

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANLFACTURES.

IKPROVEXEFT OF THE RIVEB FRONT OF EEW YORE CITY.-[See page 261.]

sorimutific gmmerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

o. D. MUNN. A. E. BEACH.

TERMIS FOR THE SCIENTIFIC AMERICAN. Une cops, one year. for the U. S. or Canada...
nne cops, six months, fro the U. S. or Canada One cops, oneyeali, toany foreizg country
 Colonial bank notes. Address
MUNN \& CO.. 3 ili Broadwat, corner of Franklin Street, New York.
The Scientift American Supplement
18 . distinct paper from the Scientific amprican. Tilie supplyminnt Is issued weekly. Ifvery number containg 16 octavo pages. uniform in size with Scinvtific a Mbrican. Terms of subscription for Suprienent,
$\$ 5.00$ a year, for U. S and Canada. $\$ 6.00$ a year to foreign countries belong. ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
combilued Rates.-The Scientific american and suppiempnt will be sent for one gear, to any address in U. S. or Canada, on receipt of
seven hollars. seven dollars.
The safest

registered letter

Australia and sew Zeninnd.-The Sclentific american and Suppormant will be sent far a little over one year on receipt of $£ 2$ cur-
rent Colonial bank notes. rent Colonial bank notes.

NEW YORK, SA'TURDAY, APRIL 27, 1889.

Contents.	
(Illustrated articles are marked with an asterisk.)	
	Matters, coloring, new
ck, pavint, Berrie**......... 2 2ss	
rers, to protect trees from. ${ }^{\text {a }}$, 239	Palms, twin, and ancient well of
rner, hydrocarbon, Meyers'*. 3it	Pan, bas Ane. Bic
scade, Iumimous 262	Paraldehyde as
Conductor, liehtning Wood's*.. 259	Paraldelyde habit
giciit va	Patenes, delay ingr
xplesion, lochmutive - 2 dit	Pipe, steel.
Fastening,	Planets, position of, in
Firemen, new apparatus for 35 s \%	Plow, snow, McCarthy \& Moran' ${ }^{2}$ 238
, stove. F	
ont, river, N . Y .	Siphon, jet, mercuriait............. 26 t
	Sle
it	
ic.	sweden. j .
	* oven, Jn
	Tunnel, sulu-river, stra
Inventions, mectianimic.i.......	ar, hheet, to make.
1nventiums, misceplanems....... ${ }^{263}$	
	ks, w, comot ve, ; rench....... 257
	Youns, Coe it ${ }^{\text {a }}$. ${ }^{\text {a }}$................ 263

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 695.

For the Week Ending April 27, 1889.

Price 10 cents. For sale by all newedealers.

 i.

vil

LX. PHYSICS.-A Spectroscope with Fivid Prign.-ByA. F.MLL-

remotal of aerial electric wires in new YORE.
The work of removing the aerial teiegraph, telephone, and electric supply lines in this city, with a view to forcing the electrical supply companies to use the subway system in such streets as contain it, bas been vigorously prosecuted during the past week. An attempt, on the part of the Western Union Telegraph Co., to obtain au injunction in the Federal courts hav ing failed, the city authorities put a large force of men at work to cut and remove the wires and lower the poles. Unfortunately, the work has been marred by casualties, one instant death and several injuries re sulting. One lineman, who had climbed a pole, nar rowly escaped with his life, as the rotten wood gave way, and the pole, unbraced by the usual telegraph lines, fell. It fortunately struck against a building, so that the operative was afforded a chance of escape which hewas quick to profit by. This accident showed that the poles were a distinct source of danger as they became more and more decayed.
A very impressive feature of the operations is the comparative darkness to which the city in these parts is relegated at night. The gas lamps are quite unable to supply sufficient light for the people, who have now been accustomed to electric illumination. It is to be hoped that the electric light companies will make every effort to start their lamps anew and give the many centennial visitors a good illustration of subway electric supply and illumination.

A NEW SUIT UNDER ELECTRIC DYNAMO CONSTRUCTION

 patents.The initial proceedings in a suit brought by the Westinghouse Electric Company, through its lessee, the United States Electric Light Company, against the Manhattan Electric Light Company, were taken on April 18. The suit, vresumably the first of an extensive series, is notable from inc patents under which it was brought. These are two patents granted within a few days to Edward Weston, the well known inventor after nearly seven years' delay caused by interference proceedings. If they prove to be valid, they will be among the most valuable patents extant in the class of dynamo-electric machinery. The feature of construction covered by them is the building up of an armature core from iron disks with interposed plates of insulating material. Four carefully worded claims, undoubtedly the broader from the early date of appli cation, when the field was unnarrowed by similar inventions, cover as far as can be seen the whole system of disk-built armatures. As the vast majority of armatures of the well known Siemens type, both for dynamos and motors, are thus constructed, it will be evident that much litigation may be in prospect, and that these two Weston patents may yet figure in the annals of patent law proceedings with the Morse, Goodyear, and Bell patents.

DELAY IN GRANTING APPLICATIONS FOR PATENTS. On April 16, 1889, two patents were granted to Edward Weston, which bid fair to be basis of many and extensive suits for infringement. They illustrate the evils of the present system of granting patents, as regards the delay in concluding the proceedings. On September 22, 1882, the original application for this invention was filed as for a single structure, and eigh
weeks later a division was made so as to include the weeks later a division was made so as to include the
matter in two applications. This was nearly seven matter in two applications. This was nearly seven
years ago. It would be impossible to give any estiyears ago. It would be impossible to give any esti-
mate of the thousands of dynamos and motors that have been constructed with the armatures described and claimed in these two patents. Every day sees the factories all over this country turning them out by the wholesale. In the face of this testimony to their merit, it seems that a radical defect must exist in Pa tent Office proceedings for nearly seven years' delay t have occurred in granting them. Six years have bee devoted largely to interference proceedings to settle whether the patent should be awarded to Edison or to Weston. And now, after all that contest, the same battle will have to be fought over again in the Federal courts.
It may well be asked what good is attained by judicial contests before the Commissioner of Patents. The infringement suits brought under a patent that has been contested under interference proceedings in th Patent Office are not accelerated by the contest before the examiners of interference. The Federal courts at tach little weight to Patent Office decisions. As the present case stands, the patentee has been barred for over six years from bringing suit under apparently a most meritorious patent. It is true that the triumph has come, but the years that have elapsed have rob bed it of much of its value. Many old time users of the invention, who should have been prima facie in fringers, are out of the field. With present infringers, whose name is legion, if the patents prove valid, a battle of probably greater duration has to be fought.
It would be far simpler for the Patent Office to act in the registering faculty, rather than in the judicial. Abandoning the latter function, it should grant patents to any applicant, and let the battles of priority, like
those of infringement, be fought in the Federal courts This would be a move in the right direction, and in that of simplification. It would tend to make attor neys more careful in drawing up claims, and would multiply immensely the number of examiners, for every inventor personally would be his own examiner and would search the records in order to waste neithe time nor money in procuring a worthless patent, or else he would employ competent attorneys and experts to do the same for him.

position of the planets in may.

venus
s morning star. She is a charming object in the east rn sky before sunrise, as she oscillates westward rom the sun, rising earlier every morning and ncreasing in brilliancy as a larger portion of het illumined disk is turned toward the earth. Her rapid movement south ward may be observed, her declination on the 1 st being $19^{\circ} 7{ }^{\prime}$ north, and on the 31 st $11^{\circ} 33$ north. She rises on the 1st a half hour before the sun and on the 31st about an hour and threp-quarters be fore the sun. Venus rises on the 1st at 4 h .28 m . A. M. On the 31st she rises at 2 h .45 m . A. M. Her diameter on the 1st is $59^{\circ} .6$, and she is in the constellation Aries.

JUPITER

is morning star. There will be a fine opportunity for contrasting the two planets. Venus is the more bril liant, but her luster is dimmed by the radiance of the dawn, while Jupiter seems almost her equal in bright ness as he shines with the midnight sky for a back ground. The regal planet is approaching the earth, and will be superb when, on the last week of the month, he looms above the southeastern horizon about o'clock in the evening, and looks down from the me ridian at 1 h .47 m . A. M. Jupiter rises on the 1st at $11 \mathrm{~h} .16 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at $9 \mathrm{~h} .9 \mathrm{~m} . \mathrm{P} . \mathrm{M}$ His diameter on the 1 st is $40^{\prime \prime} .6$, and he is in the constellation Sagittarius.

saturn

s evening star. He is in quadrature with the sun on the 3 d , is then on the meridian about sunset, and finely situated for observation. He may be found in the west when it is dark enough for the stars to come out, slowly approaching Regulus in the handle of the Sickle, but his light grows dim as he approaches the sun. Saturn sets on the 1 st at 1 h .28 m . A. M. On the 31 st he set at $11 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P} . \mathrm{M} . \quad$ His diameter on the 1 st is $17 \cdot .2$, and he is in the constellation Cancer
mercery
is evening star. He reaches his greatest eastern elonga tion on the 24th, and is $22^{\circ} 49^{\prime}$ east of the sun. He nay be easily seen at that time, and for a week befor and after, by the unaided eye. Observers will be sure to find him, for his position is most favorable. He sets on the 24th about two hours after the sun. Those who desire to find the shy planet must command a clear view of the northwestern horizon, and commence the search three-quarters of an hour after sunset. Mercury will not fail to appear about 5° north of the sunset point, as a bright star with an intenseluster. An opera glass will be an aid in finding him. Mercury sets on the 1st at $7 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he sets at $8 \mathrm{~h} .5 \% \mathrm{~m}$ P. M. His diameter on the 1st is $5^{\prime \prime} .2$, and he is in the constellation Aries.

MARS

is evening star. As he moves westward from the sun he meets Mercury moving eastward. The planets are in conjunction on the 5th. Neptune overtakes and passes Mars on the 12th. Mars sets on the 1st at r h. 53 m. P. M. On the 31 st he sets at 7 h .40 m . P. M. His diameter on the 1st is $4^{\prime \prime}$, and he is in the constellation Taurus.

neptune

is evening star until the 22d, and then morning star He is in conjunction with the sun on the 22d, rising and setting with the sun, and passing to his western side Neptune sets on the 1 stat $8 \mathrm{~h} .23 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he rises at $4 \mathrm{~h} .9 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. His diameter on the 1 st is $2^{n} .5$, and he is in the constellation Taurus.

URANUS

is evening star. He sets on the 1 st at $4 \mathrm{~h} .1 \mathrm{~m} . \mathrm{A} . \mathrm{M}$ On the 31 st he sets at 2 h .2 m. A. M. His diameter on the 1st is $3^{n} .8$, and he is in the constellation Virgo.
Mercury, Mars, Saturn, and Uranus are evening stars at the close of the month. Venus, Jupiter, and Nep tune are morning stars.

Salt Beds in New South wales.
The Sydney Daily Telegraph says: What may be a discovery of great value has been made at Ellalong, near Maitland, and about 16 miles from Allandale station. There a deposit of crystallized salt, 4 feet thick in places, has been found, and it is expected that a body of rock salt will be reached below. Mr. Hilton an expert, expresses the opinion that a similar deposit will be discovered at Ellalong. Something like 100,000 tons of salt per annum are used there, and the price is $5 l .10 s$. per ton. Thus, such a discovery would be of reat value. A syndicate has secured 400 acres of the and, and the value of the latter will be thoroughly tested.

A Fremeh Locomotive Work\%.

[special correspondent of the scientific amerioan.]
Through the kindly interest of Mr. Bailly Blanchard, the U. S. Commissioner at the Paris Exhibition, I obtained letters of introduction from M. M. Coutauren to Mons. Kerournes, superintendent of the principal works of the Chemin de Fer du Nord, at Hellemmes, near Lille, and visited those works on my way home from Paris. I found there much of great interest, and am under obligations for the kindness with which I was received and the complete facilities afforded me in investigating the workshop methods.
I stated in my letter of January 17 that, so far as I could then see, French engineers had, like the English, failed to fully perceive the boon that American engineers had given to machinists in the milling machine and the emery wheel. This statement I must now modify to a certain extent, inasmuch as at the works in question I found more milling machines and fewer planing machines than I have ever seen in any other similar shop, not excluding the Baldwin Locomotive Works or the Pennsylvania works at Altoona, and larger milling machines than I have seen anywhere, Miles, or that designed by Professor Sweet for the Straight Line Engine Works, at Syracuse, which, I learn, is going to be built and put on the market by the Pratt \& Whitney Co., of Hartford, Ct. The French machines are, however, of a different construction, having a main frame much resembling that of a slotting machine, and in many cases a work table with feeds similar to that of a slotting machine-the only machine of this kind in the United States, as far as I know, being in the Bliss works, in Brooklyn, N. Y. In the works at Hellemmes, however, there is one machine that finishes all the work on a locomotive cylinder complete.
Now the fact of using milling machines in place of planing machines does not prove that it is economical to do so; and as the question of the relative economy of these two machines has been much discussed of late in the United States, I may say that. judging by the quantity of machinery in comparison to the amount of work being done in the shop, milling machines must be very much more economical than planing machines. Indeed, I was surprised to find the smallness of the machinery part as compared to the size of the works. It may be explained, however, that the wheel depart ment was separate, and there were more machines in the erecting shop and boiler shop than is usual. But the main fact remains, viz., that the milling machine has displaced the planing machine here, and, to my mind, with very great advantage. There is, indeed, I believe, but one planing machine in the whole of the works.
I am inclined to believe that this type of machine (i.e., with the slotting machine style of frame) is of French origin, and it will be interesting to ascertain (as I mean to do) how long it has been used in France, for I gather that the honor of having invented the milling machine is not entirely conceded to American machinists. But there are milling machines and milling machines, and I do not suppose that there is any well posted machinist who will dispute the fact that the Brown \& Sharpe and Brainerd machines are unequaled, in their respective fields, by anything that has been produced on this side of the Atlantic, and that the fields they occupy are those that have made the reputation of the milling machine. But when it comes to the largersizes of machines, the United States does not so clearly maintain its superiority ; or at least that is the impression one receives after seeing the large machines at John Elder's, on the Clyde, and the machines at Hellemmes. These who consider that a frame carrying a cone and live spindle for driving the cutters and a self-acting feed table with two notch plates for index wheels constitutes a complete milling machine claim the honor of its invention for England.

Whitworth made, years ago, a milling machine of the kind known in the United States as the Lincoln pattern, but whether he copied or was copied I have not as yet been able to determine. But there is one thing I do know, and that is that the Whitworth Co. do not thoroughly understand the modern milling machine, or they would not make the style of nut mill ing machine they do, with its two separate heads with removable tools in them. There is in the S. E. R works at Ashford, Kent, a milling machine with a box frame carrying a live spindle with convenience for mills or cutters at each end and a self-acting feed for both. How old this machine is I do not know, but it has been at work since 1849, to my knowledge, but on nuts only, and has none of the spiral feed motions or other fixtures that are the life of the American milling machine.
Most of the lathes at Hellemmes are of French make but made by an Englishman, and while solid enough possess some very awkward features, which will be pointed out at a îuture time.
Locomotive fireboxes are here made of copper, and the firebox stays are also of copper. In cutting the
was stated to me, on account of their getting warm
from the cutting operation; but this I believe to be an error, and that the causes in such cases are due to the longitudinal strain caused by cutting the thread. The machine used for this purpose possesses a peculiar feature, which I only remember to have seen once before applied to a screw-cutting machine, and that many years ago, the principle being as follows: The workdriving part of the machine corresponds to a lathe head, and the dies are carried in a sliding head taking the place of a lathe tailstock. On the live spindle, in place of a live center, is a long hob, corresponding to those used on an American Fox lathe and having a similar guide arm, which is attached to the die head, so that the hob acts as a lead screw, forcing the die head to travel at the right speed for the pitch of thread being cut. There is no doubt that a device of this kind is necessary whenever long screws or squarethreaded ones are to be cut.

A blunder is committed in this machine that has been very thoroughly exposed in the United States, and that there does not seem much excuse for, considering the attention that has been called to it in the past. I refer to the putting of three chasers in the head instead of four. As this machine is of English make, however, it is not fair to charge French practice with its errors. Curiously enough, the taps have four plates, but the company make their own taps, and, indeed, have their own thread,:there being no standard in France.
One or two things with reference to the lathe work struck me as remarkable. For example, I saw no universal chucks, the chuck plates having round holes in them, into which fitted movable dogs. One or two lathes had turret heads, with the usual complement of tools, but there were no stop motions to them, and as a result the workman went on measuring for each cut just as he would have to do without the turret, which, I may observe, was placed on the top of the slide rest. I saw the same thing done in an English shop, and so suppose it is a regular thing here, but do not see why so much of the advantage of the turret should be lost for the mere want of a stop motion.
My curiosity was aroused to find on the smaller lathes, say up to 24 inch swing, long-handled hand tools, and I waited some time to see what they were used for. At last I found that, to take the finishing cut, these hand tools were used in connection with the automatic feed of the lathe, being merely held in the hand and resting on the roughing tool while fed automatically, the idea being, no doubt, to save taking out the roughing tool to resharpen it for every finishing cut. I am !bound to say that, so far as I could see without examining the work, the men seemed to get along very well this way, but I have no hesitation in saying that it is not a commendable practice, as more parallel and true work will certainly be got by a rigidly held slide rest tool.
I have stated that most of the lathes were of English pattern, but there was one of the large lathes with raised V's after the American pattern, which, like a good many other things, is claimed here as an old English and discarded style. All the screw-cutting lathes had a ratćhet feed and release arrangement for use in regulating the depth of cut and withdrawing the tool on the back traverse, such a device having been illustrated in the Scientific American in 1877, having been found on a lathe at the Rogers Locomotive Works, in Paterson, N. J.
Emery grinding machines are used for the mills and cutters, these machines having been designed at the works. The tools look well sharpened, and were evidently hardened right out, and not lowered in temper at all. They had evidently, however, been quenched in oil, for if quenched in water they would have been whiter. The cutter grinding machine is not as wel] designed as similar machines are in the United States, and yet, from the number of large milling machines, and the variety of work they were applied to, the works will compare favorably with any other works I have yet seen anywhere. The new machines that are
to be exhibited at the International Exhibition I am not to describe at present, but I can say that one of them applies the emery wheel in a way that is, I believe, original, and that is certainly good.
In the wheel shop I noticed a lathe that, while it drove the axle from the widdle, as is done in the axle lathes of the Niles Tool Worksand of Wm. Sellers \& Co., yet had no tail stocks or dead centers; but the work
was steady, nevertheless, and cuts of one-half inch deep were being taken off. Two men, one on each end of the axle, were working at this lathe. I also noticed that in turning up the journals of axles that had the wheels on, a split pulley was put on the axle to drive it by, so that both lathe centers were dead centers, and the truth of the journals was, therefore, independent of the truth of the live center of the lathe, and this is an excellent idea.
A machine for grinding up guide bars was constructed to nee what may be called cupped emery wheels (corre-
sponding in shape to those in use in some of the planer knife grinding machines in the United States). Wooden wheels, covered with coarse emery, were used, but I do
not think this machine anything like equal to the American style, where the bars or work rests on the face of a table through a groove in which the perimeter of the emery wheel projects to an amount equal to the depth of the cut, and the bar is merely slid along the table over the wheel, because when, as in the French machine, there is a feeding mechanism to the machine. there is a want of solidity and a chance for lost motion.
The drilling machines call for no especial notice, except one that was used to drill 14 inch holes through copper stays about $61 / 2$ inches long. The machine was beited to run about 800 revolutions per minute on what may be called the Sellers system, the belt passing over guide pulleys to a pulley fast on the drill spindle, thus getting the requisite speed without the use of gearing; and this is undoubtedly the best way to drive a drill, when it can be done, or in other words, to drive drills of moderate diameters. The stem of the drill passed through the somewhat flattened end of a dipe conveying the soap water, which passed down the stem of the drill to the cutcing end, which was about ${ }_{10}^{1}$ inch larger than the drill stern and shaped like a very keen twist drill, the twist end not being over $3 / 4$ inch long. The feed was given both by hand and foot at the same time, and it took, on an average, 70 seconds to drill one stay, which I call good work.
Another machine worth calling attention to was one for truing up the sliding faces of axle boxes, which was done by a cupped emery wheel similar to that described with reference to the guide bar grinding machine. This, however, I think a more desirable form of machine for its purpose. The emery used on these two machines was very coarse-about as large, say, as No. 6 gun shot, or perhaps larger.
An item of much interest on, the emery grinding machines was the means of lubricating the journals, which was as follows: A soft yellow grease was used, in a closed cup, the end of a screw abutting against the grease, so that when you gave the screw a turn it forced the grease by main pressure upon the journal. This is said to work excellently well, and I was informed that it was proposed to try a similar device upon the axle boxes of a locomotive. I should think it likely that such an axle box would, however, require a more continuous supply of lubricant than this would give. I did not see a parallel vise throughout the whole shop, and although I am not an advocate for that class of vise for heavy work, still they are very handy indeed for medium sized work.
In the boiler shop I found them using Kennedy's (American) spiral punches, and using rope belts for drilling in any position on the boilers and for tapping stay holes, etc., these arrangements being very complete.
Taking these shops as a whole, they compare favorably with either American or English shops, and are
well worthy of a visit.
Joshua Rose.

To Protect Trees from Borers.

Last year, says the Rural New-Yorker, we briefly alluded to the simple method employed by our neighbor Augustus J. Hewlett, to protect his apple and peach trees against the borer. It has led to so many inquiries that it may be well perhaps to speak of the method more in detail. Fruit growers all know that tarred paper about the trunk is harmful to it. Laths, etc., tied about the trunks are not altogether satisfactory. Mr. Hewlett's mode reduces the labor and expense to a minimum and seems thoroughly efflcacious, as he has practiced it for over 20 years. efflcacious, as he has practiced it for over 20 years. outside painting, though a somewhat smaller proportion of the lead suffices. With this mix enough cheap mineral paint and lamp black to imitate closely the color of the bark. The young trees should be painted in the spring just as soon as transplanted and every year thereafter in early May. The paint is applied from a little below the soil to a foot above. In four or five years the bark will peel off after the paint has been applied. When this excoriation occurs, if before July, it is best to remove what bark still clings and at once give another coating of the paint. The new bark underneath will be found bright and healthy, showing that the paint does no harm. Mr. Hewlett painted some apple trees every spring for 15 years or more. The painting was discontinued for several years, as he thought there might be no occasion for further painting. These trees, however, were at once attacked by borers, and several were found six inches above the entrance. Peach treesare painted in the same way. He has never had a tree injured by borers if they were regularly painted:
The editor of the Rural New-Forker adds that Mr. Hewlett is a careful, conservative farmerand his statements may be accepted as fully trustworthy.

A New Apparatue for Firemen.

From April 1, 1889, Paris firemen will be provided with cylinders of oxygen under pressure, to be used for the prompt relief of persons suffocated during fires. The oxygen will be added to the regular sapply of medicines always at hand in case of accidents.

the berrie paving block.

A cheap, simple, durable, and easily made paving which can be economically manufactured in connectio with brick yards, is shown in the accompanying illustrations. It forms the subject of a patent issued to Mr. Robert B. Berrie, of Lexington, M \odot. The blocks consist of common rough hard-burned brick, and are 12 inches or one and one-half bricks square, and are placed in moulds, so as to admit of the bricks being cemented to gether with any good cement, applied as shown by the illustrations. These blocks are brought to a smooth surface on top side with any desired thickness of cement, by troweling with steel trowel, using a little dry cement to give a hard glazed finish.
The advantages claimed for this pavement are that it

the berrie paving block

is cheap and strong and will not be injured by the action of frost or changes of the weather. The blocks are so constructed as to allow for any expansion caused by the frost on the botforn side. They will withstand a much greater strain or jar without breaking on account of the hardness of the brick for a body, and the cement being thoroughly keyed between the brick, forming a solid block of hard brick and cement.
This pavement is being manufactured and put into practical use, and is said to give satisfaction. For further particulars and references address R. B. Berrie, Lexington, Mo.

STRAUB'S PLAN FOR A SUB-RIVER TUNNEL.

The accompanying illustration represents a novel form of sub-river tunnel, more especially designed for use in the Hudson and East Rivers, at New York City, and which forms the subject of a patent recently issued to Mr. A. W. Straub, of No. 23 South Thirty-seventh Street, Philadelphia, Pa. Itis proposed to construct such tunnel of several long sections of steel tubes, about eighteen feet in diameter, with heavy strengthening flanges passing around the tubes at intervals of five or six feet, while there are also ribs running lengthwise of the tube. These tube sections are to be constructed above ground and lowered iuto a prepared line of way previously dredged or otherwise made in the river bottom. Fig. 1 shows a cross section of such tunnel in position, with its top weighted by stone and cement covering, to hold it firmly in position, this covering extendingabout five feet over the tunnel and down its sides. Fig. 6 shows a cross section of the tunnel with removable crossrods therein for bracing the sections while being conveyed and sunk to the river bottom. The tunnel is preferably constructed with two exten with two extended engths or sec tions constituting the bank or shore approaches which, when placed in position, have a down ward grade, and areconnected with the interme diate or central sections by short
sections, these connections being accomplished within removable caissons built in the river around the adja cent ends of the shore, and central sections. These caissons are arranged at right angles to the line of the tun nel, Fig. 3 being a plan of the meeting terminals of a
central and a shore section, and Fig. 2 being a sectional view of a caisson with its upwardly extending columns, upon which are located the engmes required for pump ing out the tubes, lowering them into position, etc Fig. 5 shows a longitudinal section of one of the tunne sections with its removable ends or heads and the air and water pipes therefor, while Fig. 4 shows part of the bearing frame for the tunnel section within the caisson.
The temporary piers or caissons to retain the tube at its proper location over the trench previously dredged to within a few feet of its future location are formed of two great boxes, some 50 feet square and 70 feet in height, standing upon a strong platform of timber, 50 feet wide and 130 feet loug, leaving a space of 30 feet between the boxes or piers. They are filled with stone and anchored in their proper location, when the tube is floated, with its ends between these boxes, which sus ain it over the trench. A framework with a journa bearing in it is then built around the end of the tube, which is fitted into guides, which carry the tube down plumb to the desired depth. A gear wheel is placed on the end of the tube, meshing into two worm wheels, to revolve the tube while sinking into a perfect foundation, thus fitting itself to place from end to end. The frame when down forms a watertight gate against the two boxes and the platform in the bottom. In order to pump water into the tube and still per wit it to revolve, it is necessary to carry the pipe through the bulkhead in the center, through a stuffing box.
After a section is sunk on each side of the piers, and the frames or gates are down, they form a water-tight basin between the gates and the piers above the platform. The end of a section will extend through each gate. After the water has been pumped out of this caisson, a short section of tube can be built within the caisson to unite the long sections. After all are united, dredge the silt from the top and sides of the tube and ancbor it to the river bottom with a saddle of broken stone and cement, which will retain the tube round the bulkheads and stay rods are removed, and prevent it from floating when the water is pumped out.
After the tube has been laid and anchored, the stone can be removed from the boxes, when they will float away, leaving the platform remaining beneath the tube.

Telephoue* in Sweden.

In probably no country in the world has the telephone come into more general use than in Sweden Not only can Stockholm boast the most perfact telephonic arrangements of any capital, in addition to the largest percentage of telephone subscribers, but the east coast and the west coast will soon be in telephonic communication, a line between Stockholm and Gothenburg being in course of erection. Many small towns are in telephonic communication with each other, and the number of subscribers is constantly increasing. In Malmo, for instance, which has about 40,000 inhabit

STRAUB'S PLAN FOR A SUB-RIVER TONNEL.

AN IMPROVED RAILROAD SNOW PLOW.
The plow herewith shown has been patented by Messrs. Charles A. McCarthy and John P. Moran, of Sault de Ste. Marie, Mich. It has at its forward end a oose, consisting of steel plates arranged to form essentially a triangle, the forward end of which is concaved from top to bottom. Within the sides of the nose, at or near the center, two shafts are journaled, each hav-

MOCARTHY \& MORAN'S SNOW PLOW

ing at its outer end a hub, to which spaced twisted arms are rigidly secured, projecting from the hub. The hub and arms are preferably made of steel, and the blades are given a pitch best adapted to the angle at which the snow is to be thrown. Within the body is a boiler to supply steam to three engines, two of which are rotary, and placed at the forward end, one on each side, while the third engine is a horizontal one, and placed in the center of the body, just in front of the boiler. The two side snow wheels are each rotated from a separate engine, while the horizontal engine operates an upper set of snow wheels, located one on each side above the center of the nose. As this plow is pushed through the drift by the engine of the train, or an engine employed to push the plow, the cutting edge of its nose divides the snow, and the several wheels which are to be driven at the rate of two hundred or more revolutions a minute, blow the light snow to each side of the track, while if the snow be hard it will be thrown to a greater distance away.

New Coloring Matters.

Primuline when diazotized and combined with an alkaline solution of β-naphthol forms a red coloring watter. Hitherto this could not be applied directly for dyeing or printing purposes on account of its in solubility. The present invention consists in dissolvng primuline in water, acidify ing the solution, dia zotizing it with nitrous acid, and pouring the mix ture into an alka ine solution 6 -naphthol. The insolutle coloring matter is then fil tered, washed pressed and dried, and ren dered soluble by heating it (in a closed vessel or in one connected with an inverted condenser) with about $21 / 2$ times its weight of sodium bisulphite of $50^{\circ} \mathrm{Tw}$. to $100^{\circ} \mathrm{C}$. The filtered solution is treated with salt, which precipitates $t h e$ dew product in the form of a yellow powder, which ìs very easily soluble in water and is decomposed by caustic alkali, with the formation of the above red color-
ants, there are six hundred subscribers; this town is ing matter. If the coloring inatter be used for printing connected with about thirty smallertowns and country places, with subscribers ranging hetween two hundred and ten. In Norway also there are several new lines in course of construction.
ing matter. If the coloring inatter be used for printing duced. Similarly maroons and oranges can be produced by substituting α-naphthol and resoreinol for the β-naphthol.-C. Dreyfus, Manchester.

AN IMPROVED OVEN THERMOMETER.
A device to be applied to the oven doors of cooking stoves, etc., to indicate the exact heat of the oven for baking purposes, and also applicable to other stoves, hot air furnaces, and ranges, is illustrated herewith, and has been patented by Camilla Julier and James O. Robinson, of Hanging Rock, Ohio. Upon the inside

JULIER \& ROBINSON'S OVEN THERMOMETER.
of the door is attached a hammered brass or other strip of more expansible metal than the cast iron of which the door is made, this strip being attached to the door at its ends, as shown in the sectional view. Secured centrally to the strip is a stem fitted to slide through an aperture in the door, and having an inclined projection or nose on its outer end. In engagement with this nose is an index pivoted to the door, the index being extended to travel over a graduated dial, and thus indicate the degrees of heat within the oven.
For further information relative to this invention address Messrs. Henry Miller \& Co., Hanging Rock, Ohio.

AN IMPROVED BAKE PAN.

A pan especially intended for use in baking or roasting meats, fowls, etc., and designed to obviate the necessity

2

MISS BICKNELL'S BAKE PAN. of boiling before baking, thus retaining allthe juices and flavors of the articles being cooked, is illustrated herewith, and has been patented by Miss Bettie H. Bicknell, of Loudon, Tenn. Fig. 1 shows the pan, and Fig. 2 is a sectional view of the pan and its cover in position for use, while Fig. 3 is a perspective view of the cover. The pan is of ordinary construction, and supports a rack, beneath which water may be placed.
The cover is a deep inverted pan or box, preferably tapered toward its upper part, an outside band or upright box forming, with the inner portion, a surrounding water space, as shown in the sectional view. In this way the article to be cooked in the pan is practically inclosed by water. In one end of this water-holding cover is a faucet, for the purpose of drawing off the hot water when the pan is to be removed from the stove, thus making the pan lighter and easier to be handled, and lessening the danger of scalding the user. For further information relative to this invention address Messrs. Chambers \& McQueen, Loudon, Tenn.

AN IMPROVED GATE FASTENING.
The illustration herewith represents a gate fastening designed to fasten the gate automatically as it is

Somar
coffey's gate fastening.
closed, and which, when the latch and catch are once properly adjust.ed, cannot get out of position so long as the gate remains on its hinges, no matter how much the gate sags or the weather affects the posts. It has been patented by Mr. Burton B. Coffey, of St. Joseph, Mo. The fastening device is usually secured on the inner side against the upper rail of the gate, Fig. 2 being a plan view thereof. It consists of a lever pivoted in a slot in a housing, the short arm of the lever extending into the housing from an elbow, while on the long arm of the lever is a catch adapted to engage a loop or staple on the post to which the gate is hinged. A spring in the housing presses against the short arm of the lever, tending to keep the catch in en gagement with the staple. A short hand lever is pivotally connected with the upper rail near the outer end of the gate, the lower end of this lever being connected to a rod extending into the housing, in position to engage the short arm of the lever pivoted therein, and press it back to release the catch. Thus the gate may be released from the fastening by a movement of the hand lever, and on closing the gate it is automatically fastened by the catch coming into engagement with the staple.

A substance which Nature terms one of the most remarkable liquids yet discovered, and which possesses properties that may render it serviceable in photo graphic processes, has recently been prepared by Drs. Curtius and Jay, of the University of Erlangen. Some two years ago the former investigator succeeded in isolating gaseous amidogen; but the free gas possesse such an affinity for water that its isolation in quantity seems impossible, water being of necessity a secondary product in all known reactions for producing this gas. But a pure hydrate of the substance-described as hydrazine hydrate-has been produced, and it is this liquid which possesses the remarkable properties alluded to. Says the British Journal: It is, of course, early to prognosticate as to the part it may play in the chemistry of the future, but the property we desire to draw attention to is its reducing power, which is evidently far beyond that of any of the substances at present utilized for photographic purposes-pyrogallol, hydroquinone, iron salts, etc. Hydrazine hydrate is probably the most powerful reducing agent known. The most easily reducible metals are precipitated by it from their solutions in the cold. Silver separates from strong solutions in fine compact crystalline masses, and from very dilute solutions in the form of perfect mirrors of great beauty. Neutral platinic chloride solutions are also similarly reduced, while acid solutions of iron, copper, and platinum are reduced from the ferric to the ferrous state, and so on. It remains to be seen if it can be utilized as a developer. In its concentrated form it acts on glass, cork, etc., so there are certainly practical difficulties in the way; whether they would be overcome by dilution, we are not able to say.

AN IMPROVED LIGHTNING CONDUCTOR FOR FENCES. Wire fences are often a source of danger to cattle during electric storms, the wires being usually practically insulated from the ground, and liable to discharge a current through the body of an animal standing close to the fence. To overcome this danger is the object of the invention herewith illustrated, which has been patented by Mr. Fremont E. Wood, of Yucca, Arizona Ter. For this purpose a grounded rod, to the upper section of which is connected a point, is inserted at such intervals as may be deemed necessary in the fence, such rods being connected with the fence wires by an arrester of novel construction, shown in the sectional view. Its lower portion consists of a clamping socket, with acentral longitudinal groove, upon either side of which are ribs, and in connection therewith is employed an upper socket section, the two sections having centrally apertured and internally threaded bosses to engage the grounded rod. A binding wire is bound within the threads of the rod and about the fence wire, the binding wire being so bound that the sockets may be moved to cross the fence wire diagonally. The socket sections are brought together and united by screws, the binding wire being forced hard against the fence wires, and the grounded rods by set screws. In applying this arrester, great care should be taken to secure proper connection between all the parts.

AN IMPROVED BUILDING BLOCK.

A substitute for bricks, natural and artificial stone, etc., for houses, bridges, street pavements, and a great variety of works of masonry, with the method of making such substitute, form the subject of a patent issued to Mr. B. W. Belden, of St. Louis, Mo. In the making of these building blocks, a portable frame or mould is used, as shown in the illustration, such mould having any desired number of sections or compartments, formed by partitions, provided with apertures soarranged as to establish free communication between the various divisions of the frame. This frame may be of wood, metal, straw board, or other suitable substance, but is preferably of non-corrosive metal, as galvanized iron, and the whole structure, including its
outer shell, ribs, and partitions, may be of any desired shape and size. This frame is then filled with hy draulic cement, paper pulp, clay, or other suitable plastic composition, which, hardening in the frame, forms a solid concrete mass, in which the framework is thoroughly embedded. This building block is de-

BELDEN'S FRAME FOR BUILDING BLOCKS, ETC.
igned to afford superior strength, durability, solidity, facility of making and operating, beauty of finish and economy in cost.
For further particulars with reference to this inven tion address the Solidura Building and Paving Company, No. 6 North Second Street, St. Louis, Mo.

AN IMPROVED ROLLER STOVE FOOT.

A stove foot designed to promote the convenience of housekeepers when taking up and putting down carpets, oilcloths, etc., is shown herewith, and has been patented by Mr. J. Fowler, Alliance, Ohio. The stove leg is made with two downwardly extending arms, in which a roller works. This roller has on one

FOWLER'S STOVE FOOT.

or both faces a number of teeth, and a thumbscrew is screwed into the upper portion of the leg, adapted to engage the teeth on the roller, to prevent it from turning or allowing the stove to move from its position when the grate is being shaken. The upper portion of the leg is cast to form an arm, by means of which it may be secured to the bottom of the stove, and the improvement is applicable to long or short legs. With this device, a piece of zinc may be readily placed under a stove, and the stove can be easily moved when desired, by loosening the thumbscrews, which are screwed tight in ordinary use.

The Harlem Railroad have ordered of the John Stevenson Company thirty cars for the Julien storage battery system, to be used on the Fourth and Madison Avenue line in this city. These cars are to embrace a number of new features, and promise to be both elegant and comfortable. The Harlem Railroad Company have already a few electric cars in use on the same thoroughfare.

an improved hydrocarbon burner.

The illustration herewith represents a simple and very efficient form of burner, with which a most perfect combustion can be obtained, and the heat held unicombustion can be obtained, and the heat held uni-
foria for an unlimited period. It bas been patented foria Mr. Frank B. Meyers, of Fort Plain, N. Y. The burner is provided with a casing to the front end of which is secured a tube with bell-sbaped mouth, as shown in the sectional view, this tube usually passing through the mouth of the furnace in such manner that the wide end of the bell-shaped mouth is fush with the inside of the furnace wall. On the casing is a bushing through which passes the oil supply pipe, from any suitable reservoir, which may be a barrel or tank, this pipe baving a valve to regulate the flow of oil. On the inner end of the pipe are rods extending to the front end of the tube, these rodsextending radially around the pipe, and in the inner end of the pipe is an opening, A, through which the oil is discbarged, the oil falling by its gravity the oil is discbarged, the oil falling by its gravity
around the inner ends of the rods. Into the side of around the inner ends of the rods. Into the side of there being in the casing an air supply regulator, by which the supply of airmay be increased or diminished, the air passing over the ends of the rods and carrying the oil along them, so that the oil is completely atomized and the air charged with oil vapor, which burns in the bell-shaped mouth. The beat from the furnace also heats the bell-shaped mouth, the tube, furnace also heats the bell-shaped mouth, the tube, and the rods, so that the atomizing of the oil proceeds
very rapidy and the gas is highly heated before it is very rapidly and the gas is highly heated before it is
burned. These burners are made for all classes of work, from 6×8 inch fires for wire work and brazing to 5×24 foot furnaces for heating tiooms. For further particulars with reference to this burner address Messrs. Meyers \& Tanner, manufacturers, Fort Plain, N. Y.

The samoan Hurricane.
One of the most violent and destructive hurricanes ever known in the South Pacific ocean passed over the Samoan Islands on the $15 \mathrm{th}, 16 \mathrm{th}$, and 17 th of March. As a result four war ships of the American and German navies were totally wrecked and German navies were totally wrecked and
two others badly damaged, while 142 officers two others badly damage
and men lost their lives.
This little group of islands has attracted the attention of the world for some months past, and their political status is to be the subject of aninternational conference shortly to be held in Berlin, but the complications had become such that there were present in the harbor of Apia* at the time of the hurrithe harbor of Apia* at the time of the hurri-
cane three American, three German, and one cane three American,
English men-of-war.
The harbor is a little semicircular bay on the northern side of the island of $U_{1}, a l u$, the distance across the entrance to the bay being about three miles, mostly closed by a coral reef, but leaving a gateway of about threefourths of a mile in which ships can enter fourths of a mile in which ships can enter. There is but a small space of deep water within which vessels
can anchor, as there is a large shoal in the eastern part can anchor, as there is a large shoal in the eastern part
of the bay, and a coral reef in its western part, from 200 to 400 yards off shore, on which most of the vessels were wrecked, εs the wind blew into the harbor from the open sea and forced them back against it.
The storm began on Friday afternoon, March 15, and by 11 o'clock at night the wind had increased to a gale, all the war ships keeping their engines working to relieve the strain upon their auchors. Rain began to fall at midnight, when, with the great waves rolling in from the ocean, the German ship Eber, and shortly afterward the American ship Vandalia, began to drag their anchors. By using full stearm power they both managed for a while to keep off the reef, but by 3 o'clock the situation had becorne alarming, the wind blowing stronger and stronger, and the rain falling in torrents. stronger and stronger, and the rain falling in torrents. dragging its anchors, and there was imminent danger of collisions. On the shore the howling of the wind among the trees and houses and the crash of falling roofs aroused every one, and the storm was so violent that it was difficult to stand against it without some protection. Through the blackness of the night could be seen the lights of the men-of-war, moving slowly in different directions, indicating the manner in which they weredragging their anchors in the fierce currents of the little harbor.
A little after 5 o'clock day began to dawn, and revealed the full danger of the situation, the northeast wind working nearly all the vessels from their moorings in the direction of the reef, notwithstanding that the black snoke pouring from their fannels showed that desperate efforts were being made to keep them up against the wind. The decks were swarming with men clinging to masts and other objects and tbe hulls of the ships were tossing about like corks, one monent the vessels seeming almost to stand upon their beam
For a review of the topography of the iflande and some account of
the natives, with illogtrationa, see Scikntific Axirican Suprizuent No. 888 .
ends, while thenext instant the sterns would rise out of the water and expose to view the rudders and rapidly revolving propellers.
Several small sailing vessels had already gone ashore, and the Eber, Adler, and Nipsic were close together and only a few yards from the reef, the Trenton and Vandalia being farther from shore and almost obscured by the blinding spray. The gunboat Eber, as if making a last struggle to escape destruction, suddenly moved forward, but the current carried her prow against the port quarter of the Nipsic, after which she fouled with the Olga, though not seriously damaging either of these vessels. The Eber now seemed unable to make any further effort to save herself, and swung around broadside to the wind, drifting slowly toward the reef. A great wave, rolling in toward the shore, suddenly lifted the vessel high on its crest and carried ber broadside upon the reef. She struck fairly upon her bottom, rolled over toward the open sea, and disappeared from view, apparently not a vestige of her being left. The breakers, however, hid a iew strugbeing left. The breakers, however, hid a iew strug-
gling men, one officer and five men being rescued out of a total of 76 who were on board.
It was about 6 o'clock in the morning when the Eber was dashed upon the fatal reef, which the Adler was now fast approaching, about 200 yards west of the point where the Eber struck. She was approaching broadside on, and half an hour later was lifted on top of the reef and turned completely over on her side. The Adler did not, however, go to pieces, but was thrown so far up on the reef that when she turned

MEYERS HYDROGARBON BURNER.

Of the 130 officers and men aboard, twenty were drowned or killed, but the rest were rescued, after exrtions lasting throughout the day.
It was next the turn of the Nipsic. She was standing off the reef, but her three anchors were not bolding, with all the steam it was possible to carry, and her men were preparing to hoist a heavy 8 inch rifled gun overboard to assist her anchors. At this noment the Olga, being unmanageable, bore down upon the Nipsic, knocking down her smokestack, and doing much other damage. After this the Nipsic was unable to keep up her steam power, and her captain seeing that further efforts were useless gave orders to beach the ship. This was done only with great difficulty, but the vessel, although badly damaged, has been hauled off since the storm, having lost but seven men.
At about 10 o'clock in the morning it was seen that a At about 10 o'clock in the morning it was seen that a
collision was inevitable between the Vandalia, and the English steamer Calliope, both of which had been further out from the shore. Great waves were tossing the two vessels about, and they were coming closer to gether every minute, when suddenly the great iron prow of the British steamer, rising on the crest of an enormous wave, came down on the port quarter of the Vandalia, damaging the latter very much. The English vessel now, by getting up all possible steam, was able to work its way slowly out of the harbor to the open sea. She had powerful engines, and was capable of steaming sixteen knots an hour, but worked her way out against the wind at a rate of only about half a knot an hour.
It now became evident that the Vandalia could not be kept off the shore, her engines not being powerful enough to steam out to sea, and her anchors dragging so that she was fast approaching the reef upon which the 'Eber had first foundered. It was, therefore, de termined to beach the vessel, her bow striking in the
soft sand about a hundred yards off the shore and soft sand about a hundred yards off the shore and
forty yards from the stern of the Nipsic, the vessel swinging around broadside to the beach. It was near ly eleven o'clock when the ship struck, and it was then thought the 230 men on board would be rescued with-
out great difficulty. It was soon seen, however, that the vessel was filling with water, and settling down, while the seas continued to break over her furionsly and the water to pour down her hatches. By noon the whole of the gun deck was under water, and the men were continually being knocked from their feet and thrown about so that many were badly injured. Most of them sought refuge in the rigging, but the wind seemed to increase in fury, and nearly every one had cast away most of his clothing. No boat eould live for a moment in the surf, and it was impossible to get a line from the shore to the steamer, as there was no firing apparatus on the island. Officers and men were continually being wounded by being knocked about the deck, in many cases being washed overboard while senseless from such injuries. The entire afternoon afforded a continuous succession of such scenes of suffering and death, while the survivors were having their strength tested to the uttermost to sustain themselves in the precarious situations to which they still clung as hope seemed to be fast dying out.
In the meantime the Trenton, the Awerican flagship, and the largest of the ships in the harbor, had succeeded in holding out against the storm, although at ten o'clock in the morning her rudder and propeller had been carried away by fouling with a piece of wreck, while water poured through the great hawse pipes on the berth deck until the firemen were up to their waists in water, and all the fires were extinguished. Such sail was set as could be carried, and reports affirm the most skillful seamanship in the management of the vessel. At one time, it is reported, her sailing master ordered every available man of the 450 constituting her crew into the rigging, that such a mass of men might partly act as a sail and also contribute, by their weight, to keep the vessel down on the side next the storrs, and this novel experi ment is said to have, for the time, saved the vessel from destruction. Soon, however, the vessel began to drift toward the Olga, and all expected that both vessels would at once go to the bottom. At this time the stars and stripes were seen flying from the gaff of the Trenton, the first time since the commencement of the storm that any flag had beenraised. It seemed as if, certain of going down, her officers meant the Trenton to do so with colors flying. The captain of the Olga, however, slipped his anchors, and attempted to steam away, in doing which only a slight collision took place, when the Olga steamed to the mud flats in the eastern part of the harbor, where she was beached with but little damage to the vessel and no loss of life.
The Trenton was now fast approaching the shoal on which the Vandalia lay, and it seemed that the huge hull of the flagship would crush the Vandalia to pieces, and throw the one hundred men still clinging to the rigging into the water. It was after five o'clock, and the rigging into the water. It wasafter five o'clock, and
the light was beginning to fade away, as the Trenton drifted slowly up to the Vandalia, the storm still raging with as much fury as at any time in the day. The men who had continued to cling to the rigging of the Vandalia were bruised and bleeding, and so near complete exhaustion that it was evident they could not hold out much longer. Suddenly those on shore heard the sound of cheering borne across the waters, the 450 voices of the crew of the Hlagship were cheering the luckless survivors on the Vandalia as the Trenton was closing up to her. But a faint reply was heard from the feeble and exhausted men, and immediately afterward the sound of music was heard. The band of the Trenton was playing the Star Spangled Banner. All who, on sea or shore, heard at this fateful time the strains of the American national anthem as they rose above the howling of the storm and the wild scene ot death and destruction around, felt the inspiration of men capable of looking death braveiy in the face, with the courage to battle determinedly to the end, whatever that end might be.
The collision of the two vessels, however, was so slight, as the Trenton gradually swung around broadside to the sunken ship, that it proved to be the salvation of the men in the rigging of the Vandalia, who could then jump readily to the deck of the Trenton, the latter now lying filled with water, and a total wreck, within a stone's throw of the American consulate, but holding together sufficiently during the remainder of the storm to afford a refuge for all who could reach her until they could be taken ashore.
All during the storm every effort was made by those on shore, at the little village of Apia, to render such assistance as was possible, and to care for the rescued. But the storm was so violent that, with the total absence of appliances for rescue, such assistance fell far below what all eagerly desired. The natives showed great bravery in dashing into the surf and imperiling their lives wherever a rescue seemed feasible; and all the recent differences caused by local wars and foreign diplomacy, which had originally brought the vessels
to the harbor, were lost sight of in the sympathy ex tended to all in the face of this terrible storm visita tion.

IMPROVEMENT OF THE RIVER FRONT OF NEW YORK

 CITY.The Department of Docks of the City of New York has, for a number of years, been engaged in improvin the river front of this city. The work was begun under the administration of General George B. McClellan as Chief Engineer, in 1871. In July, 1875, it passed into the charge of Mr. G. S. Greene, Jr., Chief Engineer of the New York Department of Docks. The work has been principally done on the Hudson River front, where granite bulkheads have been built. Different constructions have been used fordifferentlocali ties. This article is specially devoted to the subject of the new balkheads that are now being constructed. Two typical forms are illustrated. The wall will be seen to consist of a foundation of concrete or piling or both sustaining a granite wall backed up by concrete. The concrete blooks, which act as a foundation for tbe granite wall, are backed up by cobble stone and riprap, braced by straight and sloping piling where the nature of the ground requires it. The general method of constructing a wall supported on piling where rock bottom cannot be reached is as follows :

The vertical piling is first driven. It is usually white, yellow, or Norway pine, cypress, or spruce, varying in diameter from 16 to 28 inches, and of a maximum length of about 90 feet. In many instances short piles, however, only can be used, on account of the presence of rock. Where loose stone is to be penetrated, an iron shoe is placed over the foot of the pile. The vertical piles are first driven and the three front rows are cut off $15 \cdot 3$ feet below low water. They are cut by a circular saw worked from a floating pile driver. The saw is journaled to a large timber which is lowered to the proper distance, and the feed is accomplished by moving the pile driver up to its work. The six rear rows of piles terminate 2 inches above mean low water, and are notched at the top to receive transverse caps.
After the vertical piles are driven, cobble stones, gravel, and riprap are put in place around them. As these are put in in layers, the riprap on the outside and cobble stone filling on the inside, each tends to take its own slope, so that a sort of interlacing of the two classes of stone filling occurs. Before the entire cobble stone and riprap filling is in place, binding frames are put in to hold the piles in place. These consist of two pieces of 5 inch by 10 inch spruce placed one above the other. Through the ends 8 inch by 8 inch oak beams pass, and are wedged back against the piling. On the three front rows of piles which were cut off by the circular saw, concrete blocks are placed. Each of these blocks is 7 feet wide on the bottom, 5 feet on the top, and 6 feet in length; their vertical height in front is 13 feet, in the rear 14 feet, affording a step for the granite wall. Each block weighs about 70 tons. Before they are lowered, a mattress, composed of burlaps filled with about two inches of mortar, is placed on top of the piling, which mattress is carried on a network of marlin attached to a wooden frame. When it has sunk to its place divers descend and cut the marlin so that the frame floats upward, leaving the mattress and marlin netting lying on top of the piles. This mortar is made with slow-setting cement, and as quickly as possible the 70 ton concrete base block is lowered on top of it, thus obtaining a firm bedding on the piling, members of which may vary one or two inches in height. More cobble stones are added, and the inclined bracing piles are driven, an inclined pile driver being used for the purpose. These go down between the vertical ones, and are placed at a distance of three feet from center to center; their slope is represented by an inclination of two vertical upon one horizontal. All the piles are adjusted and stay-lathed as soon as they are driven. The bracing piles are now cut off at the top and capped with 12 inch by 12 inch timbers lying horizontally, and more cobble stones and riprap are filled in. The granite wall is completed and backed by concrete, and a general light filling is placed above tbe riprap. All of these features can be clearly understood by inspection of the drawing. The concrete backing is further protected by a four-inch oak planking. Oak treenails are used for all fastenings, so that the whole represents a structure built without metal, which is, from an engineering point of view, quite a curiosity in the present age of steel. From this peculiarity it has excited much comment abroad.
The moulding and moving of the concrete blocks, which is illustratedin some detail, is a matter of special interest, as they are, probably, the largest moulded blocks ever handled in this manner. They are made in moulding boxes, and consist of two volumes of sand and one volume of Portland cement, mixed dry and moistened down with a sufficiency of water. To this mortar small sized stone. broken so as to pass through a 3 inch ring, is added in such proportions that there will be enough mortar to fill all interstices when rammed. This proportion is determined by hy when rammed. This proportion is determined by hy-
of samples. The concrete will average in its proportions 1 cement, 2 sand, and 5 broken stone; but is found to vary with the stone used. The same is to be said with regard to the water used for mixing the mortar This is added to the mixture in such quantity as may be required by the particular sand and cement used.
The concrete blocks as moulded have vertical grooves passing down each side, and a groove across the bottom or a hole through their mass near the bottom This groove, and hole, if present, are for receiving the hoisting chain by which they are lifted, as shown in the arge illustration. The floating derrick which raises them has a capacity of 100 tons, and as each block weighs 70 tons, there is quite a surplus of power for handling them. When lowered into position the clevis of the chain is detached and a rope is fastened to the loose end. The derrick then draws the chain out and clears it from the block. By means of the rope the end is allowed to descend just as fast as the other end is hoisted, in order to prevent the chain from being caught in the aperture or on the corners. The hole passing through the block at a distance from the base is found to be objectionable, as tending to cause a fracture o the base, and the method shown in the cut is usually employed.
All this work applies to the formation of a bulk head or river wall. It is done in sections, much delay being experienced from the opposition made by private owners. By means of this bulkhead a depth of 12 feet at mean low water against the face of the wall is secured, which is considered a sufficient depth for any vessel 200 feet long, that being the maximum length between piers. Where rock bottom exists the piling is dispensed with and concrete in bags is used for the base blocks to rest upon. An example of this con struction is shown in one of the cuts. Different shaped concrete blocks are employed for different situations also. The general type is given here.
Through the concrete blocks weep holes are carried from rear to front, which are left open in order that water accumulating in the filling may have a chance to escape. When the blocks are put in place, it will be seen that the vertical grooves must come together. They are filled with concrete in bags rammed down so that a species of tongue is formed, anchoring the blocks together and preventing transverse displace ment. The granite headers of the wall are dovetailed at their rear end, so as to be anchored back into the con crete, while a firm longitudinal bond is given by the breaking of joints in the stretcher courses. One feature of the work is the thorough ramming to which the concrete is subjected, the object being to have stone touch stone in the mixture, to have no space between them, and to have sufficient water to insure setting. The quality of the cement is of the best, and it is subjected to elaborate tests for strength, time of setting, color, etc. In one section, where the piling failed to reach hard bottom, the whole structure is practically floating on a soft mud. Yet this section appears to be as secure as any.

The Outer Ring of Saturn.

by jam kerler, abtronomer of 'rie lie of
In the Sidereal Messenger for February, 1888, and more recently in Ciel et Terre, I described the appear ance of a very fine division on the outer ring of Saturn which was seen on several occasions with the 36 inch equatorial immediately after its erection at the obser vatory, and particularly well on the night of January 7, 1888. In the year which has elapsed since the time of its discovery, the division has been repeatedly looked for by different members of the observatory staff, bu without success; and I had come to the conclusion that it was either invisible by reason of the greater obliquity of the ring, or that it was of temporary character, and no longer existed. More recent observations show that our failure was due simply to the lack of sufficiently rood definition.
On the night of March 2, which was one of the finest hat we have had at the observatory, the division was seen by Professor Holden, Mr. Schaeberle, Mr. Barn ard, and myself, and was independently estimated by all four observers to be situated at one-sixth of the width of the outer ring from its outer edge.
Mr. Barnard and I continued to observe the planet with different magnifying powers, until after it had passed the meridian. The brilliancy of the whole system, particularly of the gauze ring, was remarkable and the outlines appeared with a sharpness more char acteristic of the lines of a steel engraving than of the usual telescopic image. With a power of 400, a faint shading could be seen on the outer ring, A, at about one-third of its width from the outer edge. If no higher power had been available, we should have said that we had had an excellent view of the Encke division (or shading).
With a power of 1,500 the appearance was different. The division near the outer edge of the ring then became visible, not as a shade, but as a distinct black line of exceeding fineness, and from this a dark shading extended inward nearly to the inner edge of the ring. Mr. Barnard placed the maximum depth of shade at
the Encke shading appeared with the lower power. To me it seemed farther out, nearly at the division which separated the shading from the brighter margin of the ring. The narrow strip lying between the division and the outermost edge of the system appeared to both of us to be the brightest part of ring A.
The outline of the planet's sbadow on the ring was seen with the greatest distinctness, and was a per fectly smooth 'curve, agreeing, as nearly as we could judge, with that required by geometrical principles. A very minute irregularity could easily have been do tected.
In my opinion, the division described above is a per manent feature of the outer ring, but it is so minute that it may fairly be classed among the most difficult and delicate of planetary details, requiring the most powerful instruments and exceptional atmospheric con ditions for its observation.-Whe Astronomical Journal.

A Suggestion for Fuel at Apia, Samoa.
The question of cheap fuel is important to us all, and one the less so in the oil regions, where to burn up our surplus stocks means better prices for our com modity.
To obtain perfect combustion in burning crude oil as a fuel under boilers, stoves, etc., is and has been a desideratum.
The best device brought to my notice is a cast iron burner, which is placed in the fire box of a boiler and connected to an oil retort by pipes having the necessary shut-off cocks, with a slight fall toward the burner.
This burner is also connected by pipes, etc., to the boiler itself for steam.
In order to start the fire, you have only to turn on a small amount of oil and igniteit. Then open the steam connections to', burner, and as, the oil passes through the burner it becomes superheated into gas, and as the gas and steam blend and rush into the firebox, you have a gas fire at once of most intense heat, and as ef fective as natural gas, and when the steam and oil sup ply are adjusted, nearly perfect combustion is ob tained.
In case you do not have steam up when tbe burner is started, and have water pressure at hand, the burner is adjusted to make its own steam.
What suggested this letter were the numerous articles n the papers of late indicative of anxiety at our naval headquarters as to our fuel supply for war ships centered at Samoa; also the need of a fuel for the navy that. would steam quickly.
For the war ships plying the Pacific Ocean at Samoa I would suggest the government erect, at, Pago-Pago, several iron tanks of two thousand barrels capacity each, near the coaling docks; to connect these tanks with the docks, by pipe lines and proper shut-off cocks to buy crude oil from the California or Ohio oil fields and have it delivered at the nearest seaport harbor, and thence transported in bulk in ships to Pago-Pago and stored in these iron tanks to be used when wanted About 3 to $31 / 2$ barrels of oil (weight about 350 pounds to 42 gallons) equals in heating units a ton of coal.
Crude oil can be purcbased at Hueneme, California on the coast, for about two dollars per barrel, or in Ohio on cars for 35 cents per barrel.
Have made for each ship a certain number of iron air-tight storage cylinders, the number to be regulated by the rules that govern the coal supply.
Put an oil burner in each boiler, to be connected with and supplied by these storage cylinders, which in turn are fed from the tanks on shore before the ship eaves the harbor.
Keep steam in one boiler continually, and this will call for very little oil if the steam supply is not drawn upon, and the amount of oil can be regulated so as to keep a certain amount of steam with no waste of fuel Now, then, an order is given to steam ready for action.
The boats using oil fuel will be ready and off long before the coal burners will have steam up.
Steam can be raised this way as quick as if generated by natural gas. This system of burning oil can be used to steam up with only, and then use coal, or if desired, coal and oil can be burned simultaneously.
The greatest danger to be overcome would be to store these oil cylinders where they could not be reached by tbe enemy's shot.
The cost of firing with oil wholly would reduce the firemen's pay roll three quarters.
C. L. Gibbs. Titusville, Pa.

A Valve for Electricity.

A device which may be of considerable value is de scribed by M. Neyreneuf in the Journal de Physique as an electric valve, by means of which the current can be sent in one direction, but not in the other With a voltameter constructed of two aluminum elec trodes, dilute acid as electrolyte, and an alternating current, he found that pure hydrogen was evolved at both electrodes, but on making up an arrangement with one electrode of aluminum and one of mercury, using distilled water as electrolyte, the current was found to pass in one direction only

EXPERIMENTS IN MAGNETISM.

BI \&EO. A. HOPKINs.

When a piece of soft iron is placed in direct contact with the poles of a permanent magnet, the magnetic force is nearly all concentrated upon the sof tiron, so that there is very little free magnetism in the vicinity of the poles of the magnet. This may be readily shown

Fig. 1,-EFFECT OF THE ARMATURE.

by arranging a U-magnet parallel with the magnetic meridian, placing in front of and near the poles of the magnet a compass so adjusted with reference to the poles as to cause the needle to rest at right angles to the magnetic meridian, then applying to the poles of the magnet a massive armature. It will be found that the needle, under these conditions, immediately tends to assume its normal position, showing that the power of the magnet over the needle has been, to a great extent, neutralized. By rolling a cylindrical armature along the arms of the U-magnet, as shown in Fig. 1, it is found that as the armature recedes from the poles of the magnet the influence of the magnet upon the compass needle is increased, while the movement of the armature in the opposite direction diminishes the power of the magnet over the needle.
In Fig. 2 is illustrated an example of temporary mag netization by induction, and of the effect of a perma nent magnet on the iron so magnetized, showing that the iron bar inductively magnetized acts like a permanently magnetized needle. The soft iron bar is freely suspended, and receives its magnetism from the fixed magnet. The end of the suspended bar adjacent to the

Fig. 2,-PERMANENT MAGNET AND BAR MAGNETIZED BY INDUCTION.
N pole of the magnet becomes S, as may be shown by presenting to it the S pole of another permanent magnet. The S end of the swinging bar will be immediately repelled. If the S end of the permanent magnet be presented to the opposite end of the suspended bar, the reverse of what has been described will take place, i. e., that end of the bar will be attracted, sbowing that its polarity is \mathbf{N}
In Fig. 3 is illustrated an experiment showing the neutral effect produced by induction from two dissimilar magnetic poles. A bar of soft iron is arranged near
but not in contact with, the pole (say the N pole) of a magnet, so that it becomes magnetized by induction to such an extent as to support a nail. The N pole of the magnet produces S polarity in the end of tbe soft iron bar adjacent to it and N polarity in the opposite end. The S end of another permanent magnet presented to the same end of the iron bar will produce exactly the oppositeeffect in the bar, and will, therefore, neutralize the magnetism induced in the bar by the first magnet and cause the nail to drop.
A similar effect is produced when the iron bar is in actual contact with the N pole of a waguet and the \mathbf{N} pole of another magnet is brought into contact with the opposite end of the bar, as shown in Fig. 4. The nail will adhere to the bar when either magnet alone is in contact with the bar; but when dissimilar poles are brought into contact with opposite ends of the bar, its middle portion becomes neutral, and is no longer able to support the nail.
When like magnetic poles are presented to the ends of the iron bar, as in Fig. 5, a strong consequent pole is

Fig. 3.-NEUTRALIZING EFFECT OF AN OPPOSING POLE.
developed in the center of the bar, which isof thesame name as that of the ends of the magnets touching the bar.

Luminous Cascade for the Exposition.
At the Academy of Sciences M. Troost described an apparatus, newly imagined by M. Beckman, for illunninating large size jets of falling water. Colladon's method, hitherto employed, consists in the use of a hollow cylinder containing water under pressure. Several holes allow the water to flow down in the shape of eral holes allow the water to flow down in the shape of
parabolic jets, and little windows on the opposite side of the cylinder enable the operator to throw a pencil of electric lightinto the axis of each one of the jets. The effect, probably known to most readers, says the Chemist and Druggist, is exceedingly fine, as the light follows the course of the water, and each jet sparkles like liquid fire. Unfortunately the plan will not work with high pressures, when the jets are, for instance, thrown much farther than one meter from the cylinder. In the new system devised by M. Beckman the jets will be, owing to an ingenious form of faucets, hollow instead of solid, and the electric light will be projected into the central space. It has been found that streams of water may thus be illuminated throughout, eveu when thrown $41 / 2$ or 5 meters from the cylinder or fountain, and a brilliant night display is expected in the exposition gardens.

REMAREABLE LOCOMOTIVE EXPLOSION IN NORWAY
We give an engraving of a remarkable explosion of a locomotive, which took place at Strommen, December 22,1888 . By the force of the explosion the locomotive was thrown upward and capsized, and came down bottom up, alighting upon an adjacent locomotive that was standing on the track. Our illustration was prepared from a photograph of the two locomotives as they appeared soon after the occurrence.

New Antldote for Morphine.

Professor Bokai, of Klausenberg, believes that the best antidote for morphine is picrotoxin. The two substances act in an opposite manner on the respiratory center, morphine paralyzing its action, while small doses of picrotoxin increase it. As in poisoning by

Fig. 4. -NEUTRAL POINT BETWEEN UNLIEE POLES.
morphine death occurs from paralysis of the respiratory center, and as picrotoxin hinders tbis paralysis, it follows that picrotoxin is likely to be of real use in morphine poisoning. In morphine poisoning, diminution of the blood pressure plays an important part, but picrotoxin enjoys the property of stimulating the vasoconstrictor center of the medulla and thus counteracts the effect of the morphine. Once again, the action of these two substances on the cerebral hemispheres is also of an opposite character. As atropine, the only known antidote of morphine, cannot be administered in large doses, it is certainly desirable that other means of combating morphine poisoning should be sought for. Professor Bokai thinks that picrotoxin may be useful as a substitute for preparations of nux vomica, and he also believes that it will be found of value in preventing chloroform aspbyxia.-Lancet.

Dredging Sand and silt

ㄱ In LesAnnales des Ponts et Chaussees, M. Boulle describes a form of dredger in which the removal of sand orsilt is effected by an injection of compressed air instead of by suction. The machine consists of a tube passing through the water to the bottom to be dredged, and a compressed air injector placed at the bottom and at right angles to another pipe. The injector surrounds the main tube, and is fitted with a number of small mouthpieces producing a flow of a mixture of

Fig. 6.-CONBEQUENT POLE.

water, silt, and air up tbe main tube. In a trial at Saumur, on the Loire, the main tube was 4 inches in diameter, and sand was dredged from a depth of 15 feet, lifted $51 / 2$ feet above the water level, and finally transported to a distance of 50 feet. The compressor was of 15 horse power, which drew in 3.53 cubic feet of air per second, and by it raised 130 cubic yards of sand-burdened water per hour, the sand constituting from three-tenths to four-tenths of the whole volume. At Havre a 9 inch tube was used, and the depth was from 26 feet to 30 feet. Using a compressor of the same power as at Saumur, 300 to 520 cubic yards of silt and water were lifted perhour, the silt forming one-quarter of the whole. The dredger is most efficient in soft silt, sand, or gravel, but stones weighing 22 pounds have been removed by it, using tbe9 inch tubes.

It is a porion mores. induction that extensive forests or promote the depression of moisture in the atmosphere, and that the removal of such growths, whether by felling or conflagration, makes a region dry and unfruitful, while their judicious cultivation and tendence keeps up or even creates the fertilizing rain supply. Of late years this view has been disputed, and at the present moment there is a controversy being carried on, mainly between German and American climatologists, as to whether it has any foundation in fact-whether it is not, like some other popular inductions, due to a misreading of natural phenomena or to a transposition of effect and cause. Gunther and Ebermayer, supported by English observers like Blandford, whose East Indian experience supplies many of the most significant data to the upholders of the popular view, are quite convinced that that view will ultimately be the scientifically accepted one. They point to the well known tree in the Canary Islands, which, standing alone, absorb from the sea breeze the moisture with which it bedews the ground beneath they cite the so-called rain trees of the tropics, which condense the water vapor in such volume that they give it out in a kind of modified showe bath, which converts the soil around them into a swamp; and they adduce the authority of Fautrat, who ba made comparative statistics of the condensing power of the different trees in European forests, and who shows that the best condensers are the firs whose needles contain more than 50 per cent, while the foliage crowns of the leaved timber detain at most 42 per cent, of the water that descends on them.
These highly significant facts, how ever, do not constitute scientific proof the materials for which are only of late years beginning to be compiled ander the requisite conditions of period and locality. So far as they have gone the researches of Brandis and Stud nika may legitimately be claimed as tending to a provisional confirmation of the popular induction; and if the are ever to be set aside, or even modi fied, it must be by better observation and argument than those employed by their more strenuous transatlantic opponents. Even the ablest of these, Mr. Henry Gannett, does not deny a certain meteorological influence of forestcultureon soil prodactiveness. He admits that land under tillage retain its moisture better than land not so treated, and that woods equalize tempera.tures and air currents and act as water reservoirs. But some of his divergences from the popular view are surely inadequately reasoned out; for example, that the great superficial area made up by leaves favors evaporation and sends back to the air a large proportion of the rain which, unin tercepted, would go straight to the soil, which is thus impoverished of its due supply of moisture. To this objection Ebermayer can rejoin that evaporation in the forest is two and a half times less than outside it; nay, Clave makes it as much as five times less. If we take into account the protective covering of the soil caused by the leaves that have been shed upon it, then, compared with the evaporation from the free or woodless ground, we get a diminution of more than 80 per cent! The practical question, however, lies not so much in the increase or diminution of the rainfall as in its distribution.
Van Bebber, in his work on the "Influence of Forest Growth on Climate," shows that wood culture increases the rainfall, but that it acts more favorably on the weather by promoting an equable distribution of the moisture and by obviating extremes of temperature. "This effect," says one of Gannett's German critics "is left completely out of account in the American's investigations, and it is therefore quite possible that reafforesting, without notably increasing the annual volume of rainfall, may yet have considerably enhanced the fertilizing effoct of the prairie showers. The old experience that the destruction of woods accentuates climatic extremes, and more especially enhances the danger of floods, has not thus far been contradicted Nay, it receives calamitous confirmation in the disas ters which, in the south Tyrol, for example, recur so frequently, and which it is vainly sought to prevent by artificial works." For the medical climatologist, as well as for the agriculturist, the further prosecution o
the researches on the relation between forest growth and rainfall now so vigorously carried on in Germany is as practically important as it is theoretically interest ing. -The Lancet, London.

THE TWIN PALMS AND ANCIENT WELL OF LOS

 ANGELES.The accompanying engraving is from a photograph taken by our correspondent, Mr. A. W. P. Kinney, of Los Angeles, and shows the "Twin Palins" on San Pedro Street, Los Angeles, Cal. Mr. Kinney says:
These trees are of the fan palm species, and are gigantic in size, being probably the largest in the United States.

It is supposed they were planted by some of the mission fathers who founded the old Spanish missions on

THE TWIN PALMS AND ANCIENT WELL OF LOS ANGELES.

One embarrassment attending the colporteur work in Japan is due to the fact that any kind of trade has always been considered as degrading here. Persons engaged in trade are looked upon as beneath ordinary laborers, and next in rank to coolies or beggars. As the result of this, the business of the country is mostly in the hauds of unscrupulous persons, with no reputa tion to gainor lose, and is conducted in a very loose and unsatisfactory way. There are but few merchant who appear to have a high sense of honor and a fixed price for their goods. The price demanded is usually adjusted to the supposed ability of the purcbaser or the present need of money on the part of the seller. No foreign firms will trust the Japanese in business trans actions, and every large establishment in Yokohama employs the Chinese to handie the money and watch for fraud.
Bible selling is also a kind of trade, and men who peddje Scriptures are generally classed with hucksters of all sorts. Those who engage in this business are usually without other means of support, and have no experience in onr work or much idea of what we ex pect of them. They naturally adopt the usual methods of trade; and there is no end of trouble in teaching them to keep their accounts properly and deal honorably with all. It is a new departure in business to adhere strictly to the price marked in a book, and we have detected some of them putting in a new price on top of ours. It does not follow from a man's joining a church in Japan that he understands the art of selling Bibles after the methods in vogue at home. It is a matter of fact that Bibles are being sold in Tokio and Osaka constantly at less than our retail prices. One firm even advertises them at about twenty per cent less than the catalogue rate. Where they can procure them and by what means is more than I can tell. Of course, they refuse to let us know the process. $-H$. Loomis, in the Bible Society Record.

To Make sheet wax

Dr. H. E. Beach, Clarksville, Tenn. says: Take of pure, clean wax any where from one to five pounds, put in a tin bucket or any deep vessel, with clear water sufficient to fill it within two and a half inches of the top. Set on the stove till thoroughly melted, then set aside until partially cooled; skim all the air bubbles off. Then fill a smooth, straight bottle with ice water, a bucket of which you should have by you. Soap the bottle and dip it deliberately in the solution two or more times, according to the thickness you desire your wax. After the last dip, as soon as the wax hardens to whiteness, cut a line through it and remove it from the bottle as quickly as possible. Spread to cool and straighten out smooth while warm. Continue this process until all the wax is made into sheets.
Any office boy or girl can do the work, and make enough sheet wax in an hour-equal to any you can buyto last a whole year. Paraffine, or paraffine and wax, may be made in the same way, and colored and perfumed to suit one's fancy. The water
the Pacific coast. They may be classed among the wonders of sunny California.
They are about ninety-five feet in height and seven feet in diameter. Their age is variously estimated, but it is safe to say that they are over one hundred years old.
During this period they have witnessed the growth of Los Angeles from a Spanish pueblo of adobe huts to the metropolis of Southern California.
Near these palms there still may be seen a well of great antiquity, whose waters have refreshed, perhaps, many of the ancient Aztecs, the children of the sun.
The well and palms together form an interesting study for the historically inclined tourist and scientist, as well as the botanist and antiquarian.

Mr. Cof F. Youne; for many years vice-president and general manager of the Delaware and Hudson Canal Company, died at Thomasville, Ga., March 22, at tbe age of 65 . He was appointed superintendent of the canal department of the company in 1865, and five years later became general manager of the railroad and canal systems, which position he held until three years ago.
get the best results.-Archives of Dentistry.

Steel Pipe.

Public attention in this country baving been called to the experiment of steel pipe manufacture in Glasgow, Scotland, the Ohio Valley Manufacturer says: "While our English cousins have finally 'caught on' to what is destined to be a great and important industry in the line of pipe manufacture in the world, it may not be entirely inappropriate to inform them that what to them is a new discovery is an accomplished facton this side of the ocean. The manufacture of steel pipe has passed its experimental stage here, and is now both a successful and an acknowledged article of commerce. Its manufacture in this city was begun in August, 1887, and since tbat date some 15,000 tons have been manufactured and sbipped into nearly every State and Territory in this country, and large quantities have been sent to Merico. The Riverside Iron Works, of Wheeling, were the frst, and up to the present time are, we believe, the only, manufacturers of steel pipe in America."

Normal sleep an Effect or Intelbitioia.

 In the January and April numbers of the Archives de Physiologie Normale et Pathologique, Dr. BrownSequard has a paper in which he adduces the reasons that have led him to the conclusion that normal sleep is the effect of an inhibitory act. He says:The theory according to which sleep depends upon a vascular contraction taking place in the cerebral lobes is, as I have long since shown, absolutely false. In fact, I have found that guinea pigs and rabbits, after a section of the two great sympathetic nerves, in the neck, sleep as if the cerebral circulation were in a normal state; that is to say, when it can cease through vascular contraction. The same is the case with dogs and cats after the upper cervical ganglion has been removed from one side, and the vago-sympathetic has been cut from the other. When, through these operations, the blood vessels of the brain have been paralyzed, it is evident that the sleep which then occurs not only does not depend upon a cerebral anæwia through vascular contraction, but may also exist despite the opposite state, that is to say, a hyperæmia, even a notable one. It is therefore certain that sleep may exist whether there is little or whether there is much blood in the vessels of the brain.
The loss of consciousness in sleep, as in numerous other accidental or pathological circumstances, is the effect of an inhibition of the cerebral faculties. To establish this opinion, I rely (1) upon direct proofs showing that the loss of consciousness, in the case of a puncture of the bulb and in other cases also, is beyond all dispute due to an inhibitory act ; and (2) upon all that is known of the circumstances that precede or accompany sleep.
On this subject I shall limit myself to the statement that, just as in every inhibition, there exist, when sleep occurs and as long as it lasts, irritations at a distance from the organs in which the cessation of activity takes place. We find a proof of the existence of irritations in the following particularities: (1) What is called the need of sleeping, which consists in certain sensations, and particularly a feeling of heaviness in the eye; (2) persistent contraction of the pupil ; (3) contraction of the palpebral orbicular muscles; (4) contraction of the inner and upper rectus muscles; (5) contraction of the blood vessels of the retina and of the cerebral lobes.
I add that, besides the inhibition of the psychical faculties, there is a special inhibition of certain muscles (muscle of the upper eyelid and muscles of the neck), and perhaps also a degree of inhibition of the heart and respiration. These various inhibitory phenomena associated with sleep well show the existence of an irritation somewhere, and perhaps at several points, dur ing this periodic cessation of the intellectual activity.
The production of sleep in man in the experiment of Fleming and Waller (consisting in a pressure exerted at the same time upon the carotid, cervical sympathetic, and pneumogastric nerve) well shows that sleep may proceed from a peripheric irritation. To this fact, it is of consequence to add that which is well known regarding the somniferous influence of certain gastric irritations.

As for the seat of the irritation or irritations caused by sleep, I can say no more than this: (1) It is not probable that it is located in the brain properly so called, for, as we know, birds (especially the pigeon) sleep and awaken periodically after, as well as before, the ablation of their brain ; (2) the reflex contractions and the paralytic inhibitions which are associated with sleep, if we consider them as due to irritations proceeding from the same point, much more probably have their seat in the excitable parts of the base of the encephalus than in the cerebral lobes.
Before concluding, I shall recall the fact that, in the epilepsy that I produce in guinea pigs, the loss of consciousness, like the convulsions, is easily caused by a peripheric irritation, and that it is thus so caused sometimes in the attacks of cerebral epilepsy in man. I shall recall also that the loss of all cerebral activity may occur through inhibition, as I have shown, under the influence of irritations, even very slight ones, of the base of the encephalus or of the spinal inarrow, but especially of the point that Flourens has named the vital center.

Frow all these facts, there is no doubt that irritations, with various seats, exist during sleep, they having begun a little before the moment at which it supervenes. There is, then, every reason to accept as a fact that the phenomenon of ordinary sleep, that is
to say, the loss of consciousness, is the effect of an inhibitory act.-Revue de l'Hypnotisme.

The Electric Age.

Professor Elisha Gray remarks that electrical science has made a greater advance in the last twenty years than in all the 6,000 historic years preceding. More is discovered in one day now than in a thousand years
of the widdle ages. We find all sorts of work for electricity to do. We make it carry our messages, drive our engine, ring our door hell, and scare the burglar we take it as a medicine, light our gas with it, see by it, hear from it, talk with it, and now we are be ginning to teach it to write.

CEBRCORIAL JET GIPHON.

The ordinary jet siphon, reproducing to a certain extent the experiment of the fountain $i n$ vacuo, is one o more than ordinary interest. A descending column of water, acting as one member of a siphon, is caused to rarefy the air contained in a cylindrical vessel. At the same time water admitted through a jet in the base of the vessel forms a fountain. The descending column way be quite long, and there is no difficulty in producing a fountain two or three feet high, provided the vessel is large enough. This factor of height of fountain depends upon the length of the descending column, and is greater or less as the latter is longer or shorter. The water can never rise in the fountain to a height equal to the length of the actuating column, on account of friction,
In the cut accompanying this article a very pleasing variation upon this experiment is shown. The descend ing and actuating column of fluid is composed of mer cury. As this fluid is about thirteen times as heavy as water, a two-inch column is more efficient than a two-
foot column of water. The general construction of the apparatus hardly needs i. general construction tube may be half or three quarters of an inch in internal diameter and fifteen inches high. At its upper end it is sealed. Its lower end is provided with a perforated

India rubber cork.
Through $t h$ e aper-
ture in the cork a
small tube about six
inches long is passed.
At its upper end this
tube is drawn out to
a fine jet, great care
being taken to have
it true and symme-
trical, so as to deliver
a straight jet of wa-
cer. Sealed into the
side of the large tube
is an outlet tube,
carried downward as
shown. The end of
this is bent upward,
or, what is better, it
is left straight, and
a U shaped piece is attached to it by a piece of Iudia rubber tubing. The last construction is the less fragile of the two.
To use it, the India rubber cork is reis inverted, and mercury is poured in to a depth of two or three inches. The cork, with its jet tube, is then replaced, and the finger is held firmly over its open end. The whole is then quickly inverted so that the end of the U-shaped discharge tube is simultaneously brought into or over a beaker or other vessel. Most of the mercury runs out, the bent tube preventing the access of air. Then the end of the jet tube, which hitherto has been kept closed with the finger, is placed under water contained in a second vessel, and the finger is removed. At once, under the influence of atmospheric pressure, the water enters the partially exhausted tube, and rises to its top, forming a fountain. The rest of the mercury gradually escapes, but the jet, if small enough, may last for several minutes.
The interesting feature is involved in the action of a column of liquid but a few inches long producing a jet over a foot in height. It represents the correlative shown in the Scie of the direct mercurial $23,1886$.

Paraldehyde as a Bypnotic.

Dr. John Gordon gives in the British Medical Journal a valuable contribution to the study of paraldehyde, which is of special interest to us from the fact that the writer, before entering the medical profession, was a pharmacist of note in the North, and still retains his connection with pharmacy. The study of which we have here the results formed, we understand, the subject of the writer's doctorate thesis, and, as it places the hypnotic in a favorable position as a remedy, it is likely to create new interest in and further trial of paraldehyde. The drug was introduced by Dr. Cervello, of Palermo, in 1883, and after a year or two's fair trial has fallen into the rank of occasionally used remedies. Dr. Gordon, in his paper, shows that even in healthy individuals it produces short sleep, and in full doses-about 40 minims-given to individuals suffering
ber. One good feature noticed was that the same dose was taken for some months with equally good hypnotio results; there was no marked craving for the drug; and as it does not, except in large doses, bave a hypnotic effect on persons not suffering frow sleeplessness, there is no probability of its abuse.
The action of the drug is speedy, patients generally falling asleep within ten minutes after its administration, and they may be aroused while under its influence without any disagreeable or confused sensations. It is not liable to disorder the digestion, although in many cases it is gently laxative in its action. No loss of appetite follows its use, nor headache, nor thirst. The most serviceable dose for adults is frow 45 to 60 minims. Dr. Gordon's method of prescribing the drug is to well dilute it with cinnamon water, addinga little sirup of tolu and compound tincture of cardamoms. Sirup of lemon is also an agreeable combination. There sa good formula of this nature in "The Art of Dispens ing." Dr. Gordon's paper contains, we way add, a very full account of the physiological action of the drug.-Chemist and Druggist.

The Paraldehyde Habit.

A case of this kind is described as occurring in the person of a maiden lady of forty-t wo years of age who, through the assistance of her physician, was conducted from the use of morphine and chloral into that of paraldehyde, and he could get her no further. All at tempts at abandoning the pernicious habit have been utile. The lady now consumes one ounce or more of the drug daily, and has taken as much as twenty ounces in twelve days. She cannot sleep unless under its influence, and when deprived of its use for a few hours she is languid, restless, wiserable, suffering physical pain and mental depression, and she has no ap petite. Unilike morphine deprivation, she has no ex hausting diarrhosa, muscular tremors, or "electric pains," when without the paraldehyde, but, like al emedies which exercisemarked psycho-neural restraint after long-continued use, the patient misses, in a marked and painful manner, the sudden withdrawal of the long-accustomed nerve impression. She has somewhat prematurely reached her menopause, and some of her irritability and debility way be due to that; but he is irritable, exhausted, and collapsed when the drug s not circulating in her blood.-Alienist and Neurol.

The National Aeademy or Sciences.

This body held its annual meeting this year at the capital of the country, and the city of Washington was, or several days after April 16, a sort of Mecca of American scientists. The first paper read on the opening day was by Prof. Charles S. Pierce, of the Coast Survey, on "Sensations of Color." Another paper, by Prof. Wolcott Gibbs and Hobart Hare, gavean account of the methods and results of a systematic study of the action of differently related chemical compounds upon animats. Prof. Cope read a paper describingthemam inals, reptiles, birds, and other animals found in fresh water deposits in Oregon, Nevada, and Utah.
At Wednesday's session the annual election of officers took place, Prof. O. C. Marsh, of New Haven, the present incumbent, being re-elected president, while Prof. S. P. Langley was elected to succeed Prof. Simon Newcomb as vice-president. The papers read included one on "Composite Chronology," by Prof. D. P. Todd, of Amherst, one on the "Determinaof Gravity," by Prof. C. S. Pierce, and one on "North American Proboscidæ," by Prof. Cope.
At a following session six important papers were read, one by Asaph S. Hall, Jr., on "The Mass of Saturn," three by Professor Remsen, on "The Nature and Composition of Double Halides," "The Rate of Reduction of Nitro-Compounds," and "The Connection between Taste and Chemical Composition, ${ }^{\text {² }}$ one by Professor Mendenhall, upon recent researches in atmospheric electricity, and one by Professor A. A. Michelsen, on " Measuroment of Light Waves."
On the last day of the meeting, April 19, Prof. Michelsen read an interesting paper on "The Feasibility of the Establishment of a Light Wave as the Ultimate Standard of Length," and Prof. S. C. Chandler, of New Haven, one on the general laws pertaining to stellar variations. Dr. J. S. Newberry, of Columbia stellar variations. Dr. J. S. Newberry, of Columbia on the cretaceous flora of North America, and another paper was by Prof. Cleveland Abbe, on "Terrestrial Magnetism."
Prof. Asaph Hall was re-elected secretary of the Academy, and the council for the ensuing year are : Prof. Geo. J. Brush, mineralogist, of New Haven; Prof. B. A. Gould, astronomer, Cambridge ; Prof. Ira Remsen, chemist, Johns Hopkins University ; and Gen. M. C. Meigs, Washington.

The newly made academicians include two astonomers, Prof. Lewis Ross, of the Dudley Observatory, Albany, N. Y., and Prof. Charles S. Hastings, of the Sheffield Scientific School, New Haven : one paleontologist, Dr. Charles A. White, of the United States Geological Surv зу ; one b tanist. Prof. Sereno Watson, of Harvard; and a chenist, Prof. Arthur Michels, of Harvard; and

recently patented inventions.

 mechanical.Lath Sawing Machine.-David S. Abbott, Olean, N. Y. This invention covers a novel
combmation and arrangement of parts in a machine combination and arrangement of parts in a machine
whereby, by reason of the angie of the forward sbafts. the feed rollers cause the material fed to draw toward the guide, even when the saw is dull, and prevent the ing the ends of the lathe from being made thin.
Windmill. - Edgar C. Beebe and Riley Stoner, Glen Elder, Kanas. This invention pro-
vides simple and eficient means for the automatic advides simple and efficient meane for the automatic ad-
justment of the windwheel in accordance with the force Justment of the windwheel in accordance with the force
and direction of the wind, without a vane, and for the automatic government of its work, ov that the s.
the windwhee. will remain practically constant.
Lace Paper Machine. - Giuseppe Paci, New York City. Combined with a pattern wheel are two wheels having wooden rime, with means for
bolding them in frictional contact with the pattern wheel, together with a roller having an elastic rim held on top of the pattern wheel, the machine aleo having
other novel features, while the paper is paseed through other novel features, while the paper is passed through a box containing soapstone powder, with whic
coated that the cut strips are easily separated.

Electrical.

Night Signaling Apparatus.-Emil Kaselowsky, Berlin, Germany. This invention covers a means of sigualing at sea by differently colored elcc-
tric lamps brought to view singly or in groups, the tric lamps broupht to view eingly or in groups, the
current being switched to and from the lampe and a current being switched to and from the lamps and a
supplementary resistance to produce the signals, with supplementary resistance to produce the signals, with
means whereby the current may be maintained at a con stant reistance, momentary interruption and extin-
guishment of the lamps being prevented. guishment of the lamps being prevented.
Electric Clock Winding.-Heinrich Rabe, Hanau, Gcrmany. This is an electrical mechanism for winding clocks having tortion or rotary pendulums, the mechanism being adapted for raising the weight or resetting a spring which drives the clock-
work, when tha actuating power has been exhauated, work, when the actuating power has
tbe apparatus working automatically.

metallurgical.

Zinc Furnace.-Gustaf M. Westman, New York City. Combined with a reducing furnace are regenerators connected alternately therewith, conden-
sers connected with the reducing furnace, coolers connected with the condensers, and a blast engine connccted with the coolers and the regenerators, with other
novel fcatures, to promote the reduction of iron or zinc novel fcatures, to promote the reduction of iron or zinc
ores, and the manufacture of phosphor, sodium, and ores, and the ma
other substances.
Dephosphorizing Iron Ore.-Thomas F. Witherbee, Port Henry, N. Y. This is a process
which consists in mechanically separating apatite or which consists in mechanically separaling apatite or
phosphorus-holding compounds from iron ore, then phosphorus holding compounds from iron ore, then
disoolving the remaining small percentage of apatite with dilutc sulphuric acid, and finally wasbing the ore with water.
Hydrocarbon Burner.-Frank B. Meyers, Fort Plain, N. Y. 'This burner is provided
with a casing to the front end of which is secured a bell-mouthed tube, usually passing through secured a ofll-mouthed the furnace, whereby air under pressure and atomized oil are vaporized to make a gas to produce a high heat in the furnace, the quantity of air and oil to be mized being adjusted by a valve and regulator.

Miscellaneous.

Cuff Holder.-Stephen V. Thomas, West Branch, Mich. The holder is adapted to fit in the
eyes or loops of a cuff button, and has an offset or eyes or loops of a cuff button, and has an offset or shoulder thatsprings past the eye or loop of one button,
while on the opposite side of this eye or loop it has a spring that flexes or bows outward to hoid the offsct or shoulder out of alignment with the button eye or loop.
Refrigerating Tower. - Alfred R. Pechiney, Salindres, France. This invention covers a tubes through which cold water is kept flowing for the cooling of free chlorine and vapor of hydrochloric acid,
or any mixturc of these bodies in the state of gas, the or any misturc of these bodies in the state of gas, the
invention covering various novel details of construction invention covering various
and combinations of parts.
Grain Meter.-Valentin Weber and James R. Harrison, Princevalle, Ill. This is a device for use in connection with an elevator of any approvad
construction, whereby the grain box is automatically construction, whereby the grain box is automatically
dumped whenever a fertain weight is obtained, the ripping device acting automatically and receiving it motion from the continuous motion of the eievato

LA
Lamp Extinguisher.-Alexander E. McLeod, Hallock, Minn. This is a device of simple construction by which, when the light is extinguished,
no gas or smoke can escape from the wick and pass no gas or smoke can escape from the wick and pass
into the room, and when the extinguisher is left in closed position there will be no evaporation of oil.
Side Curtain for Buggies.-Joseph W. Thomas, Sargent, Neb. This is a curtain constructed of indepcndent upper and lower section button holes along their upper and lowcr margins, and being made to overlap, making an effective rain curtain

Wagon Brake Lever.-William A. and Evoch G. Haney, Media, Kansas. This lever ha link, the connecting rod extending to the brake shoe providing for the application of power to the greatest
advantage at the time when the brake shoe is brought against the face of the wheel.
AxLE. - Edward M. Allen, Stafford, Md. This axle is made with connection blocks and
upper and lower shafte secared rigidly thereto, with
other novel featares, being intended especially for ase
in connection with automatic brake devices forming the subject of former patents issaed to the same in-

Clevis. - Arthur W. Rumsey, Kiowa, Kaneas. Combined with clevis bars or sections having extended portions lapped together, with coincident openings, is an elongated link secured in the openings
and made to secure the sections snugly together or t and made to secure the sections snugly together or to
permit their movement apart when adjusted relatively permit th
thereto.
Gate.-Thomas Tyson, Mound City Mo. This invention covers novel features of construc-
tion and combinations of parts in a gate designed to tion and combinations of parts in a gate designed to
swing outward from two sides, whlle the gate may be swing outward from two sides, whale the gate may b
opened from a distance by a pedestrian or a party in vehicle, the means for operating it being simple, durble, and readily manipulated.
Wire Fences. - Dwight H. Scott Flora, Dakota Ter. This invention provides a devic or expeditiously taking up the slack in vire fences and broken strand of wire may be united without injury to tension.
Store Order.-Charles S. Hempstead, Fairchance, Pa. This invention covers a form of order who sell goods in small quantities that aggregate in value a limited and specified sum.
Goods Delivery.-William H. Bailey, Salford, Lancaster County, England. This invention prepaid articles in which a revoluble cytindrical or prepaid articles in which a revoluble cylladrical or
other shaped magazine is employed to hold the goods
to be delivered, the improvement enabling the indicator to be delivered, the improvement enabling the indicator
dial to be setatan oblique angle to tbe machine, instead dial to be setatan oblique a
of vertically or horizontally.
Cheese Cutter. - Bernard Barry, Schenectady, N. Y. This is an improved knife formed serve as a straigbt cutting edge, while one of the longe side edges of the plate is extended laterally at a right
angle and provided with an oblique cutting edge, the knife being especially adapted to cnt wedge-shaped
slices
Lock Hinge.-Benjainin F. Bough of Randolpb, Neb., and William Cashner, of Pleasan Hill, Mo. This hinge consiste of two sections connectderiorly a pon circular in cross section, while the other
the teriorly non circular in cross section, while the other
section has a spriug-actuated bearing plate pressing section has a spriug-actuated bearing plate pressing
against the non-circular knuckles, with a casing in which the plate and its actuating epring or spring

Advertising Device.-Andrew Dahlstrom, Ashton, Micn. Tbisis a display device consisting of a cylindrical body baving a series of opening men a tape or ribbon npon which are printed advertise alignment with one of the openings when the ribbon is revolved, one roller unwinding while an opposite roller
Dental Matrix.-Christ. A. Meister, Alentown, Pa. This is a matrix for teeth, consisting
of band having a body for engaging a tooth, and in egral extension of the band consisting of slotte inclined side pieces, a crosshead engaged in the slots o the sides, with means for actuating the
be used on a tooth while it is being filled.
SPECULUM. - William Molesworth Brooklyn, N. Y. This inveution provides an imple-
ment by means of which the wall of a passage or cavity ment by means of which the wall of a passage or cavity
may be dilated and access had to any portion of the may be dilated and access had to any portion of the
wall while the paseage or cavity is held in dilated position.
Insect Trap.-Jennie G. F. Johnson, Monnt Vernon, N. Y. Tbis invention covers a bait bo or receptacle having a surrounding trough adapted to
receive a poisonous substance, over which insects receive a poisonous substance, over which insects
cannot readily pass, the whole being inclosed in structure having an overhanging hood, the
Extracting Copper from Pxrites. Josef Perino, Chariottenburg, near Berlin, Germany.
This invention covers a process of obtaining copper his invention covers a process of obtaining coppe
rom nopper pyrites, by heating the pyrites mixed with nitric salts of iron to a temperature of about 200° Centigrade, whereby sulpbate is produced, lisiviating th

Ore Roas'rer. - Charles J. Fendel anaconda, Montana Ter. This roaster hasan outer and an inner cylinder connected by tubes, with imperforate necting the forward enders, the tubes alternately conwith the rear end of a passage on the other cylinder, and the forward end of the latter passage with the rear end of the next one ou the first cylinder, whereby a
continnous serpentine passage is formed, making a continnous serpentine passage is formed, making a
roaster designed to economically calcine the mostre fractory ores.
Pile Driver.-Thomas J. Harriman, New Paris, Ind. This is an apparatıs for driving pipes, piles, and fence posts. the invention providing and effectively manipulated, and which is so designed that the hammer will at all times strike the pile squarely upon the top, and not mise a stroke by reason of the pile getting out of line.
Tank Valve. - Nathaniel W. Krouse, Washington, Pa. This is a cut-off valve especially he pipeline automatically as soon as the oil has bee drawn off into the pipe line with which the tank is connected. a spring-pressed valve being located in the pipe line, a bolt engaging the stem of the valve, and a float operating on the bolt to withdraw it when the oil in he tank reaches a low level.
Gasoline Stove.-Willia,m P. Dun-
constrnction and combination of parts in an in impored
gasoline stove, particularly with reference to the valve shaft lever and connection piece, whereby the latter will not slip when properly applied, the construction
being simple and effective. eing simple
Froit Drier. - Frederick Altman, SanJose, Cal. The drying chamber has a ventilating ine with damper at its top, a central vertical air pipe with apertures opening into the drying chamber, the an air supply pipe having a regulating valve, a furnace at one side of the drying chamber, in which is a circular hot arr flue, with
the hot air flue.

Vignetting Attachmeni. - Joseph R. Tewksbury, Fort Madison, Iowa. This is an attachment for photographic printing frames, in which an independent frame secured to the face of the printing
frame is provided with masks of cardboard or other rame is provided with masks of cardboard or in rela-
thin material, certain of which are adjustable tion to the others, whereby the effect of the light wil be broken or softened, a variety of changes being mad

Dyeing Vat. - James W. Greaves Providence, R. I. Combined with a stationary vat is a
perforated basket, with a pressure pipe extending from perforated basket, with a pressure pipe extending from
the bottom to the top of the basket, through which the dyeing liquid is forced by steam or pump pressure, the pparatus being adapted for and and to avoid poling
Well Curb.--John T. Lenoir, Columbia, Miss. This invention provides an attacbment
designed for use in connection with any well curb, whereby the water drawn may be delivered withou spilling, while the well bucket and rope need not be handled in drawing and delivering the water to a pail and whereby the well may
cover locked in position.

SCIENTIFIC AMERICAN

bUILDINGEDITION.

APRIL NUMBER.-(No. 42.)

TABLE OF CONTENTS

1. Plate in colors showing elevation in perspectiv and floor plans for a dwelling costing about fou thousand dollars. Sheet of details, etc.
2. Elegant plate, in colors, of a residence of moderate cost, with fioor plans, details, etc.
3. Perspective and floor plans of a modified Queen Anne cottage, at East Orange, N.J. Cost, six thousand five hundred dollars.
A cottage at East Orange, N. J. Plans and per Page engraving of a stairway in the Chateau de Chantilly. By Mr. H. Daumet.
4. Sccnes at Zaandam, Holland, where the C
Peter the Great learned shipbuilding in 169%.
5. Engraving of the new station and offices of th Engraving of the new station and ofices
Great Indian Peninsular Railway, Bombay.
6. Perspective and plans of the new Biolog
Laboratory, Princeton College, New Jersey.
7. A residence at Roseville, New Jersey, costing fiv
8. A

A cottage at Roseville, New. Jersey, costing seven
thousand dollars. Yerspective elevation and floo plans.
11. The Orange Valley Church. Cost, sixty thousan
dollars. Perspective and ground plan.
12. A residencc at Fordham Hcights. Cost, thirty-
four thousand dollars. Elevation and floor plans.
13. Perspective view of the new Trinity Methodis

Episcopal Churcb, Dcnver, Colorado.
14. Designe for wall paper decorations. Fiower scroll, designed by A. F. Brophy. Strap cciling, de-
signed by G. A. Audsley, Arabceque panel decorations, paper for staircases, designed by Lew F. Day
15. Perspective and floor plan of an attractive carriag house in the Queen A
dred and fifty dollars.
16. Miscellaneous Contents : Something for architect and builders to remember.-Interior flnish.Sketch of Nathaniel J. Bradlee.-Colored decora-
tion of churches.-On estimating.-Crushing of tion of churches.--On estiluating.-Crushing of
masonry.- Theoldest architectural drawing.- $-\mathrm{Ma}-$ hogany.-Flexible foundations.-Trentment of hogany.-Flexible foundations.-Trcatment of
the ceiling.-The teredo.-The oldest timber.-
Compressive strength of bricks and piers.- RepeCompressive strength of bricks and piers.-Repe-
tition of ornament. tric system for street railways, illustrated.-An
excellent system of heating.-The Ball high speed excellent system of heating.-The Ball high speed
engine.-Beading, rabbet, slitting, and matching engine.-Beading, rabbet, slitting, and matching
plane, illustrated.-The Sturtevant system of plane, ilhustrated.-The sturtevant system o Johns' liquid paints.-Soapstone laundry tub and kitc hen sinks, illustrated.-Carpenter's vise,
illustrated.-Metallic hip shingles, illustrated.Corrugated iron lath.-Weather vanes, roof orna ments, etc.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practi cally, a large and splendid Magazine of Arcititac ture, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interestin examples of Modern Architectural Construction and allied snbjects.
The Fnllness,
The Fnllness, Richness. Cheapness, and Convenience of ang Architectural publication in the world. Sold by all newsdealers.

MONN \& CO.. Poblisaeks,
301 Broad way, New York.
ßusiness and æersonal.
The chargefor Insertion undsr thes head is One Dollar a ine or each insertion; about eight woras to a line.
Advertisemtents must be received at pubsication ofice as early as Thursday morning to appearin next issue. All books, app., etc., cheap. School of Electricity, N.Y. For Sale Cheap-Canada patent. Revolving flower
tand. Cheap to manutaeture. H. I. Starks, Preston, stand.
Con.
Busine

Business Chance-Martln's Paving Process makes the contractor 815 to $\$ 40$ per day
Announcement.-" Centennial Day." Aptil 30, 1889, being a legal holiday, our factory will not be run: but we shall have our works open for inspection all day. We
extend an invitation to our friends, customers, and extend an invitation to our friends, customers, and
others interested to give us a call on that day and inothers interested to give us a call on that day and in-
spect our plant at our new location, Laight and Canal
Streets. E. E. Garvin Co.
Practical Books-Leading books on electricity and pechanics. List free by mail. Jas. Moore,N. W.corner cond and Race Streets, Phlladelphia, Pa
Steel name stamps (1-16, 3-32, or $1 / 3$ in. letters), 15c.
per letter. F. A. Sackmann, 16Huron St..Ciereland. $\mathbf{0}$. For the latest improved diamond prospecting drills, For the latest improved diamond prospecting
ddress the M. C. Bullock Mfk. Co., Coicako, Ill.
Wanted-Superintendent to takc cbarge of a woodorking machinery manufactory. Must beversed iz de-
ignink, pattern making, and the handling of men. Ad signink, pattern makink, and the handling of men.
dress Indiana Machine Works, Fort Wayne, Ind.
For best casehardening material, address The Rogers For best casehardening material, address The Roge
Hubbard Co., Middletown. Conn. Sead for eireular. Water purification for cities, manufacturers, and private users. The only successful legitimate system.
Hyatt Pure Water Co., $16,18 \& 20$ Cortlandt St., New York.
Automatic cut-off. Ball Engine.- Ball Engine Co., Erie, Pa. For the best Hoisting Engine for all kinds of work,
address J. S. Mundy, Newark, N. J. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Perforated metals of all kinds for all purposes. The The Holl M Perforted Metal Co., Fill send their panaphlet, describing water works machinery, and containing reports of tests, on application.
No. Il planer and matcher. All kinds of woodworking No. 11 planer and matcher. All kinds of woodworking C. E. Billings' Patent Surface Gauge. Drop Forgings. Steam Hammers, Improved Hydraulic Jacks, and 'Tube Friction Clutch Pulleys. TheD. Frisbie Co., N.Y.city. "How to Keep Boilers Clean." Send your address The best foffee roasters, coolers, stoners, separators, The best ©uffee roasters, coolers, stoners, separators,
polishers, scourers, glossing apparatus, milling and are buitt by The Hungerford Co., 65 Cortlandt St., N. X. Lathes for cutting irregular forms. Handle and spoke lathes. I. E. Merritt Co., Loekport, N. Y.
Automatic taper lathes. Heading and box board maSplit Pulley ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St.. Philadelphia. Pr.

NEW BOOKS AND PUBLICATIONS

Publications of the Lick Obser TORY OF THE UNIVERSITY OF CALI-
FORNIA. Edward S. Holden, LL.D.
Vol. I.
1887. Sacramento : State Printing Office. 1887. Pp. 312. With illustrations.
This elegant quarto brings the story of the work of the Lick Observatory up to a recent date and lcavcs he ground clear for annual publications that shall keep
its achievemente more promptly on record. It givea the istory of the founding aud building of the observatory, hedescription of its buildings and instruments, and details of the work done from $188 p ~$
401885 . The large elescope is of course uot included, the contract for its construction only being given. Among the meteorological instruments illustrated, we notice the counterpart of the ScIentific American wegistering barometcr. he early observations, astronomical and meteorologitents. The instruments described arc illustrated by a tents. The instruments described arc illustrated by a
number of well cxecuted cuts, and a view of Mount Hamilton forms the frontispiece. The publication eflects much credit on ProfcssorHolden, who edited it, and is a happy augury for the future.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. Rererences, to former articies or answers should
give date of paper and page or number of question. Inquiries not answered in reasonabere time eshould
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
Bome answers require not a littie research, and,
though we endeavor to reply to all, iether by letter
or in this department, each must take his turn. sueclal Wrilten Information on matters of
personal rather than gemeral interest cannot be
expected without remuneration.
Sclentilic American Supplementis referred

to may be bad at the ofice. Price 10 ocante each. Books referred to promptly supplied on receipt of | $\begin{array}{l}\text { Ninerala sent for examination shoald be distinctly } \\ \text { marked or labeled. }\end{array}$ |
| :--- |

(705) R. M. P. asks : 1. Can you tell me bon will diseos othcr than benzine and bisulphidecar use as solvents fixed oils, snch as olive oil, petroleum,
turpentine, and benzole. The sulphur will be apt to turpentine, and benzole. The sulphur will be apt to
veparate out at ordinary temperatares, however, from
solation In fixed oils. 2. Can you direct me to good dutt arresters or separatore? A. Dust can be separated
by pasiing the air or fumes through flnes of laree area, or into laree chambers, or by drawing them through musiin bage, ae. In zioc. white factories. For electrical
condensation of smoke or dust, we refer you to the Scrcondensation of smoke or dust, we refer you to the Sc-
ENTIFte AMRRICAN, vol. liv., pagee 255 and 389.3 . Will Entpher combine with any oils? A. Sulphur com sulphur combine with any oils? A. Sulphur com-
bines with olive oil, on heating, producing a decomposi tion product formerly used in medicine and called oil of snlphur. You will find it described in the United States Dispensatory. 4. In what does paraffine oil differ from
solid paraffine? A. In chemical composition; the oil contains more hydrogenand less carbon than the solid arafin
(706) W. L. P. asks for the most approved receipt or formula for germinating the alcoholic yeast plant. A. The plant is called saccharomyces
cercoisic. A sample of yeast must be procured which cereoisic. A sample of yeast must be procured which
examined microscopically shows a fair proportion of examined microscopically showe a fair proportion of terilized by boiling, aud to teat its sterility is allowed to stand some days in a tightly closed vessel. If no fermentation occurs, a apeck of the yeast is introduced on platinum wire into wort prepared as dask is at once closed. This gives a new growth of cells, and the process is repeated with fresh sterilized wort, the new growth being used for inoculation. The proccse can be repeated a number of times, each time conducing to purity. The process was devised by Pas teur, and can only be carried out by careful atteution to
all the precautions used by bacteriologists. A temperature ranging from 70° to $80^{\circ} \mathrm{F}$. should be malntained during the experiment.
(707) H. F. S. - Your hydroquinone

Sulphite e 8 dium.............. 400 grains.
Distilled water............... 10 oz.
Hydroquinone.............. 100 grains.
Carbonate of potash........... 300 grains.
urns dark because of the oxidation by contact with the air and theypresence of the potash. The developer will have more power and work quicker if you dissolve tbe potash separately and keep it in another bottle. Dis-
solve 300 grains of potash in 10 ounces of water. To develop, take one ounce of the hydroquinone and sui. hite solution and one ounce of the potash.
(708) H. R. S. asks for a toning solution.

Chloride of gold................. 15 grain Acetate of soda
Distilled water. 1 oz.
15 oz.
One ounce of the above will tone one sbeet of paper 18 by 22 , and the solution should be prepared one week before required. Wben diluted for use, it should be used immediately, as it will not tone more than once.
Refore putting the print in the solution, pass ft through weak solution of plain carbonate of soda and water which removes any acid in the paper, and allows the
toning to proceed rapidly. For blue prints. Prepare:

B $\left\{\begin{array}{l}\text { Ferrid-cyanide of potassium... } \\ \text { Water..................... } 15\end{array}\right.$ oz
Mix equal parts of A and B, filter, and coat the shee of paper with a broad camel's hair brush. The film
should be quickly dried. After printing, immerse in whould be quickly dried. After printing, immerse in prevent cockling of prints, nee the following mounting solution:

Dissolve the gelatine in water, then add tbe glycerine,
(709) B. E. K.-A very good enamel Alcohol

Gther......
6 g7s.
No castor oil need be added. If the plate is rubbed
ver with considerable French chalk, and the latter readily strip whendry. Aftcr the collodion is set, the print thould be pressed down upon it. When dry, it will strip off from the glass. No gelatine solution is required. For additional particulars write to the East It is better to mount the print on a thin card first, then mount all on the regular monnt.
(710) E. W. G.-To tone blue prints an olive green of brown color, a
them in a bath made as follows:

Borax...
$21 / 2 \mathrm{oz}$.
Hot wate
Acidify with sulpharic acid until blue litmns paper turne red, then make the solution alkaline again by
adding liquor ammonia until red litmus paper turn adding liquor ammonia until red litmus paper turne
blne. Finally add 150 grains of gum catechu, occasionally stirring until it is diesolved. The bath will keep for any length of time. Tone until the color is right by reflected ligbt.
(711) G. J. B.-See the "Amateur Phoographer," by Ellerslie Wallace, \$1, and A bney's book from our book department.
(712) A. H. W. asks whether an ocean steamship can remove her propeller shaft and replace it by an entirely new shaft (provided she had an extra
shaft on board) while at sea. A. It is possible, but we never heard of its having been doue.
(713) C. C. R. asks: What liquid will be converted into vapor with the least heat, or, in othe finid or liquid would do the most work with the same heaq used in a boiler and engine? A. There i
little difference in the latent heat of vaporization of water and other liquide referred to equal volumes of
vapor. Economy is to be found in working in accord vapor. Economy is to be found in working in accord-
ance with the second law of thermo-dynamics, by having
as greast a difference as possible between the lowest
and highest temperature of the liquid ueed and of its and highest temperature of the liquid
(714) A. T. C. writes: I wish to know which book explains the indicator card and the indicator, and the cost of the latest improved indicator? A We can supply you with "Twenty Years with the Indi cator," by Thomas Pray, Jr., in two volumes. Price
83. Also "Indicator Practice and Steam Engine 8. Also "Indicator Practice and Steam Engine
Economy," by Hemengway. Price \$2. For dealers
in indicators, gauges, etc., consult our advertising columns.
(715) W. J. K. asks : 1. In making the electric motor described in Scientifio amerian Supplement, No. b41, I only put 11 coils on the
armature; will that cause the machine not to run? A The machine will run, but not to advantage. 2. Will soft Swedish iron wire do for the armature core? A.
It will answer, but not as well as soft iron wire. 3 . It will answer, but not as well as soft iron wire. 3 .
With what nnmber of wire ehould it be wound to adapt it to the Fuller bichromate battery? A. The winding it right for the Filler battery, provided the battery quantity. 4. How many cells of the Fuller battery will it take to run a sewing machine? A. It will re power of motor? A. Probably double the above num ber. 6. How should the cells be connecteds A. Two
in parallel and nine in series. 7. In the eight-light dynamo described in No. 600, Scientific American SUpplement, bow ie the machine attached to the
base? A. By tap bolts base? A. By tap bolts ranning up through the base into the poles of the magnet. 8. If I wish to use it
always to run incandescent lights, how should it be always to run incandescent lights, how should it
wound to give the best results? A. It should be compound wound series and long shunt. (See diagrams in the article describing the dynamo.) 9. Could say
four of the lights be burned at one house and four our of the lights be burned at one house and four so,what size wire ehould I quarter of a mile away? In
convey the electricity? A. It would be impracticable to use this dynamo in that way. 10. Cau cast irou washers be used on the arma-
ture core? If so, how thick should they be to give beet ture core? If so, how thick should they be to give best
results? A. Cast iron washers will not be satisfactors 11. What is the weight of the wire on be satisfactor Refer to the article describing the dynamo. 12. What would be the best battery to run the above as
A. Py/bably the plunging bicbromate battery
(116) C. J. M. writes: 1. How can I light-giving power of different grades of kerosene? A. Place a rod vertically on a table, with a smooth white sheet of paper on the table in front of it. Place two lamps identical in construction, each with sample of apart.
of the oils in it. back of the rod and about one foot apar They will cast two shadows of the rod. Move one or the ther back and forth until both shadows appear of equal intensity. Then the light given by each lamp will be in
proportion to the square of its distance from the rod. The oil consumed should be so adjusted as to be the eame in each lamp. The best you can do is to weigh each lamp before and after the experiment, and thus determine the true consumption, and correct by inverse proportion, with allowance for specifl gravity; but for any accuracy the consumption by measure must be
identical, as this correction is only approximate. of identical, as this correction is only approximate. Of
course you can measure the oil instead of weighing it. 2. Also the flashing point. A. For flashing point heat conoil in a cup immersed in a saucepan or other vessel containing water. Suspend an accurate thermomete
with its bulb immersed in the oil. Gradually heat water, and from time to time sweep a minute flame ove the surface of the oil. When a flash is produced, note the thermometer. The best flame is a gas flame burning from a fine aperture at the end of a glass or other
tube. Broom straws may aleo be used, or fine splinters of wood. You will find this test easier than the
(717) J. S. writes: In casting pots and other hollow ware, it happens now and then that the on cuts into the sand of the core and throws it agains he cheeks or cope of the flask, and the pot or casting depression anp on the inside and a corresponding epression on the outside. Of course, the casting is re
jected. Now, what is the cause of this "scah "s Is he sand? Sometimes for monthe nota scab app
Il at once all the workmen are annoyed by them. he scabbing of the sand is sometimes caused by wha
called "weak sand," or sand that has been used too ong without adding new sand. It may also be caused by the esand being too wet or rammed too hard. It genily occurs where the metal हtrikes the sand as it leaves the gate, the scab floating against the cope side. Somemes too hot metal will cause scabs. Hard ramming metal impinges, causing a scab to burat away and foat against the cope cand
(718) B. B. L. writes: Will you please form me what is the best solution for hand grenades and sulphate of soda in strong solution.
(719) A. S. R.-Wrought iron expands more than cast iron with the same increment of heat. across the grain. Platinum expands the least of the
(720) E. F. S. asks: 1. Will the simple ectric motor debcribed in Scientific American Sup plement, No. 641, April 14, 1888, be large enough to run
a boat fifteenfeet long, 42 inches wide,drawing 10 inches of water when loaded? A. The motor will run a boat
that length. 2 . Howlarge should acrew be forboat of that length. 2. Howlarge should screw be forboat
ize of above? Should it be three or four blades? A 8 inches in diameter
(721) S. E. K.-The magnetic variation ear neale for any given place varies from year to inge. For western New York the annual variation/ ncreasing and
(722) M. L.-You can obtain better sesulte about as quickly by foreing, by compressed air small quantity of magnesium powdernpward through
flame of alcohol than by mising the powder with
n any substance yon can mix with it, and will flash rapidly. If you have difficulty in flashing quick enough, makeone or two preliminary flashes until you sitters become accastomed to the light. The effect o yeballe.
(723) "Courier" writes: Can you tell 18.of any preparation of paste which will make labels
dhere to tin? A. (a) Use a freshly made solution of gum adhere to tin? A. (a) Use a rreshly made solution of gum lue, and to each pint Make a paste of rye flour and and turpentine. (c) Soak 5 parts glue in 20 parts o water for a day, add 20 parts rock candy and 3 part (724) G. R. asks for the recipe for mak ig paste for bill posters' use. A. Userye four added bickness, If to be bept add a litte oil of clorking or extra adhesiveness a handful of glue may be added o each pailful while still hot. The hearing must b done carefully, to avoid burning.
(725) Amateur Photographer.-Thecom pound will not produce a photographic ligbt. The sim ward through a flame of alcohol. There are sivera mps on the market for this purpose.
(726) L. M.-The lowest fluid temperaemperature melts at 150° Fah and is made by mixing 12 parts tin, 25 parts lead, 50 parte bismuth, 13 part cadmium. This melting point can be reduced to 150 by adding 2 parts mercury
(727) J. M. W. asks how many lamps of ight-candle power would simple electric motor run if orned
(728) E. G. H. asks how the phosphorphosphorva is puna under the name of Canton's ing upon or referring to phosphorcscence, stating where said booksmay be procured. A. You will find the subject of phosphorescence treated in the manuals of phy-
sics and in treatises on light. We also give you as re ferences the foliowing: Scientific American Supple meyt, Nos. 229, 497,539.249. Canton's phosphorus wa made by igniting in a covered crucible at a strong he
sifted calcmed oyster shells 3 parts, sulphur 1 part
(729) A. M. asks : 1. What is a prime couductor? A. The prime conductor is the portion of an electric machine which receives the charge from the
generator. 2. Can a motor be driven by a current de
and generator. 2. Can a motor be driven by a current de-
rived from an electric Leyden jar? A. Staticelectricity not adapted to the driving of motors. Rotary mo tion may be produced by the static discharge, butth
power developed is very slight. 3 . Could a discharge b derived from a Leyden jar coated with silver or gold leaf instead of tinfoil, and would the electricity be stronger by so coating? A. A discharge would be
obtained. The material of the coating has little effect pon the charg
(730) T. J. F. writes: 1. What is the liguid gold solution? I have tried copal, shellac, and
lit sandarac and mastic in methylated spirit, but in a shor time verdigris appears and spoils the mixture. I want
to keep it bottled np ready for use. A. For bronze powder varnish, see answer to query 378 , in Scientific American of February 23. 1889. 2. How can I harde and temper small thin circular saws, from an inc
diameter, so as to keep them perfectly flat9 plates are hcated to a light cherry red and plunged into a bath of whale oil, resin, taliow, and beeswax. They are rubbed off with sawdust, and are very brittle and full of buckles. They are placed between tempering and fattened while thus heated until the temper is drawn tu a blue. This Hattens them permanently, but after this they are generally hammered to equalize the
tension. The operation is described in the manuals tension. The operation is describ
(731) T. A. asks whether all manufac turers of dynamos use double-covered copper wire or
single, and why. A. Both kinds are used. The double-covered is preferable in most cases, as the heav ering prevents short-circuiting
(732) G. T. B. asks : 1. What is the spe ficgravity of kerosene oil? A. 0730 to 0.850 . 2. Wh immersed for a considerable lencth of braes in eithe A. Oil will have but hittle effect. If a vegotable oil may tend to corrode steel a little. Water will oxidiz steel, but will not affect brass.
(733) W. N. asks for the best composi tion of glue etc., for casting plaster orbaments. A
Use glue, water, and molasses made up as for printere
(734) A. M. K. asks : What ingredients are used in making a light-colored furniture polish? A
Mix 1 pound olive oil, 1 pound oil of amber, 1 ounce tincture of henna.
(735) T. H. L. asks: Are aniline inks simple solutions of the desired color, or is gum or any
other substance added? How many grains should be added to a quart of water to make a good inks A. They are simple aqueous solutions; 1 part of the desired aniline color is enough for 80 to 200 parts of water, differ entcolors having different intensities. If desired, $\mathbf{1}$ part
of dextrine may be added to 100 parts of the fluid. Do of dextrine may be ad
not use guta arabic.
(786) G. A. F. asks for a recipe with orrect proportions of ingredients for making a good if tablets. A. For 50 lb . of the beet glue (dry) take 9 b. glycerine. Soak the glue for ten minutes and heat to solution and add the glycerine. If too thick
water. Color with amnline dissolved in alcohol.
(737) J. M. W. asks how to take a stain or bright apot out of a carpet, made by spilling sal soda
eveloping pictures, and when we tried to wash it out,
became brighter. A. We fear the stain is ineradicae. Possibly vinegar might restore it. All depends on hat the dye was which was affected, and no remedy (738) J. W. E. writes : 1. Will you inform me whether there is any way of ascertaining tho weight of cold air in a small space, say 1 in . square? A .
To make the determination directly requires very elicate apparatus and considcrable manipulative skill. eigh $30 \cdot 035$ grains. 2. Also the difference in weight between hot and cold air, if any, and the weight of each on the above spaces A. As a gas is increased in tem. perature it expands $\mathrm{c}_{\mathrm{d}}^{\mathrm{l}} \mathrm{r}$ of its volume at $32^{\circ} \mathrm{F}$. for each degree of elevation, and hencc a given volume weighs less as the temperature rises, if the pressure is con-
stant. Thus a cubic inch of air at $32^{\circ} \mathrm{F}$. would weigh tant. Thus a cubic inch of air at $32^{\circ} \mathrm{F}$. would weigh
(739) E. L. W. asks: 1. In making a plunge battery as described in Sopplement, No. 157, to be used for a small electrotyping ontfit, which plates
would give the bcst results-the silver or carbon? A. Carbon is the best for a plunging battery, bat we would ot recommend a plunging battery for electrotyping. Better use a large Bunsen battery. 2. Should the carbon
of one cell be connected with the zinc of the other, and oon? A. Should you determine to use the piupging or
battery for electrotyping, it would probably be better o connect all the zincs together and all the carbons toether.
(740) C. F. W.-A galvanometer is of title value in measnring secondary currents of high rength of a secondary current is to measurc the length of the space it is able to leap across.
(741) F. P.-The years 1700, 1800, and 1900are not leap years, as arranged in the Gregorian calendar. This arrangement makes the integral day
ivision of the year through the centuries with the division of the yea
least possible error.
(742) H. L. asks : Of what kind of iron ade? Are of the armature core in the 8 -light dynamo oode. Are the pins that secure the series of rings and hey ane to the shaft insulated, and how, or are rought iron. It is not necessary to insulate the pins. hey are put straight through the armature rings and the
(743) H. B. M. asks how to kill blue rass growing between bricks around the lawn? A.
(744) F. A. writes: In making electric motor as described iu Scientific American, March 7,
1888, No. 16 cotton-covered wire is rather hard to work; would not the ordinary office wire be sufficient. If not please state for what reason. A. You may use No. 18 you prefer to do so. Office wire will not aner on ccount of the thickness of its insulation. It will not admit of winding the required amount of wire in the allotted space.
(745) G. B. asks: 1. If better results ould be obtained by using two wires wrapped side by second wire would not improve the results. 2. Does the intensity of the secondary current depend on the exient to which the core is magnetized? A. Partly upon the magnetism of the core, and partly upon the length of the
secondary . 3. Could the current produced by a mag secondary. 3 . Could the current produced by a mag neto-electric machine be utilized in running auother nachine of nearly the same size and construction? A This could be accomplished by using a commator to current. 4. What is the best and cheapest way to construct an induction coil to give a spark an inch and a half in lengthe A. For information on the construction of induction coils, consult SOPPLEMENT, No. 160.
(746) R. H. S. asks how he can make quid hydrofluoric acid, and what is there he can rub ovcr the etching so as to make it moredistinct? A histill a mixture of 1 part fluorspar and $11 / 2$ parts sul. water. It may be concentrated by distillation from platinum retort; water first comes off, and afterward the tronger acid. It must not touch glass or silica. To make etched marks more distinct. rub the surface with It is a very dar:gerous material to work with, and it is better to buy it ready made.
(747) C. F. H. writes: Will you kindly nform me through your paper how I can soften a hair
brusb which I have, and which is too stiff for use? It being a very good one, I thought I might be able to often it instead of going to tbe expense of another. A. Try washing it in water containing 10 to 25 per cent
(748) E. G. asks : 1. Will a paraffined wooden tub do for outer vessel in Supplement, No 49. battery? A. We recommend porcclaiu or glaes. 2
Give connections in Bell telephone armature. A. Se opplements on subject. especially 142 for telephone and 167 for calling mechanism.
(749) H. P. asks: 1. If quicksilver is ompressed, and confined securely in a 1.16 inch thick brass shell, and such shell containing it be subjected to a white heat, would the mercury expand suffciently
o fracture the shell? A. It would amale he brass and deestroy it without the application heat. If steel, iron. or platinum were used, with which mercury does not easily amalgamate, it would burst the envelope unless it were exceedingly thick. The forc exerted by a solid or a liquid in expanding is almos green gooseberries, Rorrel, rhubarb, etc.? A. It is largely citric acid. 3. What quantity of chlorine would I require to bleach about 14 lb . of shellac at a to make it; I have stills and apparatus for all purposes. . Rub 2 lb . bleaching powder to a paste with water
water. To filtrate and washinge add a solution 1 part of potash in 3 of water until no more precipitate forms; filter. Two pounds of the shellac must previously
have beendigested in one gallon of strong alcohol. To have been digested in one gallon of strong alcohol. To this add, with constant stirriug, the bleuching solution. After half an hour's standing add enough hydrochloric
acid to give an acid reaction. The shellac is precipiacid to give an acid reaction. The shellac is precipitantil the water passes off and It is then dried in th air. The filtrate may be neutralized by addition of caustic soda, and the alcohol may be recovered from it by distillation. 4. What wood is methyl alcohol madc from which is used for polluting spirit moto methylsted spirits? A. Oak wood gives good results, though any wood may be used. 5. Does not the clectric current,when passing a long a copper wire, pass through the esterior of the wire for its course in preference to the Under ordinary conditiona (dynouncic electricity) A. throughout the wire. 6. Has it ever been decided that the electric current flows only in one direction when in complete circnit, and that it is from negative to positive pole? A. No. There is no flow except as a matter of convenience in nomenclature. 7. Wculd a new departure in carhons (for street lamps). which would yield twice the amount of light given by those now in use (with the same dynamo power), be advisahle, even though such new make of carbons lasted only half time It might seem doubtful, hecsuse the same at firet? A is to have carbons last a long time. But the line indicated secms so hopeful a one that it would probably well repay work and invcetigation. 8. I notice sheets of (mica are nevcr used for photographic plates for negatives; is there any good reason that unfite them for preparation for that purpose? A. They are rarely clear enough, and if large are very expensive, and are also
friable. 9. How conld I silver fluted and convoluted glass articles with quicksilver? I manage sheet glass all right after the old method, but fail with irregular sur the shape of a sort of mercury paint? A. Sec query 438. Scientific American, March 16, 1889. 10. I wish to cut or turn a hole with radiated grooves through block of boxwood, not a screw worm hole, but a sort of ratchct cycle groove, each groove to be uniform. How
could I do so? A. This you might do with a hand tool, roove by groove, or cut a special cbaser with atraigh rose-cut teeth. 11 . What is the rule followed for eight on one is merely a pin's head and the back sight aght is a semi.disk standing up quitc an inch, with a back sight also very higb. I can score equally as well with either, at 200 yards. A. The shape of rifle sights is largely a matter of personal preference. Certain
forma are generally considered more accurate than forme are generally considercd more accurate than
others, and sometimes may be "barred "or disallowed others, and
in matches.
(750) G. S.-The soldering liquids are for making a perfect contact of the metale and their melting the tin and flowing it upon the surface.
(751) A. B. asks: Is there any way to prevent the corrosion of the connections of the carbons and apply paraffine, allowing it to soak well into the carbon. This will prevent the solution from reaching
the elcctric connection of the carbon. Care should be taken to prevent the paraffine from reaching the por都
(752) B. F. A. asks: When a weak olution (say 1 to 2 per cent) of copperas, protosulphate of iron, is mixed with decaying vegetable or anima matter, what arc the principal reactions that take place notice that copperas is an effective deodorizer, but do cult one. Offensive putrefaction is due largely to germs and low forms of bacterial life. Copperas is poisonous for these organisme, and ao prevents decay.
(753) H. W. D.-So many young men will fud it very hard to find a position. Youshould be willing to take any place that is in the electrical department, even if it is mcrely in charge of lamps or in the dynamo room. Wages will be low, work perhaps lisagreeable to you, and the working up process will depend partly on your own activity and knowledge of the science and partly on opportanity. You will be in competition, morcovcr, with technically educated men rcad and atady assiduously. The addrcsses of com cad and stady assiduously. The addrcsses of com
panies can be procured from electrical journals' advcr tising pages.
(754) A. E. S.-Make your magnet cores of soft iron threc-eighths of an inch in diamcter and the depth of the diameter of the core with No. 24 wire We thiuk that with a magnet of this kind you will have no further trouble with the bell.
(755) R. M. asks : 1. Will the dynamo explained in the Scientific American Supplement
No. 161 , run iucandescent'lampa? If so, how many and of what power! A. It will run three five-candle powe lamps of low resistance. 2. Would the current running through a one-eighth inch bare wire on a circuit of $11 / 8$ miles, lighting about 200 Edison 16 candle power incan descent lamps, be strong enough to cause death if
person shonld take hold of one of those wires? A person shonld take hold of one of those wires? A
Probably not, hut we would not advise the handling o uch wires
(756) W. N. B. writes : In producing an electric light of 18 to 1 candle power, would it not be
lessexpensive at the end of ayyear to use an induction coil with one or two good cells of battery than to nse a large power of battery alone? I wish to prodnce will be visible during the night. A. You would gain nothing in economy by the nse of an Induction coil in the manner proposed. The only ad vantage of an induction coil in electric lighting is in the distribution of the current. It permits of using a current of high potential
on the line wires, and of reducing it at the point of uee on the line wires, and of reducing it at the point of ues
lighting. We think it would he better if you were to employ a few cells of gravity battery aud a storage bat-
tery. (757) H L. H.-For making emery wheels see Scientific american Supplement. No per cent, or a few drops of carbolic acid. Salicylic acid isalso an excelleut preservative. 3. For black dye for leather: Boil 3 pounds logwood chips, 112 to 1 pound fustic shavings, in $1 / 8$ gallons water; boil, filter, and apply to the surface of the leather. Then apply a wash oil or varuish phat of iron. Dress the leather with varnish use mastic dissolved in ether, or to make your shellac varnish clear, dissolve fine shellac in wood alcohol and allow it to settle in a bottle and decant the clear varnish. The muddy varnish is too thick for lac quer work. It is made for painters' use.
(758) L. J. writes : A ball falls 64 feet rom the mast of a moving ship to the deck. During the actual path of the ball. Find its length. A. The ball will fall vertically from the mast to the deck, as a plumb line would hang, save variation by the wind. In relation to a stationary vertical line, the path of the ball would be parabolic. having the vertical line at the moment of starting as the axis, with the accelcration of working out the co-ordinates for moments of' dight you will obtain the true length of the carve.
Books or other publications referred to ahove Scientific American office, Munn \& Co., 361 Broad way, New York

TO DVVENTORS.

An experience of forty years. and the preparation of
more than one hundred thousand applications for patents at home and abroad, enable us to understand the
iaws and practice on both continents, and to possess unequaled facilities for procuring eynopsis of the patent laws of the United States and a foreign countries may be had on application, and persons contemplating the securing of patents, elther at home or abroad, are invited to write to this offce for prices,
which are low, in accordance with the times and our extensive facilities for conducting the buiness. Address MUNN \& CO., offce SCIENT.IFIC American,s61 Broad-

INDEX OF INVENTIONS

or which Letters Patent of the United State were Granted April 9, 1889,
AND EACH BEARING THAT DATE.

[See note at end of list about coples of these patents.]

Advertising ca
Heinemann
Advertising device. Goodwin \& Chase..............................101,158 Agricultural implement, R. Owen. Armature for dyamo-electric machines.
Thomson Thomson ...
Armature for
Auger, post hole, N. Newman
Automatic gate, W. H. Miller
Automatic gate, J. C. Rock.
A wnine fram
Axle, car whe

Ba Ba Ba Ba

Bag.
Car coupling, M. M. Carmoda
Car coupling, R. I. Hampton.
Car coupling, c. A. McDoukall
Car coupling, J. I. Monasmith.
Car heater, Mead \boldsymbol{t} Thomson.
Car heater, Mead t Thomson..................
Car partitions, chain for stock, B. C. Hicks Car, sartick. J. R Whilson
Cars, apparatus for hem

Cars, bearing for shoe attachment, Grant................
Cars, heating street. w.
..... 40125

Cars, ssfety guard for rail.............................
Carrier. See Bundle carrier. Harvester sheal

Case. See Book case. Caster, , D. Clark...

Casting S-straps, core for. J. Z. Gifford..................
Chain and uncoupling device therefor, door, Maul ...
Chair. See
Chair. See Oscillating chair. Switch raile chair. Cigar bunching macchine, s. A. Cikar cutter and aupport, P. Kern... Cigar making machlne.J. E. Smith...
Cigar wrapping machine, s. J. Flatow Cleaner. See Cotton cleaner. Window cleaner. Clevis, a wning, W. M. Brown.........................
Clocks, electric winding for torsion pendulum, H .
Rahe Rahe
Clother drier, , D. Fuller...
Clothes IIne support, J. T. Cr
Clutch and tension machine, automatic. J. C. Bill.
Clutch. friction, Kina \& Barnhart

Co

Coffins, frame for the pillows of, C. K
Commutator bars, fitting, F. Bailles .
Condults, leading-in apparatus for, J. A. Seely.....
Cone dnster for flbrous subetances, F. G. cone dnster for flbrous substances, F. G. Sargent. Copper from copper pyrites, extracting. J. Perino Corn huaking impleme
Corset, k. E. Denzel..
Cotton cleaner. seed. W. M. Wilson.................. 401.015
40.022
Cotton king, brush cylinder, I. F. Brown.............
Coupling. Sing machine, T. S. Gray Car coupling. Pipe coupling.

Cultivator, plow, etc.,
Cup. Bee Sponge cup.
Cuspidor, D. H. Murph.
Cuspidor, D. H. Murphy..................................
Cuttery handie, table, W. W. Le.......
Cutter. See Cigar cutter. Harvester cutter. Tube cutter.
Damper, stove pipe, F. W. Hoefer.....................
Desk or cabinet. W. H. Travis..................
Digker. See Potato dlager.
Door spring. J. II. Williams............................. Dredping bucket. C. A. Morris.............................. 401.319
Dress form, A. McDowell.......................... 40192

Dr
Dr
Dr
Dr

D

Educational apparatug. A. ….............
Egg beater. C. H. Pfaun.......................
Electric circuit testing device, M. Robinson
End
 Ing, Ruseell \& Drake..................
Electric machine, dynamo. E. Weston. Electric machine, dynamo. E. Weston.............
Electric machine reaulator magneto, dynamo, C. J. Vat

Bicycle. D. A. Babe

Wine bin.

401,900 $4012,2 \%$ 4 41201

Bin. See flour bin. Wine bin.
Biagt furnaces flux feeding apparatuen Prack. See Paving hlock. Tackle hlock Board. See Wash board.
Boller for heating purposes. I. B. Potts Book and hook cover, I. Reed.
Book case, R. W. Lovering........
Book, memorandum, M. F. Berry
Book, memorandum, M. F. Berry
Book, pocket check and form, E.
Book support, J. W. Coultas.
Boot or shoe, B. A. Pillow..............
Boot or shoe, rubber, E. F. Bickford

Bottle stopper, s. Marks
Bottles, means for facilitating the opening of in
ternally stoppered, Barrett \&
Box. See Paper box. Work box.
Brace. See Back and les brace. Drill brace.
Brake. See Car brake. Vehicle brake. W
brake.
Brake handle, S. A. Burns.
Bread raiser and kitchen safe. combined, D.................... Pentz...
Brick, T. Th
Brick. incrusting, J. C. Anderso
Brick kiln furnace, C. M. Keep.
Bricks. etc., incrusted with metal. J. C. Anderson 401,097
Buckle, D. B. Baker................................
Building blocks or pavlng tiles, frame for, B.
Belden.:
Bundle carrier. F. Hickmann.
Burner. See Gas lighting burner.................. Hydrocarbon
burner.
Butter mould
Butter mould, H. I. Carver.
Butter worker, H. I. Carver
Button, G. H. Thomas....
Button, campalnn. Winterdorf \& Reymond
Cable, wire, Batchelor \& Latch.
Calorimeter. Ateam, G. H. Barrua
Cam. A. D. Woodmanse
Car brake, H. N. Coffin
Car. A. D. H. N. Cuffin.........
Car coupling. G. W. Campbell

Gas lighting burner electric............................ 40. 24
Gas pressure resulator, W. H. Metcalf................ 401,048 Gate, C. Chiddister...400.096
Gate, J. H. Tudor..............0. Gate, T. Tyson.. 401,3
Gearink, drivin, J. C. Whitford...................... 401,0
Gearing, frictional, G. F. Evans......... Generator. See Steam generator.
Glassware, apparatus for shaping. J. Anderson... llove fastening. W. s. Richsrdson..........400.988, 401, 400 Davis..01013
401,92
 Grain separator, H. Stoker........................... 401,21
Grindink machine. w. S. Robbins............. 4012
Grinding machine, surface, Hyde \& Horner...... 401,278 Guard. See Snow guard. Halr curler. F. 'raust...
Halter. J. Dunn.. 4001,017
4andle. See Brake hadde. Cutlerg handle. Harness hook, D. E. Kempster......................... 401,17s
 Heater. See Car heater.
Heating apparatus. electric. H. F. Watts.......... 400,
 Hoe blank, G. B. Ely... Holder. See Lamp holder.
Houk. See Harness honk. Snap hook.
 Hydrocarbon burner, J. Akin 400.
4ydrocarbon burner, E. W. Vellowes......... Hydrocarbon burner, W. L. Fletcher.................. 401.149 Indicator. See Chute indicator. Power indi-
cator. aduction coil and self-inductive apparatus, E.
Thomson................................. nsulating and coating compound, A. De Figa- ${ }^{401,156}$ ron. See Wagon box corner iron.
Jack. See Lifting Jack. Key blanks, manufacture
Kife. See Pocket knife.
abeling machine, can. W. Lee....................... 401,039 ampflaments, manufacture of incandescent. T. Lamp holder, piano, L. Pray.......................... 401.0

 Lifter. See Track lifter.
Lifting jack, J. A. Boice........................... 401,119
 Liniment, J. A. Acharc............................. 40,.92
Lithooraphic and zincograpnc preses, damplng
apparatus for, A. Genet...................... 401.025 Lock. See Nut lock. Seal lock. Trunk lock.
Locomotive,air and gas, A. Schmid et al... 400,218
Loom, lappet, Hodges \& Lonergan............ 400,915 Loom, lappet, Hodges \& Lonergan................. Mall pouch, C. W. Miller.
Mat. See Metallicmat.
Mattress, pillow, etc.. spring. A. J. Lytle............ 101.98
Mattress. woven wire. R. Preenss............. 401.301 Meat chopping machine. F. Bloomqvitt........... 40.929 bined, C. A. Randall.................................. 401,201
Medical aparat Medicate
Metallic mat, A. M. Reeves................................. 401,0e8
Meter. See Electricmeter.
Middlings purifer, H. A. Barnard................... 401,242 Middlings purifer, H. A.
Mill. See Roller mill.

Moulding machine. asnd. W. E. Bird. 400,883
Motion, device for converting. C. E. Armstrong. 401,103 Motion from heat produced by liquid or gaseous
fuel, obtaining. J. Harrreaves.............. 401,16z
Motion, macbine for imparting. J. J. Iten......... 401,168 Motor. See Electric motor. Mechanical and elec-
tro-magnetic motor. Spring motor. Steam motor. Thermo-dynamic motor. Musical instrument, automatic, T. A. Macaulay,

 Optical device for the observation of localities
by refiection, E. A. Trapp................ Orange grader, A. Ayer..............................
Ore crusher and metal separator. J. C. Wiswell... Ore feeder, G. Johnston. Ore roaster, C. J. Fendel............
Osclllating chair, c. E. Whittleses.
\qquad

$$
\begin{aligned}
& \text { Pall cover, G. Fuchs.... } \\
& \text { Paint mixer, shoch }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Paper box. D. S. Clark... } \\
& \text { Paper, composition for }
\end{aligned}
$$

\qquadPaper, composition for waterprooting and prepar-ing sheathing and building. Manahan \& Gade.Paper roll. toitiet, O. H. HicksPaper roll, toilet or mrapping, S . WheslerPavement and paving brick, D. Harger............. 401.03
Paving block, R. B. Berrie..............Paring block, R. B. Berrie...................................
Perforating machine. s. D. Lasman........

Photographic printing frames, vignetting attach-
ment ρ
Planos, key leveling device for, c. H. H. Smith..........
Picture, transparent. W. Read. Jr.............
P. Pinch bar. S. H. St. John for, T. J. Harriman Pinion facing machine, L
Pipe coupling, G. N. Riley...................
Pipe trap, exhaust steam, T. Burkhard, J
 Tie. Seo Loop tie.

DISTRIBUTING HEAT AND POWER.

TO BUSINESS MEN

 $W=\square=2=2$ $=2=2$
 HOME-MADE INCUBATOR.-PRACTI
 DO YOUR OWN PLATING
 MOULDERS' TOOLS.-A A DESCRIP-

教BARREL, KEG;
Hogshead, STAVE MACHINERY. ver $\begin{aligned} & 50 \text { varietles mana: } \\ & \text { factured by } \\ & \text { \& B. HOLMBS }\end{aligned}$ THE CRANK'S STORY. - BY G. H

Stored Energy ACCUMULATOR 8 for Electric yiphing and
EI,ECTIRICAI. ACCUMUIATCOR Propulion.

Edco System.

 Useful, Beautiful, and Cheap.

Something Entirely New

 SEYMOUR EATON, 50 Bromfield Street, BOSTON, MASS. Addescription of the methods employed for determin-
Anf the everal constituents contaioed in these metals.
With one mliustration. Contained in TCAN SUPPLEMEST, No. 661 . Price 10 ce
had at this oflce and from all newsiealers.
OIL WELL SUPPLY CO. Ltd.

MARINE SIGNALS.-DESCRIPTION

ARTESIAN

 ADVIOE TO YOUNG MECHANICAI

장Clarf's's Noiseless Rpber Trnck Wheels Geo. P. Clark, BoxL,WindsorLocks, C_{1}, PETROLEUM BOAT. DESCRIPTION

PERFEGTNENSPAPER ILE

$\underset{\text { Manu }}{\text { ch }}$

plant
rock
tone
the
tell
tell

WATER OF CONDENSATION.-A DE- $\left\lvert\, \begin{aligned} & \text { H } \\ & \text { W' } \\ & \text { EAR }\end{aligned}\right.$

PATENT IRONING BOARD.

TVThe cheqpest, beat,
and simplest rionipg
Board onthe market.
 WEST MONROE IRONING CO 27 Weat Monroe Street, newark, N. J. PULLEYS. Cheapest, Jifhtest, and Best, Made b

USEFUL BOOKS.
chanicse. Buiders, men of letsure, and professiona men, of all classes, need good books in the line of
their respective callings. Our post office department permits the transmission of books through the malli
at very smail cost. A comprehensive catalogue different subjects. has recently been published for free circulation at the office of this paper. Subjects
classifed with names of a a copy, have only to ask for it, and it will be malie MUNN \& CO.. 361 Broadway, New York DRY AIR REFRIGERATING MACHINE erator, desig ne d to deliver about 10.000 drobic feet

ASEECTOS

 BLAIDED PACKINE, HILL BOARD, SHEATHING, CEMENT, FIBRE AND SPECLALTIES BRANCHES: Phila, 24 Strawberry 8t. Chlcago, 86 E. Lake $8 t$. PIttiburg, 37 Lewls Block GEOLOGY

Sedimentary rocks. How gravel, sand yand mud a
made
fonly $\$ 5.50$ per 100 for Pen and Peacid

 POLAR PLANIMETER. - A PAPER

MANGANESEE STEEL AND ITS PROP

THE PENNA. DIAMOND DRILL \& MFG. CO.
 WATCH CLEANING AND REPAIR-

BOFORS CAST STEEL GUN - BY

MODERN CAVALRY ON THE FIELD

PIPE COVERINGS
Absolutely Fire Proof.
AMES B. EADS.-AN ACCOUNT OF

UBSICR MANDREI, DRAWN Model and Experimental Murposes. J. C. SLACX, Greenpoint, N. Yery

 FAST TRAINS.-FOUR HUNDRED Miles in 8 hours. - Record of the fastert train service 10he world recenty estabilised 1 m Engiland detalis
he

ROYAL MICROSCOPIC SOCIETY.

2nd Roce MACHINERY
BRIDGE CONSTRUCTION, DEVEI opment of.-A paper by Prof. W. P. Prowbrige. Pivlag
ahtistory of the art of building bridges, along with no

BONANZATOAGENTS SAMPLES FREE

AN ASTHETICS, A LESSON FOR

ROPE TRANSMISSION OF POWER 8ome valuable sugreations to those who would apply
rope in plao on feather betilng for the transmision
power over

THE NEW BAXTER ENGINE Rope and Twine Machinery, and Manufacturer of Binder Twine, etc.
 This Engine is made with all latest
improvements, from I to 11 H . P.,
and has a record unsurpassed in the hlstory ot steam motors. Every en-
Bloe is provided witb all econc, and safety appliances known, anid
are warranted in every resuet Every description of Rope and Cordage, Twine and Bagging Machinery.
And Also manuf feturer of Jute Bag And Also manuffacturer of Jute Bag-
ging, Hemp and Flax Binder Twino, JOSEPH C. JODI,
per.
36 Dey St., New York.

YELLOWSTONE PARK-AN IN-

Volney w. mason \& co.. fRICTION POLLEYS CLDTCHES and RLEEATORS PETROIEUM FUEL-AN ACCOUNT

foreign patents

THEIR COST REDUCED.

The expenses attendicg the procurlog of patents in uced the obstacle of cost is no longer in the way of a re proportion of ourlinedtors
lons abroad. in NA DA. - 'The cost ot a patent in Canada is even
ess tban the cost of a United States patent, and the ormerincludes the Provinces of Ontariu, Quebec, New

The number of our patentees who avanl themselves of he cheap and easy method now offered for obtaining ENGIAA ND.-Thenew Eng lish law, which went into orce on Jan. ist. 1885, ena bles parties to secure patents in Great Britaln on very moderate terms. A British pa-
tent Includes Engiand, Scotland, Wales, Ireland add tite Channel Islands. Great Brtain is tbe acsnowledged oods are sent to every quarter of the plobe. A good Invention is likely to realize as much for the patentee him at home. and the small cost now renders it possible for almost exery patentee in this country to secure a patent in tircat Britaiu, where his rights are as weli proOTHETC As in the United States.
OTHELCOUNTRIES. - Patents are alsoobtained onvery reasonable terms in Fr nce, Belgium, Germany,
Austria, Russia. Italr. Spaln (the later includes Cuba
ano all the Austria, Russia. Italy. Spaln (the latter includes Cuba
ano all the other spanish Colonies), Brazil, Britisb lndia Australia, and the otber British Colonies.
An experience of FORTY years inas enabled the
publishers of Tre ScIENTIFIC Ancricanto establish principal havethe business of the:r cl!ents promptly and properIs done and their interests faithfulty guarded.
A pamphlet containing a synopsis of the patent laws. information useful to persons contemplating the pro-
curing of patents abroad, may be had on applicatlon to this office.
MUNN
ntific Ameiticañ, cordially invite allors of Tars sciany information reiative to patents, or the reaistry of offices.361 Broadwas, Ex mination of tnventlons, con-
sultation, and advlce free. Inquiries by mall prompty sultation, and advice free. Inquiries by mall promptly Address
publi MUNN \& CO.. and Patent Solicitors,
3611 Broadmay, New Yor branch ofpices: No. 62 and cen F^{\prime} street, Pacifi

The Scientific American
 PUBICATIONS FOR 1889.

The prices of the different publications in the United
States, Canada, nnd Mexico areas follows: RATES BY MAIL.
The Sclentific American (weekly), one year . 83.00 year. he Scientiflc American. Export Edition (monthly)
one yenr.
he Scientifc American, Architects and Builders
Edition (monthly), one year.
The Sclentific American and Supplement.
be Scentific American and Architects and Build.- $\$$
The Scientifc American, Supplement, and Archl-
tects and Builders Edition.
This includes post pe, whicb we pay, Remit by postal
or express money order, or draft to order of
MONN \& CO., 361 Broadway, New York.

Sockg and Dies for Pipe, Bolts, and Brass Pipe
Wrencbes, Pipe Vises, Pipe Cutters, etc.
THE EIFFEL TOWER-AN EXCEL

 JENKINS BROS.
 ELECTRO MOTORR. SIMPLE. HOW TOO

THE RIGHARDS OIL ENRINE

PATENTS.

 MIUNN \& CO., Solicitors or Patenta,

TH
and
Mr
the

OTTO GAS ENEINES.

 OTTO GAS ENGINE WORKS, CHICACO, PHILADELPHIA. Now York Agency, 18 vesey Street. CHEMISTRYOF SUBSTANCES
 PLEMENT, Nos. 635, 636, and fi3. Price 10 cents.
each. To he had at this oftce and fromall newsdealers.

Scientific pook Gatalogue

 MUNN © CO., Publishers Scientific

总 CJTLER DESK

H NEW CATALOCUE

DEFEAT OF THE ARMADA IN 1588.-

 ELECTRICAL WEELDING--DESCRIP-
 ${ }^{\circ} \mathrm{OHflee}$ and from ail newbicealer

Doringiniving

 BYIVR NEW 露 STCEPROESS
 TOXICOLOGY, PRESENT POSITION

(10)

 ELECTRICAL DISTRIBUTION OF

ROCK BREAKERS ARD ORE CRUSERRS

SEAMLLESS TUBES.-DESCRIIPTION

 95 MILK ST., BOSTON, MASS.This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such
unlawful use, and all the consequences unlawful use, and all the consequences thereof, and liable to suit therefor.

 §rientific American ESTA BLISHED 1846.
The Most Popalar Scientific Paper in the Forld. Only 83.00 a Year, including Poarage. Weekty.
This widely circulinted and splendidly illustrated paper is pubished weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries. representing Engineering Works, Steam Machinery, New Inventlons. Novelttes in. Mechantcs, Manufactur s
Chemistry, Klectricity. Telegrapay. Photography, Arcbl tecture, Agriculture. Horticulture, Naturaibistory, etc Torms of Subecrlption. -One copy of the ScIEN TIFIC ANEBICAN will be seut Por ons vear- 62 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on recelpt of three collars.by the pubHishers; six months, s1.50; three months, s100. Clabs. - Speclal rates for several names, and to Post Masters. Write for particulars.
The safest way to remit Express Money Order. Money carefully placed ingide Express Mons
of envelopes, securely gealed, and correctly addressed seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make ail orders, drafts, etc., pas-

ITNN \& CO.

861 Broadway, New York.

Scientific American Supplement.
Thls is a separate and distinct pabilication fram In size, every number containing sisteen large pages full of engravings, many of which are taken from foreign THE ScIENTIEIC AMERICAN SUPPLEMENT is publiabed weekly, and includes a very wlde range of contents. It presents the most recent papers by eminent writers in
all the princtpal departments of Science and the all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy; Mineralogy, Natural History, Geicts, Lleht. Heat, Mechanical Eng neering. St am and Rallway Engineering, Mining, Sbip Bullding, Marine Engineering, "Photngraphy,
Tecbnology, Manufacturing industries, Sanitary Engineerlng, Agriculture, Horticulture. Domestic Econo and valuable information obtainable in no other pub-
Ilcation.
The most important Engineering Works, Mech niams, and Manufactures at home and abrosd are illustrat
and described in the Sopprienser. Price for the SUPplemgnt for the United States and
Canada. 85.00 a year, or one copy of the Scirntric AmRIICAN and one copy of the SUPPLEMENT, both malle tor one year for and remit by postal ording erpies 10 cents. Address and remit by postal order, express money order, or che \mathbf{k},
MUNN \& Co., $\mathbf{3 6 1}$ Breadway. N. Y., Piblisbers Scientific amerrcan.
Building Edition.
The gcientipic American architectb and BUILDERs' Edition is issued monthly. 82.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two handred ordinary bnok p ges; forming a large and spledald Magazine of Architecture, rchly adorned with elegant plates in colorss, and Fith other
Rine engravings; illustrating the most intereating exhine engravings; illustrating the most intereating ex-
amples of modern Architectural Constractlon and amples of mod
allied subjects.
A special featur is the presentation in each number of a variety of the latest and best.plane for private resi-
dences. city and country, including those of very moddences. city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in erate cost as well as the more expensive. Drawings in
perspective and in color are given, togetber with fall Plans, Specificatlons, Sheets of Details, Estlmates, ete. The elegance and cheapness of this unannificent work
have won for it the Largest CIrculaiton of any have won for it the Largest Circulalion of any
Architectaral publication in the world. Sold by all MUNN \& CO., Puhlishers,

361 Broadway, New York.

PRINTING INTES:

