
a WeEkly Jotrinal 0f practical information, art, science, mechanics, chemistry, and mantractures.

THE NICARAGUA SHIP CANAL.

Every discouraging -report, for the past year or two, touching the probability of the completion of the Panama Canal, commenced by M. de Lesseps, has caused public attention to be yet more earnestly attracted to the Nicaragua Ship Canal project. The great difficulty and project. The great difficulty and
the enormous cost of the work thus the enormous cost of the work thus
far done at-Panama has compelled those interested in the Nicaragua route to be extremely thorough and careful in their surveys and estimates, which have been completed with a detail that is in marked contrast with those previously made for the Panama Canal; and now that the plans for the latter have been changed to make it a lock canal instead of a tidewater cut,

all the advantage that was ever claimed for the latter, as against the more northerly route, has been surrendered. When to this is added the fact that the financial state of the Panama Company now seems to have become desperate, it is obvious that the successful progress through Congress of the bill incorporating the Nicaragua Maritime Canal Company becomes a matter of the highest importance.
The bill incorporating the company was originally introduced more than a year ago, but was encumbered with so many amendments touching the amount of stocks and bonds the company stocks and bonds the company
might issue, and the manner of issuing them, and various other (Continued on page 105.)

GREYTOWN, ATLANTIC TERMINUS OF CANAL.

OLD SPANISH FORT CASTILLO, ON RIVER SAN JUAN

BIRD'S EYE VIEW OF NICARAGUA, SHOWING PATH OF PROPOSED CANAL.

马̌rientific Ammiram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMEIEICAN. Une copy, one year, for the U. S. or Canada.
ne copy, six months, for the U. S. or Cana Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the
SCIENTIFIC AMERICAN, for a
Colonial bank notes. Address
MUNN \& CO., 3fil Broadwa
The Scientific America
American Supplement
issued weekly. is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPIEMENT $\$ 5.01$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belongtng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
Ciombined Rates.-The Scientific ambitican and Suppiement
will be sent for one year, to any address in U : S. or Canada will be sent for
seven dollars.

seven dolars. The safest way rexistered letter.

Australia
Aubtralia and New Zealand.-The Scientific american and SUPPLEMENT will be se
rent Colonial bank notes.
ent Colonial bank notes.

NEW YORK, SATURDAY, FEBRUARY 16, 1889.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 685.
For the Week Ending February 16, 1889.
Price 10 cents. For eale by all newedealers.
 rearerenceto brewing, Eiving
bewink operations. - illustrations
 rrom ail other metals.
Note ontion the Determination of Gold.

 $\stackrel{\text { cap }}{ }$

Vil METALLURGY.-American Blast Farnace Practice.-A most

 the e diretilion
the metalict

An interesting geometrical figure may now be traced in the heavens on starlit nights. It is an irregular lozenge formed by four stars of the first magnitude. Sirius, which is on the meridian about 8 o'clock on the last of February, may be taken as the starting point, occupying the southeast corner of the figure. A line drawn northwest from Sirius will lead the eye to Betelguese in the shoulder of Orion. Rigel, in the foot of the mighty hunter, is opposite Betelguese, and a line extending from Sirius through the belt of Orion will reach Aldebaran in the constellation Taurus. These four stars-Sirius, Betelguese, Rigel, and Aldebaranform the corners of the celestial lozenge, a figure which once traced will never be forgotten, and whenever on winter nights the eye is turned toward the sky, the superb combination will be recognized.
Each star of the shining quartet has a history. Sirius shines with a transcendent luster, so far exceeding all other stars of the first magnitude that it seems to belong to a class of its own. It is a white star, rejoicing in the glory of its highest period of development, its grande jeunesse. It is made specially interesting by the discovery, in 1862, of a dark companion star. Betelguese, the leading brilliant in Orion, is a singularly beautiful star, in color a rich topaz with a reddish tinge. It shines with an irregular light, for, like our sun, it is a variable. Rigel is a brilliant star, its light in striking contrast with that of Betelguese. It is a noted double, the companions being pale yellow and sapphire blue.
Aldebaran is the brightest star in the constellation Taurus, and reserables Betelguese in color. It is a double star, with a minute companion. It is frequently occulted by the moon, for its position in the heavens is in or near her path.
This geometrical figure is not only interesting for the brilliants that form its corners, but also for the charming collection of stars contained within the boundary lines. The whole constellation of Orion, first in rank among all the clusters of stars, here finds place. The observer will perceive with the unaided eye the belt symmetrically placed in the center, the sword slanting symmetrically placed in the center, the sword slanting
downward from the belt with its nebulous star, and the downward from the belt with its nebulous star, and the
irregular parallelogram made up of the four brightest stars-Betelguese, Bellatrix, Rigel, and Saiph.
The telescopic observer has a rich field for study in this marvelously beautiful constellation, abounding in double, triple, and quadruple stars, variables eand nebulæ. A powerful instrument transforms the nebulous star in the sword into the Great Nebula of Orion, the nost impressive and awe-inspiring vision ${ }^{\circ}$ of celestial loveliness that the boundless star depths reveal to mortal sight.
It is sometimes difficult to trace stars by triangulation or alignment, the surest way of impressing them upon the memory; but the stars forming the combination here described come into view at a glance without exertion on the part of the observer, with the radiant gems they inclose, draw forth a spontaneous tribute of admiration for the exceeding beauty of this portion of the star-spangled firmament.

PROGRESS OF NEW ARMAMENTS

The Secretary of War has awarded a contract to the Pneumatic Dynamite Gun Company for seven guns for coast defense. Five are destined for the defense of the 0 harbor of New York.

The contract calls for three guns for Sandy Hook, two for Fort Schuyler, and two for Fort Warren, Mass All the peculiarities presented by the 15 -inch gun now mounted at Fort Lafayette are virtually specified. The guns must be capable of elevation and depression by either pneumatic or hydraulic power, and have an extreme elevation of at least 35 degrees. They must be capable of an all-around fire, or through 360 degrees, the capable of an all-around fire, or through 60 degrees, the of the gunner in charge. The range of fire is also specified, the extreme demanded being a mile Rapidity of fire is also called for, being a requirement not demanded in the recent tests of the stationary gun. The delivery of the guns ready for mounting must be made within eight months of the time of execution of contract. The sum of money as bid by the Pneumatic Dynamite Gun sum of money as bid
Company is $\$ 395,500$.
The guns will be able to deliver upon an enemy pro jectiles that contain 500 pounds of dynamite, the explosion of which, on or close to the strongest ironclad ship now afloat, would knock down every man on deck, and probably sink the vessel. Our new torpedo boat Vesuvius, 725 tons, is armed with these guns, and, speaking of her recently, the .Engineer, London, says "We may allow something for pardonable exaggeration, and still we have enough left to induce the belief that Uncle Sam has got hold of a craft which an ironclad would not care to fight for the fun of the thing."
The New York Times says: "The success of the Vesuvius has contributed to the success of the dyna mite gun, inasmuch as vessel and gun appear inseparable. This dual success is looked upon by foreign governments as a matter of the very greatest import
the number of emissaries of foreign governments now in this country inquiring into the features of gun and vessel, that Italians, Russians, Spaniards, and French will have dynamite guns in their coast defense system before many months have passed.'
A successful trial of a new cast steel gun was made at Annapolis, Md., on the 7th inst. Two rounds were fired with a charge of thirty-six pounds of powder to set the gas checks and warm the gun. At 2:15 P. M. the first round with a full charge was fired. The shell struck the butt with great force, throwing up much struck the butt with great force, throwing up much
mud, but the gun was uninjured. After sponging, the gun was loaded again, and in two minutes the second round was fired; the gun was still as solid as ever. Eight other rounds were fired at intervals of about two minutes, with complete success. This is the first highpowered American cast steel gun that has successfully passed the test of ten rounds with full charge delivered rapidly.

It will be remembered the first gun of this character burst on its trial. Both guns were made of open hearth steel and were cast by the Standard Steel Casting Company, of Thurlow, Pa. The gun tested on the 7 th is 195 inches in length; diameter at breech, 222 inches; diameter of chamber, 45 inches ; diameter of bore, 6 inches; weight of gun, 13,125 pounds; weight of shell, 100 pounds ; weight of charge, $481 / 4$ pounds.

MEETING OF ELECTRIC LIGHT MEN.

The National Electric Light Association meets at Chicago, in the Exposition Building, on the 19th, 20th, and 21st instants, and, from what can be learned, is likely to be more than usually interesting. There will be at the same ciine a large exhibit of electrical and kindred apparatus, the most interesting of all, perhaps, a 900 foot track, with curves of 90 feet radii, on which it is expected the various types of electric motors will be tried. The principal magnet-we speak figurativelyto attract the electrical men will be the papers to be read and the discussions following them; notably, "Current Meters," "Static Charge in the Puncturing of Underground Cables," "Relation of the Material of Conduits to the Insulation of Cables."
These discussions are unique in their way, and, per haps, it is not going too far to say that the manner of conducting them is quite as novel as the apparatus which is their inciting cause. At the meeting of scientific associations-there are exceptions, of course-one must needs listen to much which, though often good and sometimes true, is not always new, and again to what is new, but neither instructive nor entertaining; for, as in a society of artists, there is the old academician, who is hors concours, and whose pictures must be accepted and hung " below the line," whether good or bad, so in the long established scientific association there are those who have the right to talk, to occupy the time of a meeting, whether or no they have any information to impart. But, in the electrical field of to-day, apparatus and methods change so quickly that a new device or idea is scarcely arrived when that that a new device or idea is scarcely arrived when
which is still more novel is treading upon its heels.
The electrical men come from all parts of the country at stated inter yals to compare notes concerning these; it being of vital importance, and by no means an easy task, to keep abreast of all that is going on in a particular line. There is no time for idle talk, for oratory, for ancient history, for dissertations on things in general, with an occasional remark on the subject under discussion. The chairman has no traditions to follow, and no mercy ; the committee, to whom all papers must be subinitted, rarely pass one that does not treat of a live issue. When it is remembered that many of the best practical minds of the country gather at these conventions, and that in their line they are, it is conceded, leading the world, it is not, perhaps, going too far to say that to attend these conventions is to get a liberal education in applied electrics.

ELECTRIC WIRES IN GAS MAINS

The Consolidated Gas Light Co., of this city, some years ago, in laying a gas main, took advantage of the opportunity to introduce a telephone line in it, suspending it from insulators within the main. Excellent results were attained. On recently opening the main the wire was found to be coated with naphthalene, but the line as such was intact. Such a line is proof against the severest blizzards, and insures communication under all conditions. Recently they have extended the system, and have laid about five miles of three-conductor lead-covered lines within some new mains, so as to act as a basis for quite a complete system of telephonic intercommunication between the different offices. The wires are supported by short boards laid across the interior of the main at intervals of twelve feet, or one for every length of pipe. The wires enter and leave the main through stuffing boxes, plaster of Paris being used as packing and glass as insulating material. It forms an interesting instance of subway work-one which is of a class that will necessarily always be limited in application.
An objection, possessing some force, has recently been made against the use of overhead trolly lines for electric railways. - It is to the effect that these lines,
necessarily of bare wire, are a perpetual menace to person and property. If an ordinary telegraph wire falls or sags so as to cross one of them, it may readily carry off current enough to set a building on fire, or to injure or kill some person. The most obvious remedy for this state of things is to use an underground line or storage batteries. The danger may be modified and diminished by using current of low electro-motive force. This will reduce the danger from incandescence, or are formation, and may make the current almost innocuous in its effects upon the human system. The gas main system just spoken of certainly is an example of a safe method, though unfortunately inapplicable to industrial uses. The slotted subways as used for electric railways are also apparently quite safe in character, whether high or low tension currents are used.

The Paris Exhibition.

Paris, January 17, 1889.
American exhibitors of small tools ought to reap a good harvest at the Paris exhibition, not only because their tools are superior, but also because they are beginning to be recognized as superior in France as well as in England. Yesterday I saw, in the exhibition buildings, a French carpenter using, among other tools of American origin, a Backus brace for bits, augers, etc., which, in the course of conversation, I found he praised highly, supposing it to be a French tool, and so perhaps it was, as far as its make was concerned, but the design was the Backus pure and simple; indeed, it had the ratchet movement and the patent angular wrench attachment complete.
In the course of my experience, both here and in England, nothing has struck me so forcibly, as far as mechanics are concerned, as the superiority of Ameri can small tools.
I do not expect this superiority to be brought out very strongly at the Paris exhibition, so far as the exhibits are concerned, for Europe is in a somewhat peculiar position in this matter, which arises, in the first place, from the conservatism of the masses, and in the second, perhaps, from the apathy of Americans with regard to foreign trade. But let the causes be what they may, the facts are as follows: Tools of American design, if not always, nor even often, of American make, are to be found in the better class of both English and French tool sellers' shops, and they are highly recommended by the salesmen. .They are, therefore, certain to be found among the exhibits at the exhibition. But it is not always, nor even often, that they are to be found in the ordinary workshop or the hands of ordinary workmen. Now, in the case of those that are made in the United States and imported here, the cost may have something to do with this, but that cannot be the case with the English and French copies of American tools.

It is quite true that both these copies are, as a rule, not up to the American standard as regards either fit or finish, and are sometimes mere travesties of the originals. The fact remains, however, that the great mass of workinen here have little or no acquaintance with the advantages of these tools; but at such exhibitions as this they get an education that will create a demand for the best, and I feel quite sure that with a sufficient demand to make it worth while, American small tool makers could compete with their rivals here in their own markets, and that there is enough demand now to make a good representation at this exhibition a sound commercial venture.
There is, however, another and important consideration in this connection, inasmuch as that in proportion as American tools become known here as of American origin, French patents will increase in value to American inventors, and there is in my mind no doubt that European patents will become of more value to Americans every year.
There are some American tools that are so far superior to either French or English that it is altogether astonishing that they have not been copied, and threading tools may be taken as an example. Sir Joseph Whitworth, to whom the mechanical world owes so much, by making a specialty of threading tools, adopting a standard form of thread, and using
standard gauge diameters, some forty or more years standard gauge diameters, some forty or more years
ago, managed to control the screw tool trade of Europe, and it has remained pretty much as he first introduced it, in all countries save in the United States, where the fallacy of three flutes in a tap or three cutters or chasers in a die head is pretty generally known. I forbear further remarks on this head, however, until I have the French, English, and American exhibits before me. France, like England, has, as far as I can at present see, failed to appreciate the boon America gave to machinists in the form of the emery wheel, and as a result has, at the same time, failed to appreciate the full value of the milling machine. The French, like the English, have, to a certain extent, adopted and copied the Brown \& Sharpe universal milling machine, and they have, to a certain extent, adopted the emery wheel ; but it is sufficient to illustrate my point to say that in a shop of five hundred men I have seen milling cutters softened and filed up to resharpen them, and I
could enumerate many other similar circumstances, all pointing to the fact that there is a field here for American tools and American information as to how to use them.
Some time ago I went into a large and important technical institution, and found them using flat drills, and was told by the students that they could not use twist drills because they "fired." On being asked to show me one that had " fired," he brought from a tool chest a $3 / 4$ inch twist drill that had been ground on a common grindstone, the two cutting edges being at a different angle, and one side being longer than the other, while the high corner was worn completely off. Upon being asked to try the drill in my presence, he put it into a machine, ran it at a speed that was not above one-quarter fast enough, and tried to force it to cut until' sparks of fire flew out and the drill softened at the end. When I ground up the drill (removing the softened point), and ran it at a proper speed, he was amazed at its work, and said he had "often wondered amazed at its work, and said he had ""
There are not wanting here, as well as in England men who claim that the twist drill is not an America invention; that they had used such drills years before the American patent was issued. The trouble with these men is that they do not know what a twist drill is, and call their blacksmith-twisted drill, with a flat end, a twist drill, whereas it fills only one of the requirements of a twist drill, and even that one very imper fectly.
If exhibitions such as this one at Paris came every two, instead of every ten, years, American small tools would make a revolution in European workshop practice, but as it is, it will be a matter of time, unless some good missionary work is done.
The machinery department is progressing rapidly.

Waxed Paper Bags.

A new article called "The Sparks' Waxed Paper Bag" is now being extensively introduced, and is noticeable for its novel qualities. The exterior is like any paper bag, but the interior surface is lined with a thin film of fine paraffine wax, which renders the bag substantially air tight and water proof. The cost is but a trifle more than the common paper bag.
Tobacco, snuff, cigars, etc., put up in these bags are preser ved in perfect condition, drying and loss of aroma being prevented. In like manner, confectionery, fruit, and other eatables are kept intact, wholesome and frest. As these bags may be made translucent, they render the package attractive, and this adds a desirable selling quality, independent of other merits. Druggists use them for en veloping all kinds of preparations; grocers find them very desirable in preserving, in fresh condition, coffee, tea, dried beef, hams, cheese, sugar, and other foods. The difference between two packages of coffee, one put up in the ordinary paper bag and the other in a Sparks' waxed paper bag, is very striking. A pound of coffee in ordinary paper, when brought into a room or car, is scented by everybody at once ; but if the waxed paper bag is used the contents cannot be detected ; there is no escape of aroma, the preservation is complete. These waxed paper bags are also found to be of superior value for wheat, flour, buckwheat, oatmeal, Indian meal, etc. The contents are kept fresh, and access of moisture or other contamination is prevented. For packing cement, fertilizers, etc., the bags are also useful.
Furs stored in these bags with the smallest quantity of camphor or other insecticide are rendered moth proof. Valuable clothing may, in like manner, be conveniently preserved.
The waxed paper bags are now made by millions, of all sizes and grades, by the Sparks Manufacturing Company, 24 Burling Slip, New York, where they have a large establishment devoted to the manufacture of the abo ve, and waxed papers of every description.

Trial of the Flfteen Inch Dynamite Gun.
The largest of the pneumatic guns yet made, and of the model designed for the new cruiser Vesuvius, was gi ven an official test at Fort Lafayette, on January 26, in presence of the naval board of ordnance appointed for this purpose by the U.S. government, consisting of Commander Casper F. Goodrich, Lieuts. Bradley A. Fiske and Seaton Schroeder.
Among the mary close observers of this important trial were the Baron Von Sternberg, of the German Legation, and Capt. Pickowski, of the Imperial German Army ; Lieut. Fulton, U.S. N.; Lieut. Carden, U. S. Revenue Marine; Capt. Birney, U. S. Ordnance Department; Lieut.-Col. W. R. King, Commander at Willets Point ; and U. S. Commissioner Morle, Chas. F. Emery, and others, Capt. Zalinsky taking active charge of the manipulation of the gun.
By prearrangement, the marking bunys were to be 50 yards apart, in the line of fire, at a mean distance of 2,138 yards, and the target area was to be a rectangle 150 feet by 50 feet, located on the east side of the channel in Gravesend Bay. Owing to the loss of one buoy, it was decided that the first shot should mark the taret center.
The shells used in the trial were allof the sub-caliber
class, with peripheral wings, the shells being 8 inches in diameter, with sectional guides and follower of wood, the air closure being of leather, cupped, as used for hy draulic plungers.
The hazy atmosphere and clouded sky interfered somewhat with exact observations. The firing com menced at 11:10 A. M. with a range shell charged with sand, striking at 2,138 yards.
The first trial shell, charged with 175 pounds dynamite, was delayed a few minutes by vessels sailing across the line of flight, being fired at 11:23. Time, 13 seconds; range, 2,048 yards, falling short of the target and throwing the water in a vertical column about 200 feet high. Range correct, but the shot fell short of the rectangle of target.
The second shot, with a charge of 175 pounds dynamite, was sent on its errand at 11:38. Time, 14 seconds; range, 2,032 yards. This shell seemed to explode deeper in the water, as observed by the greater volume of water thrown up. It fell short of the target.
The third shot at $12: 5$, with nearly the same effect as the last. Time, 14 seconds; range, 2,140 yards; striking and exploding deeply within the target area.
The fourth shot at 12:17. Time, 12 $1 / 2$ seconds; range 2,138 yards. Exploded within the target.
Fifth shot at 12:25. Time, 12 seconds ; range, 2,160 yards. Exploded beneath the target area.
Sixth shot at 12:35. Time, 13 seconds; range, 2,114 yards; striking within the target area, exploding at a still greater depth, as observed by the great volume of water thrown up.
Seventh shot at $12: 40$. The charge in this shell had been increased to 201 pounds of dynamite and nitrogelatine. Time of flight, 14 seconds ; range, 2,108 yards ; falling just out of the target rectangle.
The increased area of effective action of the shells was now plainly to be seen by the increased voluine of the water, which was thrown to a height of between 200 and 300 feet, the extension of the delay primer causing the shell to sink deeper into the water before the final explosion.
The eighth and last.shot at $12: 50$, with an extra time delay primer, proved the ability to control the time of the final explosion after the shell touched the water. Time, 13 seconds; range, 2,180 yards, and beyond the target. The explosion of this shell produced a magnificent effect, the delay primer allowing the shell to $\sin k$ deeply into the mud at the bottom of the bay. The upheaval was a vast black cloud of mud and water over 150 feet high, and apparently of much larger area than the limits of the target or of any previous explosion.
The trajectory of the shells was easily observed during their entire course, and together with the singular tone of the air discharge and whistling of the projectile, seemed to heighten the scene to the realms of war. Shells of full caliber, to contain charges of 500 to 600 pounds of high explosive, are in preparation for future trials.
The pressure in the air cylinders during the firing was about 1,000 pounds per square inch, reduced in the gun to about 600 pounds, or a total pressure of over 50 tons.

The result of this initial test in the percentage of accuracy is certainly surprising, and most satisfactory in its bearings upon the long discussed question of national defense.
That 50 per cent of the shots were intensely effective within the area of an ordinary sized ship, and 75 per cent within the area of the la rgest war ship, while the poorest shot would have a demoralizing effect upon an enemy by its close proximity, is an accomplishment that we may all be proud of, and which may be considered a long step forward in the defense of our harbors and coast.

C. H. Delamater.

Cornelius H. Delamater, founder of the Delamater Iron Works, of this city, died of pneumonia on the 7th inst., at his residence, 424 West Twentieth Street. Mr. Dela mater was born at Rhinebeck, on August 30, 1811, and came to New York as a boy of 14 to earn his living. His first employment was in Swords' hard ware store. At 21 he became a clerk in the Phœnix Iron Works, Canal and West Streets. Three years later, in 1842, his employers retired, and young Delamater and his cousin, Peter Hogg, formed a partnership and carried on the business. In 1850 they removed to the foot of West Thirteenth Street, where the Delamater Iron Works now stand. Mr. Delamater became sole proprietor.

In the war times he built the turreted ironclad Dicnavy.
Mr. Delamater was very active in the Society for Mechanics and Tradesmen. He was one of the first members of the Union League Club.

A well recently bored for gas at Pittsburg delivers fresh water, salt water, and gas at same time. There are two casings, one within the other; the outer one, 100 ft down, taps a fresh water stratum, while the inner pipe reaches the salt water and gas at 200 feet down.

AN IMPROVED LOCOMOTIVE BOILER.

An attachment for locomotive and other boilers, in which the draught is urged by the exhaust of the engine, and the combustion of the fuel improved, is illustrated herewith, and has been patented by Mr. Charles S. Smith, of Pocatello, Idaho Territory. In a boiler of the ordinary locomotive type, as shown in the illustra-
"Want of success may be due also to the improper use of rubber, for, in order to solve a problem of isolation, we must study the conditions that have to be fulfilled by the blocks from the standpoint of their form, surface, and thickness."
In order to leave rubber its entire elasticity, and to give the isolated system all the stability necessary, Mr Anthoni has recourse to two methods, which at the same time secure isolation and stability: (1) An increase of th nass of the system to be isolated, and (2) an isolating and elastic attachment

The first of these is applied to the foundation of machines, while the second is more especially designed for the suspension of vehicles of all kinds.
As an example of an elastic founda tion for a collection of machines, we may cite the small central electric works established by Mr. Pulsford in the Faubourg St. De
nis. The vibrations of these machines were annoying the neighbors considerably, and lawsuits were imminent, when Mr. Juppont, Mr. Pulsford's electrical engineer conceived the idea of having recourse to Mr .
tion, a pipe is connected with each of the exhaust nozzles, at points near the bases of the nozzles, as shown in Fig. 2, whereby a portion of the exhaust will be received and conducted to two of the tubes on each side of the boiler. The pipes from the exhaust nozzles are connected with T's, short pipes from which enter the smoke boxend of the boiler tubes, to the ends of which they are fitted by bushings, as shown in the sectional view, Fig. 3. The steam thus passed to the fire box from the exhaust becomes heated to the temperature of the water in the boiler, its decomposition in the fire box greatly assisting in obtaining a higher degree of heat, while the force with which it enters causes the sparks and cinders to fall back, preventing them from passing into or through the tubes, and insuring a more complete combustion of the fuel.

ELASTIC ENGINE FOUNDATIONS AND SUSPENSION OF

 VEHICLES.The complete and stable isolation of structures, machines, and vehicles, with a view to deadening shocks, preventing the transmission of vibrations, and diminishing the resulting noise, is a problem which has received a large number of solutions, none of which has hitherto given full and entire satisfac tion. The processes employed for the isolation of machines consist in the use of rigid foundations or elastic substances Masonry foundations, even with the superposition o framework, and surrounded with trenches, have proved insufficient.
The interposition of rubber has given good results in some cases but unsuccessfulones in others, and the causes of which are thus set forth by Mr. G Anthoni in a recent communi cation to the Society of Civi Engineers:
"Rubber simply interposed between the floor and the tool to be isolated has been used for a long time, and gives good results, because the iso lation is complete, but it can rarely be utilized thus because there is no stability, and movements may be produced that interfere with or are even dangerous for the service. Be sides, in impact tools, the use ful effect is diminished
"If, in order to overcome such inconveniences, we con nect the piece to be isolated by bolts, the vibrations pass through the latter, and the isolation is destroyed. Moreover, if we compress the rubber in order to give stability, there is no more elasticity, and if, on the other hand, we do not compress it, but allow it to retain all its elasticity, we do not obtain the stability in view of which the connect ing bolt is used.

ELASTIC SUSPENSION OF MACHINES.
with sand, thus permitting of the easy shifting of the foundation. The trench is covered with a flooring or iron plate permitting of the motions of the masonry in a horizontal direction if it is a question of a steam engine, or in a vertical direction if the elastic suspension is applied to a steam hammer or a pump.
The steam admission and eduction pipes are wound spirally at the upper part, so that they may have elas ticity enough to permit of the motion of the whole without forcing the joints.
In the case under consideration, the oscillating motions reach an amplitude of $\frac{3}{10}$ inch, and nothing is more curious than to see the whole affair, whose weight exceeds 25 tons, displace itself rapidly without the least vibration being felt at the edge of the trench. The same process is applicable to the rails of railways upon metallic viaducts crossing cities, and to the engines oflboats, etc.
The second method of isolation, applied to vehicles, consists in the use of a rubber support, which, placed

WEEKE'S SYSTEM OF BUILDING DIKES.
between the axle and the spring of carriages, gives a complete and stable isolation, increases the ease of motion and the duration of service, diminishes the noise, and reduces the variations in the tractive stresses of the horses.
This rubber support sel ves to fix the spring firmly upon the axle, if it is a question of a vehiche, without interfering with the elasticity of the junction by too much tightening, a drawback connected with all the arrangements hitherto employed. This result is obtained by means of a mode of attachment which interposes (1) an isolating rubber tube between the coupling plate and axle ; (2) of a foundation disk of rubber supporting the load; and (3) of a reaction disk which isolates the nut and lessens the rebounding. The compression between the metallic parts is effected without crushing the metallic joint.La Nature.

WEEKE'S SYSTEM OF BUILD-

 ING DIKES.The dike illustrated in the accompanying engraving is admirably adapted for use at places where the water is of considerable depth. It consists primarily of a floating frame made of wood, a n d which is provided with barrels or other suitable floats. This frame is anchored by lines or piles. The work of building up the dike is carried on upon this floating frame, and above water line, the structure being gradually submerged as the superincumbent weight increases. A thick layer of rails, brush, willows, poles, or other similar material is placed upon this frame, and one or more similar layers are placed upen this transversely. These layers are lashed to the frame by wires and clamp timbers. Upon this structure is mounted an inclined trestle or frame, as shown in the cut, of
a height sufficient to bring it above high water mark Jayers of brush, willows, reeds, etc., are lashed vertically to the trestle by means of horizontal stringers bound to the frame of the trestle as shown. The trestle frame is then filled with stones and gradually sunk.

BULLARD'S EXHIBITOR FOR WINDOW SHADES, ETC.
The weight of the stones will be sufficient to retain the dike firmly in position. A bundle of reeds or willows is bound to the frame at the point of intersection of the vertical and horizontal layers of reeds to prevent the water from flowing between these layers, and a pile of stones from two to four feet high is piled upon this to keep it.in place. This system has been patented by Mr. Henry C. Weeke, of St. Charles, Mo.

A BOX TO HOLD BRICKS OF ICE CREAM.
A box for containing bricks of ice cream, and which will admit of the cream being dislodged from the box with neatness and dispatch, is illustrated herewith, and has been patented by Mr. James Van Dyk, of No. 116 Bridge Street, Brooklyn, N. Y. The cover may be

VAN DYK'S ICE CREAM BOX

of any approved construction, but the bottom is mov able, of a form to fit snugly within the box, and has a downwardly extending flange a little distance from the edge. At the bottom of the body of the box is formed a flange adapted to constitute a seat for the movable bottom, and also a channel between the flange and the body of the box, the flanges being so formed and arranged that the one will fit snugly within the other. The body of the box is madegradually wider from the bottom upward, so that as the movable bottom is pressed up, acting as a follower to the cream, the latter need only to be started to loosen it and permit its ready removal. To retain the bottom within the box, and obviate the possibility of its misplacement or injury, retainers, not shown in the illustration, are secured to the inner surface of the body of the box, each formed of sheet tin or like sharp material,

CLARRIDGE'S CAR COUPLING.
whose sharp edge will present but little resistance to the cream, and will not mar its appearance.

AN IMPROVED EXHIBITOR FOR SHADES, MAPS, ETC. A readily attachable device, which will effectually conceal a shade when rolled up and shield it from light and dust, is illustrated herewith, and has been patented by Mr. Edwin A. Bullard, of Vassar, Mich. The fixtures of a spring curtain roller are secured upon the face of a strip of wood, a number of which strips may be arranged in succession over the shelving. In the upper edge of the strips is a groove, to receive and retain in position over the curtain fixtures and roller a protector, consisting of a piece of sheet metal or equivalent material, bent to form a semi-cylindrical body, as shown in Fig. 3, the manner of attachment being shown in the sectional view, Fig. 2. When a series of such covers are in position they will form a moulding as far as they extend. These exhibitors may also be used in connection with curtain fixtures of dwelling houses, the protector being put up the full width of the curtain, and the slats secured to the casing of a wide or narrow window.

AN IMPROVED CAR COUPLING

An automatic car coupling, employing ordinary coupling pins and links, with the drawbar of about the form of those already in use, is illustrated herewith, and has been patented by Mr. John Clarridge, Sr., of Libertyville, Iowa. The draw bar has the usual flaring mouth, but with the inner part reduced in size to form a guide for the link, the chamber for receiving which contains a spring. In the rear of the chamber are shoulders to act as an abutment for the spring, and in its mouth are shoulders to limit the motion of a follower pressed forward by the spring, this follower consisting of a plate bent twice at right angles, and having an oblong aperture to admit a link. At the rear of the chamber are vertical apertures for receiving a coupling pin to permanently retain a link in place in the drawbar, the follower then, when the coupling is ready to be connected with another coupling, being in the position indicated in the sectional view, and forming a support for a coupling pin, for which vertical apertures are provided in the forward part of the drawhead. The outer end of each link is beveled, so that when it approaches another link similarly supported it will not be liable to collide with it, but will slip past, either above or below it. When the cars approach each other, the parts being arranged as shown in the sectional view, the link carried by each drawbar enters the other drawbar and pushes back the follower against the pressure of the spring, allowing the outer pins supported by the followers to fall through the links thus introduced, and automatically effecting the coupling.

KANE'S CAR BRAKE.

Mr. George O. Kane, of No. 193 Thurbus Avenue, Providence, R. I., is the patentee of an improved Providence, R. I., is the patentee of an improved
brake for railroad cars in which the brake shoe is applied to the track instead of to the wheel of the car. By this method the wear upon the wheels from friction with the shoe and sliding on the track is avoided. The entire weight of the loaded car bearing upon the brake shoe brings the car and train to a sudden stop. Two pairs of oppositely arranged brake shoes are pivoted at one end to a depending frame on each side of the car, the other end of each shoe being connected with the lower extremity of a toggle joint. The upper arms of the toggle joints are pivoted to the car frames, while the joints are attached to opposite ends of the brake beams, so that when the brake beams are made to approach one another, the angle of the toggle joint is increased and the shoe is lowered on to the track. As may be seen by examining the cut, between the brake beams fixed upon an immovable frame is pivoted a brake lever, which is united with the brake beam by connecting rods, so that when the brake lever is turned by means of the brake rods, that connect the ends of the lever with the brake on the platform of the car, the two brake beams will be made to approach one another, straightening the toggle joints, and the brakes will be forthwith applied. The rods connecting the brake beam with the brake levers are provided with springs at their outer ends.

ANCEL'S STOVE PIPE AND TENT SUPPORT
In the device illustrated in the accompanying engraving, the smoke pipe of the stove is used as the support of the tent. This device has been patented by Mr. John W. Ancel, of Fort Buford, Dakota, The stove pipe is made telescopic, the smaller sections at the top being made to slide inside of the sections under it. Each section at its extremities is provided with holes into which are inserted screw-threaded pins for locking the pipe in position. The stove may be of any desired type. The top section of the pipe has a sleeve provided with a flange from which is suspended the heavy ring which carries the tent proper. This sleeve is removable, and is likewise locked in position by means of a pin. A bell-like shield caps the whole to prevent rain or snow from entering the opening at the top of the tent. The sections of the pipe are made flanging at the bottom and are bent in at the top so as
to make the joints tight-fitting. By this device the smoke is carried away and the tent is thoroughly ven tilated, while the ordinary tent pole is done away with When traveling, the pipe may be folded and packed

COMBINED STOVE PIPE AND TENT SUPPORT.
away into very small space, occupying no more room in fact than the largest pipe section.

AN IMPROVED HOSE COUPLING.

The illustration herewith represents a hose coupling designed to be simple in construction and efficient in operation. It has been patented by Mr. James D. Sloan, of Rushville, Ind. Fig. 1 represents a side view and Fig. 2 a longitudinal section of the coupling engaging two pieces of hose, while Fig. 3 represents a cross section. Collars, internally screw-threaded, are engaged on the respective ends of the hose, each hose being then engaged to the corrugated ends of a coupling, each collar being shorter than the corrugated ends of the coupling, permitting the outer end of each corrugated part to expand on the inside of the hose, and cause the hose to expand over the outer edge of each collar. This feature, with the corrugations, forms a strong connection between the hose and coupling. The body of the

SLOAN'S HOSE COUPLING.

coupler has an end collar, a middle collar, with one part narrower than another, and external corrugations at one end, a part of the side at one end of the body being cut away, or provided with a large opening, to be closed by a hinge. W hen the hinge is closed, a yoke spring engages a lug on the body and locks the parts. When disengaged, a flat spring is exerted to open the hinge, the extent to which it may be opened being limited by a small lug, as shown in dotted lines in Fig. 3. When the hinge is open, the part corresponding with the pipe section, having two collars and threaded end, held in one end of the hose, may be engaged with the body or hinged part of the coupling. Then by closing the hinge and causing the yoke spring to engage with a lug on the body, the several parts of the coupling are firmly united.

IMPROVED CAR BRAKE.

The Luster of Metals.
Dove was the first to attempt an investigation of the causes of metallic luster. He had examined, by the aid of a stereoscope, two images of a pyramid, one being colored blue and the other yellow, expecting to find a relief image of a green color. He was, however, astonished to find that the mixture of colors gave a reflection like that of a polished metallic surface. Having repeated the experiment, using a black and a white image, he obtained the metallic gray of lead and tin. Dove concluded that metallic luster is due to two reflections from superposed surfaces, and that the accommodation of the eye being different for each color, a perfect coincidence of the images of different colors was impossible. The luster of metals would thus be caused by a reflection from the actual surface and another from beneath the surface. This explanation attributes a considerable degree of transparence to the metals, more indeed than seems consistent with fact. Brücke offered another theory, according to which the color of light reflected from bodies not possessing the metallic luster should be independent of the local color-that is, the color of the reflecting body-while in the case of metals the color of the reflected light is that attributed to the substance, the incident light being white. Brücke also considered that a certain intensity of reflection was a necessary condition for metallic luster, this intensity resulting from the opacity of the metals, and he mentions the phenomenon of total reflection as producing a perfect imitation of metallic luster. The theories of Dove and Brücke represent opposing views of the transparency of the metals; the one considers them as opaque, the other as transparent. Herr W. Spring (Bul. Soc. Chim., 50, 219) endeavors to reconcile these views by a study of the nature of the surfaces of the solids he has obtained during his experiments on the compression of solids within polished steel cylinders. He finds that substances which in the form of powder are opaque produce solids that have a me tallic luster, whatever the nature of the substance, while such substances as yield powders more or less transparent formed cylinders having vitreous surfaces, looking as if varnished.

The Deadly Wire.

Recently an electric wire carrying a powerful current of the subtile and mysterious force fell across Bourbon.Street, near the theater of the French opera, at a time when many people were passing. It happened that a mule which was drawing a street car came in connection with this wire, and was at once stricken down by the deadly electricity and killed on the spot. The unfortunate mule was in some sense a sacrifice to save the lives of men and women, some of whom, but for the warning given, might, in all probability, have stumbled upon the fatal wire with a like result.
The electric wire has introduced a new element of menace to human life and to the security of property that seems scarcely to have come into the purview of law makers, who are charged with legislation for the protection of life and property. The industrial uses to which electricity is being put are constantly increasing, and scarcely a week passes without additional wires being erected to conduct the force which has been wrongly termed a fluid. Every such wire is a new danger-an additional thread from which to suspend a sword of Damocles over the heads of the people.
As to laws for their protection, there seems to be none. True, a general law exists which would make an electric light company lia ble for damage caused by wrongful or criminal negligence on their part, but so little is known of electricity as a prastical industrial force motor, save by a few experts, that it would be extremely difficult in court, in a claim for damage, to establish undue or wrongful negligence on the part of an electrical company. Let us inquire a little. The wires are suspended from wooden poles over the streets of the city. Are the wires securely placed? What constitutes security in the premises? The wooden pole readily rots; it may be broken by the enormous weight of the wires it carries, and such a result is extremely likely when a great net work of, wires so suspended is violently and forcibly vibrated by the wind. There ap pear to be no restrictions as to the number of wires strung upon a pole. Almost every day additions are made to those already there. Then as to the methods of fastening the wires to the poles-the main thing considered is to insulate the wire from electrical communication with the posts. The fastenings may be deemed secure by those who use them. The fact is, however, that the wires frequently fall into the streets, with fatal consequences to the people at large, not to the corporations who own them. They may suffer temporary delay of business.-N. O. Picayune.

AN IMPROVED FIRE ESCAPE.

A simple form of fire escape, which can be readily made available from any window of a house, and with which the speed of descent can be readily regulated by the person descending, is illustrated herewith, and has been patented by Mr. Joseph Abbott, of Rumney, N. H. It is made with two forked arms, pivoted at their forked ends, and each having a snap hook at its free end, the fork of one arm extending within that of the other. Around the pivotal bolt, as shown in the small views, a rope may be wound one or more times, and is

abbott's fire escape.

thence extended down between jaws made by the arms, which are drawn closely upon it by a spiral spring connecting the two arms. The upper end of the rope has a hook by which it is to be secured to a window sill or other part of the building, while the lower end is dropped to the ground. A hanger, or strap, in which the person descending is to be seated, has rings at its ends, to be connected with the arms by hitching upon the snap hooks, both ends of the strap passing through a metallic adjusting ring, before being connected with the arms, the speed of the descent being then regulated by moving the adjusting rings up or down, whereby greater or less brake pres sure is put upon the rope. An extra strap is supplied to be passed under the arms, when desired, and attached similarly to the snap hook. The device is furnished to weigh less than three pounds, and only $101 / 2$ inches in length.

AN IMPROVED SOD CUTTER AND HARROW.
An apparatus for effectively breaking up sod or ground, and wherein the cutters may be regulated to any desired depth, or the apparatus may be carried from field to field without the cutters touching the ground, is illustrated herewith, and has been patented by Mr. Abraham Madson, of Galesville, Wis. Within

MADSON'S SOD CUTTER AND PULVERIZING HARROW.

mat

aligning hangers attached to the under face of the frame side pieces are journaled transverse shafts, polyfixed the knives or of their length, upon which are fixed the knives or cutters, Fig. 2 being a trans-
verse section through one of the cutter shafts, while Fig. 1 is a partial plan view at the ends of two of the cutter shafts. Each set of cutters consists of two knives mounted in such manner that one knife will be at right angles to the other, forming a cross. The
several shafts carrying the cutters are so journaled that the curved surface of the blades mounted upon one shaft will be contiguous to the surface of the equivalent blade of the next shaft, whereby the entire surface of the ground traversed by the apparatus will be pulverized. A lever is pivoted centrally to each side bar of the frame, on the lower end of which the drive wheels of the apparatus are studded, the other ends of the levers projecting diagonally upward parallel with the outer face of brackets attached to the upper sur ace of the side bars. In the brackets a transverse rock shaft is journaled, having near each end an arm pivotally connected by a link with the upper extremi ties of the levers on which the drive wheels are studded. A standard is secured centrally on this rock shaft, with a hand lever fulcrumed in its top, whereby the lever carrying the operating wheels may be raised or lowered, to regulate the depth of cut or lift the cutters from the ground. The rock shaft is held in the position desired by means of rods passing through aperures in the arms at the ends of the shaft, each rod also passing through one of a series of apertures in the bracket around the bearings of the rock shaft, these rods being automatically projected by a spring on each. The shaft hinged to the forward end of the frame has an adjustably secured caster wheel.

Miscellaneous Notes.

T'he Eiffel Tower in Paris had reached a height of 761 feet on January 9, 1889-the highest structure upon the globe.
Standard I'ime.-All the railroads in the United States and Canada, without exception, now use the standard time of one of the four sections-eastern, central, mountain, or Pacific. Cities and towns have very generally conformed to railroad time of their respective sections. Out of 288 cities of over 10,000 inhabitants, less than 25 still retain local time.
Force of the Wind.-The high wind of Saturday night, January 5 , blew the car cable out of the sheaves on the Brooklyn bridge, stopping travel for a short time.
Work of Flowing Artesian Wells.-At the Ponce de Leon Hotel, St. Augustine, Florida, an artesian wel urnishes power through a turbine and dynamo for lighting the building and grounds by electricity
At Yankton, Dakota, a flowing well drives the dynamos of an electric lighting company, the water flow ing to a reservoir, from which a turbine is actuated.
Africqn Railways.-It is proposed, by a new com pany just formed in Brussels, to build a railroad to connect the head of navigation on the lower Congo with Stanley Pool, thus opening up a line of about 7,000 miles in the interior of Africa to trade and commerce. Trade Schools.-By the munificent gift of Mr. I. V. Williamson of stocks of a market value of $\$ 2,250,000$, a "Free School of Mechanical Trades" is to be erected and organized near Philadelphia.
The Pratt Institute of Trades and Art, Brooklyn, N Y., opened the year with 1,000 pupils.

Cloth and Paper of Corn Husks.

One of the best utilized waste products in Austria, esulting in the manufacture of large quantities of paper and cloth, are corn husks. The Evening Telegram condenses from a foreign publication the pro cess for separating the fiber. The husks are boiled with an alkali in tubular boilers, as a result of which the fibers of the husks are found at the bottom of the boiler in a spongy condition, filled with a glutinous substance, and which proves to be a perfect dough of corn meal, containing in a concentrated form all the pabulum originally contained in the husk. The glutinous matter is pressed out from the fibers by hydraulic apparatus, leaving the fiber in the shape of a mass or chain of longitudinal threads interspersed with a dense mass of short fiber. The linen made from the long fibers furnishes a very good substitute for the coarser kinds of flax and hemp, and is superior to jute, g.unny cloth, coir, and the like.
The paper, for which mostly the short fibers are used-the long fibers constituting the material for spinning-is stronger than papers of the same weight made from linen or cotton rags, its hardness and firmness of grain exceeding that of the best dipped English drawing papers, being especially adapted for pencil drawing, stenographic writing, and water colors. Its durability exceeds, it is claimed, that of paper made from any other material, and the corn husk parchment is not at exposed points destroyed by insects. If the gluten is left in the pulp, the paper can be made extremely transparent without sacrificing any portion of its strength. Again, the fiber is easily worked, either alone or in combination with rags, into the finest writing or printing papers. It also readily takes any tint or color, and can be worked almost to as much advantage into stout wrapping papers of superior quality as into fine noteand envelope papers.

DECISIONS RELATING TO PATENTS AND TRADE MARKS.

Supreme Court of the United States.

Anderson $v s$. Miller et al.
Letters patent No. 265,733, granted October 10, 1882, to Robert H. Anderson, for an improvement in drawers, not infringed by an article manufactured by the appellees for more than two years prior to the appellant's application for a patent.

Appeal from the circuit court of the United States for the Eastern District of Virginia.
Mr. Justice Lamar delivered the opinion of the
The alleged infringement consisted in appellees placing on drawers manufactured by them a patch extending down the front and lapping the seam of the crotch by at least half an inch, which process of re-enforcing the garment, it was alleged, was the invention of the appellant.
The averments of the answer are : That drawers, as re-enforced as described in letters patent of plaintiff, had been made and in public use and on sale by sundry and divers persons for many years prior to plaintiff's application; that they, the defendants: Have been manufacturing one particular kind, and only one particular kind, of re-enforced drawers for more than five years hitherto continuously, a specimen of which drawers, manufactured by them, is filed as "Exhibit A," etc., and that these are the only kind of re-enforced drawers that have been manufactured by them or either of them during the last five years.
The circuit court dismissed the bill, and an appeal from that decree of dismissal brings the case here.

The decree of the circuit court is affirmed.

TRADE MARK.

Munro vs. Beadle et al.
Ingraham, J.
The only act of the defendants complained of by the plaintiff is the introduction of the word "Sleuth" in the title of certain stories published by the defendants. There was no attempt on the trial to show that the defendants had used any symbol or design invented by the plaintiff to designate his series, and unless the plaintiff can establish that he has in some way acquired the exclusive right to use the word "Sleuth" quired the exclusive right to use the word "Sleuth"
in connection with stories of detectives, no right of in connection with stories of

The word "Sleuth" has a well defined meaning, and is defined by Webster to mean "the track of man or beast as followed by the scent." It is used in connection with a hound to indicate that a hound follows the track of a human being or animal, and as applied to man would have the same meaning
The adoption by the plaintiff of the name of "Old Sleuth" to designate the series of books published by him could hardly be said to give to the plaintiff the exclusive right to use the word "Sleuth" in all future publications of every character, so that the rest of the world must invent a new word to express that meaning. That would be the logical effect of sustaining the position taken by the plaintiff in this case.
The titles adopted by the defendants in the publication of their books would be perfectly intelligible to any one having no knowledge of the use to which the word had been applied by the plaintiff, and, assuming that the plaintiff had acquired a trade mark in the words used by him to designate his publications, nothing proved in this case would show that the defendants have violated any rights that they have acquired. The plaintiff has therefore failed to show any cause of action against the defendants, and the com plaint must be dismissed, with costs.

A Flowing Well in Iowa.

A Waterloo, Ia., dispatch to the Chicago Tribune says: "The flowing well near Tripoli, Bremer County, is attracting considerable attention, as it appears to be another Belle Plaine gusher on a slightly smaller scale. It is located on the farm of J. J. Cooke, about three miles east of Tripoli, and only a short distance from the Wapsie River. The well was drilled down through the rock and sand about 135 feet. Water was struck several times, and when a depth of 129 feet was reached the water filled the well to within eight feet of the surface. After drilling two hours longer the water began to overflow. Work was stopped and a six-inch casing putin. At three o'clock the next morning, December 30, Mr . Cooke was awakened by a roaring noise, and, on going to the well, he found the water spouting about three feet above the top of the tubing and throwing out blue sand and clay. After throwing out about three wagon loads of this debris the water became clearer, but its force increased until it rose fully six feet above the top of the casing, besides opening the seams in the casing at several places. Four joints of stovepipe were then put on the casing, and the water flowed in a torrent from the top of this improvised tube fully twelve feet from the ground. "Since then the well seems to have lost some of its force, but it still sends out a stream which, if confined, would, it is estimated,
throw a three-inch stream tifty feet high. It is the intention to replace the casing in the well with a sixinch gas pipe, and in that way it is expected that the flow of water can be controlled.

The International Congress of Photographers at

By a ministerial order, dated August 2, 1887, a conand series of conferences were instituted to be held in Paris during the Universal Exhibition of 1889 By another resolution, dated July 16, 1888, of the Min ister of Commerce and Industry, Commissioner-Gene ral of the Exhibition of 1889, a Committee of Organiza tion of the International Photographic Congress was nominated :
M. Andra, member of the Administrative Council of the French Photographic Society ; M. Bardy, Vice President of the French Photographic Society, and Director of the Laboratories for Contributions Indirectes; M. Edmond Becquerel, member of the Academy of Sciences, the chief discoverer and pioneer in relation to photography in natural colors: M. Bordet, the manager of photographic conferences at the school of Ponts et Chaussees; M. Alfred Chardon, member of Council of the French Photographic Society; M. Cornu, member of l'Institut; M. Davanne, Vice-President of the French Photographic Society; M. Gauthier-Villars, member of Council of the French Photographic Society; M. Gobert, member of Council of the French Photographic Society ; M. Guilleminot, manufacturer of chemical products ; M. Haincque de St. Serroch, member of Council of the French Photographic Society; MM. Paul and Prosper Henry, of the Paris Observatory, well known for their achievements in stellar photography ; Dr. Janssen, member of l'Institut and Di rector of the Astronomical Observatory at Meudon; M. Levy, photographer; M. Albert Londe, the chief photographic worker at the Salpetriere, in Dr. Char cot's department ; M. Adolphe Martin, physicist, member of the Council of the French Photographic Society M. Pector, member of Council of French Photographic Society; M. Peligot, member of l'Institut, President of the French Photographic Society ; M. Perrot de Chaumaux, General Secretary of the French Photographic Society ; M. Roger, member of the Council of the same society; Colonel Sebert; M. De Villecholles, member of Council of the French Photographic Society ; M. Wolff, astronomer, member of l'Institut.
At the first meeting of the Committee of Organization, Dr. Janssen was elected president; Messrs. Wolff and Davanne, vice-presidents ; and M. Pector, secretary and treasurer. It was also resolved to elect in foreign countries and in France some honorary members of the congress, who are requested to promote its interests, to group its supporters, and to study in advance the subjects to come before the congress, as well as to suggest others.
The list of those photographers in foreign countries and in France who will be invited to become honorary will receive not yet completed; but among those who Abney, Mr. J. R. Dallmeyer, Mr. Ross, Mr. John Spiller, Mr. Tennant, Mr. Common, and Dr. William Huggins.

The list of subjects proposed to be discussed by the congress is not yet completed, but will include the following:

1. Relative units of light. Photometry.
2. Lenses. Best mode of determining their focal lengths. Proportions between the apertures of diaphragius and the foci of lenses.
3. Unity in the expression of formulæ of solutions used in photography.
4. Unity in the dimensions of lens flanges.
5. Unity in the names of photographic processes
6. Measures to be proposed to various government to facilitate the passage through custom houses of photographic surfaces sensitive to light.
7. The application to photographs of the same copyight privileges as granted to works of art.
The meetings of the congress will probably take place during some period between July 15 and August 15, 1889. This time, however inconvenient to the Parisians, who might like to be at the seaside during the vacation, is likely to be the best for foreigners who visit the exhibition in the holiday season.
Any photographer who presents his card will be welcomed at the meetings of the congress, and to take part n the discussions. Those who intend to read papers will probably have to send them in in advance, that due order in the proceedings and subjects may be arranged beforehand.
What has herein been stated will give a general idea as to the nature of the congress and its scope, but are not cast iron decisions; they are liable for some little time yet to additions and modifications. All persons who have the interests of photography at heart cannot I think, do better than to make their suggestions at once to M. Davanne, Vice-President of the French Photographic Society, Rue des Petits Champs, Paris.
It will be noticed that the congress is connected with and recognized by the authorities of the Paris Exhi-bition.-Correspondence in Br. Jour. of Photo.

Modern Fortitications.

Under this title the Esercito Italiano quotes an interesting article of the France Militaire on the modifications rendered necessary in the plan and construc tion of fortresses and fortified places for the future by the overwhelming power of modern explosives. A repetition of experiments on a large scale tends to show that iron and a very solid sort of concrete, rich in cement, are the only materials capable of offering a prolonged resistance to the action of modern artillery. Sand may be usefully employed under certain circumstances, but the uselessness of earth ramparts has been clearly demonstrated. In future, therefore, the main feature of a fort is most likely to be a round ironclad tower emerging from a glacis of concrete and furnished with heavy ordnance to reach the assailant at long ranges, and with lighter artillery for flank firing and for firing at shorter ranges. Forty or fifty machinists and artillerymen will probably compose the whole garrison of these forts. But the defense will, moreover, consist in a body of movable troops and artillery, to be conveyed to any point in the circumference, under the shelter of natural or artificial cover, by a narrow gauge railway. According to this system of defense, the as sailants will no longer enjoy alone the advantage of concentric fire. Important experiments of this kind have been witnessed by the French Minister of War at the fort of Lucey, near Toul.
The Esercito Italiano states that three new batteries are in course of construction at Nice, viz., at Rimiez, the Corniche, and the Lanterne. The last of these three has for its object to obstruct the passage of the Vare. The erection of the three batteries has already been commenced by three different contractors. The French government is also erecting a fort on Mont Grois, where the trees have been felled over the whole area. The works are to be carried on with the greatest possible alacrity.
The Rousskii Invalid gives a list of German fortified places furnished with ironclad batteries or forts, name ly, two towers at the fort of Vogelsang, at Cologne one at Fort Manstein, Metz ; at Fort Kamecke, several small towers for cannon of 15 centimeters; at Bremer haven, facing the sea, nine towers for cannon of 28 centimeters, two for cannon of 15 centimeters, and a battery for nine 21 centimeter cannon; two towers at Ham, for the defense of the bridge on the Rhine; two towers at Ingolstadt. The German government has also ordered sixty ironclad towers for heavy cannon and mor tars for the fortifications of Metz and Strassburg They are to be constructed at the Gruson factory at Buckau-Magdeburg. Besides these a large number of towers of smaller dimensions are in course of construction, and will be supplied eventually with Maxim guns. The greatest activity prevails at the above mentioned works, showing the great importance attached to ironclad fortifications by the German government.

The New York Fire Department.

Following is a summary of the operations of the New York Fire Department for the year just closed, as reported by the Fire Commissioners :

Operations of the Fire Department-1888. FIRE EXTINGUISHING FORCE.

Horses

FIRE STATISTICS.

Total number of fires..
Fires confined to point of starting.
Fires contined to building.
Fires extended to other buildings.
Fires extinguiehed without engine stream
Fires extinguished with one engine stream
ires extinguished with more than one engine stream
Fires-Building not damaged
Fires-Building slightly damaged
Fires-Building considerably damaged.
Fires-Building destroyed..

	Loss.	Insurance.
On structures.	\$1,566,401	\$23.280,193
On contents.	3.923,929	17,988,363
Total	\$5,490,330	$\overline{\$ 41,268,556}$
de los	$1887 .$ $\$ 1,917.28$	$\begin{gathered} 1888 . \\ \$ 1,714.66 \end{gathered}$

Average loss per fire.
Number of fire alarms, 3,406 .
1887.
$\$ 1,917.28$
1888.
$\$ 1,714.66$

Tramways in Damascus.

An imperial firman has, it is reported, been granted for the construction of a line of tramways in Damascus. Nor is this concession to western civilization the only sign that the far-famed city of Damascus is on the high road to becoming modernized. Gas also is to be introduced into the city, and the inhabitants are eagerly awaiting the promised innovations, which will, they believe, not only add to their own comfort, but will materially increase the value of property within the city boundaries. The latest estimate of the population of Damascus places it at 150,000 .

the maxim automatic machine gun.
 by hudson maxim.

The Maxim gun has already been described in these pages. The object of the present paper is to describe its operation more fully and illustrate in greater detail the various parts of this gun, so that its principle of action may be thoroughly understood. Since its introduction, this gun has met with marked success, and has been adopted by nearly all the European powers, including England, France, Germany Italy, Switzerland, Austria, and Russia. The gun is soon. to be tested at the proving grounds at Annapolis, with a view to procuring its adoption by the United States government. The speed of fire of the rifle caliber gun using the American cartridge is very high, being 700 per minute. The one pounder will discharge 400 shots per minute. A six pounder adapted to fire shrapnel and grape canister will discharge at the rate of 150 per minute. This description relates only to the Maxim mitrailleuse or machine gun of rifle caliber; but the employment of automatic action, though modified, is essentially the same in the Maxim system of guns of larger calibers. The Maxim automatic mitraille use is so constructed that, on firing a single shot to start the gun, the force of the recoil is utilized for extracting the empty cartridge case and for effecting the various operations necessary in reloading and again firing the arm, or preparing it for the next discharge ; so that, after the gun has been started by once pulling the trigger, all these operations are performed automatically, and the gun continues firing with great rapidity, so long as the trigger is held in a pulled position and the supply of cartridges lasts.

The operation of the gun is, briefly, as follows :

In starting the gun, the breech mechanism is operated by hand to insert the first cartridge in the barrel, and the trigger is then pulled by hand to fire the first shot. The backward force of the explosion is received by the breech block, which recoils and carries the barrel backward with it. In the recoil, the breech is opened, the empty cartridge case is extracted, the hammer is cocked, and another cartridge is brought into position to be thrust into the barrel. The energy of

Fig. I.-MAXIM MITRAILLEUSE IN ACTION. which the said mechanism operates.
block, and an inner frame with guides and bearings on
The recoiling portion is, in reality, the gun proper The outer, or non-recoiling, portion may be justly considered the carriage on which the gun operates. Reference is to be had to the accompanying drawings forming a part of this description, in which similar figures of reference indicate corresponding parts in all the cuts.
Fig. I. represents the gun in action, with spare boxes of ammunition placed on the mounting, and shows the empty cases being thrown out in front.

Fig. II. is a view of the outside or nonrecoiling portion of the gun, which is mounted on trunnions, and has attached traversing, elevating, and depressing gear, and is provided with handles and sights for aiming and a trigger for firing.
Fig. III. is a longitudinal central section of the gun, with all the parts in the positions of " ready" for firing, on the trigger being pulled.
Fig. IV. is a plan view of the gun with the cover, 32, seen in Fig. III, removed, and other parts in section to display the mechanism.
Fig. V. is a perspective view of the fetd box and part of its mechanism for feeding the cartridges to the gun.
Fig. VI. is a view
the recoil not consumed in performing the above ope- of the recoiling portion of the gun, tilted over so that rations is stored up in a spiral spring, which, by its re- the breech mechanism may be seen in perspective from action, effects the return of the barrel to the firing po- the bottom. The outer or non-recoiling portion consition, thrusts the live cartridge into the barrel, and stituting the gun frame is not shown, and the parts:aré closes the breech. The moment the breech is closed seen in the positions which they occupy when the the gun is fired automatically, the gunner having no- breech block is at the rear end of its stroke or movething to do but to point or aim the gun and hold the ment. trigger in a pulled position.
The gun practically consists of two portions-a recoil- is shown tilted over, and its parts are seen in perspecing and a non-recoiling portion. The recoiling portion tive and from the front and left hand lower corner, disembraces the barrel, the lock, the crank, the breech playing the mechanism which constitutes, at once, the

Fig. II.-DIAGRAM OF NON-RECOILING PORTION OF GUN.

Fig. III.-LONGITUDINAL CENTRAL SECTION.

Fig. $\overline{\mathrm{IV}} .-\overline{\mathrm{P}} \mathrm{L} A \overline{\mathrm{~N}}$ VIEW.
lock, the breech block, and the cartridge carrier and the belt. The lowering of the carrier is then effected extractor. It will be seen from this figure that in the by gravity assisted by a spring, 31, attached to the handling of the loaded cartridge and the extraction of the empty case, the cartridge case is firmly seized at both sides of its head, no spring extractor being used. Very nearly all the machinery in the gun is contained in this one piece or bolt, which is quite small, and may be carried in a soldier's pocket. As this bolt is the only part of the gun which standsin any danger of breaking or becoming disarranged, it will be seen that such machinery of the gun is practically in duplicate, as each gun is provided with two bolts, one of which may be removed from the gun and may be replaced by the other in about five seconds.
All the parts shown in full lines in Fig. II. remain stationary when firing, with the exception of the outside crank arm or elbow lever, 2,3 , which is fixed to the crank wrist or shaft and forms a part of the recoiling portion, or gun proper, which is mounted inside of the gun frame, 4, in such a manner th recoil moves it back about one inch
On the left hand and outside of the gun, or at the side opposite the crank, 2,3 , there is attached to the crank shaft, 1 , a spiral spring, 5 , by means of a chain, 6 , and a small fusee, 7 , as shown in dotted lines.
In Fig. IV. the spring box, 8, which contains the spiral spring, 5 , is shown with the top removed, displaying the said spring with its chain connection to the crank shaft, 1.
When the gun is fired, the arm or cam, 2 , of the crank 2,3 , which belongs to the recoiling portion, is brought in violent contact with a stationary point of resistance, 9 , fixed to the gun frame, 4 , the effect of which is to forcibly turn the crank shaft, 1 , and cause the crank handle or arm, 3 , to strike a buffer spring, 10 , held outside the gun frame, so that, when the crank handle, 3 , is resting on the buffer, 10 , the spiral spring, 5 , is not only extended one inch by the recoil, but the winding of the chain on the fusee causes a still further elongation.
Thus when the crank handle, 3 , has been brought to a state of rest on the buffer, 10, the action of the spiral spring is first to pull the barrel and the whole recoiling portion back into firing position, and then to turn the crank to restore the bolt to firing position. As the crank handle is brought back to this position it strikes the dead stop, 11, which is pivoted to the gun frame and rocks on its pivot to receive the blow in such a manner as to prevent all rebounding.

In the longitudinal central section, Fig. III., all the parts are in the positions of "ready" for firing on pulling the trigger. The lock employed is very similar to that used in the old fashioned single barrel pistol, namely, a firing pin, a main spring, a hammer, and a sear. All these parts are mounted in the lock or bolt, 12 .

When the upright trigger, 13, placed between the vertical handles, 36 , is pressed, the rod, 14 , is drawn backward and its projection, 15 , engages the lower end of the sear, 16 , thus releasing the hammer, 17, and the main spring, 18, then throws the firing pin, 19, violently forward to strike the primer and explode the cartridge. A spring, 38, returns the trigger and trigger rod to the cocked or freed position on removing the pressure.

All the operations of the breech mechanism are effected by the re ciprocating movements of the outside crank, 2, 3.
The gun crank has an arm, 20 which is inside the gun frame, 4 , and stands at right angles to the outside crank arm, 2. To this arm, 20, is pivotally attached the rear end of a connecting rod, 22,23 , the part, 23, of which straddles and is pivoted to the breech block, 12 Therefore, when the outside crank is turned forward, the inner crank arm, 20, is thrown downward and backward, as shown in dotted lines, Fig. III. The part, 23, of the connecting rod is thus brought in contact with the tail of the ham mer, 17, pressing it down, drawing back the firing pin, and compressing the mainspring until the sear, 16, engages a notch in the hammer and a safety sear, 24, engages a notch in the firing pin. At the same time the breech block is withdrawn from the barrel, the empty cartridge case is extracted, a fresh cartridge is drawn from the belt, the carrier, 25, is lowered, and the live cartridge is brought in line with the barrel, 26, and the empty case in line with the discharge pipe, 27.
Projections, 28, on the carrier, 25, during the recoil and the opening of the breech, slide on cams, 30 , on the frame, 4 , whereby the carrier is held up until the empty case is extracted and a fresh cartridge is drawn from

Fig. VI.-THE RECOILING PORTION OF THE GUN.

Fig. vil--REMOVABLE breech block, Cartridge carrier, and LOCK.
sear, 24, also secures the gun against firing until the breech is closed, by which action in the rising of the connecting rod, 22,23 , the sear is lifted, thereby re leasing the firing pin. There is also a small safety catch, 53 , which may be dropped down when done firing, and thus secure the trigger against being pulled until the catch is again lifted and thrown back by hand for that purpose.
In the continuous working of the gun, the empty cases are thrust one after another into the tube, 27, and are ejected therefrom with considerable force by the impact received from each succeeding case as it enters the tube.
The two parts, 22,23 , of the connecting rod are joined by means of an interrupted screw, 54 , whereby after the bolt is lifted out of its guides it may be given a quarter turn and removed from the gun, inspected, and returned, or replaced by a new bolt, all in a few seconds. There is a swall spring catch, 55 , attached to the inner side of the recoiling frame, 47 , which, when the part, 22 , of the connecting rod is raised to remove the bolt, holds said part in place for more convenient reattachment of the bolt.
The crank shaft, 1 , is supported in bearings, 56 , which are formed on the inner recoiling frame, 47, and extend through slots, 57 , in the outer gun frame, 4 , these slots being of sufficient length to permit the required recoil of the frame, 47, and its connected mechanism.
When the breech is closed the crank arm,20,is slightly above its forward dead center, and bears against stops, 58 , on the recoiling frame, 47. Therefore, during the period of explosion, the breech block is firmly locked to the barrel and supported against the force of the explosion, so that the barrel, the crank, and the frame, 47 , or the whole recoiling portion of the gun, will recede together until the crank arm, 2 , strikes the point of resistance, 9 , as above described, which throws the crank forward, opening the breech at first slowly, and then more rapidly as the recoil advances. Thus the empty cartridge case is started from the barrel of the gun, a first very slowly, as is in like manner the live cartridge from the belt. By far the larger portion of the time between discharges is consumed in the opening of the breech, so that ample time is allowed for the pressure of gases to escape from the barrel before the breech block is withdrawn from it
The feeding of the cartridges into the gun is accomplished in the following manner: The cartridges are placed in the belt, 42 , formed of two pieces of tape fastened together by eyelets and brass strips. The belt is made thick at the edge next the bullets by being folded over a cord, as shown, so that the cartridges may lie even in their magazines, while every fourth brass strip is made to project beyond the bullet edge of the belt a distance equal to that of the bullets, thus rigidly maintaining in the magazine the exact position of the cartridges in the belt.
The box or magazine which con tains the belt, 42 , filled with cartridges is placed in or on the mounting, and one end of the belt is passed through the feed box. Spare boxes of ammunition may be placed and transported on the mounting. The lever, 61, shown at the top of Fig. V., is operated in such a manner by the reciprocating action of the barrel that the cartridges are drawn into position one by one. The curved guide pieces, 62 , keep the belt of cartridges in the proper position as it enters the feed box.
The gun frame, 4, has firmly attached thereto a cooling chamber or water jacket, 67 , through which the barrel, 26, is arranged to slide longitudinally. The water jacket holds when full about $21 / 2$ quarts, and is filled through a hole at its rear end, which is closed by plug, rear end, which is closed by plug,
68 . Water tight joints are secured about the barrel in the following manner : At the forward end of.the and while thus firmly held, the cartridge is extracted \mid barrel there is a stuffing box with packing, 69, and a from the belt, performs its backward and forward movement with the breech block, and enters the barrel of the gun with unerring accuracy ; its empty case is extracted therefrom, and it again retreats and advances with the breech block to be delivered into the discharge pipe, 27 , where it is held by a spring, 46, until thrust out by the succeeding empty case.
The firing pin, 19, slides between guides in the breech block, and can strike the cartridge only through a hole, 52 , in the carrier, 25 ; therefore, it can fire the gun breech is closed carrier is at the top of its stroke and the
gland, 70, which screws in and tightly compresses the packing around the barrel. At the rearward end of the barrel there is a piston ring, 71, which prevents escape of water when the gun is working, and there is a valve, 72, which seats itself, preventing escape of water when the gun is not firing and the barrel is home.
By taking hold of the handles, 36, the gun may be pointed in any direction and controlled as freely as the discharge pipe of a common fire engine hose, while the thumbs fall naturally into the required position for the instantaneous manipulation of the trigger. Thus a stream of bullets is under the perfect control of the
gunner, and may be directed instantly at any desired angle of elevation or depression or spread over any area. By means of sights, 80,81 , as accurate aim may be taken and as good a target made as with any rifle. The rapidity of fire of the gun ranges from 600 to 700 shots per minute, according to the type of cartridge used.

Natural History Notes.

The Lethargic Sleep of a Swallow.-At a recent meeting of the Society of Naturalists, says La Nature, Mr. Leroux made a very curious communication upon a subject that has many times been discussed, that is, the possibility of swallows and martins passing the entire winter in a deep sleep comparable with that of hibernating animals. Mr. Leroux exhibited to the society a live swallow, and told its history. The bird had been knocked down by a coachman's whip last October, had fallen into the mud, and was unable to resume its flight. It was picked up by a child, washed, and wrapped up in a roll of wadding, which was put into a drawer and forgotten. A few days before Mr. Leroux made this statement, the roll was taken out by accident, and the bird was found alive, but plunged in a lethargic sleep. The bird was awakened in the presence of the society and set at liberty.

Algc Parasitic upon Mammals.-Some years ago, the greenish color of some of the sloths was attributed to the presence of an alga upon the hair. Madam Weber von Bosse has recently described two genera and three species of these parasitic plants. The new genus, Tricophilus, is green, the other, Cyanoderma, with its two species, is violet.
From 150,000 to 200,000 individuals of these algæ may occur upon a single hair.
The Nest and Eggs of the Alligator.-Dr. S. F. Clarke thus describes the eggs of the alligator in a recent number of the Zoologischer Anzeiger. The eggs and young alligators are such common objects in the shop windows in many of the Southern States, that it appeared to be a simple matter to secure the eggs at the right time and in abundance. It proved, on the contrary, to be very difficult. I was assured by various hunters in Florida that each month from January to September inclusive was the only month in mhich the
alligators lay their eggs, and this resulted in alligators lay their eggs, and this resulted in iny having
to make two journeys of over twenty-six hundred miles to mak.

The nests vary much in size, the largest being about $21 / 2$ meters in diameter at the base, and 80 cm . high in the central part, the whole having the shape of a rounded cone. They are located generally on a slightly elevated place, which is higher by a meter or slightly more than the surrounding level, and covered with a thick growth of palmettos, mangroves, magnolias, etc. These are called "hummocks" by the natives. On one side of the hummock at least, in some
cases on all sides, is a pond from one to two meters in depth, and in the bank, under water, the female alligator digs a cave, which in some cases extends three meters under the hummock, and which is always close to her nest. The nest is made by scratching together a great pile of dead leaves and twigs and humus which forms the surface of the ground, and which is arranged with some care. The inside is made of the more finely divided-almost powdery-material of the deeper layers of the top soil, while the outside, even to the top, is covered with twigs and leaves which are whole or but little broken, and with many of the long,
unbroken leaves or needles of the southern pine. The unbroken leaves or needles of the southern pine. The
eggs are deposited about 20 cm . from the top, and in the nests were found lying on top of one another, in the nests were found lying on top of one another,
making rows or layers, with the fine humus filling all the interstices. The top of the nest is always exposed to the sun.
Dr. Clarke describes the eggs as very difficult to
nanipulate, as the shell membrane is tough, and the manipulate, as the shell membrane is tough, and the white very sticky.
The Origin of Sweet Corn.-While the history of the origin of the sweet variety of Indian corn shows it to be quite modern, its existence seems to have been
known in New England as early as 1779, when a few ears found among the Indians on the Susquehanna were brought to Plymouth by an army officer.
In a very exhaustive history of Indian corn by Dr. Sturtevant it is stated that sweet corn is not referred to by Jefferson in his " Notes on Virginia," in 1781, nor by Thorburn in 1817, nor by Fessenden in 1828. In 1832 "sweet or sugar corn" is mentioned among garden vegetables by Bridgeman. In 1851 Buist mentions two varieties. In 1853 Salisbury says of the "early sweet corn," the variety introduced by Captain Bagnol, of Plymouth, that one kind has a white and the other a red cob. In 1854 Schenk mentions the extra early, the eight-rowed sweet and Stowell's sugar, which had been brought into notice within a few months. In 1858 Klip part mentions in addition the mammoth sugar. In 1866 Burr describes twelve varieties. The seed catalogue of Thorburn in 1828 offers one variety, the sugar or sweet; in 1881, sixteen varieties; in 1888, twenty-six varieties.
However this sort, as distinguished from Indian corn, may have originated, it has furnished a notable example of the influence of cultivation, until it has be-
come an indispensable article for the table in its season, and one of the most highly prized vegetables for canning. So numerous are the present varieties that from twenty to thirty are usually advertised by leading seedsmen.
Podophyllum peltatum.-In a communication to the Journal of Botany on a new Japanese genus of Ber-
beridacea beridacer, Mr. T. Ito takes occasion to state that the occurrence of Podophyllum peltatum in Japan is beyond a doubt, it being found in the province of Shinamo, thus constituting another habitat for this plant besides those on the American continent, and affording another example of the similarity of the flora of Japan and the Atlantic coast of the United State.
wood Cloth.
Mitscherlich has applied the bisulphite process for reducing wood to the production of a fiber from wood which can be spun.
Thin boards or laths free from knots, but of any desired width, are cut into strips in the direction parallel with the grain, and are then boiled in a boiler containing a solution of sulphurous acid or bisulphite. This boiling effects disintegration without requiring that the strips of boards shall be reduced to very small pieces. After boiling the wood, it is dried in the open air or in specially constructed drying rooms. By thus drying the product, the fiber, which is originally very weak, and tends to break at the slightest strain, becomes comparatively strong and does not resume its very breakable condition on the addition of water. The operations are carried out as follows :
The damp masses on the frame are transferred to a traveling endless cloth, which leads them to a pair of rollers, which may be plain or provided with corrugations in the direction of their length, the ribs of the one roller being made to gear into the recesses of the other one, whereby they effect a simultaneous strong
bending and squeezing of the masses. The cutting of the material in passing through the corrugated rollers is avoided by causing the endless cloth to pass over the lower roller and by placing a canvas covering these rollers on to a second endless cloth, which conveys them to a second pair of rollers, from which they are conveyed to a third pair, and so on, they being preferably pressed in this waysix times. By continued treatment of the wood the fibers become at length so pliable and isolated from each other that they can be employed directly for coarse filaments. For obtaining a perfect isolation of the fibers, however, without material deterioration, these operations alone are not suitable, and their special purpose is to loosen the fibers in the transverse direction, so that in the following operation a thin, long fiber may be obtained. For this purpose the boiled and pressed masses are completely dried. After drying they are combed in the direction parallel with the fibers by means of devices provided with pins or teeth, in a manner similar to the operations for combing flax, cotton, etc., but with the differ ence that the pins or teeth of the apparatus must be made very strong. The separation of the extractable matter from the fiber produced by boiling the gums and soluble organic matter can be effected at any time. It is, however, preferably effected after the fiber has been spun into threads, etc.

The Cocoanut Palm.

The government press at Madras recently issued A Monograph on the Cocoanut Palm, or Cocos nucifera," by Dr. John Short, which, the introduction tells us, was written at the request of the Director of Revenue,
Settlement, and Agriculture. The author begins, says Nature, by pointing out the area of distribution of the cocoanut tree. It is indigenous in the East, and is now largely cultivated on the coasts of India and Ceylon, and in the islands of the Eastern Archipelago. There are as many as twenty millions in the southwest of Ceylon. The palm frequently grows wild in distant and isolated islands, whither the germ has been borne by the sea, the thick fibrous padding around the nut protecting it from the action of the water. So we constantly see that coral reefs, as soon as they make their appearance above the surface of the water, are taken possession of by these trees. The seashore is the home of the palin; it grows quite down to the water's edge, nd is in many places constantly washed by the waves Thus, along the Brazilian coast for a distance of nearly 280 miles, from the river San Francisco to the bar of Mamanguape, these trees extend. We also, however,
find them far inland, and at the height of several thousand feet above the level of the sea. At Bangalore they flourish and produce fruit in abundance at a height of 3,000 feet above the sea level. From a dietetical and economical point of view, the cocoanut palm is a most valuable plant; sugar, starch, oil, wax, wine, resin, astringent matters, and edible fruits are its gifts to man. An alluvial or loamy soil is the most'suitable for planting it, and no more than eighty plants an acre should be planted to get the maximum amount of fruit thirty years old are the best for planting. There are
numerous varieties of this tree, there being as many as thirty in Travancore alone. One dwarf variety bears fruit when it is only two feet in height. Toddy is the sap of the cocoanut palm, and when the toddy drawer wishes to get out the sap of the tree, he binds the flower spathe tightly_ with fibers of the tree, and beats it twice a day for three or four days with a short stick. The top is then sliced, and as soon as the sap begins to flow, a vessel, either earthen or made of bamboo, is tied to the spathe to receive the sap. The spathe is kept bleeding by making a fresh wound in it each day. The fluid, when fresh, has a pleasant taste, and is slightly aperient. When kept for a few hours, it ferments and becomes somewhat intoxicating, and it may then be distilled into spirits or vinegar. With bakers it takes the place of yeast. The quantity of toddy taken out varies with the age and locality of the spathe, but the average quantity obtained for two or three weeks is three or four quarts every twenty-four hours. The liquid is also boiled down into a coarse kind of sugar called jaggery, which is either converted into molasses or refined before fermentation sets in
into white or brown sugar. In some places the occupation of toddy drawer is a hereditary one. Their mode of work is very simple, but is extremely dangerous. A thong made of bullock or buffalo hide, from 3 to 6 inches in width, and long enough to surround the tree and the body of the climber, is fastened with a peculiar kind of knot. The worker then stretches the thong to its utmost by throwing his whole weight on it, and draws up his legs. He has a ring of rope of palmyra fibers around his insteps, which allows him to grasp the tree between his heels. While his left hand is pressed against the trunk he shifts the thong up the tree with his right and draws his body up with it.
"Cocoanut day" is celebrated in most parts of India during the full moon in August. On that day numbers of nuts are thrown into the sea as an offering to the Hindoo gods. Occasionally one meets with deformed nuts, consisting of the husk with small deformed nuts having no kernel inside. The natives attribute this blighting of the fruit to the tree frog (Polypedates maculatus) which, by smelling the flower, can prevent the fruit from coming to maturity. The kernel of the nut is frequently made into ornaments for the hair, or necklaces. The plants, Dr. Short says, are subject to disease from two opposite causes : first, from too much moisture, as in swampy soils, where the fronds are usually small and ill-formed, and the fruit scarce; secondly, from lack of moisture, where the soil is hard and dry, the sap-bearing vessels shrink and the plant perishes. Among the insects and animals destructive to the palm may be mentioned the Calandra palmarum, or cocoanut weevil, which eats its way into the heart of the tree, and forms its cocoon there; the Butocera rubus, or cocoanut beetle; the Oryctis rhinocera, or rhinoceros beetle; the Pteromyes petaurista, or flying squirrel; the Sciurus palmarum, or common striped palm squirrel ; the Pteropus edwardsi, or flying fox; and the Paradoxurus musanga, or tree dog. The rat family is very destructive, particularly in the Laccadives. It is exceedingly difficult to get at these rats, they make to themselves so many hiding places among the trees. Rat hunts are, however, occasionally got up, and to these all the inhabitants turn out with sticks and poles. While some of the hunters climb the trees and drive out the rats, the rest surround the trunks and kill the animals as they rush down. On some of these occasions thousands of rats are killed. The people, being Mohammedans, cannot be induced to keep dogs.

Horse Railway Strikes.

The citizens of New York and Brooklyn have lately been subjected to the dangers and annoyances of a strike of the car drivers and conductors of all the principal lines of the horse railways. It was prolonged for a week or more, during which mobs of idle men roamed about the streets, threatening violence and doing injury to person and property; but they were repressed and cowed to a great degree by the activity of the police. The strikers numbered several thousands, and say they struck becanse so ordered by their head committee; and the latter gave as reason their dislike of a regulation adopted by one of the companies in New York and something they disapproved of, done by one of the Brooklyn companies.

Floated by Means of Dead Cattle.

It has been said that every work of invention has its parallel in nature. But it would not be anticipated that the method of raising sunken steamers by forcing air into casks which have been secured to them would find such a parallel. Yet such has been the case on the Ohio River, where the steamer Robert B. Carson sank near Evansville, Ind., drowning thirty head of cattle that were confined on the lower deck. Efforts to pump the vessel out were not successful, and the boat was abandoned. A few days later, however, it was found to be floating, the fact being that the putrefying car casses of the cattle had become inflated by the gases generated in putrefaction, and their combined buoyancy was sufficient to raise the steamer again.

THE NICARAGUA SHIP CANAL
(Continued from first page.)
matters, that its passage has been delayed, the bill being finally sent to a conference committee of the two houses. The technical objections had been made mostly in the House, and these were largely receded from, the House adopting the report of the conference committee on the 6th inst., by the large majority of 177 to 60 . On Feb. 7 the bill passed the Senate, and is now in the hands of the President, awaiting his signature. By its provisions the entire expense of the undertaking becomes a matter of private enterprise, and the investment of private capital, undertaken under concessions from the states of Nicaragua and Costa Rica, and in pursuance of trea ties of those states with the United States.
The illustrations given herewith, with profile and bird's eye views of the route of the canal, and Central American views, graphically set forth the most important features of the undertaking. The total distance from ocean to ocean is 169.8 miles, of which $561 / 2$ miles is by lake, $841 / 2$ by river and basin navigation, leaving only 28.8 miles of actual canal. The summit level is at an elevation of 110 feet above the sea, the length of this level being 152 miles. There are six locks in allthree on the Atlantic and three on the Pacific side of Lake Nicaragua. The greatest cut through rock is three miles long, with an averagedepth of 120 feet This lake is deep and unobstructed has a watershed of 8,000 square miles, and the San Juan River, through which the lake now has an outlet to the Caribbean Sea, is already naviga ble for light draught steamers through out most of its length, requiring but little labor to deepen it. 'This river discharges at its lowest stage, near th close of the dry season, 984,090,000 an anount of water more than eight times greater than it is computed will ever be needed for the lockages. From Greytown the sea level is carried 12 miles, to the site of the first lock, which has a lift of 31 feet, above which is a basin two miles long, formed by damming the lower waters of the Deseado River. At the end of this basin are locks 2 and 3 , with lifts of 30 and 45 feet respectively, to the summit level, by which clear navigation will be afforded, as shown in the profile view, to within three miles of the Pacific coast. Locks 4 and 5 have a total lift of 85 feet, and lock 6 has a variable lift, depending on thestate of the tide, which has a mean rise and fall on the Pacific side of about 6 feet. The size of each lock is $650 \times 70 \times 30$ feet, thus allowing for the lockage of the largest vessels afloat, such as the Etruria, the Umbria, the City of New York, etc.
The canal will be, throughout, of a depth of 30 feet, while its least width, at bottom and top, in rock forma-
however, that the expense will be but moderate, by jettying with brush and pile, and finally strengthening of stone, of making an entrance for vessels of 30 feet draught to an amply protected and safe harbor, on which will be ample wharf facilities, and which will also be the terminus of a railroad to extend along the line of the canal. The harbor at Brito, on the Pacific coast, will require the construction of two break-wa ters, to give protection from the swell of the Pacific while the harbor itself will have to be largely excavated, the excavation consisting of the deposits of the Rio Grande. The dam across the San Juan River will be
ing expedition of 1885 was $\$ 50,000,000$, and $\$ 15,000,000$ for contingencies, or $\$ 65,000,000$ in all. The later surveys practically confirm these estimates, and it is veys practically confirm these estimates, and it is
said that the whole work can be easily completed so said that the whole work can be easily completed so
that the canal will be open for navigation in 1895. These figures, it will be remembered, are the result not of one, but of several, very careful surveys, although they look surprisingly small by the side of the amount already expended on the Panama Canal, for which that company's obligations to-day amount to over $\$ 400,000,000$. with annual interest and fixed charges of bout $\$ 22,000,000$

As to the climatic conditions under which work

MAP SHOWING PROBABLE PATHS OF STEAMERS. upon the canal will be carried on, it would seem that nothing could be more favorable, temperature tables for two years, taken near the head of the lake, showing a maximum of 93° and a minimum of 65°. For some ten miles back from the Atlantic coast the line will lie through swamps and lagoons but here the work will be done mostly by machinery, and the climate in general is an equable and almost a temperate one. In the 49 engineer and 150 men in the employ of the company during the last survey, there was not a single cases of serious sickness, although most of the members were from the nature of their occupation almost daily exposed to constant wettings. The country is said to be rich in minerals, and cocoa, indigo coffee, and fruit are the principa agricultural products. One of our illustrations gives a familiar picture of native life. There are but 45 whites and 5 negroes to every 1,000 o the population, the majority of whom are Indians of unmixed blood, the total population of Nicaragua being 250,000 .
The effects upon the world's com of the river to a height 58 feet higher than they are \mid merce, and upon that of the United States in particunow. By this means a lock and a large amount of dredging is saved, as compared with what was required by the earlier surveys. A further improvement of the later surveys is that on the Pacific side a dam will be made across the Rio Grande, 2,100 feet by 80 feet, by which the valley of the upper Rio Grand and the Tola will be flooded, leaving only a low continental divide of about $81 / 2$ miles to be cut through from the Tola basin to Lake Nicaragua, and a cut of three miles to the Pacific
There have been several surveys for an interoceanic canal by way of Lake Nicaragua, the great length o free navigation afforded by that lake, its inexhaustible supply of water for lockage purposes, and the long stretches of the San Juan River which could be util ized to save excavation, with the comparatively low elevation of the back-bone ridges on either side, especially commending this location above all others. lar, of the opening of the Nicaragua canal route is a matter in which even the most careful calculations are almost certain to be far below the reality. The canalitself will certainly have advantages over one at Panama, in being in a healthy climate, and in the heart of the northeast trade winds, where it offer Atlantic and Pacific. The trade between all our southern ports, especially, and those on the west coast of both North and South America, should be wonderfully stimulated, besides the large European traffic which the canal is certain to attract. It is calcu lated that on the basis of present commercial conditions there will be six to seven millions of tons of shipping annually ready and anxious to use the canal, and pay neven in the tenance of the canal, after building, is estimated $\$ 1,000,000$ annually. It will be at once seen that these Chief Engineer A. G. Menocal, of the U. S. Navy, figures, as to both the cost of construction and the

PROFILE SHOWING LOCKS, DAMS, AND DEPTH OF CUTTINGS.

cions, will be 80 feet. In earth excavations the bottom width will be 120 feet and width at the top 180 feet, while in sand and loose material the bottom width wiil be 120 feet and the width at the top 360 feet
Besides the construction of the locks, the leading engineering features of the work will be the construction of the two harbors, the one at Brito on the Pacific coast, and the other at Greytown on the Atlantic side, and the damming of the San Juan River for the purpose of raising and maintaining the level of Lake Nicaragua and the river for the long stretch at the summit level of 110 feet, with the formation of minor artificial basins at different levels, by means of dams and embankments. The harbor of Greytown was formerlỳ open to vessels of considerable draught, but has almost been closed by sand bars; the surveys show,
with Engineer R. E. Peary, as his principal assistant, and a numerous staff, made such a survey in 1885. Since then the present Nicaragua Canal Construction Co. has, under the general management of Commander H. C. Taylor, of the U S. Navy, been formed, and, in the latter part of 1887, sent out a well equipped expedition which has definitely located the canal and mapped out the line and its vicinity with engineering exactness. Careful borings were made along the whole distance, and the nature of the materials to be excavated are now clearly known, in kind as well as quantity. There is a long stretch of dredging back of Greytown and a deep rock cut at the divide on the east side, while on the west side the cutting is mostly through ordinary ground, with dredging and low ground excavation. The estimated total cost of the work by the survey-
probable revenue, render the outlook for the financial success of the undertaking extremely favorable

vaccination.

In Paris, where the law requiring vaccination is feebly enforced, the mortality from smallpox ranges from 136 to $10 \cdot 1$ to the 100,000 inhabitants, while in the prin cipal German cities, where the vaccination laws are rigidly enforced, the death rate is but $1 \cdot 44$ to the 100,000 inhabitants. London, under compulsory vaccination, has a death rate from smallpox of but 0.6 to the 100,000 nhabitants. On the other hand, in the Canton of Zurich, in Switzerland, since the compulsory vaccination law was repealed in 1883, the death rate from smallpox has risen steadily from 8 to 85 to the 100,00 inhabitants.

RECENTLY PATENTED INVENTIONS. Agricultural.
Cultivator. - William F. Berry, Blanchard, Iowa. This is a machine which can be readily adapted for cultivating corn or potatoes, or
plowing in wheat or small grain, the cultivator blades being adjustable to one side of the shaft or the other, being adjustable to one side of the shaft or t.
to control the throwing of the dirt either way.
Check Rower. - George L. Banks, Fall River, Kansas. This is a check rowing attachment
for planters, which may be expeditiously reversed from for planters, which may be expeditiously reversed from
side to side, and readily manipulated, the invention covering a noveve construction and combination of parts
designed to afford a simple and very effective device.
Seed Grader.-William Minnigh, Bradey town, Pa. This invention covers a novel con-
struction and combination of parts in a simple and struction and combination of parts in a simple and
durable apparatus designed to effectually remove the durable apparatus designed to effectually remove the larger cockle from wheat, and sort and grade the sound grain, the device having a casing and fan with longi-
tudinally adjustable sorting chamber having a series of tudinally adjustable sorting chamber having
Stalk Puller.-George W. Rogers, Baltimore, Md. This is a device having an extracting wheel mounted in a suitable frame, whereby, when the
apparatus is driven over the rows, it will effectually apparatus is driven over the rows, it will effectually
clear the ground of all stalks of cotion or corn, and ceave the freld in proper condition for the plowing and leave the field in proper
sowing of another crop.
Traction Wheel.-Le Roy O. Drew, Carthage, Dakota Ter. This is a wheel adapted to mowing machines, reapers, and other vehicles, and is
made with an endless chain consisting of a series of made with an endless chain consising of a series of
pivoted links, each provided with patallel track plates, pivoted links, each provided with paralle t track plates,
supported upon a frame, one link after another passing down on to the ground in front as the machine is drawn forward.
Hoe.-Robert McCullough Brown, Fort Gaines, Ga. This invention covers an improvement in
hand hoes to be used in cultivating gardens, and has a blade whose cutting edge is curved downward, while its shank extends rearward in the same plane with the
blade, whereby it is adapted to take into the soil when the hoe is drawn forward and ride over the soil when the hoe is pushed backward.
Hay or Grain Fork.-William H. wander, Pendleton, Oregon. This fork has a cross head with pivoted clutch hooks, and a trip block above pro-
vided with a hook catch and trigger with trigger rope with other ropes, for loading hay or grair upon a stack or wagon, or into the upper story of a barn, by means of a derrick.

Mechanical.

Mining Drill.-William H. Jenkins, Philadelphia, Pa. Combined with a drill rod having a lifting pin is a novel form of operating cam, with other
rovel features, making a drill of great capacity, with mechanism for operating it of such character as to adapt the drill to all classes nnd conditions of rock,' in which it is readily adjustable, the invention being an
improvement on a former patented invention of the improvement
same inventor.
Sharpening Gin Saws.-William Behan and Paul Friensehner, Texarkana, Ark. This invention provides a feeding device for the teeth inde pendent of the filing devices covered in a patent
formerly issued to the same inventors, whereby the formerly issued to the same inventors, whereby the
teeth of saws of varying diameters will be properly fed teeth of saws of varying diameters will be properly fed
to give regular and uniform size to ench tooth without to give regular and uniform size to each to
reference to the number of teeth in the saw.
Furnace. - Fradelshon Harris, st. Louis, Mo. This furnace is constructed with a watercontaining vessel arranged adjacent to the fire chamber,
in connection with an air blast adapted to force the in connection with an air blast adapted to force the
vapors into the fire, whereby hot air with water vapor vapors into the fire, whereby hot air with water vapor
will be decomposed by the heat in the furnace, setting will be decomposed by the e eat in the furnace, setting
free hydrogen gas to render the carbon of the fuel more available in combination with oxygen.
Sewing Machine.-Jawes B. Ivey Macon, Ga. The machine has a frame adapted to support a reciprocating carriage provided with a fixed jaw ond a movable jaw, a treadie or operating device, and
other novel mechanism, the saw being designed prin cipally for use in cross-cutting wood billets for chop ping to make kindling wood.
Wrench.-Charles H. Kennedy, Green burg, N. Y. This invention provides a tool more par wire men, which, while being compact as a smal wrench, will also serve as a pair of nippers and a wirecutting tool.
Moulding.-Edward Reddy, Little Falls, N. Y. This invention covers an apparatus for
making moulds consisting of inner and top and bottom frames adapted to be placed together, in combination with plates to hold the patterns and to be held between the frames for forming the mould, and to
from the frames for drawing the patterns.

Railway Appliances.

Car Coupling. - James Mutton, Frisco, Utah Ter. Each link consists of a rectangula of the link passing over a friction roller and recipro of the link passing over a friction roller and recipro
cating between blocks, while a guide plate is secured thereto, the coupling being automatically effected opposing link.
Railroad Switch. -- John Hunter, Maple Bay, Minn. This is a switch which may be automatically operated by the engineer from the cab of the
locomotive, the pivoted switch rails having a rack connecting their free ends, the gear of a rock shaft engaging the rack, and vertically movable plates mounted
outside the main rails being connected with the operat ing shaft for rocking it in opposite directions.

Shutter Bower. - John J. Taylor, Philadelphia, Pa. This invention covers a novel construction and combination of parts in a combinea
shutter hinge and bid ordinary windows and shatters, while it is simple trong, and efficient.
Fifth ${ }^{\text {Wheel.-John M. Giraud, War }}$ wick, Md. This invention provides a broad fifth whee
designed to obviate tilting or rocking from any uncqual designed to obviate tilting or rocking from any uncqual
disposition of the load, and one which will be lees exdisposition of the load, and one which will be lees ex-
posed to dust, sand, etc., than those of the ordinary conposed to dust, sand, etc., than those of the ordinary con-
struction, while no king bolt is needed, and the device ruction, while no king bolt
Sounder Attachment.-George Carey and William McArthur, Dollarville, Mich. This is a resonator for telegraph relays, to amplify the
sounds of the armature lever, combining with a rela or sounder a box of resonant material supported ove the armature lever in position to receive its blows, the resonator being made adjustable to bo
to the position of the armature lever
Truss.-Joseph R. Meloney, Bloome Wis. This device, while intended for use as a simple
and effective truss, is designed to readily yield in couand effective truss, is designed to readily yield in conformity to the actions of the body, or the parts with
which it is brought into contact, the invention covering various novel features and combinations of parts.
Bosom Pad.-Edward K. Warren and Joseph H. Ames, Three Oaks, Mich. This is a dress and garment form consisting of a covering or facing of
cloth of single thickness, having stitched pocket.like cloth of single thickness, having stitched pocket-like
plaits in which are placed elastic ribs made of material that will not corrode, the whole being drawn together and a marginal binder applied to the gathered portions. Shirt Ironing Table. - James H. Mount, Jamesburg, N. J. This invention provides
shirt ironing board to be permanently or detachably connected with the table, und having yoke and shir clamping devices, with neck band shaping device designed to have greater durability, effectiveness, and
convenience than ordinarily possessed by devices of convenience ther
this character,

SCIENTIFIC AMERICAN

BUILDINGEDITION

FEBRUARY NUMBER.-(No. 40.)

table of contents.

Elegant plate in colors showing elevation in per-
spective of a suburban club house, with floor plans, sketch of entrance, etc. Munn $\&$ Co., architects, New York.
Plate in colors showing perspective and plans, with details, for a comfortable country dwelling. Cost
three thousand five hundred dollars. Designed by three thousand five hundred dollars.
Munn \& Co., architects, New York.
View of the Jay Gould tomb at Woodlawn cemetery, near New York city. A most classical speci-
men of mortuary architecture.
A residence at Rutherford, N. J. Perspective elevation and floor plans.
5. A Queen Anne cottage at Flatbush, Long Island. cost complete, eight thousand doliars. Plans and
perspective.
A carriage house for one thousand dollars, lately built at Flatbush, Long Island. Perspective and
fioor plan. fioor plan.
A house for three thousand dollars lately erected at
Bridgeport, Conn. Perspective elevation and floor Bridgeport, Conn. Perspective elevation and floor
plans.
A residence at Orange, N. J. Cost
sand dollars. Plans and perspective
A block of eighteen hundred dollar frame dwellings at Syracuse, N. Y. Floor plans and perspective. The Galliera Museum, Paris. Half page engraving.
eretches from the Architectural League Exhibition: Proposed memorial campanile for plaza of Pros-
pect Park, Brooklyn, N. Y., Henry O.'Avery, archi-tect-The Washington Hotel, Kansas City, Mo., Bruce Price, architect, N. Y.-Towers of hotel at
Big Stone Gap, Va.. Brunner \& Tryon, architects Big Stone Gap, Va., Brunner \& Tryon, architects
-District school house at Washington, Conn., -District school house at
12. Design for a boat house of moderate cost, by Munn \& Co., architects, New York.
13. Page of engravings of country residences.
14. Miscellaneous Contents: Restoration of the
Doge's Palace.-The broken timbcr raft.-RaisDoge's Palace.-The broken timbcr raft.-Rais-
ing columns of St. Isaac's Cathedral, St. Petersing columns of St. Isaae's Cathedral, St. Peters-
burg.-Tarred bricks.-Pompeian houses. - Repairing of a well.-Finish for pine.-Architecture as a profession.-Paintwork.-The National As-
sociation of Builders.-How best to light our sociation of Builders.-How best to light our
country homes and resorts, illustrations.-Larch lumber.-The Thomson-Houston motor for street cars.-Hints on plumbing and cellars.-The fatal climate of Panama.-Improved hoist for passenger or freight elevators, illustrated.-Clark's new anti-
friction caster, illustrated.-Tool cahinet, illusfriction caster, illustrated.-Tool cahinet, illus-
trated.-Universal bevel protractor, illustrated. California slate.-Pipe wrench, illustrated.--The he Scientific A
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of architectURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness,
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO., Publisiers,
361 Bromdway, New York

ßusiness and 2personal.

The charge for Insertion under thes head is one Dollar
a line for each insertion: about eight words to Advertisements must be received at pubication ofice as early as Thurrday morning to appear in next issue

Scientific Religion. By Laurence Oliphant. Ameri-
can edition just issued. 500 pages. Extra cloth, $\$ 2.50$. can edition just issued. 500 pages. Extra cloth, $\$ 2.50$. At all booksellers, or post pa
A. Wenborne, Buffalo, N. Y.
Special facilities for manufacturing light machinery, ence invited. Rocka way Manuf. Co., 3 E. 14th St., New York.
Wanted-Assistant superintendent at a chemica works near New York. To a steady, pushing young man with a knowledge of chemistry and engineering, and some experience with workmen, preference will be giv-
en. Address, giving age, experience, and references, n. Address, giving age,
ox 3050. New York City.

Patentees and Inventors-Any one having valuable inventions and needing noney for developments may btain funds by stating full particular
nt, to post office box 356. New York.
Wanted-A new or second hand bolt header. Addres To
To Let on Royalty-The best transplanting imple-
ment. Patent No. 383,629 . T. R. Coon, Hood River ment. Patent No. 383,629 . T. R. Coon, Hood River
Oregon.
ForSale-Two hydraulic presses. Steel columns, 44/2' diam., 7^{\prime} high ; rams, $13^{\prime \prime}$ diam., $12^{\prime \prime}$ stroke; platens. $271^{\prime \prime}{ }^{\prime \prime}$ $x 303 z^{\prime \prime}$; with one large pump, $7^{\prime \prime}$ diam. $10^{\prime \prime}$ stroke, and
three small pumps, $13-16^{\prime \prime \prime}$ diam. $2 \boldsymbol{X}^{\prime \prime}$ stroke. Pressure developed, 400 tons, with gauges and safety valves. All
in perfect working order. Address "A. H. W.," P. O. x 773. New York.
For Sale-A complete set of Scientific American bound, from 1853 to 1899, and also complete SUPPILE
MENTS. Address F. Lankenheimer, Cincinnati, Ohio. Air compressor for sale cheap. Also steel tanks, iron rail, cars, etc. Address The Buffalo Wood Vulcanizing
Co., Buffalo, N. Y. Screw machines, milling machines, and drill presses . E. Garvin \& Co., $139-143$ Center St., New York
For the latest improved diamond prospecting drills,
 For the best Hoisting Engine for all kinds of work, Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Perforated metals of all kinds for all purposes. The The Alchison Perforated Metal Co., Chicago, Ill. The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Planing and Matching Machines. All kinds Wood Combination Pliers, Gas Pliers, Wire Cutters, Wrench Combination Pliers, Gas Pliers, Wire Cutters, Wrench
and Screwdriver combined. Billings \& Spencer Co Hartford, Conn.
Steam Hammers, Improved Hydraulic Jacks, and Tube
arpanders. R. Dudgeon, 24 Columbia St. New Yók. Safety Safety Elevators, steam and belt power ; quick and
mooth. The D. Frisbie Co., 112 Liberty St.. New York. "How to Keep Boilers Clean." Send your address
for free 96 page book. Jas.C. Hotchkiss, 120 Liberty St., for free
N.
The best Coffee roasters, coolers, stoners, separators polishers, scourers, glossing apparatus, milling and
peaberry machines: also rice and macaroni machinery are built by The Hungerford Co., 69 Cortlandt St., N. Y Magic Lanterns and Stereopticons of all kinds an prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertain ment. 152 page illustrated catalogue free. McAlliste Manufacturing Optician, 49 Nassau St., New Yor Lathes for cutting irregular forms. Han
lathes. I. E. Merritt Co., Lockport. N. Y.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Send for new and complete cat
catalogue of Scientıfic and other Books for sale by Mun
New York. Free on application.

 HINTS TO CORRESPONDENTS.Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information, and not for publication. References, to former articles or answers should
give date of paper and page or number of question Inquiries not answered in reasonable time should some answers require not a a little research, and
though we endeavor to reply to all, either by lette
or in this department, each must take his turn. Special Written Iuformation on matters personal rather than general in
expected without remuneration.
Scientific A merican Supplements referre
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt Winerale sent for examination should be distinctly
marked or labeled.
(337) B. U., Miles City, M. T., writes nclosed please find a copy of analysis of the water we are which we dug to a depth of 258 feet. Before doing so we were using water from driven wells, but on account
of coating boiler badly we had to discontinue it Boiler of coating boiler badly we had to discontinue it. Boile about two weeks after using artesian water was per-
fectly clear of all scales and is like new now. To feed boiler we are using a Monitor injector, which has worke ble, losing water through the overflow, and finally got so bad that we put on a new one, which after two weeks' ase commenced the same things, and is now getting
worse fast. There is no sign of any sediment on inside of injector, and so I came to the conclusion that the
kindness to tell me how to remedy the evil, if it can be done, or recommend an injector that will work the the water is apt to have any bad effects on boiler.

There is nothing shown in the analysis of the water from the well for sand, by settling in a barrel or tank, so examine the inside of injector nozzles for marks of cutting, probably by sand. You may also look for
sand in the bottom of the boiler. It takes but little sand in the bottom of the boiler. It takes but little and to spoil an injector. If sand is found, feed the injector from a settling tank. The boiler should be often
blown down to prevent accumulation of solids. The bown down to prevent accumulation of solid
(338) A. P. B., Fort Madison, Iowa, writes: We have recently completed an artesian well at which rushes out at the surface at the rate of 476 galons per minute and shows a pressure of 111 pounds per quare inch) would be injurious to our boilers, brass ning, iron and copper piping, etc.? Below I give you chemist:

Organic matter.	U. S. g .0 0.18
Silica	0.39
Aluminum and iron oxide.	0.807
Bicarbonate of lime....... " " magnesia.	$\begin{array}{ll} \ldots & 14: 318 \\ \cdots & 7: 817 \end{array}$
Sulphate of lime.	$\begin{array}{ll} & 10 \\ \cdots & 1027 \\ \cdots & 40.071 \end{array}$
Chloride of "	41329
Total so	. 151 129
Chlorine combined	-94

The total solid constituents, amounting to nearly 10 per cent of the solid constituents of sea water, will make it necessary to blow off the boiler often and in larger quantities than when good water is used. There
is nothing in the water that is injurious to the boiler. is nothing in the water that is injurious to the boiler.
Wherever there are leaks, as about the water gauge, Wherever there are leaks, as about the water gauge,
cauge cocks, etc., there an incrustation will form on auge cocks, etc., there an incrustation will form on he outside by evaporation. Tha
(339) I. B., Leadville, asks: What is the breaking torsion strain on a wrought iron pipe three and one half inches outside diameter with metal twenty long, fastened at one end and the strain applied at he other ends A. The torsional strength of 3 ineh rrought iron pipe, $31 / 2$ inches outside diameter, is
1,392 pounds at 5 feet from the center. When coupled a length of several pieces by welding a dednction of 5 to 10 per cent should be made in the above figures; when coupled with the ordinary screw couplinge, at least 50 per cent should be deducted for the value of the joints.
(340) G. S. writes : I have made a sime electric motor. In running it with battery need I make a new solution every time I run the battery down,
nd how must I connect the cell? A. The simple lunge battery described in Scientific AmERICAN August 20,1887 , will run the motor very well. A new olution is necessary every time it runs down. Conect the cells in series.
(341) E. L. D. asks : 1. How can I melt and make a moulding of hard rubber, such as combs, handles, etc.? A. You must use unvulcanized India
rubber, and vulcanize it after shaping. See Scientific American Supplement, Nos. 249, 251,252, which we can american Supplement, Nos. 249, 251,252 , which we can
send you for ten cents each. 2. Is the spark which ometimes fiies off from a man's shoe in striking a walk of stone or any hard substance an electric spark, or is it merely the heat generated by friction? A. The spark is a little fragment of burning iron, detached from a nail in the shoe, by striking the stone and be comingignited by the heat of friction and impact.
(342) F. G. G. asks: 1. Can electricity be obtained in placing a dynamo in a glass inclosure
with all atmosphere taken out? A. Yes. The atmoshere has nothing to do with the action of a dynamo. 2. Can a current of electricity and magnetism be sent from a magnet or electric wire can act through fire. There is no such thing as a current of magnetism. A n exceedingly poor one. The static discharge affects fiame by creating draughts of air.
(343) J. M. H. asks for a formula for riting in white ink on blue paper or any other paper. will give a solid body ink. Or use oxalic acid, and upon he proper kind of blue paper this will give a very ex cellent effect by bleaching the paper. Blue paper dapted for the latter can be found upon the market.
(344) J. J. D. writes : The chord of circle being given, with the distance at center of chord to the circumference (versed sine), how can you find the ine and of half the chord, divide the sum by twice the versed sine, and the quotient will be the radius
(345) A. R. asks : 1. Will benzine weaken a cord of:catgut? A. No. 2. Can any oil or substance
be used to replace that dissolved by the benzine A. Olive or sweet almond oil
(346) M. \& A. write : Could you kindly frorm us what is put into gelatine used for moulds to prevent the plaster from burning? A. Oil the gelatine ne tenth bichromate of potash and then- dissolve in an obscurely lighted room. Make your moulds from
(347) F. W. B. asks : I have a Julien storage battery consisting of 3 cells of 6 volts electro
motive force; what is the strongest incandescent light motive force; what ithe stronges Acatescent condle power. Ask for a six volt lamp.
(348) C. E. W. asks if there is any fulminating or deflagrating substance which can be Egnited by the passage of a spark from a frictional electric ma-
ctine. A. With proper connections gunpowder or ful. chine. A. Winting mercury can be ignited by the static discharge.
(349) J. O. N. writes: The cigar lighter consisting of two small nickel plated cylinders, through
one a wick runs, which is ignited by the application one a wick runs, which is ignited by the application
of a chemical drawn from the other cylinder, has posof a chemical drawn from the other cyinder, has pos-
sibly atrracted your atteution. What is the sabstance that effects the ignition? A. We have no analysis of
sita the substance, but believeit to be an amalgam of sodium and mercury. The wick, from the accumulation of
caustic soda, is supposed to be always damp enough to ignite the sodium.
(350) H. H. F. asks: How may a battery of the cheapest, simplest kind be made and maintained that is capable of shocking a person to the extent that
ordinary people generally care to stand? A. Use an ordinary people generally care to stand A. Use an
induction coil, such as described in Scirvitric Amerrinduction coil, such as desc
cAN SUPPLEMENT, No. 569.
(351) G. D. asks what is the most expansive metal suitable for an incubator regulator. A. Of solid metals, zinc. For heat regulator, see Sci,
FIC AmERICAN SUPPLEMENT, No. 629 and others.
(352) H. M. P. writes: Can you give me a receipt for bleaching human hair, removed from the
head, which will leave it a pure white, without in. juring its strength? A. Binoxide of hydrogen is used for the purpose, but artificially bleached hair is in rably of inferior quality.
(353) A. F. W. asks (1) how to put about forty 16 candle power lamps (incandescent) into a cir-
cuit so that one lamp can be shut off without intercait so that one lamp can be shat of without inter-
fering with the rest of them. A. If you work from a storage battery, arrange your lamps in parallel, and no
forther regulation is needed. If you use a a ynamo, you Yurther reguation is needed. If you use a dynamo, you
should have a self-regulating one. For dynamo con strnction we refer you to Hering's "Principles of Dynamo Electric Machines,", which we can send by mall for
\$2.50. cal I will find an explanation of the way of wiring a house or building of any kind for incandescent lighting? A. We refer you to Scientipic American Sur-
purement, No. 03.3 . What kind and how many cells PLEmentr, No. 603. 3. What kind and how many cells
of battery will it take to run five 16 candle power inof battery will it take to run five 16 candle power in-
candescent lamps about four hours out of twenty-four to the best advantage? A. Use 25 cells of storage battery or, 50 cells of quart Bunsen battery with 50 volt on the storage batteries and how they are made? A. Many storage batteries are described in the Supple-
(354) H. M. T.-You will find very complete tables of planetary elements in "Astronomy for
High Schools and Colleges," by Newcomb and Holden, 82.50, which we can mail for the price. From its tables we give you the orbit
second of each of the planets:

Mercury	$29 \cdot 55$
Venus	
Earth.	$18 \cdot 38$
Mars.	14.99
Jupiter.	8.0
Saturn	$5 \cdot 95$
Uranus	$4 \cdot 20$
Neptune	$3 \cdot 36$

(355) J. V. D. asks : What would be the horse power represented by the tide raising a scow
(say 100 ft . by 300 ft. bottom measurement, vertical sides) twelve feet high in five hours? A. If you load your scow so as to displace its area for one foot in
depth, its lifting power will be equal to the weight of depth, its lifting power will be equal to the weight of
the water displaced, which is $100 \times 300^{\prime} \times 62 \mathrm{lb} . \times 10$ the water displaced, which is $100^{\circ} \times 300^{\prime} \times 62 \mathrm{lb} . \times 10$
feet, available tide $=19,200,000$ lb. for 5 hours This product divided by the minutes in five hours gives the value of the power for one minute, which is the unit of time for horse power. Thus:
$\frac{10,200,000}{300 \text { mine. }}=64,000$ and $\frac{64,000}{33,000}=1 \cdot 9$
nearly two horse power, without deducting the friction of machinery for operating the power. We allow 10 ft .
travel, because the scow must draw two feet for the full power in rising and just touch the water in falling to make the full power available. This system is expensive for the machinery required for the small power. A far more efficient system is to impound a large ing the power, allowing the water to fush each way at
(356) S. B. M. asks if there is a motor of any kind in use or manufactured which will run
2.30 revolntions per minute and develop 30 horse power. A. We know of none. The velocity is too great for A. We know of none. run up to 1,500 revolutions per minute, and develop 30
H. P., without heating journals, with care. Rotary engines of the Avery type have run at 1,000 to 1,200 revolutions per minnte, developing 30 to 40 horse power Turbines are made to run 1,500 revolutions per minute,
developing 30 or more horse power, with pressure of 100 feet waterhead. Water motors of the hurdy-gurdy type may have very high speed under great preesures from the jet nozzle, possibly reaching the figures that
(357) C. E. M. asks : I intend to put a keel condenser on a small steam launch. Can I proporwithout an air pump, and if so, how perfect if all joints are tight? A. You cannot obtrin a vacuum with an ordinary feed pump. Possilly a partial vacuum of 3 to 4 lb. may be obtained under favorable
provided the condenser is large enough.
provided the condenser is large enough.
(358) J. K. F. says : Please inform me, through your Notes and Queries, the largest gan made where and by whom made, the weight of gun and pro-
greatest distance the projectile has been thrown. A.
The largest gun was made by Krupp, weighs 118 tons, The largest gun was made by Krupp, weighs 118 tons,
is 45 feet long, 16 inch bore, rifed, and throws a pro jectile of neariy one ton, eight miles, with a charge of
coo lb. prismatic powder. Others of still larger dimen 600 lb . prismatic powder. Others of still larger dimen-
sions are in course of manufacture. The greatest range claimed is 12 miles, from a 9 inch gun in England, with
clate (359) C. E. says: The State of California is aboutc ena a la requiring all engineers to pro nearly twenty-five years, yet probably could not nswer the theoretical questions necessary for me to pass the examination. Will you please inform me me
what books to procure in order to post myself? A . You will find the desired information in "Questions and Answers for Engineers," by Roper, which we can
send you by mail for $\$ 3$ (360)
(300) R. S. B. asks for information on the following queries: 1 A short and simple formula
or ascertaining capacity of cisterns of cisterns, square the diameter in feet and decimals; multiply the product by 0.7854 , which gives the area in cubic feet for one foot in depth; multiply this pro
duct by the depth in feet and decimals, and the last uct by the depth in feet and decimals, and the last pro of 100 barrel cistern. A. A 100 barrel cistern should be 8 feet diameter, and 8 feet deep from the spring of the arch. 3. Formula for ascertaining area of ellipse. A For the area of an ellipse, multiply the diameters together, and the product by 0.7854 . 4. It is stated that the cruiser Vesuvius, which has shown a speed of 2166 knots, is the fieetest vessel in our navy. Is not the Stiletto the fieetest? A. The suletto is the fieetes 90 feet on the water line, and displaces but 28 tons closed slip, giving method of ascertaining number gallons in cistern, and which is copied from a mathe
matical work correct and reliable? matical work, correct and reliable? A. The table is correct to a fraction of a gallon.
(361) C. V. H. asks: 1. How the Leclanche disk battery is made, giving proportion of the
ingredients? A. The porous cup is filled with a mix. tare of graphite and clean sifted binoxide of mangane in about equal parts. The carbon prism is embedded in this mixture. 2. Suppose a rubber cell be used, and the cell sealed, is there anything in the rubber that would interfere with the proper working of the battery? A.
No; but gas may be given off in the reactions in the No; but gas may be given off in the reactions in the
(362) E. M. La B. asks (1) how pocket batteries are made, such as are used in the small incandescent scart ${ }^{\circ}$ pin carbon zinc couple wth bichromate exciting fuid would give good results, a metal plate-silver or platinum-is
generally used for the negative electrode, to save room. Then as exciting fuid a mixture of sulphate of mercur and water may be used. 2. Also how many cells o $\begin{aligned} & \text { simple plunge battery will it take to run one two-can- } \\ & \text { dee power incandescent lamp? } \\ & \text { A. Three or four cells. }\end{aligned}$

Euquiries to be Answered.

The following enquiries have been sent in by some of our subscribers, and doubtless others of our readers
will take pleasure in answering them. The $n u m b e r ~ o f ~$ the enquiry should head the repl
(363) G. W. writes: Will you please inform me through Notes and Queries of the Scien-
Tiric American what the rule is in regard to the size tiric ambrican what the rule is in regard to he size
or area of smoke stacks for stationary boilers (using or area or smoke stacke for stationary bioiers (busing
natural draught)? I frequently have work of this kind to make, and I think there is a rule in proportion to the area of grate, but do not know what it is.
(364) M. S. O'K. says : We would like piston of an engine in theory come to a stop after com. pleting its stroke, or does it immediately start in the opposite direction? It is controlled by the crank pin, which is in continuous motion. We can easily under stand that it stops going in one direction, but the question is, does it pause or does it immediately take the
opposite direction? In practice of course, the opposite direction? In practice, of course, the lost
motion of the parts would allow it to pause, but theo retically does it?
(365) S. S. S. asks: Would you kindly inform me through the columns of your paper what are
the ingredients of the composition used for making bass-relief signs, used for advertising purposes mostly? (366) G. T. asks: Will you please find pace in your valuable paper to inform me what good, any, a dome is to a steam boiler
(367) J. P. W. asks: On a street cable railway one mile long. grade level, the rope (14.4 diameter, weighing $21 / \mathrm{lb} \mathrm{lb}$. per ft) was at a speed of 880 ft . per minute, on the incoming rope are nine cars at
pequal distances, the same number on the outcoing rope, equal distances, the same number on the outgoing rope,
weight of each car and passengers $14,500 \mathrm{lb}$. What is weight of each car and passenger
the pulling strain upon the rope?

Replies to Enquiries.

The following replies relate to enquiries recently pub. shed in Scibntific American, and to the numbers
(172) A. D. C.-Safety Valve, etc.-For method of computing safety valve, see answers to en-
quiries, No. 0 , January 26. For removing paint, use airies, No. 60, January 26. For remo
(175) C. S. B.-Air Brakes.-The prinsiples involved in the construction of various air or accuum brakes are illustrated and described in SciENwe mail at 10 cents each.
(177) G. H. A. - Clean and Whiten iano Keys, - Wipe the keys occasionally with a soluion of alum. Coal tar varnish is much used for sheet
iron, or for a fine varnish thin the japan varnish of the
rade with turpentine.
(178) H. M.-Dyeing Clothing.-See a mailed. For eye glassee use dark blne or emoke color
(180) W. B. D.-Cleaning Shells.-The only safe way is to file, scrape or cut oft the outside coat. For cutting, use a chisel or a draw knife, holding the shell with a strap looped through holes in a
bench. The acid process is sometimes used where the bench. The acid process is sometimes used where the
bright parts can be protected with wax, but it is uncerbright parts can be protected with wax, but it is uncer-
tain in the hands of amateurs. Use oxide of tin to tain in
polish.
(181) O. K. - Bicycle Enamel. - Hard baking japan, as sold by the varnish makers,is used for
bicycles. See ScIENTIFIC AMERICAN SUPPIEMENT, No. 16, for description of japanning and manufacture of apans.
(182) Student. - Phosphorized Oil is made by dissolving six-tenths of one per cent of phos-
phorus in cod liver oil. It is called phosphorole, used phorus in cod liver oit it is calleo phe
(183) W. J. S.-Green on Pickled Gold. -You will find a variety of receipts in the "Goldsmit.
Hand Book," which we can send by mail for $\$ 1.20$.
(184) C. V. A.-Telescopic Camera.-You do not state the kind of object glass, achromatic or plain, and as you say that the eye piece is a single lens, e are led to suppose that the object glass is also single. Tht such a telescope we fear that you will have little matic object glass of excellent deffition with a low power Huyghenian eye piece. See Scientific amirir CAN Supplement, No. 399, for illuastrated forms of ey pieces, and Nos. 581, 589,583 for a series of pape
atronomical telescopes and their object glasses.
(186) E. F. C.-You will be able to do much in the way of theoretical knowledge of electricit
and the methods of practical adaptation to light an power. The experience required will be more readily
attained in practice after your book stadies. Read Electic in practice after your book stuades. "Read Elicectric Lighting," by Du Moncel, \$1.25, and "Elec
ric Motors," an mail at the pric
(187) W. S. B.-Fresh Water for Ocean Steamers.-Ocean steamers have surface condensers for return to the boilers, the deficiency being supplied from the sea. They are also supplied with condensing ap. paratus for supply of fresh water from steam, direc
rom the boilers, which with the fresh water carried in

(188) J. D. B.-Cementing Rubber.Use rubber cement, which is made by dissolving pure
rubber gum in benzine. See Surplement, Nos. 249 , abber gum
(189) Demagnetizing Watch.-Se Scientipic Amprican of October 2, 1886 , for illustrated
(191) F. L. A. S.-The restoration o cracked oil paintings is the work of an artist. For mental philosophy.
(196) G. C. H.-The answer to your last (239) W. M. H.-Firing Red Hot Shot. -The shot is heated red hot in a furnace. A sabot or hick wad made of wood is rammed down over powder. A bundle of damp straw moss or cloth is rammed down
to sabot. The shot is then inserted, shoved home, and io sabot. The shot is then insertea, bhoved home, and
fred instantly. Not now used, bombs being safer to the anners and more effective agannst the enemy.-P. H. L
(239) W. H. M.-Hot Shot.-In your issue of January 26, query 239, a correspondent asks
for the method of fring hot shot. A book prepared by a board of officers for instruction in heavy artillery, for the army of the United States, contains the following instructions for hot.shot fring. The cartridge bags are
made of woolen stuff, and the cartridge is anserted made of woolen stuff, and the cartridge is mnserted
choke foremost in a cartridge bag of the next higher choke foremost in a cartridge bag of the next higher
caliber and the end folded under. The bags should be caliber and the end folded under. The bags should be examined carefully, and great care should be taken to
prevent the powder from spilling or sifting in the bore. prevent the powder from spilinn or sirting in the bore. The wads sre made of clay or hay. Calay wads should
consist of pure clay, or fuller's earth, free from sand or ravel, well kneaded, with just enough moisture to work well. They are cylindrical, and one caliber in length. Before using, the water is pressed out of them. When hay wads are ueed, vapor may be seen escaping from the vent, on the insertion of the ball, but this is only the effect of the heat of the ball on the water in the wad, so no danger need be apprehended from it. Wit proper precautions hit inal may be permitted to cool
the gun without igniting the charge. The piece, how the gun without igniting the charge. The piece, how as the vapor diminishes the fistrength of the pow der. In loading, the piece is sponged with great
care, and the worm is frequently passed through the care, and the worm is frequently passed through the jore. As a precantion, a wet eponge should be inserted
just before putting in the ball. The muzzle being sufficiently elevated to allow the ball to roll down the bore, the cartridge is inserted, the mouth of the outer
bag being foremost, the fold down and carefull pushed bag being foremost, the fold down, and carefully pushed
home without breaking it: a dry hay wad is placed in it and rammed once then a clay or wet hay wad ia placed upon it and rammed twice, and finally, if fring at angles of depression, a wad of clay a half caliber in length, or a wet
P., Philadelphia
(239) Hot Shot.-Insert powder car tridee in cannon, cut a sod or turf not less than 4 inches in thickness, fitting the bore of the gun, and ram tightly on cartridge and take aim; on entering red hot ball, rol or push same on the charge and fire immediately. If

the aim is downward, add another sod with the ball. | the ain |
| :--- |
| E. S . |

(240) Niagara Falls.-1. From the brink to 200 feet back of the Niagara Falls are rapids running ver and between bowlders. 2. No level. 3. Velocity of current estimated at 25 miles per hour. 4. Not at
the Falle, bat at or near Buffalo, where the current is 8 to 9 miles per hour, and sorry to eay that the $\$ 100,000$
(241) 50 and 75 horse power engine.-If
more attention is given to the inside than the outside . ought to do the work satisfactorily. A 75 horse power engine of the same pattern and make as the 50 orse power one would only increase the work of keep. cal automatic cut-off make.-E. S.
Books or other publications referred to above can, in most cases, be promptly obtained through the
Scientiric American office, Munn $\&$ Co., 361 Broadway, New York.

TO INVENTORS.

An experieene of forty years, and ane preparation
ore than one hundrea thousand apple more than one hundred thousand applications for palaws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons foreign countries may be had on application, and persons
contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, Which are low, in accordance with the times and our ex-
tensive facilities for conducting the business. Address MUNN \& CO., office ScIENTIFIC AMERICAN, 661 Broad-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

January 29, 1889,
and each bearing that date.
[See note at end of list about copies of these patents.]

Back band. hook, E. A. Isaacs.......................... 3 , 3 ,
Barrel hopss. rettaining device for, C. Verniaud...
Battery. See Electric battery Battery. See Electric battery. Secondary bat-
tery.
Bearing, anti-friction, A. w. Terry. 396,068
 Belt stretching machine, C. L. Ireson.................... 396,874
Billiard scoring board, R. N. Montgomery........ 397,019 Binder, T. F. Bourne.................................... 396.980
Blacking. swab for liquid, G. S. Woiff...........
390
Blast ho tair, w. o Miller Blast, hot air, w. O. Miller.....................................3969947
Blasting compound, R. Soberg
Board. See Billiard scoring board. Boat joint, H. M. Sprague............................ 396,776
Boiler. See Range boiler. Steam boiler. 396,731 Bdt. See Flour bolt. Book support, F. E. Healer.................................. 397.0.741
Boor or shoe heel, H. A. Webster................ 397,041
Bottling sodawater, etc., apparatus for, C. C.
Haley.................................. 396,928
Box. See Axle box. Fare box. Journal box.
Brace. See Shoulder brace.
Bracelet, T. King...
Brake. See Sleigh brake. Wagon brake. 396,939
Brake handle, J. w. Fowler

Brush, hatter's, w. A. Haber..36,8i2
Brush machine, E. W. Porter.......
Brush, tooth, W. H. Smith 396,898
Bung, automatic stop valve, L. F. Smith......... 396,961
Burner, R. P. Ambler............
Butter tub, L. K. Tewksbu
Button, I. Sievert........
Calendar. J. M. Moore...
Can nozzle, oill, J. S. Pete.
Can nozzle, oil, J. S. Peter
Car brake, G. O. Kane....
Car coupling, Cael \& Ogle
Car coupling, Cael \& Ogle.
ar coupling, F. J. Hughes 39, 39,
Car coupling. I. Kling....................396888, 39
Car coupling, w. Metca
Car coupling, G. Mock.
ar coupling, J. Mutto
Car coupling link, F. F.
Car whel. R. N. Allen.
Cars, closet for railway,
Cars, electric lighting, Kennard \& Cory............ 3967,720 Cars, pipe coupling for railway, P. S. Wiseman.... 396,908
$\underset{\text { Harrison................... }}{\text { Cating machinery, w. Hankinson }}$ 399,099
3999997
369,102
Carpet sweeper, P. H. Wiedersum....... 397,10
Cart, dumping, J. abale........................... 396,98
Case. See Latch case. Library case. Lock case.
Type case.
Cash or parcel carrier, e. B. Stocking 396,778

Cellars, apparatus for delivering ashes from,
Foreman...
Chair. See machine, G. N. Downs.
Chair. See Dental chair. Surgical chair
Chimney protector, Brenner \& Myers.....
Cigar bunchinis machine. A. K. Degood..
Cigar perforating machine, E. Bernardt. Cigar perforating ma
Clasp. F. B. Spooner
Clothes line frame. F. W. Hofele.396.85
Coal hod, E. Barrath Collar, horse, R. Bro
.... $339,39,066$
Cork cutting machine. H. S. Larsen................... 39,
Reid.......................
Counter, E. T. Harris....
Couping. See Car coupl
Coupling. See Car coupling.

TRADE MARKS.
Baking powder, New York Phosphate Company.... 16,232
Bluing capsules, Electric Chemical Co Bluing capsules. Electric Chemical Co
Flour, Muscatine Oat Meal Company.

Piles, preparation for, R. C. Mooney.......................
Preserved fruits, vegetables. meats, and poultry, Preserved fruits, vegetables. me
Erie Preserving
 brick, tiles, and all clay products, Clinton Metallic Paint Company....
fes and locks, T. Barnes. Safes and locks, T. Barnes.
Soap, M. H. Duffy......... Stoves, ranges, and furnaces, Syracuse Stove Twines, ropes. cordage, nets, lines, yarns, and the Whisky, F. J. Kiesel \& Company

A printed copy of the speciflcation and drawing o
any patent in the foregoing list will be furnished from this office for 25 cents. In ordering please state the Munn \& Co., 361 Broadway, New York.
Canadinn Patents may now be obtained by the
nventors for any of the inventions named in the forezoing list, provided they are simple, at a cost of $\$ 40$
ach. If complicated the cost will be a litle more. For
toll instructions address Munin \& Co., 361 Broadwaj,

Pfovertisements.

 STEAM PRESSURE GAUGES, ETC | 34 Chardon Street, Baton, Mass.- |
| :--- |
| SORGHUM SUGAR INDUSTRY. PRO |

OIL WELL SUPPLY CO. Ltd.

USEFUL BOOKS.

men, of all classes, need good books in the line of permits the transmission of books offrough the mails at very small cost. A comprehensive catalogue of
useful books by different authors. on more than fifty free circulationat the office of this paper. Subject classified with names of author. Persons desiring to them. Address, 361 Brondwny, New York TRIPLE THERMIC MOTOR. - DE

HENRY CAREY BAIRD \& CO.
 Industrial Pablishers, Booksellers, and Importors, 810 Walnut St., Philadelphia, Pa.. U. S. A. C若OUur new and Revised Catalogue of Practical and scientific Books, 80 pages, 8vo, and our other Catalogues
 Three Valuable Books

The Machinist's and Steamo Enginers, Prace
tical Calcultitor. A Compilation of Useful Rales
 tinc. Valve and Link Motion. etc. 16 mo , full moroco
pocket form. By D. B. Dixon. Price.......... 8.00

 The Mechanic's Tool Book. With Practica
Rules and Sugestions for use or Machinists. Irron-work
ers, und others. Illustrated with 44 eng ravings. By W D. Harris on. 12mo, cloth....................81.50 ARUTITHETVRAL Copies sent by mail on receipt of price. Useful, Beautiful, and Chean. To any person about to erect a dwelling house or sta-
ble, either in the country or city, or any builder wishing
to examine the latest and best plans for a church, school house, club house, or any other public building of high
or low cost, should procure a complete set of the ARCHIamerican.
The information these volumes contain renders the work almost indispensable to the architect and builder, and to persons about to build for themselves they will
find the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail drawings of almost every class of building, with specification and approximate cost.
Four bound volumes ar ained by mail, direct fre now ready and may be obnewsdealer. Price, $\$ 2.00$ a volume. Stitched in pape
covers. Subscription price, per annum, $\$ 2.50$. Addres $M_{\text {MUN }}$ \& CO., Publishers, 361 Broadway, New York.

Cutler's Pocket Inhaler

GUILD \& GARRISON

 Buiders ot Steam Pumpwior Liquids or Semiliquid

NEW CATALOGUE VALUABLE PAPERS
 HARGREAVES' THERMO-MOTOR-

$\underset{\text { Grasse.-A }}{\text { F L Paper by Mr. F. W. Warrick, describing the }}$

DERFERT²m NENSPAPER NE N

 Tine Koch Patent File, for preserving newspapers, Mag.azanes, and pamohlots, has been recontly improved and
price reduced. subscribers to the SctevTiric AmERI

NEW YORK BELTING AND PACKING CO.
John H. Cheever, Treas. 15 PARK ROW, New York.
 Branches:-W. D.Allen \& Co., 151 Lake St., Chicago; 308 Chestnut St., Phila.. 52 Summer St., Boston; Post \& Co
Cincinnati, o. Arnett \& Rivers, San Francisco. European Branch, Pickhuben 5 Hamburg (Freihafengebiet), Ger

$\sqrt{4 G R P M G}$
OUP
 $S_{\text {end }}$ Greer, Stamp tor Mestipes Speemens." CHEMISTRYOF SUBSTANCES

2nd $\operatorname{Tc} \subset$ MACHINERY

 CONCRETE. - BY JOHN LANDIS.

PETROLEUM BOAT. DESCRIPTION

HEDESTOST

PIPE COVERINGS
Absolutely Fire Proof. braided packing, mill board, sheathivg, cement, fibRe and specialities BRANCHES: Phila, 24 Strawberry St. Chicago, 86 E. Lake St. Pittsburg, 37 Lewis Block

ROSE POLYTECHNICINSTITUTE:

SYSTEMS OF DISTRIBUTION OF

MODELS

LIGRIM MANL WORI
LIGHINEDY CHEMICAL AND ALLIED INDUS

 DTEAMER CITY OF NEX NEX YORK.Description of this new Inman twin-screw steamship
and a comparson with her principal competitors. With
4figures. Contained in SIENTFIC AMERICAN SUP
PLEMENT. No. 641 . Price 10 cents. To be had at thi

Put an Blectric Bell in your house or shop.

Clart's Noijegless Rubber Trnct Wheels
Geo. P. Clark, Box L.Windsor LLocks Coct. SEAMLESS TUBES-DESCRIPTION

VOLNEY W. MASON \& CO.,
FRICTION POLLEES CLDTCEES and ELEVATORS ICE-H O USE AND REFRIGERATOR. Directions and Dimensions for construction, with one
illugtration of cold hose for prestruing fruit from
geason to season. The air is kopt try and pure throubh-

THE ARMSTRONG MFG. CO. water, gas and steam fitters tools.

tocks and Dies for Pipe, Boits, and Brass Pipe, Wrenches, Pipe Vises, Pipe Cutters, etc. SHIP WAVES.-BY SIR WILLIAM

gut SEEDSCMENAWAY. Pikso
 We Trompt. This offer will appear but twice JAMES B. EADS.-AN ACCOUNT OF

 E. \& B. Holmes, INFLUENCE MACHINES.-A PAPER

BONANZATO AGERTS SAMPLES FREE:

HE PENNA. DIAMOND DRILL \& MFG. CO.

 PULLEYS, Chaeapest. Ii.i.tetest. and Best. Mate be by

TO BUSINESS MEN.

velue of the SCIENTIFIC AMERICAN as an adver-

 ed the scris haric A mbrricin. of this page, or ad-
For rates see top of first column of the MUNN \& COM Biroadwasty, New
LIME KILN THAT GA NES 36 PER GENT.
over any Other Kiln knovn
No. 1 lime with coal or Manufacturers who desire NATURAL GAS
frst-class locations in the

RECEIVER'S SALE

The Scientific $A \underline{=}$ PUBILCATIONS FOR 1889.

The prices of t he different publications in the United
States, Canada, and Mexico are as follows:
The Scientifc American (weekly), one year
The Scientiftc American Supplement (weekly), one
year.
The Scientific American, Export Edition (monthly)
one year.
The Scientitic American, Architects and Builders
Edition (monthly), one vear.

The Scientific A merican and Architects and Build-
ers Edition,
The Scientific American, Supplement, and Archi-
The Seientific American, Supplement, and Archi-
tects and Builders Edition.
Proportionate Rates for Six Months
This includes postage, which we pay. Remit by postal
or expressmoney order, or draft to order of
MDNN \& CO.. 361 Broadway, New Yorko

Dhovertisemerts.

 reecived at enbitication ofosce
ink to appear in rext issue.

We make a specinity of
Hard Rubber Pump Valves For Hot Water, Oils, and Acids,
also for very high pressures. Accent no pump valyes as Jenkins
or Jenkins Bros., uniess stamped
lke
 ELECTRO MOTOR, SIMPLE. HOW TO

STFMI BATME.

(2)
 In quality and density of metal,
in uniformity of temper ind in ac-
curn curancormedy of oftemer, ind in ac-
en unequaled.

Simond's Rolling-Machine Co., Fitchbure, Mass ICE-BOATS - THEIR CONSTRUCTION aird manaement. With working drawings, detaik, and

Tui KOdAK CAMERA

 The Price, \$25.00. Reloading, \$2.00. Rochester, N. Y. $1 \mathbf{1 5}$ Oxford St., Londor.
Sena for wopy of Kodak $\begin{aligned} & \text { Primer }\end{aligned}$ with Kodik Photograph. THE NEW CROTON AQUEDDCTM-

THE RICHARDS OIL ENGINE

 A FIVEFOLD COMET.-DESCRIP lity

OTTO GAS ENGINES
 ${ }^{2}$ OTTO GAS ENGINE WORKS, CHICAGO, Philadele
New York Agency, ARCHITECTURAL DESIGNS. ELE Arensor.-Two eecures byH H. Hetatham. Treating

WALLEABLE END FASE GRAY RRON ALSO STEEL

PATENTS.

 A pamphlet sent free of charge, on application. con-
tining full information about Patents and how pro
cure them
are
directions concerning Labels, Copyriphts. cure them, directions concerning Labels, Copyrights,
Design, Patents, Appeas.s. Rinisues. Infringements, As,
signments, Rejected Cases, Iints on the Sale of Pa-

$1 \mathrm{~L}^{\circ}$ STANDARD TOOL CO

XC
 Surface Gauges, , Bevel Protractors, Caliperth Gauges, Improver
 WRITE FOR ILLUSTRATED CATALOGUE AND PRICE LIST OF FULL LINE.

H. W. JOFINS

Asbestos Sectional Pipe Covering

A Non-Conducting Covering for Steam and Hot Water Pipes, Boilers, etc. EE. WV. JOhne TMADufacturin AN ONE.
H. W. Johns' Asbestos Roofing, Building Felts, Fire-Proof Paints, Liquid Paints, et
87 Maiden Lane, New York.
CHICAG0. PHILADELPHIA. LONDON.

 the latest, must approved forms. Illustrated with enHigures. Contained in SCIENTIFIC AMERLCAN SU
PLFMENT, No. 63.. Price 10 ents. To be had at thit
office and from all newsdealers.

Scientific Pook Catalogule

LRECENTLY PUBLISHED.
Ournew catalogue containing over 100 pages, includ-
ing works on more than fffty difierert subjects. Will be ing works on more than fifty difierent subjects.' Will be
mailed tree to any address $\begin{aligned} & \text { an application. } \\ & \text { MUNN \& CO., Publishers Scientific American, }\end{aligned}$

$$
\begin{aligned}
& \text { THE COPYING PAD.-HOW TO MAKE } \\
& \text { and how to use : with an engraving. practical directions }
\end{aligned}
$$

HARRISON CONVEYOR! Foring Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. Send
circulars.|
.
BORDE

TRAMWAY, COMPRESSED AIR.-DE- THE CUSHMAN KEI DRILL CHCOK.

HEATTING CITIES BY STEAM.-AN

The International Cyclopedia

Latest in the Order of Time, but First in the Order of Excellence.
 BETTER than any words of praise from us are the testimonials of 315 late buyers of the INTERNATLONAL SUCHISTHE INTERNITIONAL CYCLOPEDIA. The Minister is ministered to by
$\left.\begin{array}{l}\text { SOLD ON EASY MONTHIIY PAYMENTS. } \\ \text { Agents wanted, and good commisgions paid. }\end{array}\right\}$ DODD, MEAD \& COMPANY, Publishers,

SYRACLISE MALLEABE IRDOWWORKS

NHEAMBRCANBLLTHEPBNECO.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186, 787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequenceb thereof, and liable to suit therefor.

ANTERN SLIDES $\begin{gathered}\text { Microacopes, }, \text { Relecopeses } \\ \text { Spectactes, } \\ \text { Baromeerr: }\end{gathered}$

Suidutific Smexixau

ESTABLISHED 1846

The Most Popular Scieutific Paper in the World. Only 83.00 a Year, including Postage. Weekly.

This widely circulated and splendidly illustrated paper is pub ist.ed weekly. Every number contains six-
teen pages of useful information and a large number of ten pages of useful information and a large number of
original engravings of new inventions and discovertes, representing Engineering Works, Steam Machinery, New Inventions. Novelties in Mechanics, Manufactures, Chemistry, Electricity, Te eegraphy, Pootography, Architecture, Agriculture. Horticulture, Natural History, etc.
Complete List of Patents each week.
Terims of Subscription.-One copy of the ScienTIFIC AuERTCAN will be sent for one vear-62 numbersostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollaim by the pubor Canada, on receipt of three dollaitm by the
lishers; six months, 81.50 ; three months, 81.00 . Clubs.- Special rates for several names, and to Post Masters. Write for part culars.
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inside xpress Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay-

MIUNTIV \& CO.,
361 Broadway, New York: TIETI
Scientific American Supplement. This is a separate and distinct publication from In size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers, and accompanied with translated papers, and accompanied with translated descriphions.
The ScIwntific American Sulpliment is published The Scientific Amilican Surpliminnt is published
weekly, and includes a very wide range of contents. It weekly, and incluaes a very wide range of contents.
presents the most recent papers by eminent writers in
all the principal departments of sience and the Useful Arts, embracing Biology. Geclogy, Mineralogy, Natural History Geography, A rchæology. Astronomy,
Chemistry, Electricity, Light. Heat, Nechanical Ergineering. Steam and Railway, Engineering, Mining, Ship Building, Marine Engineering, Pbotogruphy Technology, Manufacturing Industries, Sanitary Engineering. Agriculture, Horticulture, Domestic Fcono-
my, Biograohy, Med icine, etc. A vast amuunt of frest and valuable information obtainable in no other pub lication.
The most important Engineering Works, Mechaniems, and Manufactures at home and abroad are illustrated nd
Canada. $\$ 5.00$ a year, or one copy of the ScIENTIFTC AMELICAN and one copy of the SUPPLEMLCNT, both mailed for one year for 47.00 . Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y.,

Building Edition.

The Scientific American architects' And BUILDERS EDITION is issued monthly. $\$ 2.50$ a \cdot year Single about two hundred ordinary book pages forming large and splendid Magazine of A rchit ecture, rich.
ly adorned with elegant plates in colors, and with other ly adorned with elegant plates in colors, and with othe
ane engravings; illustrating the most interesting ex fine engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi dences. city and country, including those of very mod erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Spec fications, sheets of Details, Estimates, etc.
The elegance and cheapness of this inagnificent work ave won for it the Larvest Circulation of an Archireecural publication in the world. Sold by all MUNN \& CO., Publishers,

361 Broadway, New York.

PRTMTNTRE TNTKE: THE "Scientific American", is printed with CHAS. Eard Sts., Phila., and 47 Rose St., opp. Duane St., N. F.

