

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, JUNE 8, 1889.	\$3.00 Werkirs $^{\text {a }}$

THE NEW LONDON DOUBLE TRACK RAILROAD BRIDGE AND DRAW SPAN.
We illustrate in the present issue the great railroad bridge crossing the Thames River at New London, Conn. Hitherto the "Shore Line" trains on the

Providence and Boston routes have been ferried across the stream on a special ferryboat, which was capable of carrying an entire train of cars. The crossing of the "Groton Ferry" has come to be looked for as a regular incident of the trip between Boston and

New York, and has perhaps been welcomed often by the passenger on day trains as an agreeable variety in the route. But in a few weeks the boat will take her last trip, and the trains will then cross the estuary (Continued on page 35\%.)」

LOADING THE PIVOT PIER WITH 2,700 TONS OF PIG IRON.

THE NEW LONDON DOUBLE TRACK RAILROAD BRIDGE-THE LARGEST DRAWBRIDGE IN THE WORLD.

§oxicutific ghmerican.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. pUBLISHED weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN.

One copy, one year, for the U. S. or Canada...
One copy, six months, for the U. S. or Canada
One copy, one year, to any foreign country belonging to Postal Union, 150
express money order
Australia and New Zealand.-Those who desire to receive the
SCiENTIFIC AMERICAN, for a little over one year, may remit \&i in current
Colonial bank notes. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientipic Amprican. THE SUPPLEMENT with Scientific american. Terms of subscription for Supplement 85.00 a year, for U. S. and Canada. 86.00 a year to foreign countries belongIng to the Postal Union.
throughcut the country
Ciombined Rater.-The SCientific amricican and SUPPLEmen

zoven dollars.
 The satest way registered letter.

Australia and Now Zealand.-The Scientific American and
SUPPLEMENT will be sent for a little over one year on receipt of $\mathbf{\Sigma 2}$ cur Address MUNN \& CO

NEW YORK, SATURDAY, JUNE 8, 1889.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 7O1.

For the Week Ending June 8, 1889.

 Price 10 cents. For sale by all newsdealers.(AGRICULTURE. - Rice Culture in Central China. - By R. J. FrANKLIN.-A very full account of Chinese husbandry, the
methods, implements, and fertilizers emploged, with statistics of methods, implements, and fertilizers employed, with statistics of
production per given area................................... 11 ASTRONOMY.-A Simple Astronomical Instrument.-A very easily constructed inst.
termine the true time.
III. BIOGRAPHY.-Jacobi. the Inventor of Electrotyping.-Biography of the inventor of the art of electrotyping matter, with por trait.-1 illustration
V. BIOLOG Y.-A Gigantic Earthworm.-An earthworm six feet in
length, a native of Australia, its habits and methods of defense.1 illustration.
Sponges.-Notes on the organization and life habits of sponges...................12205
The Habits The Habits of Thalessa and Tremex.-By C. V. Riser.-The ontinuation of Professor Riley's interesting paper on these incivil engineering.-Plant and Material of the Ranam different types as used on the canal, continued; how the plant inserent types as used on the canal, continued; how the plant was
instalted, with railroad and other conections. -6 illustrations....
. ELECTRICITY. - Note on the Use of Geissler's Tubes for detec tng Electrical Oscillations.-A very ingenious application of Geisser's s ubes to the study of the famous Hertz electrical oscillations
The Tele-indicator. - An apparatus for use in indicating at a distance the movements of meteorological and similar appliances.
 produces telegraph
FiI. MECHANICAL ENGINEERING.-Nails from Tin Scraps-A most ingenious effort to utilize this waste material.-A graphic de-
scription of the elements of the problenfand its solution. -2 illustrations.
VIII. MEDICINE.-Sulphonal.-The new hypnotic.-Its value as a therapeutic agent, with details of its effects on the system... IX. MISCELLANEOUS.-The Paris Exposition-the Central En-
trance and Dome.-The great portal and dome, with particulars of its wonderfully quick erection. -1 illustration....................... The Paris Exposition-the Illuminated Fo esting study in reflection of light and the application of optiea science to the beautiful electrically illuminated fountains of the exposition.- 6 illustrations.
NAVAL ENGINEERING.-Armor for Ships.-A valuable pape
recently read before the English Institute of Civil Engineers, -B recently read before the English Institute of Civil Engineers.-By
Sir NATHANIEL BARNABY, K.C.B.-lnteresting comparisons of ships of different epochs.-1 illustration.
Wate-Tube Boilers for War Ships.-By J. I. THorNYCROFT.Study of quick-steaming boilers from the standpoint of the naval I. PHOTOGRAPHY.-The Stripping of Fibers from Gelatine Negaves for Photo-mechanical Processes.-Fnll formules with detail of manipulation for executing this important operation..
XII. PHYsics.-On Flame.-By Y. J. Rowas.-A paper embraci the physics and ehemistry of flame, with extensive references to
an expected revolution in steak mavigation A new and interesting experiment in marine propul sion is to be tried soon in this harbor. We allude to the new water jet boat invented by Dr. Walter M. Jackson, of this city. The vessel is 100 ft . long, 100 tons burden, with a boiler intended to yield $1,500 \mathrm{~h} . \mathrm{p}$., applied to a Worthington pump, and used to eject a small stream of water-a three-quarter inch jet-from the stern post, at the keel line. The water is to issue under the enormous pressure of $2,500 \mathrm{lb}$. to the square inch, and a speed of between thirty and forty miles an hour is expected by the owners-a velocity far in ex cess of any other craft afloat. The stern water jet issues from a faucet which takes the place of a rudder. The faucet is operated by a lever in the pilot house. A jet pipe also extends from the main pump to the bow where a similar faucet is located, also connected with the pilot house lever. Thus the pilot has absolute control of the vessel. By simply moving the lever, the boat can be instantly started, turned, stopped, backed or made to spin around on its axis like a top. All this without stopping the driving pump. No jarring, noise, or vibration is felt, even at the highest speeds. The new boat is named the Evolution, but, perhaps, a bet ter cognomen would be Great Expectations, for the promoters are sanguine the little vessel is the precurso of a grand and rapid revolution in the art of steam navigation. They are confident the days of common marine engines and propellers are numbered, and will soon be thrown out of all first class ships as old iron, and the diminutive water jet substituted. A large saving in space, greater economy in fuel, increased safety, improved comforts for passengers, are men tioned as a few of the important results that will at tend this outflow of high pressure water.
The water jet, as a hydraulic system for the propulsion of vessels, has been many times tried with excel lent results, but has not proved economical as com pared with the ordinary marine engine and propeller. In the back numbers of the SCIENTIFIC AMERICAD and SUPPLEMENT will be found particulars of some of these hydraulic motors, with illustrations of the ves sels (see, for example, SUPPLEMENT, Nos. 308, 354, 415 489 , also 440,561). In most of these cases it has been the aim of the projectors to make use of as large a water jet as possible, and a low water pressure, which involved the movement and discharge of a great volume and weight of water.
Thus a water jet of 5.33 square feet area and a ve locity of water discharge of 30 feet per second has been employed. This was in accordance with high scientific authority, such as Prof. Rankine, who maintains the most efficient propeller is that which sends the largest volume of water astern at the slowest speed. A variety of reasons and calculations have been put forth by others to prove that the small water jet, with high pressure and high speed, cannot possibly be as effective or economical as the big pipe and great weight of slow water. But it is a curious fact that in several subse quent experiments reduced water jets ($71 / 2$ inches) and higher water velocity (66 feet per second) have given better results.
Dr. Jackson's scheme involves a radical departure from the hitherto accepted theories and calculations of water jet propulsion. In his new boat Evolution he reduces the old 5 square feet area discharge pipe down to an area of less than half a square inch (0.44 square inch), and increases the velocity of the water discharge from 30 feet per second up to 600 feet per second. By so doing he claims to secure superior practical results.
On the trials last summer of his small experimental boat Primavista, he used a jet only three-eighths of an inch in diameter, with a water pressure of 600 pounds to the inch, and obtained a speed of ten to twelve miles per hour. Many experiments were then made with this boat. The apparatus was crude and hurriedly made but the results yielded much new, instructive, and valuable knowledge concerning the practical propelling powers of small jets at high velocities; and this new knowledge is embodied in the novel craft which is now receiving her finishing touches. One hundred thousand dollars, clean cash, have been put into the little ves sel by the contributions of a number of able citizens, who fully believe in the correctness of the calculations of the ingenious inventor. Dr. Jackson is a man of varied scientific attainments, extensive mechanical experience, and good judgment. His inventions relating to gas machines have proved highly successful
In this connection we would suggest to the nava 91 authorities at Washington the propriety of supplying all of the new war ships with hydraulic jet pipes and pumps, as means for facilitating the navigation of the vessels and promoting safety. There appears to be no reason why bow and stern jets might not readily be put in, at no great cost, which would be highly useful in action and other emergencies requiring rapid man uvering of the ships.

88,200 barrels of flour is the report of a recent one week's work for the mills at Minneapolis. Is there any ther place in the world where such a large production is realized?

The Annual Meeting of the America Mechanical Engineers.

On May 21 the annual meeting of this society opened at the house of the American Society of Civil Engineers. The report of the secretary, Mr. R. W. Pope, was read. It showed 350 members in good standing, and an increase at the average rate of five per month, a very practical testimony to the increased interest taken n this branch of science by engineers. Mr. Edward Weston, the retiring president, after an address on the importance of enlarging the scope of the Institute's work, introduced his successor, Prof. Elihu Thomson, who, in his answering address, followed the same line of thought, and spoke of the opportunities before the Institute for work in the interest of electrical engineering. On May 22 the reading of papers began, the session beginning at $10 \mathrm{a} . \mathrm{m}$. The following papers were read and discussed :

Some Results with Secondary Batteries in Train Lighting," by Alexander S. Brown, Pennsylvania Railroad.
"The Inherent Defects of Lead Storage Batteries," by Dr. Louis Duncan, Johns Hopkins University.

Motor Regulation," by F. B. Crocker, instructor in lectrical engineering, Columbia College.

Magnetism and its Relation to Induced ElectromoLynn, Mass
'The Relation between the Initial and the Average Efficiency of Incandescent Lamps," by W. H. Peirce, Chicago, Burlington \& Quincy Railroad.

The Efficiency of the Arc Lamp," with an introductory note by Prof. E. L. Nichols, by H. Nakano, Cornell University.
"The Spiral Coil Voltameter," by H. J. Ryan, Cornell University

The Personal Error in Photometry," by Prof. Edward L. Nichols, Cornell University.
The titles of the papers and the authors' names vouch for their interest. Prof. Nichols brought out one very practical point: that in the use of the Bunsen disk with reflecting mirrors the observer was liable to introduce a personal error if he adopted the stereoscopic method of inspecting the disk, or used one eye for the right side and the other for the left. This habit, which many photometrists fall into, is unquestionably a bad one, and its treatment by Prof Nichols is of interest to gas engineers as well as to electricians. In the evening a special session was held at the College of the City of New York to listen to Prof. H. A. Rowland's experimental lecture on " Modern Views with Respect to the Nature of Electrical Currents." Many well known electricians as well as the members of the Institute were present at this lecture, and the room was crowded to overflowing with an appreciative audience.

The Leland Stanford, Jr., University.

Mr. G. T. Shepley, the architect of the Leland Stanord, Jr., University, states in the San Francisco Building Advertiser that the work on the large dormitory in connection with the university has been commenced. The buildings completed, or nearly so, number fourteen, and consist of lecture rooms, reception rooms, laboratories, and all the requisite departments for a complete educational course. The dormitory will be situated about a thousand feet from the other buildings. It will be 275 by 145, four stories high, presenting a very imposing structure. The material used is San Jose stone. The building will accommodate two hundred students. Single rooms will be 18 by 26 , and double rooms 24 by 26 . Altogether there will be from one hundred and twenty-five to one hundred and fifty rooms. There will only be one dining room for the two hundred students, and this will occupy the central portion of the lower floor. The kitchen, laundries, etc., are in the basement; but, as the dining room is raised considerably above the floor on which it is situated, there will be plenty of light and air afforded for the basement. All the fifteen buildings will be heated by steam and lighted by electricity from one central station placed in the rear of the quadrangle. The university will not resemble any of the Eastern universities to any great extent. All the old colleges are built around quadrangles, and in this one point the Leland Stanford, Jr., University will resemble them, but in'to other. There will be a magnificent view from all the sleeping rooms of the dormitories.
M. De Fonvielle has made very curious electrical experiments at the summit of the Eiffel tower. Some, it is considered, will lead to important considerations of a scientific character, which will be continned; others are of a more practical character. The posphere round the tower at this elevation is free from all influence of the soil, as would be the case at the top of a mountain, and the air is in an extraordinary active state of electricity. The tower will, it is said, be the most perfect conductor of electricity during a storm, and all within it will be in a state of entire immunity against all danger from lightning. The pretty idea has been suggested of having a carillon of bells at the top, which will play every two hours.

The Paris Exhibition.

A MAGNIFICENT AFFAIR-NOVELTIES IN THE AMERI CAN SECTION-POVERTY OF THE ENGLISH SECTION. Paris, May 16.
It is conceded on all sides that this exhibition is a truly magniflcent affair. No previous exhibition has approached it, either for size, beauty, or the quality and value of the exhibits. "I have been to every exhibition at which the United States government has been officially represented, and unhesitatingly assert that it very far surpasses anything attempted," said Mr. Thomas R. Pickering, the superintendent of machinery of the American section. "There never was so grand an exhibition, and it is questionable if there will ever be such another," said Mr. Doane, of Messrs. J. A. Fay \& Co. The Eiffel tower, which so many people stigmatized as ugly and unattractive, is now conceded to be a thing of grace and beauty.

My first proceeding after the opening day, of which you have doubtless received full advices, was to take a general survey of the "Palais des Machins," whose immensity is exceedingly striking, and then to take a preliminary survey of the main buildings, so as to give your readers a general idea of the situation, which is as follows:
Except in the "Palais des Machins," the French are the most behind, and even there much of the machinery has been standing still, because there is no steam supply. This defect, however, will be remedied to-morrow.
The American section of machinery shows more progress in design and more valuable novelties than any other section, and many claim than all the others put together, and it seems to me at present writing that the claim is well founded.
The English section is small and possesses no distinguishing feature that I can so far see, except that of copying American designs, which is done to an altogether astonishing degree.

This is done with so much persistency, and old American designs are claimed as English with so much ef frontery, while more advanced and superior American designs are so pooh-poohed by some of the English I have encountered here, that I determined to " speak out in meeting," and put this matter straight at once. So I took a hasty survey of the English machinery, with the following result :
On a milling machine I found the disk friction feeding device of William Sellers \& Co., of Philadelphia, whose patent has expired. I also for a twist drill grinding machine whose sole novel fature is copied from the Sellers twist drill grinding machine. I also found twist drills with the line down the center of the flutes, after the Morse Twist Drill Company's patent. Another piece of piracy is a planer chuck that has been patented in England, and is commanding a large sale. One of its chief points, if not its chief one, is a direct copy of the main feature of Thomas' American patent planer chuck, this particular feature having been pointed out in the Scientific American, in 1875 or 1876. The rack feature now so common in American practice (the patent having expired) is copied, the only variation being that a single set screw is used, being placed central and abutting against a convex projection, so that the set screw point will bed fair, notwithstanding that the jaw may be at an angle for taper work. The Fox lathe as it was made in the United States seven or eight years ago appears, and several copied modifications of it, all being claimed as English. But the more recent American improvements are lacking, such, for example, as making the bed in two parts, so that the tail stock end may be taken up by raising that part of the bed.
I found turret head lathes here with no stop motion, the workman using his calipers, etc., in the old fashioned way. There are milling machines of English make carefully copied from American designs, with not a perceptible English feature about them. One or two of them have copied the movable bar for the dead center of the spindle. Another English machine has on it the American feature of a wire feed. Of a cutting-off machine copied from American practice an English machinist said to me, "It's a very good machine, but don't you think such machines an unneces sary refinement?" for otherwise 1 should have been told that it was an old English design that had been thrown away in England long ago. Your readers will doubt less picture this individual cutting up large rods or shafts in the blackswith shop, chipping and filing the ends square for the centers, truing up the ends and cutting the pieces to length, and thus spending as much time and money on the job by the time it was ready to be turned up as the whole job would cost if
a cutting-off machine had been used.
The editor of a prominent English engineering newspaper was herelast week, and, I understand, expressed himself rather strongly on the poverty of the English section, and at land that English machine tool makers would stand that the English machine tool makers would
rather be excused from meeting their American comrather be excused from meeting their American competitors in any market unless the prices were over-
whelmingly in their favor. There is only one Ameri-
can design of prominence that, so far as I have ye observed, is exhibited in the English section and not claimed as of English origin, and that is the Horton lathe chuck.
I next turned my attention to the United States section, to see what there was put forward as new that was copied from English or other foreign designs. I found nothing, but I found much that was new and very interesting indeed. I consider the cutting tool design and arrangement on Warner \& Swazey's special lathe for brass work one of the best things I have seen for many a long day, and it is entirely original.
A walk through the other sections of the Palais des Machins shows that although the English are the greatest, they are not the only sinners, except it be in refusing credit to the American origin of their designs.
Amer et cie., Bale, Switzerland, have the Sellers rack and pinion (with its rolling contact) on their planer, but not on the pulley end of the pinion shaft, a combination, as is the case with the more recent Sellers' machines. The Ateliers de Construction Oerlikon, Zurich, have milling machines copying those of recent American design, and also lathes with the features of the "Fox" pattern. The tail stock of one lathe is constructed exactly like the dead center block used with American milling machine chucks. Baruquand, Paris, exhibits a screw machine having the Fox construction in connection with a Brown \& Sharpe turret head and the American die and holder used in American screw wachines.
A large amount of emery grinding machinery is shown, all embodying items of construction of distinctly American origin, with a variation of details. Of a great many of these it may be justly said that the parts that are new are not good, and the parts that are good are not new. The French show a great deal of emery grinding machinery, and, taken as a whole, it is very
creditable indeed-much of it of the very firstorder and creditable indeed-much of it of the very first order and is a great favorite here.
Some of the details on French engines are, to my mind, decidedly objectionable, but the workmanship is, as far as I have at present observed, thoroughly guod. Two engines of the Wheelock (U. S.) patent are here, one of them a pair of compound condensing engines and the other a high pressure. The latter has a flywheel of about 14 feet diameter, with internal gearing inside its rim, a feature for which there is, in my opinion, nothing favorable to be said.

High piston speed" has not as yet taken much hold in either England or France, although the ArmingtonSims engine (Providence, R. I.) is a favorite.
The straight line engine (Syracuse, N. Y.) will run as soon as it can get steam, and I think it will surprise a good many to see her speed and quiet running, notwithstanding that her cylinder is not bolted to the foundation, but merely rests on it. This engine has'a flexible steel belt to drive her section of the line shafting (another American novelty), and this brings to mind that, I did see one thing of English origin that has been copied at a comparatively recent date in the United States, and that is link leather belting, of which I hear very good reports.

American engineers here speak very highly of the design of the shafting girders, which, being continuous and flat on the top, furnish a track on which an electric hoisting crane runs. This crane is very highly spoken of by those who tried it when setting their machines on their foundations or unloading them from cars or trucks. The management of the United States commission here is giving a great deal of unalloyed satisfaction, and everybody in the United States section would be entirely happy if steam was only turned on, so that they could run their machines.
There is a large exhibit of French locomotives, the workmanship being good, and I wish I could say as much of the designs; but of this, more hereafter.
There are not as many printing presses here as there o the puncturing device of the Bullock press (Amed can), which was first exhibited at the American Institute fair in 1868, I think, and that rendered web perfecting printing presses possible. There are a great many steam engines and paper making machines, and very full line of grinding machinery.
The general American department is, it must be conessed, disappointing. Tiffany has a fine exhibit, and so have the Gorham Manufacturing Co. Messrs. Lyons, of New York, have a very fine exhibit of umbrellas, better than any others I have seen, notwithstanding that an English umbrella has been supposed to possess all the virtues possible in an umbrella. Around Ball \& Goldsmith's corset exhibit I noticed a continuous crowd, and the Meriden Britannia Company's exhibit is well spoken of. There is one unobtrusive exhibit here that has no one attending it, that wood workers and carriage builders linger over, and well they may, for it is truly American and altogether meritorious. I refer to an exhibit of bent woods by H. G. Shepard, of New Haven, Conn. I heard a Frenchman say (after closely examining the specimens), "I would like to
\& Co. (St. Paul, Minn.) have a beautiful display of pet trified woods, and no handsomer or more attractive memento of the exhibition can be found than one of their specimens, of which I will go more into detail at some future time.
Dunlap \& Co. (New York City) exhibit a fine case of hats, and it is getting to be understood here that a better hat can be got in New York than either in London or Paris.
The French general department is not yet fully opened. The English general department is disap pointing, while the Austria-Hungary department is simply elegance itself, and throws into the shade all competitors. Indeed, it cannot be said to have any competitors. The Russian department is very much better than one would anticipate, excelling in small bronzes.
There is a fine display of paintings and sculpture; but the galleries in the latter department are not open, while the department is in an unfinished state as far as the exhibits are concerned, heads, legs, and arms lying about in all directions. But the art departments are going to be very beautiful and delightful. There are not as yet any seats in the picture galleries; but there doubtless will be, as the galleries are so numerous that the crush there was at the Centennial galleries at Philadelphia in 1876 is not likely to be repeated here.
I heard to-day that in the construction of the Palais des Machins there were 60 men killed and 400 wounded, and perkaps it will do no harm at this late date to say that I was told in the machinery department of the Centennial exhibition of 1876 that during the hot spell, when the thermometer ranged from 100° to 104°, eleven people died from sunstroke received in that department in one day. Some people, however, attributed these deaths to the water, which in that year was any thing but good.
There are no catalogues as yet, nor are the exhibits numbered in many cases, while in others there are two or more numbers, as is the case with statuary that has been exhibited at the Paris Salon, the old numbers remaining on a large yellow label, and some suall white labels bearing different numbers accompanying them. Whether these latter are correct for this exhibition, there is nothing to indicate.

Joshua Rose.

New French War Vessels.

A steel cruiser named the Lalande has just been launched from the Chantiers de la Gironde, at Bordeaux. The Lalande is 316 feet 8 inches long by 31 feet 8 inches beam. Her displacement is 1,877 tons and her average draught of water is 16 feet 8 inches. Her engines, which were furnished by the Creusot Works, will work up to 6,000 horse power with forced draught, and when the engines are making 140 revolutions per minute it is expected that the ship will attain a speed of $191 / 2$ knots per hour. The Lalande will carry nine guns, of which three will be quick-firing and four revolvers. A torpedo cruiser named the Vantour has been launched at Toulon. Her hull, which is of steel, measures 226 feet 8 inches between perpendiculars. Her engines are to work up to 3,200 horse power, and she is expected to attain a speed of 20 knots. The Vantour will be fitted with four lance torpedo tubes and two Hotchkiss guns of long range. The Forbin cruiser has just made her trial trip. The average speed on the measured mile was $193 / 4$ miles per hour.

Soapstone and Its Uses.

A writer in a London journal calls attention to the unappreciated uses and preservative qualities of soapstone, a material, he says, which possesses what may be regarded as extraordinary qualities in withstanding atmospheric influences, those especially which have so much to do with the corrosion of iron and steel, and from experiments made it is said that no other material is capable of taking hold of the fiber of iron and steel so readily and firmly as this. In China soapstone is largely used for preserving structures built of sandstone and other stones liable to crumble from the effect of the atmosphere; and the covering with powdered soapstone in the form of paint on some obelisks in that country, composed of stone liable to atmospheric deterioration, has been the means of preserving them intact for hundreds of years.

Electricity and Light.

Dr. Moser (Eder's Jahrbuch fur Photographie) draws attention to the following curious phenomena: The leaves of an electroscope are caused to diverge by charging with, say, 150 cells. On allowing a ray of direct sunlight to fall on the instrument the divergence is increased, and it returns to its original amount when the light is cut off. A common match (sulphur with phosphorus tip) will glow in the dark when brought close to a charged body such as the cover of an electrophorus. The mercury in a capillary electrometer falls when a ray of sunshine falls on it, just as it does when connected to the zinc of a battery. The effect is distinctly electrical, not thermal, as it vanishes when the upper and lower mercury colums are short-cirthe upper and.lo
cuited by a wire.

AN IMPROVED VEGETABLE CUTTER

A machine for cutting up cabbages and other vege tables is illustrated herewith, and has been patented by Mr. Johann A. W. Iusti, the small figure showing a bottom view of the machine. The supporting frame has rails, on which a sliding frame is mounted to be reciprocated beneath a cabbage receptacle, a weight

IUSTI'S VEGETABLE CDTTER

box being held between uprights to press the vege tables in the receptacle against the cutters. In the bottom of the receptacle are strips having metallic friction plates, against which move friction plates on the reciprocating sliding frame, the bottom of the frame also having friction plates moving over friction plates on the rails. The frame has a transverse open ing through which the knives alternately project, and through which the cabbage passes as it is cut. Be neath the frame is mounted a rock shaft carrying ad justable cutters, which may be moved to vary thei projection, and may also be detached for sharpening. The cutters are alternately held in position for cutting by a spring. The frame may be reciprocated by hand or other power, and in each direction of movement o the frame one of the cutters projects upward through the slot, the other cutter being then out of the way.
For further particulars with reference to this in ven tion, address the patentee, or Mr. C. Kerrison ${ }^{2} \mathbf{I r}_{\text {a }}$ Charleston, S. C.

AN IMPROVED GUIDE FOR BAND-SAWS

A guide for band-saws, in which the parts may be readily and expeditiously manipulated, and the guide adjusted to any width of saw, is illustrated herewith, and has been patented by Mr. Charles R. Backer, of No. 1221 West Indiana Street, Evansville, Ind., Figs. 1 and 2 showing a plan view and longitudinal ver tical section of the device. The guide-bed is ribbed, and has pivoted spaced jaws sliding upon it, one jaw having an adjustable clamping block on its outer end and the opposite jaw upon the same end, with an op posing fixed clamping block, there being angular guide blocks adjustable upon the guide-bed, the vertical members of these blocks projecting upward between the opposing jaws, and having grooved contiguous

backer's guide for band-saws.
faces, with metal blocks screwed in the grooves. The jaws are adjustable endwise and laterally. The contiguous faces of the vertical members of the guideblocks have dove-tail or wedge-shaped grooves in which wedge-blocks are inserted, the guide-blocks being preferably of iron or steel, and the wedge-blocks of brass. The latter blocks are adapted to form a guide for the heel or inner side of the saw, while wooden blocks constitute a guide for the outer or cutting edge. The device is adjusted to any width of saw through the screw shown in Fig. 1, and may be constructed and adapted for either a right or left handed mill.

A Telegraph Man Outwitted.

A few days ago several men from the electric light station dug a hole for an electric light pole opposite one of the finest residences in Malden, Mass. The owner of the residence, in the meantime, secured a man and told him to go up into the woods and dig the first tree he could find, and hurry back and place it where the hole for the electric light pole was. Before the men commenced to raise the electric light pole, the owner of the residence invited them to come into his cellar and take a drink, which they all did. There the owner detained them long enough to allow the man sent for the tree to come back and plant it. The others did not dare to remove the tree, so they put the poleinto their wagon and drove off.

AN IMPROVED SASH FASTENER.

A simple locking device, whereby the upper and lower sash of a window may be simultaneously locked irrespective of the position that the upper sash may occupy, is illustrated herewith, and has been patented by Mr. John H. Buettner, of No. 108 Pleasant Street Cincinnati, Ohio. In our illustration, the dotted lines show the position occupied by the parts of the device when the sash is not locked. A plate is attached to he inner face of the window frame, just above the lower sash, there being a stop-pin near the upper edge of the plate, and another similar pin near its center.

At each side of the center a locking arm is pivoted, the upper one curved downward and outward, and having an elastic bearing-block, preferably of rubber secured in its horizontal extremity. The lower arm is slightly curved from its pivotal point, and has near its extremity a lug extending at right angles to the body Each of the arms has a spur near its pivotal point these spurs being adapted to engage each other when the upper arm is essentially at a right angle to the lower one. When the upper arm is pressed downward so that its rubber bearing-block will press against the inner side of the upper sash, the spur on this arm bears against the spur on the lower arm, forcing th latter outward, when the other end of the lower arm is carried inward until it engages with the lower sash upon the upper surface of which its lug has a positive bearing. The further the upper arm is carried down ward, the tighter the lower arm binds against th lower sash.

Attraction of Gravitation.
At the recent Royal Society soiree Mr. C. V. Boys, F.R.S., contributed a portable apparatus for demon strating the attraction of gravitation. The mova ble beam consists of two little masses of lead only one centimeter long, to which a galvanometer mirror is attached, and this system is suspended by one of Mr. Boys' filaments of quartz, by which the ac tion exhibited is rendered possible. Around this can be moved a cylinder which carries two cylindrical lead weights each weighing a kilogramme, and the attractive influence of the heavier masses from the little movable beam was indicated by the movement of a spot of light through some fifty divisions of a scale fixed at the further end of the room. He forms fila ments of quartz by means of a bow and arrow, the tail of the arrow being attached to a lump of molten quartz, the latter being drawn out into an excessively fine thread during the flight of the arrow, as if it had been a filament of melting sealing wax. A second experiment shown by Mr. Boys was designed to show the extraordinary insulating properties of quartz. In this experiment a pair of gold leaves forming an elec troscope are supported on a little rod of quartz $\frac{2 / 4}{} \mathrm{in}$.
long, and although the surrounding atmosphere is kept saturated with aqueous vapor, the gold leaves retain their elecurical charge for several hours, although, if glass were used instead of quartz, the charge would be dissipated in a few seconds. Moreover, the quartz may be dipped in water and replaced with its surface studded with globules of water, and it appears to insulate as well as before.

AN IMPROVED PINCH BAR.

The bar shown herewith, for moving or starting cars on railways, has been patented by Mr. Peter C. Forrester, of Wilkeson, Washington Ter. The bar proper is of the ordinary form, pointed with steel at its nose end,

FORRESTER'S PINCH BAR.

where it bears upon the car wheel. A fulcrum piece or attachment, to bear on the rail, is made in the form f a sliding block, adapted to be readily slipped on or off the bar, as shown in Fig. 1. It is made with a harp tooth on its under side, pointed with steel, to take a firm bite on the rail, and is fastened in the required position by a set screw, or may be so secured by wedge or ferrule. Fig. 2 shows a modified form of the fulcrum piece or sliding block, in which the tooth, instead of being made integral with the sliding block, is made in a separate piece, and held in position by clamping it to the bar within the slotted body of the sliding block.

AN IMPROVED STEAM-ACTUATED VALVE

The illustration herewith represents the valve ar rangement of a steam pump in which the valve controlling the main piston is actuated by steam, and is in its turn controlled by other valves which have their action governed by main piston. This valve forms the subject of a pent issued to Mr. John W. Gheen, As toria, Oregon. Fig. 1 represents the application of the valve to a pump complete, and Fig. 2 is a vertical longitudinal section of the steam cylinder end of the pump. The steam chest is constructed above the main valve to The steam chest is constructed above the main vaive to
form acylinder, to receive within it a piston attached to the valve, this piston having double heads and reduced opposite terminal extensions, arranged to work as pis ons in and out of reduced cylindrical chambers at op posite ends of the body of the cylinder. Steam is ad mitted to the valve chest between these heads in the usual way. At opposite ends of the main cylinder are wo small cylinders, connected intermediately of theis length by passages with the reduced terminal cham bers of the valve cylinder, these passages being again connected by branch passages with the enlarged por tion of the valve cylinder, so that the heads of the pis ton portion of the valve may control them. The smal cylinders in each end of the main cylinder have each a ive steam port and an exhaust, and within them pis tons work freely as independent valves, each having a stem normally projecting within the main cylinder These valves are operated in one direction by the main piston coming in contact with their stems, and ar moved by the pressure of steam on their backs in an opposite direction. This invention is not only appli cable to direct-acting pumps, but also to direct-acting engines for other than pumping purposes.

GHEEN'S STEAM ACTUATED VALVE

JERBOAS, MARMOTS, AND LEMMITGS IN THE

 ZOOLOGICAL GARDEN OF BERLIN.The bird houses of the Berlin Zoological Garden always contain some small mammals, for which a better shelter cannot be found. Here they receive very little attention from the majority of the visitors, but this only adds to the interest of the real friend of animals. We refer to the three small rodents shown in the accompanying illustration, but seldom found in captivity.
The long-legged, thick-headed jerboa (Dipus aegyptius, Lichtst.) is a native of northern Africa. A true child of the desert, as Brehm calls them, they live in companies in places which their peculiar organization enables them to inhabit. In the construction of their extremely long hind legs, as well as in the unusual formation of the organs of the senses, especially the size of the eyes, by which the head is made broader than it is long, they bear an unmistakable resemblance to birds; and in fact, if the jerboa is to live in the vast desert, the surface of which is scarcely covered with the thin reed grass, he must rival the birds in activity and sharp-wittedness in order to obtain his poor food and to escape from his enemies. For this latter pur-
judging from observations of their ways when in cap tivity, their habits must be about the same as those of the common marmot, excepting the differences which would be caused by the variations in the climatic conditions of their native haunts.
The lemming (Myodes lemmus, Pall.) is as wel known by tradition as it is little known by actua sight, and is the little, thickset, and short-tailed field mouse which, by its migrations, has given rise to the numerous fables and to a certain mysterious light in which it appears in the natural histories. Of course we have long since learned to trace these migrationswhich are not as numerous nor as regular as the old time stories would lead us to believe-to their rea source; that is, their rapid increase in a favorable climate and the consequent scarcity of food. Even with ut this mysterious nimbus, the lemming is a veryinteresting little creature, which, like the field mouse, bear he same relation to the common mouse as the hamser. Like the latter, the lemming is thickset, has a shor tail, and its markings are more or less regular in color The individuals differ in this respect, the ends of the black hairs sometimes being light and sometimes not. The lemming also resembles the hamster in character,

Tetanus Treated by Absolute Rest

Prof. Renzi, of Naples, records several cases of tetanus successfully treated by absolute rest. The method advocated is as follows: The patient's ears are closed with wax, after which he is placed in a perfectly dark room far from any noise. He is made to understand that safety lies in perfect rest. The room is carpeted heavily in order to relieve the noise of stepping about. The nurse enters every quarter of an hour with a well shaded lantern, using more the sense of touch than sight to find the bed. Liquid food (milk, eggs in beef tea, and water) are carefully given, so that mastication is not necessary. Constipation is not interfered with. Mild doses of belladonna or secale are giren to relieve pain. This treatment does not shorten the disease, but under it the paroxysms grow milder, and finally cease. Numerous physicians attest to the value of this treatment.-Bulletin Med.

Consumption or Ties.

Assuming the entire railroad system of the United States to be 160,000 miles, as appears from " Poor's Manual," with the addition of the lines in construction during the current year, and taking 2,640 ties per mile

pose the perfect sand color of his long, soft coat serves showing the same courage, amounting to foolhardiness, pose the perfect sand color of his long, soft coat serves
him well. This color is formed by a blue gray ground and the light tips of the hairs. The fore part of the arrow-like tail is dark brown and the rear part white. The fore legs are very short, and are generally held close to the body, being used in eating and in digging the caverns for the company, but not at all in traveling, which is accomplished by the use of the hind legs and the tail. When moving short distances the jerboa takes little tripping steps, but during flight it takes jumps that are colossal, comparatively speaking, and these follow each other so quickly and regularly that the animal seems to be flying over the ground.
The leopard marmot (Spermophilus hoodi, Richs.) is a North American representative of this species of rodent, which is spread over the northern hemisphere. They live gregariously in the plains of the United States, and are known by the pleasing and striking marking of their fur with stripes and spots. which will be better understood by a glance at our illustration than by even a long description. This pretty coat and their activity and intelligence hold the visitor who has the good fortune to see them a long time at their glass box, half filled with earth. The greater part of the day they spend in their burrow, where they carried a quantity of hay and food last fall. Since then they have been sleeping their winter sleep, from which it was difficult to waken them that they might serve as models for our illustration. Very little is as yet known about the life of these little creatures when wild, but
showing the same courage, amounting to foolhardiness by squealing and biting even when the contest is with men. But, while the hamster is disagreeable and even dangerous when angry, the much smaller lemming produces only amusement and merriment by his bursts of passion. Brehm's descriptions of the droll actions of these Liliputians when any one passes through their district, threatening the domestic peace of one or another by coming, voluntarily or involuntarily, too near their holes, are very entertaining. The Norwegian lemming lives on the high mountains of Scandinavia in the region between the growth of trees and the per petual snows. Still farther north, in Lapland, he lives in the swamps of the plains, for he knows how to use every dry spot. Other species of the genus are found, in Asia and North America, throughout the entire frigid zone. It is difficult to keep lemmings in captivity, and those under my care are the only ones I know of. Our picture is the first one drawn in Germany by a master hand from living subjects.- Ilustrirte Zeit ung.

Chicago will probably have one of the finest libraries in the world in the course of a few years. Mr. W. L. Newberry, one of the earliest residents, left the sum of $\$ 250,000$ for the purpose, and a temporary building has been used for some time. It is now intended to erect a magnificent edifice, capable of holding 200,000
volumes. volumes.
of track, we have in use at least $422,400,000$ ties. This estimate, large though the total appears, is under the mark, as no railroad uses less than 2,640 ties per mile, and many of the roads with heavy traffic have 2,816 , and in a few cases more.
The life of these ties varies according to their quality and the climatic conditions; but in the East, where only the best ties are employed, the average life is found to be about six years, while in the West, where poorer quality of timber often has to be accepted, and where dry rot and other disadvantages have to be contended with, the average life is from three to five years so that even after allowing for a few exceptional cases in which ties may last ten years, the average life of ties all over the country cannot be counted as more than five years.
It follows, therefore, that the annual consumption must be about $84,500,000$, which, with steady increase of railroad building, must soon exceed $100,000,000-a$ gigantic demand to be satisfied from our forests each year, when we consider the many other calls upon them, and the fact that at present virtually nothing is being done by the government or the people to replenish our source of supply.
The certain rise in the price of wooden ties, when these facts come to be fully appreciated by the lumbermen who control so large a part of the available timber area, will force the railroads to seek the best solution of the question in the adoption of a metal tie.-Pacific
Lumberman. Lumberman.

Screw Propellers.
The escape of her Majesty's ship Calliope from the harbor of Apia at Samoa, when the German and American squadrons had to succumb to the fury of the hurricane, was recently noticed in our columns, reference being made to the excellence of the engines with which the vessel is fitted, by means of which she was enabled to make headway against the storm. On this topic something more may yet be said, and the subject is one well deserving full consideration Coupled with the engines there is the propeller, and although at first the allusion may excite an incredulous suile, yet the fact that the screw of the Calliope was made of manganese bronze will be found, after a little investigation, to be a circumstance that ought not to be disregarded.
We refer to the subject not merely for the sake of demonstrating the advantage which there is reason to believe the Calliope derived from the character of her propeller, but in order to deal with certain data, by which it would appear that a screw of this descrip tion really offers a substantial gain in the matter of speed. It is to be remembered that the Calliope made her way against the storm simply at the rate of half a knot per hour ; of course her inherent speed was considerable, but the storm neutralized the whole of it except this small balance left in the ship's favor. What may be termed the effective speed was very little, but that little was sufficient to save the ship. The Cal liope may never encounter the like dilemma again, and it may rarely happen that an extra half knot per hour will rescue a ship from destruction. Yet this little half knot, continuously maintained, is not to be despised, especially on a long voyage. Or if the extra speed is not desired, a saving of fuel may be effected, representing in the aggregate a very appreciable sum of money.
Reasons are forthcoming why a screw propeller made of manganese bronze should give a better rate of speed than one of gun metal or steel or any other metal yet known. But, in the first place, we may fall back on ascertained facts. It may be readily conceded that a commercial body like the Peninsular and Oriental Steam Navigation Company would not enter upon an extensive adoption of manganese bronze for the screws of its steamships, unless there was some practical ad vantage to be gained by doing so. Eleven of its ships are thus equipped, and a striking example on this point was mentioned a year ago, before the Institution of Naval Architects, by Mr. G. W. Manuel, the company's superintendent engineer. The screw blade of the Ballarat, made of steel, had been exchanged for others made of manganese bronze. In this instance although the gain in speed was only about a quarter of a knot per hour, the effect was seen in a saving of between eight and nine tons of coal per day, or a total of 715 tons on the voyage out and home between England and Australia. The saving in coal represented about half the first cost of the bronze blades. This comparison is the more valuable, owing to the fact that the diameter, pitch, and surface of the propellers were the same in both cases.
Another very striking instance is furnished by the Australia and Zealandfa, two steamships engaged in the mail service between Australia and San Francisco These ships, originally fitted with steel propellers, had manganese bronze blades of exactly the same surface and pitch substituted. The speed was then found to be increased neaily one knot per hour, and the passage was made in two days' less time. A very satissage was made in two days less time. A very satis-
factory pecuniary result has been secured with regard to these vessels, by the acquisition of postal premiums, the amount being such as to pay many times over for the cost of fitting the new propellers. Eight ships of the White Star line have propellers of manganese bronze, as well as two belonging to the Cunard Company. On the Inman line we have the City of New York and the City of Paris, the latter famous for her extraordinary speed just accomplished on her first voyage to America and back. The Pacific and Orient Steam Navigation Coupany has manganese bronze propellers for the Orizaba, the Oroya, and two other vessels of its line. The North German Lloyd Steamship Company has done the same with eight of its ships. One of these, the Lahn, of 8,000 indicated horse power, lately made a remarkably rapid voyage.
Some time ago the Scottish Oriental Steamship Company substituted manganese bronze propellers for others of iron and steel in four of its ships, the increased speed ranging from two thirds of a knot to one knot per hour. The four other steamers belonging to this company were fitted with bronze blades when built. Other instances might be mentioned, but these will indicate the appreciation which steamship companies have entertained for this particular kind of bronze, and there is every prospect that the use of the metal for propellers will extend. Outside the circle of the mercantile marine, we have the example of the British Admiralty. The Colossus was fitted with twin screws of manganese bronze after a series of experiments on the strength of this material as compared with gun metal, the trials being made at the works of Messrs. Maudslay, Sons \& Field, in the presence of the Ad-
miralty inspector, with the result that the manganese bronze was found to possess just double the strength of gun metal. Consequently the adoption of the bronze effected a saving of from 20 to 25 per cent in the weight of the propeller. In addition to the Colossus and the Calliope, manganese bronze has been employed for the propellers of the Calypso, Rover, Rattlesnake, and Sandfly. The French government has adopted the same metal for the twin screws of the Tage, Cecille, Forbin, Surcouf, Troude, Lalande, and Cosmao. The Russian government has taken the same course with regard to the Amiral Kornilow and the Rhynda.
We may now say something as to the probable cause of the advantage given by manganese bronze when this metal is employed in the construction of screw propellers. A particular kind of manganese bronze is used or this purpose. There are five different qualities of the metal, that of which the propellers are made possessing great strength and toughness. We have already mentioned the proof of this in the trials made in the presence of the Admiralty inspector. The transverse trength of the metal is stated to be about equal to that of the best cast steel. Hence, as compared with gun netal, a great reduction can be effected in the thickness of the blades, which therefore become finer and sharper. There is also a peculiar smoothness of sur face, producing a diminution of skin friction, especially important where high rates of speed are employed. A velocity of forty or fifty miles per hour in the extremi ies of the blades gives value to everything which re duces the unproductive resistance. The power thus saved is utilized in giving greater speed to the vessel. Steel castings for propeller blades are very rough, and are almost always out of true pitch, owing to the warp ing which they undergo in the annealing furnace whereas the manganese bronze blades are almost math ematically true, as shown when tested by the pitchometer.
This metal has the advantage over steel of being more fluid when melted, thereby producing a finer casting. Freedom from pitting and corrosion preserves the blades for a long time in their original form, so that the life of a bronze blade may be reckoned as equal to that of the ship to which it is attached. So great is the saving of weight in the construction of a manganes bronze propeller, that the reduction in the outlay for raw material renders the price about equal to that of a propeller made of gun metal, although weight for weight the bronze is from 20 to 25 per cent dearer There is also the recommendation that the manganese bronze propeller will fetch a good price as old metal. As compared with steel, manganese bronze is about three times dearer at the outset. But the pitting which so soon takes effect on steel greatly enhances the cost in the course of years, so that after the lapse of a certain period that which appeared the dearest proves to be the cheapest. Taken all in all, there is accordingly much to be said in favor of manganese bronze. In these days, when "commerce destroyers" are in vogue with foreign navies, and vessels to catch these "destroyers" are specially needed in the navy of England, it is well that we should not only know how to make powerful engines, but how to apply such power to the
most efficient and enduring propeller. For this purpose we shall expect to find manganese bronze growing in favor as time goes on.-The Engineer.

Something New in Photo-lithographic Work. by w. t. wilkinson.
The usual method of making photo-lithographic ransfers is upon gelatine made sensitive with potas sium bichromate. This is quite sensitive enough to day light or to electric light; but if transfers are re quired when neither day nor electric light is available, then bichromated gelatine is useless, and some other method is wanted. Try this. Make a print upon any of the ordinary bromide papers of commerce, using good negative from a subject in line, by artificial light and develop the image with alkaline pyro, then wash and place it upon the inking board; next, blot the water with a soft cloth, and dab all over with a sponge saturated with transfer ink, thinned with turpentine; le the turpentine evaporate, then take a glue roller, i. e., a type printer's roller, and roll until the whites are quite clear of ink. Now soak the print in the pyro again for a few seconds, and expose it to the light. Finally, wash free from pyro and hang the print up to dry. When it is dry the print is ready for the transferer, who treats it the same as he would any other photo-lithographic transfer.
The only way to fail with this method is to over or under expose the print, or to use a bad negative. The negative must show perfectly clear lines. Some of the newer papers of commerce contain too littlegelatine to succeed perfectly ; therefore, it is best to make the pa per at home. It is not a very complicated process, a the color of the image under the developer is not all important. A good formula is:
Water..
800 grains.
30 ounces.
When the gelatine is quite soft, melt it at $120^{\circ} \mathrm{F}$.,
and add 320 grains of ammonium bromide. Stir it un-
til it is dissolved, then add ten minims of hydrochloric acid and stir well.
In 10 ounces of water dissolve 450 grains of nitrate of silver, bringing this solution to the same temperature as the gelatine solution; now proceed to pour the silver solution into the gelatine in a very thin stream, stirring it vigorously all the time. Now strain it into a warm dish, and tilt the solution so that it is only along one edge of the dish. Having made a small roll of the paper, lay one edge of the roll upon the liquid, and as it curls take hold of it and lift it slowly up, when the paper will unroll itself and receive a nice even coat of emulsion. Hang it up to dry, and repeat until all the emulsion is used.
For half tone transfers, use the bromide and chloride of calcium with 200 grains extra of gelatine, drying the paper at as high a temperature as possible without melting the gelatine. Paper with this emulsion upon will be very hygroscopic, and must be kept very dry. Before use, always dry the paper, and warn again before developing, so as to encourage reticulation of the gelatine.
This paper is to be exposed under a half tone negative, developed and washed, then inked up as directed for the line transfers, followed by immersion in the developer, and subsequent exposure to light, washing, and drying. To transfer to stone, trim with a pair of long shears, then put it into the damping book until quite limp. Then sponge the back of the transfer with a solution of oxalic acid 1 part, water 100 parts. Take great care that none of this solution gets on the front of the transfer. Lay the sheet in position upon a cold, dry stone, and pull it through the press, with plenty of pressure, five or six times, without lifting the tympan. The paper can be lifted off, leaving the image in ink on the stone. Gum it in, and leave it for five or six hours before rolling up.-Photo. News.

Rubber Stamp Ink.
Ther usual rubber stamp inks are prepared with water soluble aniline colors and glycerine. A good forthula, which we have tested practically, is given by Diēterich :
blue rubber stamp ink.
Aniline blue, water sol., 1 B.
Distilled water.
Pyroligneous acid
Alcobol...
Alycerine
Mix them intimately by trituration in a mortar. The blue should be well rubbed down with the water, and the glycerine gradually added. When solution is effected, the other ingredients are added.]
Other colors are produced by substituting for the blue any one of the following :
Methyl violet, 3 B...
Diamond fuchsin I .
Diamond fuchsin I...
Methyl green, yellowis
Vesuvin B (brown).
Nigrosin W (blue black)....................... 4 "
If a bright red ink is required, 3 parts of eosin BBN are used, but the pyroligneous acid must be omitted, as this would destroy the eosin. Other aniline colors, when used for stanping ink, require to be acidulated. -American Druggist.

Improved Indices.

Burr's patent combination index, manufactured by the Burr Index Co., of Hartford, Conn., covers a long felt need in the way of improved indexes. We speak from experience, as we have had the Burr index in use in the Scientific American office for over two years past. Our first order was for an index for 10,000 names. The work proved so useful we soon ordered another of still larger capacity.
This index is extensively used by the United States and Canadian governments, leading railroads, banks, insurance companies, and representative firms in all parts of the country. The system is complete, the plan simple for general use, readily understood, and so arranged that any name can be found at once.
The indices are made with great care, from the best of material, calculated for constant and hard use : made of any size, ranging in capacity from 500 to $1,000,000$ or more names, and the largest number of names can be handled with the utmost rapidity and convenience.

Wild Boars among Cs.

According to the American Field, wild boars have become very numerous in the deep recesses of the Shawangunk Mountains, that border Orange and Sulivan Counties, N. Y. They are the genuine Black Forest wild boars of Europe, the descendants of nine ormidable and ferocious boars and sows which Mr Otto Plock, of New York, imported some few years ago for the purpose of annihilating the snakes and vermin that infested his estate near the Shawangunk Moun tains. After the boars had eaten up all the snakes and vermin in the inclosure, they longed for more, and dug under the wire fencing and escaped to the mountains, where they have since bred and multiplied. They are so ferocious that the most daring hunter is said to hesitate before attacking thern. They have immense
heads, huge tusks and shoulders, and lank hind parts.

THE NEW LONDON DOUBLE TRACK RAIGROAD GRIDGE

And draw spar.

(Continued from first page.)
by the largest drawbridge in the world, and a saving for the traveler of no inconsiderable amount of time will have been effected.
The work now in progress involves not only the bridge proper, but some five miles of approaches. $\mathbf{M r}$ Alfred P. Boller has been appointed engineer in the service of the railroad, for the designing and superintendence of this work. The new line of railroad makes a detour in New London and reaches the shore at Winthrop's Point, about half a mile above the present ferry landing. The company in building the bridge was limited by conditions imposed by the U. S authorities as to its position and span, which, togethe with the favorable disposition of the shores, caused thi point to be selected. On the eastern side, after the shore line is passed, some very precipitous and rocky ground is encountered. The new line is carried through his region for about four miles before joining the main line. No saving in distance is effected by the change The legal restrictions and nature of the ground made he change of route a necessity.
The Thames River is a tidal estuary about fourteen miles in length. Near its mouth is the town of New London, at its head is the town of Norwich, at which point the Niantic and Shetucket rivers enter it. The bridge is located at a narrow portion, where the inlet diminishes to 1,500 feet in width. On the west shore the bank descends quite steeply to the river; on the east, the rise is gradual and the water grows shallow wore slowly. Fortunately for the building operations, the current is a sluggish one, even in spring freshets, a a rule, not being very serious. The depth of water in the channel, which may be said to include over two thirds of the width; varies from forty to sixty feet The bottom is soft at the surface, but runs into a stiffer clay with sand and gravel as a greater depth is eached, and about 130 feet below the water level a hard bottom is reached. This bottom, by means of piling, is used to support and carry the bridge piers.
It is evident that the depth was too great to admit of pneumatic working, and the expense of dredging down and sinking a complete caisson to the solid ground seemed to prohibit this mode of construction. A novel method was therefore adopted. An open caisson or double-walled crib was built and sunk into a hole formed by dredging to the depth of 18 feet below the natural bottom. The center area of this crib was divided into pockets, and the whole was driven full of piling that ran down to hard bottom. The piles were then sawed off ; for the center pier, 60 feet below th surface of the water; for the other piers, 42 and 50 fee respectively. An open top caisson was now built with solid bottom, and with temporary sides carried up above its floor. It was fastened with compositio spikes. The bottom was of 12 by 12 inch hemlock, and the sides and deck were cased in double courses of planking impregnated with 14 lb . of coal tar creosote o the cubic foot of timber. It was floated to its posi tion over the piling and crib work. The masonry fo the piers was laid upon the bottom of this floating caisson, which gradually sank under the weight unti t reached the piling. The masonry was then carried up until above the surface, when the temporary side were removed, and the masonry pier stood alone in th center of the stream.
The cribs, it will be remembered, were sunk into dredged holes. The center was pretty well filled with piling, but as it stood unbraced within the crib, sand was dumped upon it before the caisson was lowered This filled every interstice, and the piling is now held as firm and immovable at the top as at the bottom.
The three river piers were all established in general by this method. As the center pier has to sustain alone and unaided the great draw span, it was thought best to submit it to an unusual consolidating proces and incidental test. It was accordingly loaded with 2,700 tons of pig iron. 'This compressed all the timber portion strongly together and forced the caisson floor down upon the piling. Thus any piles that projected a few inches above the rest were forced into the wooden caisson bottom, so as to give all an equal bearing. To give some idea of the amount of meta thus deposited upon the pier, the operation of loading the pier is illustrated in one of the cuts
The superstructure is built entirely of steel. For most of the members open hearth steel is used. Fo some compression members Bessemer steel is admitted. The end spans are covered by deck trusses on the tri angular system, twenty-four feet deep. These are o 150 feet span each. Next come the two long spans, on on each side of the draw, and of 310 feet span each These are through trusses, the floor or deck lying in the plane of the lower chord. In the center they are 45 eet deep, at each end 25 feet. The draw span is 502 feet long. At the center it is 75 feet deep, and runs down at each end to 25 feet. The curve described by each division of the truss is a parabola, so that the contour of the cable of a suspension bridge, when the bridge is equally loaded over its entire length, is to
certain extent exhibited. All th
given from center to center of piers.
The central draw span affords two clear openings of 225 feet width each. The great width was exacted by the Federal government, who possess a naval station above the bridge, and who desired as little obstruction as possible to be placed in the channel leading thereto. Another feature was designed to accelerate the rapidity of operation of the draw. The design provided for s winging the bridge through the entire circle. Thus, when opened for the passage of a vessel, it could be kept rotating, following the motions of the vessel as he passed through and closing without reversal.
The machinery for moving the draw is placed upon the central pier, below the bridge span. It comprises an engine with two oscillating cylinders, 7 by 10 inches, unning at 200 revolutions per miuute. This motor operates through differential gear, and is thrown into and out of engagement by friction clutches. The turntable proper is of steel, with a heavy rim, which bear upon fifty-eight cast steel wheels. These are coned and bear upon accurately matched steel tracks. The drum is 5 feet deep, and is supported upon eight equidistant points upon the table.
Under the pivot pier there are 640 piles, distributed over an area of about 5,000 square feet. The rest piers are carried upon 368 piles, each distributed over nearly ,000 square feet. The draw span and table alone weigh ,200 tons, and, in connection with the stone and caisson foor, brings a weight of eight to ten tons to bear upon ach pile.
The superstructure is proportioned and calculated to bear a live load of 3,000 pounds to the lineal foot of track, with the superadded weight of two consolidated locomo
The chief engineer, Mr. Alfred P. Boller, of this city was seconded in carrying out the work by Colonel J. Albert Monroe, resident engineer. Mr. Alexander McGaw, of Philadelphia, was contractor for the masoury, and Mr. Warren Roosevelt for the piling and and timber work. The trusses and metallic superstructure were supplied by the Union Bridge Co., of New York and Buffalo

AN IMPROVED FOLDING STEP-LADDER.

The accompanying illustration represents a folding tep-ladder which may be used as an ordinary ladder, or automatically converted into a der, one of the mall views show ing a vertical secion of the upper portion of $t h e$ adder in folded position for use a folding step adder, and the ther represent ng one of the step hinges. This in ention has been patented by Mr John A. Neill, of No. 214 L Street East Portland Oregon. The lad er is formed with wo pairs of

NEILL'S STEP-LADDER

 dou and folding supports or legs, the latter being secured o the top by plates bolted thereto and secured to the under side of the top. The upper ends of the double uprights project and move between the plates, and are connected thereto by screws or pins riding in curved slots in the plates. The upper ends of the double upights are formed with inclined surfaces which fit gainst the under side of the top when the ladder is unfolded, and are connected together on each side by he bent cross portion of the hinge, the main portion of which extends between the uprights and beneath the steps, serving as a brace therefor. The legs and ouble uprights are held in unfolded position by means of folding brace arms.The Electrical Census Machine.
This system of machines may be described as follows The census collector will call with his printed blank and answers to questions will be written in the usual way. These sheets will then be placed before a person who operates a machine which may be likened to a type writer, except, instead of the usual ink mark on paper, small round holes are punched in a card. The cards, one for each person, are about $61 / 2$ inches in ength by 3 inches in width, and the particular position of a hole in a card indicates an answer to some of the questions in the printed blank. As many as 250 items of information can be punched out upon a card, al hough no one card would ever have more than on though no one card would ever have more than one
tenth part of the whole number, as, for example, no
one person can be classed as both white and black, American and foreign born, and if foreign born he can only come from one country.

These cards when punched are placed one at a time in a sort of press, and a lever operated by one hand is brought down, when a series of pins are brought against the card. Whenever a hole has been punched in a card the corresponding pin passes through into a mercury cup beneath, completing an electric circuit. These circuits, one for every hole, pass out to a large number of counters which operate electrically, and which add upon their dials all items of the same kind upon the same dials; as, for instance, all white men upon a dial marked white males; all business or professional people upon dials which indicate their particular business or profession. The cards, as they leave the press, are all sorted by means of an electrical sorting device, whereby they may be separated into groups or States of the Union.

It will thus be seen that the machines are much more reliable than the most accurate human agency, and that one machine will do the work of a large number of clerks. The next census of this country will be taken with these machines, and two will be sent to New York soon for the 1890 census taking.

Treatment of Foreign Hodies in the Stomach.
A method of treatment for foreign bodies in the stomach, which appears to be generally known and practiced with almost uniform success in both England and the Continent, consists in the administration simply of large amounts of potatoes, to which the diet should be restricted. It is stated by Professor Cameron, of Glasgow, that this plan, which, so far as we know, is almost unknown in this country, originated with the London pickpockets, whose custom it is to immediately swallow small articles of jewelry acquired in the pursuit of their profession, and then depend on their recovery through the evacuation which follows the aburdant use of the potato diet. Several cases are on record where this method has proved eminently successful. Thus, Ir. Salzer (Deutsche Medizinal Zeitung for January 24, 1889) reports the case of a child who had swallowed a brass weight of three hundred grains in September, 1887, and in whom the physician was on the point of performing gastrotomy. According to Dr. Salzer's advice the child was put in bed, kept on his right side, so as to facilitate the passage through the pylorus, and then fed with as much potato, prepared in different methods to stimulate the appetite, as he could be persuaded to take. In five days the foreign body was evacuated in the fæces. He also refers to a case of a patient who had swallowed a set of artificial teeth, and another who had swallowed a breast pin one and a half inches in diameter, in both of which cases the foreign bodies were removed without difficulty.
At the meeting of the Society of Physicians in Vienna, at which the above cases were reported, the discussion which they stimulated led to the report of several other cases, one especially, by Hochenegg, which is especially remarkable in that it dealt with the case of a young carpenter, who, in 1884, swallowed a long nail, which was removed by gastrotomy. Two years later the patient was so unfortunate as to swallow a second nail similar in all respects to the first. The potato cure was employed, and the nail was secured after nine days. In the Deutsche Medizinal Zeitung for March 11, 1889, Dr. Deichmuller refers to a case of a young girl, ten years of age, who had accidentally swallowed a pin. Pain was complained of under the breastbone, and Dr. Deichmuller, acting on the suggestion acquired through the report of the above cases, restricted the patient to the potato diet. Very shortly afterward the pain disappeared from the chest and was felt in the stomach. Six days later it appeared in the right inguinal region ; two days subsequently, having increased in severity, it was felt in the left inguinal region, while in the evening of this day the foreign body was evacuated with the fæces.
It is hardly necessary for us to call attention to the principles upon which this method is based. Potatoes, as is well known, are composed of nearly twenty per cent. of carbohydrates, eighty per cent. of the solids being starch and cellulose. On account of this large amount of carbohydrate, a great portion will resist the action of the digestive juices. The cellulose and other carbohydrates increasing greatly in volume from imbibition with water, lead to an accumulation of an mmense amount of indigestible residue ; consequently the intestinal tube is, throughout the entire time of the administration of this food, filled with large masses of non-absorbable matter. The folds of the intestine become obliterated, and fixation of the foreign body in the intestinal tube is thus avoided. It seems that from five to nine days, or even longer, are required for the evacuation of the foreign body, and in every case which does not seem desperate, a trial of this simple plan of treatment should precede resort to gastrotomy. In fact, at the recent meeting of the Vienna Medical College, Prof. Billroth said that since the introduction of this procedure, gastrotomy for foreign bodies should of this procedure, gastrotomy for foreign bodies shoul
bgoome an obsolete operation. Therapetutic Gazette.

AN MMPROVED AIR SHIP.

An air ship designed to be completely under the control of the operator, and to be easily steered and propelled in any direction, with, on, or against the wind, is shown in the accompanying illustration, and forms the subject of a patent issued to Mr. Herman A. J. Rieckert, of No. 124 Rivington Street, New York City. The most prominent feature of the construction is a balloon made in three compartments, the lower one stiffened by a framework and supporting the second compartment, on which is secured the third compartment, exposed to the action of the wind, and with its edges attached to the framework. A closed basket, the interior of which is partly shown, is supported on the under side of the balloon, and contains a motive power, preferably in bicycle form, for operating sidewise flapping wings and central wings. A suction wheel is mounted to rotate above the basket at its rear from the motive power located in the basket, communicated through a friction wheel, which can be readily thrown into and out of contact with the suction wheel, while a propeller wheel is secured on the shaft of the friction wheel, to be operated thereby. The steering device, located in front of the basket, consists of a vertical wing mounted to swing, and a disk wing pivoted on the vertical wing, ropes extending into the basket for operating the wings. Connected with the balloon is a
in shape, while the outer wings are placed in an inclined position, and have an outer frame and a central partition, between which and the sides of the frame are slats, on which are secured strips of canvas. These strips are bag shaped, the outer ends of each extending under the next following slat, so that when the wings move upward the bag parts of the canvas strips are opened down ward, and when the wings move downward the bag parts are pressed up against the slats, whereby the wings will operate with their full power on the air. The central wings also have similarslats and canvas, and the arrangement is such that when the outer wings move upward the inner ones move downward, and vice versa. The balloon is also provided with the usual device for letting out gas in case a rapid descent is desirable, and it is designed that boats shall be secured to the bottom of the basket to sustain the entire device above water should it descend on a lake or ocean.

Chance for Inventive Genius.
The State Grange of Illinois, through its executive committee, headquarters at Joliet, offers $\$ 10,000$ to be paid to any one who. will invent a machine or device to attach to reapers that will bind wheat and oats with straw.
Said device may work and twist its straw direct
of infant life. Hearing, therefore, is the only special sense which is not active at this time. The child hears by the third or fourth day. Taste and smell are senses at first most active, but they are not differentiated. General organic sensations of well-being or discomfort are felt from the first ; but pain and pleasure, as mental states, are not noted till at or near the second month.
The first sign of speech in the shape of utterance of consonant sounds is heard in the latter part of the second month; these consonants being generally " m ," " r," " g," or " t." All the movements of the eyes become co-ordinate by the fourth month; and by this time the child begins to have the "feeling of self," i. e., he looks at his own hands, and looks at himself in the mirror. The study of the child's mind during the first year shows conclusively that ideas develop and reasoning processes occur before there is any knowledge of words or of language; though it may be assumed that the child thinks in symbols, visual or auditory, which are clumsy equivalents for words. By the end of the year the child begins to express itself by sounds, i. e., speech begins. -The development of this speech capacity is, according to Preyer, in accordance with the development of the intellectual powers. By the end of the second year the child's power of speech is practically acquired.

AN AIR SHIP WITH BALLOON DESIGNED TO BE READILY PROPELLED IN ANY DIRECTION.
filling receptacle, communicating with its three compartments, this receptacle having an inlet pipe adapted to be connected with the gas supply, while three outlet pipes lead to the compartments, and apertured slides held in the receptacle control the inlet of gas and the outlet of air. In the basket are wheels mounted to be rotated by crank arms and treadles, an eccentric being secured on the shaft of the central fly wheel, a rod extending upward from which is connected with a lever, by which the suction wheel is operated, while the flap ping side and central wings are operated from the rod Combined with the main flywheel is a starting device, consisting of a friction wheel adapted to engage the periphery of the fiywheel, while the shaft on which the friction wheel is secured carries a propeller wheel, its shaft having a pivotal bearing, with the free end of which a lever is pivotally connected, to throw the bearing up or down to alternately engage or disengage the friction wheel.
The different compartments of the balloon are eovered with the usual material, preferably silk, and the top compartment is made to shift and assume dif ferent positions according to the direction and strength of the wind, our illustration showing its position at a normal pressure of the wind or at a normal velocity of the air ship. A sidewise pressure of the wind causes the top compartment to shift to the right or left, while the central compartment is almost stationary, shifting very little. On the under side of the lowest compartment is a transverse offset directly above the propeller wheel, the offset causing the air thrown out by the propeller wheel to exert a pressure against the front part of the lower compartment, so that the balloon will rise more easily. The inner wings are rectangular
rom the reaper, or it may be a separate machine that will twist the straw and wind on large spools and may be rereeled on smaller spools by the farmer money to be paid as soon as the device is proved to be a success. Should more tlian one person claim the above $\$ 10,000$ on his invention, the committee reserve the right to choose the one that to them seems most practical. The said patent to be issued for the use and benefit of the Illinois State Grange and legally transferred by the said patentee. This offer holds good until July 8,1889 , and is signed by the following officers of the Grange:
J. M. Thompson;

Master Illinois State Grange, Joliet, Ill. J. R. Shaver, Ottawa,

George R. Tate, Smithton, J. H. Vanarsdale, Peoria, Executive Committee.

Growth of the Child's Mind.

In the last volume of the "*، Education Series," on "The Development of the Intellect," Mr. H. W. Brown has presented a conspectus of the observations of Professor Preyer on the mind of the child. This conspectus shows chronologically the gradual development of the senses, intellect, and will of the growing child, and presents in a condensed form the result of a grea number of careful observations. Many of these results are allready well known, but the presentation of them in a systematic and complete way has not hereto fore been done
It is recorded that sensibility to light, touch, tem frature, smell, and taste are present on the first day

Professor Preyer's most striking and important conclusion, in his own opinion, is that the normal infant can form concepts and perform logical operations without the aid of words, or gestures, or symbols of any kind. He also shows what was known before, that the infant understands spoken language before he can produce the sounds he hears; and finally that the child, before he begins to speak, forms all the sounds that occur in his future speech. Professor Preyer thinks that by his observations he "has bridged over the only great gulf between the child and the brute animal."
The learned professor does not believe in stimulating the infant imagination by fairy stories or religious myths; but he believes in " Æsop's Fables," and has his son repeat one to him every morning. Such are some of the advantages of being the son of a physiologist.—Medical Record.

Tubercular Meningitis.

An interesting note is taken from a paper by Dr. Skeer, of Chicago, on the diagnosis of tubercular meningitis. The symptom is "a small circle which forms n the iris near to and completely surrounding the pupillary margin. At first it is very indistinct, and resembles a wreath of white clouds, the edge of which exends at first to the free border of the iris. In from twelve to thirty-six hours the whole margin of the iris will be involved, having become of a yellowish or whit ish brown color, and appearing irregular, thickened, and somewhat granulated." Dr. Skeer considers that when in a case of cerebral meningitis the wreaths of white clouds appear in the iris, the question of diagno sis is settled beyond a doubt.

a siren for measuring velocities.

by geo. m. hopinins.
In this instrument advantage is taken of the well known fact that for every tone a resonator may be provided that will respond to and re-enforce the vibrations producing that tone. The length of a closed resonant tube is one-fourth that of the sound wave to which it responds. The length of an open resonant tube is one-half

Fig. 1.-DETERMINING SPEED BY RESONANCE.
that of the sound wave to which it responds. It is obvious that a telescopic tube may be adjusted to respond to different pitches. Knowing the number of vibrations required per second to produce a certain pitch, it is comparatively an easy matter to determine the rate of any series of regular air vibrations by adjusting the tube to such a length as to cause it to respond to the vibrations.
In Fig. 1 is shown a resonant tube supported over a small fan wheel. The fan has ten blades, so that during one revolution it sends ten puffs of air up the tube. By gradually increasing the velocity of the fan a speed will be reached at which the tube yields a low but distinct musical tone. If, for example, this tone corresponds to middle c, it is known that 261 puffs of air are made in the tube, and that since there are ten blades to the fans, the number of revolutions of the fan shaft must be ${ }_{\frac{2}{10}}^{261}=26 \cdot 1$ per second, or 1,566 revolutions per minute.
In Fig. 2 is illustrated a siren constructed on this principle. The parts of this instrument are shown in detail in Fig. 3. It consists of a circular casing containing a rotary fan which drawsin air at the center and discharges it through an opening in the top of the casing. The blades of the fan are arranged radially upon opposite sides of the disk, and the fan is encircled by a perforated rim, which fits the circular casing and acts as a valve in controlling the escape of air. The perforations of the rim correspond in number and position with the fan blades.
The discharge or a socket for receiving a resonator. The resona tor shown in Fig. 2 consists of a pair of tubes made io fide telescode slide telescopical y one within the other, the inner
one being graduated to indicate thedifferent lengths required for different pitches, and consequently for dif ferent speeds. As the fan revolves, the air drawn in through the holes at the center of the casing is

Fig. 3.-DETAILS OF THE SIREN.
thrown outward by centrifugal force, thus maintaining a pressure of air at the periphery of the fan. The holes in the rim of the fan allow the air to escape in regular puffs, the frequeney of which depends upon the velocity of the fan. These puffs produce sounds varying in pitch and intensity with the speed of the fan, and the reso-
nating tube re-enforces the particular note to which it is tuned, so that when a speed is reached corresponding with the adjustment of the tube, the fact is known by the superior strength of that particular note. Any change of speed may be detected by the lessening of the intensity of the sound and the change of pitch.
The siren is shown in Fig. 4 in connection with mechanism for driving it by hand. It is provided with a revolution counter and with a trumpet-shaped resonator. It is designed to be used in the same manner as the siren of Cagniard Latour, and, like that instrument, yields sounds under water.

Utility of Hobbies.

Said a gentleman who had seen much of human life and was himself an enthusiastic student at threescore years: "No man in this world can be happy without a hobby.'

With this as a text, another scholarly and amiable hobby rider said, as an introduction to a lecture upon his favorite study: "Indeed, for diverting our minds from the little crosses which we all have to bear, there is no earthly solace so healing as a subject in which we are intensely interested - something to which the thoughts may at any moment recur when weary of the suggestions we would escape.
" When, in addition to being an innocent diversion, ours is a useful study, we and our fellow-mortals are alike gainers. The person who passes through life without being an enthusiastic student of something loses more than he can appreciate.
"I emphasize the something, because nothing but natural selection can decide what ought to be each person's field of work. Nature is generous; the field is the world. With one it may be rocks or ferns, with another mosses or oaks; or leaving untamed nature for applied science, it may be the steam engine or the telescope, the field of language or the human form. No person has a right to say : 'My study is important, and yours is useless.' Each man's hobby is really for him the most valuable addition he can make to his own happiness, and the most precious contribution on his part to the sum total of human felicity and general knowledge."-Universal Tinker.

What are the Thoughts of the Dying

In the Societé de Biologie, Fere affirmed that a dying person in his last moments thinks of the chief events of his life. Persons resuscitated from drowning, epileptics with grave attacks, persons dying and already unconscious, but momentarily brought back to consciousness by ether injections to utter their last thoughts, all acknowledge that their last thoughts revert to momentous events of their life. Such an ether injection revives once more the normal disposition of cerebral activity, already nearly extinguished, and it might be possible at this moment to learn of certain important events of the past life. Brown-Sequard mentions the remarkable fact that persons who, in consequence of grave cerebral affections, have been paralyzed for years, get back at once when dying their sensibility, mobility, and intelligence. All such facts clearly show that at the moment of dissolution important changes take place, reacting upon the composition of the blood and the functions of the organs.-Wien. Med. Zeitung.

Japanese Gold Thread.
The above article, used in finer embroidery on ac count of its elegant luster, consists of a core of silk or of wool and a spiral envelope of thin gilded paper. The strip of paper is only two-fiftieths to three-fiftieths of an inch wide, and therefore must be wound with the greatest care. The thread thus wound is saturated

The Marriage of the Emperor of China.
The marriage of the Emperor of China took place at Pekin on February 25. The ceremonies enjoined by precedent appear to have been strictly followed. On the 25th the marriage procession started from the palace at two o'clock in the afternoon, and wound its way by circuitous streets to the residence of the bride. The mouths of the streets and lanes in the line of the procession were barricaded with double rows of high matting, the streets had recently been repaired, and were covered with yellow earth, and the houses along the route were festooned with red silk. Officials and Manchu bannermen, in their robes of office, lined both sides of the streets. The presents to the bride had previously been sent to her house. The prosession was headed by four horsemen as heralds, followed at a short distance by a large cavalcade of horsemen led by the t wo imperial commissioners appointed to escort the bride; then followed nine pairs of white ponies with yellow trappings, two deep, led by men, next $t w o$ large yellow satin sedan chairs, with eight bearers. These were followed by a huge crowd of bannermen in large red flowered robes, carrying lanterns, with the character "felicity" painted on them; then came halber-
diers with large, round yellow silk fans or screens and two closed silk umbrellas. Last of all came the phenix chair in yellow satin for the bride, carried by sixteen bearers, succeeded by groups of horsemen. At two o'clock the following morning the procession returned to the palace, carrying the bride and the two young concubines. The Empress is said to be twenty-four years of age, the Emperor being only eighteen, and the concubines, who are two sisters, twelve and fourteen, respectively. The streets were lighted with fixed lamps, and the numerous bearers carried lanterns. There was no music. This is only the third time during the present dynasty that the marriage of the Emperor has taken place while he was ol the throne. A week later on March 4, the Empress Dowager officially handed over the reins of power to the Emperor.

Removal of Tattoo Marks.

The following method is recommended by M. Variot in the Revue Scientifique: The skin is first covered with a concentrated solution of tannin, and retattooed with this in the parts to be cleared. Then an ordinary nitrate of silver crayon is rubbed over these parts, which become black by formation of tannate of silver in the superficial layer of the dermis. Tannin powder is sprinkled on the surface several times a day for some
days to dry it. A dark crust forms, which loses color in three or four days, and, in a fortnight or so, comes away, leaving a reddish scar, free of tattoo marks, and, in a few months, little noticeable. It is wellto do the work in patches about the size of a five franc piece at a time. The person can then go on with his usual occupation.

SEventern year old locusts are due in New Jersey this sum-
gold thread, these threads possess the advantage of greater flexibility and finer luster. In this they equal manufacture for a long time was a lost.art, and was recently discovered by microscopic investigation.-D. Wollen-Gew.

Fig. 4.-CENTRIFUGAL SIREN.
mer, and Professer John B. Smith, the entomologist of the State Scientific School at Rutgers. College, New Brunswick, is making arrangements to secure a com plete record of their coming and going and of their actions while here, their numbers, size, etc. There is no such record now, it is said.

Subject of Congress.	Date.	Name and Address of President.
1. Accidents to workme	September 9 to 14 August 5 to 10	M. Linder, 38, Rue de Luxembourg, Paris.
2. Advanced teaching.		M. Greard, The Sorbonne, Paris.
3. Aeronautics.	July 31 to August 3 July 3 to 31	M. Janssen, Observatoire de Meudon, Seine-et-Oise.
5. Alcoholism.	July 29 to 31	M. Bergeron, 157, Boulevard Hausmann, Paris.
6. Applied mech	ptember 16 to	M. Philips, 17, Rue des Marignan, Paris.
8. Architecture.......	June 29 to ${ }^{\text {d }}$	M. Meissonier, 131, Boulevard Malesherbes, Paris.
9. Assistance publique.	July 28 to August 4	Dr. Roussel, 64, Rue des Mathurin*, Paris.
10. Baking. ..	June 28 to July 2	M. Cornet, 34, Rue de Rochechouart, Paris,
11. Bibliography of ma	August 5 to 8	M. Marten, 56, Boulevard des Invalides, Paris.
13. Celestial photography	June 26 to	
14. Cheap dwellings..	August 3	
16. Chronometr	September 2 to 9	M. de Jonquières, 2, Avenue Bugeaud, Paris.
17. Colonies.........	September 22 to 28	M. Poirrier, 105, Rue Lafayette, Par
19. Co-operative store	September 8 to 12	M. Clavel, 2 , Rue de Bourgogne, Paris.
20. Criminal anthropology	August 10 to 17	M. Brouardel, Ecole de Médicine, Paris.
21. Dentistry............	September 1 10 7	Dr. David, 180, Boulevard St. German, Paris.
23. Dermatology and syphilograph	August 24 to 31	Dr. Hardy, 5 , Bonlevard Malesherbes, Paris.
24. Ethnography		M. Oppert, 2 Rue de Sfax, Paris.
26. Fire departments	August $\ddot{27}$ and 28	M. Wolff, 18, A venue Bosquet, Par
27. Geography	August 6 to 12	M. de Bizemont, 184, Boulevard St. Germain, Paris.
28. Homeopathy	August 21 to 23	Dr. L. Simon, 5. Rue de la Tour des Dames, Paris.
29. Horticalture....	August 16 to 21	M. Hardy, 4, Rue du Potager, Versailles.
31. Industrial proprietary rights	tober 3 to 10 August 3	M. Renon, observatory du Parc, St. Maur, Seine.
	- 77%	Dr. Brouardel, Ecole de Médicine, Paris.
33. Legar medical science	ne 17 to	on, $10, \mathrm{P}$ ace de la
34. Marine work ...	Ongust 5 to 10	Dr. Falret, 114, Rue du Ba
35. Mental medical science	September 19 to 25	M. Renon, Observatory de St. Maur, Seine.
37. Methods of construction	September 9 to 14	M. Eiffel, 60. Rue Prony Paris.
38. Mines and metallurgy ...	September 2 to 11	M. Castel, 144, Boulevard Raspail, Paris.
39. Money.	September 1 to 14	Mr. Maplay, 2 , Rue de de Penthievre, Paris.
41. Participation in profits.	July 16 to 19	M. Robert, 15, Rue de la Banque, Paris.
43. Peace. Priods of rest from		M. P.ssy, ${ }^{\text {, }}$, Rue Laborderre, Neuilly-sur-Seine.
44. Pigeon training........	July 317 to Angust 3	M. Leonsay, 2 , reutire de Mals Seine-et-Oise
45. Photography....	August 6 to 17	M. Janssen, Observatoire de Meudon, Seine-et-Oise.
46. Physical exercises in educat	June 15	M. J. Simon, 10. Place de la Madelaine, Paris.
47. Physiological psychology.	August 5 to 10	Dr. Charcot, 117, Boulevard St. Germain, Paris. M. Ploix, Quai Malaquais, Paris.
49. Prehistoric anthropology and archæology..	August 19 to 26	M. de Quatrefages, 36, Geoffroy St. Hilaire, Paris.
50. Primary education..	August 11 to 19	M. Greard, The Sorbonne, Paris.
51. Protection of monuments	June 24 to 29	M. C. Garnier, 60, Boulevard St. Germain, Paris.
53. Saving of life.		M. Lisbonne, 3, Rue St. Vincent de Paul, Paris.
		M. Donnat, 11, Rue Chardin, Paris.
54. State intervention in labor c	July 5 to 10	M. F. Passy, 3, Rue Labordère, Neuilly-sur-Seine.
57. Stenography	ugust ${ }^{4}$ to 1	M. Grosselin, Palais-Bourbon, P
8. Share companies.	August 12 to 19	M. Larombière, 16, Rue d'Assas, Paris.
60. Therapeutics		Sorbo
		M. Faye, 95, Avenue des Champs Elysêes, Paris.
	September 22 to 27	M. Guillemain, 55, Rue Bellechasse, Paris.
63. Veterinary medicine	September 19 to 24	M. Chauveau, 10, Rue Jules Janin, Paris.
64. Workmen's club	$\begin{aligned} & \text { uly } 11 \text { to } 13 \text { August } 5 \end{aligned}$	M. Milne-Edwards, 57, Rue Cuvier, Paris.

The meetings will be held in buildings within the limits of the exhibition, and detailed reports will be published of the proceedings. Persons desiring to take part in any of the congresses or conferences wil have to pay a small fee for becoming a member of the particular class in the group with which he is inter ested.
As an illustration of the complete manner in which it is intended the congress work shall be carried out we give a summary of the electrical congress prepared by the organizing committee; this congress was authorized by a ministerial decree, dated July 16, 1888 at the end of last year the committee had prepared it programme, and completed all its preliminary work. I has been decided that the congress shall open on August 24 next, and shall last over a period of eigh days. The president of the commission is M. Mascart the vice-presidents are MM. Fontaine, Gariel, and Lippmann; the secretaries are MM. Hillariet, Hos pitalier, and De Nerville. Applications from all those who desire to assist at the congress should be addressed to the president, M. E. Mascart, 176 Rue de l'Univer site, Paris; the amount of subscription will be 20 francs $=\$ 4$.
In a circular prepared by the commission it is pointed out that the international electrical congress held in Paris in 1881 had an importance the value of which could not be exaggerated. The decisions arrived at during that congress have been accepted all over the world, alike by men of science and by manufacturers The Paris exhibition of 1889 suggests the necessity of a similar reunion, not only on account of the vast pro gress that has been made in electrical science since 1881 but also because many important problems which could not then be solved can now be approached with confidence on account of the great experience which has been obtained during the last eight years. The follow ing programme has been drawn up by the commission or this congress
First Section; Measurements.-Units ; recent inves igations on the unit of resistance; reports on electro magnetic and electro-static units; new practical units instruments for measuring electrical energy, currents, resistances, electromotive force, capacity, induction coefficients, magnetic field, etc.; practical standards of current and electromotive force.
Second Section; Induction Machines. - Trans formers.-Distribution. Recent progress in the theory and construction of generating and receiving machines processes of automatic regulation; definitions and measurements of efficiency ; comparisons between alternating and continuous current machines; transformer for continuous and alternating currents; mathemat cal investigations; measurements of efficiency; compar ison of the two systems. Systems of distribution canalization. Central stations; advantages and dis
advantages attending the use of extremely high power machines compared with that of an equivialent group small power machines; reserve machines; advan ages and inconveniences of electrical and mechanical connections between groups of machines.
Third Section; Electro-Chemistry.-Batteries and accumulators. Different types employed in commerce electromotive force, discharge, capacity, duration cost price of electrical energy. Electrolysis; electromotive force necessary for commerical purposes; electrotyping ; strength of currents, composition of baths, temperatures employed; their influence on the quality of depositions; separation and refining of metals. Electro metallurgy; electrical furnaces; electrical welding.
Fourth Section; Lighting.-The lighting of dwellings, workshops, and public thoroughfares; amount f light necessary for each case ; measurement of light distribution and intensity of the sources employed comparison between the voltaic arc and incandescent lamps; high power incandescent lamps. Regulators; neans employed for reducing resistances and lamps. Incandescent lamps; new methods of manufacture their efficiency and duration. Methods of working entral stations.
Fifth Section; I. Telegraphy.-Use of machines for the production of currents; installation, employment and duration of underground lines; overhead lines apparatus for rapid transmission ; multiple telegraphy lightning conductors. II. Telephony. - Improve ments in telephones and microphones; batteries. Establishment of lines; effects of induction; long distance telephony. Organization of central stations commutators. Subscription and public stations; the use of one line for several stations. Service regulations statistics and legislation. III. Miscellaneous Applica-ions.-Electrical clocks; chronographs; recording ap paratus; signals; applications to military and naval service and to public works ; earth currents.
Sixth Section; Electro-Physiology.-Comparison of effects obtained in the use of various medical ap paratus; the necessity of defining the nature of cur ents employed. The nature of electrical phenomena observed in living beings. The effect of continuous and alternating current discharges upon animals Electrolysis of tissues; precautions to be taken in elec rical installations.

Prospects for Steel Rails.

The latest rumor in steel rail circles is that steel rails will be down to $\$ 25$ before midsummer. The stronges basis for that rumor is that two western Pennsylvania mills are competing for trade, and that one is deter mined that the other shall not have business at $\$ 26$. The latest steel rail improvements have been adopted
to the lowest point ever known, and as there is not enough business to go around, those who can discount quotations from one to two dollars per ton below others will secure the first rush business. Nothing has as yet been settled with reference to the talk of shutting down for the summer. Heavy iron ore contracts are being placed every day. Pig iron production has not been curtailed in any section of the country. Railroad companies have quietly undertaken to modify freight rates to purchasers from furnaces. Bar mills throughout the country are working but little over 60 per cent of their capacity, plate mills 70 per cent. Pipe mills are booking a good many orders. The coal trade is extremely dull, but there are signs of improvement. Coke makers find it difficult to maintain prices under the heavy output. There is a strong confidence that in two or three weeks wore a general improvement will set in. Foreign iron and steel makers are quite active. Marine engine building and ship building are brisk, and companies doing such business are quite full of work, and a better condition exists than has been known for several years. Railroad building is not being pushed with the accustomed energy, but railroad promoters assert that, as soon as conditions warrant it, renewed zeal will be manifested in not only the newer sections of the country, but in the older, in which there is at present a superabundance of railway facili-ties.-Railway Review.

Weak Hearts.

A weak heart seems to be decidedly more practically inconvenient than a weak head. If a man or a woman be a little feeble about the region of the brain, it is generally of little moment. Some post or other will be provided if the conduct be respectable; and lack of brains is too common to excite any particular attention either in the person concerned or in those about him. But a weak heart insists upon putting itself in evidence at all sorts of convenient and inconvenient times. If its possessor finds himself rather late for his morning train, and makes a "spurt" to recover lost time, the exertion is usually followed by such a "bad quarter of an hour" that he resolves in future rather to lose a dozen trains than to risk temporary suffocation or permanent syncope again. The practical evils which are associated with a feeble heart are innumerable, and will readily suggest themselves to those who possess so unsatisfactory a pumping engine. Weak hearts are by no means so common as is often supposed. Many a man who thinks he has got one is merely dyspeptic ; many a woman owes her symptoms to tight lacing or insufficient feeding. If the dyspepsia be cured, or the tight lacing be dispensed with, the symptoms of heart weakness will disappear. Even when the heart is genuinely " weak," the weakness is not always due to special disease of that organ. It may be only part of a general weakness of the whole system, which is easily curable. The late Sir Robert Christison, one of the most eminent of British physicians, used to smile at certain persons who were always complaining of weak hearts. "Gentlemen," he would say to his students when lecturing on digitalis, "gentlemen, the best tonic for a weak heart is a good brisk walk." Not a doubt of it. The majority of weak, flabby hearts are weak and flabby because every other muscle in the body is weak and flabby, and this general weakness and flabbiness is due to want of vigorous use. Exercise of the legs and back and arms gives additional and much needed exercise to the heart, and the heart grows strong by vigorous exercise exactly as every other muscular organ does, for the heart is a muscle. If a man has no organic disease of the heart, no enlargement, and no functional disorder, plenty of brisk walking, with.occasional running, will soon dispel his breathlessness and heart weakness, other things being equal. The muscular inactivity of the modern town man is the parent of more ill health than any other single cause whatever.-Hospital.

Separating Minerals.

Mr. Carus-Wilson has devised an effective dry method for separating the denser minerals from sand. A piece of cardboard about 2 ft . long is bent in the form of a shoot or trough (it must not be allowed to break), and held in this form by elastic bands at either end; this must then be held, or fixed, at an angle sufficiently inclined to allow the sand to travel slowly down the shoot on being gently tapped. A small quantity of the sand to be treated is now placed at the head of the trough, which is then tapped with the finger. When the trough is tapped, the sand travels slowly down, and in doing so the denser grains lag behind, forming a dark mass in the rear of the stream ; this dark mass increases as the sand flows on, and must be collected and placed in a receptacle just the moment before the last tap would cause it to fall off the trough. When a sufficient quantity of this denser sand has been thus collected, it should be placed in thelid of a cardboard box (about 12 in . by 6 in .), and gently shaken to and fro at a slightly inclined angle, the mass being at the same time gently blown upon with the breath. The finer quartz grains will thus be blown away, and hardly any but the denser grains will remain.

At a recent meeting of the Chemical Society, London, a paper was read on the application of Raoult's depres sion of melting point method to alloys, by Messrs. C. T. Heycock and E. H. Neville.

As a result of some preliminary experiments on the change in the solidifying point of tin caused by the addition of small quantitie of other metals, the authors conclude that the dissolution of a metal in tin follows the same laws as that of compounds in other solvents, i.e.: 1. That the fall in temperature of the solidifying point is directly proportional to the weight of metal added; and 2, that the fall of temperature is inversely as the atomic (molecular ?) weight of the metal added. With tin, copper, silver, cadmium, lead, and mercury, the dissolution of one atomic proportion in 100 atomic proportions of tin caused a fall in temperature of the solidifying point varying from $2 \cdot 16^{\circ}$ to $2 \cdot 67^{\circ}$, with aluminum a fall of $1^{\circ} 34^{\circ}$, and with antimony a rise of $2 \cdot 0^{\circ}$.
In the discussion which followed the reading of these papers, Professor Armstrong said that notwithstanding the apparent regularity and simplicity of the results, he was not prepared to accept them as in the least degree final. There was not sufficient evidence in his opinion that the effect observed was not in part at least the outcome of a change in the molecular composition of the solvent. The results obtained by Raoult's methods were, he thought, comparable with those obtained by determining the specific heats of the elements. In the latter case the observations were undoubtedly made with masses of molecules, which probably were of varying degrees of atomic complexity, and yet the results were found to be such as to justify conclusions being drawn as to the relative magnitudes of their fundamental constituents-the atoms. In the same way it was possible that the results obtained by Raoult's method by means of observations on the behavior of molecular complexes mightafford the means of deducing the relative magnitudes of the fundamental molecules comprising the complexes, but not of the actual complexes operated with.
Mr. Crompton drew attention to Beckmann's recent experiments on the lowering of the freezing point. These show that the true molecular weight was only obtained when solutions were used the concentration of which was allowed to vary only within certain narrow limits, and that if the solutions were too dilute the molecular weight obtained from the lowering of the freezing point was too low, while if the solutions were too concentrated. it was too high. In some cases the variation of the number obtained with the concentration was enormous.
Professor Carey Foster remarked that much depended on the definition given of a molecule, whether it is defined as that smallest quantity capable of existence per se, or as that quantity which produces a given effect in depressing vapor pressure, or freezing point, etc. The two mganitudes were not necessarily point, etc. The two mganitudes were not necessarily
the same. The relation observed could hardly be acthe same. The relation observed could hardly be ac-
cidental, yet he thought that the value obtained might be a quantity connected with the molecular weight, but not necessarily identical with it. Professor Ramsay, in replying, said that substances in dilute solutions must be regarded as in the gaseous state, their molecules being so far distant from each other as not to exert appreciable attraction on each other, and as occupying but a small portion of the space they inhabit. It has long been argued that the molecular complexity of the gases, hydrogen, oxygen, and nitrogen, must be the same, inasnuch as these elements have equal coefficients of expansion within the widest limits of temperature.
A similar argument applies to substances in dilute solutions. It is much more probable that they have a simple and similar molecular structure than that the molecules, if complex, dissociate to an equal extent on equal rise of temperature, or on equal alteration of concentration. As regards the empirical nature of Racult's laws, it is paralleled by the empirical nature of Boyle's and Gay-Lussac's laws-that is, such laws are merely approximations to truth, and depend on the fact that the molecules are sensibly beyond the sphere of each other's attraction, and themselves occupy no appreciable space. Hence their inapplicability at high concentrations.

Low Level Health Resorts.

Attention has lately been called by Dr. Lindsey to the therapeutic value of regions below the sea level, for asthmatical or consumptive patients, who there have continuously higher atmospheric pressure than at the sea level. Excellent effects have been thus obtained in the valley of Conchilla, near Los Angeles, in California. about 273 feet under the sea (barometric pressure only about 7 mm . higher). The most noteworthy place of the kind on the earth's surface is probably the Dead Sea district (-1289 feet), and the following are some others: Lake Asal in East Africa (-639 feet), the oasis of Araj in the desert of Lybia (-270 feet), the Arroyo del Muerto in California (-230 feet), the oasis of Siwah in Lybia (-123 feet), the borders of the Caspian (-86 feetr

A SCIENTIFTC WILL-O'THE-WIBP.

A very interesting experiment that illustrates the phenomena of combustion, destructive distillation, and the relative specitic gravity of gases is illustrated in the cut accompanying this article. The experiment depends upon the well known fact that an organic substance containing hydrogen when heated to a high temperature evolves gas. This is seen in the candle. The body of the flame is composed of gas evolved by The body of the flame is composed of gas evolved by
destructive distilation from the organic material of destructive distilation from the organic material of
which the candle is composed. This material is melted by the heat of the flame, is drawn by capillary action into the wick, and is there heated to so high a degree as to evolve a large amount of gas. A well known experiment used to prove the presence of this gas consists in lowering into the flame the end of a glass tube held nearly vertical. The hot gas from the interior of the flame rises through this and can be lighted at its top several inches distant from the flame.
There is a simpler way of showing it, which requires still less apparatus. If a candle is lighted and allowed to burn a few minutes, the wick becomes very hot. If it is now blown out, enough heat will be present in the wick and its contents to cause the evolution of combustible vapor. It can be recognized by a white column of vesicular matter rising like a fine mist from the candle. If a lighted match is held in this rising column a few inches above the candle flame, the vapor will ignite and will carry the flame down to the wick with a quick flash, and the candle will be relighted. It follows that, if the residual heat left in the wick is suffcient for the evolution of this amount of gas, the far

a scientific will 0 -The-wisp.
hotter flame acting on the same material must evolve still more.
In the experiment shown in the cut some features of the last described phenomenon are utilized to produce what may be called a parlor will-o'the-wisp or ignisfatuus. A wide mouthed bottle, such as a pickle or preserve jar, is filled with carbonic acid gas. To do this a quantity of sodium bicarbonate or baking soda is placed in it and more acid is poured over the dry salt as it lies on the bottom of the jar. Dilute sulphuric acid is perhaps the best, but muriatic acid or even vinegar may be used. A very rapid evolution of gas begins, and in a few seconds the jar is filled and overflowing. A candle should have previously been attached to a piece of wire and should be lighted before the acid is introduced. This will give it time to get the acid is introduced. This will give it time to get
hot and into full combustion. The jar being filled with gas, the candle is gently lowered into it. The flame surrounding the wick is extinguished as it reaches and is lowered down into the carbonic acid gas, but if all is rightly managed, the flame will continue to burn on the surface of the gas like a veritable ignis-fatuus. The residual heat of the wick and material absorbed by it is sufficient to cause the evolution of a quantity of gas. For several seconds this rises up through the heavier carbonic acid gas, and burns upon its surface. A faint cloud of vapor may sometimes be seen, which indicates the ascending column.
After a few seconds the disconnected floating flame disappears for want of nutriment. The candle may now be removed and relighted, and a variation upon the experiment may be shown. It is again lowered into the gas in the jar, and is extinguished, leaving the same floating flame. But before the latter expires the candle is steadily raised. As it reaches the flame and emerges from the jar, it is lighted again, and continues to burn as before: The flame that it left behind it on the surface of the carbonic acid gas acts like the match in the experiment last alluded to, and relights the wick.
To perform the experiment successfully, the air of the room must be very still and undisturbed. In place of the candle a small glass jet may be used connected
to a gas burior, The widu wive from the jot im-
mersed in the jar and will burn upon the surface as in the case of the candle. But the experiment is not as full or complete as when the candle is used, and it is not easy to obtain so distinct and marked a separation between the source of gas and the flame when ordinary gas is employed.

Funeral of M. Chevreul.

The public funeral of M. Chevreul, which took place in Paris, on April 13, was ons of great splendor. This was due in part, no doubt, to the interest excited by M. Chevreul's extraordinary age ; but it must also be taken as a striking indication of the respect felt in France for men who achieve eminence in science. In front of the house in which M. Chevreul died, beside the Jardin des Plantes, a tent was fitted up as a chapel, and here the body was placed in state. The procession to the Cathedral of Notre Dame was headed by a detachment of police, who were followed by a platoon of cuirassiers, the 103d Infantry Regiment, with flags, and a band of ushers, carrying wreaths presented by the stearine makers of France, the stearine makers of Lyons, the Friendly Society of Natives of Anjou, living in Paris, and a large number of other public and private bodies. Last of all came a wreath sent by the private bodies. Last of all came a wreath sent by the
Gobelin Works surrounded by a woolen fringe dyed by M. Chevreul himself. The pall bearers were MM. Fallieres, Minister of Public Instruction, Louis Passy, President of the Society of Agriculture, Chaumeton, President of the Students' Association, Des Cloizeaux, of the Academy of Sciences, Quatrefages, of the Academy of Sciences, Chautemps, president of the Municipal Council of Paris, and Roy, manager of the Municipal Council of Paris, and Roy, manager of the
Society of Arts and Manufactures. Next came the members of M. Chevreul's family, grandchildren and great-grandchildren; and they were followed by the representatives of the President of the Republic, by several of the ministers, the presidents of the Senate and the Chamber, and representatives of all the great educational and scientific bodies and administrative departments. At Notre Dame there was an impressive religious service. The interior of the church was hung with black, and over the porch, which was also hung with black, was a scroll bearing the dates " 1786-1889." In the center of the choir was a catafalque resting on silver columns, and surmounted by a canopy with bands of ermine. After the religious ceremony, the body was removed to L'Hay, and interred in the family vault. In compliance with M. Chevreul's last wishes, no speech was made over his grave.

The New Subway, London.
A paper was read lately before the Junior Engineering Society, London, by Mr. W. T. Dunn, hon. secretary, on "The Southwark and City of London Subway," in connection with which a visit took place to the works of the undertaking, permission having been granted by Mr. J. H. Greathead, the engineer. Entrance was obtained to the underground workings at the New Street station of the line, Kennington Park road, the visitors being accompanied by Mr. Basil Mott, resident engineer, who explained the construction of the workings, the position and proposed fittings of the platforms, and arrangements for entrance and exit, and the general manner in which the work at present completed had been carried out. The party then proceeded for a short distance along the down tunnel cityward, afterward passing through a connecting passage into the up tunnel. From thence they passed to the section of the tunnel leading in the direction of Kennington, and during their progress the method of constructing the tunnel was fully seen and explained, the principal features of interest being the boring shield, worked by hydraulic rams, the manner of fixing the segments of the cast iron tunnel lining, and the apparatus employed for injecting the cement grouting under air pressure.

The Great San Diego Flume.

It is claimed that the recently completed San Diego flume, described in the Scientific American of October 27,1888 , is the most stupendous ever constructed in the world, being only a little short of thirty-six miles long. An idea of the gigantic character of the work may be obtained from the fact that the amount of lumber consumed was more than nine millions of feet, or, allowing the very considerable yield of 1,000 feet to each tree, not less than 9,000 trees were required. In the course of the flume there are some 315 trestles, the longest of these being 1,700 feet in length, eightyfive feet high, and containing one-quarter of a million feet of lumber. Another trestle is of the same height, and 1,200 feet long, the main timbers used in both of these being ten by ten and eight by eight, being put together on the ground and raised to their position by horse power. The number of tunnels in the course of the flume is eight, the longest of which is 2,100 feet, the tunnels being in size six by six feet, with convex-shaped roofing : each mile of the flume required an a verage of one-fourth of a million feet of lumber for its construction, and the redwood used entirely in the box is two inohes in thicknesa throughout.
becently patented inventions.

Rallway Appliancos.

Car Coupling. - Robert L. Breth, New Washington, Pa This invention provides a
coupling gate and a detachable frame adapted to be placed over a drawhead, in which a rater for the gate, the device being applicable to ordinaril constructed drawkeads, and obviating the necessity of train hands going between the cars.
Car Coupling.-Alexander H. Grant Hobart, N. Y. This is a construction by means of which the coupling pin may be held up in position for coupling, may be antomatically coupled by the action seat, and will not become bent, and with which also high and low cars may be coupled.

Electrical

Telegraph Sounder.-Frank L. Van Hudson, Mich. Combined with the armature lever and the standard, having registering curved re cesses on their lower and upper surfaces, is a roller
bearing piece in the receses, whereby the bearing of bearing piece in the recesses, whereby the bearing of
the armature lever will be non-adjustable, and the wear of the armature lever will be automatically taken up.

Mechanical.

Wore Rest for Benches. - Alexander Watson, Brookline, Mass. This is an adjustable rest especially designed for use with wood-working
machines, being a simple device for effectively sup porting the back end of work at the face of the bench, whine not protruaing to tear or injure the work and locked at any required position to support work or fferent dimensions.
Feeder for Band Saws.-Abram B. Springstead, Kalamazoo, Mich. This iuvention relording a convenient device for attachment to the fording a convenient device for attachment to the
work table, whereby annular or wheel segments of any desired radius may be readily cut from the stuff
worked, and the ends of the staft rounde worked, and the ends of the stuff rounded to any

Gin Saw Cleaner.-George P. Melchior, Bellevue, Mise. This cleaner consists of a shaft
having a series of disks, and formed with peripheries of reduced thickness provided with laterally projecting rings of brushes, being an attachment permitting the
gin to operate apon wet or d mp cotton without cloggin to operate apon wet or d mp cotton without clog-
ging the saws and ribs and without injuring or napping the lin
Spring Motor. - Annie W. Pearce Greenwood, S. C. This motor consists of a casing in which spring-actiated gearing is mounted, one of the having a disk with arms adapted to detachably connec the motor with the drive wheel of the machine to be driven, the device being adapted for use wit
machines, dentists' and jeweters'

Miscellaneous.

Oven Thermometer.-John C. Voss, El Paso, Texas. Combined with a spindle having a lever and an index or pointer is a compound bar one side of the lever, the device affording an instru one side of the lever, hee device afforang an instru-
ment for indicating the temperature of an oven, so that the fire may be regulated for different articles.
Mechanical Telephone. - William w. Nichols, New York City. Diverging or radial flat meld under constant tension in contact therewith by the lire wire, to distribute the vibrations and relieve the diaphragm of strain, the line wire connection being made by a button resting centrally on the plates, small stud or shank of the button passing centrally ,
Waterproofing Straw Goods. Runyon Pyatt, Jr., New York City. This invention
consists in a process of treatiug the goods to a bath 0 resin disolverocess of treating the goods to a bath o nentralizing the effect of the alkaline solution by an acid bath, the process preserving the natural color and the good.
Fishing Net Frames. - John G. Landman, Brooklyn, N. Y. This invention relates to a
hinge-screw coupling adapted more particularly for securing a collapsible scalp net frame to a handle, preferably by a ferrule, and in distended condition for use, ing firmly other collapsible structures.
Flour Bolt.-John Johnston, Neenah, Wis. This invention provides for the movement of the and fro elliptically by means of shatte while the and fro elliptically by means of sharta, while
hanger connections provide for a proper adjustment of the sieve frame, and byadjustablytconnecting the crank pins the path through which the sieve is carried may be varied according to the requirements of the material to operate on. In a further patent the same inventor shows a shaking bolt having some or the same general
features, with a swinging hopper apron or plate, and with different means for suspending and adjusting the apron or plate, and imparting a circular or elliptical

Vheicle Wherl. - John O. Leck, Glen Elider, Kansas. Clips are secured on the approaching ends of the felly sections, with spaced teeth
adapted to interlock when brought together, with a adapted
wedge fastening, whereby the tire, should it become loosened, can be set witbout heating or shrinking, and whbout removing the ire from the wheel.
Doe for Log Cars. - Robert J Thomppon, Grandin, Mo. Combined with the bolster or crossb beam or tbe log carrier are dogs pivoted near
the opposeite ends of the beam, push bass being con. nected at one end to the coge, and toggle levers con-
operating lever with the pivoted ends of the toggle levers, whereby the logs maty
and expeditiously released.
Wagon End Gate. - William R Watt, Somerville, Tenn. This is a simple and durable rasting of a shart mounted to turn and side in the end gate and having a fixed head adapted to engage

Wagon Bed.-This invention, also by he above inventor, consists of L-shaped metallic cleats secured to each side of the wagon bed and forming a guideway for the end gate, the cleats each having at its outer end a bolt passing through the bed proper
and a nut screwing on the lower end of each bolt Hoisting Attachment. - John F. chaltz, New York City. This invention relates to an apparatus for loading barrels or boxes of ashes o garbage into coniecting vehicles, providing therefor a dievator attachment capabie of being transformed into hoisting device, to form an extension of the vehicle , and prevent its contents from falling off
Scaffolding. - Adolph Bitterly Ottawa, Ill. This scaffold is made with two triangula legs. or frames, having cross rods between their ends and
removable bolts at their adjacent narrow ends, with other novel features, the construction being adapted for building chimneys, plastering, painting, etc., while being easily set up or taken down and packed in small
Bag Holder. - Frank A. Brown, Angelica, N. Y. This is a holder for bags while being filled, and is made of wires bent to form two outwaraly hooks, and twisted projd beng in te rear, forming loops with a back having upper and lower extensions, the
device being supported in position simply by hanging device being supported in position simply by hanging
Hinged Handle.-Jacob Gerstle, Port and, Oregon. This invention provides a hingec handle designed for attachment to frying pans and other
culinary vessels, the handle being adupted to fold down in compact form when the vessel is not in use, while it can be opened out and held in rigid position by a simple

SCIENTIFIC AMERICAN

BUILDINGEDITION.
MAY NUMBER.-(No. 43.)

table of contents.

Elegant plate in colors, showing elevation in per four thousand dollars. Page of details, etc.
2. Plate in colors of a summer cottage for one thou--
sand two hundred dollars. Floor plans and pag sand two
of details.
3. Design for a bank building, with plan and view of interior.
erspecuves and floor plans of an elegand «res dence at Bell Haven Park, in Greenwich,
Edwin Tobey, Boston, Masi., architect.
5. A mountain cottage lately erected at St. Cloud Orange, N. J. Elevation and floor plans.
tect Mr. Arthur D. Pickering, New York.
6. A dwelling at Springfield, Mass. Plans and per spective eleva.
dred dollars.
Engraving showing perspective elevation of a cot-
tage erected at Roseville, N. J., at a cost of six thousand seven hundred and fifty dollars. Floo plans. F. W. Ward, architect, New York.
8. Illustration and fioor plans of a combined schoo house and country cottage erected at St. Cloud,
Orange, N. J. Arthur D. Pickering, New York architect.
residence at Springfield, Mass. Perspective ele
vation and floor plans. Cost three thousand fiver vation and fioor plans. Cost three thousand fiv hundred d
architects.
10. A cottage built at Roseville, N. J., for six thousan seven hundred and fifty dollars. Elevation and fioor plans.
11. A cottage at Holyoke, Mass., lately erected fo hundred dollars.
12. View of Auburndale Station, Boston and Albany Railroad, with plan of station grounds. H. H Richardson, architect.
13. Miscellaneous Contents : The final payment clause in building contracts.-The plan.-Bending wood - The Stanford tomb. - Experiments with The improved "Economy "furnace, illustrated.Hudson, N. Y.- Wrought iron and cement lined pipes, illustrated.-Sheathingand lath combined, illustrated. - Artistic wood mantels. - A new
ventilating furnace, illustrated. - Creosote wood ventilating furnace, illustrated.- Creosote wood
preserving stains.-Large trees.-Rotary cutting ools for working wood, illustrated
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies
35 cents. Forty large quarto pages, equal to about cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of archite TURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interestiug examples of Modern Architectural Construction and
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of his work have won for it the Laregest Circulation all newsdealers.

2Business and $\mathfrak{P e r s o n a l}$.
The charge for Insertion under thes head is One Dollar
a line jor each insertion; about eight words to a line a line for each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.

Wanted-A young practical machinist, with some technical schooling and experience in building textile of achinery, especially woolen cards, to take full charge
o machiue shop. Good position and salary guaranteed to the right
delphia, Pa.
Model engine castings for sale. Send for circula Owell Model Co., 170 Merrimack St., Lowell, Mas. Special facilities for manufacturing light machinery hardware, and novelties. Stamping, presswork, punches,
ies, and special tools. Correspondence invited. Rockaay Manuf. Co., 3 E. 14th St., New York.
Walrus leather, hippopotamus, giraffe, elephant, and Mall Yor For the best Hoisting Engine for all kinds of work dress J. S. Mundy, Newark, N. J.
Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum ap
Engineers wanted to send their addresses and rece ree a 25 cent book, " Hints and Sukgestions for Ste
Users.', Lord \& Co., 11 S . 9th St., Philadelphia, Pa. Steel name stamps (1-16, $3-32$, or $1 / 8$ in. letters), 15 c .
per letter. F. A. Sackmann, 16 Huron St., Cleveland, 0 . For the latest improved diamond prospecting drill ddress the M. C. Bullock Mf. Co., Chicago, III.
For best casehardening material, address The Rogers
Hubbard Co., Middletown. Conn. Send for circular Water prification rivate users. The only successful legitimate system. yatt Pure Water Co., 16, 18\& 20 Cortlandt St., New York.

Ball Engine.-_ Ball Engine C
Automatic cut-off. Ball Engine Co., Erie, Pa.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y., Till send their pamphiet, descring water works ma Screw machines, milling machines, and drill presses. Garvin \& Co , Perforated zinc, iron, and steel for threshing machines. The
Chicago. III.
Iron, Steel, Copper, and Bronze Drop Forgings of very description. Billings \& Spencer Co., Hartford,

Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Cle Palleys. The D. Frisbie "How to Keep Boilers Clean." Send your address
The best Coffe roasters, coolers, stoners, separators, polishers, scourers, klossing apparatus, milling and Ne built by The Hungerford Co., Broad and Front Sts.
N. Lathes for cutting irregular forms. Handle and spoke
athes. I. E. Merritt Co., Lockport, N. Y. Blake's belt stads. The strongest fastening for leather Six perfect fitting shirts to order, $\$ 7.50$. Delivered Con For steel castings of best quality, write the Buffalo Split Pulleys at low prices,
ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa.
Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway,
New York. Free on application.

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto.
information, and not for publication.
Rererences, to former articles or answers should
give date of paper and page or number of question
Inquiries not answered in reasonable time should some answers require not a little research, an
though we endeavor to reply to all, either by let
or in this department, each must take his turn.
Special Written Iuformation on matters of
personal rather than general interest zannot be
cientific A merican Supplements referred
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
price.
Mineraln sent for ex
marked or labeled.
(872) E. T. W. asks for the receipt for marbleizing glass. A. It may be done by painting or by picking up color from the surface of water. For
ull description we refer you to articles on marbleiz ing wood and paper in Spons' Workshop Receipts, 1st
(873) W. I. L. writes : I wish to contact zinc with glass to bear considerable pull without parting. Can you suggest an inexpensive cement, compo sition, or any substance that will answer the purpose?
A. Many receipts are given; 1 pound of shellac dissolved in 1 pint alcohol, with one-twentieth its volume of a soation of gutta percha in bisulphide of carbon, will dry thick glue solution, 1 ounce linseed oil varnish or 3 ounce Venice tarpentiue; boil together
(874) A. F. J. asks how to find the length of a chord when the length of the arc and radius
is given. I want to put 16 pieces together to form a given. I want to put 16 piects together to form a
circle of 20 feet diamieter. Also how to find the versed sine, and what will be the factors of the previous exam.
functions. Thas $\frac{1}{18}$ circle $=\frac{800}{16}=22212^{\circ}$. Twice the sine of one-half this angle is the chord; in your problem it must be multiplied by the radius, 10 feet, giving 45 from the radius gives the versed sine, in your case $4 \cdot$
(875) C. W. S: asks how many foot pounds are obtained by the explosion of one pound of hydrogen gas mixed with the right proportion of air, pound of hydrogen gas combining with eight pounds o oxygen gas will liberate 34,170 (Centigrade degrees) hea units. This multiplied by 1403 (pound degree Centi pound quivalent in foot pounds) gives $47,940,510$ foo for the heat absorbed in must be made in practic of steam produced. The result for air will be nearl he same.
(876) E. K. asks (1) what to use to dis trated solutio want to use as anti-oxidizing soldering solution fo gold. They have some way of dissolving it withou asing hot water, because it reprecipitates. A. Use hot glycerine or alcohol. 2. What is the best analytical qualitative chemistry, that is, for all around work A. We recommend Manual of Qualitative Chemica Analysis," by C. R. Fresenius, \$4. 3. Can you furnish you with Saunier's " Wranal' A. We can supply also Saunier's "ModernHorology," \$16.
(877) Punjabee asks : 1. What should the dimensions of an electricmagnetso thatit would weight of about 150 pounds? W . $1 / 2$ inch or $3 / 8 \mathrm{inc}$ of covered wire should be wound on the magnet? A. In the Scientific American, No. 19, current volume page 291, you will find a description of snch a magneta you require. 2. How many pairs of zincs and carbons, each $1 / 2 \mathrm{in}$. diameter by 6 inches long, all fixed close to gether without touching, and connected in series, an the whole immersed in a large vessel containing the or dinary bichromate solution, would operate the abov is not advisable, better make 6 or 8 separate of batter is not advisable, better make 6 or 8 separate cells, eac plates of the same size, or in lieu of the carbon plates 3 or 12 carbon rods such as you describe. 3 . of 8 plates each $11 / 2$ inch by $1 / 4$ inch. This magne has lost its virtue through having been thrown to one ide in a large store, and so neglected for some years. How could I mactive power remains, but is very feeble. means of going through the power? I have not the cess, but I could get the use of a large dynom, whict lights our workshop, if it wonld ange aynamo, whic This you could please let me know, and how to go abou it? A. You can remagnetize your magnet by placing its poles in contact with the poles of the electro-magnet be
(878) A. B. asks : 1. What weight would feld magnets of motor in SUPPLEment, No. 641, be capable of sustaining if used as an electro-magnet, with same current as required to run motor? A. It depend
upon the amonnt of current used With 6 colls of plung upon the amonnt of current used. With 6 cells of plung
ing bichromate battery it would probably support 100 ing bichromate battery it would probably support 100 pounds. 2. How can I make an induction coil give a
direct current? A. By arranging a commutator to cor direct current? A. By arranging a commutator to cor-
rect the currents as they are discharged from the coil. 3. Is the commatutor aly stopping the current of the induction coil? A. No in duction ca Would a ridge of wood left in the center (where secondary is divided) of the spool answer the purpose of the insulating material? It would be easier wit.ding,
I think. A. It would answer the purpose if boiled I think. A. It would answer the purpose if boiled
in paraffine or wax. 5. I have pound and a half of size wire inclosed. Please state if it will answer pur pose of secondary coil. A. Your wire will answer, but some reliable electrical supply company. A. Consult our ad
plies.
(879) Interested writes: 1. I have a gold ring which has been near sulphur; the latter darkene I do to restore it to former color without injuring stone which is a cut "tiger's eye "? A. Polish with a brush, using whiting, soap, and water. 2. Is there any simple preparation that can be put on a photographic proof to
prevent its fading? A. Soak in solution of hyposulphite of soda. It should properly be toned, but is ge erally not dark enough to give good results. Man in the Scientific American Supplemer 3 anns and receipt for silver ink, but cannot find it, Can you give formula ffor same? A. Rub up silver leaf or silve
(880) E. M. writes : I have made a Wimshurst machine, described in Supplement, No.
548, which works splendidly, but the cement in setting cracked the glass; could you give me a formula for satisfactory cement? A. Use the same cement, but interpose a piece of thin leather between the glass and its
support. The leather should not be saturated with the ement, as it would when hardened render the leath ery rigid.
(881) E. S.-You can run the dynamo described in Supplement, No. 600, by means of horse We, by charging a storage battery, provided you ar about 5 or 6 hours to charge the battery. For inform ion on secondary batteries we refer you to Reynier ataic Accumulators, price \$3
(882) N. T. G. asks (1) what ingredients compose the liquid ink eraser used for erasing blots, etc.. from paper. It is used with a camel'shair brush, and
consists of one or more kinds of acid. A. We do not know the particular eraser you refer to, but you can the liguid from paper with a blotter and making one or two applications. 2. A receipt for making solder that we find sold by agents threme for making solde
home use. The solder is melted with a common match
A. The fusible metal solder sold by peddlers is made with 50 parts tin, 25 parts lead, 25 bismuth.
(883) A. J. R. asks: What is the cheap est way to transmit 5 horse power 150 feet, to use it year. A. For only temporary use the cheapest means ine) running over grooved pulleys 3 or 4 feet in diame er. The pulleys may be made of pine wood and clamped to the driving shaft and to the machine shaft When not in use the ro
safe from the weather.
(884) J. W. B. - Stains on a ceiling should be carefully scraped enough to take off the old
whitewash, and washed with clean water before rewhitewash, and washed with clean water before re
whitewashing. Then whitewash with good white lime water with a little white glue dissolved in the water
(885) C. W. G. writes : I have a griddle which I clean every morning with sapolio and a scrub bing brush, rubbing 15 to 20 minutes. The face is full of small ridges left from the grindstone. What can with a piece of leather wet with flour of emery und water, and finish with ground pumice stone on a cloth
(886) J. E. L. writes : Will you let us know of a simple method of preparing chloride of silver, can be moulded? A. Dissolve silver coin in nitric acia, warm the solution, and add hydrochloric acid and tration should be done in a room as near dark as possi ble. Allow it to dry in the dark. When all moisture
has evaporated, it can be melted at a low red heat and has evaporated, it can be melted at a low red heat and
cast into any desired shape in a mould. The mould may be of various materials, iron, clay, or even past
(887) F. S. M. asks: Would a plunge battery of four cells, with a capacity of $11 / 2$ quarts of
fluid per cell, and with ziucs and carbons 5×6 inches furnish any more power to run a motor if changed into a battery of eight cells of half the size per cell? What
is the best way of connecting up the cells to get the most power? A. The proper arrangement of the cells depends on the motor used. The four cells arranged in series should work an ordinary small motor very
nicely. Do not divide the plates and produce the eight cell battery. Procure a low resistance (1 to 2 ohms) (888) C. E. P. asks how and by wha process I can extract aluminum from the clay. I am a
miner, and we run off large quantities of clay, and I might at the same time save the aluminum with perhap a small extra expense. A. Aluminum can be extracte from clay by the use of metallic sodium or by the elec is an expensive and difficult operation and only available for experienced chemists. Richards on Aluminum by mail
(889) R. M. P.-Ordinary house refrigerThe drainage is through a half inch pipe sealed. For ten or twenty thousand pound refrigerator a 2 inch pip with seal is large enough. There is nothing suitable fo the inside of refrigerators but metal, which may be zin or galvanized iron, of which a defiector and drip troug from the bottom of the ice chamber.
(890) W. D. M.-The force of the tidal motion on the fiow and ebb are contrary and balance tation from tidal causes.
(891) F. McF. - Violin varnish: Dis solve 12 parts sandarac, 6 parts shellac, 6 parts mastic,
3 parts elemi gum, in 150 parts alcohol. Warm when dissolved and add 6 parts Venice turpentine Color to match the old varnish with Brazil wood and dragon'
(892) H. M. writes : In forcing water through a hose will the pressure be the same at the dis-
charge end as at the pump end? A. The pressure will not be as much at the discharge end of the hose as at causes friction, which retards the flow. When the end of the hose is closed, and with no movement of the water, the pressure is alike at both ends on the same
(893) O. A. P.-For a colorless lacque dissolve bleached shellac in pure alcohol, settle and de cant. Make the lacquer wery thin. The usual lacquer
for brass is made with ordinary shellac and alcohol made very thin, settled and decanted.
(894) E. D. asks : Will men peddling ink stands on commission have to pay a city or boroug license or tax? A. Many towns or counties require
peddlers to take out license. In some States, a State license is enforced, though this has been the subject of except as a police regulation enforced alike upon cit zens of the same and other States.
(895) F. R. asks the ingredients used, and in what proportion, in making hard oil inish. A.
Hard linseed oil varnish is made with 750 parts linseed oil boiled with 150 parts litharge and 90 parts pulverized pulverized amber melted in 60 parts linseed oil. Boil and stir for a few minutes, cool, settle, and decant the clear varnish.
(896) J. H. A. asks: What is the compomaking artificial teeth? A Pink celluloid or zylonite making artificial teeth? A. Pink celluloid or yyle
(897) J. B. S.-The height of the atmosphere is supposed to be about 50 miles. It is not posi-
tively known. The highest point jet attained by tively known. The highest point jet attained by a
balloon is about 5 miles. The thinnest sheet copper balloon is about 5 miles. The thick (3 wire gange)
that is made is about 0.007 inch thick
and weighs 8.88 pounds to a square yard. Its breaking and weighs $8 \cdot 88$ pounds to a square yard. I
atrain is abont 2in nounds to ene inch width.
(898) F. G. D.-Steel springs are tem(898) F. G.. D.- Steel springs are tem $\Delta \mathrm{A}$ S Springs."
(899) A. P. asks: Is it possible to hatch 3 perfect chickens from 11 eggs? A. Yes. Twin die young.
(900) J. A. S. asks whether there is any chemical known that can disguise the smell of kerosene boiling of clothes. A. No such agent is known. Keroene can be subjected to additional purification with ichromate of potash and sulphuric acid.
(901) C. T. E. writes: 1. I spilled some ind of chemical upon some cloth goods (probably sul. huric acid) which left a vermilion stain. I applied but left a shiny spot which showed through the ink, the chemical leaving a glaze. Is there anything I could ase to remove the greasy-looking glaze so produced?
A. Wash the spot with ammonia and water. 2. What vill bleach out an ordinary finished photograph, leaving nk lines which have been drawn over the picture? What is a silver print? A
chloride (corrosive sublimate).
(902) C. G. asks : 1. Is black a color? If it is not, how is it proved? A. Black is the absence colors. This is evident, because when light, the backness. See Scientific American, vol. 56, p. 137 backness. See Scientific American, vol. 56, p. 137 .
. Is there anything that if you put it on your bait while fishing, will draw the fish? If so, what is it? A We know of nothing that has any real value for this purpose. 3. What is smallage? A. A name for celery A pium gravedeus).
(903) H. J. S. asks (1) how to make a iquid that will oxidize silver a glossy black by dipping mall silver articles in the liquid. A. Use a solution of sulphide of potassium; polish metal before, and rub nake a liquid that will oxidize copper or oroide by dip. ping, to imitate bronze? A. Use the same bath, but have it quite dilute. If for outsice work simply oil with
olive oil, and let the weather do the rest.
(904) M. H. \& Co. ask for a recipe for making artificial cider. A. We give two formulas : a
25 gallons soft water, 2 poundstartaric acid, 25 pounds dark brown sugar, 1 pint yeast. Pnt in a clean cask ether. Add 3 gallons spirits, bung up the cask, and gether. Add 3 gallons spirits, bung up the cask, and
leave for 48 hours. b. Water 100 gallons, honey 5 gallons, powdered catechu 3 ounces, alum 5 ounces, yeast 2 pints. Ferment for 15 days in a warm place, in sun if possible, then add bitter almonds $1 / 2$ pound, cloves $1 / 2$
pound, burned sugar 2 pounds, whisky 3 gallons. If to harp add honey or sugar, if too sweet add tartaric acid
(905) H. P. B. asks (1) whether Portland ement or plaster of Paris would not do (ror hight work) in making the gas furnace described in Scirivtific american of May 4, 1889, page 279. A. Nothing is a ood substitute; try to get pipe clay at the drug store Portland cement as will hold it together. 2 Which ortland cement as will hold it together. 2. Which result, as clay is not available9 A. Of the two, Portland is the best and may answer for low heats.
(906) J. B. O.-The powder sent may be a natural deposit of infusorial silica. Use powdered will get probably equal satisfaction.
(907) Theo asks what to use to remov drachms avds. A. The following lis recommended drachms avds. powdered borax; Price's glycerine $3 / 4$
ounce; use water or elder flower water 12 ounces; mix We doubt the efficacy of any application except. such as will cause the outer layer of the skin to strip off such as the extract of cashew nuts. Even such a
violent application does little good if the skin is re-ex posed to the sun, as sunburn and freckles are liable to eturn as badly as ever.
(908) S. D. M. J. Co. writes : Please give us in your Notes and Queries a recipe to strip nickel off nickel plated goods. A. Use strong sul
phuric acid 4 pounds, nitric acid 1 pound, water 1 pint. The mixture must be made gradually, adding the sul phuric acid first to the water, and adding the nitric:acia and must be removed from the bath the instant the ickeling is stripped.
(909) S. K. A. writes : A certain writer says: "We were in a kind of chrysalitic condition." He refers to the state of a chrysalis. 1. Is his use of the
word chrysalitic proper or sanctionable? sould be inclined to admit the word and the nse made as the adjective. 2. In good usage, is it proper for compositor to divide the word Worcester at the end of a line, Wor-, carrying the balance of the word over to next line, as though it were a three-sylable word? A
Yes. 3. Can you refer me to any standard authority, in book form, on correct punctuation and the best usag of the English language, that would he an aid to com positorss A. We refer you to Hills Manual of Socia
and Business Forms, $\$ 6$; also lish Words and Phrases, $\$ 2.50$, which we can send by
(910) F. W. asks : In SCIENTIFIC AMERI anN, May 18, page 314, No. 799, you state how to pre I have to lay about 50,000 hemlock this year. I think Thave olay about 50,000 hemlock this year. I think
the tar would be too dangerous? A. We should not fee nclined to recommend iron sulphate, as repeated rain falls would tend to wash it out. For shingles some thing more insoluble would seem better
(911) J, asks: 1. How much pres sure wid metery exert in a tube $1 / 2$ inch diameter an
10 inches iong, throagh expanaion? A. Tival

did not expand as rapidly as itself. Thus for a change mercury would 10° F. in a non-expanaig vessel square inch. But as the containing vessel would ex pand with the heat,the absolute'pressure would be somewhat less, but still very great. 2. Is there any solid
that becomes heavier by immersion in water? A. No that becomes heavier by immersion in water? A. No
3. What would be the cost of the magnet described in 3. What would be the cost of the magnet aescribed in
Scientific American of May 11, 1889? A. About twenty-five dollars if you do some of the work yoursel ning sewing machines, and about what would they cost A. For such a motor, see our Supplement, No. 641 which we can send by mail for 10 cents.
(912) H. W. S. writes: 1. In case of knot falling out of a board in a fence, is it caused by
the board drying and shrinking awsy from the the knot drying and shrinking away from the board A. We believe it is due principally to shrinkage of the knot. 2. If a hole was bored in a dry board, when the board became water-soaked, would the hole become smaaler or larger in diameter? A. The hole in the we
board we should expect to find larger than when the board was dry.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for pa tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices tensive facilities for conducting the business. Address MUNN \& CO., o
way, New York.

INDEX OF INVENTIONS

United States were Granted

Мау 21.1889
AND EACH BEARING THAT DATE.
[See noteat end of list about copies of these patents.]

Alarm. See Safe alarm. Alk 111 , recovering, \mathbf{V}. G.

Alkali, recovering, V. G. Bloede.
Alkali, recovering spent
Alkali, recovering spent, v. G. Bloede.................
Anchoring device for portable machines, J.
White White.
Arm rest; A
Arm rest, A. B........ .
Axke box for locomotive
Axle box for locomotives, F .
Axle lubricator, W. Good:
Axle lubricator, W. Good,..............
Bar. See Feed bag. Daniels \& Costley.
Mail bag. Bag. hoe Feed bag. Mail bak.
Balder, A. Brown.....
Balance, spring, J. H. Nolan.
Baling press, T. J. Corning
Baling press, T. J. Corning....
Baling press, I. H. Hallam...
Bar. See Furnace grate bar.
Basket cover, G. C. Garbarance.......................
Battery. See Galvanic battery. secondary ba
tery.
Bed. folding, A. H. Merrill.
Bed
Bed
Bed
Bill
edclounge. A. H. Merrill
Billiard cue, W. .. Ow,
Bit. See Bridle bit.
Bit. See Bridle bit.
Boiler. See Steam b
Boiler. See Steam boil
Bioler, F. Ludwig.....
Bolt. See Flour bolt.
Bolt. See Flour bolt.
Bolt, C. J. Lagenbach............................
Bolt work mechanism, E. stockwell
Buok, account, Goldberg \& Tillmann...
Book, indered shipping, $\mathrm{F} . \mathrm{C}$.
Boot Jack, G. H. Hackett
Boot or shoe sole protector, I.............
Box. See Axle box. Letter box.
Bor matches, etc., J. F. Marshall
Box making machine, E. Arzt....
Bracket. See Folding bracket. Gas or lam
bracket.
Brake. See Locomotive driver brake. Power brake. Railway wakon brake.
Brick or tile cutting machine, E. \mathbf{M} Bridge spans by electricity, means for operatin.
draw J. M. Orford draw, J. M. Orford...
Bride bit, Z. T. Bowles
Brush, reservoir, W. H. Underwood..
Brush, reservoir, W. H. Underwood...
Buckle and back band hook, E. Munger
Bundle carrier, J. M. Rose
Burner. See Gas burner.
Button loop, E. Pickhardt
Button loop, E. Pickhardt...............
Cable gripper, E. Dainty...............
Call and switch, Individual, E. Pope.
Camera. See Photographic camera.
Can. See Oil can.
Can heading machine, W. H. Smyth
Candle guard, H. Bove....
Candy pan, J. H. Magruder
Car coupling, R. L. Breth.
Car coupling, A. H. Grant
Car coupling, A. P. Monday.
Car coupling; C. A. \&W. W.
Car, dumping, J. W. Alfred.
Car, dumping, J. M. Goodwin
Car, dumping, B. McArdle...
Car for transporting frult
Car spring. . T. T. schoen
Car starting device, E . Fales..............................
Cars, chock block for tram, J. W. Sims
Cars, chock block for tram, J. W. S. Tho..........
Cars, dog attachment for log, R. J.
Car, meanis for propelling railway, J. M. Keith.
Car, meanis for propelling railway, J.
Cars, stake pocket for, C. T. Schoen
arding engines, driving mechanism for. G. \&
Ashworth.
Carpet sweeper, G. W. Ke............
Carriage body joint. E. L. Upson
Carriage body Joint. E. L. Ups
Cevvize spring, J. Hironimus.
Cownice espring, J. Hironim

Case. See Packing case.
Casting ingots, apparatus for, J. mingworth...... 403,755
Cattle guard, J. T. Hall..................... 403,532
 Chain, drive, D. J. Bheldrick. 03,893
Chair. See Rocking chair.
Chair Joint, folding, A. F. Old........................ 403,772
Chuck, lathe, F. Higgins................... 409589
Fhute for feeding sawd...8383
Flod
Iigar and cigarette holders or pipes, stem for, I.
Paine.. 403,504
Circles, curves, and geometrical torms, device for
forming, J. F. Earhart................... 403,827
Clasp plate, A.
Clasp plate, A. R. Dickinson.......................... 403,580
Cleaner. See Saw cleaner.
Clock frame, D. A. Wiant.. 403.812
Clutch, friction, H. C. Crowell...............

Colter holder, tilting, w. H. Perrin................... 403,651
Compositor's bracelet wrist protector, C. L.
Smart
Conveyer, C. N. Newcomb.
Corset. J. Koon.....................
403,789
403,799
403,003
Corset, J. Koon................... 403,760
Cotton packing machine, F. Brady.................. 003,79
Coupling. See Car coupling. Pipe coupling.

sulinary beaters, mixers, etc. motor for, $\mathbf{~ E . ~ . 8 1 5 ~}$
Baltsley..403,58
401tivator, F. A. Head
Cutter. See Leather thong cutter. Rotary cut-
Damper, stovepipe, G. C. Humphrey 403.672
Dash pot, w. F. Brown......................... 403,643
Decoy, W. H. Jencks...................................... 403.643
Designs on the face of fabrics, cutting, J. Low-

Digger. See Potato digger.
Distilling apparatus, . H. Bracher.................. 403,638
Dotby
Dobby, double lift, open shed, W. P. Uhlinger..... 4038,6585
Door hanking, W. J. Boda....................... 403,552
Door hanging. W. J. Boda....
Draught equalizer, J. Bevens
Drill gauge, I. Culver.......................................
Drilling machine, rock and earth, E. W. Poorman
Drilling machine, rock and earth, E. W. Poorman
Dust collector, o. M. Morse.
Dust collector, H. Secc............................. 403,70
Dust collector, W. Trautmann 403,79
Depoele........... 403,800
Electric machine. dynamo, A. I. Gravier............ 403,836
Electric machine. dynamo. T. I.. Willson........ 403,630
C. B. Conde....................... 403,825
Electrical converter, H. Lemp............... 503,511

Elevators, electrical switch for, W. E. Nickerson.. 103,691
Embossed metallic plate. A. C. Hafels (r)......... 11.018
End gate, wagon, W. R. Watt................. 103,628
Engine. See Steam engine
Engine reversink Rear, steam, D. A. Frazer........ 403,881
Envelope, J. D. Donnell......................... 403,604
Eraser, ink, C. W. Johnston.................. 403,644
Excavator, I. P. Lambing.......................... 403, 403,
Exhibiting apparatus, c. s. Jenkins..........
Explosives, manufacturing, J. A. Halbmayr....
Explosives, manufacturing, J. A. Halbmayr....... 403,7
Fanning mill. R. Miller..............................403,88
Feed baa, J. H. Williams.... 403,88
File and binder, transferring paper, W. A.......... \&
C. S. Cooke....................
File rack, newspaper, C.
Firearms, makazine for, P. Maus

Firearms, makazine for, P. Mauser.................. 403,76
Fire extinguishing apparatus, $\mathbf{\text { C. Kilburn......... 40,759 }}$
Firevindler, W. R. Myers................... 403,771
Fishing net frames, hinge screw coupling for,

Frame. See Clock frame.
Furnace. See Smoke and gas consuming fur-
nace.

handle. Tool bandle.
Hanger. See Tobacco handle.
Harrow. rotary, R. Rákest
Harvester, S. D. Maddin.
403,778
403,764
403.561
Hat packing sapport, M. C. . Scho
Hatchway, elevator, M. J. Daly.
Heater. See Water heater.
Heater. See Water heater.
Heddles, machine for making wire, , E. Esbrayat.. 403,879
Heel trimming machine, c. W. Glidden......... 4is,747
Heel trimming machine, c. W.
Hinge, lock, J. Wolf.............
Hinge mortiser W.
Hinge mortiser, W. Cooper
Hinge, sprink, D. M. Hoit..
Hinge, spring, C. Zattau.
Hinged hande,
Hoe, E. J. Gates
Hoisting apparatus. F. MoMahon.

Holder. See Bag holder. Colter holder.................... Penci
hotder. Sample holder. Soap holdor.

A New Bools on Assaying.
The Neroest and Best in the English Lanougge. It Leads all others!

THE ASSAYER'S Manual

Useful, Beautiful, and Cheap.

To any person about to erect a dwelling house or sta bie, either in the country or city, or any builder wishin
 hoxase, club house, or any other public building of high or low cost should procurea complete set of the ARCHIor low cost, should procurea complete set of the ArCit TECTS' AND BULIDERS' EDITION of the SCIENTIFI amehica work almost indispensable to the architect and builder, and to persons about to build for themselves they will and the work suggestive and most useful. They contain ings of almost every class of building, with specifice tion and approximate cost. Four bound
 tained, by mail, drelumes are now ready and maybe obtained, by mail, direct from the pablishers or from any newsdealer. Hrice, $\$ 2.00$ a volume. Stitched in paper MUNN \& CO., Publishers, 361 Broadway, New York.
 100 [esssons BUSINESS

Something Entirely New. 20,009 Colies sold in ix monthe Ono of the most
 SEYMOUR EATON, 50 Bromfield Street, BOSTON, MASA. The Paris Exposition--Illustrated.

PERFECTENSPAPER

 ail

New York BELting and Packing Co. Join H. Chezver, Treas. 15 PARK ROW, New York.
 OLDEST and LARGEST Manufacturers in RUBBER BELTING, Packing, Hose,
Vulcanite Emery wheils, Rubber Mats, Matting $\&$ Troads

SteamRegulatilg Speciaties

 Made by us are guaranteed and used by all the car heatMASON REGUULDanies railioads. etc.
Bonton, Mnse

 REDUCING ACTION OF HYDO,

DO YOUR OWN PLATING

THE RICHARDS OIL ENGINE

Barnes' Patent Foot Power Machinery. ?

\qquad

Universal Augle Union

 sired to run the pipe. gOLLSTONE XACEMSE CO., 48 Water St., FITCEBORG, YASS. SERPOLLET'S STEAM GENERATOR. Description of a novel form of generator for the in-
stantaneous production of steam, and free from danger

PIPE COVERINGS
Made entirely of asBestos.
Absolutely Fire Proof. BRAIDED PACKING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPLCLALTIES, ORANCHES: Phila, 24 Strawberry ©it. Ohicago, 86 E. Lake 8t. Pittsburg, 37 Lewis Block. TOXICOLOGY, PRESENT POSITION

FHHE PENNA. DIAMOND DRILL \& MFG. CO. team Engines, Diamond Drilling and General Machinery. Flour Mill Rolls Ground and Grooved BRIDGE CONSTRUCTION, DEVEL

BARREL, KEG, Hogshead, STAVE MACHINERY Over 50 rarieties manu
factured by E. \& B. Holmes, Trats Hoop Driving. Clart'r' Noiseless Rabber TTrack Wheels Geo. P. Clark, Boari,Windsor Locksk, Ct, DEEP KEEL AND CENTER BOARD

 their respective callings. Our post offce department
permits the transmision of books through the mails at very small cost. A comprehensive catalogue of
useful books by different authors, on more than fifty different subjects, has reoently, been published for
free oirculationat the office of this paper. Subjects free oirculationat the office of this paper. Subjects
classifed with names of author. Persons desiring classified with names of author. Persons desiring
a copy, have only to ask for it, and it will be mailed to them. Address,
MUNN $\&$ CO., 361 Hroadway, New York.

VOLNEY W. MASON \& CO.,
PRICTION POLLETS CLLTCHES and ELEVATORS

ROCK BREAKERS AND ORE CRUSHER

$y^{2}=$

EvEN THE BROWNIES MARE Photographs
 Send for our New Illustrated Catalogue and
copy of Modern Photography. Rochester Optical Co, Shepard's New $\$ 60$ Screw-Cutting Foot Lathe

TO BUSINESS MEN.
 Reom. and

NICKEL PLATING \&POLISHING MATERIALS. ZUGKER \& LEVETT CHEMICAL CONEW YORKUSA 0 NICKEL ANODES, NICKEL SALTS ROUGES,
COMPOSITION, BUFFING WHEELS,
ELECTRO \& NICKEL
PLATINC OUTFIT iron and stecl analysis of.

aliotro

 ROYAL MIURUSCOPIC SOCIETY.-

The Seicenific American PuBILCATIONS FOR 1889 .

Sthe prices of the diforent pullications in the United
 The Scientitic American Supplement weekly), one 5
 The Scientific American, Architects and Builders
Edition (monthy), one year. The Scientific American and Supplement, The Scientific American and Supplement,
The seientic American and Architects and Build- ${ }^{87.00}$ The Scientiffec American, Supplement, and Archi- ${ }_{9.00}^{5.00}$
tects and Builders Edition.
 MDNN \& CO.. 361 Broadway, Now York.

Soth the Frames and Blades of our Star Hack
 plated，and will in four directions．With the extra
and face them
clamp，as seen in the cut，all broken Blades can be used．These Saws have a file temper，and one five worth of files．
Price of No． 6 Frame．
 Inches long．．．．．．．．．．．．6 7 ． 8 ． 910 ． 11 paid 12
Frame，Blades or
receipt of price．Also for sale by all Hardware receipt of price．Also for sae
Dealers．All goods bearing our name are fully
warranted．

93 Reade Stris CO．

RIDE CICLLES：
icjcles，Tricycles，and Safeties Cor free illustrated
Catalogue． man Wheel Co．，Makers， THE COPYING PAD．－HOW TO MAKE

TUE KODAK CAMERA
 4 Operator can tinish
his own pietures or
send thenw to the fac
ory to be foine fac Moroccocovered．C a－
mera，In handeome
sole－leather case． fuldescription of Kodak＂see SCl．AM．Sept． 15 ， The Eastman Dry Plate \＆Film Co Rochester，N．Y． 115 Oxford St．，London，
Send for copy of Kodak Primer with Kodak Photograph

DRY AIR REFRIGERATING MACHINE．

 SCIENTIFIC AMERICAN SUPPLEMENT，No．©88．Price
lo cents．To be had as this office and from ail news
dealers．
 MESSRS．MUNN \＆CO．，in connection with the publi－
cation of the SCIENTIFI A MERICAN continue to exp
mine improvements，and to act as Solicitors of Pateuts

 or Books，Labels，Reisssues，Assignments，and Reports
on Infringeenentor of Patents All business intrusted to
them is done with special care and promptness，on very
teasonable terms．

 patents in all the principal countries of the world．
MINN \＆CO．，Solicitors of Patents，

Patent Riveted Moanced Rabber Beliing．

THE GUTTA PERCHA AND RUBBER MFG．CO． 35 Warren Street，New York．

THE EIFFEL TOWER．－AN EXCEL ent engraving of the Eiffel one thousand－feet－hil．
tower．Which was opened to the publica few dass afo
and which is to form a part of the French Exposition

THE ARMSTRONGMFG．CO． WATER，GAS AND STEAM FITTERS＇TOOLS．

Stocks and Dies for Pipe，Bolts，and Brass Pipe Wrenches，Pipe Vises，Pipe Cutters，etc．

GRAPHOPHONE AND PHONOGRAPH， －An interesting account of the Edison，Bell，and Tain－

JAMES B．EADS．－AN ACCOUNT OF the Ire and labors of this eminent engineer．Witha
portrait．Contaned in SCIENTIIC AMERICAN SUPPLE－
MENT，No． 59.2 Pre 10 Price 10 cents．To be had at this

BRIGHT SPARKMNG WATER

LARAE SIZES FOR MILLS AND WATER WORKS． NATIONAL WATER PURIFYING CO．

mиеним manm

95 MILK ST．，BOSTON，MASS．
TOOL AGENTS WANTED．

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7 th，1876，No．174，465，and January 30th 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

Scientific Book Catalogue RECENTLY PUBIISHED．
Our new catalogue containing over 100 pages，includ－
ing worss on more than fift different subects．Will be mailed free to any address on application．
MUNN \＆CO．，Publishers Scientific American，
$\mathbf{3 6 1}$ ，

MANGANESE STEEL AND ITS PROP

ACKEATENT

an or PKTTLES，
（

ESTABLISHED HALF A CENTURY．

Maruins

HAVE MANY ENTED
PATEN IMPROVEMENTS NOT FOUND IN OTHER MAKES that WiLL WELL REPAY AN
INVESTIGATION
EY THOSE WHI THE BEST SAFE MARVIN SAFECO． NEW YORK，PHILADELPHIA， LONDON．ENGLAND．

He STANDARD TOOL CO．
The Celebrated Chaplin Try MUFACTURERS OF
teel Caliper Rules，Universal Bevels，Caliper Gauges，Improver
Surface Gauge，Bevel Protractor，Depth Gauges，Screw
Pitch and Center Gauges，Hardened Steel Squares Graduated Steel Squares，Spring Calipers， Write for illustrated catalogue and price list of full line．

 エエエコ
ฐ̌iantific gmmricau ESTABLISHED 1846.
The Most Popalar Scientifie Paper in the World． Only 83.00 a Year，including Postage．Weekly．
This widely circulated and splendidly illustrated
paper is published weekly．Every number contains sir－ teen pages of useful information and a large number original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery， New Inventions．Novelties in Mechanics，Manufactures．
Chemistry，Electricity，Telegraphy，Photography，Archi－ Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture．Horticulture，Natural History，etc． Complete List of Patents each ween
Terms of Subscription．－One copy of the Scien－ TIFIC AMERICAN will be sent for one vear－ 52 numbers－ postage prepaid．to any subscriber in the United States
or Canada，on receipt of three dollars by the pub－ or Canada，on receipt of three dollints by the p
lishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to
The safest way to remit is by Postal Order．Draft，or
Express Money Order．Money carefully placed of envelopes，securely sealed，and correctly or envelopes，securey sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Ad． dress all letters and make all orders，drafts，etc．，pay－

MIUTNIN \＆CO．；
361 Broadway，New York．

Scientific American Supplement． This is a separate and distinct publication from in size，every number containing sixteen large pages full of engravings，many of which are taken from foreign The SCIentific American Supplem ent is published weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in all the principal departments of siong，Geclogy，Mineralogy，
Useful Arts，embracing Biology， Cbemistry，Electricity，Light．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photography， Technology，Manufacturing Industries，Sanitary En－
gineering，Agriculture，Horticulture my，Biography，Medicine，etc．A vast amunnt of fresh and valuable information obtainable in no other pub－
lication．
The most important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated
Price for the Supplement for the United States and Canada． 85.00 a year，or one copy of the ScIENTIFIC AM－ ERICAN and one Copy of the SUPPLEMLENT，both mailed for one year for $\$ 7.00$ ．Single copies 10 cents．Address
and remitby posta，order，express mones order，or check． MUNN \＆Co．， 361 Broadway，N．Y．． Publishers Scientific american．
Building Edition．
The Scientific American archirects＇and Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，rich－ Iy adorned with elegant plates in colors，and with other ne engravings；Mustrating the most interesting ex allied subjects．
A special feature is the presentation in each number A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full Plans．Specifications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this nagnificent work have won for the targest Circulation of any
Archivecural publication in the world．Sold by all Archirectural pubication
newsdealers．$\$ 2.50 \mathrm{a}$ year．Remit to
M 361 Broadway，New York．
PRINNILIE INKES

