPPLEMENT, No. 600) work well in the simple motor (SUPPLEMENT, No. 641)? A A. Yes.
(969) E. S. asks how to change the voltage of the dynamo described in SUPPLEEMNTT No.
600 , so as to be able to run 70 also 110 volt 600, as as to be able to run 70 , also 110 volt lamps, in
stead of 50 volt (which are hard to get). In what Surple ment will I be able to find how to make storage bat teries, how to charge them, and all necessary informs tion in order to make and run them? A. You can change the voltage of the dynamo by inureasing the power of the field magnet, or by increasing the speed of
the armature within certain limits. You can readily the armature within certain limits. You can readily
obtain 50 volt lamps from the manufacturers. We shal obtain 50 volt lamps from the manufacturers. We shal publish at an early date information on the construc-
tion of storage batteries. See SuPpLEMENT, Nos. 322 , 323, 610, and many others.
(970) W. H. T. asks : 1. Can the simple electric motor described in SUPPLEment, No. 641, be
used as a hand dynamo? A. Yes; provided you use a used as a hand dynamo? A. Yes; provided you use a
cast iron field magnet and wind the armature with finer castire, say No. magnet and wind the armature with in 2 . If so, is it necessary to use wire of to ? be as efficient as the one described in SUPPLEmENT, No. 1618 A. We think not.
(971) R. S. G. asks for a receipt for glue that will stick two pieces of glass together. I wish
something that will resist the action of pyrogallic acid, or, in other words, some glue that I can fasten pieces on inside of a developing tray. Page's glue will hold it only for a day or so. A. Make some thin solu-
tion of ordinary glue, weighing it before putting it in tion of ordinary glue, weighing it before putting it in
the water. Then in a darkened room add one-tenth the water. Then in a darkened room add one-tenth
the weight of the drylglue of bichromate of potash, glue the weight of the drylglue of bichromate of potash, glue
in the dark and expose to light while drying. Add a little glycerine to the glue also.
(972) Quaker City asks (1) how to make: a tooth powder that will whiten the teeth instantly. A.
We can recommend no such powder, as it would be We can recommend no such powder, as it would be
highly injurious to the teeth. Precipitated calcic carhighly injurious to the teeth. Precipitated calcic car-
bonate, often called precipitated or dropped chalk, is an approved dentifrice. It may be perfumed with a little orris root, and a little dried castile soap may be rubbed up with it. The teeth should be put into good condition by a dentist and maintained in order by the use of
the simple dentifrice recommended. 2. Also how fire the simple dentifrice recommended. 2. Also how fire eating is done as performed in the museum? A. Soak a piece of thick cotton cord in a solution of nitrate of potash and dry it. When exhibiting, a lot of tow is held one hand with ine piece of cord, which has been nouth within which the slow match or lighted end is mbedded. If now the breath is expelled through the ow it becomes ignited and smokes and glows, which can be extinguished by closing the mouth. The cord, owever, continues burning, so that the sameeffect can e several times produced. As i nother method raisins can be dipped in alcohol and lighted and then can be dextrously eaten without burning the mouth. The
(973) F. W. F. asks : 1. Will you or any of your readers kindly furnish a description of the mechanism used in organs where electricity is the medium for transmitting motion from the keys to the pallets?
What kind of battery is used,'and how many if more han one? I have been unable by personal inquiry to ain any information respecting organs in which elecricity is used, for so far as I can learn, there are no nch organs in Canada, at least in Ontario. Are there any serious disadvantages in these organs, and if so, what are they? A. See Scientific American, vol. 55, page 83, for description of such mechanism and other articulars asked for. It works perfectly in practice and is being more extensively used every year. 2. Is there any chemical that is bleached by a current of elec. ricity passing through it, or one that is given a de paper apart, or wider. If there is such a substance, what is 1t? A. A solution of iodide of potassium, or a dilute solution of the same with starch, or a solution of ferro. cyanide of potassium and nitrate of ammonia can be used to saturate paper. These will produce colored races under the influence of an electric current.
(974) E. A. D. asks : 1. Is there any chance for a young man in the profession of electrical
ngineering? A. Not very good without some influence. 2. Where can one take a course? A. Cornell
University, Ithaca, N. Y. 3. What length? A. Three or four years.
(975) J. C. G. asks a recipe for a fire kndler that will start an anthracite coal fire. A. We itrate of potash and again dried. Or one part chlorid of lime may be mixed with three or four parts of char menting material and formed into lumps.
(976) F. E. P. writes : I wish to inflate a small balloon of about 500 cubic feet capacity. Will
you give formula for making gas from salphiric acid
and iron turnings? A. Place the turnings in a larg demijohn and pour acid on them. For five hundre 70 pounds of iron. The evolution flask must be ar ranged with doubly perforated cork, etc., so that acid can be introduced without interfering with the progress
of the work.
(977) G. H. B. asks for the government eceipt for mixing whitewash so it won't wash off. A ered during the proeess, straing and add 1 peck salt dis olved in warm water and 3 pounds rice flour boiled in water to a thin paste, $1 / 2$ pound Spanish whiting, and pound clear glue dissolved in warm
(978) L. F. asks how to make combusti be paper. A. Soak the paper in a saturated solutio make paper that will burn and disappear with the T posion, it must be treated with strong nitric and sul phuric acids, and washed thus, converting it into nitroellulose or gun cotton. The process of making the later is fully described in the Scientific America of February $23,1889$.
(979) F. C. G. writes: I have knitted some small shoes out of druggists' cotton cord, in you tell me through your valuable paper, or otherwise how to preserve their delicate coloring? I have been saturating them in hot borax water preparatory to put-
ing on the gum arabic : they fade. There is something ing on the gum arabic : they fade. There is something
that is used with the borax that will preserve the color, that is used with the borax that will preserve the color,
but I am unable to tell what that is. A. We would suggest the use of alum, or chloride of b we fear that the cotton will still fade
(980) O. A. B. asks: 1. How cement sed for cementing the rubber tires to the fellies of bicycles is made. A. Dissolve 1 part gutta percha in phalt or shellac and warm over watel bath, until it melted to a thick (paste. 2. How to make liquid cement for cementing rubber. A. Unvulcanized India rubber is masticated by powerful rolling and grinding machinery, until disintegrated, and then is dissolved in
coal tar naphtha. After it has been used as a cement, the cemented place may be treated with a solution of chloride of sulphur in bisulphide of carbon. In ou Supplement, No. 249, an excellent description of India
(981) J. R. writes : We have an artesian well in our city park on the bluff, 165 or 170 ft above,
but adjacent to the river What effect, as regards flow of water, would a pipe have, attached direct to mouth the hill 80 or 100 ft .? Would flow of water be greater han to let it flow free into reservoir on a level with the mouth of well, or equal to a well bored on a level with discharge of pipe 100 ft . below mouth of well? A. It would be between the two. The "head "independent of friction would be equal to that of the lower leve
well, but friction would impede the full flow due to uck head or préseure.
(982) C. R. R. writes: When shellac is melted over flre not hot enough to burn, it becomes
thick and soapy, and will not pour into a mould. What plan could you suggest that we pursue with it, to form into sticks about 5 in . long and $1 / 8 \mathrm{in}$. in diameter, and melting shellac, without burning, so as to get it thin a water or molasses? We have been "stuck" on this problem for several months. A. You cannot melt ingredients, such as Venice turpentine, be made mor nuid, but pure shellac is never perfectly liquefled by 983) D. W. W. Co.-For a cheap linin or your packages, we know of nothing better thau bichromatized glue. Make a glue sizing of suitable conpotash to render it insoluble in water. Coat you packages with this size and allow them to dry in a ligh of the sun for an hour or so. This coating would not answer for packages for containing article of food. A small percentage of glycerine added to the ize would increase its flexibility. If you desire to ad a pigment to give it more color, you can use whiting chrome yellow, or any of the iron oxide paints.
(984) J. A. McC. asks how to bronze steam pipes, used for steam heating. A. The pipes are dry gold bronze powder is rubbed upon the surface with a piece of fur. When thoroughly dry, the surface
(985) P. G. O'G. asks: 1. A reliable formula for a liquid stove polish, odorless as nearl as possible. A. Mix two parts copperas, one of bone black, one of pulverized graphite, with sufficient wate to form a creamy paste. 2. In what oil or acid
graphite is soluble to greatest extent? A. There is no graphite is soluble to
(986) J. G: - For fire proofing wood make a solution of 27 parts sulphate of zinc, 11 parts potash, 22 of alum, 11 parts manganic oxide in warm Water, to which add 11 parts of sulphuric acid, gradually
(987) B. W. I.-Carry the water line $4 \mathrm{in.in}$ a fl . boller, $5 \mathrm{in}$. in a 4 ft . boller, 6 in . in a ft. boiler, and 7 in . it a 6 ft . boiler, above the top of the
tubes at the front. Back end of boiler should pitch down from 1 to 2 inches
(988) E. F. C.-Pure water or rain water disso ves iron in boilers faster than waters con best preservatives. Rain water sometimes contain acids in a very slight degree, derived from smoke and choot apon
(989) R. L.-Uranus passed its perihelion in 1883 . Its next will occur in 1966. Distance from the
can at pereibelion abont $1,681,884,000$ milee. Neptune
passed its perihelion in 1884. Its next perihelion will occur in 2048. Distance from the sun at perihelion about $, 755,20 \%, 000$ miles. The specimen sent is gneiss, con
aining quartz, hornblende, and pyrites, of no value.
(990) M. L. asks (1) how to erase a stain out of a wall, which was caused by blisters having been sent forth at that spot only, which were filled with dirty water. I have touched it up, but after ten days the blisters were reproduced, then I used shellac, but
ithout any effect. A. From your description it would without any effect. A. From your description it would ppear that there is a permanent source of trouble in o back of the wall. If so, the blistering cannot well prevented except by removing the original trouble. I may be due to lumps of unslaked lime in the mortar
ased in plastering the wall. These may have to be cut out and the holes replastered. 2. Which is the best oil and how much of it should I use to oil a brownstone front 20 feet wide by 4 stories high,and how many coats should I give it? A. Give two coats of boiled oil. The mall portion of it to determine the amount absorbed man to make gold fluid so that the bronze will not arn green in the bottles? A. Copal varnish is the pro owder until you are ready to apply it.
(991) M. H. S. asks for a preparation which will render paper-ordinary straw-impervious to re or coated with it after its manufacture. A. Mix qual to ten per cent of the weight of dry glue used. onduct operations as much in the dark or in an obscure place as possible, and afterward expose the paper to the light. This will to some extent effect your purpose. Or dry the paper as thoroughly as possible and
dip it in hot paraffin. According to the texture of the paper, these methods of treatment will affect or less depth of its material
(992) P. N. writes: Will you advise us whether limestone that will produce a fine quality of wite lime can be used for making a cement that would of any commercial value? A. Probably it is not pecially adapted to the purpose. By proper admixcement might be made from it. 2. Our boiler is fed from well 50 feet deep in solid rock. On the boiler being leaned, if the sediment taken from it is allowed to quite firm and hard. Do you think these rocks would make a cement? A. It is impossible to say. The mere
ardening in the air tells nothing in your case. 3. How hydraulic cement made? A. By burning the proper mestone in kilns, crushing, and grinding.
(993) W. A. B. writes : I have a fruit rier revolving within a chamber, which necessarily bemes very hot and causes the journals to heat, thereby causing much loss of time. Will you please to answer hricant which might be used and which know of any vaporate in the might be used and which would no $60^{\circ}{ }^{\circ}$ A. Use heavy cylinder oil, or tallow, arranged teed in by a gravity sight feed lubricator. Or use
est quality of graphite mixed with tallow. best quality of graphite mixed with tallow.

TO INVENTORS.

Ane than one hundred thousand applications for of ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unynopsis of the patent laws of the United States and al oreign countries may be had on application, and persons broad, are invited to write to this office for prices, hich are low, in accordance with the times and our ex MUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broad-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

June 18, 1889,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Advertising, J. A. Christy
Amulgamator, J. Behm...
Amalgamator, M. T. Van Derveer.
Asphalt, machine for mixing, G. L. Peabody
uger bits, package for, N. Sperry................
Awning, H. D. Greenwald.
Awning. F. Hohorst........
Axle nut, carriage, F. D. Be.iss
Axle, vehicle J. M. Hubbell
Axle, vehicle, J. M. Hubbell.................................
Bat. SSe Paper bag. Saddle bag. Traveling
bag.
Bag fastener, R. Wilson
Bag lock, F. F. Ingram
Baker's peel for crackers, etc.
Baling press, Paty \& Bigham
Bating
Baling press operating mechanism, J. Wadleigh.
Battery. See Diffusion battery.
Beams or girders, support for, P
Bedstead brace, L. F. Ross......
ell pull, electrical, C. A. Bramn
Belt, electro-medical,
Belting, C. A. Schieren.
Beverages, machine for mixing, Shepherd
Meyer................................
Bit holder H. S. Bartholomew.
Blind stop, M. L. Hall.
Block. See Building block. Pulley block.
Blow-offdevice, J. D. B
Blowpipe, W. M. Brown

B B B B B B B B B B B B B B B B B B

Boiler feed regulator, P. Born.......................
Boilers or water tanks, apparatus for feeding.
W. Stevens.................
Book binding, L. P. Sanford

Boom, T. Raftery..
Box. See Feed box. Paper box. Sheet meta
box. Boxes. metallic binder for, F. G. Johnson.........
Brace. See Bedstead brace. Brake. See Car brake. Wagon brake.
Brick or tile cut-off machine, W. W. Wallace.. Bridles, brow band for C. B. Fl Brusb, C. J. Bailey........
Brush, bath, C. J. Bailey
Brack, bath, C. J. Bailey
B. Walters...
Bugg, top. S. W. Cately....
Building block, J. A. Missa
Bung, barrel, J. Jourim.
Burner. See
Burner. See Gas burner. Gas regulating burner
Oil burner.

E. Eastman.

Button, C. A. Bryant....... 4055,529
Button attaching machine, W. G. Slater. Button attaching machine. W. G. Slater............. 405,328
Button setting machine, L. C. Emerson.......... 40,5,664
Can See Powder dusting can.
Car atee Powder dusting can.
Car attachment, railway, G.L. Potts...............
Car brake and clutch, combined, Maurer

Car coupling, F. Karrer.
ar coupling, H. L. Long..
ar coupling, W. C. McChor
Car coupling, Peaslee \& Beav
Car coupling, M. L. Unger.....
Car coupling, A. W. Van Dors
Car conpling, W. G. Walker...
Car coupling, W. N. Wright
Car, railway, M. A. Zurcher
Car, ralway, M. A. Zurcher....
Car rater. C. . Dailey.....
Car staddick\& Heady
Car starter, Craddicks\& Heady..
Car wheel chill, w. H. Hollister
Car wheel chill, W. H. Hollister...........
Car window screen, E. . Hutchinson.
Car window ventilat.
Car window ventilator, M. C. Huyett...
Cars, sanding device for street, J. Ritchie
Carbon fllaments,
Cars, sanding device for street, J. Ritchie
Carbon flaments, manufacture of. Hughes Card case, poc
Card case, pocket, C. J. Buffum
Carriage, child's, w. H. Richardson........406,59
Carrier.
Carrier. See Cash carrier. Cash and parcel ca
rier. Trace carrier.
rier. Trace carrier.
Cart, road, E. w. Beam.

Osh and parca class case.

Cash and parcel carrier, E. B.
Cash carrier, W. R. Dean......
Casting mould,
Cattle to be dehorned, device for holding. J. F.
air attachment, rocking, w. I. Bunker,
Checkrein hook, W. C. Jenck
Chimney top, M. Hinkley..
Churn, H. B. \& E. T. Lynes
Churn, J. W. Parrish..........
Churn dâsher, w. S. Lindsley
Churn motor, H. C. Anders
Cikar bunching machine, J. E. Smith.....
Cigar wrapping machine, J. E. Smith...
Clamp. See Rope clamp. Stitching clamp
Clasp. See Album clasp. Corset clasp.
Clock. attachment, , T. T. Chase.........
Clock movement holder, J. Harwood..
Closet. See Water close
Closet. See Water closet.
Cock, stor, M. M. Forafety, Cock, stop, M. M. Forestier
Coin-operated receptacle,

Compression extractor, H. A. Crandell.
Converter bottoms, repairing, E. Rertrand.
Conveyer, w. J. Selleck....................
Conveyer, W. J. Selleck...
Cooker, fruit orleget
Cooker, fruit orlvegetable, F.
Coop, folding, Carr \& Evans.
Coop, folding, Carr \& Evans........................
Copper by electrolysis, production of, A. Rovell Cork extractor, K. Taylor...
Corkserew, w. A. Williamso
Corn and silk separator, J. L. Wesley
Corset clasp, Stahi \& Bouton.

Cotton gins, feed regulator for, R. Curtain pole snpporting fixture, T. H. Kelley. Curtains, hanging siliding, T
Cutter. See Paper cutter.
Cutter. See Paper cutter.
Damper, stovepipe, Griswold \& Hanchett... Difrusion battery, W. Goldink.
Display and sale rack for merchandise, S. R. Du
Display rack, C................
Doubletree, A. Minor.............................
Draught attachment for vehicles, C. E. Miller Draught equalizer, C. F. Holck
rains and sewers, flushing systemfor, McDona Drawing apparatus, W. S. Worden
Dressing case slide, W. P. Tracy Dressing case slide, W. P. Tracy
Dust collector, O. M. Morse...... Dynamo, к. A. Sperry
Dynamos, compound wound alternating current $\underset{\text { Egg tester, J. }}{\text { H. }}$ Egg tester, J. L. Ritter............................
Electric circuits, ground detector for, $\mathbf{0}$. \mathbf{P}.
Loomis...............................
Electric conductors, switch for snspended, C.

Electric machine, dynamo, W. D. Sandwell...
Electric machine, dynamo. F. Thone...........
Electric machine or motor, dynamo, c. L. Rosen
qvist....................
Electric meter, o. Dahl....
Electric motor or dynamo-electric machine.
M. Hunter.............
Electric switch, o. Dahl.

Electrical 'conductors, slotted conduit for, C. J.
Electricity, apparatus for enenerating, T. Gleeeson.
Hlectrotypes, machine for blackleading the
moulds for, W. Miles........................... 405,55

405,399

405,631

405,631
405,307
405,307

405,299
405,545

405,532
405.538
405.419

$41,405,53$
.. 406,261

Engine. See Compound engine. Direct-acting
engine. Locomotive engine.
ngines and other maohinery,
riage for Jordan, maohinery, adjustable car4065:523
aucet. E. U. Scoville.
ence making machine, J. B. Steen
ence post base, W. H. Thomson
File, paper, в. Petsche
Filter, B. E. Gasquet...............

Fountain. See Poultry drinking fountain. Tank
Frame. See Lantern frame.
Friction generator, H. E. Waite
Fruit picker, E. s. Harpst................................ 405, 40,410
Furnace. See Glass melting furnace. Heating
furnace.
Gaure
Gauge. See Saw table gauge.
Galvanic battery. W. A. Childs. 405,246
Galvanic
Game appartatus, M. Joseph................................... 405
Game, cabinet for preserving and displaying, H.
L. Rand................

Was, apparatus for compressing carbonic acid...................55,26
as. apparatus for the manufacture of hydrocar-
bon, L. P. Lowe....................
Gas burner for boiler furnaces, T. McSweeney....
Gas conduits, pressure regulator, J. D. Bowman..
Gas conduits, pressure regulator, J. D. Bowman.. 405,24
Gas lighting and extinguishing apparatus, auto-
matic, N. H \& A. B. Shaw................. 405,435
Gas regulating burner, o. W.
Gate. See Swinging gate.
Generator.
Glass and earthen ware, muffle for, L. Lawton
et al...
Glass, chipping or crystalilizing, T..
Glass mesting furnace,
Glove. Spall \& Scones........
Grain convering apparatus, pneumatic, L. Smith.
Grain meter, Lock wood \& Bick
Grain scourer, S. S. S. Shaver...
Gun rack, M. H. Amerine...
Guns, swab or cleaner for, C. J. Bailec................. 40.....297
Hair singer, J. E. Poindexter.................... 405502
Harnessmaker's press, S. H. Randall........... 406,679
Harnessmaker's press, S. H. Randall................ 400,679
Harrow, W. M. Brinkerhoff........................ 45,459
Harrow, J. F. \& B. A. A. Correll................ 4059
Harrow, D. C. Markbam...................... 405,580

Horseshoo, M. Gates... 40
Hot air rexister, H. K. Tallmage.............. 40
Hydrocaron heater, L. W. Lombard.......... 40
Ice creeper, M. Steiner................................ 405.381
Ice making machines, gas pump for, T. L. Rankin 405,503
Ice or refrigerating machine, oil extracting and
\& as saving apparatus for, F. W. Wolf.......... 405,451
Indicator. See Speed indicator.
Indicator. See Speed indicator.
Insulator. R. P. Frist................ 405.54
Iron. See Sad iron.
Iron. plant for the manufacture of wronght, G.
Lindenthal.................
Joint. See Railway rail joint. Show case joint.
Jnmp seat, vehicle,
Key, C. H. Hatton ...557 405,62
Key, C. W. Taylor 405,62
Kinn. See Annealing kiin.
Knitting machine, straight. F. Wilcomb. 405,636 to 405,64
Knitting machine, straight, F. Wilcomb.405,636 to 405,640
Labeling and pasting apparatus, E. H. Faulkner.. 405,466
Lamp, electric arc, E. A. Sperry................. 455,440
Lamp holder. Atwood \& Tobes............. 405,388
Lamps, sheath for regulating light from electric,
w. H. Melainey.......................
Last, J. Condell..............
Latch and lock combined, J. Austin............
Lead, apparatus for the electrolysis of, C. O. Yale 405,
Lead or crayon holder, M. Bailey............ 405
Le.
eaf holder, adjustable, C. Barbour. 405,521
405,242
405,653
Levels, sighting attachment for spirit, J. A.
Traut.. 4
Leather splitting machine, F. F. Stanley (r)........
Library books, apparatus for automatically
changing circulating, J. Mehlhardt............
Lock. See Bag lock. Nut lock.
Lock case. E. C. Smith........................... 400,288
406,328
Locomotive engine, compound........................ 40. 4. 40.329
Loom shnttle box mechanism, H. Wymang........ 4050645
Mercier...................................
Loom temple, N. I. Allen............
Looms. picker star cone
Looms, tug strap holder for. T. Kendray............
Lubricator, E. G. Felthousen..............
Malt, manufacturing dextrine corn, E. M. Louis.
Malt, manufacturing dextrine corn, E. M. Louis........ 4055,543
Map case. Heckel \& James.................... 405,666
Muson's float, Conrad \& Pounder..................... 405
Measure scale, W. Cook.......................... 405
Measuring device and cutting guide, garment, E.
Stearns.. 405,61
Mercurs, making double salts of, E. Mennel... ... 405,368
Metal shears, P. Broadbooks
Metal mheel, J. W. Savene.................................... 405.322
Metallurgical plant, G. Lindenthal.............. 405.49
Meter. See Electric meter. Grain meter.
Middlings purifer. W. Klosteranann.....405,486, 405,457
Milk purifer, D. M. Macpherson 405,36i
Models, support for drawing. H. T. Bailey.......... 405.29
Mould. See Casting mould.
Motion .mechanism, forward and reverse, W. H.
Zellers..
Motor. See Churn motor. Electric motor. Self-
propelling motor
Nail, bolt, etc., C. D. Roger
Nail feedingimplement. F. F. Raymond, 2d...
Needle, belt lacing, B. F. Curran....................
Nut and pipe wrench, combined, w.
Nut lock, C. H. Warren
Oil burner, P. L. Bear.
Opera glass
Opera glass case, coin-controlled, E.J.................

5,333	Square, bevel, and protractor, center, W. E.
. 304	Pratt... 405,

Stamps, etc., machine for affixing postage, L. J.
Borie..393
Staple driver, E. M. Dean.................... 405,537
Staple forming and clinching machine, J. Chan-
Staple forming and clinch
trell..........
Steam boiler, Clark \& King.
Steam exhaust head, Lyma
Steam exhaust head, Lyman \& Warren

Stereotyper's saming, trimming, and grooving ma
chine, Cummings \& Lloyd. chine. Cummings \& Lloyd.
Stitching clamp, C. Doss Stitching clamp, C. Doss...
Stove, gasoline, M. S. Sager
Stove, oil, A. F. Zimmerlini
Stovepipe and collar holder. Koeb \& Korn. Strainer, A. Kummle...........
Strainer, detachable, P. Pfeil.
Strainer, detachable, P. Pf
Sugar, etc., cleansing raw
Suspenders, J. R. Pollock.
Swing, child's, J. M. McCord........
Swinging gate, hand-operated, W. C. Carte
Switch. See Electric switch. Railway
Switch. See Electric switch. Railw
Safety switch. Telephone switch.
Safety switch. F. eprson
Telephone attachment, H. Konigslow.
Telephone attachment, O. Konigslow......
Telephone circuit, metallic, H. L. Burban Telephone combination circuit, F .
Telephone switch, A.Stromberg..
Telephones, diaphragm for acoustic, H. P. Jon hermostat, J. H. Mallon....
Thill coupling, A. Homewood....................... lett et al......
Trace carrier, D. T. Bryan........ Transit, system of rapid, H. Flad
Traveling bag, A. P. W. Seaman Trees, device for protecting fruit, F. Farlan........... Trucks, rutg socket plate for, Hoepfner \& Wue
Type setting and distributing machine, G. Rogers...
Ymbrellas, etc aphine, C. E. Sargen mbrellas, etc., appliance for holding, H. Hough. 405,55
Underwaist, padded, M. D. McDowell........ 405.58 Valve and pressure regulator, reduction, P. D.
Conneely.........................
Valve, check, Dudley \& Bowman. Valve, check, Duadey \& Bowman
Valve for air brakes, locomotive, G. A. Boyen
Valve for evaporators, automatic supply, w. W. A. Wilcox, Jr...............
Valve for filter constructions, c
Valve, steam, J. H. Williams... Valve spring, J. G. Gay... Venicle wheel,. . B. Lott
velocipede, W . H. Kitto. Ventilator. See
ventilator. Veterinary surgical instrume Wagon brake, automatic, w.
Wagon, dumping, B. Killeen. Wagon, dumping, B. Killeen....
Warp beaming machine. w. Bamford Wash boiler, W. E: Smith. Washing machine, H. Johnsen.. Washing Máachine, A. F. Teig
Water closét, R. Weston... Water closet, R. Westo
Water heater, J. H. Dull Water heater, C. G. Jewett Waterproof material for co
Weather strip, H. W. Cook Weather strip, C. Polley. Weighing apparatus, grain, J. E. Busenbarrick.... 405,462
Welding, electric. C. Loffin.............. 40.545
Wheat cleaning machine, R. W. Welch........ 4058 Wheat, milling, O.C. Ritter. Wheel. See Met
hicle wheel.
Whifiletree, detachable, J. G. Goshorn.. Whimetree hook, C. Wright.
Whip socket. F. E. Benton Whistle, steam. H. V. Smith. Whistle, steam, E. R. Tomin Windlass, C. G. Toens Window ventilator, o. Iversen. Wire drawing machine, H . Smit
\qquad Smith:
machine, H. Smith.. Wrench, J. s. Henry.
Yarn reel, J. A. Kaspar,
DESIGNS.
Bag. S. H. Howe... Cloth for cloaking,
Collar, w. Barker........
Collar, w. H. McFadden Fabric, E. Stumpf
Hat and coat rack, J. H. Whissemore

Mitts, etc., embroidery for, E. Schwalbach, J.........
Pitchers, etc.., ornamentation of S. S. Richardso
sash hook or lift, w. A. Williamson
Scarf, made-up, T. J. Flagg
Tumbler, etc., W. C. King.
Tumbler, etc., W. C. King..
Water closet, F. G. Moore.

TRADE MARKS
Alterative sirups, F°. D. Stevens \& Co............... 16,7
Banufacturing Co
Canned oysters, Fait \& Winebrenner
Cocoa and cocoa butter, J. \& C. Blooker twills, F. L. St. John,
Lotion used externally for skin diseases, curativer E. C. Summerhayes..........
Puper, toilet, G. W. Thompson

Paper, toilet, G. W. Thompson.
Tea, G. C. Buell \& Co..........
Tobacco, chewing, Bitting \& Hay
Tobacco, plug chewing, Arnold
Whisky, J. Osborn Son \& Co \qquad
A printed copy of the spectifation and dran any patent in the foregoing list will be furnished from this office for 25 cents. In ordering please state the name and number of the patent desir
Munn \& Co., 361 Broadway, New York.
Canadinn Patents may now be obtained by the nventors for any of the inventions amed in the fore Roing hist, provided thes are simple, at a cost of $\$ 40$
each. If complicated the cost will bea little more. For
full instractions address Muinn \& Co., 351 Broadway full instractions address Munn \& Co., 361 Broadway,
New York. Other forelgn patents may also be obtained.

EDISON A LAMPS

 EDISON LAMP CO

marine signals. - Description

 No. 11 PLANER \& MATCHER

chanacturers, Agriculturists, Chemists, Kngineers, Me-
chaiders, men of leisure, and professional
men, of all classes, need good books in the line of men, of all classes, need good books in the line of
their respective callings. Our post office department permits the transmission of books through the maile at very small cost. A comprehensive catalogue of useful books by different authors, on more than fifty different subjects, has recently been published for
free circulation at the office of this paper. Subjects classified with names of author. Persons desiring to them. Address,

OIL WELL SUPPLY CO. Ltd.

ARTESIAN

 ICE-HOUSE AND REFRIGERATOR

ASBESTOS
 MMERS \& MMUUFACTURERSN

Stored Energy
ACCUMULATOR 8 for Eleectric Lighting and
Edco System.

TUETT REDADT.

A N巴W EDITIOIN

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta-
ble, either in the country or city, or any builder wishing ble, either in the country or city, or any builder wishing
to examine the latest and best plans for a church, school
house, club house, or any other public building of high house. clus house, or any other public building of hit tects' And Buldirrs' Edition of the Scientifi
AMEHican.
The information these volumes contain renders th
work almost indispensable to the architect and builder and to persons about to build for themselves they wil colored plates of the elevation, plan, and detail draw ings of almost every class
tion aad approximate cost.
Four bound volumes are now ready and may be obtained, by mall, direct from the publishers or from any covers. Subs
and remit to

MUNN \& CO., Publishers, 361 Broadway, New York

G. Hatfield. With dire COLD ROOM.-BY R.

The most efficient and econom The most efficientand economi-
cal means of otatining from one-
eiphthto fifteen horse powerand the greatest motoror which dot
the use of the smatest with
withe water, specially adaspted for
unning cheaply and effciently,
pinting

 SEAMLESS TUBES.-DESCRIPTION of the various processes of manufacture; With 44 iggures
illustraive of the aparatu sued. Contained in
TITIEIEN AMERICAN SUP
Tr To be had aRRE, KEG, BARREL, KE
Hogshead, STAVE MACHINERY Over 50 rarieties manu-
factured by Truss Hoop Driving. E. \& B. Holmes,

 CAN and SCIENTIVIC AMERICAN SUPPLEMENTCan b

1ROCK BREAKERS AND ORE CRUSHERS

Steam! Steam!

Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$135

B. W. PAYNE \& SONS,

 Dawter Cleaning and repair

2 to 40 H. P. THE MOTOR of 19th Century.

 Charter Gas Engine Co.

 Rallway and steam fitiers supplie Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&c. JOHN S. URQUHART, 46 Cortlandt St., N. Y. 75. on to 250. o0 A MONTHH can be made ferred who can furnish a horse and give their whole
time to the business. Spare moment may be protitably

Modern Smoking Pipes

H.íSCHRAMM CAMDEN.N.J.

 WAR SHIPS OF THE E FUTURE.-AN

THE BOOKWALTER STEEL AND IRON CO
 NO. 18 OOPtlanat Etreet, NOMTYOPIx

The Paris Exposition--Illustrated.

 AMERIAN SUPPLEMENT will add an interesting and
useful feature to the publication, and subscribers to the
regur edition of the ScIENTIIC AMEHCAN, who are

ROSE POLVTTECHNIC INSTTUTEG:
 POLAR PLANIMETER. - A P.APER

 - To be had at th

2nd MACHINERY

 Modern Cotton Spinning

 For sale by MMUNIN do CO.,
Publishers of SCIENTIFIC AMERICAN, 361 Broadway. New York Shepard's New $\$ 60$ Screw-Cutting Foot Lathe

THF MICROO ORGANISMS OFA AR

 Clark's' Noisiseless Rabber Tridck Wheels Geo. P. Clark, box L,Windsor Locks, Ct VOLNET W. MASON \& CO PRICTION PULLETS CLDTCCES And LLEVATORS MINERAD INTERESTING BOOK

FOR SALE-ENGINE, BOILER, Etc.

The S cientific A merican PUBLICATIONS FOR 1889.

Sthe prices of the idiferent pullications in the United.
 The Scientitic American, Export Edition (monthly)
one year,
5.0 The Scientitic American, Architects and Builders
Edition (monthly), one year.
2.50 COMBINED RATES. The Scientiffic American and Supplement, $\cdot \quad 87.00$ The Scientiffc American, supplement, and Archi- $\dot{\dot{\circ}} \dot{0}$ Proportionate Rates for Six Months - 9. Proportionate Rates for Six Months
This includes postage, which we pay. Remit by postal
or express money order, or draft to order of

2fovertisements.

 (2)

PENBERTHY IMPROVED AUTOMATIC INJECTOR.
Why 20,000 have been sold in two years.
Because they cost leess than others nad do
equal work. Lift 20 feet and work from

 THE EIFFEL TOWER.-AN EXCEL

 RIDE CYCLES!
icjcles, Tricjcles, and Saifeties. Send for free illustrated
Catalogue. Overman Wheel Co., Makers BOSTON, MASS. THE COPYYINGPAD--HOWTOMAKE and how to use; with an ongraving. Practical direction
how
hy witeprethe

THE ARMSTRONG MFQ.CO. WATER, GAS AND STEAM FITTERS' Tools.

Stocks andDiesfor Pipe, Bolts, and Brass Pipe Wrenches, Pipe Vises, Pipe
Catalogues sent free on application.
WORKING MODELS Mand Fiperimental
 TiE KODAK CAMERA

EVEN THE BROWNIES MAKE PHOTOGRAPBS PHOTOGAMPHIC OUTFITS FOA AMATEURS Send for our New Hllustrated catalogue and ROchester Optical Co.

MALLEMELE

 tigmeante, Ejejeteted Casee. Hints on the sale of Pa
 MUNN \& CO., solict tors or Patente,

We make a specialty of Hard Rubber Pump Valves For Hot Water, OIll, and Aclas,
aliso for very hiigh pressures.

 THE ONLY PRACTICAL Low-Priced Typewriter First-Class, Rapid, Durable, Business WORLD TYPEWRITER, 44 characCatalogue free. THperriter Dept.. POPE MFG.
Ooston, New York, Chleago.

JAMES B EADS.-AN ACCOUNT OF

ASEESTOS

PIPE CQYERINGS
Absolutely Fire Proof.
BRADED PACEING, MILL BOARD, SHEATHING, CDMENT, FIBRE AND SPECIALTIES

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th 1877, No. 186,787
Thetransmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequenceb thereof, and liable to suit therefor.

OTTO BAS ENGINES.
Ovor 25,000 Sold. Horizontal......
Twin Cylinder.. combined.......Otto. $\left\{\begin{array}{l}\text { Gas Engine } \\ \text { and } \\ \text { Guas Enps. }\end{array}\right.$ OTTO GAS ENGINE WORKS, CHICAGO, PHILADELPHIA REDUCING ACTION OF HYDRO gen-By Stephen Cooke. An intiressing chemical inves-
tigation made
thith

PETROLEUM BOAT. DESCRIPTION

New York Belting and Packing Co. John H. Cheever, Treas. 15 PARK ROW, Now York. VULCANIZED RUBBER FABRICS

RUBBER EELTING;

 Packing, Hose,Vulcanit Emery Wheels, Rubber Mats, matting dur read

THE PHONOGRAPH.-A DETAILED

ACRETATENT

JACKET KETTLES,
 ELECTRO MOTOR. SIMPLE. HOW TO aree ByG.M. Hopklin.-Deseription of a mall electro

Expose an Immense
Expose an immense Extract all the Heat from the Gase.. Furnisish from
Torm Alr in abundance.
Fifteen Years of Test.
Universally
Satistafactory.
Abram Cos Store Co.

 Srientific American ESTABLISHED 1846. The Most Popular Scientific Paper ith the World Only 83.00 a Year, Including Postage. Weekly.

This widely circulnted and splendidly inustrated paper is published weekly. Every number contains six original engravings of new invientions and discoveries, representing Engineering Works, Steam Machinery New Inventions. Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Pbotography, ArchiComplete List of Patents each we, Complete List of Patents each week.
TIFIC Ams oriabs will be sent for one vear- 52 numbersportage prepaid, to any subscriber in the United State lishers; six months, $\$ 1.50$; three months, 81.00 pab ishers; six months, 81.50 ; three months, 81.00 .
Clubs.- Special rates for several names, and to Pos Masters. Write for particulars.
The ratent way to remit is by Postal Order. Draft, of Express Money Order. Money carefully placed insid seldom goes astray, but is at the sender's risk. Ad dress all letters and make all orders, drafts, etc., pay

MUNNIN \& CO.
361 Broadway, New York T IEIT
Scientific American Supplement.
This is a separate and distinct publication from in sise, every number containing sixteen large pages ful of engravings, many of which are taken from foreign THers, and accompaned wit transisted descriphon weekly and includes a very wide ranke is publishe presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geokraphy, A rchæology. Astronomy,
Cbemistry, Electricity, Light. Heat, Mechanical Engi Cberisistry, Eteam and Railway Engineering, Mining Ship Building, Marine Engineering. Photography Technology, Manufacturing Industries, Sanitary En ineering, Agriculture, Horticulture, Domestic Fcono my, Biography, Medicine, etc. A vast amount of fres
and valuable information obtainable in no other pub lication.
The most important Engineering Works, Mechaniems, and Manufactures at home and abrosd a e illustrate and described in the Supplement.
Price for the Suppiement for the United States an Canada. 5.00 a year, or one copy of the SCIENTIFIC AM
ERICAN and one copy of the SUPPLEMENT, both maile or one year for $\$ 7.00$. Single coples 10 cents and remit by postal order, express money order, or check MUNN \& Co., 361 Broadway, N. Y.

Building Edition.
The SCiEntific American Architects' and
Buildere' Edition is issued monthly. 82.50 a year Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary bnok pages; forming ly adorned with Magazine of Architecture, rich fine engravings; illustrating the most interesting ex amples of modern Architectural Construction an A special feat
A a variety of the latest presentation in each numbe dences. city and country, including those of very mod erate cost as well as the more expensive. Drawings in Plans, Specifications, Sheets of Details, Estimates, etc The elegance and cheapness of this magnificent wor have won for it the Largest Circulation of any
Architectural publication in the world. Sold by aut newsdeslers. $\$ 2.50 \mathrm{a}$ year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York
PRINTIINE INKS
T

