

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

šrientific ghmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S. or Canada..One copy, six months, for the U. S. or Canada
One copy, six yonths, for the U. S. or Canad
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the Scientific American. for a little over one year, may remit $£ 1$ in current Colonial bank notes. Address
MUNN \& Co., 3 il Broadwas

The Scientific American Supplement
is a distinct paper from the Scientipic Amprican. THE SUPPLEm ent is issued weekly. EVery number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMEIICAN. Terms of subscription for SUPPLEMENT, with Scientific american. Terms of subscription for Supplement,
85.00 a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belongIng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers
ind throughcut the country.
Combined Kates.-The Scientific american and SUPpiement will be sent for
seven dollars.

seven dolurs. The safest wa registered letter

Aured letter.
SUPPLEMENT will be sent for a little over one year on receipt of \&2 and rent Colonial bank notes.
Address MUNN \& CO., 36

NEW YORK, SATURDAY, DECEMBER 22, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 677.
For the Week Ending December 22, 1888.
Price 10 cents. For sale by all newsdealers.

 periods of growth.-3illustrations.................................

IX. MINERALOGY.-Rusian Meteorite at Nowo-Urei-A meteorite

the american geological society.

The American Association for the Advancement of Science took its origin in a convention of geologists at Philadelphia, in 1840, who announced the object of that society to be the study of geology and natural history. During the Cambridge meeting, in 1849, a subdivision was effected into four sections-of physics, chemistry, geology, and zoology. There are now eight sections in all; Section E being devoted to geology and geography. The great number of papers offered, and the limited time allowed for their discussion, led the geologists who met at the Cincinnati meeting of the A. A. A. S., in 1881, to consider the propriety of organizing a national society to consist exclusively of working and teaching geologists. The subject was specifically discussed at subsequent meetings, but the consummation was delayed till the Cleveland meeting, last August, when it appeared to the majority presen that the hour had come for definite action. There had been a committee for several years having the matter in hand, and Prof. N. H. Winchell and Prof. C. H. Hitchcock, of that committee, called a special meet ing of Section E for August 14, the day before that set for the A. A. A. S. There was much enthusiasm and a strong sentiment in favor of the new society. A provisional constitution was adopted, and a committee of organization appointed, consisting of Professors Alexander Winchell, of Ann Arbor, John J. Stevenson, of New York, C. H. Hitchcock, of Han over, N. H., John R. Proctor, of Frankfort, Ky., and Edward Orton, of Columbus, O. This coumittee sent circulars to all members of Section E, and also to others whom they had reason to suppose to be interested. The plan was to class the first hundred who should signify their acceptance of the terms of fellowship as "Original Fellows." These have now been found, and other names have been proposed for membership. Ballots have been cast, though not yet declared, for the permanent officers. During the Christmas holidays a meeting will be held at some suitable place, to be desig nated by the committee, when the organization will be completed, the constitution ratified, and other work done. After the first of January, 1889, all working or teaching geologists in America will be eligible to fellowship on election and the payment of their dues.
It is evident that this is an important movement. Among the original fellows are some of the foremost American geologists. It is not intended in any way to interfere with the American Association for the Advancement of Science. One of its regular meetings will be held at the same time and place as that association.
The call for the first meeting of the American Geological Society has been issued for Thursday, Dec. 27, at Ithaca, N. Y. The formal organization will take place in the Botanical Lecture Room of the Cornell University.

MADNESS AND MORDER.

The deeds of murder recently done in that noisome quarter of London called Whitechapel, all, there is reason to believe, the work of the same hand, seem to have attracted the attention of the neurologist as well as that of the police. What was the motive? Most people who have followed the history of these crimes, coming as they have one so quickly after another, have laid it to this or that cause, or, at least, it would seem so from those that have been made public. Dr. Hanmond, well known in the department of neurology, says, in a recent paper, that no distinct motive was necessary or, rather, that it way have been a mere fancy or freak, such as often comes to those with deranged or diseased minds, or even for the mere love of pain and cruelty-a supposition which the hacking of the body in each case would seem to lead to. There have been nine victims so far, all women, but in the once-celebrated case of Helene Jegado there were twenty-eight in three years, all being killed by poison, and apparently for the pure love of killing and witnessing suffering; in some cases the suffering of those who had befriended her-masters, mistresses, friends, and several nuns. And all the while she affected an ardor of piety-awhile, indeed, an inmate of a convent. Our author declares that a desire "to kill exists, to a greater or lesser extent, in the mind of every human being without exception." Some love to kill game or the lower animals, while others have an irresistible desire to kill their fellows. The mildest mannered man, he says, has it at times, when sufficient cause comes. "It is inborn, instinctive, and no amount of civilization or refinement is sufficient to abolish it altogether." He
says that crimes are sometimes done by those to whom the idea of violence is repugnant, whose reason urges them against their own acts, yet with not enough strength to resist the impulse. Neither delusion nor emotional disturbance need come. At one time he is calm, at another excited, but always conscious of his acts. The epileptic may commit acts of violence while under the influence of a paroxysm, unconscious at the time, though remembering every little detail when it is done; but such cases as every neurologist sees, so we
are told, have at times an itching for murder. One $\left.\right|_{\text {man, of amiable disposition, asked to be locked up and }} ^{\text {are tor }}$
neglected an extensive business, for the sudden impulse that came to him to commit murder. One, who was continually battling against an impulse to kill his wife, cut off his own right arm. A young man applied for medical relief for cerebral hyperæmia, admitting that with it had come a desire to kill a fellow clerk. So strong it was, indeed, that whenever his back was turned, he could scarce refrain from plunging a knife into him ; once offering a cup of poison, and knocking it from his hand when he would put it to his lips. A woman with an impulse to jump from her window only escaped because, as she was preparing to spring out, a market boy slipped on the ice in the street and tumbled about awkwardly, setting the woman laughing and driving the suicidal mood from her.
Such moods, it seems, may recur and may not. A young man could not see a fine dress without the impulse to injure it ; running into the nearest drug store for vitriol, and before the mood was gone, ruining over one hundred fine gowns.
The "reasoning" mania would seem, from its de scription, to be one of the most dangerous, because at tacking those from whom acts of violence are not to be looked for. One thus afflicted suddenly tinds himself with a perversion of the emotions, derangement of the will; "knowing the impulse is a dangerous one, the act it imposes an unreasonable one." But he must do it, being seized with sanguinary fury. Such persons as are unable to control their impulse to commit crime our author looks upon as in the same category with murderers and as meriting the same fate.

MILK AND TYPHOID FEVER.

The agency that milk may assume in the propagation of fatal diseases has received much attention during re cent years. Dr. Klein's investigations have confirmed the belief that milk has in a large number of cases been responsible for epidemics of scarlet fever.
Tuberculosis, it is also known; can be developed in cows, and can be distributed in like manner by their milk. Much consumption is believed to be due to this origin.
A recent epidemic which occurred in a New Jersey suburb of this city goes far toward reducing the probability of milk acting as a disseminator of typhoid fever to a certainty. A florist had been in the habit of supplying five families with milk. He was attacked by yphoid fever, and after an illness of several weeks expired. It was found that he had been in the habit of drinking large quantities of milk himself, while the other members of his household used very little. Typhoid fever also began to appear among the five families whom he supplied. In each house there were one or more cases. In one family the suspected milk had been used for providing cream for coffee, etc., and the bulk of the fluid, or skim-milk, left had been used for cooking. In this house only one case appeared. Upon inquiry, it was found that the invalid, a domestic, had habitually drunk the skim-milk. The others had not ased it and were unaffected. New cases were added to the list, but were all confined to the five families in question and to the florist's house. In one family five or six cases occurred, including one fatal attack.
On investigation the water supply of the milkman's premises was found to be far from satisfactory. He received water from the regular water works. He used a portion of the water pipes within his premises for the conveyance of a liquid fertilizer. This inconceivably unclean practice would offer a good clew to the source of trouble had it been continued. But it is asserted positively that, since last February, no liquid manure had entered the pipes. A well of unquestionably bad water existed on the premises, but does not appear to have been used to any extent. The water supply in the meadow where the cows were pastured was contamin ated to some extent with sewage. It is very doubtfu if a cow could drink water containing the typhoid poison, and, without becoming ill, could communicate it to her milk. None of the cows has shown signs of sickness. The propagation of the disease by milk is almost absolutely proved in this case. Where the poison or germ came from is altogether uncertain, and the problem has not passed the conjectural stage. If impure water were used for washing the cans, it would afford a satisfactory clew.
The lesson to be drawn from this is clear. Greater precaution in the use of water in dairies should be taken. The mere adulteration of milk is bad as a matter of ethics, but when the addition of water may involve the absolute poisoning of the milk, the responsi bility for its addition is far graver. There is also a good side to the question. The occurrence cited in confirming the possibility of milk being the activo agent in contagion also indicates a preventable cause. Recent advances in sanitary engineering have gone to prove that much malaria is of house orgin, and the name "house malaria" has been coined to express the condition. In surgical practice Lister introduced the carbolic acid douche, and while he supposed that it was disinfection that he was teaching, really taught surgeons to be clean, and many surgical cases now reach a successful end because of cleanliness in the operations. Typhoid fever, in one of its methods of dissemination,
can be absolutely prevented by attention to the purity of the water supply of dairies. Boiling the milk may also be accepted as an efficacious preventive.
It seems a little remarkable that modern science is finding in the cow an agent of injurious disease after the vaccine virus has been used for so many years as a palliative for smallpox.

THE TOTAL ECLIPSE OF JANUARY 1, 1889.

The total solar eclipse of January 1, 1889, visible in this country, will be observed by many American astronomers and possibly some from foreign countries. We present herewith a map of a portion of the path of totality, for which we are indebted to the circular issued by Prof. Holden, of the Lick Observatory, and to the Sidereal Messenger for the following particulars: The shadow of the moon will cross the west line of Nevada at the town of Verdi, and its width on the boundary will be 100 miles, the middle of the path being at a point 32 rods north of the 124 th mile post of the Central Pacific railway line. The south edge of the shadow will pass about half way between Reno and the highest point of Peavine Mountain. Thus Reno will be just outside the shadow. The center of the path will be about six miles north of Winnemucca and $291 / 2$ miles north of Tuscarora. The south edge of the path will pass north of Wadsworth and south of Pyramid, In brick sewers the cement is attacked, Pyramid, Lovelocks, and Humboldt House. The
north edge of the path will pass north of Buffals
6. Spectroscopic observations of the lower atmophere of the sun, prominences, and the corona
7. Observations with the polariscope upon the polarzation of the light of the corona.
8. Photography both of the partial phases and of the corona.
The above points are those suggested by Prof. Young in his New Astronomy.

Steam Detrimental to Sewers.

On November 24 General John Newton, late Commissioner of Public Works of New York, in a report to the Mayor spoke of the defects of the sewerage system of the city. One point that was made in the report was of special interest. The evil effects of steam discharged from engine exhaust pipes was emphasized. The suggestions in the report were principally due to Mr. Rudolph Hering. Touching this question of steam, he proposed the use of intercepting traps or cooling basins, or else the discharge of all such steam into the air from pipes reaching above the roofs of the houses.
The admission of steam to sewers not only favors the production of sewer gas, but destroys the material of the sewers. Iron pipe lines, especially at the joints, become seriously weakened; tile pipes lose their hard, inging ass structure. The recent leaks in the pipes of the
ate with the local governments. He also undertook to counteract the hostile public opinion in the United States. Active surveys of the isthmus were begun under his direction in January, 1880, and late in February he arrived in New York, and began a tour which extended from Boston to San Francisco, and embraced a trip to Washington, where he had a personal interview with President Hayes and a hearing before a congressional committee. His first estimate of the cost of the canal was $250,000,000$ f. On his return to France, he declared that his American tour had been successful, and that opinion concerning the scheme had been considerably modified. A preparatory force of engineers and skilled mechanics was sent out from Havre in January, 1881, and work upon the canal was begun soon after its arrival at the isthmus. This work has been prosecuted at intervals, with greater or less vigor, ever since, although the estimates of cost have been greatly increased, and the time for the completion of the canal extended.
The project was the cause of a long and very important correspondence between the British and United States governments, in 1881 and 1882, over the question of an American protectorate, which finally resulted in the practical abrogation of the Clayton-Bulwer treaty. During all this time M. De Lesseps has been the leading spirit in the canal company, and such progress as has been made is the result of his untiring gress as has been made is the result of his untiring
energy and, it must also be said, of his blindness to the

THE ECLIPSE OF THE SUN ON JANUARY 1, 1889-MAP OF THE PATH OF TOTALITY.

Meadows, Willow Point, Paradise Valley, Spring
City, Willow Creek, Cornucopia, and White Rock, and will pass ten miles south of Fort McDermitt.
In California, Susanville will be $141 / 2$ miles north of the center of the shadow, and Quincy three miles north of it. Nevada City will be thirteen miles north of the south line of the path. All the towns named are inside the shadow path, as are Loyalton, Oneida, Long Valley, Milford, and all the settlements about Honey Lake. All places in or near the center of the path will be in darkness two minutes of time. All those at the edges of the shadow will see the sun momentarily eclipsed. The eclipse will begin at about 1:52 P. M. at Quincy, 1:53 at Honey Lake, and 1:54 at Winnemucca. The shadow travels a northeast course across the State, leaving it at the northeast corner. Mr. Irish very kindly offers to furnish further information concerning localities in the path of the eclipse which observers may desire to know.
The points that may profitably receive observers' attention are:

1. Times of the four contacts and the direction of the line joining the cusps during the partial phases.
2. Search for intra-Mercurial planets.
3. Observation of fringes which show themselves at the beginning of totality.
4. Photometric measurements of the intensity of light at different stages of the eclipse and during totality.
5. Telescopic observations of the details of the prominences and of the corona.
steam heating company in New York have produced milar through troubles, and produced serious annoyances indeed, taking a charitable view to assume that he was The in the streets in which the steam is conducted. merely a self-deceived enthusiast, and not a monstrous seriously affected, and all who travel upon Broadway can testify to the disagreeable odors produced. It seems clear that the distribution and use of steam should be attended with more [restrictions on the part of our city authorities than now apply to it.

Failure of the Panama Canal Company.

The telegraph brings the announcement of the financial collapse of the Panama Canal Company, due to its failure to negotiate the further sale of its bonds and its inability to meet the now gigantic calls upon it for interest and current expenses. Whether any new arrangements can be made to prosecute and complete the great work is questionable. Strenuous efforts in that direction will undoubtedly be made. The following sketch of the enterprise is given in the New York Times :

It was in 1879 that M. De Lesseps first turned his attention to the construction of a canal across the Isthmus of Panama. He was then flushed with the glory of the successful Suez enterprise, and a second attempt of a similar nature was the natural outgrowth of his triumph in the first.
He began his preparation with the earnestness and vigor which have always characterized him. Notwithstanding the fact that he was then nearly seventy-five years old, he undertook a journey to Panama in order personally to explore the proposed route and to negoti-
merely a self-deceived enthusiast, and not a monstrous
swindler. In the history of visionary undertakings and financial bubbles there are few things comparable to this old man's canal at Panama. For two years or more it has been a demonstrable fact that he was moving rapidly and with a sure step toward inevitable bankruptcy, and at least one honest journal in France, the Economiste, has not concealed the bitter truth from the French people. But they preferred to put their trust in De Lesseps and their savings into his always empty treasury.
He has issued shares and bonds amounting to $\$ 400$,000,000 at par, and this immense sum in obligations has been taken by the French people, who have probably paid him over $\$ 250,000,000$ in cash; and the greater part of this has come from the peasantry and small landholders of France. He has resorted to the most unwarrantable financial devices in order to avert the fatal day of bankruptcy, such as issuing new bonds to obtain funds to pay interest on former issues.
The coming bankruptcy of the company has of late been clearly visible, even to many of its former defenders.

The estimates of the expense of the Post Office Department for 1890 are $\$ 66,812,073$. The revenues of the department for the fiscal year ending June 30, 1890, are estimated at $\$ 62,508,658$. This will leave an apparent deficiency for the year ending June 30, 1890, of $\$ 4,403,414$.

SIMPLE EXPERIMENTS IN PHYSICS.

by aeo. m. hoprins.

The value of observation was never more apparent than in the case of the discovery of the action of an electric current upon a magnetic needle by Christian Oersted in 1819. While passing through his laboratory on one occasion, with a compass in his hand, he noticed that the needle acted in a peculiar manner. By a few experiments he ascertained that the disturbance was caused by an electric current flowing through wires strung across his laboratory. To this circumstance we

Fig. 1.-COMPASS FOR PROJECTING OERSTED'S EXPERIMENT.
owe the discovery of electro-magnetism. It is shown by experiment that the magnetic needle tends to arrange itself at right angles to a conductor carrying a current.
In Fig. 1 is illustrated a piece of apparatus for demonstrating this fact, either to a few individuals or to a large assemblage, by the aid of a lantern. It consists of a compass with a glass bottom having the scale marked on it. The needle turns on a pivot projecting from a little plate cemented to the center of the glass. When a conductor is laid across the compass, parallel with the needle, and a current is sent through the conductor, the needle is deflected in one direction or the other, depending upon the direction of the current.

Fig. 2.-GALVANOMETER FOR PROJECTION.
The amount of deflection depends, of course, on the strength of the current.
In the year following the discovery of Oersted, Sch weigger found that the power of the current over the needle was increased by causing the current to pass several times around the needle. Owing to this fact, the galvanometer was formerly known as the galvanomultiplier. A convenient and useful galvanometer for ordinary use, and for projection, is shown in Fig. 2; 1 showing the complete instrument in perspective, 2 being a diagram of the circuits, and 3 being a transverse section of the compass box. The foundation of this galvanometer is a fine photograph on glass of a complete scale of degrees of the size of an ordinary lantern slide. Upon the center of the photograph is cemented a small metallic disk, in which is secured a fine needle point, and upon the needle point is poised a jeweled compass needle taken from a pocket compass.

To diametrically opposite sides of the boss of the

Fig. 3.-ATTRACTION AND REPULSION OF PARALLEL CONDUCTORS-AMPERE'S EXPERIMENT.
compass needle are soldered the heads of two entomological pins, which are perfectly adapted to this use, being long, thin, and finely pointed. These are arranged exactly at right angles with the needle. To one of these pins is cemented a thin paper arrow head, and
upon the other pin is placed a small drop of solder to counterbalance the paper.
The compass thus formed is provided with a glass cover, separated from the scale by narrow strips of wood. The baseboard upon which the compass is mounted is provided with a round central aperture, a little larger than the circle of the scale. Across this aperture is secured an oblong rectangular coil, which will presently be described. The ends of the coil are let into recesses in the baseboard, so that when the compass is in its place the needle will occupy a central position in the coil. The compass, after adjustment, is fastened in place by six small brass screws, and along one edge of the compass is arranged a permanent bar magnet, which is held in its place by two pins. The bar magnet permits of bringing the pointers to zero, and renders the compass independent of the earth's magnetism, so that the galvanometer may be used in any position without regard to the magnetic meridian. The coil consists of a narrow copper trough, A (see diagram), of U-shaped cross section, one-fourth inch wide and one-eighth inch deep, separated a short distance at one end of the coil, so that the current may be sent around the needle through the copper trough alone when desirable.
In the trough is wound a quantity of No. 40 silk-covered copper wire, forming the coil, B, one terminal of which is fastened to one end of the copper trough in such a way that the trough forms a continuation of the coil. The opposite or outer end of the fine wire coil is connected with the switch point, D. The corresponding end of the trough is connected with the switch point, C, and the remaining terminal of the trough is connected by a wire, C^{\prime}, with the contact spring at one edge oì the baseboard. The contact spring at the opposite edge of the baseboard is connected with the pivot of the switch arm, E
The contact springs are designed to make connections with the studs on the lantern, which in turn are connected with the conductors of the galvanometer circuit. When the switch arm, E , is on the point, C , as shown in the diagram, the current passes through the trough only. Arranged in this way, the galvanometer is adapted to the measurement of heavy currents. When the switch arm is on the point, D, the current goes through both the fine wire coil and the trough. In this way the instrument is adapted to light currents. This galvanometer is adapted to the general run of experimental work. It makes a good image on the screen or ceiling when used in a lantern with a vertical attachment. The magnet interferes somewhat with its sensitiveness, and may be removed when very delicate action is desired.
In 1820 Ampere discovered that the action of a conductor in which a continuous current of electricity is maintained is like that of a magnetic needle. He replaced the needle by a delicately pivoted conductor, and demonstrated that all of the phenomena of the needle could be reproduced by the suspended conductor.

Another curious discovery, due to the same great physicist, is that of the mutual attraction and repulsion of parallel conductors. Apparatus for exhibiting this phenomenon is illustrated by Fig. 3. In this figure the perspective view shows the device adapted for projection, and the diagram shows the circuits.

Two parallel wires, A, B, are arranged one above the other, the wire, A, being fixed, the wire, B, being movable. The wire, A, is bent twice at right angles and its ends are inserted in the baseboard. The wire, B, is bent twice at right angles, and the arms thus formed are provided with eyes which are suspended on delicate pivots on the standards, c, d. These arms are prolonged beyond their pivots and provided with weights for counterbalancing the wire, the weights being so arranged as to cause the wire, B, to rest normally a short distance, say one-fourth or three-eighths inch, from the wire, A.

The connections with the battery or other electric generator are through the hooks, a, b. A current-reversing switch is provided, by which the current may be made to flow in the same direction or in opposite direction through the conductors, A, B. With the switch in the position shown, the current arriving at the hook, a, passes in the direction of the arrow to the switch arm, f, point, g, point, i, and standard, c, through the conductor, B , to the standard, d, thence to point, h, to the switch arm, e, thence through the conductor, A, to the hook, b. The current flowing in opposite directions through the conductors, A, B, causes the repulsion of the conductor, B.

By shifting the switch arms, e, f, to the points, i, h, the current will flow through both conductors in the same direction, thereby causing them to mutually attract each other, the result being the movement of the conductor, B, toward conductor, A. This apparatus is designed especially for projection, the parallel wires only being visible on the screen.

Total Eclipse on New Year's Day.

A total eclipse of the sun will take place on January 1, 1889. The line of totality goes through a portion of California, Nevada, and Idaho. The Lick Observatory is directly in the path of the central line.

AN IMPROVED CAR COUPLING.

A car coupling designed to automatically couple cars as they come together is illustrated herewith, and has been patented by Messrs. George W. Dawson and Benjamin F. Cleveland, of Sac City, Iowa. The drawheads are duplicates of each other, and in each is a sliding block that is forced back by the entrance of the connecting link. This block is vertically recessed to form a rounded portion, which serves to raise and lower the outer end of a pivoted bar on which the coupling pin is pivoted, as shown to the left in Fig. 1, this pivoted bar working in a slot in the upper surface of the drawhead, and its lower edge being recessed to form projections which span the rounded portion of the sliding bar. To ift the coupling pin for uncoupling, the sliding block nust be forced forward in the drawhead, which is effected by a rod held across the end of the car, and bent

CLEVELAND \& DAWSON'S CAR COUPLING.
to form a crank which connects with an arm attached to the sliding block, as shown in Figs. 2 and 3. When the sliding block is forced forward, it not only serves to lift the pivoted bar and coupling pin, but holds them in elevated position, ready to receive and engage the ink of another car.

AN IMPROVED SAFE OR VAULT DOOR LOCK.

The accompanying illustration represents a safe or vault door which locks automatically when it is closed, and unlocks automatically at any predetermined time at which the clock which actuates the works may be set prior to closing the door. This has been patented by Mr. William M. Brown, Jr., of No. 1627 H Street, Sacramento, Cal. Our engraving shows an inside face view of the door partly broken away, with the bolt works in the position they have when the door is open and just prior to closing it. The door is made principally of steel and iron plates bolted together and rabbeted at the edges to fit into corresponding rabbets at the front of the body of the safe, and the lock or set works are so arranged as to give no clew to their ar rangement on the safe door, being covered by an inner

BROWN'S SAFE OR VAULT DOOR LOCK.
door, which is opened to set the hands of the clock mechanism at the time the door is to open. The clock mechanism has a dial, preferably divided into hours from 1 to 24 , and its hand is set to cause the spring barrel at any predetermined time to draw on a downwardly extending cord and lever, pulling a shoulder of
the lever from under a vertical bar, allowing a spring $/$ selected. The building in the upper cut is a good type tainly deserves even if it cannot command success; and to draw this bar downward clear of a shoulder of the of the better class of Brooklyn apartment houses. It so it is that, if the storage battery motor people, now horizontal main bolt bar. A spring is connected to is situated on Quincy Street, between Nostrand and experimenting upon one of our surface railway lines, this bar and the door to draw the bar inward and sim- Marcy Avenues, and was erected at a cost of about do not eventually show their system practically suited ultaneously withdraw the bolts from the top and bot- $\$ 50,000$. It has a frontage of 55 feet, and is 95 feet in for such employment, it will not be for lack of industom and outer edge in the jamb of the safe, to unlock the door. The trip lever is automatically set as the bolts are thrown when the door is closed, to prevent the opening of the door until the desired time, when it opens of itself, without the use of any outside knob or device to disclose the position or arrangement of the bolt works.

How to Have Healthy Swine.

Keep large and small separate and not more than ten in a lot.
Feed regularly and liberally of wholesome food, always some bulky food, and let each feed be eaten up clean before more is given.
Give wallowing places, ashes, charcoal, and salt, and plenty of exercise in timber pastures yielding shade, roots, nuts, acorns, etc. But no doubly soured slops.
Provide ventilated shelters from wind, rain, and snow, but no litter. Hogs with litter get too warm. If you wish disease, put your hogs to the straw pile.
Maintain cleanliness in all things. Breed only mature animals, and never
from a show herd. The offspring of immature or pampered animals is predisposed to disease.

Give pure water, from deep wells protected from surface water. Well water is not freezing cold in winter nor lukewarm in summer. Water from creeks (unless fed by springs), ponds, or pools is disease-breeding.
Pigs should be farrowed in early spring and kept only on growing foods-milk, bran slops, oats, green rye, grasses, clover, sweet corn-until late fall; then fatten rapidly, on corn mostly, but also green rye, blue grass, pumpkins, boiled potatoes and turnips, with bran, steamed clover hay, etc.-American Agriculturist.

HOMES FOR THE MANY.

The two houses represented in the accompanying illustrations are as different in character as could well be

NEW APARTMENT HOUSE, BROOKLYN, N. Y.
N.
depth. It was erected from the plans of Amzi Hill architect.
The country residence shown in the other cut was erected for Mr. Edwin A. Burgess, at Buttonwood, R. I., and is a good representative of an inexpensive seaside or summer residence. With a well planned interior, an extension kitchen, and spacious piazzas, it af fords an airy, cool, and comfortable home.* It was built about two years ago, at a cost of about $\$ 3,000$.

Storage Battery Motors.

To try and try again, even though the promise i small, to overcome one obstacle and then another, cer *See Architects and Builders Edition of the Scientific AmeriCAN of May, 1887, which contains the floor plans, and which gives a description of the construction and the materials used in both these buildGarden and Forest. up into small pieces by a machine constructed for the purpose, the oil being then distilled from the chips by the aid of steam. About one gallon of the oil, weighing nine pounds, is obtained from 1,000 pounds of the chips. The uses for which the oil of sassafras can be employed are numerous and varied. It is a favorite perfume for soaps and candies ${ }_{j}$ it is used as a solvent for different gums, and as a liniment. It is also very largely employed in the manufacture of several popular proprietary medicines. The importance of this industry may be expected to increase rather than diminish, as the sassafras and the persimmon are the two trees which are spreading most rapidly over the old and abandoned fields throughout the Southern States outside of the pine belt proper ; and at present prices good wages can be made digging out the roots.-

decisions of the united states courts. Supreme Court of the United States.

 a trade mark case.THE LIGGETT \& MYERS TOBACCO COMPANY $v s$. finzer.

Decided November 5, 1888.

Appeal from the Circuit Court of the United States or the District of Kentucky.
The Liggett \& Myers Tobacco Company, a corporation created under the laws of Missouri, manufactures plug tobacco at St. Louis, in that State. This tobacco is put up for sale, marked with a star made of tin, having five points, and a round hole in the center, and attached to the plug by prongs at its back. The bill alleges that the complainant has for many years been extensively engaged in manufacturing this plug tobacco and in selling the same in large quantities in St. Louis, Louisville, and throughout the United States, and that every plug has been marked with such a star : that from the care taken in its manufacture the tobacco has acquired a great reputation, and large quantities are constantly required to supply the regular demand; that by reason of the distinguishing mark of the star upon the plugs it has become known to the trade and the public as "star plug tobacco ;" that the complainant was the original manufacturer of this tobacco with the design of a star affixed to the plugs, and that the defendant, knowing all this, is manufacturing and selling at Louisville, Kentucky, plug tobacco to which is affixed a round piece of gilded paper having on it a red star, under which the word "Light" is printed, and that this mark is calculated to mislead the trade and public and induce them to purchase tobacco from the defendant as star tobacco of the complainant, to his manifest injury, all of which is contrary to equity and good conscience. He therefore prays that the defendant may be enjoined from using that star on any plug tobacco manufactured by him.
The defendant admits these several allegations, except the one asserting that the complainant was the original manufacturer of plug tobacco with a star attached to the plug and the one asserting that the star used by him is calculated to mislead the trade and public to purchase the tobacco manufactured by him for the tobacco manufactured by the complainant. Upon the first of these two points the testimony establishes the fact that the complainant was the first person to use a star made of tin and fastened upon plug tobacco as described above, but that he was not the first person to use the design of a star upon plug tobacco. The priority of use, therefore, by the complainant extended only to the tin star, and not to the design of a star generally. Upon the second of the two points there is even less ground to sustain the position of the complainant. The two stars, the one used by the complainant and the one used by the defendant, are so different in form and surroundings that it would not be possible for any person not afflicted with color blindness to mistake the one for the other. They differ in size and color. The star used by the complainant on its manufactured goods is only a little over half an inch in diameter, with a hole in the center. The mark used by the defendant consists of a round paper label over three-fourths of an inch in diameter, with a red star and the word "Trade" on one side and the work " Mark" on the other, in gilded letters on a red background, and having beneath the star the word "Light," thus forming by the figure and the letters the word "Starlight." One star has the silvery appearance of tin foil, the other has the glare of a red and yellow gilded background. The judgment of the eye upon the two is more satisfactory than evidence from any other source as to the possibility of parties being misled so as to take one tobacco for the other, and this judgment is against any such possibility.
Seeing in such case is believing, existing differences being at once perceived and remaining on the mind of the observer. There is no evidence that any one was ever misled by the alleged resemblance between the two designs. But, in addition to the want of resemblance in the stars, the plugs to which they are respectively attached are of different size and weight. And it appears, also, that the name which the defendant has given to his plug tobacco is "Starlight," instead of "Star," tobacco, and is thus distinguished in name not only from other tobacco manufactured by him, which he calls "Sunlight" and "Moonlight" tobacco, but also from all plug tobacco manufactured by the complainant.
Decree affirmed.
Mr. Justice Field delivered the opinion of the court.
Supreme Court of the United States.
the crescent brewing company vs. gottrried. Decided November 5, 1888.
Appeal from the Circuit Court of the United States for the District of Indiana.
The first claim of Letters Patent No. 42,580, granted May 8, 1864, to J. F. T. Holbeck and Matthew Gottfried, for an improved mode of pitching barrels, is, so far as it is a claim to a process, fully anticipated in the pro-
cess carried on by means of the Seibel apparatus, and so far as it is a claim to an apparatus used for apply ing a heated blast to the interior of a cask, the appara tus existed before.
The second claim is not infringed by the defendant's apparatus, it having no removable conductor cor responding to the conductor, E , of said claim.
Decree of the Circuit Court reversed and the case remanded to that court, with directions to dismiss the bill of complaint, with costs.
Mr. Justice Blatchford delivered the opinion of the

an improved bottom-trip sling.

A tripping device adapted more particularly for attachment to the several binding strands of a rope or chain used for hoisting hay, etc., and whereby the load may be readily released after it is deposited in the desired place, is illustrated herewith, and has been patented by Messrs. Joseph W. Wood, of Baraboo Wis., and Alvinus B. Wood, of Tacoma, Washington Ter. The body of the clamp is preferably of metal, cast in one piece, a hook being pivoted between ears in its upper end, an outwardly extending lip on the lower end of the hook being adapted to engage a reces

WOOD's BOTTOM-TRIP STRAW SLING.
the device, this lever being held in engagement with the lip of the hook by means of a spring secured at it opposite end. The illustration shows the use of the device where four binding ropes are employed, to be united in any approved manner about the bundle of hay or other material, the four ropes to be united in the center by the clamp, while a trip rope is connected with the outer end of the pivoted, spring-held lever engaging the lip of the hook. When the load is car ried to the desired place, a quick jerk on the trip rope releases the hook, permitting the ready detachment of three of the ropes therefrom, while the weight of the load releases the eyes of the other strands, thus depositing the load.
For further information relative to this invention ad dress Mr. J. W. Wood, Baraboo, Wis.

Mr. Keely's Motor.

The Philadelphia court which thought it could keep Mr. Keely in confinement has seen its error. As the Tribune has already remarked, Mr. Keely is out of jail and has returned to his motor. Some of the earlier of the stockholders are not yet out of the poorhouse-but this is neither here nor there.
The short and simple annals of Mr. Keely's motor are soon told. Some twenty years ago, more or less, Mr. Keely built his motor. There are a number of pipes, wheels, pulleys, rods, belts, levers, cocks, cams, and cogs visible, besides, it is darkly hinted, a vastly greater number of the same sort of thing under the floor and back of the partition. In front of the motor is Mr. Keely's office, in which there is a large slot. The stockholders drop their money in the slot, and Mr. Keely looks out and watches them walk away Naturally Mr. Keely is sometimes called upon to explain the workings of his motor by some doubting stockholder. On such occasions he is all smiles, and, conducting the victim into the presence of the machine, he says: "You see, my friend, the way we operate the motor is this: Taking hold of this lever we pull it toward us. This causes the small flip-flap you see there to be withdrawn, allowing the flibber snatcher to fall into its place on the ramrod. As soon as this happens, it acts directly on the hatchway and the slam-bang, causing them to make a half-revolution and start the get-up-and-get motion of the flunkerflopper, which in turn communicates its energy to the button hook and the wapperchock. After these things have run for about five minutes they cause the jig-jag valve to turn, and the asthmatic gas flows through the pipe to the cylinder and gives the wiggle wotion to
-the wiggle motion of the gilder fluke. Why, my dear sir, without the wiggle motion of the gilder fluke you wouldn't think of putting your money into the motor. But, with it, sir, we are-eh, another share? All right, come into the office and I'll have it made out for you inside of a minute."
Professor Keely has been much more successful in the mechanical manipulation of the stockholders money than in the management of his motor. Taking hold of the middle of a bill, of any denomination, with the thumb and forefinger of each hand, he bolds the end of the bill toward his person. By a dexterous novement of the fingers he causes the bill to fold across the center. Repeating the process, he has it reduced to the proper compass for wadding into his pocket book, which is the next movement. This most ingenious gentleman, Don Keely, then places the purse in his right hand trousers pocket and smiles quietly. The mechani
desired.
Mr. Keely's mental endowments seem to run in particular lines. He appears to have no mechanical ingenuity, his strong point being his ability as a collector. He has one of the largest and best arranged collections of other people's money to be found in the United States. Having, a number of years ago, during a fit of temporary insanity, constructed a machine which, if any power on earth could start it, would explode and pierce the startled dome of heaven with flying frag ments of cog wheels and cranks, he now sits down calmly and allows this same mechanical nightmare to make his living for him. This is genius. The man who can create a company, stock in which is placed among the holder's liabilities when he fails, and then continues to sell this stock every day, is doing something that ordinary men of talent cannot do. He has risen above them. This is Keely. He toils not, neither does above them. This is Keely. He toils not, neither does
he spin ; but he has got a hysterical collection of crooked pipes and lop-sided wheels tied up in his back room that extract the reluctant dollar from the pocket of avarice without fail.

The Forests or Alaska.

The prevailing forest tree of Alaska, says Mr. George Davidson, of the Coast Survey, is the Sitka spruce, growing to great size, covering every part of the ground, and climbing the steepest mountain sides to the height of 2,000 or 2,500 feet above the sea.
This tree resembles in form and foilage the silver firs of California. In the Archipelago Alexander, with a shore line of more than 7,800 statute miles, the land is densely wooded from the water's edge. It can never be devastated by forest fires, because the carpet of wet sphagnum over the surface of the country effectually prevents fires from spreading.
We measured felled spruce trees that were 180 feet long and 4 feet thick at the butt; while adjacent standing trees measured over 6 feet in diameter, were branchless for over 50 feet, and estimated to be 250 feet high. Hemlock, alders, and willows are found; but the most remarkable wood of the country is the yellow cedar, with fine, even texture, fragrant smell, good size, and greater strength than the spruce. It is readily worked, takes a smooth surface, and is remarkably durable. It is a valuable addition to the cabinet woods, and is superior as a ship timber to any on the coast.
It can be obtained of ample size for frames and knees of ordinary sized vessels. We measured one 18 feet in circumference, and estimated it to be over 125 feet in height. We collected part of the keelson and frame of a Russian vessel built of this wood thirty-two years be fore, and which had been lying a wreck on the beach for several years. It exhibited no signs of decay nor of teredo attacks, and the wood around the copper and iron bolts is nearly as well preserved as on the day they were driven.
On Kadiak Island the forests cease toward the south. The yellow cedar does not grow on the northeast part of the island; but the average size of the spruce is less than two feet in diameter
Hemlock is found in abundance, and has its value for tanning purposes.
When the forests of Washington Territory and Oregon are exhausted, Alaska will be the great and our almost inexhaustible resource in the future.

The Source of the Mississippi.

J. V. Brower, who has just returned to St. Paul from Itasca Lake, the source of the Mississippi River, will soon make public a map and detailed report of his examination of the Itasca basin. It includes a measure ment of the inflow and outflow of all the streams at that point. The true source of the river is disputed, and Dr. Brower's researches locate it in the interior of section 21 of the government survey, in a small lake laid down on the maps and charts of Jean N. Nicollet in 1836, four years after the visit of Schoolcraft, who fixed the outlet of Itasca as the proper point of commencement. The claims made by Willard Glazier in 1881 are found to be false. Mr. Brower was formerly register of the St. Cloud Land Office, and is fully posted in regard to the history and exploration of the locality.

The Integrating Machine.

At a recent meeting of the American Institute of Electrical Engineers, in this city, Mr. B. Abdank said : There is one of these machines constructed in Zurich by the celebrated constructor, Coradi. To perform the integration it is sufficient to follow with the tracing point the given curve. The integral curve is then mechanically traced by the instrument. The integration of differential equations is a problem that we meet continuously in the physical sciences. We perform an integration in determining the area of a given figure, also in determining the static moments and the moments of inertia, in calculating the shape of the elastic curve.
The planimeter, as you know, gives mechanically the area and the moments. The instrument that you see before you gives much more. It traces a curve that indicates how the integral increases. The curve is the integral curve, the applications of wbich are extremely numerous. You have seen one of these applications for the determination of the magnetic curve.
I am glad to have had the opportunity to present it to this electrical society, and, as it were, smuggle into your presence a mathematical instrument under the cover of an electrical application. And I do so because the apparatus interests me personally, being myself the inventor of it.
I must also crave your pardon for having addressed you in English, of which language I am not at all a complete master, and I am ashamed because that lack of knowledge is entirely contrary to my principles. I am of the opinion that every electrician ought to be able to speak English. He cannot be a good electrician without being a complete master of that language. Without an intimate acquaintance with the works of Faraday, he is not able to draw conclusions in a simple and logical manner from experiments. He cannot, without being in direct communication with the legion of workers in electricity who speak the English language and who have advanced electricity in this country to a point where it is fifty years ahead of that in Europe, I say, that without knowing it intimately, he cannot keep track of what can be done with that power of nature which we are all attempting to harness.
Mr. Wolcott.-Having been for some time interested in the study of integrating machines of various kinds, and having invented some myself, I can say that I never have seen anything which will approach this instrument. The ordinary type of integrating machine which Mr. Abdank has spoken of will simply give a reading at the end of a given time-simply a single reading of the integral available. All who have given any study to the subject are familiar with the apparatus of Prof. James Thomson, Sir William Thomson's brother, which will integrate any expression involving a single variable. It is simply a disk and a sphere in a cylinder. The distance of the point of contact of the sphere from the center of the disk will represent the variable quantity, that is the function, and if this distance can be made to follow any required law of motion, and that point of contact of the disk is transmitted to the circumference of the cylinder, which is uniform the whole length, it is evident that the motion of the cyl inder is proportional to the distance of the sphere from the center of the disk. This apparatus, in combination with others, will also integrate differential equations. I do not think there is any apparatus like this which will trace one curve, the ordinates in which are integrals of the ordinates in the other curve.
Carl Hering.-I would like to say in behalf of Mr. Abdank that one of the features of that instrument besides tracing the integral curve is that it can be used for solving numerical equations which, I understand, cannot be solved algebraically-equations of a high degree, fourth, fifth, and sixth degree. The instrument will trace out a curve the dimension of which will give will trace out a curve the dimension of which will give
the values of equations of high degree, and give all the values of equations of
the real roots in one curve.
Prof. Mayer.-If the machine will do that, it is a marvelous production of ingenuity and science. Charles Babbage, of England, gave his whole life to making a calculating engine. After he had perfected his differential engine, and the British government would not supply him with means of bringing it out, he invented an analytical engine, of which you will find a description by the only daughter of Lord Byron, Lady Lovelace, which did just what this does. The construction of it would be so difficult that Babbage had not the means of bringing it out. If a machine so simple in its construction will do that, I can see that it is the most marvelous production of this age. I would like very much to understand it. Of course I only see it there and I know nothing of its principle.
The Chairman, Capt. Michaelis.-I understand, Mr. Abdank, to put it in plain language, in solving any equation of the second degree the instrument would describe a conic section, and higher curves according to the nature of the equation.

For Brassing Small Articles.-To 1 quart water add half an ounce each of sulphate copper and protochloride of tin. Stir the articles in the solution until the desired color is obtained.

©orrespondence.

White and Sugar Maple,

To the Editor of the Scientific American:
Your answer to query No. 21, page 331, to correspondent, that " white and sugar maple are the same," is not correct. White maple is Acer dasycarpum. Sugar maple is Acer saccharinum. Their resemblances and their differences are stated in all the botanies.

New York, N. Y.
W. C. Peckham.

The Highest Peak in the world.

To the Editor of the Scientific American:
In issue of Scientific American November 24, 1888, in answer to query No. 21, by O. S., you give Mount Everest, of the Himalaya Range, as the highest mountain in the world. According to Gaskell's New Family Atlas, Mount Hercules, in New Guinea, now claims that honor. Its height is given as 32,768 feet. The same authority gives Mount Everest 29,002 feet, so that Mount Hercules leads the world as the highest mountain by 3,766 feet. Thos. D. Gillespie. Pittsburg, Pa., December 6, 1888.

SELF-CHARGING SIPHON.

In your issue of November 17, page 307, you describe a siphon used by East Orange Water Works. I do not fully understand it, and should be greatly obliged for a diagram of such a siphon.
F. S. Oakes.

Cattaraugus, N. Y.

[We give the diagram above as requested. It is selfexplanatory.]

Perifiora Graeca.

To the Editor of the Scientific A merican:
I wish to call attention to this curious vine, that has not been much noticed. It is rarely found in the nurseries and seldom seen as a climber in ornamental grounds.

Its flowers are not showy, but curious-greenish yellow below and brownish purple above and singu-
larly formed. Leaves few and opposite, about the size and shape of a peach leaf, but not recurved like the peach leaf. It has a slight inclination to twine, but generally grows straight and of great length, and is about as thick at its extreme point as at the root. The vine is generally about from one-fourth to one-half inch thick from end to end. One of its most striking features is its toughness. It may be tied and untied and used as a rope without breaking. It would not be difficult to grow it 30 or 40 feet long in one season, several vines from the same root, of even size, straight and smooth. We should suppose in basket making or such work it would be quite an acquisition. As to its propagation from cuttings, we have no experience,
it grows readily from roots. J. H. Creighton. Lithopolis, Ohio.

A New 'strong" Locomotive.

A recent number of the Providence Journal describes as follows the new monster locomotive built by the Hinkley Locomotive Company, Boston. She is designed and constructed for the Strong Locomotive Company, New York, for the Atchison, Topeka, and Santa Fe Railroad. It is the latest built of the "Strong" locomotives. The improvements are the invention of Mr. George S. Strong, at one time mechanical superintendent of the Lehigh Valley road.
The peculiarity in the construction of the Strong locomotive is in her furnaces and combustion chamber, her cylinder valves and valve gears, and in the arrangement of her wheels and running gear. The boiler has wo furnaces, each one being a welded and corrugated steel cylinder 42 inches in diameter and 7 feet long. These two furnaces are joined by a flanged and corrugated junction piece, a corrugated cylindrical combustion chamber, making the grate area of 50 square feet, with a combustion chamber 9 feet from the face of the bridge wall to the tube sheet, and 16 feet from the fire door to the tube sheet. The total heating surface is 1,650 feet. By this construction all braces and stay bolts and crown bars are done away with, the gases being all consumed and all the smoke prevented. The sparks are not drawn from the fire box, and no spark arrester is required, the engine running without smoke or sparks. The original Strong engine would even burn culm, the refuse of the pit mouth, and this engine will u
sults. sults.
The other radical departures in the build of this lo
comotive are in the cylinders, valves, and valve gear, there being no steam chests on top of the cylinders, as there being no steam chests on top of the cylinders, as
in ordinary engines. There are four valves interposed in the passages back of the cylinders-one for steam and one for exhaust at each end, every valve being a gridiron plain slide. There are nine ports $41 / 4$ inches long on each valve, making $381 / 4$ inches the length of port on each valve. This large valve area admits the steam at very nearly boiler pressure on the piston, and the steam valve cuts it off at the will of the engineer at any place from 4 to 22 inches, the exhaust valve holding on to the steam until the last inch of the piston travels, when it opens wide, letting the steam go freely with very little back pressure. This peculiarity enables the engine, at high speed, to develop about double the horse power that an ordinary locomotive, with equal sized cylinders, 19×24 inches, at an equal cut-off would be able to do, an engine similar to this one hav ing shown the enormous strength of 1,810 horse power while pulling a train of twelve Pullman coaches on the Northern Pacific road at a speed exceeding sixty miles an hour. The same engine has pulled a train of ten cars 148 miles in 148 minutes running time. This was done on a five-foot wheel six-coupled engine.
Returning to a description of the valve gear, the valves are operated by a single eccentric for each cylinder, the eccentric being keyed fast to the shaft or axle. This eccentric runs the engine both ways, and imparts an independent motion to the steam and exhaust valves, so that the engineer has perfectcontrol over the point of cut-off without altering the travel of the exhaust, and can alter the compression without changing the travel of the steam. In this manner the engine makes the same card or gives the same distribution of steam as a nicely adjusted Corliss or Greene engine would do at a given high piston speed. This enables her to do her work with from 20 to 33 per cent less water, and consequently less steam. Her large grate area enables her to burn her coal so as to give an evaporation from 25 to 33 per cent higher than ordinary locomotive boilers doing the same work, so that the combined action of boiler and valve gear is to make a very economical engine, and one that is capable, it is claimed, of taking an extremely heavy train of from ten to fifteen cars and making 60 miles an hour with ease. The locomotive has four wheels, swing truck, under her front end, like an ordinary machine. Her drivers, 68 inches in diameter, are midway between the front and rear ends of the boiler. Back of the drivers is a two-wheel pony truck, 42 inch wheel, which is equalized with the drivers, making ten-wheels under the engine. The tender is carried on a fourwheel truck forward and a six-wheel truck back, making ten wheels in all under the tender. The total weight is over sixty tons. The engineer's cab is over the hind driver, forward of the double fire box. He has a very extended view of the track on both sides, and is entirely away from the dirt and dust of the tender, and his cab rides as nicely and as cleanly as a parlor car. The fireman has a cab on the back end of the fire box entirely to himself. They have communication by a passage over the top of the fire box between the two cabs, the engineer having a call bell with which to summon the stoker if he wishes to speak with him. The locomotive wheel base is 28 feet; the wheel base of engine and tender, 48 feet; total length over all, about 55 feet. The highest point of the engineer's cab is 13 feet 7 inches from the ground. Her fireman's cab, which, like the driver's, is very roomy, is built of heavy iron plate. The engine has no extended front arch or netting or device for spark arrester, as they are not required.

Pyrotechnic Photography.

A curious photographic apparatus, in which a camera is raised by a rocket and lowered by a parachute, is being developed by a French inventor, M. Amedee Denisse. In its experimental form, the cylindrical camera has twelve lenses round its circumference with a sensitive plate in its center, and is provided with a shutter which opens and instantly closes as the apparatus commences to fall. The descent is eased by the opening of the attached parachute, which is drawn back to the operator by a cord attached before the firing of the rocket. For securing bird's-eye views, the photo-rocket offers several important advantages over balloon photography, such as comparative cheapness in operating and freedom from risk in case of use for military reconnoitering.

Walking on the water.
C. W. Oldreive lately accomplished the task of walking on the water of the Hudson River from Albany to New York. Distance about 150 miles, wager $\$ 500$. His average progress was twenty-four miles a day. He always went with the tide.
The shoes he wore are made of cedar, lined with brass. They are five feet long and a foot wide. Each is air tight, with a space in the center for the foot. On the bottom are three fins so arranged that when the shoe moves forward they are pressed up against the bottom, and when the shoe is at rest they hang downward, like paddle wheel buckets.

ELECTRICAL AIDS TO THE DRAMA.
The moon in nature borrows her light from the invisible sun, but the moon at the Metropolitan Opera House gets his from an electric lighting station in 25th Street, nearly a mile away; the energy coming along the overhead wires, up Broadway, piercing the stage door, thence through the wings and up in the mimic sky over the stage. So, when the Fair Marguerite, in the IV. act of the opera
"Faust," thrusts her hand out of the window of the garden pavilion and exclaims,
"How sweet the notes of yon nightingale,
How soft this moonlight!"
she not only compliments the excellent imitation of that bird, as given by Herr Hans Hochschlagen, crouching in the wings, but pays a deserved tribute as well to the stoker, engine driver, and dynamo man in the distant lighting station.
The designer and operator of the moon -we refer, of course, to the terrestrial one-is Mr. James Stewart, a clever mechanical and electrical engineer. When he was asked last week as to its mechanism, he led the way behind the scenes, through mimic rocks and bowlders, pictured mountains, tropical forests, and Scandinavian wastes, with here a ferocious dragon blocking the way and there an uncanny-looking gnome peeping out from a cave. A flight of narrow stone steps led upward from the darkness, and a crooked passageway ended at a room where, upon a high shelf, the sun and the moon were resting snugly, besides some evening and morning stars and a few other planets.
"Hermann!" he called to a man preparing a rippleeffect for the river Rhine in "Rhinegold," "Hermann, just take the ladder and go up there and bring the moon down."
This moon (Figs. 4 and 5) is about 18 inches in diameter, of porcelain or milk glass, and oval in form. Within are six incandescence lamps of the ordinary type, three red, three white, each of 16 candle power, connected with the street circuit and also with a resistance coil. In "Tannhaeuser" the knight and minstrel of that name, tiring of the refuge he has found from the griefs of earth in the hill of Venus (the Hörselberg in Thuringia), regains his liberty, and, traveling through the country, finds himself in a valley between the Wartherg and the Hörselberg. Here he pauses to be charmed by the beauties of that nature he hasfoen hiding from. The current in the electrical moon is switched into the three red-globed lamps, the white cut off. It rises between the hills, a great fiery red globe, as we of ten see the heavenly orb on a clear evening when at its full. The hills are in a glow, there is a shimmer among the tree tops, the red growing fainter and fainter as it mounts, from the loweringof the intensity of the current, till finally the red lampsare cut off, the white ones turned on; the hills and trees are sil vered, the little lake becomes a mirror, the bordering trees projecting their shadows athwart it.

The moon is moved by means of a "batten," a thin piece of wood let down from above, the course being marked for the operator by the apparent though ex-

Fir. 10.-ELECTRIC FIREFLIES.
aggerated movements of the moon as we see them in an orrery. The mimic sun moves behind the "drop" (the short curtain in the background), but the moon moves before it, and hence, to keep up the illusion, the wire or electrical main it drags after it must be colored as is
 Fig. 9.-RAINBOW EFFECT.
this "drop." This is called " masking in." The edges are carefully pared off around the disk and the muslin serving perforated, else it would cast a shadow backward and show the sky to be only a curtain.
The electrical sun is a big ground glass disk, with a voltaic arc lamp behind it of about 2,000 candle power, connected with the street circuit. It shows through a hole cut into a drop curtain, and is set firmly in a frame covered with colored gauze to represent the various hues with which it tinctures the atmosphere and the

This star (see Fig. 2) consists of a
single 16 candle power incandescence light connected with the street circuit and affixed to a metal frame set in the drop curtain; only the star itself, with a covering of red gelatine tinctured with blue, showing through. In the duel scene in Gounod's " Faust," act IV., scene 7, will be found a striking electrical effect. As will be remembered, the soldier Valentine, brother to Marguerite fights with Faust, the student and Marguerite's lover. As he is unfamiliar with the use of the sword, the Devil in the guise of Mephistopheles stands by, sword drawn, to aid him (see Fig. 1), interposing the weapon when Valentine makes too fiercely at the student. Heretofore, though there was a clash of swords, there was not here anything to indicate the possession of supernatural powers by Mephistopheles. The electric wires are connected with Valentine and Faust. The poles of the battery are connected under the stage with copper plates sunk into the flooring where the duel takes place. Copper nails driven, one into a shoe of Valentine, the other in that of Faust, connect up with the floor plates whenever they respectively stand upon them, and wires running up the legs and body of each and then down their several sleeves end in a small plug. So, when they draw their swords, they have but to in sert these plugs into the holes sunk into their hilts and they are connected up with the electrical storage battery in the wings; Valentine representing the positive pole, and Faust the negative.
Every time Mephistopheles interposes his sword and strikes up the contending weapons, which are then brought in contact, the sparks fly furiously, and there are those weird, crackling, sizzling sounds heard in the lightning as well. When Valentine gets his death wound, he throws out the plug connecting his sword with the battery, by a simple turn of the thumb, and,

IMPROVED DIVERGING TORPEDO GUNS.-[For description see page 392.]
as he falls, his sword flies from his hand with nothing to show the presence of any electrical connection.
Every one familiar with the charming music drama of Wagner's, the "Ring of the Nibelung," will recall that impressive scene in the first act of Siegfried where the stout lad Siegfried welds together the broken pieces of his dead father's sword which have been left him by his mother Sieglinda (see Fig. 6). The scene repre sents a cave in the rocks with openings into the forest. It is a smithy's forge, with fire, chimney, and bellows. The point of this scene lies in the prodigious strength of the lad Siegfried, who, because of it, succeeds where Mime, the smithy, has failed, and welds the terrible sword that is to kill the dragon who guards the treasure. The anvil upon which the lad strikes is connected by concealed wires with the storage battery, the positive plate being a corrugated piece of cast iron $61 / 2$ inches by 12 , the negative pieces of iron wire threesixteenths inch diameter and 12 long, bowed upward at their center and placed above and free of the corrugations below them. The current required being of 15 amperes, if the negative wires should rest upon the positive plate, a dead short circuit would be formed and all metal connection with the battery would be fused; but bowed as they are, there is but a momentary short circuit at each stroke of the hammer, when the springy wires are forced down upon the under plate, producing only a shower of sparks, as if from the great force of the blows struck. At last, when the sword is completed and a firm handle upon the hilt, he determines to test its temper, and raising it aloft brings it down with what seems a tremendous blow upon the anvil, which falls into two parts (see Fig. 7), as if cleft in twain, the sparks for. wing the sword down to the ground. In reality, he strikes a spring which lets one-half the anvil fall, its under and outer side, as will be seen, having the corner cut off for the purpose and causing momentary short-circuiting
A rery pretty electrical effect is had in the garden scene in "Faust," act III., scene 6. Siebel, the would-be lover of Marguerite, advances to a bed of tulips (see Fig. 3), some red, some white, and some gold, to pluck a nosegay that he would leave upon her window to speak for him. Concealed in the corolla of each flower, or, rather, disguised as stamens and anthers, are two tiny incandescence lamps (15 volts each), the whorl of petals fresh and sparkling as when we see them fed with sunlight. Now, the demon Mephistopheles had long before warned Siebel :
"Every flower that you touch
Unheeding, Siebel picks a golden tulip which shines yet as he lifts it up to him (the fine wire carrying the electrical current that keeps the bulbs in the flower aglow, trailing after it, unseen amid the foliage). No sooner does he examine it, when, lo! Mephistopheles, partly concealed, raises his hand, the current from that single flame is cut off, and it grows dull and withers perceptibly. Siebel says:

What, faded! Ah me!
Thus the Sorcerer foretold at the fair: That, should I touch a blooming flower, It shall wither. But my hand in holy water I'll batheSee, now, will they wither?"

Here he plucks a red tulip, a white and a golden one, holding them up triumphantly, a rich, mellow glow in each (the electrical current following upward along the fine wire and the little bulbs yet lighted), for Mephistopheles may not raise his hand against the power of what's been blessed. Then he changes hands, and, like a flash, they fade; beaming with light again when he, remembering it was the other hand that touched the holy water, hands them back. (The operator, watehing the scene, turning the electrical switch on or off as required.)
In the last act of Siegfried, the wanderer (Wotan) is standing at the foot of a high cliff, with a deal of thunder and lightning overhead. He is armed with a great spear, steel-tipped and pronged, with the wood of it studded with steel. It is supposed to contain the sacred though unseen fire, and heretofore, until the present application of electricity, there was no evidence of it, save Wotan's word. He, as guardian of the rocks, is pacing up and down, with the spear in his hand. Siegfried comes seeking Brynhilda's rock. As Siegfried approaches he draws his sword, dealing a heavy blow against the spear of Wotan, while, at the same moment, a man in the wings turns an electric switch. The spear parts, and from its shattered ends switch. The spear parts, and from its shattered ends
flame forked tongues, leap out. A lamp of 30

ROYAL E. HOUSE, THE ELECTRICIAN.

In the Valkyr, an incandescence light is thrust into knot in the tree and, shining upon the hilt of the sword, discovers it to Siegmund.

ROYAL E. HOUSE, THE ELECTRICIAN.

by н. с. hovex.

In a pleasant home in the city of Bridgeport lives a veteran inventor, whose name has long been associated with the honored names of Henry, Morse, Vail, and other pioneers of telegraphy, and which has latel! gained new publicity from the fact that he contest with Professor Bell the priority as inventor of the telephone. Keenly watchful of passing events, he has hitherto been unwilling to allow any sketch of his life and services or any portrait of himself to be published; and it is only at the urgent request of his friends that he permits the printing of this communication.
Royal Earle House was born in Rockingham, Vt., September 9, 1814. In 1840, he invented and put in operation a water wheel that would work under water and not freeze in winter, and yet do the work of a gravity wheel with its gearing. This he accomplished by using a spiral conduit, with cover, inclosing a vertical wheel with two sets of buckets; one se arranged around its side, to have motion from the inflowing water, the other arranged to cover the bottom, each bucket having a suitable angle to utilize the centrifugal force of the whirling water, and its weight, by causing the water between the vertical buckets to move backward and be discharged in a direction nearly opposite to that of the water in the spiral conduit, when, relatively, the outflowing water is in a state of rest. The principle of the turbine wheel had long been known abroad; but House's invention lay in such a combination of the impulse and discharge as should make the wheel of practical value, and his ingenious contrivance is now extensively used in various forms and known by different names.
In 1842 he resolved to devote his life to the study of electricity, and to give popular lectures, with accompanying experiments. After a brief career in the lecture field, he decided, however, to limit his attention to the more promising arena of invention. A brilliant galaxy had already preceded him. Morse had taken out his earlier patents, but had not yet buitt the first electro-magnetic linefrom Washington to Baltimore-when House conceived the idea of his printingtelegraph. He made his first instrument of the kind in 1844, and exhibited it before the Mechanics' Institute, in New York City. It received a gold medal from the American Institute in 1848, with a special compliment on its being "an invention of great ingenuity." The committee of award were Professors Agassiz, Chilton, and Renwick. Morse's telegraph conveyed intelligence by preconcerted signals, dots and lines made by breaking and closing the circuit. House's telegraph printed its messages in Roman letters. The component parts were type wheels, platens, a keyboard like that of
yellow and black and pink gelatine before the light, and the rain by parallel scratches on a black surface; the are light being dimmed and set aglow alternately, and the glass turned this way and that, so that the parallelism of the drops shall follow a supposititious changing of the direction of the wind.

The firefly (Fig. 10) is another fine effect, devised by the same hand as the others, and recently used at the Broadway Theater, in the play of the Kaffir Diamond. Tiny 15-volt incandescence bulbs were affixed to the weeds and rushes in a swamp, each bulb getting its life from a fine wire connected to an electrical accumulator in the wings. The operator in his hiding place, by pressing upon the knobs of his key board alternately, lighting up one and then another, could make a single firefly appear to be darting hither and thither, then there would be two of them, a half dozen, a score, or, pressing upon all, twenty-eight.
The artificial rainbow (Fig. 9) is made by the interposition of two triangular glass prisms, one elevated slightly over the other, before an electrical reflector, the bases and faces and lateral edges carefully adjusted with regard, the one prism to the other. The electrical sun, set opposite to the point where the rainbow is to appear, is made, the better to aid the illusion, to shine into a mass of cloud, the rainbow being seemingly only the reflection, refraction, and disintegration of sun rays into the various colors of the prismatic spectrum, the influence of the rain drops. So ingenious is the work, that there is made to appear, as in nature, two arches, the primary with its inter circle
a piano, and a single line of telegraph. The type wheels moved synchronously by a step-by-step motion, arrested at will by pressure on a key, causing its representative letter to be printed. The actual speed attained was at the rate of fifty words a minute, or equal to the average speed of the modern typewriter. This was more rapidly than work could be done by the Morse instrument ; but the printing-telegraph required inore power to move the type wheels, etc., which became an objectionable feature when stations came to be multiplied.
Professor House removed with his family to New York City, in 1844, and sold a half interest in his invention to Mr. William Ballard, who was financially associated with him in making instruments and laying lines. Hon. Samuel Selden and Mr. Hiram Sibley, of Rochester, were also interested. Mr. Henry O'Reilly made an agreement for the use of the printing-telegraph throughout the West. He located the first telegraph line of any sort between Pittsburg and Cincinnati. Afterward he located an instrument at New Albany, Ind.
Capital was subscribed for building a line from New York to Philadelphia. This line crossed the North River at Fort Lee. On the east side was a mast 300 feet high, and on the Palisades, on the west side, one 200 feet high, making an eminence 400 feet in height. The contractors had faith in a small wire cable of seven twisted strands. But in practice this gave much trouble, and a solid wire had to be substituted. The right to use the printing-telegraph between New York and Philadelphia was sold for $\$ 25,000$ in stock, and for Philadelphia was sold for $\$ 25,000$ in stock
$\$ 30,000$ the right from New York to Boston.

An arrangement was next made with Judge Selden and Mr. Edson to extend the invention to all the principal cities of the United States, and to build 600 miles each year, or to forfeit $\$ 10,000$ to liquidate annual damages. Under that contract a line was built from New York to Butfalo, with an iron wire having 600 pounds to the mile, for which the patentees received $\$ 100,000$ in stock. About that time the Morse company filed a bill for an injunction to stop the House line from New York to Boston. Up to that date all suits had gone in Morse's favor, and it was confidently expected that the injunction would be granted. The counsel employed on the House side were George Gifford, Rufus Choate, and Charles L. Woodbury. After hearing very exhanstive testimony, the judge decided that the House telegraph was no infringement. The favorable termination of that suit (which was never appealed) gave value to the invention.
A new era was introduced in telegraphy when the messages came to be received by sound only, the operator writing them off rapidly in a suitable form for delivery. Professor House saw the need of more sensitive apparatus for the transmission of sound waves. Taking up the subject where Boursal and Reiss had discontinued their researches, he made and had patented an "electro-phonetic telegraph," June 27,1865 , and in order to improve the workings of certain parts took out another patent, May 12, 1868. The invention consisted in placing at each station of the line a hollow ear piece for receiving sound waves, this being closed at one end by a thin flat plate, or diaphragm, having a spring force to counterbalance the magnetic force of the armature, and thus hold the sounding head in a state of magnetic equilibrium when the circuit is closed. There was also a device for adjusting the loudness of sounds.
The inventor's idea was simply that of making an instrument of great sensitiveness for receiving the instrument is really used in telegraphing. But the as can be done by the more recent Bell telephone. as can be done by the more recent Bell telephone. The Supreme Court has decided that "a patentee is
entitled to all the benefits which result from his invention, whether he has specified all the benefits in his patent or not." Hence Professor House justly regards the Bell telephone as an infringement on his patent, and has called the attention of the American Bell Telephone Company to his claims. It is not my intention here to argue the case, but merely to state the facts as given to me. I may add that, in company with others, I have experimented with the original "electro-phonetic telegraph," made exactly according to the patent drawings, and with the modern House tetepnone, and also with the Bell telephone put in connection with the House, and found no difficulty in transmitting and receiving vocal messages with entire and uniform clearness. The inventor specified in his patent of 1868 that diaphragms as large as eight inches might be used. To test this Professor House produced a pair, of the size stated, made of pine wood, and the result was most remarkable. The messages were distinctly audible when the speaker and hearer each stood five feet a way from the instrument; and when several persons carried ou a conversation in the room, it was all transmitted perfectly to the other end of the line. Let the reader note the fact that every detail of the mechanism of these extraordinary telephones was covered by the House patent of 1868, granted eight years prior to the Bell patent of 1876, and observe the remarkable fact also that neither House nor Bell specially claimed that their instruments could "talk."
The "automatic telegraph" remains to be described in recounting the services of this eminent inventor. When business increased so that many million messages went over the wires every year, it became evident that there must be a wasteful multiplication of poles, wires, instruments, and operators, or else thatin some other way the cost of sending a telegraphic message must be reduced to a minimum. House undertook to meet this demand by a system of his own. He invented a new, time-saving alphabet, in which a message may be prepared for transmission. When thus prepared it is sent over the wire with greatly augmented rapidity, and is transferred from line to line without having to be repeated. "Untouched by an
operator, the message is automatically received and operator, the message is automatically received and
translated into ordinary printed typography ready for delivery, while automatic machinery, without the aid of an operator, takes care of and files away the paper of the transmitted message." So ingenious is this device that a series of messages on a single line may be sent as one message, and each be automatically drop ped at its destination, and the capacity of a single wire will exceed the ability of six operators to prepare messages, each of which in its turn may be started by a slight movement of the hand. And this system does not interfere with the use of the wires, on occasion, in the ordinary way. This improved system, so far as it may be adopted, must give us one of the great mands of the age-rapid and cheap telegraphing.
In 1884 Professor House and his wife removed to Bridgeport, Conn., where two of his nephews reside, who are also known as successful inventors. The fact
thathe was brought up amid the rugged fields of a mountain farm, while having some disadvantages, en abled him to start in life with strong physical powers,
as well as a healthy and vigorous mind. The result is that now, at the age of seventy-four years, Professor House enjoys uniform health, and his memory holds tenaciously the diversified facts of his eventful career.

DIVERGING TORPEDO GUNS

We give a perspective view of a pair of torpedo tubes which are arranged in a manner introduced by Messrs. Yarrow \& Co., of Poplar. It will be seen that the two tubes, or guns as they are generally called, are set at an angle to each other, so that if a torpedo be ejected rom each one simultaneously, the two missiles will travel in diverging courses. The object of this is to
afford a better chance of the enemy's vessel being struck. Below we give a diagram of a 3 -gun arrangement which is an extension of the same principle. In illustration of the effect of this arrangement, we will suppose the ship attacked to be 300 ft . long. At about one-third of a mile, which is approximately the effective range of the torpedo, the line of attack covered by the three torpe-
does would be 900 ft , as opdoes would be 900 ft ., as opposed to 300 ft . to only one of these weapons discharged; that is to say, the ship would not escape were she at any point on a line of steaming 900 ft . in length measured normal to the axis of the cen-
ter gun or parallel to the attacking vessel's keel. There would also be a chance of two of the weapons striking the ship simultaneously.
It may be objected that this arrangement entails a extra expenditure of torpedoes for each discharge. No doubt this is true, but after all the question to be
settled is whether in an engagement more torpedoes would be effective with a given force of torpedo-firing vessels than if the old system of single discharge were adhered to. The recent naval maneuvers have shown the value of torpedo attack-in spite of a popular belief to the contrary-but still there were not many hits scored out of a comparatively large number of tries. Mr. Yarrow claims that with his system there is an additional chance to strike an effective blow when the opporcunty arises, but in any case the officer would have the option of only firing one torpedo, and so be on the same footing as if his ejecting tubes were arranged on the old plan. But three torpedoes are a small price to pay for the destruction of almost any vessel, and the diverging fire gives so immeasurably a greater chance of success, that it would be seldom that the risk of extra expenditure would not be warranted. It is of the essence of successful torpedo attack that it should be sudden, and that the blow, when struck, should be overwhelming. In times of excitement and danger an officer, be he ever so brave, is not likely to make very good practice with so uncertain a weapon as the fish torpedo. It is a difficult thing to aim even under favorable conditions, but here a fair approximation to accuracy may afford success.
The torpedo is ejected by a small charge of gunpowder in the way that is now usual. The officer in command settles the angle at which his tubes are to be set before going into action, and the pointing is then done by maneuvering the boat. The elevation is also decided beforehand, and the guns pivoted on their trunnions by the horizontal wheels shown. For instance, it is determined beforehand whether the torpedoes shall be fired while the attacking vessel is approaching or leaving the enemy, and the guns are then trained before or abaft the beam, or of course a beam attack may be made, as shown in the diagram. The officer has, therefore, nothing to attend to but the steering of his vessel, and fires his weapons when the propitious moment arrives.
The arrangement is intended both for torpedo boats proper and for any larger vessels. Applied to the former, it has an additional advantage over the old plan adopted with the first-class English boat. By reference to our engraving of one of these vessels, shown in our issue of April 29, 1887, it will be seen that the two guns are placed one on eash side of the conning tower. This has been found in practice very inconvenient, as the deck room is obstructed in a serious manner. With the diverging guns this difficulty is got over. In our illustration the mechanism by which the necessary operations are performed is partly shown. The torpedoes are fired electrically by a "make-and-break" contact. The magnet is contained in a box, and this withdraws the bolt which allows the weight to fall, thus making electrical communication with the fuse in the discharging cartridge. The switch by which these operations are set in motion is placed in the conning tower. The tubes are traversed by hand, but steam gear can be fitted if required.

The arrangement has been adopted by the Admiralty for the new Sharpshooter torpedo gunboats. A number of sets have also been supplied to the Italian government, while there appears a probability that it will be fitted in other directions.-Engineering.

Mr. James S. T. Stranahan.

A dinner was given by the Hamilton Club of Brooklyn, N. Y., on December 13, in honor of one of her oldest and most distinguished citizens, Mr. James S. T. Stranahan. He has long been a representative of all that was best in the advancement of his city and time, and now at the age of eighty looks back upon a residence of nearly fifty years in the city of his choice. Some of his remarks made at the banquet have a peculiar interest. In the course of his address he said:
"I came to this city in 1844 and have since continued to reside here. There is no spot on earth to which I am so strongly attached as to the city of Brooklyn. The first enterprise in which I engaged on coming to Brooklyn was the Atlantic dock. In 1870 the first dividend was paid, twenty-six years after I engaged in the work. The second enterprise in which I was interested was Prospect Park. All the members of the original park commission, with the exception of myself, are leeping in Green wood.

The third project that interested me in Brooklyn was the Brooklyn bridge. No one can but acknowledge what the great structure owes to Henry C. Murphy and William C. Kingsley, both of whom sleep in their graves. There are two others, the Roeblings, father and son. The first lost his life, the second his health, in the building of the structure.!
"Brooklyn and New York are two municipalities. Is this an advantage? I think not. Would the con solidation involve any harm to either? I think not. The people in both cities are Ake in sentiment and feeling and have about the same interests. One municipal government could be carried on at less cost to taxpayers. I may be mistaken, but I think that the people of both cities should consolidate under the name of New York. (Applause.) London is London on both sides of the Thames, and Paris is Paris on both sides of the Seine. The East River bridge, added to the ferry system, will so affiliate the two cities that both will alike ask the legislature of the State to enact a municipal marriage."
The dinner was attended by a company of 167 leadng citizens, representing the bar, the pulpit, and other professions, as well as the business side of life.

Anthrarobin.

At the recent meeting of the Amertcan Dermatological Association, Washington, Dr. Bronson read a paper on a new remedy which he said was manufactured by Liebermann, a Berlin chemist, and was first employed on theoretical grounds, on account of its resemblance to other remedies of known value. Alizarine belonged to the same class, and from this anthrarobin was formed by a simple processis of reduction. It was a powerful oxidizing agent, one gramme taking up 120 c. c. of oxygen. It was a yellowish white, granular powder, sparingly soluble in chloroform and ether, readily soluble in alcohol and weak alkaline solutions. It mixed readily with fats in the formation of salves. The presence of an alkali increased the reducing effect. The author had treated cases of psoriasis at the Charity Hospital, applying anthrarobin on the right side of the body and chrysarobin on the left side. It was used in a ten per cent mixture with vaseline, and once a day an alkaline bath was given before the application. Out of the eight cases treated, the first five had been somewhat surprising. Improverment had begun sooner and gone on more rapidly on the right side, but after the applications had been stopped there had been more recurrences on the right side.
In the three other cases the alkaline baths had been omitted, and the improvement had been more marked on the left side; but as soon as the baths had been commenced, the right side had begun to improve more rapidly. The staining was of a dark brown and deeper than with chrysarobin, but it was limited to the area to which it was applied. In only one case, and when twenty per cent application had been made, had it been irritating. In a very marked case of eczema se borrhoicum the effect had been very marked. It had no antipruritic effect. In diseases in which the indication was for a purely keratoplastic agent, or in such conditions as obtained in the old stages of eczema, there was reason to hope that the new remedy might render considerable service.

Railway People Must Carry Good Watches.
The Rock Island road has notified its employes that, ommencing December 1, 1888, each conductor, engineer, yard master, train dispatcher, section or bridge foreman, and officer connected with the operating department, and all employes in responsible positions as to the running of trains, will be required to carry a watch of a certain standard excellence, and shall have heir watches examined by the compariy's examiner for certificate as to condition and quality, and once every three months thereafter.

EXPERIMENTS ON DEATH BY ELECTRICITY.

Some experiments on the effect of electricity upon animals, with a view to determining the best method of inflicting the death penalty on capital offenders, were performed on the 5 th of December at Mr. Edison's laboratory in Orange. Mr. Harold P. Brown was in charge of the work.
A calf weighing $1241 / 2$ pounds was first subjected to the current. An alternating current of about 50 volts E.M.F. was first applied, which caused the animal to fall, but nine minutes afterward it rose to its feet apparently uninjured. The current was then brought up to 770 volts E.M.F., and was applied for eight seconds. The animal died, and as far as could be ascertained, the death was absolutely instantaneous. On dissection the brain vessels were found filled with blood, but no hemorrhage was discernible; the heart and lungs were normal. The hair on the forehead was slightly scorched where the metal parts of the electrode came in contact with it.
A second calf, weighing 145 pounds, whose resistance between the electrodes was 1,300 ohius, was subjected to a current of 750 ohms E. M.F. for five seconds. Again death was instantaneous, the heart at once stopping.

Next a horse weighing 1,230 pounds, halter included, was subjected to the experiment. With the connections made as shown in the cut, the resistance was found to be 11,000 ohms. The current was used at about the same potential as before, but as the voltmeter had broken down, the electromotive force could only be judged by the degree of illumination which it imparted to a series of lamps. A single tap of the hammer was
rule, they are a better-paid class of men than almost any other, and the chances for advancement are more numerous than elsewhere. The young man who starts in to learn the machinist's trade has a broad field for development. Upon this trade more than upon any other depends the prosperity and wealth of our country There is a constant and increasing demand for new and improved mechanisms, and it requires the genius and ability of good machinists to furnish this demand Then there is also the great field of invention, that opens up an unexcelled and exhaustless chance for the ambitious and ingenious mechanic. That there are " millions in it" is emphatically evident from the examples before us. Nor is it absolutely necessary that a man shall be an expert. Some of the most valuable and most profitable inventions have been those worked up by men who were not experts, and who were scarcely well versed in mechanics to be valuable workmen.
That many inventions are valueless, we do not question, but that is not always a direct indication that they are worthless or unimportant as an invention. The one great aim in this line should always be to produce an article which is at once simple and possessing some features of novelty or value over any similar existing device. Another reason why we would consider the machinist trade a good one to be taken up is because it is principally upon this that the country depends for its wealth-producing forces, and while this state of things lasts there will always be a demand for good workmen. A thoroughly good machinist is seldom out of a job, and so far as sta-
GARAM SHOWING METHOD OF CONNECTING BATTERY AND SUBJECT
es show, there are less labor troubles arising in thi
The measurements were made by Mr. A. E. Kenelly, the Edison laboratory. It will be noticed in the diagram of the electric connections that a series of lamps were arranged in parallel with the voltmeter and its resistance. The lamps in this position acted as an adjunct to the voltmeter, giving ocular evidence of variations in electromotive force, and affording in themselve an approximate measurement of the same factor. They were utilized after the breaking down of the voltmeter as already described
It is now proposed to kill an elephant by electricity not, however, by the Medico-Legal Society's representatives. The elephant Chief, the largest in the country, has become so dangerous that his death has been decided on. It is proposed to apply electricity. Whether the idea will be carried out remains to be seen.

A Good Trade to Learn.

There are very few young men who start out in life but what do so with the intention of doing something that shall furnish them a means of livelihood and
than in any other line.-Practical Mechanic.

Rotary Veneering Machines.

According to the Northwestern Lumberman, the largest machine for cutting .veneers in the United States is in operation in California, and shaves up logs ten feet eight inches in length with the greatest ease. The shavings which come from these machines are great, long sheets, in each of which is almost the entire wood of a big log, and from a single shaving is fre quently made from 2,000 to 5,000 berry boxes. The logs are first cut into the desired length, then placed in a large steam box and left for twelve hours, sub jected to the effects of exhaust steam, which so softens the wood that it can be cut into the thin sheets desired, without checking or splitting into fragments. When sufficiently softened, the \log is pushed into an immense lathe and revolves in front of the great blade exactly as a strip of wood in a turner's lathe revolves
used to close the circuit, but the animal was little if at all affected. The current was then applied for five seconds, and again for fifteen seconds, and in neither case was the animal injured apparently. Finally the current at a full potential of 700 volts, estimated, was applied for twenty-five seconds. During this time steam was evolved from the electrodes, showing insufficient metal contact. Death was produced instantly.
The methods of connecting the wires to the animals were two: In the cases of the calves, ordinary medical electrodes were used. One was applied to the forehead, the other just back of the shoulders, in order to bring the brain into the direct line of conduction. The forehead electrode was circular, two inches in diameter, and was covered with sponge; the other electrode was four inches long and two inches wide. Both were covered with sponge, whioh was saturated with a solution of zinc sulphate of specific gravity 1.054 at standard temperature. A portion of the skin, where the electrodes were to be applied, was freed from hair by clipping with scissors. The burning of $t h e$ hair in the first experiment was undoubtedly due to incandescent and not to arc action.

In the case of the horse, the legs were wrapped with wet waste, and around this the wires this the wires were wound directly. One conclusion that these and other experiments lead to is that the resistance of the animal is due in great measure to the perfection of the contact with the skin. Perspiration favors the contact and. lowers resistance. Another conclusion is that the surrent should be current should be applied so as to have the brain in its direct course. A distinct difference is noted between the action

EXPERIMENTS IN KILLING ANIMALS BY ELECTRICITY, AS CONDUCTED AT ORANGE, N. J. toward the chisel. After the watersoaked outer por tions of the log have been trimmed off, a number of small, chisel-like instru ments are adjust ed, with the sharp cutting edges pressing agains the log, which make paralle lines, partially cut through, the whole length of the great white steaming shaving. These lines are the points of bending when the boxes are formed, and make that operation nothing more than a simplemechanical movement, as the wood bends readi ly at the partial cuts, and form the angles of the box. Ail but the core of the \log is turned off in to this long shaving one-twentieth of an inch in thick ness and nearly one thousand fee long, which is of the alternating and the direct current. The alter- soming more which they may look to in case there folded and broken into convenient lengths for handing nating current seems to produce a kind of paralysis or tetanic condition, in which the animal struggles very little, while the direct current brings about contortions which may become very serious and powerful.

The experiments were executed under the auspices of the Medico-Legal Society of this city. The importance of determining the best method of inflicting death by
something more, which they may look to in case there comes a time when they cannot do so. It is of course bringing about this object, and it is a most important thing that the young man choose that in which there is the best chance for the accomplishment of this end.

There are few trades to-day that offer better advantages in this direction than the machinist trade. As a
as fast as it comes from the knife. These are then cut into narrow strips, lengthwise, and of the proper width for the sides and bottoms of a berry box. The laststep in the manufacture is the fastening of the bottom and side strips together, which is done by a peculiar-looking nachine called a stapler, but which might properly be called a wire-sewing machine.

RECENTLY PATENTED INVENTIONS. Engineering.

Locomotive Boiler. - Charles S. Smith. Pocatello, Thaho Ter. This is a boiler with an attachment whereby a portion of the exhaust steam the combustion of the fuel and preventing the escape of parks and cinders, the exhaust beng connected with he discharge end of some of the boiler flues.
Air Brake.-George B. Williams, La crosse, Wis. This brake is designed to reduce to a minimum the waste air from the train pipe when air from an auxiliary reservoir is used for applying the brake, the invention cover Westinghouse brakes
Pulverizing Machine.-James W. Hilton, Brooklyn, N. Y. The machine has a cylindri cal casing closed by end heads, each having axial fubular bearings connected with a hopper, there being having outer curved pockets and screens, and a solid entral portion provided with pulverizing surfaces or ings and pulverizing rollers, being adapted for pulverzing ores and for other uses.
Feed Water Heater.-J. Thomas Lee, Mattoon, Ill. A water jacket diaphragm, or hea defiector, is held in the smoke box of the boiler and jacket surrounds the stand pipe and is connected with he water jacket diaphragm and the interior of the boiler, thus utilizing the heat of the escaping smok
and gases and of the exhaust steam.

Mowing Machine.-George W. Max vell, Homer, Neb. This invention covers nove
features of construction and combinations of part eatures of construction and combinations of part secured and all complicated mechanism is avoided.
Fertilizer Distributer.-John M. Howell, Jr., Donaldsonville, La. It has a hopper
through which passes the wheel axle carryinga toothed cylinder, a slide or valve being arranged in a chambe extended to and below the hopper, the chamber having on its under side a two-armed conductor, while the valve is operated by a lever having adjustable connec tion with the hopper, for distributing a given numbe pouns of ferlizer to
Oscillating Sulky Harrow.-Calvin H. Weeks and William Sellers, Haverhill, Mass.
The harrow is pivoted at its center of gravity, and so The harrow is pivoted at its center of gravity, and so
balanced that but little power is require to oscillate it, the worm-like passage of the harrow teeth through the ground being designed rather to lighten the draught o
the machine, while doing the work with one passage o the machine, while doing the work with one passage o
the machine, so that cross-harrowing is unnecessary.
Poison Distributer for Plants.James T. Gramling and Alfred A. Adler, Mayersville, Miss. The crank asle on which are the eapporntrg
wheels and frame is bent up in the middle high enough to pass over the tallest branches of cotton, and the frame carries powder-dusting devices for sifting Paris green or other powdered poison upon growing plants, such as cotton, potatoes, etc.
Harvesters. - Dennis H. Bennett, Allendale, Mich. This invention covers an improved cutting apparatus for harvesters, particularly providing convenient means for securing the knives to the when desired by giving the button a quarter or a half turn, and when replaced be secured by reversing the
Cultivator.-Clinton Mendenhall Martinsburg, West Va. It is made with a wheeled
frame having a series of inclines at its forward end, upon whieh a shaft is supported to travel, the shaft having plows connected thereto, while there is a leve for operating the shaft, by means of which the plows
may be lifted out of the ground, and means for regulating the depth of the plows, the machine being adapte for cultivating various̀ kinds of grair, and for use on stony or siumpy ground.

Miscellaneous.

Ratchet Mining Drill.-William A Gentry, Trenton, Ga. The tubular stock of the dril has a socket at one end to receive the drill and a socke at the other end to receive a nut through which the within the tubular stock, and with its nut being con veniently reversible, saving time and promoting dura bility.

Tamping Tool.-Warren B. Waldron and George C. Boller, Folsom City, Cal. This inven adjusted in place or removed from the socket of the adasing tool, the spear being of any desired shape, and
tamper preferably of plate steel.
Lifting Jack.-J. Merritt $\mathbf{S m i t h}$, slot through it, and at one edge a series of downwardi inclining branch slots or pockets, forming rests for th fulcrum pin of a curved operating lever arm, with othe novel features, making a jack more particularly de signed for lifting carriages.
Leveling Instrument.-Aaron T. Binkerd, Allegheny, Pa. This is a combination instrument mounted on a stock, from which swings a gravity pointer, a degree scale being on the stock, and an arm pivoted to the stock, on which arm a compass is mounted to turn provided with folding sights, the instrument belng adapted for leveling, obtaining angles, and
sighting distant points.
Tank ValVe.-James Cavanagh, New
York City. This invention covers a novel construction, York City. This invention covers a novel construction,
combination, and arrangement of parts producing a combination, and arrangement of parts prod
sheap and effective inlet cock for closet tanks.

Chisel Gauge.-Aaron T. Binkerd, Chisel Gavak.-Aaron T. Binkerd, Allegheny, Pa. This is a device adapted for attach
ment to an ordinary chisel to guide the latter while cutting hinge-receiving recesses in doors, sashes, etc., and is made with two plates, one adapted to rest on the top to limit the instroke of the chisel, fastening devices holding the plates to each other and to opposite faces of the chisel blade.
Hay Sling.-Jay Toney, Omaha, Neb. tis made with two ropes united at their ends in rings, in connection with a coupler formed with a bail. through which the elevator rope passes, and having
pivoted jaws and a sliding block, whereby the pull on pivoted jaws and a sliding block, whereby the pull on
the elevator rope draws the sling firmly upon its load.
Pulley.-Jay Toney, Omaha, Neb. This invention consists principally in combining with the frame of the pulley a detachable head or knob, so that the pulley may readily be provided with a head of
any size required for any hay carrier, being designed more especially for use in connection with heavy forks unlogders
Vehicle Wrench. - Egbert W. Hemans and Eugene C. Thayer, Aurelius, Mich. This wrench is designed to provide a means whereby the axle nut may be removed or replaced by the motion of
the wheel, and when the wheel is removed from the axle the nut will remaim in the hub in position for reacement.
Brake for Vehicles.-William R. Wilcox, Portland, col. This is a lock brake, whereby scending a steep grade the azle of the vehicle hand de rock shaft journaled thereon, with a lever attached to one end of the shaft, lugs projecting from the shaft, and fork-like brake bars pivoted to the lugs.
Grain Weighing Scale. - Henry Cutler, North Wilbraham, Mass. This scale is automatic in operation. delivering the weighed grain to the bags, and is simple and durable in construction and not
liable to get out of order, the invention being an imrovement on a former patented investion of the same

Making Pickets or Shingles.-Noah A. Acuff, Hall's Cross Roads, Tenn. This is a machine for pointing pickets, shingles, or similar articles, pro-
viding therefor an apparatas that will occupy but little viding therefor an apparatas that will occupy but little
oom, and wherein each article will be shaped upon a miform slope and pointed to the center of the ma-
W ater Heater.-William M. Barber, Fitchburg, Mass. This heater is designed to be safely viding therefor an effective circulation, and affording a arge amount of water with a maximum area of heating urface.
Washing Machine.-Samuel J. Smith, Truckee, Cal. This is a machine in which movable rubbers are operated in conjunction with a stationary being operated in series, whereby the clothes ara bopt
from wadding up while the water is kept in rapid cirfrom wad
Gauge Chisel. - Aaron T. Binkerd, Allegheny, Pa. This is'a tool adapted more particularly
for scoring or cutting recesses to receive the leaves of for scoring or cutting recesses to receive the leaves of
hinges, by which hinges of any size may be quickly set hinges, by which hinges of any size may be quickly set
into work without the aid of compass, try square, or rdinary marking gauges.
Distilling Turpentine.-Joseph B. Underwood, Fayetteville, N. C. This invention covers
process of distilling crude turpentine in the presence refined petroleum having about the same specific ravity as spirits of turpentine, or less, designed to in
rease the yield from a given quantity of crude turpen tine and to improve the character of the product.
Making Boot Heels. - Antoninus Farina, New York City. An apparatus for forming solid body, is covered by this patent, which embrace ovel devices for stretching and pressing the leather into the approximate form of the finisked shell preparatory to moulding it, and for moulding and working the eather into the final shape thereafter.
Dfsks.-John Thompson, Chicago, Ill. This invention covers an improvement in desks whose abinets or pigeon hole portions are adapted to be first
drawn partly out and then turned or swung one-quarter way around, increasing the facility of reaching their

Bicycle.-Hiram F. Henry, Gowanda, N. Y. An arm is connected with the swinging part of the steering standard, while a spring is held on the he steering wheel to ressing againstically to its norma position when turned out of a straight line, and holding it in normal posit
the steering arm.
Paper Holder and Cutter.-John Zerr, Keokuk, Iowa. This invention relates to roll
paper holders with cutters for parting the paper by paper holders with cutcers for part sidewise, and covers special means for producing tension upon the roll of paper, which is cut after a sufficient length of paper has
from the roll for the purpose required.
Paper Fastening Tool.-Thomas C. McCollom, Brooklyn, N. Y. This invention relates to flexible T-shaped paper fasteners to the joining of paper heets, and for removing them, the object being to secure greater simplicity, efficiency, and convenience in use than has heretofore been attained.
Album Clasp.-Frederick Deck, Brooklyn, N. Y. A box, casing, or pocket is hinged having a threaded tongue engaging a milled nut in a through opening in the walls of the pocket, the plate having an aperture for engaging a stud on the other
cover of album, making a simple, convenient, and

Plume.-Ralph W. E. Aldrich, North mpton, Mass. It consists of a central rigid core, to
which strands of wool, hair, or similar material are secured at about the center of their length by the twist of the core, while a cap is attached to the upper end of he core, whereby a plume may be produced in an eco omical and expeditious manner.
Exhibiting Apparatus. - Bertrand Hamburg, Paul Ketterer, and Eduard Ketterer, Frank or displaying watches, jewelry, and other articles causing them automatically to pass before the eyes of spectators in
inspection.
Puzzle.-Samuel P. Chandler, Ashton .C. It consists of two notched bars interlocked wit hree series of notched blocks, one series of which is arranged between the notched bars and the other two
series of which are arranged on opposite sides of the eries of which are arranged on opposite sides of the he first series of blocks.
Motor.-Cornelius C. Epp, Bradshaw
. This invention covers the use of a drive weigh combination with a train of gears, the device em binations of parts, and being intended especially for pumps.
Grocer's Bin.-Lysander Johnston, Tyler, Texas. This invention consists in a box or bi pivoted so that its upper open end may be convenientiy therefrom, and as conveniently pushed back into the casing, which has stops for limiting the opening an closing movements of the box.
Banjo.-James J. Doyle, Albany, N. . The strings are all securd at their opposite ends to ndependent individual keys, so that they may be in dependently tuned for playing, and thereafter all lowered and again raised simultaneously.

SCIENTIFIC AMERICAN

BUILDING EDITION
DECEMBER NUMBER.-(NO. S8.)

TABLE OF CONTENTS.

Elegant plate in colors, showing three designs for small cottage dwellings, for twenty-five foot lots. details, etc
2. Plate in colors, illustrating a village school hous to cost three thousand dollars. Details, floo plans, etc.
3. Full page illustration of the great chirnney at the Clark Thread Works, Kearney, N. J. Height, 335 Perspective view and floor plans of an attractive residence built at East Orange, N. J. Cost, eight
thousand five hundred dollars. housand five hundred
A cottage recently erected on Sound View Hill, New Rochelle, N. Y. Plans and.perspective. Cost,
four thousand dollars. our thousand dorla.
Views of the Pratt Institute for Industrial Educa tion, Brooklyn, N. Y
A cottage for four thousand three hundred dollars,
recently erected at Rochelle Park, N. Y. Plans recently erected
8. Perspective and floor plans of an attractive cottage built recently at
thousand dollars.
A suburban villa built lately at Richmond Hill, A suburban villa built lately at Richmond Hill,
Long Island. Cost, seven thousand dollars. Plans Long Island. Co
10. Engraving of a- country residence at East Orange N. J., with plans and perspective. An excellent design.
11. A residence on Renolds Terrace, in Orange, N. J lately built at a cost of eight
2. Design for the

Design for the new building for the United States
post office, etc., at Dayton, OLio.
An admirable design for a suburban residence of
the Queen Anne type, recently built at the Queen Anne type, recently built at
Orange, N. J. Cost. nine thousand dollars. Perspective and floor plans.
Perspective and plans of a barn and carriage house built at Richmon.
16. The Villa Reiss, near Cronberg, Taunus Mountains, many.
Miscellaneous contents : Publication of designs, The Drexel building. Philadelphia.-Ancient sani-tation.-Effect of adding sugar to nement.-The New York safety dumb waiter, illastrated-The automatic regulation of the temperature in houses, illustrated.-The Aldine flreplace, illustrate
The Howard combination heater, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. \$2.50 a year. Single copies, cents. Forty large quarto pages, equal to about cally, a large and splendid Magazine of Architrac TURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation fang Architectural publication in the world. Sold by

MUNN \& CO.. PUblishers,
as1 Broedway, Now York

ƏBusiness and Personal.
The charge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a line. as early as Thursday morning to appear in next issue.

Pattern letters and figures to place on patterns for
castings. (II. W.) Knight \& Son, Seneca Falls, N. Y. Bargains- W.) Knight \& Son, seneca Falis, N. Y. Wanted-A horizontal engine. Size about 15 or 16 x 30 in ., pulles $20 \mathrm{in} . x 10 \mathrm{ft}$. Must be in perfect order and For Sale-U. S. patent, No. 383,009. Price, $\$ 200.00$. ops, 11 cents. Address D. H. Prewitt, Perryville, Ky. Two Hammond typewriters for sale. W. E. Lewis,
Corry, Pa. Mechanical drawing taught by correspondence. Pro Private line telephones. See illustrated adv., page 348. Air compressor for sale cheap. Also steel tanks, iron ail, cars, etc. Address The Buffalo Wood Vulcanizing
Co., Buffalo, N. Y. Pratt \& Letchworth, Buff alo, N. Y., solicit corresponence relative to manufacturing spec-
alties requiring malleable gray iron, brass, or steel castialties
ings.
For

For the latest improved diamond prospecting drills, For the latest improved diamond prospecting
Iron Planer, Lathe, Drill, and other machine tools of Link Belting and Wheels. Link Belt M. Co., Chicago Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Perforated metals of all kinds for all purposes. The
Robert Aitchison Perforated Metal Co., Chicago, ill. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maPedestal tenoner. All kindswoodworking machinery C. Bogers \& Co., Norwich. Conn.

Patent swing cut-off saw, with patent shield for saw.
Rollstone Machine Co., Fitchburg, Mass. Billings' Double-acting Ratchet Drills. Drop Forgings Stea. Bumas a spenco., Hartrora, Coma Steam Hammers, Improved Hydraulic Jacks, and Tube Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city. "How to Keep Boilers Clean." Send your address N. Y. The best Coffee roasters, coolers, stoners, separators, olishers, scourers, glossing apparatus. milling and
peaberry machines: also rice and macaroni machinery peaberry machines: also rice and macaroni machinery,
are built by The Hungerford Co., 69 Cortlandt St., N. Y. Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainbint 152 , cont. 152 page illustrated catalogue free. McAllister
Manufacturing Optician, 49 Nassau St., New York. Rotary veneer basket and frui
E. Merritt Co., Lockport, N. Y.
Split Pulleys at low prices, and or same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St.. Philadelphia, Pa.
Send for new and complete catalogue of Scientific nd other Books for sale by Munn \& Co., 601 Broadway ew York. Free on application.

NEW BOOKS AND PUBLICATIONS.

MANUAL of Chemistry. W. Simon Philadelphia: Lea
Pp. 479. Price $\$ 3$.
The author is a professor of chemistry in the Maryand College of Pharmacy, Baltimore, and has here presented a guide to lectures and laboratory work for
beginners, a text book specially adapted for students of pharmacy and medicine. This is the second edition of he work, which has been revised and greatly enlarged now having forty-four illustrations and seven colored plates, the
actions.
Hygiene of the Nursery. By Louis Starr. Philadelphia : P. Ble
Son \& Co. Pp. 212.
The endeavor has been in this book to point out a series of hygienic rules which, if applied to the nursling, can hardly fail to maintain good health, give vigor to the frame, and lessen susceptibility to disease, little or
no reference being made to drugs or methods of no reference being made to drugs or methods of
nedical treatment. The author is a physician to the Children's Hospital. Philadelphia.
Eating FOR
Holbrook.
Strew
New Holbrook. \quad New York : M.
brook \& Co.
Pp. 236. This is a dissertation on food and diet in relation to
health and work, giving several hundred recipes for health and work, giving several hundred recipes for wholesome food and drinks, presenting much of the valuable for actual use in daily life.
Poor's Directory of Railway Offi CIALS. Thrd annual number. New Price $\$ 2$.
This book is a supplement to Poor's Railroad Manual, containing lists of officers of all railroads in the
United States, Canada, Mexico, and Central and South Anerica; also of oficers of press, sleeping car, and equipment companies, of manufacturers of various kinds connected with railroad business, etc. The directory contains 30,000 names
Curiosities of the United States ler Raymond. Syracuse, N. Y.: Wil
liam C. Raymond. Pp 168 .
This book is perhaps more amusing and entertaining than instructive, for its principal features are those noting some of the curious, comical, and remarkable pating of which the author, who was formerly an attach

hints to Corresponden's
Names and Address must accompany all leters,
or no attention will be paid thereto. This is for our
information, and not for publication.
References to former articles or answers should
give date of paper and page or number of question.
In quiries not answered in reasonable time should
 pecial Wiliten luformation on matters of
personal rather than general interest cannot be expected without remuneration.
Scientilit American Supplements, referred
to may be had at the oftice. Price 10 cents each. Books referred to promptly supplied on receipt of
price. Minerais sent for examination should be distinctly
marked or labeled.
(1) G. W. asks a recipe for hardening soles of shoes. A. There is nothing practical for such
purpose, except using nails or some such covering, as purpose, except using nails or some such covering, as
adopted in miners' shoes. Leather does not lend itself to any hardening process not already in use in its making.
(2) C. T. asks: 1. What is the strength of the solution of pure arsenic to be used for spraying
fruit trees? A. If white arsenic is used, it is apt to in jure the leaves. Mr. Gillette, of the Iowa Agricultural
College, found that 1 pound arsenic to 400 gallons of College, found that 1 pound arsenic to 400 gallons of
water injured apple tree leaves, and 1 pound to 800 gal ons injured plum tree and poplar tree leaves. Even pound to 1,200 gallons affected plum trees. This therefore the maximum strength, and is probably to weak to be of much efficacy as an insecticide. Recent experiments by Professor A. J. Cook, of the Agricul-
tural College of Michigan, show that three applications of "London purple," 1 pound to 100 gallons of water can be applied to apple trees. The foliage is injured but the fruit ripens. We also refer you to Scientific AMERIIAN SUPPLEMENT,No. 475, for a valuable paper on
the subject of destruction of insects on trees. 2. How the subject of destruction of insects on trees. 2. How
can the disjoined column of mercury be reunited in a can the disjoined column of mercury be reunited in a
combined maximum and minimum thermometer? A. combined maximum and minimum thermometer? A
The column can be joined by jarring the instrumen with the main bend downward. The method of filling practically a trade secret.
(3) J. G. asks for the process of gilding letters (sunk) on marble. A. It is executed like other
gilding; the letters are sized and the leaf is put on with a camel's hair pencil; the flat surface of the marble
(4) J. H. asks: What will keep plate glass windows from perspiring after lighting gas in show windows? Ihave tried almost everything with
out success. The windows are closed in the book with out success. The windows are closed in the haok w
sliding doors, and have a 4 inch ventilating hole in ceiling. A. Probably you have not a sufficient space alt the bottom to provide for an air supply. A through
draught is needed. Top ventilation alone is not suffi cient.
(5) P. H. L. asks : 1. Why is the armature core of a dynamo made up of a series of iron
washers insulated from each other by paper washers? A. To prevent currents of short circuits, which would otherwise be generated in the armature core. They are
known as Foucault currents, 2. Could not a solid iro known as Foucault currents. 2. Could not a solid iron core be used instead? A. Yes, but it would be waste-
ful, as energy would be absorbed in the production of ful, as energy would be absorbed in the production of
Foucault currents. 3. Is there any magnetism about dynamo when not in motion? If not, what causes the magnetism in the field magnet, which the armature picks up and sends out through the wires? A. Yes; it is
known as residual magnetism, and is the starting point known as residual magnetism, and is the starting poin for the action of the machine. 4. What is the best low
priced book on construction of dynamos? A. Hening' priced book on construction of dynamos? A. Hening
Principles of Dynamo Construction. We can send it Principles of Dynam
(6) Bookman asks: How can I remove ink stains from paper? I have a lot of second hand books and I want to remove the names from the front
pages without defacing them. A. You will have much difficulty in doing it. Use oxalic acid dissolved in water, followed by javelle water. Hydrochloric acid di-
lute may be used to remove the iron stain left by old lute may be used to remove the iron stain left by old
ink. We also refer you to Scientific American Sup plement, Nos. 55, 158, and 471.
(7) P. S. asks : How much coal gas is made from 1 ton
12,000 cubic feet.
(8) G. A. M. asks how to tell a genuine gold leaf gilt frame from one that is not. A. By scratch ing the surface. If the frame is silver-coated and var off. If of gold leaf. the body of the frame will appear. To one familiar with both kinds, the gilded frame can be recognized by its appearance.
(9) C. C. M. asks for receipt for making Saratoga chips (potatoes). A. Either lard' or cotton-
seed oil can be used; the former is generally preferred seed oil can be used; the former is generally preferred.
The potatoes are cut raw into very thin slices or spiral shavings. It is then a good practice to soak them for
10 or 12 hours in cold water. The lard or oil is placed in a deep pan and is brought to a good heat and the potatoes after draining are thrown in. The heat should
be sufficient to make them " sizzle." When brown they should be removed with a perforated skimmer, and shaken in a cullender with a little salt. Experience is everyth
them.
(10) W. A. M. writes: I have constructed a static machine capable of giving a $41 / 2$ inch
spark. Can it be made to work the simple electric pen spark. Can it be made to work the simple electric pen
as described in back number of Scientific American, as described in back number of SCIENTIFIC AMERICAN,
and how? I have tried several methods withoutsuccess,
as sparks pass through paper without perforating it Placing the paper between electrodes separated an inch
or so, it is perforated nicely by the spark. A. The paper is undoubtedly perforated, but the rubbing of the pen may tend to close the minute holes. Try the effect
of placing a piece of thick blotting paper under the paper on which you write
bon plate is too smooth.
(11) A. D. W. writes: Lines drawn in the center of a 10 gauge double-barreled shot gun will meet at the distance of about 8 feet from the muzzle, and if continued to the ordinary distance of shooting
will be about 2 feet apart, $i . e$., the center of the pat tern made by the left hand barrel would be about 2 fee to the right of center of pattern made from right hand
barrel. As the facts do not substantiate the theory, will
. barrel. As the facts do not substantiate the theory, will
you please explain why? A. The barrels of a doubleyou please explain why? A. The barrels of a double-
barreled gun are inclined toward each other because the sighting is done along the central rib. Possibly the gun you refer to is over-corrected. The recoil also no being axial tends to throw the g
with right and left hand barrel.
(12) G. H. A. asks (1) how to cut a glass jar in two. A. File a slight notch on side, hold a red forth until a crack is started, which you can lead in any forth until a crack is started, which you can lead in any
direction by moving poker, which must be heated anew from time to time. 2. Will electricity affect a person' watch when they are taking shocks from an electromagnetic battery, and will it affect them as soon as the magnetic battery, and will it affect them as soon as the
current is turned off? A. It will not in the sense you refer to. 3. How is the simplest as well as the cheapest
battery made? A. For batteries we refer you to our battery made? A. For batteries we
Supplement, Nos. 157,158 , and 159.
(13) J. C. L. asks (1) if a dynamo-elec tric machine armature $41 / 2$ inches diameter, 3 or $31 / 2$ wide, having three or four layers wound around its core, can be driven at 2,000 revolutions per minute. A. Yes.
2. Can you give me a formula or rule for determining 2. Can you give me a formula or rule for determining
it? A. No rule can be given; the speed named is withit? A. No rule can be given; the speed named is with-
in the limits determined by practice. 3. Is Russia sheet iron suitable for making the laminæ of
ture core? A. It is about the best material
(14) P. D. H. asks for a good battery to work eight electric bells. A. Use four cells of the new the black oxide of manganese instead of the usual clay cap. Employ a reliable electrician to test your wires for crosses and leaks. Brighten up the door connection
by removing the dust from the surface of metal.

Enquiries to be Answered.

The following enquiries have been sent in by some of our subscribers, and doubtless others of our readers will take pleasure in answering them. The number of
(15) At what speed can. a housefly fly? (16) How can I prepare a good grafting
ax ?-R. W.
(17) Which bird flies the fastest, carrier pigeon, duck, or bullet-head hawk: Also, what is the
fastest bird and its record ?-J. G.
(18) How can I make a good violin var(18) How can I make a good violin varnish? A tender and at the sametime wearable var
nish. The color to be a blood red. Also, how can I
(19) Will you please iniorm me through your valuable paper if there is any mechanical device
known that will propel itself until it breaks or wears
(20) Will you please tell me how maps in relief are made, such as are used in Germany and
other countries in the schoo is? I understand modeling clay and casting in plaster, but wish to make them (21) 1. How are leather cuttings dissolved d prepared for further use? 2. What cement medium used? 3. How are buckets, bathtubs, etc., of wood
pulp made? 4. What is the substances besides wood pulp? 5. What cement medium is used? 6. How prepared to stand the moisture? 7. If pressed, what you kindly will oblige one of your subscribers here in Norway by giving full information about above. It
will no doubt interest many readers of your paper.-E. (22) When is the best time and what the best method of grafting pear trees ?-F. F. B.
(23) Please let me know how to prevent make old cider, two and three years old, quick to vinegar. The cider is placed in the yard about three months. About two weeks ago I added to each barrel two quarts
of Porto Rico molasses. It has not changed yet.-H.
(24) What coating is used to preserve old maps made on paper with cloth backing (the usual
mounted paper of draughtsmen)? The one I have be ins to flake or peel off, showing that the paper is brit le.-D. H. Van A
(25) What is the best way to get yellow tains out of ivory? And the best way to get stains out of marble ?-H. L.
(26) How can cottonseed oil be bleached and refined to substitute the lard? And which are
(27) 1. If a Bell telephone receiver be equired to work on a very short line as both transmit-
er and receiver, should the winding or the adjustment of the diaphragm be altered in any way? 2. How much wire, and of what size, shall I use in making a re--
ceiver to work on a circuit with a microphone trans. ceiver to work on a circuit with a microphone trans-
mitter? 3. Whether will a single or a multiple contact transmitter give the best results? 4. Where can I get instructions for making a magneto bell ? 5 . I want
to make a cover for a carbon battery by melting some lead and casting it in the form of a plate in which one and of each carbon is to be embedded. Will the heat be apt to break the carbons (arc light carbons), and if so
what would be a good substitute for lead? 6. Which
would be better for house bell and gas lighting-a car Son. battery or a cell made of cast iron, zinc, and a solu
ion of caustic potash, the cells being of the same size -T.D. McC.
(28) Please tell me how to make a liquid k eraser for both red and black ink.-J. K. McB.
(29) I have a C. and C. motor which has been changed to a dynamo. It is $1 / 8 \mathrm{H}$. P., 13 volts, $91 / 2$ amperes. If I could, I would like to run it by a turbine
wheel from a $5 / 8$ inch pipe. I can get a pressure of 25 wheel from a $5 / 8$ inch pipe. I can get a pressure of 25
pounds. If you think that would run the motor at speed between two and three thousand revolutions minute, please tell me where I could get a formula for how many and what kind of cells would it take to run it as a motor ?-C. F.D.
(30) Please tell me how to temper steel cutlery, such as
etc.-R. W. H.
(31) Please give directions for making an oxygen bag to use in connection withan oxy-calcium
light for magic lantern. How can an amateur silver a aper or brass reflector $9-H$.
(32) Would paper placed between the in and sheeting of a tin-roofed bnilding prevent moist-
ure from accumulating and dropping in the room where there is no ceiling in cold, frosty weather?-J.
(33) I wish to ascertain the best and easiest method of removing old lacquer from brass in truments. Alsoa receipt for makingaluminum lacquer, nakers apply to their brass instruments to take of th bright glaze. Also how to apply, if brass should be warm or cold. Give method or receipt to make various
colors of lacquer.-" Rocky Mountains." colors of lacquer.-" Rocky Mountains."
(34) 1. Is there any rule by which the size of wire for a given current may be found (say cur-
rent to be 110 volts and 120 ampere strength)? Please give me the rule for finding size of wire for differen currents if you can. 2. Why is it that the wire on the armature of a dynamo is smaller than the wire used for
a line wire? I cannot understand how it can be kept rom heating, when I take into consideration that it has to carry the full current of the dynamo. 3. What rule
is followed in winding armatures for dynamos by which a current is to be produced, the E.M.F. of which is to be 110 volts? 4. Can dynamos be built so as to
give currents of different amperes, and still have the
(35) I have a Talbott "Dixie" portable engine and boiler, engine 5×8 cylinder. I want to run a small circular saw with it, bat am arraid I have no
much power to spare. Suppose I attach a sawmill man drel direct to engine shaft, would I have any more power than by using a belt? About how large an engine
using a belt would mine equal in power, and about how much could I saw in ten hours of yellow pine, using a 36-inch saw? The boiler is the "Disie" pattern, with large, straight shell, with the tirebox inside the shell.
I want to change it to a tubular by taking out the front head, firebox, and tubes, and putting on a flush front and new tubes. Boiler is 33 inches diameter, 5 feet long. Would it furnish steam enough to run the engine
About how much power would the boiler have ?-X. (36) I am a regular reader of your valu able paper, and would like to have you answer a ques tacle and eyeglass frames bronzed and blued? How must I go to work about it? How is it done by
our larger factories, that the entire frame has the same shade, and that it will not wear off easily ?-" S
(37) Oblige a subscriber by stating where the facts can be found touching the manufacture noticed in your paper an accoint of a plant in Germany where the industry was carried on. Do you think that this kind could be made to pay in this country? There are an immense -number of hides shipped away to the Eastern manufacturers from this country, to come back as boots, shoes, harness, etc. The country is fill ing up, and it seems as if the manufacturing of articles for home consumption ought to be done nearer home
especially as the time is fast approaching when the population will be numerous enough to warrant it.-
(38) I have some jars which were used or electric bells. They are about 4 inches in diameter by 6 inches high. Can I use these for an incandescen lamp? And about how many of these jars will do for
one lamp? And how should I make the battery? Please reply in next week's Scientific American.-
(39) Is there any method I can use in making press copies of writing to make the copies clear
and distinct? I copy from ten to fifteen sheets at once, raking a double copy of each, through the columns of your paper you will greatly oblige.-J. F. A.
(40) Would you please let me know how luminous paint could be made that would show dis.
(41) 1. Can you give the formula of a
mixture that will cause stumps to be consumed by fire? misture that will cause stumps to be consumed by fire?
2. Please give formula of mixture that will improve the 2. Please give formula of mixture that will improve the
color of maple sirup. 3. Give best process of filtering maple sap, before boiling, to take out filth.-L.D. A.,
(42) Can you tell me of any colored owder liquid or chemical that will change liquid gas ar from black to
(43) When shooting from a rifle, why loes the bullet.always strike in a line with the top of low, as that is about the distance from the top of the front sight to the cenier of the barrel?-G. C. N.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unqualed facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all oreigncountries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, hich are low, in accordance with the times and our e MUNN \& CO.. office SCIENTIFIC AMERICAN, 361 Broadway, New York.
INDEX OF INVENTIONS
For which Letters Patent of tle
United States were Granted
December 4, 1888,
AND EACH BEARING THAT DATE.

Batteries, indicator for secondary, s. c. C. Currie,Battery plates, making secondary, w. W. Gris- 393,755

liams

Bell. door, J. W. Clark.......................... 393380818
Bell, electric, J. F. McLaughlin............
393,998 Bell ringer, automatic, T. D. Heffernan.................. 393,8;0
39,
Bis Belt, driving, G. W. Heffine Belt stretching machine, B. M. Plummer Bicycle, H. F. Henr
Bicycle, G. Kibbe
Billiard table, J. Kostner
Billiard table, J. Kostne
Blasting, G. Trench....................................... 393
Block. See Pillow block.
Blowing engine, e. Reynolds........ 393.856
Boat. See Tow boat.
Boiler. See Locomotive boiler. Steam boiler. Ther
Boilers, hydrocarbon furnace for steam, F. W. W.
oteldt
Of eldt ...
Bolt for connecting rails for permanent ways, G .
Coulon
Bolting reel, w. D. Gray......
Boot or shoe, W. D. McCoy
$\ldots 93,25, \cdot 394,0988$
393826
393766
Boot or shoe heels, apparatus for making,
Boot or sho
Farina...
Bouquet hol 393,892
393,886
Box. See Ballot box. Core box. Cracker box.
Letter box. Sign box.
brake. Sled brake.

Brooms, etc., holaer for, Engelman \& Kiser............................34,064
393,756
Buckle, M. Rubin... 3994,014
394,013
Buckles, fastening attachment for, G. W. Hay Buggy boot, G. Monteith 394,072
393,780
Burner. See Gas burner.
Butter mould, H. B. Bouders........................ 394,028
Button. C. Prentice....................................... 394,132
Buttonhole stitching and barring machine, J. H.
Reed...
Can opener, G. W. . L Lyons.
ar for bic ycle railways, freight, E. M. Boynton Car for elevated roads, railway, E. M. Boynton... Car starter, G. B. Haines
Cars, heating and lighting
Cars, propelliug gear for tram, G. D. Gilbert
ars. receptacle for clothes in sleeping, P. A. Gor-
don.
ars, seam heating apparatus for railway, L. D.
Jobes.................................
Cars, whifletree attachment for horse, L. Pfingst 39 Carpet stretcher, J. Kingsland, Jr.................... 393, 39309
3arriage, C. Thomas.
Cart. road, J. M. Fugett
Case. See Pencil ca
Cabh mat, E. Sears
394,08,
Catamenial sack, P. M. Boleman 393,888
Celluloid and similar compounds, apparatus for
the manufacture of, J. R. France..... ...
Chain, drive. S. D. L_cke.
Chains. making drive. S. D. Locke.................. 399.9129 .912
Chair bottom, J. Harley............ 393,759
Change maker, W. H. Toft................................. 3933,933
Chisel for cutting hinge recesses, gauge, A. T.
Binkerd..339888
Chisel gauge. A. T. Binkerd..........
Clamp. See Rope clamp.
Clasp. See Album clasp.
Clasp, E. Johnson...........
Cleaner. See Flue cleaner.
Cleaner. See Flue cleaner.
Cockle separator, F. W. How.............. 393,98
Coffee. apparatus for leaching, F. C. Wilson................393,046
Coffee, composition for coating, F. W. Moore...
Coke, apparatus for cooling, D. R. Murby
Coke, apparatus for cooling, D. R. Murphy......
Collars, machine for stuffing horse, S. H. Ewing
Collars, machine for stuffing hor
Commutator, C. L. Buckingham.

 Modern American Marine Engines, Boilers,
and Screw Propellers. Ther
tiosign and Construc.
 The Practical Steam Engineers, Guide in the
Design, Construction, and Mana Manement or American
Statonary, Portable, and Steam Fire Engines, Steam

 HENRY CAREY BAIRD \& CO., THE POPULAR SCIENCE MONTHLY,
Edited by w.J. Youmans Welk kown as trastrort thy Medium for the gread

 Ward S. Morse, S. S. Newberry, Eugene L. Richards,
S.S. Shaler, G . Thompson
Single Number, 50c. Yearly Subscription, \$5.

MECHANICAL DRAWING.

By Prof. C. W. MacCord, of the Stevens Institut practical lessons in mechanical drawing, accom panied by carefully prepared examples for prac-
tice, with directions, all of simple and plain cha racter, intended to enable any person, young or old, skilled or unskilled, to acquire the art of drawing. No expensive instruments are involved The series embodies the most abundant illustra tions for all descriptions of drawing, and forms the most valuable treatise upon the subject ever pub hished, as well as the cheapest. The series is illus forms a large quarto book of over one hundred pages, uniform in size with the SCiEntific Amer handsome stiff covers, $\$ 3.50$. Sent by mail to any address on receipt of price.
For the convenience of those who do not wish t purchase the entire series at once, we would state
that these valuable lessons in mechanical drawin may also be had in the separate numbers of SUP plement, at ten cents each. By ordering one or
more numbers at a time, the learner in drawing more supply himself with fresh instructions as fast

may as bis practice requires. These lessons are publish | ed successively in $* 1, * 3, * 4, * 6, * 8, * 9, * 12$ |
| :--- |
| $* 14, * 16, * 18, * 20, * 22, * 24, * 26, * 28, * 30$ | $14, * 16, * 18, * 20, * 22, * 24, * 26, * 28, * 30$,

$* 32, * 36, * 37, * 38, * 39, * 40, * 41, * 42, * 43$, $* 53, * 54, * 56, * 58, * 60, * 62, * 65, * 69, * \% 44$
$*$ *78,*84, *91,*94, *100, *101, *103, 1104 *175, *106, *107, *108, *134, *141,*174

MIUININ CE OQ-,

CLARK'S NOISELESS RUBBER WHEELS No More Splintered Floors.
Different Styles.
Catalogue Free.

OURE DEAF,

RUBBER BELTING, PACKING, HOSE. VULCANIZED RUBBER FABRICS For Mechanical Purposes.
170 BIPalze IELOEO RUBBER MATS

RUBBER MATTING,

NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y
the armstrone mpe. co. Use Adamant Wall Plaster WATER, GAS AND SREAM

Wriss and Dies for Pipe, Bolts, and Brass Pip Wrenches, Pipe Vises, Pipe
Catalogues sent free on application.
OIL WELL SUPPLY CO. Ltd.

THE NEW CROTON AQUEDUCT.-

Hard, Dense

Ita impatied
ses granted for the mix.
ing, using and selling.
E. GENESEE STRSEET,
Syracuse, N.
Cutler's Pocket Inhaler

DRY AIR REFRIGERATING MACHINE

PBIBB'S Calebrated Orlignal BALTIMORE PREE HEATERS

PIPE COVERINGS

Absolutely Fire Proof. BRAIDED PACKING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPECIALTIES.

ANEW CATALOGUE VALUABLE PAPERS

 LANTERNS

DENSIONS 8

曾

 Send ifrcimaris. C.E.Jones\& Bro, сімсімиат, 0 ,

HARRISON CONVEYOR!

$\underset{\text { Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. }}{\text { Fin }}$

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta-
ble, either in the country or city, or any builder wishing examine the latest and best plans for a church, school ouse, club house, or any other public building of high
or low cost, should procure a complete set of the ArcHiects and Builders' Edition of the Scientifio American.
The infor
work almost indispensable to the architect renders the and to persons about to build for themselves they will find the work suggestive and most useful. They contain
colored plates of the elevation, plan, and detail draw-
ings of almost every class of ion and approximate cost.
Four bound volumes Four bound volumes are now ready and may be ob-
tained, by mail, direct from the publishers or from any
newsdealer. Price $\$ 2.00$ a volume. Stitched in paper overs. Subscription price, per annum, $\$ 2.50$. Address MUNN \& CO., Publishers, 361 Broadway, New York. John A. MCConnell \& Co. PITTSBURGH, team Pipe and Boiler COVERINCS

TOLNEY W. MASON \& CO. FRICTION PULLEES CLUTCHES anld ELEVATORS

FACTORY TPO TEET. space, fitted up complete with Engine, Boilers, Shafting, S INVENTORS OF GAS ENGINES, Coal Oil Engines. Dynamos, and Motors for small plants,
also

WANTED - A Situation by a Teechnical Engineer

The Scienific A merican pevilaraious for 1889.

The prices of the different publications in the United
States, Canada, and Mexioo are as follows: The Scientific American (weekly), one year . $\$ 3.00$ The scientific American supplement (weekly), one
year.
The Scientifle American, Export Edition (monthly)
$\dot{\sim} \cdot .00$ $\underset{\substack{\text { one year, } \\ \text { The Scientific American, } \\ \text { Edition } \\ \text { Architects } \\ \text { and } \\ \text { Builders }}}{5.00}$
COMBINED RATEAS.
The Scientific American and Supplement, .- . $\quad \$ 7.00$
The Scientific American and Architects and Build $=$
ers Edition,
b.
The Scientiffc American, Supplement, and Archi- 9.00
tects and Builders Edition. This incluples postage, hhich we pay. Remit by postal MONN \&E CO., 3 Gi Broadway, New York.

The Erice，\＄：25．00．Relonding，\＄2．00．Co． Rochester，N．Y． 115 Oxford St．，London．
Send for copy of Kodak Primer with Kodak Photograph． NATURAL GAS INDUSTRY AT PITTS－
 STPEDTBATITE．

（5）TO BUSINESS MEN． $0=2 \mathrm{Waz}=$ ＋$=2$
 selecting a list of publications in wute you deccde ne it is
for your interest to advertise．This is frequently done for the reason that the agent gets a larger commission
from the papers saving ammal criccuation than is allow
ed on the ScIENTIFIC AMERIIAN．
For rates see top of first column of this page，or ad MUN $\mathbf{3 6 1}$ CO．．Publishers

1期 Poug pidity Yaire
For Stationary，Portable，an
Marine Engine use．
Approved by Government Inspectors Cincinnati Brass Works， CINCINNATI，OHIO． THE COPYING PAD．－HOW TO MAKE and how to use；with an engraving．Practical direction

THE RICHARDS OIL ENGINE

 INVENTORS and others desirinin nem articiesmanufac
tured and introducea，address P．O．Box 86 ，Cleveland， 0
GUILD \＆GABRISON

PATENTS．

 patents in all the principal countries of the worla． MUNN \＆CO．，Solicitors of Paten
361 Broadmy，New York．
BRANCH OFFICEs．- No． 622 and 624 F

Se STANDARD TOOL CO．
 FC
 The Celebrated Chaplin Try and Center siguare，Standard Steel Rules Steel Caliper Rules，Universal Bevels，Caliper Gauges，Improved WRITE FOR ILLUSTRATED CATALOGUE AND PRICE LIST OF FULL LINE．

ANTERN SLIDES
${ }_{\substack{\text { Sic } \\ S p e}}^{{ }_{5}^{2}}$

 OTTO GAS ENGINES． Horizontal
Tiritin
Tin cylind

Oombined．．．．．．．Otto．．Gand EDysines Hew Yo，philadelphia TO MIA NUFACTURELSS whointend introducing

THEAMERICAN BELLTEL FPHONE CO．
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March th，1876，No．174，465，and January 30th， 1877，No．186，787
The transmission of Speech by all known forms of Electric Speaking Telephones in－ ringes the right secured to this Company y the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such
unlawful use，and all the consequences unlawful use，and all the consequences hereof，and liable to suit therefor．

Shepard＇s New $\$ 60$ Screw－Cutting Foot Lathe
 ICE－HOUSE AND COLD ROOM．－BY R

Scientific Rook Batalogue
 maiied tree to any adaression application．
MUNN $\mathbb{E} \mathbf{C O}$ ，Publishers Scientific American， DELAFIELD＇S PAT，SAW CLAMP

居

JACKET KETTLEES，

THE MODERN ICE YACHT．－BY

THE PHONOGRAPH．－－A DETAILED description of the new and improved rorm of the pho
notraph jut
ingap

OIL ENGINES．

 92 Pearl St，Boston，Mas．HE PENNA．DIAMOND DRILL \＆MFG．CO BIRDSBARO，PA．，Bullders of High Class
Steam Engines．Diamond Drining and General

HEIF INFVV INOIN＝OOINDUOMOR．

Sectional Pipe Coverings， asbestos boiler coverings， H．W．Johns Manufacturing Co．

JAMES B EADS．－AN ACCOUNT OF

VELOCITY OF ICE BOATS．A COLLEC．

TELESCOPE For Sale．Pen－inch silver glas equad－

ARTESIAN
 포 B

Fríntific Americau

The Most Popalar Scientific Paper in the World． Only 83.00 a Year，including Postage．Weekis．

This widely circulated and splendidy illustrated paper is pubist．ed weekly．Every number contains six－
teen pages of useful information and a large number of original engravings of new inventions and discoveries，
representing Engineering works，Steam Machinery， New Inventions．Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－ Complete List of Patents each week．
Terms of Subscription．－One copy of the ScIen－ postage prepaid．to any subscriber in the United States or Canada，on receipt of three dollars by the pub－
lishers；six months，\＄1．50；three months，\＄1．00． lishers；six months， 81.50 ；three months，$\$ 1.00$ ．
Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， des goes astray，but is at the sender＇s risk．Ad－ dess to

MIUININ \＆CO．
$\mathbf{3 6 1}$ Broadway，New York． TEIT
Scientific American Supplement．
This is a separate and distinct publication from in size，every number containing sixteen large pages ful of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions．
The Scientific American Supplicmicnt is published weekly，and includes a very wide range of contents．It weekly，and includes a very wide range of contents．It
presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts，embracing Biology，Geclogy，Mineralogy Natural History，Geography，Archæology，Astronomy，
Chemistry，Electricity，Light．Heat， neering．Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photography， rechnology，Manufacturing Industries，Sanitary En－ gineering，Agriculture，Horticulture，Domestic Econo－
my ，Biography，Medicine，etc．A vast amount of fresh ny，Biography，Medicine，etc．A vast amunnt of fresh
and valuable information obtainable in no other pub－ The most important Engineering Works，M echanisms． and described in the Suppiement．
Canada， 85.00 年保 ERICAN and one copy of the SUPPLEMISNT，both mailed for one year for $\$ 7.00$ ．Single copies 10 cents．Address
and remit by postal order，expressmoney order，or check， MUNN \＆Co．， 361 Broadway，N．Y．

Building Edition．
The Scientific American Archi＇rects＇And Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a ly adorned with elegant plates in Architecture，rich－ fine engravings；illustrating the most interesting ex amples of modern Architectural Construction and
ailied subjects． anled subjects．
of a variety of the latest and best plans for private resi－ dences．city and country，including those of very mod erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Specifications，Sheets of Details，Estimates，ete．
The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architeccural publication in the world．Sold by all MUNN \＆CO．，Publishers， 361 Broadway，New York．
PRINTING INKS．

