a WeEkly Journal of Practical Information, art, Scievce, mechanics, Chemistry, and manufactures.

NEW YORK, MARCH 9, 1889.
[\$3.00 WERLIL.

A MACHINE TO SUPERSEDE TYPESETTING.

Prior to January 1, there had been issued from the U. S. Patent Office upward of 160 patents relating to typesetting and type-distributing machines. All such devices, with many others known only in foreign countries, have thus far, however, met with but little favor among printers, and they have not been employed in practical work to a sufficient extent to have any appreciable effect in this most important branch of the printing business. Printing presses have been improved almost beyond comparison with those of the earlier days of the craft-when only about 200 impressions were obtainable per hour from small forms, as against more than 20,000 copies now made per hour of our largest newspapers; but the typesetting part of the making of books and newspapers has remained sub-
stantially where it was left by the earliest users of movable types.
The accompanying illustration represents the latest, and in many respects the most remarkable, of the numerous machines which inventors and mechanics have from time to time devised in their long-continued efforts to find some practical means by which to supersede or cut short the tedious work of typesetting. It is known as the Linotype machine, from the nature of its product, but would probably be more generally designated as the "Tribune" machine, from the fact that it has been in practical use in the New York Tribune office for more than two years, where it now does substantially all the work formerly done by the compositors of that paper.
forms type bars, each of the length, width, and height of a line of type, and the exact counterpart of that which a compositor would set up, except that each ine is formed of one entire piece of metal, instead of as many different pieces as there are characters, spaces, etc. A representation of such type bar or slug is given in one of the small views. The key-board in front of which the operator sits has 107 keys, each marked for a capital or lower case character of a fount o_{2}^{2} type, or the figures, points, or compound letters used in connection therewith, many of the letters most frequently used having several keys. The operative parts are carried by a rigid metal frame, all portions of which are stationary. The "copy" is placed upon a convenient holder just above the keyboard, and above and behind (Continued on page 150.)

SETTING TYPE BY MACHINERY, AS CONDUCTED AT THE NEW YORK "TRIBUNE" OFFICE.

§rimutific gegmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. е. ведас.

TERMS FOR THE SCIENTIPIC AMEIRICAN.
Une copy, one year, for the U. S or Canada...
One copy, six months, for the U. S. or Canada
One copy, six months, for the U. S. or Canad
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the
Scientific american, for a little over one year, may remit $\dot{\text { del } 1 \text { in current }}$ Colonial bank notes. Address

The Scientific American Supplement
is a distinct paper from the Scientific ambican. The supplement is issued weekly. Kvery number contains 16 octavo pages. uniform in size
with Scientific american. Terms of subscription for Supplement $\$ 5.00$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belonging to the Postal Union. Single copies, 10 cents. Sold by all newsdeaiers throughcut the countrs.
Combined Rates.-The Scientific Ambrican and Supplement
will be sent for one year, to any address in U. S. or Canada, on receipt of seven dollars.

The safest way registered lette

ated letter.
Australia and New Zealand.-The Scientific american and
SUPpIEMENT will be sent for a little over one year on receipt of si curSUPPIEMENT will be sen
rent Colonial bank notes.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
NEW YORK, SATURDAY, MARCH 9, 1889

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
INO. 688.
For the week Ending March 9, 1889.
Price 10 cents. For eale by all newsdealere.
I. Biography- -sir Wriuita Thonson-A short review of the
II. CHEM1sTRY.-Analysis of Tobacco Sereenings Rejected in the

CIVILENGINEERIVG. -Brick Street Pavements. - p plea for
the return to brick for paving purposes, with instances of its

 cluding installmentot this
trations.. 26 illustrations.

meeting of the national electric lighting association.
Nearly 400 men connected with electrical lighting and kindred indastries met recently in Chicago, at the con vention of the National Electric Lighting Association to listen to papers prepared hy experts in their severa fields, and to discuss the best means of advancing their work. Among the many interesting and timely subjects brought to the attention of this meeting, that of underground service was the most absorbing, because, just now, the most urgent. Long ago the law was invoked to force the wires underground, at least in the large cities, and now that means have been found which, by many informed persons, are thought to be adequate for its proper fulfillment, the public is grown impatient and will not brook further delay. A committee was appointed by the convention that met last August to inquire with careful particularity into, and report upon, the various systems of "underground conduits, with underground conductors and conduits now in operation, and the number of wires actually in use in these conduits." Letters asking for information were sent out to 1,066 local companies; 104 replying, though only seven were actual users. In only one of these cases, as reported by the committee, the user expressed satisfaction with the underground system for currents of high potential. Here are some of the objections taken from a mass of testimony: "The cause of failure has been mainly defective insulation. Even if this question of insulation should be settled, the cost will make it commercially impracticable."
know of no system to-day which, at any expense, has proved satisfactory, except a system of subways built large enough for men to walk through their entire length." Here are two conflicting opinions; one user says: "Defective mechanical construction, defects in laying, defective conduits, injury to cables in laying, or defective joints have caused very little trouble, the main cause of trouble being defective insulation and deterioration, owing to the presence of gas, water, and steam." Another user says: "My objections to the underground system, as I have used it, are chiefly com-" mercial, partly electrical, and partly mechanical." The seventh man tried, tested his cables under water, but says they did not work satisfactorily, lasting from three months to one and one-half years, the cause being, in his opinion, the effect of the water on the cables and the insulation of the wires.
In summing up, the committee say: "Only in one instance have the experiments or practical workings proved satisfactory, the only other case that was not reported adversely being where the wires had been in operation only 40 days. The average voltage that we used on all the circuits tested was 1,893 volts, the current was 10 amperes, the average thickness of insulation over wires was $\frac{9}{32}$ of an inch, and the average length of cables tested in each case was about 4,600 feet." As to the conduits themselves, there seems to be a decided objection to the use of creosoted wood, most users preferring to bury their wires in the ground itself or in water, and in favor of single conductors. As to whether or no cables should be covered with lead, opinion is divided.
The scene that followed this finding of the committee was in some ways a remarkable one; there being those present who had operated underground conduits for some years, and found them altogether practicable and satisfactory. City Electrician John P. Barrett, of Chicago, said: "We have been using underground electric lighting service here for the last six years. The municipality of Chicago purposes to extend it indefinitely so far as the limits of Chicago are concerned. I was in hopes when I came here to receive some infor mation from other committees. Now it is a singular thing to me to see in this convention men who are prepared to present conduits, prepared to guarantee to construct them and maintain them in any form that you require, and right alongside of then men prepared to furnish conductors that will carry anything you want-in face of that fact, I find it stated by this report that it is an impracticability. We think pretty well of it here, and we have got plenty of it in service. I would be glad to offer any assistance I can to demon. strate that fact.'
A well known conduit man said: "I am another aggrieved party. I did not receive a circular. I have been in the electric light business underground for five or six years ; operating a plant in Philadelphia during that entire time with perfect and uniform success. We have constructed a plant in New York for the same purpose at a very great expense. The reason they [the committee] say the conduits are not practicable is that they have not seen them. They would not look at them. They have been invited time and again to come and see the practical operation of the conduits, the conductors carrying a voltage which they say is impracticable. In 1883 we laid two miles of conduts in Philadelphia. At the time the state of the mance tion. To-day they have advanced so that they are willing to offer us wires with a guarantee of three or five years' duration of any insulation that we require.
Even with that very weak insulation which we had iu

1883, which was made of pure rubber-and they did not understand that a conductor lying in that soft rubber would naturally thin the lower portion out and crowd it up on the top-even with that, some of these con ductors, in a year or eighteen months, were working straight along with a Hockhausen machine, and you all know what that machine is.

It was openly charged, and not denied, though the other side was present, that this Philadelphia under ground electrical lighting system was bought out at an enormous advance onits cost by those interested in the overhead system; and though it was working smoothly and paying handsomely, it was utilized for an incandescence circuit, the announcement being made public that arc lighting was not practicable underground.'
The defense made by the committee, or rather that made by those of the convention believing in the just ness of their finding, was very strong. It having been long since conceded that are light circuits of 1,000 volts and less may readily be operated underground, the committee had bent their efforts toward learning of successful systems using higher voltage, for by far the major and most important part of the are light business has this characteristic, and so a committee thus appointed would scarcely have warrant to recommend as already practicable what really was suited to the purposes only of the few-at least as yet.
In the discussion that followed, some very important evidence in surrebuttal was brought out. Here are the vital points of it : The use of high tension currents underground (1,000 volts and over) has up to the present time proved unsatisfactory and impracticable, if not from a scientific standpoint, at least from an economical one; the only ci ait of such character now and for some time in sucessful use being that in Chicago, with a record, so tar, of only one year; its projectors having a prepondêrating advantage over all private companies or individuals in the fact that the municipality of Chicago pays the bills. The following dialogue between two well-informed men on their respective sides, the one interested in conduits and cables, the other a purveyor of light, will serve to give a fair idea of the gist of this matter as represented to the convention:
Mr. Johnstone
" Mr. Cooper’s prophecy that Prof. Barrett's expenditure for are light underground circuits in Chicago will be useless. Pray, how is it that he knows this? He has had no experience with underground circuits."
Mr. Cooper: "Past experience. Mr. President, I should like to ask Mr. Johnstone one question. Can you tell me of any underground wire, either the Johnstone system or any other system, using an are light circuit of 2,000 or 2,200 volts, that has been in succes ful operation, not three years, but three months?" Mr. Johnstone: "The Harlem River Electric Light Company, of New York-"
Mr. Cooper: "I ask you if you have got any such hing in operation?"
Mr. Johnstone: "Not now. We are putting up in 51st Street, New York, something that will show and develop this thing in one month, so that there will be no further questions about it."
Mr. Cooper: "We will wait until the end of the month.'
As a result of the discussion, the report was recommitted to the committee, which after being re-enforced was instructed to continue its investigations.
Disruptive Discharges in Lead Cables.-Under this head, C. H. Rudd described some experiments he has been making in the line suggested, at the last meeting of the Association, by A. G. Acheson-experiments which by no means support the theories entertained by that industrious investigator. Mr. Rudd says that the static charge in an ordinary cable is a negligible quantity when compared with the regular current flowing, and the E. M. F. of said charge cannot be greater than the E. M. F. of the current from which it was derived. Hence, in considering the character and thickness of insulation, we have nothing to take account of but the primary pressure which bears upon insulation. Mr. Acheson's second conclusion, viz., that a static charge will not pass an are, virtually declares an are circuit to exist as a number of sections in a sense insulated from each other, and in that connection the statement is made that each separate section comes under separate strain every time that the circuit is shut down. We may hold our own ideas concerning the E. M. F. of a static charge, therefore we need not fear that an imprisoned charge would do any more harm than the current did from which it came. If we charge an ordinary condenser from a battery, and the condenser does not break down, we do not fear that it will break down when we disconnect the battery. There is in the minds of some people an idea that static electricity when it begins to move produces a current possessing different properties from currents formed by other electricity under the same conditions. If disruptive discharges occur in properly insulated cables, we must look for the cause in those sources of high pressure which exist in nature. I do not believe that burn-outs can be ascribed to any one
cause, but that each individual case has its own individual cause.
In practice, we must provide insulation strong enough to meet the daily strain and suitable devices to prevent the accumulation of charge from outside sources of greater pressure than the insulation will bear. As yet we have no proof that high pressure pro tectors are required anywhere outside of the station from which the wires start. Mr. Acheson says that the greater number of grounds or burn-outs occurring in are light circuits are at the terminals of the lead, or at the joints, and says that such a state of things would be naturally caused by the greater density of the static charges at these points. Mr. Rudd thinks this to be a singular carrying over of ideas obtained in.laboratory work with purely static electricity, and arbitrarily applying them to entirely different conditions. The applying them to entirely different conditions. The
natural static charge in a cable, due to the distribunatural static charge in a cable, due to the distribu-
tion of the working $\mathrm{E} . \mathrm{M} . \mathrm{F}$. of the current in the tion of the working E. M. F. of the current in the
cable, must necessarily be produced in its distribution by the force from which it originated. The shape of the conductor cannot act in the matter of this kind of static distribution as the shape of an insulated conductor would act upon a purely static charge. As regards burn-outs that occur at terminals and joints, great care is required to make these points
the rest of the cable in matters of insulation.
the rest of the cable in matters of insulation.
Fuel oil, a subject just now attracting a ve
Fuel oil, a subject just now attracting a very general
atiention among electrical lighting men, was discussed at great length. Three papers were read, the writers describing their experiences as actual users, and presenting many facts showing the advantages of the system, which they had gathered during the course of their studies.
S. S. Leonard told of \ldots, unfortunate experience his company had had while rying to use oil fuel without altering the furnaces thai had been used by his company for coal fuel. They covered the grate bars with fire brick, so the heat would not injure them, put in the burner, and turned on the oil. As a result, the oil was not all burned, and ran down into the ash pits, where it gave no end of trouble. Now, with proper furnaces, they are tinding oil fuel offers great advantages. They have been using it now eighteen months. During the first part of the night seven boilers are in use, the engines being $1,100 \mathrm{H}$. P. The steam pressure is easily maintained at any desired point. He finds that one man can attend to from seven to ten $150 \mathrm{H} . \mathrm{P}$. boilers. One fireman at night and one during the day they have now, against three by night and three or four by day as formerly. As to whether or no oil is cheaper than coal, it depends on the relative difference in cost of the two, and hence to the locality. In Minneapolis, where his plant is, Illinois lump coal costs from $\$ 3.25$ to $\$ 3.60$ per ton, while Eastern coals are worth from $\$ 4.50$ to $\$ 5.50$ per ton (bituminous). The oil costs at present $21 / 2$ cents a gallon, delivered.
In comparing tests with oil and coal, he finds that $21 / 2$ barrels, or 104 gallons, costing $\$ 2.60$, will evaporate as much water as one ton of coal, costing $\$ 3.15$, a saving of about 21 per cent in favor of oil. With one pound of coal he evaporated 5.38 lb . of water. One ton of coal would, therefore, evaporate $10,760 \mathrm{lb}$. water. With oil, 14.8 lb . of water were evaporated per pound of oil. Oil weighs about 7 lb . to the gallon. One gallon oil would, therefore, evaporate 103.6 lb . water. With oil at $21 / 2$ cents a gallon, it would take 126 gallons to cost the same as one ton of coal, viz., $\$ 315 ; 126$ gallons oil would evaporate $13,053 \mathrm{lb}$. water, while one ton of coal evaporates $10,760 \mathrm{lb}$. water, being a difference of 2,293 lb. in favor of the oil, or a saving of 21 per cent. He believes that he is saving at least 15 per cent, and perhaps 20 in fuel alone.
M. J. Francisco said one pound of coal contains 12,000 heat units, while 1 lb . of petroleum furnishes 20,000 . Engineers of experience, familiar with the practical workings of coal, know that under the most favorable conditions not more than 10 lb . water can be vaporized per pound of coal, while petroleum shows a vaporization of 18 lb . water for every pound of oil consumed, estimating in both experiments the feed water at $212^{\circ} \mathrm{F}$. The heat in coal transferable to water is about 70 per cent, while the heat in petroleum transferable to water is about 80 per cent. Therefore with coal 70 per cent of 12,000 units gives 8,400 , and for petroleum 80 per cent of 20,000 is 16,000-a gain of 7,600 heatunitsin each pound.

This is on the basis of pure coal, but when we consider the waste, amounting in some cases to 25 per cent-and the master mechanic of one of the largest railroads in the country claims 55 per cent found in nearly all coal-such as sulphur, slate, and earthy substances, which, being incombustible, retard instead of generating heat, the difference in the per cent obtained in actual practice is far greater than shown by the above comparison. On this basis the only question to be considered is the cost of power furnished by each at the dynamo. Three and one-half barrels or 955 lb . of oil equal $2,240 \mathrm{lb}$. of pure coal, therefore, with oil at $\$ 1$ per barrel and coal $\$ 3.50$ per ton, or oil at $\$ 1.50$ per barrel and coal $\$ 4.50$, the difference in cost be considered. When, however, we calculate the great
saving in stoking, removing cinders and ashes, cleaning flues and benefit to boiler, besides securing a steady heat, combined with quickness and ease in starting and shutting down, we have an argument in favor of oil that stockholders that care for dividends can appreciate. Oil can be delivered at Rutland, Vt., for $\$ 1.50$ per barrel, while soft coal costs $\$ 4.40$, and hard $\$ 6$ per ton. On this basis, allowing five pounds of coal per hour, twelve hours per day, $1,000 \mathrm{H}$. P. requiring 803 tons per month, at $\$ 4.50$ would cost $\$ 3,613.50$; two firemen to feed same, $\$ 100$; man cleaning flues, etc., $\$ 45$; carting ashes and cinders, $\$ 100$; making total cost for thirty days, $\$ 3,858.50$ with coal. Same number H. P. and same length of time, allowing three and one-half barrels for each ton of coal, would require 2,810 barrels of oil at $\$ 1.05=\$ 2,950.50$. Wages of one man in boiler room, $\$ 50$; making total of cost of $1,000 \mathrm{H}$. P. one month, with oil, $\$ 3,000.50$, showing a saving of $\$ 858$ per month, besides the advantages, where oil is used of steady flow of steam and regularity of speed.
Mr. Francisco has gathered these facts : The Boston and Albany Railroad Company, after a careful test, made in their shops by a Lehigh University professor, say that the cost of fuel is about the same; though they buy their coal in large quantities at one time, and secure low rates, they prefer liquid fuel, because it is clean and requires no fireman, and gives a better supply of steam.
Day, Cordage \& Co., of Boston, claim that, with Cumberland coal at $\$ 4.50$ per ton and liquid fuel at $\$ 1.15$ per barrel, they save fifteen cents per $100 \mathrm{H} . \mathrm{P}$ per hour, and the oil is preferable.
The Fairbanks Scale Co., of Vermont, report that they find it a great saving over coal, while the boilers are heated evenly the entire length. The manager of the Toledo, Columbus, and Southern Railway reports a saving of 33 per cent of the price of coal by using liquid fuel, and that two barrels of oil equal one ton of soft coal, while manufacturers on his road find it only costs one-half as much as coal for their stationary boilers. The rolling mill works of Chicago use it under a battery of fourteen boilers, and say that $3 \frac{6}{10}$ barrels oil does the work of one ton of coal. Former y , when using coal, twenty-five men were needed to work this battery of boilers for twenty-four hours now, with liquid fuel, four men do the work, the efficiency of the boilers is increased, cost of repairs les ened, and the flame less severe on boilers.
A paper on municipal lighting was read by F. H. Whipple, and on municipal ownership of commercia monopolies, by A. R. Foote.

position of the planets in march venus

is evening star. Her period of greatest brilliancy occurs on the 25 th, when, as well as during this whole month, she shines like a young moon, casts a shadow and is visible at noonday in the presence of the sun
himself. After that time her light grows dim, as she rapidly approaches the sun and draws near the close of her career as evening star. Her movement north ward
will increase the length of her stay above the horizon will increase the length of her stay above the horizon, and place her under most favorable conditions for obervation. Venus sets on the 1st at $9 \mathrm{~h} .42 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st she sets at $9 \mathrm{~h} .38 \mathrm{~m} . \mathrm{P}$. M. Her diameter on the 1st is $27^{\prime \prime} .8$, and she is in the constellation Pisces.
is evening star. He is easily found in the northeast, as soon as the stars come out, from his vicinity to Regulus. A quadrilateral may be traced, formed by Saturn, Regulus, and two other stars belonging to the Sickle, Gamma and Epsilon Leonis. Saturn sets on the 1st at $5 \mathrm{~h} .30 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets at $3 \mathrm{~h} .28 \mathrm{~m} . \mathrm{A} . \mathrm{M}$ His diameter on the 1st is 19", and he is in the constellation Leo.

JUPITER

is morning star. He is fair to behold as he looms above the southeastern horizon on the 1st, more than three hours before sunrise. He is in quadrature with the sun on the 27th, and is then 90° west of the sun. Jupiter rises on the 1 st at 2 h .59 m . On the 31 st he rises at 1 h . 15 m . A. M. His diameter is $33^{\prime \prime} .6$, and he is in the constellation Sagittarius.

uranus

is morning star. He is now near enough to the earth to be visible to the naked eye, and, rising on the 1st about 9 h. P. M., may be found about 2° north of Spica, as a small star of the sixth magnitude. Uranus rises on the 1 st at $9 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he rises at 7 h . P. M. His diameter is $3^{\prime \prime} .8$, and he is in the constellation Virgo.
mercury
is morning star. He reaches his greatest western elongation on the 13th, and is then visible in the east as morning star before sunrise. He is, however, too far south of the sun to be seen under favorable conditions. Mercury rises on the 1 st at $5 \mathrm{~h} .25 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he rises at 5 h .7 m . A. M. His diameter is $8^{\prime \prime} .6$, and he is in the constellation Aquarius.

MARS
is evening star. Our interesting neighbor increases his
distance from the earth, but is still visible as a ruddy star, settiag on the 1 st about two hours after the sun. Mars sets on the 1st at 8 h .4 m . P. M. On the 31st he sets at 8 h . P. M. His diameter is $4^{\prime \prime} .6$, and he is in the constellation Pisces.
neptune
is evening star. He sets on the 1 st at 0 h .15 m . A. M. On the 31st he sets at 10 h .20 m. P. M. His diameter is $2^{\prime \prime} .6$, and he is in the constellation Taurus.
Saturn, Neptune, Venus, and Mars are evening stars t the close of the wonth. Uranus, Jupiter, and Mercury are morning stars.

proposed visit of the american engineering societies to edurope.

The American Society of Civil Engineers, with the Society of Mechanical Engineers and the Institute of Mining Engineers, are organizing a trip to Europe to visit the Paris exposition and such other objects of interest as may prove practicable. The proposed excursion has attained already such dimensions, as indicated by the responses of members, that it is believed that two steamers will be required to accommodate the travelers. The civil engineers alone will fill one vessel. It is proposed, therefore, to charter one or two vessels of the Inman line, and perhaps to reserve all the first cabin accommodations on the Egypt or Spain of the National line. The maximum fare for the ocean voyage and return will be $\$ 110$. The magnitude of the delegation indicates well the immense growth of the engineering profession in the United States, and it is gratifying to feel that America is to be so well represented at the exposition. Her position at all previous exhibitions, from the standpoint of inventiveness and ngenuity displayed by the exhibits, has been very high, and will be so in 1889. The engineering societies will give a personal aspect of American professional life that we are confident will make itself felt in scientific circles there.

Burglarizing Bank Safes.

A startling article appeared in the daily papers last week, giving an account of what purported to be the blowing open of one of Marvin's bank safes by two "reformed burglars" (?) connected with the Star Theater company.
We thought the statements were worth investigating for our readers and the many bankers and business men using safes, not only in this city, but throughout the country; for if safes can be broken open in a few moments, it is time users of them knew it. We are glad to say that after fully investigating the facts, we find the whole matter was merely an advertising scheme to puff a cheap play at the expense of a reputable business. The real truth of the matter is that these people bought a little second-hand safe for about twenty dollars of some dealer, to exhibit it in their show and make a pretense of blowing it open during the progress of the play. It is an outrage that such a misstatement should have appeared in the daily papers as would tend to create a feeling of distrust in bank safes.
The Marvin Safe Company has been manufacturing safes for half a century, and no name in the trade stands higher than theirs, and they now have under way for various banks safes that look as though it would take a month to force open.-The Financier.

More Industrial Schools.
Mr. Jacob Tome, a wealthy banker of Port Deposit, Md., who some time ago set aside a half million dollars to found a practical training school in the mechanic arts and trades, to be located at Port Deposit, Md., has now increased the gift to two and a half million dollars. With this liberal endowment, and the carry ing out of Mr. Tome's wishes, who has himself risen from the ranks of labor and fully understands the difficulties now besetting the youth of our country in obtaining a practical knowledge of the mechanic arts, this school is designed to be one of the most complete and extensive in all branches of trade practice of any similar institution in the world. The scheme of free trade teaching inaugurated by Peter Cooper has at last taken a deep root in the minds of able men, followed by the success of the New York Trade Schools and the Pratt Institute in Brooklyn, N. Y.
The munificent gifts of Mr. Williamson, of Philadelphia, and Mr. Tome, of Port Deposit, Md., are destined to bring out the latent genius and energy of our youth in a practical apprenticeship, free from the depressing influence and obstruction now thrown in the way of the apprentice by the discouraging influence attempted and partially enforced through the perverted dogmas and actions of labor organizations.

The direct use of electricity as a labor-saving machine has been applied at the great steel works, Cleveland, Ohio, where a large electro-magnet is used, suspended from a crane, to pick up steel bars and billets. It will pick up 800 lb . billets and drop them where wanted'by the touch of a key, the movement where wanted,by the touch of a
of the crane being done by steam.

THE MASON REDUCING VALVE.

The accompanying illustrations represent a valve designed to automatically reduce and maintain an even steam or air pressure, regardless of the initial pressure. The principle upon which it operates is that of an auxiliary valve controlled by the low pressure, and admitting steam from the high pressure side to operate a differential piston, which is the main valve. The high pressure enters the reducing valve at the side marked "inlet," and passing through the auxiliary valve, K. which is held open by the tension of the spring, S, passes down the port marked "from auxiliary to cylinder," underneath the differential piston, D. By raising the piston, D, the valve, C, is opened against the initial pressure, since the area of C is only one-half of that of D . Steam is thus admitted to the low pressure side, and also passes up the port, XX, underneath the phosphor bronze diaphragm, OO, upon which bears the spring, S. When the low pressure in the system has risen to the required point, which is determined by

THE MASON REDUCING VALVE.
the tension of the spring, S, the diaphragm is forced upward by the steam in the chamber, OO, the valve, K , closes, no more steam is admitted under the piston, D, the valve, C, is forced on to its seat by the initial pressure, thus shutting off steam from the low pressure side. This action is repeated as often as the low pressure drops below the required amount. This piston, D , is fitted with a dash pot, E , which prevents chattering or pounding when the high or low pressure suddenly changes. This valve is manufactured by the Mason Regulator Company, Boston, Mass., the sizes up to and including two inches being made of composition, and above that of cast iron, with composition linings.

AN IMPROVED HOISTING MACHINE.

An easily operated machine, of which the boom can be swung to any desired position and held there, and specially adapted to facilitate the loading and unload ing of vessels, cars, etc., is shown in the accompanying illustration. It forms the subject of a patent issued to Mr. George J. Anderson, of West Superior, Wis. The mast consists of a vertical frame having on its bottom a pin adapted to turn in a bearing on the platform,
boom extending rearwardly over the hopper, this boom being built of parallel beams to form a track for a carrier, and having a trip at its rear end over the hopper, while the beam is held on the mast in such manner that while the beam is held on the mast in such manner that
the weight concentrates in the lower part of the mast frame, and the latter is easily turned on its pivots. The carrier, besides the usual wheels, supports a frame, in the widdle of which a pulley is mounted to rotate, over which passes the hoisting rope, secured by one end to a transverse bar of the carrier frame. The hoisting rope supports the hoisting bucket by passing under a pulley mounted to rotate in a frame carrying at its lower end a hook, the arrangement being such that the bucket is lifted out of the hold by the hoisting rope until the pulley comes in contact with the pulley of the carrier, when the latter travels upward with the bucket, and a latch connected with the bucket engages the trip to discharge its contents when over the hopper. The desired limitation of the lowest travel of the carrier on the boom is fixed by a rope attached thereto and passing upward over a weighted pulley on the main frame, the end of this rope being secured on a cleat or pin, and the weight causing all slack of the rope to be constantly taken up during the travel of the carrier. The outer end of the hoisting rope extends downward from a pulley in a pivotal connection with the upper end of the boom, to be connected with a windlass of any approved construction on the platform, and one end of the block carrying the pulley at the top Eer. of the frame, over which the rope passes, is also connected with a rope extending over a sheave and downward, to be secured to a cleat on the post at the opposite side of the frame. When the boom has been turned to the desired position, this rope is fastened to the cleat, the boom being turned to such position by pulling on this rope or on the hoisting rope.

AN IMPROVED GRATE BAR.

The accompanying illustration represents a style
of grate bar now and for five years past in use on the Sound steamers Stonington and Narragansett, which is said to have been very economical and to have given entire satisfaction. These grate bars allow for ample air space through and between them, and always remain comparatively cool on their bottom edges, while the top surfaces become very hot, and sometimes red hot. This fact, in the case of ordinary grate bars, causes unequal expansion, which breaks, buckles, or warps the bar, a proportionate loss of fuel ensuing. In the Miller bar this expansion is allowed for by the lateral air spaces and openings on the face of the bar, whereby the bar is said to remain straight until burned down to the bottom of the openings. Further information relative thereto may be obtained of Chief Engineer John Smith, of the steamer Stonington, or Chief Engineer Wm. H. Van Wart, of the steamer Narragansett, No. 261 West Street, New York City.

AN IMPROVED OIL CAN NOZZLE.

A nozzle or tip adapted for connection to the spout of any ordinary oil can, to prevent waste of oil, is shown in the accompanying illustration, and has been patented by Mr. John S. Peter, Denver, Col. (care of B. \& M. R. RR.). Figs. 1 and 2 show side and end views of the nozzle, which has an interior lengthwise passage or bore, for discharge of the oil, a head piece fitted for rotation within the back part of the tube, and to which the oil can spout is fastened, and a spring held to the head piece and engaging the tube to normally turn the latter out of line with the annular passage of the handpiece, to cut off the flow of oil from the can, as shown in Fig. 3. The spring may also be fitted to the rear end of the head piece, as shown in dotted lines in Fig. 1. In using a can provided with this nozzle, the nozzle or tip is placed in an oiling hole, and the body of the can turned by the operator until the bores of the tube and head piece are brought to coincide, before any oil will be discharged, these parts resuming their normal position to cut off the flow of oil as soon as the tube is lifted from the oil hole. Fig. 4 is a sectional view of a slightly modi-
which may be part of a dock, and there is a pin in the upper end of the mast frame adapted to turn in a bearing in the ends of forwardly projecting top beams of a frame erected in the rear of the mast, the latter frame having a hopper supported therein. Forwardly projecting beams of the mast frame support an inclined
fied form of the nozzle.
Good thin shellac varnish.-Break the gum into small pieces and macerate in a stoppered bottle with ether. After swelling sufficiently, excess of ether is poured off, when the shellac dissolves quite readily in alcohol.

THE SARTELL RAILWAY CAR HEATER.
We illustrate. herewith a device for heating railway cars recently patented by Mr. E. P. Sartell, of St. Cloud, Minn. Fig. 1 of the accompanying cuts represents a vertical longitudinal sectional view of parts of

THE SARTELL RAILWAY CAR HEATER.
two railway cars provided with the heater ready for use. Fig. 2 is a vertical transverse view of the same. Fig. 3 is a similar view, showing a different section. Fig. 4 is a front view of the chest.
The heater chest runs the entire length of car, with attachments underneath at the platform ends. It is lined, and forms an inclosed chamber for steam pipes. On the upper side of the chest are registers, which com municate direct with the interiors of the cars, and when open the heated air from the chest enters into the cars. The source of heat being thus placed outside of the cars, the dangers arising from fire in the event of a railroad accident are removed-the apparatus for generation of steam being located in the forward car of the train or coming from the locomotive direct. Provision is also made for instant detachment of steam pipes, consequent on the coupling or uncoupling of cars, these pipes at the same time having a perfect connection

THE MILLER GRATE BAR.
with each other. The pipes are also supplied with proper dripcocks and valves. We are informed that a practical test of this heater is soon to be made on one of our leading railways of the Northwest.

Astrology and Railways in china.

The extension of the Tien-Tsin Railway to TungChow has (the Shanghai correspondent of the Standard says) encountered an unexpected obstacle, which, it is to be feared, will prove fatal to its progress, for the present at least. The great fire which destroyed part of the Imperial Palace in Peking recently caused much disturbance in the minds of the old fashioned and superstitious, who are still strong in the capital. In consequence, the Emperor and his mother consulted the imperial astrologers, who, after much deliberation, declared that the fire was an evil omen, and was intended as a warning against permitting the approach of the "Western invention" to the sacred city. The further extension of the railway has been prohibited by imperial decree.

A MACHINE 10 DISTRIBUTE POISON ON PLANTS. A method of dusting poisonous powders on plants, to rid them of destructive insects, is illustrated herewith, and forms the subject of a patent issued to Messrs. George R. and John W. Brown, of Pledger, Texas. The axle of the machine is centrally arched to pass readily over plants, and the main frame has a screen to protect the driver from the poisonous dust. The casings of the air blast fans are fixed to the rear cross bar of the frame, and have outlet pipes com-

IMPROVED DEVICE TO CLOSE A TENT ENTRANCE. A device for closing the entrance opening in the wall of a tent readily and quickly, without the tying of cords, is illustrated herewith, and has been patented by Mr. Henry Thomas, Fort Omaha, Neb. The device nay be applied to old as well as new tents, and the curtain arranged to operate from either the outside or nside. A suitable section of the tent wall is removed, and the edges of the opening turned over to leave an opening sufficient to receive a vertical guide rope on each side. At the top of the opening a flexible portion of a covering curtain is secured, while to the lower portion of the curtain, at intervals, clips are att ached by sewing. The clip is shown in Fig. 5, its enlarged circular portions each embracing the guide rope in one of the edges, as shown in cross section in Fig. 4, Fig. 2 being a vertical section when the curtain is closed, as in Fig. 1. The clips slide up and down readily on the guide ropes, carrying with them the cur tain, and to retain the curtain in raised position, as shown in Fig. 3, a cord or loop is at tached to the lowest clip, and hung upon a hook secured above to the tent wall. To hold the curtain closed, a loop on the lowest clip is drawn over a tent peg.
THE FRENCH EXPOSITION OF 1889 AT THE Esplanade des invalides.
One of the great novelties of the future ex-position-and this will certainly be obvious to Parisians-will consist in the fact that one of the monumental entrances of the immense bazar overlooked by the Eiffel tower will be mum
municating with nozzles having trumpet-shaped ends, the nozzles being so connected as to admit of their being turned in different directions. All three of the fans are operated by a shaft which at one end carries a sprocket wheel, from which a driving chain passes to a larger sprocket wheel on the sulky wheel, causing the rapid rotation of the fans. A hopper to contain the poison is arranged over the outlet pipe of each of the fan casings, and beneath each hopper is pivoted a valve having an opening which may be brought to coincide more or less fully with a hole in the bottom of the hopper, the valves for all the hoppers being simultaneously regulated by a hand wheel and a worm shaft. To prevent the clogging of the poison in the hoppers, a vertical shaft, carrying a winged agitator, is journaled in each, the top of the shaft carrying a bevel gear wheel engaged by a bevel pinion on a transverse shaft, the latter being operated by a driving chain from the sulky axle, and a lever controlling the operation of this shaft being in convenient reach of the driver. This machine may, if desired, be built with but one poison hopper, fan blast apparatus, and discharge nozzle.
very near the Concord bridge, nearly in the heart of Paris. The colossal palace of iron and steel which is building upon the Champ de Mars will extend its annexes, in fact, as far as to the Esplanade des Invalides, and here will certainly be found one of the most picturesque and entertaining points of the en tire exposition. Although most of the structures are as yet unfinished, we wish now to lead our reader thither, and make them share with us the astonishment and admiration that a visit to this city of palaces, which is rising as if by enchantment, has caused us.
There is nothing but minarets, domes, steeples shaped in the Greek style, and white cupolas surmounted by the Oriental crescent; and here is the imposing facade of the exposition of the Minister of War preceded by a formidable entrance to a feudal castle an interesting specimen of the military architecture of the middle ages, due to Mr. Walrein, the skillful archi tect appointed by the Minister of War. Mr. Girault, one of the laureates of our Roman school, designed and is building the pavilion of hygiene, Mr. Ballu that of the Algerian exposition, and Mr. Sauvestre the
entral pavilion of the French colonies. Further along, there is an Indian temple, then a dwelling like those conceded to the colonists in our New Caledonian posessions, and, above this picturesque decoration, rises, nearly completed, the elegant minaret of the Coubba of Sidi-ben-Avouz, which overlooks the whole of the Tunisian section. This latter, seeing the peculiar interest taken in our new protectorate of Africa, will certainly be one of the principal attractions of the Exposition of the Invalides. The structures of the Tuni-

THOMAS' TENT-CLOSING DEVICE.
sian section, the heavy work upon which is now firs shed, are the ones that, for the moment, give the best dea of what the picturesque part of the exposition will be. Mr. Henri Saladin is the architect of it. Pre pared for this work by a trip that he has given an account of in the Tour du Monde, in conjunction with Professor Cognat, of the College of France, he has united in the style of his picturesque pavilion the most delightful specimens of Oriental architecture. The arcades of the front were suggested by those of Bardo the central dome is an exact reproduction of the Mikrab of the mosque of Kerouan, the loggia is that of a Tunisian house. There will be here some souks or covered bazars, an interior court with a pavement of colored tiles, and a cafe is coing up under the shade of a group of trees. And all this will be filled at the proper time with the riches of Tunis-fabrics, carpets ceramics, works of art, and, finally, with all the surprises that could be expected from the organizing zea and talent with which Mr. Sauson,Commissary General of the Tunisian government. is endowed. Let us not leave the Esplanade des Invalides with-

out mention also of the Tonkin village that is to be built there, the English dairies, the Dutch bakeries, and especially the phenomena of All Paris, which we have had the good fortune to get a glimpse of. Mr. Castellani's brush has brought hither the entire Place

MOSER \& BALDWIN'S WOOD-SAWING MACHINE.
de l'Opera, with its marble building, its tall houses, the groups of trees of the boulevards, the distant blues of the avenues, and, under the glowing sun with which he has illuminated his work, nearly a thousand persons are coming and going. There are nearly a thousand portraits of natural size-All Paris, all those who count, all those who are spoken of. There will be here but why unveil one of the prettiest surprises that the exposition reserves for us? Mr. Castellani can calculate upon success. It is not only All Paris that will visit him, but also all those who care to see the exposition.-Le Monde Illustre.

an improved saw mill dog.

A dog designed to be easily and quickly adjustable to small or large logs on the carriage frame is shown herewith, and has been patented by Mr. John Flesher, of Edging. ton, Ontario, Canada, Fig. 1, showing an end and Fig. 2 a side elevation. The standard is secured in the usual manner to the head block, and has upper and lower arms supporting a vertical guide post on which slides a bar having at its lower end an upwardly turned point adapted to engage the \log on its under side.
On the inside of the bar are notches adapted to be engaged by a spring pawl pivoted in a lever fulcrumed on a sleeve sliding vertically on both the guide post and the bar, the lever having near its outer end a handle, and a catch adapted to engage the upper pointed end of the sliding bar. On the inside of the sleeve is a notch to hold the spring pawl out of contact with the notches of the sliding bar, and a bar sliding transversely in the sleeve has on its outer end a downwardly extending point adapted to engage the top of the log. This latter bar is moved downward to bring its point in engagement with the log by operating the handle of the lever fulcrumed on the sleeve, its spring pawl engaging the notches of the vertical bar to drive the point into the top of the log. To release the dog, the lever is swung inward, the pawl being thereby disen-

flesher's saw mill dog.
gaged from the notches in the vertical sliding bar, and swinging downward into the recess of the sleeve, when the latter can be moved upward on the guide post and the bar until its catch is engaged by the top pointed

BEARE'S STEAM ENGINE. shown in Fig. 1, a lever is centrally secured, having a wrist pin at each extremity. Upon the drive shaft is keyed a heart-shaped cam, adapted to reciprocate a U-shaped yoke of a horizontal cam rod, pivoted near the center to a vertical link, the lower end of which is pivoted on the engine bed. The upper end of this link is pivotally connected, through a pitman, to one end of the lever secured on the rock shaft carrying the upwardly curved fingers, this lever having a wrist pin at each extremity, so thatlone may be utilized to go ahead and the other to back up. At each end of the steam chest is a vertical cylindrical casing, shown in detail in Fig. 3, having each a port leading into the live steam and the exhaust steam chambers, and in this casing reciprocates a plunger-like valve, with central circumferential groove, there being a metallic packing ring to take up the wear of the valve. In the rear of each casing are two ports coinciding with similar ports in the cylinder, the ports in the valve casing being just large enough to admit steam into the cylinder and take the exhaust steam. The valve rods extending through the top of the valve casings are each pivotally united to a lever, the outer end of which is pivoted upon a standard, while the inner end of each lever rests upon one of the upwardly curved fingers, so that when the plunger of one valve is down in the casing, the plunger of the opposite valve is elevated. This construction is designed to prevent down pressure on the valves, and obviate the grinding of the valve seats, while the wear of the valves will be effectively taken up by the pack ing rings.

Treatment of Warts.

Children often suffer from unsightly warts on the hands, which cannot be removed by caustic. G. B. Pullin, of Sidmouth (Bristol Medical Journal), recommends in such cases the administration of two or three minims of lia. arsenicalis twice a day. In a week or ten days, he says, the warts will disappear.

end of the bar. The weight of the sleeve and its con nections thus resting on the vertically sliding bar, the atter is moved downward and its point disengaged froin the bottom of the log.

AN IMPROVED WOOD-SAWING MACHINE

A device to facilitate wood sawing, patented by Mr. Thomas J. Baldwin, is illustrated herewith. The stick to be sawed is placed in notches in the upper end of blocks, fixed in a suitable base frame, in which also is journaled a circumferentially grooved roller. To a bar extending through one side of the frame is secured a standard, with pins adapted to engage a forked lever for holding the stick to be sawed steadily in position, the other end of the lever being engaged by notches in a standard on the other side of the frame. To a shaft journaled in the sides of the buse pieces is fixed an up wardly extending lever, which is jointed by an arm to the frame carrying the saw, so that by moving the lever back and forth the saw is reciprocated, and its work effected. When the saw passes through the stick, its teeth engage the circumferential groove in the roller beneath, to rotate the same, and, by filling this groove with hard grease, the blade of the saw is always kept well lubricated.
For further particulars relative to this invention, address Messrs. Moser \& Baldwin, care of Howe Scale Co. 612 N. Third Street, St. Louis, Mo.

AN IMPROVED STEAM ENGINE.

An improved valve gear for steam engines, patented by Mr. Ernest Beare, of Chester, Ill., is shown in the accompanying illustration. The steam chest is at one side of the cylinder, extending from end to end, and is divided into two longitudinal compartments, the upper one adapted to receive live steam, while the lower one receives the exhaust. Centrally upon the steam chest
abutment for the outer face of a bearing arranged for connection with the car body. This invention has been patented by Mr. Tesse S. Williams, of Beaver Dam, Ky. Fig. 3 is a central sectional view, and Fig. 2 shows one of the brasses. The cap has a central aperture, through which the lubricant is introduced, and the hub is formed with recesses adapted to receive flanges upon the brasses, which are made in semicircular sections. The axle has a collar, and in putting on the wheel the axle is first passed through the bearing and the cap placed in position, when the brasses are applied, their flanges resting in a circumferentia groove near the end of the axle, and then the wheel is placed on and bolted, as shown in the sectional view.

The Dayton Democrat relates the following, which illustrates pretty well the rapidity as well as extent to which building is carried on these days:
Citizen (to builder)-What are you going to put up there?
Builder-We're just beginning the finest row of flats ever built in New York City. Citizen-I'd like a nice flat in this neighborhood.
Builder-Well, you stop on your way home from down town this evening and I'll show you through; but get here as early as possible or they may be gone.

IMPROVED PLUNGER ROD FOR PUMPS.

The accompanying illustration represents an improvement, patented by Mr. Walter C. Westaway, designed to relieve reciprocating pumps and pumping machinery of strain and sudden jar in starting and when in rapid operation. Fig. 1 shows the invention applied to a common windmill pump, with handles for starting and operating by hand, Fig. 2 showing a different application of the handle. On the upper end of the piston rod or plunger is attached a section, on which are placed plates haring a coiled spring between them, to act as a cushion, a rod worked by the windmill or

WESTAWAY'S PLUNGER ROD FOR PUMPS.
other source of power being connected to the plunger rod to act thereon through the cushion. Fig. 2 is a detailed sectional elevation, showing the cushion and coupling. For further particulars relative to this invention address Messrs. H. \& L. W. Beard, Decorah, Iowa.

Garrespondence．

The Origin of Sweet Corn，and Early Use of the Tomato．

To the Editor of the Scientific American：
In your paper of February 16，in a note on origin of sweet corn，it is stated that sweet corn is not referred to by Jefferson in 1781，nor by Thorburn in 1817，nor by Fessenden in 1828．In 1832 it is mentioned by Bridge nan，and by Binot in 1851.
The writer found it in 1815 on the table of Rev． James Freeman，in Newton，Massachusetts，who raised it largely on his farm．The same skillful horticultur ist was among the first to raise the tomato，I think about 1818 ，and I remember how few people could then be induced to taste a fruit now so popular．

S．C．Clarke．

Marietta，Georgia．

Chimney Ventilation for Sewage Disposal Systems．

To the Editor of the Scientific American ：
In reading Dr．Sloane＇s article，in your issue of February 23，upon＂Process of Sewage Disposal，＂one or two facts occurred to me in illustration and justifi－ cation of his theory．These facts I think will be seen to be of interest and importance in this connection．
Some years ago，under the escort of Mr．Harrison， then mayor of the city of Minneapolis，Minnesota，I made a visit of inspection to those public buildings and private residences which were warmed and ventilated by the＂Ruttan patent．＂
This essentially consists of a central chimney，gauged， as regards its capacity，its height and dimensions， by the cubic area of the building to be warmed and ventilated．The smoke pipe of the furnace is carried up through the chimney，being fastened by clamps to one of the inside corners．
So great was the draught of these chimneys，that a silk handkerchief，released in the cellar opening，im－ mediately ascended and was shot out from the top with great force．
With Mr．Harrison I went down，by a permanent iron ladder，to the very bottom of the lighted vault of a public school building．This vault was 12 feet square and 12 or 14 feet deep．It received the discharge from the different closets in the building．All fecal matter went into it．Yet so rapid was the evaporation caused by the great chimney which had its lower opening in this vault，that the residuum，after weeks of unremoved deposit，was a dry inodorous powder，upon which one could step as upon a dusty road．
Again，in the city of Laramie，Wyoming Ter．，as I noticed on a more recent visit to that place，the refuse from the houses and stables is thrown into the alleys and seldom removed．Yet so rapid is the evaporation in that dry and breezy climate，that one can at all times walk through these alleys＂dry shod．＂
Rapid evaporation is a notable peculiarity of a very dry climate．The same result would be reached by the operation of a large chimney，such as I have described It would be an effectual desiccant for a sewer vault．
As Dr．Sloane says：＂When the aqueous portions of sewage are disposed of，nine－tenths of the problem is solved．＂
This simple appliance of a heated chimney exhaust－ ing a sewer vault would，I think，be found sufficient and effectual for＂ssmall systems，＂for farm houses， for large hotels used as summer resorts，for localities where no drainage is possible，for buildings that are almost on a level with tide water．

Hartford，Conn．

Geo．W．Du Bois．

Gravity at Different Heights．

At a recent meeting of the Berlin Physical Society， Dr．Thiessen gave an account of experiments which he had carried out in order to measure the amount by which gravity varies at different heights．The method he employed was that of Jolly，but with the introduc－ tion of a modification，in order to eliminate the irregu－ larities due to differences of temperature at the higher and lower stations．Scale pans were attached to each arm of the balance－one close up to the beam，the other some distance below it－and the weight was inter changed between the pans，both at the upper and low－ er stations，thus eliminating the influence of differences of temperature and of any inequality of the balance． The upward force of the air had no influence on the re－ sults，notwithstanding the varying volumes of the weights used．The distance between the upper and lower scale pans was $11 \cdot 5$ meters，and the weight used was 1 kilogramme．Twenty－four determinations were made，which gave as a result that the kilogramme， when in the lower pan，weighed 2.8 milligrammes more
than when it was weighed in the upper pan．After making some corrections，and，among these，one neces－ sitated by the fact that the weight in its lower position was 4 meters below the general surface of the earth．it was found that the weight of 1 kilogramme varies by 0.28 milligramme for each 1 meter of difference in alti

The United States will make a creditable display the Paris Exhibition．And this is as it should be；for， although nominally a universal exposition，it will be practically a display of the products of republics．The monarchies of Europe will be represented only by private exhibits，while the republics of North and South America have rallied in force．The United States Department of Agriculture will make a splendid showing．Secretary Colman has placed the undertak－ ing in the hands of Professor C．V．Riley，the famous entomologist，an energetic organizer as well as a care－ ful and enterprising scientific observer；and Professor Riley has already sent forward three car loads of pro－ ducts，which are on the way to France in charge of Ir．F．T．Bickford，an assistant．The bulk of ship ments are nearly through with，and the perishable staples will follow during the next month．Congress appropriated $\$ 250,000$ to aid exhibitors，and Secretary Colman＇s quota of this will insure the best illustration that the agricultural resources of this country have ever had on the continent of Europe．Various branches will be represented，as follows：Fruit，Professor Van
Deman and Professor George Hussman；grain，George N．Hill，St．Paul，Minn．；cotton and fibers，Col．James A．Benford，Duck Hill，Miss．，and Charles R．Dodge， Boston；tobacco and peanuts，Alexander McDonald，Vir－ ginia；agricultural education and experimental stations， W．O．Atwater，Departinent of Agriculture ；vegetables， including hops，M．G．Kern，St．Louis ；entomology， including apiculture and silk culture，C．V．Riley，N． W．McLean，of Hinsdale，Ill．，and Philip Walker，De－ partment of Agriculture；sorghum and other sugar plants，H．W．Wiley，Department of Agriculture forestry，B．Fernow，Department of Agriculture，and M．G．Kern，of St．Louis；grasses and forage plants， George Vasey，Department of Agriculture ：meat pro－ ducts，Dr．De Salmon，Department of Agriculture．A articles for exhibition will be forwarded free from New York，and no charge will be made for space in Paris． Professor Riley has put forth unusual exertions to get the exhibit on the road，and he looks forward with much enthusiasm to the result．He will not leave for Paris till the first week in April．－Science．

Obscure Dangers of Drinking Water．＊

The difficulty of detecting the typhoid germ is so great，owing to its form being like that of many other bacteria，and the number of typhoid germs is so small compared with the volume of water and with the multitude of other bacteria usually present，that the isolation and determination of the existence of this microbe in large bodies of water，by culture investi－ gations and the microscope，has thus far proved prac－ tically impossible，on account of the many tests re－ quired before a cautious investigator would dare to pronounce large volumes of water free from patho－ genic microbes．
Some of the worst forms of disease may be wide－ spread through a community by means of the water supply，as was noticeably the case in Plymouth，Pa．， and yet both chemical and biological analysis may fail to discern the particular matter which carries the deadly seeds of epidemic．One of the public water supplies of Plymouth contained a much greater amount of organic matter than the other，but it was the water chemically purest which carried disease and
death． death．
With most waters that are proposed for public sup－ plies，there being as yet no practicable means of say－ ing definitely whether they do or not contain the germs of zymotic disease，all that can be determined with re－ gard to them is，first，whether or not they are so situ－ ated with regard to sources of contamination that disease germs are likely to enter the waters，and， second，whether the waters exist under those condi－
tions which are favorable to the multiplication of such pathogenic bacteria as may find their way into them． No waters are absolutely free from danger，but some are far more liable than others to be the carriers of disease．

A water supply commonly free from the specific erms of disease，but having conditions favorable to their development，may，when exposed to contamina－ tion，be suddenly invaded by pathogenic bacteria and an epidemic produced．When chemical analysis shows a water to contain excessive quantity of putrescible ni－ trogenous matter according to accepted chemical stand－ ards，such water is objectionable on the ground that this matter may afford the pabulum essential to bac－ terial development．In the presence of（local）putre－ action，spores are often found in great numbers，even when the general body of the water does not appear impure by chemical tests．For this reason，the occur－ rence in a stream，or body of still water，of limited lo－ calities，where quantities of organic matter accumulate and putrefy，may create hot beds for the propagation of bacteria，whose myriads of spores may be diffused through great volumes of water of high chemical purity，possibly contaminating the whole mass．The general body of water may not contain sufficient food
or be of proper temperature itself to cause the devel－ opment of the spores or seeds，but if there are patho－ genic germs anong them，they will develop when drunk by susceptible persons，and become active agents of disease．

A Deep Artesian well．

The deepest artesian well in the world is now claimed as supplying the baths at Pesth in Austria－Hungary． It is said to be 8,140 feet deep and supplies 176,010 gallons daily at a temperature of $158^{\circ} \mathrm{Fah}$ ．
This temperature does not indicate that all the water comes from the full depth of the well；as the average assigned increase in temperature from observations in deep wells and mines has been found to be 1° Fah．for each 60 feet in depth below the plane of stationary temperature，which in the temperate zone is between 50 and 80 feet，the variation being probably due to variation in the annual mean surface temperature and the conductivity of the rocks beneath．The increase of $1^{\circ} \mathrm{Fah}$ ．in 60 feet would indicate a temperature of 185° Fah．at a depth of 8,140 feet，while an increase of 1° in 54 feet，as found in some other deep borings，would in－ dicate a temperature of 200° at the bottom of this well， thus showing in all probability that the flow of the well is made up of inflowing streams at various depths．The boring for hot water for heating pur－ poses，as has been lately suggested，would be sub－ ject to the influx of mid－streams，which，if shut off by piping，would largely diminish the supply，and thus limit the scheme for tapping the subterranean heat of the earth．

The Corrosion of steel Ships．
An alarming illustration of the facility with which steel corrodes under certain conditions，the Engineer． says，has been just supplied at Portsmouth．H．M．S． Nile was launched at Pembroke on the 27 th of March last，since which time，as there is no dock accommoda－ tion at the Welsh yard，she had been afloat in her launching trim without there being any opportunity afforded of examining and protecting the under－water parts of the hull．When she was placed in No． 13 dock at Portsmouth for the purpose of removing the launch－ ing gear and changing her temporary propellers，it was discovered that the red lead with which her bottom was coated had extensively peeled off，and that serious corrosion of the plating all along the water line on both sides had taken place．The starboard side amid－ ships is very much pitted，though，as a rule，the pit－ ting and scoring are tolerably uniform．The rivet heads are greatly corroded，and in many instances they appear to be completely eaten away．

Wyandot Cave and its wonders．
By the invitation of the Long Island Historical So－ ciety，of Brooklyn，N．Y．，a highly original and unique lecture was delivered in their hall last Tuesday even－ ing by Rev．H．C．Hovey，D．D．，of Bridgeport，Conn．， concerning the marvelous and picturesque features of Wyandot Cave．The hall was crowded，and the audi－ ence expressed great pleasure at the entertainment given．Dr．Hovey was the first writer to bring the In－ diana cavernsintogeneral notice，through the New York Tribune，the Century Magazine，and other periodicals； as well as by various papers read before scientitic so－ cieties．A few years ago he took with him a skillful artist，who made a large number of sketches，some of which were afterward published．But during the last year a young artist，Mr．Ben Hains，has taken for Dr． Hovey＇s use a series of admirable photographs，which were exhibited for the first time in connection with this lecture．Besides the series from Wyandot Cave，there were some lovely scenes from Marengo and Sibert＇s Caves．These are pronounced the very best specimens of subterranean photography yet produced．

Prizes for Scientific Works．

The Royal Academy of Sciences of Turin，in accord－ ance with the last will and testament of Dr．Cesare Alessandro Bressa，and in conformity with the pro－ gramme published Dec．7，1876，announces that the term for competition for scientific works and discov－ eries made in the four previous years，1885－88，to which only Italian authors and inventors were entitled，was closed on December 31，1888．The Academy now gives notice that from January 1，1889，the new term for com－ petition for the seventh Bressa prize has begun，to which，according to the testator＇s will，scientitic men and inventors of all nations will be admitted．A prize will，therefore，be given to the scientific author or in－ ventor，whatever be his nationality，who，during the years 1889－90，＂according to the judgment of the Royal Academy of Sciences of Turin，shall have made the most important and useful discovery or published the most valuable work on physical and experimental sci－ ence，natural history，mathematics，chemistry，physi－ ology，and pathology，as well as geology，history， geography，and statistics．＂The term will be closed at the end of December，1890．The value of the prize amounts to 12,000 Italian lire $(\$ 2,500)$ ．The prize will in no case be given to any of the national memb
the Academy of Turin，resident or non－resident

A MACHINE TO SUPERSEDE TYPESETTING. (Continued from first page.)
the copyholder is a series of vertical tubes, one to cor respond with each key, forming the magazine in which the matrices representing type are held. The keys are pivoted in a supporting frame carried by a bar attached to the magazine tubes, and each has a vertical slot or opening for the passage of a matrix, which drops by gravity as the key is depressed, another type at the same time descending from the magazine tube to take the place of the one discharged, and bearing upon the

TYPE BAR.

upper edge of the key. This slotted oscillating key thus serves as an escapement, receiving the matrices one at a time from the tube, and delivering them through the corresponding openings beneath, the delivery being instantaneous as the operator touches each key.
The matrices, of which one is shown herewith, each consist of a thin plate of brass, an inch and a quarter long, about three-fourths of an inch wide, and of a thickness minutely defined by that of the letter produced on eash, all matrices bearing the same letter being exact duplicates of each other. Each matrix has suspending shoulders differing on the matrices representing the respective characters, and secondary shoulders or notches differing in width on the different matrices, these special distinctions being necessary to insure the correct automatic distribution of the matrices to the magazine tubes after they have been used. A side view of one of the matrices is also shown at A, in the sectional figure, where it forms part of a line as held up for casting.
The magazine in which these matrices are held is composed of a series of independent vertical tubes, each internally of suitable size to receive its particular matrix, and drawn from sheet metal, to make a smooth, seamless, and perfectly true conductor, through which the matrix will pass without danger of stoppage. The upper end of each tube is slightly enlarged or flared, to permit the free entry of the inatrices, and any tube can be removed independently of the others.
To receive the matrices, as they are delivered one at a time below the magazine, and conduct them to the point at which they are assembled or composed to form lines, a horizontal guide or channel is provided, with rails on which the shoulders of the matrices are supported, the matrices fitting loosely in such channel, and being maintained therein in substantially up right position. The matrices are advanced through this guide or channel to the point of assemblage by means of a blast of air directed longitudinally through the channel, from the lowermost of the two tubes seen to be connected with the machine at the right of
ines, the difficulty of mechanically effecting which has heretofore been one of the principal obstacles in all such machines. In this machine the operation is simple, the justification is perfect, and takes no time. The matrices, as they are pneumatically delivered and loosely held in horizontal position on their guides, have their sides in which the letters are cut plainly in view of the operator, who can then replace any letter which may have been erroneously used, and also see when his line is so nearly full that it will not hold another word, or whether some word possibly had better be divided, or how much more space will be needed to make the line full, according to the predetermined measurement. The usual spaces between the words, etc., as ordinarily inserted by the compositor, are already in place, having been inserted in the same way as the matrices, by the use of a " space key," but the spaces here used differ from the matrices, and consist of longitudinally tapered or wedge-shaped bars, three or four inches long, with their larger ends hanging down below the bottoms of the line of matrices. These space bars now do all the further work of spacing, being caused to rise automatically by means of a vertically reciprocating plate acting against their lower ends, until the line has been expanded to the full limits allowed by the clamps which determine its length. In this way the increased space between the words is evenly divided, and "uneven spacing" is simply impossible, no attention to the matter being required on the part of the operator, who is already touching the keys for the formation of the next line.
The line of matrices thus completed is received by a head opposite the end of the stationary type suide, there being immediately below and behind the head a mould, in the form of a vertical disk, having a nould chamber or slot extended horizontally through t of a form and size identical with that of the required type bar. This portion of the machine will be better understood by reference to the sectional view, where B represents the disk mould, A the line of matrices as held up thereto, C the reservoir of melted metal in its gas-heated chamber, D a plunger acting as a force pump to force the metal into the mould, and E an jector bar which has forced out the type bar, F. For the purpose of forcing the line of matrices tightly against the mould, their characters registering with the mould proper, an outside clamping head is em ployed to bear against the outer edge of the line, while upplemental clamps or jaws assist to hold the line firmly and in exact adjustment. To avoid overheat ing of the mould when rapidly operated, it is made with transverse openings adapted for communication with the blast nozzle, although no difficulty is ordi narily experienced on this account
There are, as is well known, a great variety of type metals, according to the sizes of type and its uses, ordinary type for newspaper work being mainly composed or 6 parts lead and 2 of antimony. The addition of a lit tle bismuth, however, carries down the melting point and also produces a softer metal, as more commonly used for stereotypes. Such an alloy, composed o parts lead, 2 of antimony, and 2 of bismuth, readily melts at about or a little over $300^{\circ} \mathrm{F}$. The thin type bar made by the machine, therefore, readily cools suffi ciently for ejection during the revolution of the mould disk, the type bars being thence carried to a galley attached to the machine just to the left of the operator, where the bars are assembled in the order of their production in the form of a column ready for immediate use.
Not only is all this work done automatically, but the matrices, after the type bar has been formed, are automatically withdrawn from their position against the mould disk and lifted by a carrier to the distributing mechanism, at the top of the magazine, whence they are distributed to their several tubes. This distributing mechanism cousists es sentially of an endless chain or belt, arranged to travel horizontally above distributing rails, the belt carrying a series of blocks armed with adjustable forks or fingers to act between the matrices and push them forward. The rails are paral lel and sufficiently separated to admit of the matrices being carried in an upright position between them, and the inner edge of each rail has a lip designed to engage the shoulders of the matrices and
the operator, the other tube being connected with the casting mechanism, to assist in cooling the mould. By this means the delivery of each matrix is effected so promptly that its motion can hardly be seen, the click of the matrix coming to its place in the line being formed seeming to be almost simultaneous with the touching of each key, little fingers or followers at the same time continually pushing forward the characters until the line is completed, or approximately so.

This brings us to one of the most interesting features of the machine, that of the justification of the
hold them in suspension, the lip being divided transversely into a number of sections to en gage matrices having different shoulders, whereby each matrix will be sustained upon the rails until it is car ried to the point at which it is to be released to drop into its proper tube in the magazine. Connected with the distributing rails are wires from a battery, by means of which a matrix forced or dropping out of place will cause the closing of a circuit and the stoppage of the carrier belt ; the particular matrix causing the stoppage is always immediately in front of the operator, with whom it is only the work of a moment to replace the matrix, or removeit entirely if it happens to be defective.

How far this machine may be considered a practical success for general uses, in the way of superseding typesetting by hand in the old way, it is perhaps too early to give a definite answer. It is obvious that it is not adapted for work requiring different varieties of type, as small capitals, italics, accented letters, etc., although we understand the machine is now being made to use small capitals as well as the other characters usually employed in Roman text. But there is a large class of work, especially that required for newspapers in general, in regard to which this objection would not be very material. The actual performance of the machine at present, and for many months past, on such plain work, is about equal to that of three ordinary compositors, and it requires but a short time for an operator to attain an efficiency which will enable him steadily to maintain this speed, as compared with hand work. This, at least, has been the experience on the New York Tribune, where only thirty machines are ordinarily kept running for a day's work of eight hours each to get out a ten-page edition of the daily, which would require the services of about ninety men

THE TOP OF THE EIFFEL TOWER.
[for description see page 152.]
in the old way of working. The absolute saving of all distribution, which is equivalent to about one-quarter of the work of composition, is of itself a most important factor in the economy of the machine, while "standing matter," in the form of these type bars, can be kept for an unlimited time, and in any amount, without inconveniencing the office. To correct an rror a new line has to be made, but this is done so quickly that the entire work of correcting is said not to be increased. When a considerable number of the nachines are employed, the more or less constant services of a machinist or repairer would undoubtedly be necessary, but the machine, as it is, appears to be a wonderfully perfect piece of mechanism, almost endowed with intelligence, and we are informed that one machinist easily does all the repairing needed on the forty machines now in use in the Tribune office. The machines are not for sale, as we understand, so that the question of their cost cannot be answered, but they are to be leased, those using them to pay a fixed sum on the execution of the lease and a quarterly rent besides.

AUTOMATIC INDICATOR FOR MAGAZINE GUNS.
Mr. Wm. R. Miller, No. 30 Hopkins Place, Baltimore, Md., has invented an attachment for repeating guns and rifles, having an automatic adjustment for indicating at any time the condition of the magazine as regards the number of cartridges contained therein. None of the repeating firearms as now offered to the public, whether Winchester, Colt's, Marlin, Spencer, Bullard, or Hotchkiss, has any device for registering the number of cartridges contained in the gun.
The automatic register, which has been patented in this country and abroad, consists of a small brass cylinder placed within the magazine of the rifle. The magazine spring is in two unequal lengths, instead of in one piece, as usual, the small cylinder referred to being placed between these two sections. The cylinder is of brass, having a star or indicating mark placed upon it, and sliding within the magazine. There is a slot or opening near the end of the magazine, and the star or mark on the sliding cylinder will appear through this opening, indicating the number of charges in the magazine. When the magazine is filled with cartridges and the springs are compressed, the cylinder is forced toward the outer end of the magazine. As each cartridge is discharged the cylinder or indicator moves toward the stock of the gun a distance which bears the same proportion to the length of a cartridge as the length of the short spring does to that of both springs. The shape of the opening makes it unnecessary to
double-hold hammer, specially intended for semi-ham merless guns, by the same inventor.
The indicating device illustrated in this article is new, simple, and inexpensive, and when in use will remove one of the grave objections to this class of arm, namely, the total inability of the user of repeating guns to know or even approximate the contents of the magazine without actually emptying out all the cartridges, counting them and then reloading the magazine as at first.
One of the special advantages of this indicator is that, while it can be made as a part of the arm, it can also be made as a separate piece. It will be put upon the market as an indicating magazine, and will be so constructed that it will interchange with the magazine of any of the guns that it is arranged for, which will allow the indicator to be put upon the many rifles will allow the indicator to be put upon the many rifles
now in use, the purchaser of an indicating magazine removing the regular one from the gun and putting the new one in its place.
For further information regarding this invention, address Mr. Miller, at Baltimore.

The Real Value of Money.

Did you ever consider this subject? There is some philosophy in the hard-hearted answer which a Boston millionaire is said to have made to a request from a lady of that city, who had appealed to him in behalf
second is to so manage an investment as to establish, if possible, a surplus, as a rear guard, if you please, to the original capital. The value of this original capital will thus be increased, and if there be a demand for it, it is then possible to spread out one's business, being ever mindful that whatever amount is set aside as a working capital, the first object of success is in preserving it intact.
Bearing these things in mind, it will not be difficult in any enterprise to determine whether prosperity or the reverse has attended one's energies. This principle holds true throughout every sphere of life's work. Take, for instance, any one of the various trades. Consider the time and money expended in learning a trade; then one is only realizing the intrinsic value of money. But suppose after years of constant practice and endeavor, the apprentice becomes a skilled artisan, and just before he starts out in his life's work, he takes account of the money it has cost him and of the time, reduced to a money basis, he has spent in his apprenticeship, and sets that down as his capital, if he is then able to make for himself a comfortable living, and in time is able to lay up for future development, he is reenforcing very substantially the capital which he invested in his early training. He is realizing the earning value of his money. Otherwise he knows only of and has exhausted its intrinsic value. The true value of money, therefore, may be said to be measured by the benefits which may arise from a judicious invest-

AUTOMATIC INDICATOR FOR MAGAZINE RIFLES.

AUTOMATIC INDICATOR FOR MAGAZINE SHOT GUNS.

have either numerals or graduating marks stamped on the magazine of the rifles, the star at the first notch showing the magazine is about one-fourth full, at the second notch that it is half full, and so on. This construction, as will be seen by reference to the different figures, is applicable to all the usual forms of magazine rifles.
Figs. 1 and 2 represent either a Winchester, Marlin, or Bullard repeating rifle, with indicator. In this representation the magazine has an additional sleeve or cover on the outside, which can be slipped over the slot in the magazine and entirely conceal the indicator whenever desirable, while in Fig. 5 the indicator is shown in one of Colt's new lightning magazine rifles, and has no outside sleeve.
Fig. 3 represents magazine, showing the indicating cylinder.
Fig. 4, section of cylinder, showing springs.
In repeating shot guns the manner of registering is somewhat different, numerals being engraved or stamped on the cylinder. These numbers are observed through a small round opening in the magazine (see Fig. 6). In general, it may be said that the two springs are so proportioned that a movement of the length of a cartridge-say two inches-at one end of the magazine gives the cylinder the desired movement of from oneeighth to one-sixteenth of an inch. The opening in the magazine is always covered internally by the small brass cylinder working within, so that no part of small brass cylinder working within, so that no pa
the spring or interior of the magazine is exposed.
Fig. 6 represents repeating shot gun with indicator Fig. 7, magazine and indicator. Fig. 8, enlarged view of indicator. Fig. 9, breech of shot gun, showing improved
of a charity. "Madam," said he, "I would be glad to help you, but I am utterly unable to do so at this moment. Why, madam, I have to-day one million and a quarter of money in the banks, and, believe me, this amount is not yielding me one cent of interest."
Money has both an intrinsic and an earning value. If you have a dollar in the morning, and at night find that it has cost you just that dollar to get through the day, you have only realized its intrinsic value; but suppose that, by a judicious investment, you find at night that you have been able to pay your day's expenses, and still have a dollar left from that investment, you realize something of its earning value. If ment, you realize something of its earning value. If
that investment in the morning yielded you not only the dollar back, but seven cents in addition, and after paying the expenses of the day you found that you had the dollar left, the earning value of that one dollar was just seven cents, no more, no less. And so in the transactions of the year, if an investment be made at the beginning, and at the close, after deducting every expense of any kind or nature, including natural wear and tear, it be ascertained that the original amount is unimpaired, the earning value of that original investment may be summed up in the amount used to pay the above mentioned expenses. If a surplus remain, then the investment has increased in value; if a deficit exist, then the original investment is impaired.
Taking these propositions as truths, then, it may be assumed with safety, that the first object of importance, in any trade or occupation, is to preserve one's capital unimpaired. It is very clear that, when one's capital is exhausted, one's occupation is destroyed. A
ment thereof for a stated time, and without its impairment in any particular.
In this connection the American Artisan, from whom we copy, relates an instance taken from an English journal quoting from a chapter in the life of one of the greatest metallurgical and engineering kings of this century, as follows: "He made it a rule for many years to utilize his profits in the extension of his works." "This," says this English journal, "is the secret of building up a works from nothing, till the output, after twenty-five years, reached over $\$ 20,000,000$ annually. Such are the colossal enterprises of William Baird \& Co., Krupp, Stewarts, Crossley Bros., and Baird \& Co., Krupp, Stewarts, Crossley Bros., and
hundreds of others that will occur to the reader at once."

Dangers of Tree Sawing.

In California the saw has largely supplanted the ax in bringing down redwoods, but the change is severe upon the woodsmen. After being sawed partly through, a tree is forced over by inserting a number of steel wedges in the kerf, which are driven in with steel sledges. They are set in as close together as possible, and the driving of the wedges frequently requires three hours or more. The constant contact of the steel sledges with the steel wedges results in chipping off fragments which fly with great force, and in numerous instances become embedded in the flesh of the workmen, requiring surgical operations to remove them. Many eyes have been lost in this way, while arm and shoulder wounds are frequent. Some means of protection against the sharp missile is needed.-Northwestern Lumberman.

Lantern pantographs

by geo. m. Hopkins.

For the production of off-hand tracings for illustrations, especially during the projection of a series of experiments or pictures, nothing can excel a pantograph adapted to the lantern. Two forms are here shown, both of which produce figures on the prepared glass without exhibiting the arm by which the work is done.
The instrument shown in Fig. 1 is, perhaps, hardly deserving of the name given to it, as it is not strictly designed for accurate copying, on account of distortion, but it may be used in copying when a true figure is not important. It is designed rather for tracing upon the prepared glass while the operator watches the progress of his work as it is projected upon the screen.
The base board is provided with a square cent opening, having around it a rabbet for receiving the prepared glass. This board is adapted to the lantern, and furnished with a pair of small buttons for engaging diagonally opposite corners of the prepared glass and holding it in place. The tracing arm consists of a square metallic frame, a, containing a glass plate, and having at one edge an arm carrying a tracing point, and provided at the opposite edge with two parallel rods arranged to slide freely through a block, b, pivoted to the base board. The center of the glass in the frame, a, is perforated to receive a needle, c, which is pressed forward toward the prepared glass by a small spiral spring, as shown in the sectional view. The needle thus supported may be moved around upon the prepared glass in any required direction, and it may be readily lifted from the plate by pulling the tracing point away from the base board.
By placing a design upon the board, it may be traced and reproduced upon the screen, and, if the designs are specially made so as to compensate for distortion, correct tracings will be produced.
By means of the pantograph shown in Fig. 2, anything, large or sinall, may be readily and correctly traced. The levers are arranged relatively, so as to produce upon the prepared glass a tracing one-third of the size of the original. With this pantograph, writing, figures, maps, diagrams, sketches, etc., can be made with great facility.
The base board of this instrument is necessarily somewhat cumbersome, as provision must be made for the supports of the pivot of the pantograph, or a sheet of paper on which to mark. The base board or a sheet of paper on which to mark. The base board
is adjustable up and down on a slotted standard, and the latter is provided with a foot, which permits of clamping it to the table.
The metallic frame, a, which is attached to the arm, b, contains a transparent plate of glass, having a central perforation, in which is inserted a stout sewing needle-a small carpet needle, for example. The bar, b, is pivoted to one end of the short metallic bar, c, and the opposite end of this bar, c, is pivoted on a stud projecting from the rock shaft, d, which can turn in supports attached to the base board. Upon the same stud is pivoted a bar, b^{\prime}, which extends parallel with the bar, b, and both these bars are pivotally connected with the bar, c^{\prime}. The lower end of the bar, c^{\prime}, is pro vided with a tracing point, f, for which a lead pencil may be substituted when an original design is to be made. The paper on which the design is drawn is attached by drawing tacks to the lower part of the base board. The rock shaft, d, is provided with a long key, e, which extends downward, and is pressed outwardly by a spring underneath it. The key is prolonged above the rock shaft, where it is provided with a screw for limiting the motion of the key and shaft. The ar rangement of the shaft and key is shown in the small detail view.
The shorter arms of the levers of the system are 4 in . long, and the longer arms are 12 in . long. That is to say, when the bars are at right angles to each other the distance between the bars, $b b^{\prime}$, is 4 in ., the distance between the bars, $c c^{\prime}$, is 12 in ., the distance from the tracing needle at the center of the transparen

Fig. 1.-SIMPLE TRACER FOR THE LANTERN.
glass to the pivotal connection of the bars, $b c$, is 4 in . and the length of the bar, c^{\prime}, from the pivotal connec tion of the bar, b^{\prime}, to the tracing point, f, is 12 in .
The glass plate on which the tracing is made is pre ferably coated with collodion colored with aniline. this is not convenient, the glass may be smoked.

The needle is prevented from touching the prepared glass by pressing upon the key, e, thus slightly twisting the entire system. When the point of starting is reached, the key, e, is released, when the spring under the key, through the key, rock shaft, and bar, c, carries the frame, a, forward, and brings the tracing needle into contact with the prepared glass, when the tracing begins. When it is desired to interrupt the line, the key, e, is again depressed, when the needle may be moved to a new position without making a mark.

THE TOP OF THE EIFFEL TOWER.

The top or "crown" of the Eiffel tower of 300 meters, or 984 feet, is represented in the engraving on page 150, which, to a considerable extent, explains itself.

The lowest platform therein represented is the third one from the surface of the ground, and is 276.13 meters above the bottom of the four feet of the tower. This platform includes the balcony of square form, measuring 17.50 meters on each side. The outside promenade will be of glass plates in movable frames. In the center of the platform, on a surface 10.50 meters square, will be a kind of cabin, divided into laboratories for experiments and places for observation. Above this set of cabinets will be another set divided into little apartments.
The highest platform of the tower, which will be 293 meters above the ground, is accessible by a little spiral staircase, with an iron-plated newel. The diameter of this platform is 5.5 meters. It has four trellis supports of curved form situated at the diagonals of the rectangles formed by the main supports of the tower.
The summit of the tower consists of a lantern 7 meters high, which will contain an optical system the same as that of a lighthouse of the first class. The diameter of the lantern will be 3.5 meters, with a path round it. The light will be a fixed one, but means will be provided to enable it to project rays of blue, red, and other colors. In addition, two optical projectors will be provided, giving the power of illuminating at will the principal monuments of Paris or points of interest in the neighborhood of the city.
The question of the possible use of the Eiffel tower for scientific purposes has been often raised, and as yet we have seen no authoritative document on that head signed by any scientific man or indorsed by any learned society, but scientific utility is possibly a secondary object in its construction. The tower will be such a curiosity in itself as to powerfully help to draw many visi tors to Paris during the exhibition. On the first of January a book on the Eiffel tower, by M. Max de Nansouty, engineer, was published in Paris, and the author gives the names of several leading French men of science who have expressed "approbation;" but approbation of what, is not quite distinctly stated. The author then suggests that the tower may prove useful for strategical observations in case of war, as the move ments of the enemy can be watched when sixty kilometers or more away, as far as the most powerful fort for the defense of Paris. If Paris should be surrounded, signals could be flashed from the top of the tower to friends outside the lines of the enemy, and secret messages given to them optically by a cryptographic method. Possibly, says our author, the enemy might fire howitzers at the tower, although he would have difficulty in bringing them to bear, despite the progress of modern artillery; but then each projectile would have no more effect on the tower than a little grain of lead thrown against the web of a spider-some bars of iron will be broken and quickly repaired, and that will be all.

The foregoing cheerful ideas of M. De Nansouty are suggestive of an anecdote about the Duke of Wellington. The latter was said to hate being pestered by inventors, but, nevertheless, one wormed his way into the Duke's presence, while he was busy writing, and said that he had invented and brought with him a suit of armor which was ball proof. "Put it on," said the Duke, as he resumed his writing. When the inventor had donned his armor the Duke instructed an officer in the room to order a file of soldiers into the courtyard, and, said he, "Tell them to load with ball." He once more resumed his writing, and when he looked up again the inventor had disappeared, armor and all. If ever an enemy should be firing with heavy guns at the Eiffel tower, it is to be hoped that M. Max de Nansouty will be placed in charge of the signaling department a the top of the edifice.
The same author says that the tower will be useful for astronomical observations, being above the level of many ground fogs. To some extent, this is no doubt true, for although high towers are of no use for astronomical telescopes, because of the vibration, it is conceivable, for instance, that observations by the naked eye of flights of meteors could be better made from the top of the tower than from the bottom.
M. De Nansouty states that the tower will serve the purpose of supporting electric lamps at great heights. This is unquestionable.
Our author says that the tower will give the means of inclicating the time to places at considerable distances. For the first time, except from the unstable car of a balloon, man will have at his command a vertical height of 300 meters, and can then study the fall of bodies through air, the resistance of the air at different velocities, certain laws of elasticity, the compression of gases and vapors, the oscillation of the pendulum, and so on.-The Engineer.

AN IMPROVED AIR SHIP.

A light and strong machine for navigating the air, designed to be readily controlled by the aeronaut to give the best results in flight with the least expenditure of power, is illustrated herewith, and has been patented by Mr. John P. Holmes, of Oak Valley, Kansas. The horizontal frame of the machine is suspended by hanger bars or rods from an aero-plane, which is a rod frame covered on one face by a silken fabric. Toward its rear there is attached to the side bars of the horizontal frame a canvas forming a rest or support on which the aeronaut will lie, face downward, on his breast and stomach, so that his hands may conveniently reach two transverse cranked shafts, by working one of which he can alter the incline or pitch of the aero-plane, while with the other he can rotate a propeller wheel journaled at the front of the machine. At the rear is a rudder sail, on the sides of which lie sacks to receive the legs of the aeronaut, and allow him to guide the machine by his legs in its flight. The aeroplane is arranged to be rocked up and down, and locked at any desired adjustment, for utilizing wind currents and the propelling force of the wind to the best advantage. Fig. 2 is a front view of the propeller wheel, which is operated by a chain belt from the wheel, which is operated by a chain belt from the the propeller is fixed to a tubular shaft journaled in boxes formed at the end parts of sleeve cams and in half boxes held to the opposite side bars of the frame, to cause feathering of the blades, so that they will be held edgewise to the wind during their passage through

HOLMES' AIR SHIP.
the air above the level of the propeller shaft, and will turn their blades flatwise to the wind during their passage around below the level of the shaft, this construction and action of the propeller assuring its maximum lifting and propelling power to raise and urge the air ship forward.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling. - Ephraim H. B. Knowlton, Watertown, Dakota Ter. This invention covers a novel construction and arrangement of parts In which the drawheads are counterparts of each other
and each also provided with the ordinary coupling link nd pin the counling hook provided by the invention and pin, the coupling hook provided by the invention
being fitted to have a vertical movement on a pivotal being
pin.
Railway Car. - William L. Covel, Biloxi, Miss. The car or locomotive has at its end a
three-sided platform, one side formed in line with the three-sided platform, one side formed in line with the
car body and the other side inclined to the direction of motion, so that cars or locomotives meeting will be diected off to opposite sides of the track, and the car will be prevented from telescoping
Rallway. - Robert P. Faddis, New Mexico Ter. According to this invention the rail seats through openings in and secured to the base of the rail at opposite sides, and extended and secured to the lower
portion of the crib frame, with other novel features portion of the crib frame, with other novel features,
increasing the solidity and firmness of the construction.
Track Cleaner.-Augustus F. Priest, Fort William, Ontario, Canada. This device is made with two knives hanging on bolts so that the lower
edges of the knife bars are nbout on a level with the edges of the nife bars are niout on a level with the adapted to clear the track entirely across between the rails, the apparatus being supported upon the plotot and
forward truck in such way as to be readily raised by the $\underset{\substack{\text { forward } \\ \text { engineer. }}}{ }$

Mechanical.

Loom.-John L. Aldinger, Syracuse, Y. This invention covers a warp tension regulating device for looms, specially adapted for wire looms, and by which the warp beam or drum is dispensed with, the while at the same time the necessary tension is given to the warp threads or wires.
Printing Machine.-Henry H. Harrison, New York City. This invention covers a nove vide a machine for printing cards, circulars, or other mall matter upon one side of the paper only, and cut the paper into sheets as rapidly as printed, the paper eing printed from a continuous ribbon upon a drum. Windmill. - Franklin B. Kendall, Turnwater, Washington Ter. Rods are connected with the spokes of the windwheel and with a sliding rod
operating on a drnm carrying the vane, with othe novel features, whereby the wind wheel is turned out of the wind automatically as soon as the wind blows with more than normal pressure.
Diamond Cutting Tools. - Hugo Keller, New York City. The method of securing
diamonds in the tools is covered by this invention, a longitudinal recess being provided in the cutting edge of the teeth for the insertion of the diamonds, which are held in place by a clamping plate riveted or brazed on, brazing material being used to fill up any spaces in
the diamond socket, so that when the tool becomes worn the diamonds may be readily removed.

Agricultural.

Corn Harvester.-James McKivett, Garrison, Iowa. This is a machine designed to cut corn, whether it is planted in rows or not, as the ma-
chine is driven across a field, in the same manner as mower or reaper is driven through grass or grain, the machine also removing the husks, the latter remaining on the stalks, cleaning the husked ears, and delivering them into a bag or a wagon traveling beside the ma-
chine.
Hay Stacker.-Jesse Morris, Sioux Rapids, Iowa. This is a machine in which the fork is
operated by ropes passing over pulleys at the top of in operated by ropes passing over pulleys at the top of in-
clinedsbeams and thence under pulleys located near the bottom of the main frame, the hay being deposited upon the tines of the fork, and
upon by a horse hitched thereto
Divider Shoe. - Charles W. Love, Fairpoint, Ohio. This invention covers an improve-
ment in outer divider shoes for the cutters of mowers and reapers, that the seat may be readily trimmed out to fit any of the ordinary finger bars now in use, the invention also embracing other novel features.
Cultivator and Harrow.-Thomas E. Carter, Augusta, Kansas. In this machine the cul-
tivator teeth are so fixed as to effectually cultivate the ground adjacent to the corn, while a series of harrows may be projected from the body of the cultivator proper, the harrows being adjustable, and there being at
the rear of the frame scrapers adapted to convey the loose dirt into the roots of the corn.

Miscellaneous.

Hot Air Furnace. - Benjamin F. Price, Bloomington, III. This furnace has a conical inner casing, bottom casing, and upright outer casing dome, tube plate with short tubes, and other novel fuel and thorough utilization of the hot air.
Steam Heater.-Daniel D. G. Langthis heater has a large heating surface, large steam space, and comparatively small water space, and is not space, and comparativer to become water-logged, the apparatus being
liable aded to be readily introduced into or incorporated
adapter adapted to be read
with any casing.
Grain Weigher. - William H. H. Brunton, Elk City, Kansas. This invention covers
various novel details and combinations in a machine designed to automatically measure and register the
quantities of grain delivered by an ele
with a thrashing machine or grain bin.
Gas Manufacture.-John C. Garvin di Henry Moody, Leadville, Coi. This invention or manufacturing gas from hydrocarbon and other liquids, such as oils of various kinds, and for cleaning the retorts and pipes used without disturbing them, the
liquids being decomposed and converted into gas by liquids being decomposed and converted into gas by
being brought into contact with suitably heated surfaces.
SAW.-George H. Holmes, Ogdensburg, N. Y. This is a band saw for cutting wood, having an
nnealed back and the rest of the blade and cutting annealed back and the rest of the blade and cutting
edge tempered with the ordinary temper of wood saws edge tempered with the ordinary temper of wood saws,
the back of the blade being thin and the rest of it of eve back of the blade being thin and the rest of it or
even thickness, making a saw designed to work othly without being liable to
Wire Tightener.-Louis S. Flatau, Pittsburg, Texas. This tightener is more especially
designed for use in taking up the slack in wire fences, designed for use in taking up the slack in wire fences,
the frame having guides for the wire and a threaded hearing in which turns a screw with a hook to engage the wire, there being a shackle for keying the hook to the screw, the device being also capable of use in tying
Thill Coupling.-Isaac Clark, Morris Pains, N. J. This coupling is adapted for use in conection with an ordinary clip, bolt, and nuts, the inrangement of parts designed to afford a coupling that is simple, strong, and convenient in use, while being easy to couple and uncouple.
Tricycle. - Patrick Gallagher, New York City. This invention covers an improvement on a former patented invention of the same inventor, a fly wheel being applied to the driving mechanism and brake capable of application to the driving wheels,
whereby the operator can readily regulate the speed of the vehicle without changing his position on the seat.
Hat Mark.--Henry H. Wright, Paola, Kansas. This is a device, the use of which is designed to prevent parties taking the wrong hat, and consists of
frame adapted to be secured to the inside of the hat frame adapted to be secured to the inside of the lace thereon by a pin, the device being adapted
Suspender Buckle.-James England, ew York City. This buckle has a base plate with outwardly extending ears in which a bar is journaled
having a longitudinal row of teeth, with one or more of the teeth in the row inclined at a different angle from ne others, but so that both row
noved out of contact with the web.
Bottle Faucet.-Felix Stefany, New York City. This faucet has two valves operated inde-
pendently of each other, one serving to open or close he inlet and outlet pipe and the other adapted to open r close a vent, the device being specially designed for conveniently filling a bottle with a liquid under pres-
sure, and for sealing the liquid in the bottle and dissure, and for sealing the liquid in
charging the contents as required.
Can Fastener.-Calvin Keeler and Harvey Lewis, Hobart, N. Y. This fastener consists of a grooved casting in which is fitted a sliding hook adapted to engage the wired rim of a can, a cam lever
being pivoted in the casting and arranged to bring the being pivoted in the casting and arranged to bring the
hook into engagement with the wired ring, the device hook into engagement with the wired ring, the
being especially adapted for use with milk cans
Match Box and Cane.-Simon B. Simon, New York City. This is a box for use in con-
nection with canes. umbrellas, and similar articles, and mection with canes. umbrellas, and similar articles, and made with a sliding lid, of such form that it will
Theatrical apen ardiance. - Fred Wilson, New York City. This invention combines with a stage a mechanical structure representing the interior of adjoining compartments, a chair having a alanced pivoted body with electric lamps sunk therein, ng room, affording convenient means for flashing light and manipulating the chair
Automatic Alarm. - Emil Meyer, Ottleben, Prussia, Germany. This invention provides reminded of recurring times to give attention to pr icular duties in connection with furnaces and other matters, and whereby, in the event of failure, an alarm bell will be rung, the latter to be connected, if desired, with an alarm bell in the office of the superintendent manager.
Sewing Maciine.-William C. Foster, Jersey City, N. J. This is a machine for forming a double row seam, or "whip stitch," wherein the side he invention consisting principally of a hook and means for reciprocating it, whereby each side loop or
 hrust through it.
Stitching Fabrics.-William C. Foster, Jersey City, N. J. This invention covers the
method of stitching by the above machine, consisting method of stitching by the above machine, consisting
of passing two loops through the fabric, a short disof passing two loops through the fabric, a short dis-
tance apart, one to be formed into a chain stitch and tance apart, one to be formed into a chain atitch and
Piano Key Board. - Enoch L. S. Osborn, Waxahachie, Texas. This key board has all he keys of uniform size and color, a sliding attachment the usual white and black keys, the keys also having numerals and letters forming guides for the adjustment of the sliding attachment, whereby the scale may be
transposed, the invention being intended to facilitate teaching.
Shade for Burners. - James and William J. Stration, Brooklyn, N. Y. The shade is armed with an elliptical top, and has a funnel-shaped
ray conductor, a wire coil or ring carried by the shade
being such that the flame will not impinge against the position.
Music or Book Holder. - Herbert
Brown, Auckland, New Zealand. This holder has n attaching portion with spring arms to engage a helf, a finger being pivoted at the outer ends of the attaching portion to swing at right angles to
arms, and having on ite lower end a weight.
Chimney Cowl.-David Teets, New York City. In this cowl a series of vertical equidistant strips separated by slots are combined with a series of semi-cylindrical plates arranged vertically, covering the slots and serving as smoke conductors, making a ven down draught.
Vehicle Spring.-Jaines F. Thomas, Alexandria, Neb. This is a novel form of side spring, the springs being bowed at their centers, with means for securing them at their central portion to the frame work of the vehicle, whereby they are restraned from
torsion at their centers when the load is on, the inven tiou being an improvement on a former patented inventhe same inventor
Saw.--Nicholas Petry, Rockport, Mo. This is a device for sawing tenons and gains and to save
the time and labor of measuring them, the heads or he time and labor of measuring them, the heads of
holders of the frame having slits in which saws are ad justably held, so that, one saw can be dropped below he other, to permit cutting of tenons having one side when the frame will form a gauge.
Hay Press. - Michael McCarty, Montrose, Col. This press has combined with it a hors hay or material to be compressed is fed in batches to the press box, where it is compressed by the reciprocat-
ing motion of the plunger, being compressed at each ing motion of the plunger, being compressed at each
forward motion and pressed out of the opposite end of e press chambe
Water Closet.-John J. Balls, Jack sonville, Fla. This invention covers a novel construc-
ion and combination of parts in water closets of that tion and combination of parts in water closets of tha
class in which the bowl is flushed automatically by the tion of the movable seat.
Wire Stretcher.-George R. Hughes, body, the members of the head having a series of teeth combined with a pivoted lever and clamping jaws, whereby the device can be readily attached
and engaged with the wires to be stretched.

SCIENTIFIC AMERICAN

BUILDINGEDITION
MARCH NUMBER.-(No. 41.)

TABLE OF CONTENTS.

. Elegant plate in colors showiug elevation in per spective and plans of an attractive residen
costing five thousand dollars, sheet of details. Plate in colors of a cottage for three thousand
dollars, with plans, elevations, sheet of details, dolla
etc.
Perspective and plans of a villa at Paris-Auienil. 4. Moving a house thirteen miles by water. From Wheeler's Mills, on the Housatonic River, above
Stratford, Conn., to West Stratford, Coun. Fill page of engravings showing the various stages of beautiful residence lately built on Reynold Terrace, Orange, N. J., from designs by architect
John E. Baker, of Newark, N. J. Perspective and floor plans.
A villa near New York. Cost eight thousand dollars. Plans and perspective.
A Queen Anne cottage for three thoussand fiv hundred dollars, lately erected at Richmond Hill,
A beautiful "Old English" honse, lately erected at Richmond Hill, N. Y. Perspective and floor plans.
9. An attractive cottage lately erected at East Orange N. J., at a cost of six thousand dollars. Plans and
perspective. perspective.
A residence at Bridgeport, Conn. Cost four thons
and four hundred dollars and four hundred dollars. Perspective and plans. A house for eighteen hundred dollars, recently
built at Rutherford, N. J. Floor plans and elebuilt at
vations.
vations.
12. A cottage for two tho
Plans and perspective
Enans and perspective.
thousand three hundred dollars.
A residence for five thousand dollars, lately erected at Rutherford, N. J. Plans and perspective
15. Miscellaneous Contents: A lien law for grave
stones.-How to save ceiliings when cracked, sag stones.-How to save ceiliings when cracked, sag-
ging, and ready to fall.-The Willer sliding blinds, ging, and ready to fall.-The Willer sliding blinds, illustrated.-Improved woodworking machine
illustrated.-An improved reversible ratchet brace illustrated.-An improved reversible ratchet brace
illustrated.-Canton, Ohio.-An improved dumb illustruted.-Canton, Ohio.-An improved dumb
waiter, illustrated.-Water pressure regulators.

The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies two hundred ordinary quarto pages, equal to about two hundred ordinary book pages; forming, practi-
cally, a large and splendid Máazine of architecture, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. PUblishers,
301 Broadway, New York.

PBusiness and æersonal.
The charge for Insertion under thes head is One Dollar a linejor each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday norning to appear in next issue. as early as Thursday morning to appear in next issue. For Sale-Patent Clothes Drier, granted August 7 . 1888. Patent No. 387,222.
State St., Chicago, ill.

Mechanical Dranghtsman on Printing Machinery.Address, stating age. experience, references, and pa
uired, Golding \& Co., Fort Hill Sq., Boston, Mass.
All books, app., etc., cheap. School of Electricity, N.Y.
Automatic cut-off. Ball Engine.- Ball Engine Co., Erie, Pa. Philip Parsons, Bishopsgate Within, London, solucits

Special facilities for manufacturing light machinery, ardware, and novelties. Stamping, presswork, punches, ies, and special tools. Correspondence invited. Rocka Patentees and Inventors--Any one having valuable inventions and needing money for developments may
obtain funds by stating full particulars and date of patent, to post office box 356 , New York.
Screw machines, milling machines, and drill presses For the latest improved diamond prospecting dr ddress the M. C. Bullock Mfg. Co., Chicago, ill. For the best Hoisting Engine for all kinds of work, Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Perforated metals of all kinds for all purposes. The The Holly Manufacturing Co., of Lockport, N. Y.. will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Iron, Steel, Copper, and Bronze Drop Forgings of Conn. The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Duageon, Safety Elevators, steam and belt power ; quick and Safety Elevators, steam and belt power ; quick and
mooth. The D. Frisbie Co.. 112 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John Rotary veneer basket and fruit package machinery. I. E. Merritt Co., Lockport, N. Y

Pedestal tenoner. All kinds woodworking machinery.
Belting.-A good lot of second hand belting for sale eap. Samue! Roberts, z^{69} Pearl st., New York. Band saws, with tipping table. All kinds woodwork
ing machinery. Rollstone Machine Co Fitchburg, Mass. The Star Fountain Gold Pen. The best made stylo. Price. $\$ 1.00$; fountain, $\$ 1.50$ and up. Send for
C. Ullrich \& Co... 106 Liberty St.. New York.
Send for new and complete catalo and other Books for sale by Munn \& Co., 361 Broadway

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
informater or no attention will be paid theretio.
information, and not for publication.
References to former articles or answers should
give date of paper and page or number of question. Inquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that some answers require not a little research, and
though we endeavor to reply to all either by lette
or in this department, each must take his turn.
Special Written Information on matters of
personal rather than general interest cannot be Scientific American Suppiements referred
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of Mineraln sent for ex
marked or labeled.
(411) R. G. D. -The so-called perpetual notions are not perpetual motions in a mechanical sense. They derive their motive power from some
change in the physical elements, principally heat. The change in the physical elements, principally heat. The change of temperature during the day and night may
be made to keep a machine or clock constantly running, The made to keep a machine or clock constantly running.
There is power expended here, no matter if it comes from a natural change of temperature, the blowing of the wind, or falling of water. It is a derivative power and not the mechanical perpetuity that has crazed too many otherwise good and useful minds. The deep sea soundings are made with a fine steel wire carrying a shot that is detached when it strikes the bottom. The
wire 18 wound on a large reel driven by a steam engine. (412) A. S. asks : What kind of a battery to use to explode gunpowder, and also how he could Use two or three ceils of a plunge battery, such as de scribed in Scientific American, of December 17 or
August 20,1887 . A small length of iron or platinum wire No. 30 must be placed in the circuit embedded in the powder.
(413) F. S. S. asks how to make a batwould such a bower to ran he simple motor? What reduce said motor in all dimensions 50 per cent? Also could you mention a book, of reasonable price, on bat-
teries of different kinds for different uses? A. See
cylinder, with small bellows, or an ordinary cylinder
stove with a good draught, are suitable for melting
(429) C. A. F. writes: A client of mine is building an apartment house 120 feet by 140 feet, six
stories high, in the central portion of this city. drilled an artesian well which brings the water within 35 feet of the top of 1 the ground; the well is 223 feet deep, 35 feet being limestone rock, 125 feet white sandstone, the balance very hard limestone. There will be a tank
123 feet from water level at the top of the building. 123 feet from water level at the top of the building
Now the questions are: Where would be the best lo Now the questions are: Where would be the best
cation for the pump-at the water level, or on top of the ground? How many gallons of water would be needed
for say 250 people, hot water,steam for elevators, etc.,infor say 250 people, hot water,steam for elevators, etc.,in-
cluding provision in case of fire? The well is supposed to have a capacity of 400 gallons per minute. How can we test it? Give the name of a good manufacturer of
force pumps. We would like to get at their capacity of gallons per minute. Will the sand rock give way an disintegrate when the pump is at work and the water
agitated? Would it not be better to pipe it? Does the agitated? Would it not be better to pipe it? Does the
water in an artesian well fluctuate, or remain about a water in an artesian well fluctuate, or remain about a
normal height? A. The supply of water in various normal height? A. The supply of water in varioug
towns for family use, fire and other purposes has a large range in the United States, running as low as 30 gallon more in large towns, or where the sources of supply supply of 50 gallons per capita will be in excess of all de mands. This will be 12.500 gallons per day, which should be pumped within 10 working hours, or at the rate of 21 gallons per minute. This will require a vertical deep
well steam pump equal to double the required supply well steam pump equal to double the required supply,
with extra long stroke. The pump bucket should work in the lower end of a tube at about 100 feet down to insure a flow of water at the rate of pumping. This is th cheapest way to test the capacity of te wen, for as yo lengthen the pipe and rod, if the pump draws the water below the bucket without giving the required quantity.
The length of the pump pipe should be so proportioned The length of the pump pipe should be so proportioned as to be equal to more than the whole supply required,
including the: lowering of the water level, or say 200 feet. The pump should be located just above the
top of the well. You will require no tubing for the top of the well. You will require no tubing for the
well, as the water probably comes from the sand rock. well, as the water probably comes frem causes that will make the static level of the water in the well fluctuate through the seasons. Ad dress the Deane Steam Pump Company, New York, and
American Well Works, Aurora, Ill., for artesian well pumps.
(430) A. D. asks how much pressure there is to the inch in a rifle of 45 caliber, using 75 grains powder and 350 grains lead, and twenty-eight
inch barrel. A. The explosive pressure in a rifle from 30,000 to 40,000 pounds per square inch, according
to the quality of the powder and the proportions of to the quality of the powder and the proportions of
weight of powder and ball. 2. And also how much more weight of powder and ball. 2. And also how much more
the pressure is behind the bullet than itis in the front of it after leaving the shell? A. The pressure in fron of the bullet increases as it moves toward the end of the barrel, but is only a very small percentage of the
pressure behind. 3. When will a wagon run easiest-if the most of the load is put on the hind or on the front wheels? Who can take the biggest load-a good horse weighing 1,500 pounds or a good oxjof the same weight? A. Most of the load should be placed on the hind wheels
for easiest hauling. A horse can pull a heavier load than an ox of the same weight.
(431) C. F. M. writes : Some time since there appeared at my place of business here, a party en-
gaged in the nickel plating of cutlery, whose claim to the above mentioned mode of plating I think was unfounded, the coating appearing to me to savor more of
galvanizing. As an adjunct he had an iron pot in galvanizing. As an adjunct he had an iron pot in
which it appeared he melted zinc, solder or spelter, after which it appeared he melted zinc, solder or spelter, after
which the blades of the knives or forks were put into which the blades of the knives or forks were put
eome sort of acid solution, allowed to stand for the space of possibly 15 min . the pot containing the melted substance, he put them in some kind of oil, after which they were rubbed dry. Will you kindly inform me through the columns of your issue as to the ingredients that were employed to pro-
duce the results attained? I forgot to mention that after the knives were withdrawn from the supposed acid solution, a kind of powder was put into the pot for the purpose, I suppose, of clarifying it. Now, what was the
kind of powder used and the substances placed in the melting pot? A. We presume that the knives were melting pot? A. We presume that the knives were
plunged in a bath of metallic tin, and that the powder was sal ammoniac. They were not nickel plated, in any sense. The acid may have been muriatic acid; the oil may have been cotton seed oil, or lard oil; the
metal may have been block tin or possibly solder. We metal may have been bl
doubt if it was spelter.
(432) J. H. B. writes: I wish to construct a dry pile. The books say cover a sheet of
porous paper on one side with tin foil, ou the other with a paste made of powdered peroxide of manganese, etc.,
cut into disks one inch in dlameter, etc., and place in a glass tube. 1. How much of an interval is required for the electricity to acquire snfficient tension to pass
through the paper, etc.? A. An hour or more may be through the paper, etc.? A. An hour or more may be
required to recuperate the pile after exhaustion. 2. Can a dry pile be constructed that will give a continuous current? A. Through high resistance it will do this when constructed as described. 3. What will be the effect of dampening the pile? The books say such a pile lasts for two or three years as to current and durability.
A. Dampening will tend to destroy its action by short A. Dampening will tend to destroy its action by short circuiting. 4. Can you indicate what the tension would be of such a pile, of say 500 elements? Would it give a
slight shock to the nerves? A. Perhaps 100 volts. It slight shock to the nerves? A. Perhaps
will probably affect the nerves a little
(433) C. A. Y. writes : In this neighborborhood is a well which exhibits a peculiar phenomenon.
It is on the side of a west slope, about 100 yards from a It is on the side of a west slope, about 100 yards from a
small creek and is 30 feet in depth. Apparently it is small creek and is su feet in depth. Apparently it is
not connected with the creek, as it is not affected in the not connected with the creek, as it is not affected in the
least by rains, nor have I ever noticed any current of air flowing either in or out of the well. But in the
winter ice forms at the bottom sufficienitly thick to re-
olat tha hardoat blowa of a heavy well buckot, while be-
ween this well and the creek is another well 20 feet
deep, the water of which shows scarcely any difference deep, the water of which shows scarcely any difference
of temperature during the year. This is the only inof temperature during the year. This is the only in-
tance of the kind in this country, to my knowledge. Is it a common occurrence or not, and is there any known
cause? A. The water in the water-bearing strata where wells are sunk is supposed to be always moving toward lower level at a rate corresponding to the declivity of the"strata and coarseness of the sand. In wells where
this movement is large the water is always sweet by this movement is large the water is always sweet by
circulation and not liable to freeze in coldest weather In wells that happen to be located in a sluggish current or in a pocket that only draws its supply scantily from very direction, there is more liability to become foul in summer and to freeze during the coldest weather. Such wells require frequent cleaning. It is the circula-
tion of the cold air by gravity in contact with the still water tha
(434) D. E. writes: Will you tell what izes of wire to use to wind the simple electric motor,
o as to use the Edison current instead of battery? Also ou say in one number that it would double the powe increase the lineal dimensions one-balf. Does that mean to make the spool three inches long instead of
two and of no larger diameter? A. Connect itin on the Edison circuit. Increase all lineal dimensions in
me ratio, make the spool half larger diameter, etc.
(435) E. W. W. writes: Can I use Leclanche cells for lighting a one-candle Edison lamp fo in twenty-four hours? If so, how many cells will it require? A. They
will need five cells
(436) A. P. G. asks: What is the proess for printing from plate engravings, that is a flat copused for it? A. A roller press is used. The plate is inked and the smooth surface is wiped clean, the engraved lines retaining theink. The paperand plate are
then passed between the rollers of the press, when the nk is transferred to the paper
(437) P. Van S. asks how the solution of annatto is made and what from. A. It is extracted
rom the outer part of the seed of Bixa orellana, an vergreen, a native of Brazil. Alcohol may be used for its solution.
(438) A. G. writes : I would like to know how to color a meerschaum pipe or cigar holder so that
it will be black as ebony, without smoking it? A. Try
aniline blacks, or logwood extract in water, followed niline blacks, or logwood extract in
(439) F. B. writes: In edition No. 3, ool. 60 , I see question No. 161, F. B. C. asks : Could I
charge storage battery of one cell, with static electricity enerated by a belt? You answer him, practically, no What is the matter with using an old incandescent lamp rother form of Leyden jar as a discharger grounding (Please rember I min asking a puetion) The (Pease remember I am only asking a question.) The
static discharges being always in one direction, would the low potential discharges be in one direction also, or would there bettwo impulses, due first to magnetizing, and a second to demagnetizing? If the static electricity from the many belts of large mills could be used this
way, would it not be of some use? A. The method seems impracticable, as there is but little electricity given off by a belt, and, when rednced in potential it would be hardly perceptible. The induced discharges
would be in two directions. If the belts produced any quantity of electricity, they would run stiff in propor tion to the electric energy developed. You cannot get
(440) D. O. B. writes: What power is (440) D. O. B. writes : What power is
equired for an eight-light dynamo, and is there a small engine built that would run the dynamo mentioned? A. You need about one horse power. For addresses
ine builders, consult our advertising columns.
(441) H. \& R. ask: Cannot a high grade of steel be told by the color and the grain? Are
they not evidences of high grade and fine quality? they not evidences of high grade and fine quality?
Also, is not a fine quality of steel susceptible to taking nd holding temper, as a coarse or loose grained stee is not. Our remarks are in connection with cutlery steel? A. Much information as to the quality or grade
of steel can behad directly from observation of the grain by fracture and its ease of breaking. The fineness of the crystalline surface and its color, as well as its toughness in breaking, are the leading points of observation with buyers of steel at first sight. Its qualities in hardening of steel require special manipulation in amount of heot and manner of hardening and tempering for various kinds of tools. The finer crystallization is generally preferred for high duty tools. Cutlery steel requires elasticity, and is generally made from the lower grades, which have special names, as double shear, shear, or
spring steel. These have a coarser grain than the fine ool steels. See Scientific American Supplement No. 505, for an interesting article on steel.
(442) S. P. F. asks about a wheel revolving along the ground. (Plane surface.) 1. Does
he wheel revolve around its center or not? If not, why? A. Every revolving body has a center of revolution.
The center is not a revolving body, but is an imaginary axis occupying a neutral point within the force generated by revolution. 2. Does centrifugal force ac with equal intensity on all points equidistant from the center of the wheel, or not? A. Yes; in a perfectly
balanced wheel, in which the materals contributing to centrifugal force are equally distributed throughout the mass. :3. Are not the top and bottom of the revolving wheel the extremities of an infinite number of straight ines drawn through its center perpendicular to the infinite number of points of contact with the ground, in ther words, a line parallel to the surface along which he wheel is revolving? A. Yes. 4. Does the top of or than any other point equidistant from the center? A. The top and bottom of a wheel rolling along a revolves around a common axis. The top and bottom
great as the rectilinear velocity of the axis. The peri-
phery does not move at the bottom. All parts of the phery does not move at the bottom. All parts of the
(443) M. A. P. asks (1) how to make paste such as bookbinders use. Do they nse glue or
flour paste? A. Ordnary flour paste is generally used, though sometimes a little glue is added to make the though sometımes a little glue is added to make the
paste tougher. Some antiseptic, such as carbolic acid or alum water, is added to prevent souring. 2. How engravings are made by the process known as "zinc etching." Is it the same as producing engravings from zinc plates by the action of acids? A. The process is
the same in principle, but in the ordinary "process" plates, for printing with types in a form, the blacks are in relief and the whites sunken, while in an etched the printing then being done as that of a steel engraving. Nitric and muriatic acids, of various degrees of strength, are used in each case to bite out the metal.
3. Where can the zinc plates be procured, and what are their cost? A. Most large electrotyping establishments could furnish them to order. They are not on sale by dealers, and are specially prepared of soft zinc, with a
surface as smooth as glass, by an expert in this line. surface as smooth as glass, by an expert in this line.
4. Would like a short deseription of how electrotyping and stereotyping are done. A. For electrotyping, the type form is well brushed over with plumbago-a wax mould is then taken, and a thin electro deposit of copper made therein. This thin deposit of copper is stripped
off and baked with type metal flowed on. For stereotyping a plaster cast is made of the face of the type to form a mould -or the mould may be made of a kind of papier mache substance beaten into the face of the form.
The face moulds so made are placed in another mould or form to give the proper body or backing and receive or form to give the pro
the melted type metal.
(444) D. T. E.-Printers' rollers are not usually made with India rubber, except such as are used on newspaper presses maintaining a high rate of speed.
For ordinarily fast presses on book work the following is a good composition: $101 / 2 \mathrm{lb}$. best glue, $23 / 2$ gals. black molasses or honey, 2 oz . Venice turpentine, 12 oz . glycerine. The quantities of glue and molasses will be slightly varied according to the season, comparatively
more glue being used in summer than in winter. If French glue is used, it will be necessary to let it soak overnight to take up the right quantity of water, but
most domestic glue will take up sufficient water in most domestic glue will take up sufficient water in
about two hours. The turpentine and glycerine should be added and well mixed with the composition just before pouring. When rubber is used to make the black composition described in the Scientific Ameri-
can of January 12, the rubber should be cut in fine shreds and dissolved in benzine, ether, or bisulphide of carbon, not in alcohol. It should be mixed with the
turpentine and added to the composition the last thing turpentine and added to the composition the last thing
before pouring, the glycerine and vinegar being mixed before pouring, the glycerine and vinegar being mixed
with the glue and molasses a short time earlier, after with the glue and molasses a short time earier, after
the latter has become well conbined in a kettle in a water bath over the fire or in a steam-jacketed kettle.

Enquiries to be Answered.

The following enquiries have been sent in by some of our subscribers, and doubtless others of our readers
will take pleasure in answering them. The number of the enquiry should head the reply.
(445) M. E. G.-Please state why throwing salt upon a fire will put out a burning chimney?
Also please state how the magicians do the trick of raising tables, chairs, etc., by simply laying their hands upon them? This is an old performance, and is now being done by Kellar.
(446) H. B. H. writes : Will you please advise us of the mixture used for coating iron so as to give it the dull black finish seen in chandeliers and and-
irons? It is called Berlin black, and will not rub off.

Replies to Enquiries.

The following replies relate to enquiries recently pubished in Scientific American, and to the number
(20) Halifax.-Relief Maps.-Although not sure of the method used in Germany, there is one way which, although it involves considerable expendi-
ture of time and materials, produces a map in relief which is extremelylaccurate and would command exten formed. Suppose you have a map of a section of country on which are marked contour lines made by passing horizontal planes at vertical distances of ten feet, or any other distance. Take sheets of cardboard so that
the thickness shall represent one foot, then ten super the thickness shall represent one foot, then ten super-
posed will give ten feet. The thickness of the cardboard is of course the unit of your scale, both vertical and horizontal. Now cut out pieces of cardboard of the same size and shape of the horizontal space embraced
by the different contour lines. Then on your map draw by the different contour lines. Then on your map draw
in between the contour lines and approximately parallel to them nine other lines, and cut pieces of cardboard corresponding to them. Superpose these in their regu your map. The pieces of cardboard are pasted to gether and carefully pressed to keep the whole mass uniform. Then smear wax over the whole, in order to
make a smooth surface. Different culors willfrepresent make a smooth surface. Different culors willirepresent
roads, grass, rivers, etc. Trees or forests can be reroads, grass, rivers, etc. Trees or forests can be re
presented by dried green moss. Houses and other buildings and constructions are made of wax. In the
practical work of making such a map, other details may come up, but they will generally be such as wil modeling. The chief difficulty lies in procuring map with contour lines marked on them.-S. R., Jr.
(245) C. T. I. - Battery Zincs. - The writer has had very good results from zinc plates, buil up from thin sheet zinc (stove zinc, the only zinc to be
had at the time). These plates were built up by folding over and over and hammering down the fold each time,
so as to produce a compact plate of the size required so as to produce a compact plate of the size required
Building up by cutting several pieces, all to the size re Building up by cutting several pieces, all to the size re
quired, and then fastening together, was very good, but quired, and then fastening together, was very good, bu
not so good as the building by folding a long strip

No trouble was had in amalgamating, as the thicknes
of the plate, after being built up, made it stiff enough of the plate, after being built up, made it stiff enough each sheet, as was the case. The extreme top of the plate, to which the copper wires were fastened, was not amalgamated, for say a half an inch, to avoid breaking
and the brittleness that would have resulted had thi and the brittleness that would have resulted had this
end been amalgamated. These plates stood long and evere use, kept their amalgamation perfectly, and con sequentiy never showed any local action. Riveting the
plates could not well be done, unless zinc rivets were used. Any other metal would at once make local action from the galvanic couple that would be set up by its presence in the zunc plate, even though it was amalga
mated. The four-cell battery mentioned would prove all right if the motor is wound for a low tension current. It would be better yet to use five carbons and fou zincs, so as to have a carbon plate for the outside on each side of the cell, and so reduce resistance by having The size of receptacle will, of course determin whether this can be done or not, and the winding of the motor will determine whether four or eight cell hould be used.-C. D. P
(320) S. L. F.-Stay Bolts.-The presis the square of the distance multiplied by the pressure is the square of the distance multiplied by the pressure
on the boiler, or in your case $6 \mathrm{in} . \times 6 \mathrm{in} . \times 100 \mathrm{lb}$.
$=3,600$ pounds strain on the stay. If the areas are $=3,600$ pounds strain on the stay. If the areas ar
not squares, divide the distances between stays and
(321) S. H. P.-Propeller.-You will re quire 65 horse power, besides power required for fric tion of engine and shaft, and a propeller of four blade
(329) D. Y. M.-Softening Water.-See (329) How to Soften Water.-If the hard ness is due to calcic carbonate, it can be removed by
boiling the water. If it is due to calcic sulphate, it ca be removed by adding sodic carbonate (common wash ing soda). In the last case two new substances are
formed. One is insoluble and settles, the other is soluformed. One is insoluble and settles, the
(330) S. T. R.-Steam in Boiler Furnaces. -Steam from the boiler or exhaust has been use jecting it under the grate when the draught is other wise good, or otherwise by using a steam blower which
carries a portion of steam under the grates with the air carries a portion of steam under the grates with the air.
One of the oldest practices among engineers or firemen One of the oldest practices among engineers or fireme is to wet the ashes or throw water on the ash hearth
which evaporates and feeds the fire with moisture steam in contact with the hot coal is decomposed, pro ducing carbonic oxide and hydrogen, which are both combustible in contact with air.
(334) W. L. G. -1. Starch granules may the grains are laid upon the slide, and as small a portion as possible of balsam diluted with turpentine be applied, they will cling to the slide and allow pure balsam to flow over them without making air bubbles. To mount
blood corpuscles, cover the slide on the spot require with a coating of blood as thin as possible and allow it to dry. Fasten on cover with a ring of varnish. 2 Raphides are often mounted dry, but are easily mounted
in balsam. 3. The highest power of the Lick telescope in balsam. 3. The highest power of the Lick telescope sult Mr. Davies' useful little book on " The Preparation and Mounting of Microscopic Objects."-Wm. H. P.
(335) L. W. S.-Cyclones.-1. In the first place, do not call them cyclones; that is a misnomer that the public has fallen into, thanks to the daily newspapers. They are tornadoes, not cyclones. Cyclones
are storms of a very different character. They are like tornadoes only in one respect, namely, they are both rotary storms. The tornado is a funnel-shaped column of disturbed air, generally about forty or fifty yards in diameter, rotating about a nearly perpendicular axis. It forms in the upper air a few miles overhead and works down to the earth. Its track is generally no more than twenty-five miles until it disappears into the
upper air from whence it came. They are caused by strata of warm and of cold air struggling against each Pittsburg, Reading, and Brooklyn, last January. They were only local incidents of a general storm, the di ameter of which was about 500 miles. The center of the storm was between Chicago and Grand Haven,
Mich. Draw a circle of 500 miles radius from the eral storm center, and you will find that in the south eastern quadrant of that circle tornadoes will form and will move toward some point in the northeasteru nudrant. At 8 o'clock A. M. on January 9, there were south Atlantic coast. In Florida the temperature was over 70°, while in Pennsylvania it was below 30°. The isothermic line for that day bulges up at Chicago and drops violently downward through Pennsylvania and Northern Virginia. The hot air south of the isothermic line was struggling to get northward, and the cold air north of the line was struggling to get south. It was this struggle that caused the tornadoes. Normally skyward, but on January 9 , if you had aid than it balloon at Pittsburg, you would have struck warme air as you went up. The line where the warm and cold air comes into closest contact was the line where the tornadoes formed. 2. There were probably just as many tornadoes then as now. Remember that they are storms of a very limited area, and in a sparsely settled
country they would easily escape observation.-H.S. W.
(336) E. W. T.-Gold Lacquer for Tin -Use thin copal varnish slightly colored with turmeric and bake in an oven. You can buy the varnishes of
any required color for stamped tin work from F. W. any required color for sta
Devoe \& Co., New York.
(364) M. S. O'K.-Stationary Point in Piston Stroke.-The piston stroke of an engine comes
to a dead stop at the end of each stroke in theory as well as in practice. So far as visible means can tell it starts immediately on its return stroke, but actually in
theory and in practice it stops for a space of time vary
ng , it may be, with the number of strokes per second, riction, etc. The well known formula for space, s passed over in time, t, in seconds at a velocity, v, feet pe
econd, is $s=v t$, make $v=0$, as it must be at the end o the stroke, and $s=0$, which indicates theoretically a state of rest.-S. R., Jr.
Books or other publications referred to above an, in most cases, be promptly obtained through the
Scientific American office, Munn \& Co., 361 Broad way, New York.

TO INVENTORS.

An experience of forty years, and the preparation of

 more than one hunđred thousand applications for pa ents at home and abroad, enable us to understand theaws and practice on both continents, and to possess equaled facilities for procuring patents everywhere. A foreign countries may be had on application, and person contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exwhich are low. in accordance with the tumes ass. Addres
tensive facilities for conducting the business. Adres. MUNN \& CO.. oft
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

February 19, 1889,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Adhesive material, machine for applying, I. Drey-
fuss
fuss............
Advertising device, W. L. Caldwell.
Air brake, A. R. Boluss...........
Air brake, A. R. Boluss.............
Alarm. See Burglar and fire alarm.
Arrow, vacuum, M. White...
Automaton, A. M. Pierce...
Axle lubricator, W. . Dunb
Automaton, A. M. Pierce........
Axle lubricator. W. O. Dunbar.
Axle, vehicle. A. Corbin, Jr.
Axle, ver Mail bac.
Bag. See M.
Bags or recetacles,
lor.............................
Baling press. Hillman \& Ripple
Band cutter and feeder, H. A. Underwood
Banjos, drum attachment for, R. Oerlo
Barbed nail. P. V. Husted
Barrel cover, J. P. Harp................
Batteries, element for thermo-electric, M. Mes
tern....................................
Battery. See Electric battery. Electrical bat-
tery. Gal Battery. See Electric battery. Electrical...... bat
tery. Galvanic battery. Secondary battery.
Bearing for pulleys or wheels, Ormerod \& Ha Bear
wo
Bearin
Bed
Bell
Belt
Belt
Bicy
Bicy
Bin
Bin

Bearing, roller................ Bed bottom, spring, J. B. Jone

Bealb, gong, sparks \& Landolt
Belt, electric, s. De Baun....
Belt tightener, J. A. Wiga

Bicycle, E. Thuemler

Binder, load. J. S. Speer.............
Binder, temporary, W. H. Pardee.
Bit. See Bridle bit.
Bit. See Bridle bit.
Bleaching by electr

mite et al............... Bind switch, F. C. Weir . Board. Se Ironing board

Bobbin. J. Scott.
Boiler. See Loc
Tubular boiler.
Boiler, R. W. Hew
Bolt heading tool, F. Mut
Bolting reel. D. G. Reitiz.
Boonk case, Rittinger \& E
Book case, Rittinger \& Eisengart.......
Book holder and marker, J. A. Beide
Boots and shoes, machine for feather edgin
soles for, Ruddock \& Bailey.....................
Boots or shoes, nippers for cutting pegs from
J. C. Green.....................................
Bottle indicator, H. B. Weaver.......
Bottle indicator, H. B.
Bottle tap. M. . K. Keane
Box. See Musical box.
Box, J. M. G
Brake. See
brake.
Brick machine, c. \& E. Doerfler
Bridle bit. S. Fisher
Brush, H. W. Hascy
Brush attachment, paint, J. B. Flaut......
Brush holder, G. E. Meeker.
Brush, printer's, J. C. Israel.
Brushes, attachment for flesh or bath, w. J. Tur Brushes, atta
kington...
Buckle, G. P.
Burglar alarms, door spring connection for e
tric
Burglar and fire alarm, c. C. Henderson
Burner. See Gas burner. Oil burner. Petroleum
Button, cuff or collar, G. S. Tiffany
Buttonhole finishing and staying machine, Knox \& Eberson..
buttons to fabrics, attaching shank, w. E. Ben
Cake, biscuit, and douzhnut cutter, W. H. Eaton. Calculating machine, J. Vermehren.
Calendar, perpetual, T. A. McKee...
Camera. See Photographic camera.
Can or similar vessel, J. K. Cleary...
Candle moulding machine. L. Homan
Car brakes, pipe coupling for, w. M. Darrow
Car brakes, slack adjuster for,
Car brakes, slack adjuster
Car coupling, J. M. Bouck.
Car coupling, S. Byrne...
Car coupling, J. A. Hinson.......
Car
C. B. Bnowlto
Car coupling. C. A. Schroyer
Car door, railway, J. Haish
Car, dumping, C. C. King
Car for carrying sugar cane, Z. T. Earle
Car heater, H. R. Albrecht.....
Car heating apparatus, street,

Closet. See Water closet.
Clothes stick, W. H. Scott.

Comb. Set Curry comb.
Combination lock, H. C. Brown, Jr................... 397.893
Compress, M. V. Wagner 388.199

Corset fastening, W. M. Ducker.................................398.146
Coupling. See Car coupling. Hose coupling.
Crate. folding, W. H. Cadwell........................... 397,894
Cultivator, F. E. Griswold.................41

Curb and gutter, combined, A. G. Parkhurst...... 348, 374
Curry comb, H. McPherson....................................39.9:6
Curry comb, w. Ransweiler.........01
Curry comb, W. Ransweiler............................
Cutter. See Band cutter. Cake. biscuit an
doughnut cutter. Cigar cutter. Stalk cutter.
Dam, movable, A. M. Scott......................... 348.088
Dampening machine, J. . . Johnston........... 398333
Dental engine, I. G. Leek......................... 397990
Dental engine, I. G. Leek..399.095
Desk, H. L. Thompson........
Diamonds in cutting tools, securing, H. Keller.... 398,053 Die. See Hammer or like die.
Direct acting engine, G. A. Barth
Ditech acting engine, G. A. Barth........ 397,959
Ditching machine, tile, R. E. Nevin 397,997
Dock, floating dry. Brown \& Biddlecombe........ 398,223
Drawer pull, G. S. Pearson ..
Drawer pull, E. H. Peek
Drawer pull, E. H. Peck......................
Drawing press, M. Chambers........
Dredging machines. chute for, M. Herron Dredging machines, chute for, M. Herron.......... 397.985
Dress form, W. A. Johnson...................... 397,986
Drum or radiator, heating. N. H. Barnes........ 389.15

Electric currents, equalizer for. S. Bergmann... lectric discharge;device, R. Belfield (r)........... 10.986
Electric lighting ssstem, J. A. Galvin........... 37.906
Electrical battery, w. Burnley................. 397,965 Elevator. See Hydraulic elevator. Water eleva-
tor. Water or liquid elevator.
Elevator. M. Hanford............................. ${ }_{3}^{397,912}$
End
Engine. See Dental engine. Direct-acting en-
gine. River power engine. Road engine.
Steam engine. Steam or pneumatic engine.
Engine lubricator, steam, w. H. Craig... 397.972
Engine. stop mechanism for steam, H. .. Currier. 3989.314
Engraving machine, wood, w. W. Krutsch........ $398,3: 6$
Envelopes or similar receptacles, machine for
making, G. Sickels, Jr..38,284
Evaporator, H. Hill.........
Evaporator. H. Hill.....
Fabric. See Knit fabric.
Fullerton......
anz
and

Feed water heater, J. Kirkaldy..................................38,
Feed water regulator, J. P. Cushing......
Fellies, machine for the manufacture of, J. W.

Fence machine, J. Sornson............................ 39
Fence post, A. C. Peterson...................... 39
jence wire winding machine, Bald win \& Clement
File, paper, M. E. Dayton........ 398,
Filter and cut-off, water, Bayless $\&$ Nichols...... 398
Filtering and filling liquids under pressure, appa-
Filtering material. O. Zwietusch........
Firearm, breech-loading, P. Mauser
Firearm, magazine, Cooper \& Cashmore.............. $398,06,3$
Firearm sight, E. J. Cutler............................. 398,315
Firearms, cartridge ejector for breech-loading,
P. Mauser...................
.. 398,064
398,210
Flask. See Moulder's flask.
Flax, etc., apparatus for scutching, McGrath \&
Manisty.......... $398,1 \% 1$
looring or pavin, wood block, M. Macleod...... 398.62
Folding case or packer

Frog, spring, , C. Weir
Furnace. See Gas generating furnace. Glass pot
furnace. Hot air furnace. Slack burning fur-
nace.
Gauge. See Safety gauge.
Galvanic battery, E. D. Cross.............................967, 398,1
Game, J. P. \& J. W. Clarke...........
Gas, apparatus for the manufacture of, J. D
Gas burner for oilliard tables, W. F. Folmer.
Gas generating furnace, J. Gilbe
Gas generator, J. Jordan
Gas generator, J. Jordan
Gas motor, C. A. H. Wiedling.
Gas regulator, J. Bardsley.......
Gas regulator,.J. Bar
Gate. See End gate.

Gate, J. T. Sargent \qquad 398,189 Generator. See Gas generator. Induction generator. Steam generator.			Dfovertisements.
		16	
			The above are charges per agate line-about elight words ther tind recelved at pubication ific nit to appear in next issue.
Glass pot furnace, A. Weyer........................ 3 Goods in exchange for coin, apparatus for deliv-			
	ning me rift.		
te for	Pla		
Gun, breech-loading, w. C. Maymard.............. 38,060			WALL PLASTER
Gun. spring. J. F. Klinglesmith.................... 398 ,26	Plo		
Hairpins, machine for making, G. W. Manson..... 399,9991			
indry	Pol		
	Po		
	Po		
Harvester, J. A. Graham et al.................... 338.299			
			ADAMANT MFG. CO,
Hat measure. A.E. E. McDonala...................... 39.390 .30	Prot		
and loe			FHE KODAK CAMERA
and			
ter.	$\text { ... } 398$		
ters			
heder machine attachment holder.			
,			
		Trunk, I, G	
	Ra		
	R		
	${ }_{\text {Rail }}^{\text {Ral }}$		Price, \$825.00. Reloading, \$2.000.
Hydraulic elevator, variable pressure, т. w.	Rai		The Eastman Dry Plate \& Film Co. Rochester, N. Y. 1150 oxford St., London. Send for copy of Kodak Primer with Kodak Photograph
Indicator rent indicator.			SEBASTIAN, MAY \& CO'S
nction enera			Improved Serew cutting
			$\begin{aligned} & \text { Foot \& } \\ & \text { Power } \end{aligned}$
Joitrt. See Chair joint. Metal joint. Metallic			
			G. Hatilald. With directions for construction. Four and of all newsdealeers.
			Improved "Ecllpse
p,			
teh			
Lathe, S. A. Penny 388,077	sa		
Lever, R. W. Hardie \qquad			
39809			
Liquid holding vessel, , S. . . Mace......................... 388.01	${ }_{\text {Saw, , } \mathrm{N} \text {. P }}$		
			ICE-HOUSE. AND REFRIGERATOR. Directions and Dimensions for construction with one
Locomotive boiler, G. A. Karwiese..................... 3 398, 161			
			ROCK DRILS Reximbe
	Sa		
$\begin{gathered} \text { wirpr. } \\ \\ \hline \end{gathered}$	Scart.	${ }_{\text {Win }}$	AIR COMPRESSORS \& ${ }_{\text {ENERAL }}$
ator. Mining machine lubricator.			
398,2	Sewaz		RAND DRILLCo 23 ParkPlage newyoríuti
			IRRIGATING MACHINERY ON THE Paciic Coast.-By John Richards. An elaborate dis- cunsion of the moditactions hhat hate hat io be made all newsdealers.
tallic			
Meter. See Liquid or gas meter.			
${ }^{398}$			
388,			\&) \$3 PRINTING P
Motor.			
Movement cure machine, M. F. Henderson........ 33.9395			
Music book holder, Caston \& Smith.................... 3989,128			
Musical box, Ehrlich \& Muller.................... 388,41		Iriers. Empire Wringer Company 16.729	
			$\sin ^{\circ}$
398,009		$\left\lvert\, \begin{aligned} & \begin{array}{l} \text { oin, } \\ \text { oil, } \end{array}, \end{aligned}\right.$	
		Oil or liniment. G. T. Atkins........... 16.2:8	
		Paper, fine writing, Waureanan Paper Company.... 16,244	
	Shoe polishing machine, J. D. Bright 398,124	Wire cloth, window screen, Gilbert \& Bennett	
	Shovel. See Hop shovel.		LECTRICAI، ACCUMULATOR COMPANY, No. 44 Broadway, New York City.
	el.		
398,275		Fle	Edco System.
Ovens, heat protector for bake, J. J. Seifert........ 398.192 Ox shoe J. Deeble	ore	$\begin{gathered} \text { Lan } \\ \text { Lin } \end{gathered}$	
	${ }^{388}$		Complete Electric Light and Power Plants. Street Carsequiped for Electric Propulsion. The oldest und most equipped for Electric Propulsion. The oldest und mexperienced Electric Motor Co. in the world.
	Slack burning furnace. Wilkinson \& Glendinning... ${ }_{39} 97939$		
			THE ELECTRIC DYNAMIC COMPANY, No. $2 \cdot 24$ Carter St., Philadelphia, Pa.
398,	Spools of thread, spindle for, S. B. Pratt......... 38.10	Co., 361 Broadway, New York.	
	Vehicle spring.		

HENRYCAREYBAIRD \& CO. Industrial Pubishers, Booksellers, and Importor S10 Wainut St.. Philadelphia, Pr.. U. S. A.
 ARCHIITECTORAL BOOKS.
Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta-
ble, either in the country or city, or any builder wishing to examine the latest and best plans for a church, school house. club house, or any other public building of high
or low cost, should procure a complete set of the ARCHI
TECTS AND BCIDDERS' TECTS' AND
American
The infor
Work almost indispensable to the architect and builder and to persons about to build for themselves they will
find the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ings of almost every class of building, with specification a.nd approximate cost.
Four bound volumes are now ready and may be obained, by mail, direct from the publisuers or from any covers. Subscription price, per annum, $\$ 2.50$. Address

MUNN \& CO., Publishers,
Summer Cook Stoves

For WOOD coal, orcors.

 Cheaper and Safer than Oil or Gasoline. Why not confine heat in a stoveas to contrine cold in a Refrigerator,
and use the same stove for summe HESS STOVE WORKS, OIL WELL SUPPLY CO. Ltd.
 JAMES B. EADS.-AN ACCOUNT OF

HOME-MADE INCUBATOR.-PRACTI cal directions for the manufacture of an effective incu
bator that has been carefuly tested and found to per
Orm all that may be reasonably ex pected ; with direc

ARTESIAN

 GLACIAL EPOCHS AND THEIR PE-

ZUGKER \&LEEVZTH CHEMICAL G! NEW YORKUS.A. A A S
 NICKEL ANODES, NICKEL SALTS, ROMOGES, COMPOSITION, BUFFING WHEELS,
ELECTRO \& NICKEL

 The Koch Patent File. for preserving newspapers, Mag,aztines, and pamohlets, has been recently imporved and
orice

The International Cyclopedia

WHAT A CYCLOPEDIA BRINGS TO ITS POSSESSOR ERNOVNI円DGGEDEATM
ARTS, SCIENCES, CUSTOMS,
SCIENCES, HISTORY,
ELIGIONS
PEOPLES, LITERATURE, GOVERNMENTS

Pallis' Painit Spexad inididar'

The E. S. Greeley \& Co.

HE
$\begin{array}{l}131 \\ \text { Ste } \\ \text { M }\end{array}$

Steam Engines. Diamond Drilling and General
Machinery. Flour Mill nolls Ground and Grooved. SEVERN AND MERSEY TUNNELS.-

 BYIVRNEW M Mosmere PROCESS Send Green, Stamin forMosshe Speinens. THE GENERATIUN OF STEAM.-

THE CONTINENTAL TRON WORKS, CORRUGATED BOILER FLUES MIDE IN ALL SIZES, WITH FLANGED OR P'LAIN ENDS. | PULLEYS, HANGERS, PROGRESS MAOHINEWORISS, |
| :--- |
| FRICTION CLUTCHES. 14 Paris Placo, N. Y. |

PULLEYS. Chappest. Lifhtest. and Best. Made by THE CRANK'S STORY. - BY G. H.

BARREL MACHINERY.
E. \& B. HOLMES, VERY USER OF MACHINERY How to Use Loose Pullejs. Useful information on thlis subjece,
is siven in our "Catalogue No. 55 ."

TO BUSINESS MEN.

YOUR NAME OTHIS NOUELTY 15 C

 BONANZATOAGENTS SAMPLESNREEE REMINGTON

standard Typewitier Gold Medal Silver Medal For Championship of the World, A t Toronto, in open contest, Augast 13, 1888. I5I WORDS PER MINUTE,
 orized sentence, thus beating all previous recordsom cor-
orist
rect work by thirty words per minute, and pacing the
Remington "s ill further beyond reach of competition. application.
WYCKOFF, SEAMANS \& BENEDICT,

 Hire of Dredging Plant for Improving Hous-

MODELS Expremensan work

(C) Clarl's Noisiseless Rubber Truch Wheels Ruber Furniture Casters, etitialogene free ELECTRIU CONVEYORS.--DESCRIP-
 2nd acce MACHINERY

USEFUL BOOKS.

\qquad permits the transmission of books through the mails
at very small cost. useful books by different authors. on more than fifty diflerent subjects, has recently been published for
free circulation at the office of this paper. Subjects classitied with names of author. Persons desiring
a copy, have only to ask for it, and it will be mailed mm
$\$ 10.00$ to $\$ 50.00$
 ANASTHETICS. ALEssor for

AGENTS Mantea to oun rass bugnes. hanes for
 Tre Sementramentan PUBLICATIONS FOR 1889.

The prices of the different publications in the United
States, Canada, and Mexico are as follows:
The Scientitic American (weekly) pne year
The Scientitic American Supplement(week k), one

one year, $\dot{\text { Scientitic American, Architects and Builders }}{ }_{2.50}^{5.00}$
Edition (monthly), one vear. .
COMBINED RATES.
The Sclentitic American and Supplement, .
The Scientific American and Architects and Build- $\$ 7.00$

tects and Builders Edition.
Proportionate Rates for six Months.
.
Proportionate Rates for six Months.
This includes postage, which we pay. Remit by postal
or express money order, or draft to order of

Didvertisements．

INSTALMENT BONDS．
Thirty－ninth Annual Statement

Natimad Livid hismance lou．

 mourpeure，vemmor． January， 1889.
Rubberite Meallic Paint

> Eagle Paint \& Varnish Works, P．0．Box 30，Pittsburgh，Pa RIDE CYCLES！

Bicjcles，Tricjcles，and Safeties：
$\begin{gathered}\text { end or free illustrat ed } \\ \text { Cata atoue．} \\ \text { Dverman Whel Co．，Makers }\end{gathered}$ BOSTON，MASS． ELake．By G．M．Hopkins．－Description of a small electro amateurs to make a motor which might be driven with
advantage by barrent
which would have sumticient pow fro to a operate a a

ⓉI卫卫IT FBATME

 In quality and densty
in unitornity of temner
curacy
duracy and nit of temper of find ind in ac，
unequaled．

THE PHONO description of the new and improved form of the pho nopraph just brou
ingr con ontained
MENT，No． 632.

A NEW CATALOGUE

PATENTS

 for Books．Labets，Reissues，Asignments and Reports
on Intringements of Patents．All busines intruste to
them is dome with special care and promptness，on very
teesong
A pamphlet sent free of charge，on application，con－
taining full information about Patents and how to pro－
cure them；directions concerning Labels，Copyrights，
Besign．Patents，Appaas．Reisuen．Infring ements，As－
signiments，Rejected Cases．Iints on the Sale of Pa－

 Patain Rivatad Monared Rulberer Bling
 the gutta percha and rubber mfg． $\mathbf{C O}$ 35 Warren Street，New York．

THE MODERN 1CE YACHT．－BY

DELAFIELD＇S PATENT SAW CLAMP－－1889 PATTERN．

charreri gas bigine

The Chanter Gas Enine Co．
O．Box las．
sterinc．
 ICE－BOATS－THEIR CONSTRUCTION

MREROPE

 ESTABLISHED HALF A CENTURY．

MARYIN＇S EAFEG

HAVE MANY PATENTED NOT FOUND IN THAT WILL WELL REPAY AN INVESTIGATION BY THOSEWHDE TO SECURE THE BEST SAFE MARVIN SAFE CO． NEW YORK，PHILADELPHIA， LONDON．ENGLAND．

PATENT FURNACE：${ }^{\text {Bing }}$ Dexeription
sHenin ROAD ROIMERS

 95 MILK ST．，BOSTON，MASS

This Company owns the Letters Patent granted to Alexander Graham Bell，March th，1876，No．174，465，and January 30th， 877，No．186．787
The transmission of Speech by all known orms of Electric Speaking Telephones in－ ringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ unlawful use，and all the consequences thereof，and liable to suit therefor．
INVENTORS and oth ers desirin，new articles manufac－
tured and introduced，address P． O ．Box 86 ，Cleveland， O

エエエ曰

Sciantific Ambrican

The Most Popalar Scientific Paper in the World． Only 83.00 a Year，including Postage．Weekly

This widely circulnted and splendidly illustrated pper is published weekly．Every number contains six－ teen pages of usef ul inf ormation and a large number of
original engravings of new inv entions and discoveries． representing Engineering W orks Steam Machinery Chemistry，Electricity，Telegraphy，Photography，Archi－ Complete List of Patents each week． Termes of Subscription．－One copy of the Scien－ postage prepaid，to any subscriber in the United States or Canada，on receipt of three dollnis by the pub－
ishers；six months，$\$ 1.50$ ；three m onths，$\$ 1.00$ ． Mast The saf est way to remit is by Postal Order．Draft，or of envelopes，se curely sealed，and correctly addressed， eldom goes astray，but is at the sender＇s risk．Ad

MIUNNT \＆CO． 361 Broadway，New York． TIETI
Scientific American Supplement．
This is a separate and distinct publication from
THESCIENTIFIC American．but is uniform therewith of engravings，man papers，and accompanied with translated descriptions． The scientific american Supplemient is published
weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in Useful Arts，embracing Biology，Geclogy，Mineralogy Natural Hist ory，Geography，Archæ ol ogy．Astron omy，
Chenistry，Elect ricity，Light．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining，
Ship Building，Marine Engineering，Photography， Technol ogy，Manufacturing Industries，Sanitary En my，Biography，Medicine，etc．A vast amunnt of fresh Theation．
Thost important Enjineering Works，Mechanism and Manufactures at home and abroad are illustrated Price for the Scppriement for the United States and ERICAN and one copy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Single copies 10 cents．Addres and remit by postal order，express money order，or check，
MUNN \＆Co．，361 Broadway，N．Y．，

Building Edition

Builders＇Edition is issued monthly．$\$ 2.50$ a yea
 large and splendid lagazine of A chitecture，rich ly adorned with elegant plates in colors，and with othe
lne engravings；illustrating the most interesting ex amples of modern Architectural Construction and A special feature is the presentation in each numbe dences．city ard country，including those of very mod erate cost as well as the more expensive．Drawings in Plans，Specifications，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent
have won for it the Largest Circulation of an Archivectural publication in the world．Sold by al

MUNN \＆CO．，Publishers，
361 Broadway，New York
PRINTING INKS．

