

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

Srientific Ammericau.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BRUADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN.
One copy, one year. for the U. S. or Canada.....
One copy, six months, for the U. S. or Canada.
ne cops, one yar. to any forelign country
Bemit by postal or express mones order.
 onial bank notes. Address

The Scientific American Supplement

Addreos .MUNN \& CU., fill Broadway, corner of Franklin Street, Now York
NEW YORK, SATURDAY, OCTOBER 27, 1988.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 669.
For the Week Ending October 27, 1888. Price 10 cents. For eale by all nowedealers.
. BIOLOGY,-On Tortoise (Chrysemys picta) with Two Heads.-By E. 1. BARBOUR.-A curious freak in nature describid, with 11lus
trations of the normal type and of the monstrosits. -4 illustra tration
tions.
i. botany.-A Botanical Atrocity.-By Miller Cbristy.-stipa spartea, a variety of grass which by
the death of large animals. -1 llustration How Plunts are Fertlized.-An interesting study in plant life and of the process of seed prodin.-2hlustralons
iII. CHEMISTRY.-Filtration with Filters of Metallic Felt.-By Charles h. Munroz.-An ingenious and original sugrestion in .
v. citide engineering.-Covered Reservoirs.-By Cbaries h. Swav.-A discusston of the expediency of covering reservoirs,
and the need for t in different countries. and the need for.t in different countries.
On Varimble
Work.-By Robert h. Thurston.-An and Engine Speed and Work.-By ROBERT H. ThURSTON.-A elaborate revlew of the
conditions of prime motor ec, of engines and illustrations of the same with indicator curves.-5

- ELectricity.-Electric Lighting in A merica.-By Prof.G eorge this country in its moat recent developments, with special reference to the Westinghouse alternating system....................... 100
I. MISCELLLANEOUS.-Nature's Barometers.-Prognnstications of
the weather as furnished by birds, animals, and other natural
 riences with European birds, by a bird lover. Statue of Buddha.-The colossal statue of Buddha at Mandalay The Geiser-Thingralla Collision.-Des with view of the Thinuvalla after the acciplent. -1 illustration.. The Great Lakes.-High and low water level in the areat lakes. -Its relations to rainfall and threatened interferencewith naviga-
VII. PHOTOGRAPHY.-Reducing the Density of Negatives by VaTious dients.-By Dr. Cearles Ebrmann.-The various agents for reducing density discussed, with comparison of the results at-
VIII. PHYSICS.-The Granhophone and Phonograph.-A very full account ne the Inventione of Fdison, Bell. and Tainter, with com-
plete thuatratlons of the rival talking machines, - 11 lilustratlons. plete Mustrations of the rival talking machines.- 11 inustrations.
The Hintory of a scientific Doctrine.- By S. P. J.ANGLEY. -The beginning of Prof. Lankley's memorable paper ead at the Cleveland meetIng of the American Association, reviewing the history of the undulatory theory of life

BUNGLING CHEMISTs.

An Item from Ithaca, N. Y., has recently appeared in the daily press of this city to the following effect : In the course of conversation at Cornell University Saturday, October 13, Edward Atkinson, the Boston economist, stated that a New England genius has recently discovered a cheap method of dissolving zinc by combining it with hydrogen and producing a solution called zinc water. This liquid, if applied to certain woods, notably whitewood, makes it absolutely fire proof, at a low cost. Mr. Atkinson regards this discovery one of the most important of the age, and one that will surely revolutionize fire insurance, as well as iwmensely decrease the loss by fire. The invention is kept secret for the present. Only one foreigner-Sir Lyon Playfair, the English scientist-knows of it. He corroborates all that is claimed for the invention, and says that the inventor is a bungling chemist, but that he has a faculty of blundering iuto the choicest secrets in Nature's laboratory. As soon as patents are perfected and capital interested, zinc water will become an article of commerce.
If this is true, the above discovery would confer a great benefit-the protection of wood from fire. Independent of this, the rewarks about a bungling chemist blundering into Nature's choicest secrets are worthy of notice. The chemist who possesses this faculty may well afford to be called bungling. The great discoveries of experimental philosophers were not de-ductive-inductive work or feeling in the dark has developed the natural sciences; and the investigators of Nature's laws in the atomic realm, the domain of chemistry, have not yet passed the blundering stage. When the deductive methods that led to the failures of old can safely be indulged in, then only can the chemist give up blundering into discoveries. At present such is his dearest hope.

ELECTRIC SUBWAY EXPLOSIONS

The people of New York having in due course of time reached the conclusion that the network of overhead telegraph, telephone, and electric light wires were in the nature of a nuisance, have for the last two years been endeavoring to put them underground. Already many miles of conduit have been laid, hundreds of miles of wire have been placed in them, and the system is known as the electric subways. In general terms they consist of a conduit of asphalt or other concrete laid along the sides of the streets, four to six feet under the surface. In section, the conduit would appear a solid block, perforated with a number of circular openings about three inches in diameter, for the introduction of cables. These openings are continuous for the length of a section of the subway. It represents a collection of pipes or tubes. Each tube receives a cable containing a number of wires, so that the total accommodation afforded by a conduit with thirty or fifty openings is very great. At each intersection of streets a manhole is constructed, which marks the end of the abutting sections. This is a square pit about five feet square and six feet deep, built of masonry and provided with double iron covers. The conduits lead into this. It is practically impossible to keep the system, including the many miles of conduit and the numerous manholes, perfectly tight. If there is a leak in the gas mains near the conduit, some of the gas is apt to find its way into the manhole directly, or into the conduit openings and through them to the man hole.
It will be understood that as the conduits open into the sides of the manholes, the cables and wires extend across them, as they leave one section and enter the next.
It yet remains to be seen whether the subways attain the solution of the problem of disposing of the over head wires. Within a few days the Western Union Tele graph Co. has complained that a series of down-town wires, 400 in number, have been ruined by overheating. The steam pipes of the steam-heating company in some way had heated the conduit nearly up to the temperature of boiling water, and the insulation of the telegraph lines was destroyed. Other companies made similar complaints. The matter is to be investigated.
Unfortunately, it also appears that they can be a source of injury to life and property. An explosion occurred on the morning of October 12 in this city, on Broad way near the Bowling Green, which emphasizes a danger to which we are exposed, due to them. A heavy thunderstorm, in which the display of light usual electrical disturbances were observed in the telegraph and telephone offices. A number of persons standing in the shelter of the Field building, No. 1 Broadway, witnessed a more remarkable manifestation. They had just heard a violent thunder clap when a second report, alinost sinultaneous with it, occurred. It came from the opposite side of the Bowling Green. The iron cover of the subway manhole situ ated there was blown into the air, and the street pave ment was disturbed over an area twenty feet square A flame, four feet in height, was observed to shoot up ward from the place at the same instant.

It is said that there is doubt about the cause of the ccurrence, but there is little room for surmise. Gas from a leaky main had in all probability found its way into the manhole. As all residents of the city know by experience, the soil is saturated with gas, and every joint in the mains contributes some quota of the ever-present gas. The lighting either caused sparking among the metal work and cables in the manhole or directly inflamed the gas, and the explosion as detailed was the result.
When the steam supply companies began operations in this city, they experienced wuch trouble frow the presence of gas in their manholes. These structures were similar to those of the subway companies. Eventually they were obliged to provide them with ventilating covers, when the trouble ceased.
The subway constructors will probably be forced to adopt some efficient method of dealing with this problem. Perfectly free ventilation of the manholes would involve the admission of water, something the companies owning the cables wight protest against. But the wires where they cross the manholes could readily receive some special protection. It appears pretty clear from the accident which we have described that the subways as at present constructed are a distinct source of danger. Where gas accumulates, especially when mixed with air in the explosive proportion, a winute electric spark will light it, and cause a detonation. This principle has been utilized in electric gas lighting; apparently it has here been the actuating cause of a serious explosion.

POSITION OF THE PLANETS IN NOVEMBER.

neptune

is morning star until the 22d, when he becomes evening star. He stands first on the planetary record of the month, for an event occurs in his history that brings him to his nearest point to the earth. This event is his opposition with the sun on the 22 d , at $1 \mathrm{~h} . \mathrm{P} . \mathrm{M}$. The earth is then between the sun and Neptune. If discoveries are made concerning this far-away planet, they will probably be made when he is in opposition. Neptune rises on the 1 st at $5 \mathrm{~h} .57 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30th, he sets at 6 h .19 m. A. M. His diameter on the 1st is $2^{\prime \prime} .6$, and he is in the constellation Taurus.

SATURN

is morning star. He reaches his quadrature on the western side of the sun on the 11 th at $6 \mathrm{~h} . \mathrm{P}$. M. He then rises before midnight, and may be found in the northeast, a star of the color of pale gold, shining with a serene light. Saturn rises on the 1 st at 11 h . $37 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , he rises at $9 \mathrm{~h} .38 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. His diameter on the 1 st is $166^{\prime \prime} .8$, and he is in the constellation Leo.

MERCURY

is morning star. He reaches his greatest elongation or most distant point from the sun on the west on the 17th, and will then be visible to the naked eye as morning star, about 8° north of the sunrise point, rising about an hour and a half before the sun. Mercury rises on the 1st at $6 \mathrm{~h} .16 \mathrm{~m} . \mathrm{A}$. M. On the 30th, he rises at 5 h .53 m . A. M. His diameter on the 1st is $9^{\prime \prime} .6$, and he is in the constellation Virgo.
venus
is evening star, and is fair to see as she approaches the earth, traveling eastward from the sun. The observer will recognize her at a glance in the southwest soon after sunset, about 8° south of the sunset point. She sets on the 1st about an hour and a quarter later than the sun, and on the 30th about two hours and a quarter later than the sun. An interesting event warks her progress. She is in conjunction with marks her progress. 4 h .18 m . P. M., heing $1^{\circ} 27^{\prime}$ Jupiter on the 1 st at 4 h .18 m . P. M., heing 127
south. Both planets make a brilliant appearance in the constellation Scorpio, which is increased by the bright stars in the vicinity. Venus sets on the 1st at $6 \mathrm{~h} .11 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , she sets at $6 \mathrm{~h} .45 \mathrm{~m} . \mathrm{P}$. M. Her diameter on the 1 st is $12^{\prime \prime} .2$, and she is in the constellation Scorpio.

JUPITER
is evening star. As has already been referred to, he, moving westward toward the sun, meets Venus moring eastward from the sun, and the two brightest planets in the system are seen side by side. Jupiter sets on the 1st at $6 \mathrm{~h} .19 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , he sets at 4 h . 49 m . P. M. His diameter on the 1 st is $30^{\circ} .6$, and he is in the constellation Scorpio.

MARS
is evening star, and is moving eastward or retrograding. His lessening size will soon make it difficult to follow the course of the ruddy planet. Mars sets on the 1st at $8 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P}$. M. On the 30 th , he sets at 7 h .59 m . P. M. His diameter on the 1st is $6^{\prime \prime} .2$, and he is in the constellation Sagittarius.

URANUS
is morning star. He rises on the 1st at 4 h .44 m . A. M. On the 30 th, he rises at 2 h .58 m. A. M. His diameter on the 1st is $3^{\prime \prime} .4$, and he is in the constellation Virgo.
Venus, Jupiter, 所ars, and Neptune are evening stars at the close of the month. Saturn, Mercury, and Uranus are morning stars.

Trade Apprenticeship for Boye.

A basis for criticism of the conditions of modern life is found in the unwillingness of young men to learn trades. Some element of social degradation seems to be frund in the use of the hands; pure brain work is the coveted goal of the many.
It is pleasing to note that this prejudice meets with enlightened opposition. Forgenerations past the sons of the German emperors have learned some mechanical trade. In the library of the late Emperor William at Potsdam, visitors are shown a chair made by him when a youth, for his father.
The sons of John Bright, the famous English parliamentarian, set a good example to the rising generation. Their training is thus set forth by the Christian at Work:
"Philip Bright, desiring to become a first class machinist, served a regular course in Petrie's iron foundry, to which he carried his breakfast-can like other plain workmen, and in which he put himself on a par with other honest hands, acting as naturally as if he were one of them himself. His brothers-Leathem, now a member of Parliament, and John Albert-were put through the drills at the mills on the principle that they too must undergo their share of work like other people. Such an example of common sense and democratic equality is in the highest degree commendable. The great problem of the future will be to unite education and manual labor. Many persons seem to imagine that they are forever inconsistent and antagonistic, and that, therefore, the public schools are training young men to live by their wits rather than by useful and productive trades. Whether the head and the hand can be cultivated at the same time, and in a happy proportion, remains to be seen. John Bright's sons would by their example indicate that they can, but then they are capitalists as well as laborers."
Another instance within the experience of the writer will serve to still further point the moral. Over twenty years ago, very early one morning, he met a boy of 17 or 18 years of age hurrying through the street, dinner pail in hand, accoutered as a workman. He was recognized as the son of an acquaintance. Curious to know what brought him out in such guise at so early an hour, the writer stopped him, and inquired whither he was bound. The boy assumed a look of manly pride as he announced that he was going to work at the Morgan Iron Works as a regular apprentice. The foreman, he added, was very exacting with the apprentices and re quired them to begin their work on time with the journeymen. The father, who had sent the young man to take his place among the three or four hundred apprentices employed at the once famous works, acted with wisdom which was proved by the course of events. He is now connected with one of the most influential and successful daily papers of this country. The son to day is in full charge of the mechanical depart ment of the business, and is qualified by his training at the old Morgan works not only to take charge of the complicated machinery of the modern press room but also to pass an enlightened judgment on improvements in the art, and has himself invented a number of valuable improvements in the printing press. He cannot regret his long days of apprenticeship, and it is not too much to say that it is they which have won for him his truly honorable and useful position, one which the constant sense of usefulness and competence must make doubly dear to him.

The Proposed Court of Patent appeals.
An interesting speech was lately made in the House
of Representatives by the Hon. George E. Seney, of Ohio, in which some of the objections to the establishment of the new court were ably presented. We quote as follows:
The pending bill provides for an appeal from the Commissioner of Patents to the court of patent appeals in a multitude of cases. In other words, the bill authorizes an appeal to the court of patent appeals from nearly every decision the Commissioner of Patents is required to make, and in addition to this it authorizes a further appeal in the same cases to the Supreme Court of the United States.
It is true that upon the right of appeal to the Supreme Court two limitations are imposed. The first one is that in the case sought to be appealed the
amount involved shall be $\$ 100,000$ or more, exclusive of costs. To what extent, if any, this limitation upon the right of appeal will keep patent causes out of the Supreme Court need not now be discussed. If the jurisdiction of the Supreme Court is to depend upon the fact whether $\$ 100,000$ or a less sum is involved in a given case, by whom is this fact to be ascertained, and if by the Supreme Court, how much more of its time would the Supreme Court, how much more of its time would
be required to hear and determine the case upon its merits $\%$ Under the second limitation an appeal is authorized when the Supreme Court deems the questions involved to be sufficiently important, or doubtful, to justify an appeal.
The provisions of this bill make it possible for parties to get into the Supreme Court with their patent cases
right to appeal them, if not upon their merits. In what respect, then, will the Supreme Court b
The court of patent appeals is to have appellate jurisdiction from the circuit courts of the United States and from the Supreme Court of the District of Columbia in all cases touching patents, copyrights, trade marks, and labels, without regard to the sum involved in the controversy, and from the judgment of the court of patent appeals an appeal may be taken to the Supreme Court of the United States, subject to the two limitations mentioned but a moment ago.
It is not unreasonable to assume that in case the court of patent appeals be established, all the causes involving important or doubtful questions, and all of the causes involving interests of the value of $\$ 100,000$, will find a place upon the Supreme Court docket, and those of a different character will be on the same docket for hearings as to the right of appeal. Instead of relieving the Supreme Court by reducing the number of cases upon its docket, this bill, in case it becomes a law, will, according to my understanding of its provisions, increase the labors of that court.
The patent appeals court, if established, ought to be so composed that its decisions reviewing the decisions of a high tribunal like the circuit court would be, by reason of the ability and learning of its judges, acceptable to patent litigants, if not in all, then in much the larger number of cases. This would make the patent appeals court, to a very considerable extent, a court of last resort, and therefore the appellate jurisdiction of the Supreme Court could be confined to a few exceptional cases.
But to add one more to the present number of our Federal courts seemingly for no other purpose than to give a certain class of litigants one more chance would be very unwise.
More than two trials of the cause upon the facts and the law-the first in the original jurisdiction and the second in the appellate jurisdiction-are not allowed under the judicial system in force in the States, and hitherto in the United States, but patent right men, by the pending bill, ask for three trials in their cases, and to insure three trials they insist that two courts shall be created for their exclusive use. They would have us make a court out of a subdivision of the Department of the Interior and confer upon the commissioner in charge the powers of a court and a judge. And for their second court they insist we shall establish a court of patent appeals.
The bill, it will be observed, divides patent right controversies into two classes. Of those touching patents, copyrights, trade marks, and labels, the circuit courts are to have original jurisdiction, the court of patent appeals appellate jurisdiction, and the Supreme Court appellate jurisdiction, or, in other words, three trials are to be had in such patent causes, one in each of these three courts. Of the other class, original jurisdiction is in the Commissioner of Patents, acting as a court and judge; after him in the court of patent appeals, and after it, in the Supreme Court, or, in other words, a trial before the Commissioner, and afterward two more trials, one in the patent appeal courts and another in the Supreme Court of the United States.
The bill gives to this court a place in our judicial system above the United States circuit courts. The judgments of the circuit courts in patent cases are to be reviewed by the court of patent appeals, and this makes the circuit court the inferior tribunal. If a court lower than the Supreme Court and higher than the circuit court-an intermediate court, if you please-be essential in our judicial system, its jurisdiction ought not to be limited to the trial of patent causes. The jurisdiction of such a tribunal ought to extend to all causes in which the Supreme Court has appellate jurisdiction under existing laws.
And then, again, a court whose time is to be largely employed in reviewing the opinions of the Commissioner of Patents ought not to stand in our judicial sysem next in rank to the Supreme Court of the United States.
The bill provides that the court of patent appeals shall hold its sessions at the seat of government, and because of this its jurisdiction would extend into and over every State and Territory of the United States. Established in Washington, this court would be invest ed with power to bring before it, from all parts of this vast country, those of our countrymen who may have contentions under our patent laws. The jurisdiction of this court is to be wholly appellate, and whether it
be from the rulings of the Cominissioner of Patents be from the rulings of the Commissioner of Patents or from the judginents of the circuit courts of the United States, it is to be exercised at Washington, and at no other place. Whatever may be thought of the other objections we have urged to this bill, the one now be fore us presents the question as to whether it is best to center at the Federal capital more of the judicial power of the government or diffuse it throughout the States. Against all legislation which tends to centralize the power of the government, whether executive, legislative, or judicial, the representatives of the people ought to take a resolute stand.
The Constitution vests the judicial power of the

United States in one Supreme Court, and in such other inferior courts as the Congress may from time to time ordain and establish. While it is eminently proper that the Supreme Court should hold its sessions at the seat of the general government, it is equally proper that the courts established by the Congress should hold their sessions nearer to the homes of the people.
This bill, in proposing to establish another court at Washington, with a jurisdiction coextensive with our territorial area, antagonizes the better interests of the people, and for this reason, if for none other, it ought not to become a law. The present laws which give to the circuit courts original and to the Supreme Court appellate jurisdiction in patent controversies need no change, and of the changes suggested, that of creating another court and putting it between these two high tribunals, to review the one and then be reviewed by the other in patent causes, to my mind is utterly destitute of merit.

Under Ground Four miles to the Theater. In some countries it would seem strange for a party going to see a theatrical entertainment to make a dive into Mother Earth, travel four miles under the mountains, and then dart up to the surface within a stone's throw of the ticket office; but it is after such a fashion that some of our people go to their regular dose of drama, comedy, and tragedy.
Recently a party of ladies and gentlemen of the town of Sutro, who wished to see "The Two Johns" at the opera house, took the subterranean cut. Starting at the mouth of the Sutro tunnel, at their own doors, they came up the tunnel to the C. \& C. shaft, a distance of a little over four miles. Dismounting from the cars, they then boarded the cages in the shaft and were shot upward to the surface, a vertical distance of 1,640 feet.
This way of going to the theater is as much fun for our ladies as going to a picnic. It is really a pleasure, but until a lady has become somewhat accustomed to life in the mines, it requires a little nerve. It is fine and cool the whole four miles under ground. The cars will not soil even the most delicate dresses of silk and satin, therefore there is no trouble of changing clothing. In her room at the mouth of the tunnel a lady may stand before her mirror and give the finishing touch to flower or feather, and in just such shape as she turns from her glass she is shot up to the surface in this city, ready to take her seat in the box in the opera house.-Virginia City Enter prise.

Utilization of Old Tins.

A number of people recently gathered at the Columbia Rolling Mill, Fourteenth Street and Jersey Avenue, Jersey City, at the formal opening of the mill. The industry is a novel one, being the manufacture of taggers' iron from old tin cans and other waste sheet metal. This iron has heretofore been manufactured alnost exclusively in Europe, and the Columbia Rolling Mill Company is the only American company which turns out the product in large quantities. The process is simple. The tin cans are first heated in an oven raised to a temperature of about $1,000^{\circ}$, which melts off the tin and lead. The sheet iron which remains is passed, first, under rubber-coated rollers, and then chilled iron rollers, which leaves the sheet smooth and flat. After annealing and trimming, they are ready for shipment. The tin and lead which is melted from the cans is run into bars, and is also placed upon the market. All the raw material used is waste, but the sheet iron turned out is said to be of good quality. It is used for buttons, tags, and objects of a like nature. is used for buttons, tags, and objects of a like nature.
The material used costing little, and the demand for The material used costing little, and the demand for
taggers' iron being considerable, it is thought that this is a good opportunity to build up another American industry.

Recovery of a Long Lost Tapestry.
"When Maguerite of France was married to Victor Amadeus of Savoy, she took with her to Italy twenty pieces of the very finest Gobelins tapestry, illustrating elassical legends," says London Truth. "This unique tapestry, which was of immense value, disappeared mysteriously when Napoleon invaded Italy, for it had been hidden away in case the French might thunk proper to carry it off, which they would certainly have done. It had been so carefully concealed that, after some years, when calm was restored, it was found impossible to discover it, and the two officials who had put it a way were both dead. The tapestry had been almost forgotten till aoout a month ago, when the Marquis Villamarina, the master of the royal household, was making a thorough investigation of the palace at Turin from roof to cellar, and behind some huge chests in a storeroom in the highest story he found a secret chamber, in which was concealed the long lost tapestry, and it had been very little injured by its hundred years of hiding. King Humbert has ordered that the tapestry is to be carefully repaired and creansed, after which it is to be sent to Rome and hung in the Quirinal in the apartments which the Emperor William is to in the apartments which the Empe
occupy during his visit next month."

A SIMPLE HOUSEHOLD FREEZER

An improved freezer, specially adapted for makine ice in small quantities for household use, or for cooling bottles of wine or other substances, is illustrated herewith, and has been patented by Mr. Theodore L. Delpy, of Paris, France. It consists oî a receptacle adapted to hold a freezing liquid, and having double walls filled with a non-conducting material,

DELPY'S FREEZER. ducting material, an upwardly projecting pin in the
bottom of the rebottom of the re-
ceptacle being fitted with a sleeve secured to a vertical shaft, the upper end of which passes through a suitable bearing in the cover. The outer end of the shaft has a hand wheel, and from the sleeve at its bottom extend radial arms provided with upright T-shaped beaters. Centrally in the receptacle is held a vessel, preferably starshaped in cross section, the vessel being supported by L-shaped arms resting on the top edge of the receptacle. In the central vessel is held a tube, through which passes the sleeve and vertical shaft, so that the latter can revolve without revolving the vessel. The outer receptacle being supplied with a proper quantity of any suitable freezing liquid, such as sulphate of soda and hydrochloric acid, or other mixture, and the inner vessel holding the water or other liquid to be frozen, the operator turns the hand wheel, whereby the freezing mixture is agitated by the beaters and exerts its freezing power on the inner vessel.
For further information relative to this invention address Mr. L. Dermigny, No. 126 West 25th Street New York City.

AN IMPROVED MASON'S FLOAT.

A mason's float and handle so made that they can be easily and quickiy put together and taken apart, the

KAUTZ'S MASON'S FLOAT.
blade being held firmly by the handle without the use of nails, is illustrated herewith, and has been patented by Mr. George Kautz, of No. 236 Central Avenue, Albany, N. Y. A central longitudinal ridge is formed on the blade of the float. To each end of the haudle a cap is rigidly secured by a screw, each cap having two foot lugs on one side, as shown in Fig. 1, and on the other side a screw or pin for pivotally connecting a cam lever to the cap. There is a space between each cam and the lugs, forming a recess for the reception of the longitudinal ridge formed on the blade of the float

bURCAW's WEATHER sTBIP.
the latter being firmly secured to the handle by turning the levers to the position shown in Fig. 2. The arrangement of the parts prevents any strain on the blade of the float, which is thereby prevented from warping, and may be used until worn out, when the handle may be used on another float of similar construction.

Alanka.

Governor Swineford, in his report, states that the coast line of Alaska, 18,211 miles, is nearly twice the combined Atlantic and Pacific coast lines of the United States. The market value of the Alaska fisheries for last year is estimated at $\$ 3,000,000$. A thousand sal mon, averaging ten pounds each, have been taken in Sitka Bay in a single haul. The seal fisheries yield to the government $\$ 317,500$ annually, or enough to pay 4 per cent on the amount paid Russia for the country. A single island is said to be practically a mountain of ore, and to contain mineral wealth enough to pay off the whole of our national debt.
The fish commission steamer Albatross sailed into Puget Sound early last month, after an interesting cruise in Alaskan waters. Deep-sea soundings were made to verify those made by Commodore Belknap in the Tuscarora while locating a line for a Japanese cable in 1874. Capt. Tanner found even greater depths in short distances than the Belknap soundings. At one point 3,800 fathoms was reported. In three miles the ocean bottom was found to sink from 40 to 1,100 fathoms, and in twenty miles at another point from 500 to 2,100 fathoms, the ocean cañon being long and deep. Several new varieties of fish were brought to the surface by trawls and by hook and line from these ocean depths. One had a head like a shark, with large teeth, but a body like an eel or a snake, tapering to a point as fine as a knitting needle. Some fine specimens of shrimps were secured at points near the coast. A quantity of fine clams, which are used for bait by fishermen, were planted in a small inlet west of Oonalaska. From this port the Albatross sailed back east of the Aleutian Island group and down toward Kodiak. Soundings and dredgings were made all along, and the 100 fathom curve located. Great numbers of codfish were secured. The waters in that region are filled with cod, those at a distance from the coast being much the best. Some investigation of Puget Sound fish will, it is understood, be made by the Albatross, and then the plan is to pass the winter months off the Santa Barbara Islands and the coast of Lower California.

AN IMPROVED WEATHER STRIP

A weather strip especially designed to prevent draught all around a door is illustrated herewith, and has been patented by Mr. Franklin P. Burcaw, of Hazleton, Pa. The door is provided at the bottom with a fixed moulding, A, having a groove in its bottom, in which fits a corresponding strip, B, hinged in a recess in the inner edge of the moulding, a fibrous or leather strip being secured to the approaching edges, A and B, to close the air space between the hinges. A spring, E, is secured at one end of the door, projecting downward at its free end, and adapted to hold the strip, B, in the bottom of the moulding, A; but when the door is closed, an arm of this spring strikes against the lug, F, pressing the spring toward the door, so that the strip, B, swings downward until it rests on the bottom of the door casing, preventing any draught from entering the door. Two strips of moulding, \mathbf{C} and D , are used on the edge of the door and on the casing, a central offset or tongue of one strip fitting snugly into a correspondingly shaped groove in the other strip. A metallic V-shaped strip is secured by its flange to the door casing near the lock, a corresponding strip secured to the door fitting thereto, these strips forming a continuation of the mouldings, C and D . The side and
top draughts are thus prevented by the mouldings of the casing fitting into the corresponding $\boldsymbol{\alpha}$, the door, and when the door is closed, the bottom draught is prevented by the hinged strip, B.

AN IMPROVED RAILROAD TIE.

A metallic railroad tie, recessed near its ends to receive the base portions of the rails, together with locking blocks or keys to hold the rails both sidewise and downward to their places, is illustrated herewith, and has been patented by Mr. Israel G. Howell, of Hopewell, N. J. In addition to the central transverse recess in each end of the tie, to receive the base portion of the rail, there is a further extension of such recess to be filled by a locking wedge or block on each side of the rail, this locking wedge being entered within an overlapping lip at each end of the main recess. These locking blocks bear upon or over the lower flanges of the rails and up against their webs. To prevent the locking blocks from working loose, saddles are fitted over them, lying in grooves in the upper faces of the blocks, the saddles being held in place by pins passed this tie the rails can be readily taken up and replaced, and independent chairs may be dispensed with.

AN IMPROVED BINDER

A-binder for temporarily holding a number of sheets of paper in the form of a pad is illustrated herewith, and has been patented by Mr. Asa K. Owen, of Lake Geneva, Wis. A shallow box forms the body of the binder, a ledge projecting inwardly over one end of the box, and right-angled plates attached to the box pro

OWEN'S BINDER.

jecting inwardly over its other end. To the inner surface of a smooth-faced support fitting within the box, and adapted to move freely up and down, two bow springs are attached, which rest upon the bottom of the box and press the support upward. To the under surface of the support, at one end, is attached a finger piece, which extends through a semicircular notch in the end of the box. The sheets of paper are placed between the ledge and the support at one end of the box, by simply pressing down upon the support, the springs clamping the paper in position, after which the opposite end is depressed and the other end of the paper similarly placed. Depressing the lower end of the support by means of the finger piece facilitates the removal of the sheets of paper as desired.

AN IMPROVED BAKE PAN.

A pan for use in baking, in the use of which the

BICKNELL'S BARE PAN.

article to be cooked will be suitably supported on a rack and practically inclosed by water, is illustrated herewith, and has been patented by Miss Bettie H. Bicknell, of Loudon, Tenn. In a shallow pan, as shown in Fig. 2, is placed a wire or other suitable iron frame, held up sufficiently to allow the bottom of the pan to be covered with water. The cover is shown in Fig. 3, being formed of a deep inverted pan or box. tapered toward its upper end, and with an open top, forming a large water space, as shown in section in Fig. 1. This invention is designed to obviate the necessity of boiling meats or fowls before baking them, thus shortening the process of cooking and fully retaining the juices and flavors of the articles cooked.

HOWELL'S RAILROAD TIE.

THE LEBEL GUN
The French Minister of War has just published a description of the Lebel gun. This publication, designed for the instruction of the troops, has caused a certain amount of feeling among the public here and there, and some of the newspapers have denounced, as a grave fault, what they style a divulgation of the secrets of the national defense. The fact is that a wrong has been done to a legend only. The new gun of our infantry is in every respect an excellent weapon, but there is nothing mysterious about its mechanism, nor even anything new, for it is simply a modification of the Gras repeating rifle of the model of 1885 , which, in turn, is derived from the Kropatschek system used in the French navy ever since 1878. The essential modification is that of the caliber, which has been reduced from 0.4 to 0.3 inch, thus permitting of a great diminution in the weight of the ammunition, and of obtaining, at the same time, much greater range and precision through the use of the new powder. We may mention, too, the better distribution of the resistance me the recoil, which is exerted symmetrically upon two bolts, instead of, as formerly, upon the re-enforce of the breech lever, that is to say, on one side.
As for the principle of the system, we may remark, by comparison, an analogy of the Lebel gun with the
will from one shot per two minutes up to six hundred shots per minute, but it requires at least two men to manage them. If, as seems probable that it will, it becomes possible to render them thoroughly portable it will prove the signal of a new evolution in the equip ment of armies.-L'Illustration.

An English View of English Ships and Guns. A correspondent of Engineering, "Gunner," says "Our ships are now showing their points-some won' steer, others won't go astern, and the Northampton has narrowly escaped being rammed by the Benbow as the Sandfly did of diving to the bottom. As to our guns-which we were told in 1884 were to be made in a manner superior to those of other nations-there have been since then a succession of failures. This is not surprising, when we observe their great length, insuf ficient rigidity, and the enormous strain thrown upon them by driving banded projectiles through a bore o considerably smaller diameter than the copper bands upon these missiles. Surely it is not necessary to make the gun do the work of the lathe, and instead of the small strain of rotating the projectile to add the bursting strain caused by rifling the missile, and then rotate it by the heels, leaving the front free to split the inner tube or knock the muzzles off the guns, as in Active,
vessel, and stern tubes and brackets fitted, and the arrangement of engine keelsons, bulkheads, coal bunk ers, etc., have been modified to suit the new machinery. This consists of two sets of triple expansion engines having cylinders $161 / 2 \mathrm{in}$., 26 in ., and 41 in . in diameter, with a stroke of 2 ft .6 in ., and working at 150 lb . pres sure, steam being provided by two double-ended cylin drical steel boilers, each set of engines driving its own propeller. The results of the alteration are strikingly worthy of attention, and may be summed up as follows The carrying power of the vessel has been increased by about 190 tons, large additional deck space for cattle gained, while the net register tonnage has been reduced by 247 tons. The speed has been considerably increased, and the consumption of fuel will be reduced by 60 per cent. This small consumption has been suc cessfully maintained over a period of more than six months by the Olga, built last year by Messrs. Laird Brothers, and fitted with similar engines.

Japanese Coal Mining.

The principal coal mines in Japan aresituated on the sland of Takashima, outside the harbor of Nagasaki. They form one of the principal centers of coal supply in the East, and have now been worked by a lessee of the government's with all the more recent and im-

German repeating rifle of Mauser. In both weapons, the magazine consists of a tube contiguous to the barrel, in which the cartridges are placed end to end. A spiral spring pushes these to the rear into a trough, A, which, in rising, causes them to pass from the magazine into the breech end, when the movable breech is set in motion. When the trough, A, rises, a catch, G, projects behind the last cartridge remaining in the magazine. Finally, a lever, L, terminating in a button, serves to stop the action of the repetition mechanism. When this lever is shoved forward, the trough remains raised, and the weapon then operates like a shotgun into which the cartridges are introduced into the breech end by nand. The closing and percussion mechanism is that of the Gras gun.
Without its bayonet, the new gun is $41 / 4 \mathrm{ft}$. in length, and weighs 9 lb . when empty. All its details have been elaborated by a special commission, whose labors have provided us with a fire-arm which has no equal among any of the military powers.
This is the whole truth. It is well enough for us to have a feeling of satisfaction and confidence, but the fact must not be overlooked that the art of war is making continuous progress, and that new improvements are soon to be looked for. Inventorsare already occupying themselves with the idea of utilizing the force of recoil, so that the gun shall, of itself, reload and shoot. We shall thus obtain a genuine "ball pump," which the marksman will only have to point, just as one directs the nozzle of a fire hose. There are already mitrailleuses constructed upon this principle, the fling of which, entirely automatic, is regulated at
etc." The Admiralty Gazette calls attention to the fact that the Armstrong guns, some of which are now obsolete, cost England nearly twelve and a half million dollars $(£ 2,500,000)$ before their defects were recognized. Of guns and rifling it says: "We have no more favor able experience than that afforded by split tubes, muz zles blown off in proof or on service, and half a dozen minor defects. Yet we go on spending money as if every disputed question had been set at rest and solved for all reasonable time."

Conversion of a Paddle Steamer into a Screw. The London and Northwestern Railway Company, some months since, placed their paddle wheel steamer Duchess of Sutherland (built in 1869) in the hands of Messrs. Laird Brothers for conversion into a twin screw steamer, with the expectation that her efficiency for their cross-channel cattle trade would be improved, and that considerable gain in economy would result from the introduction of more modern machinery. The work has now been completed, and the vessel lately made a trial outside the port, attaining, says Engineering, a speed of $141 / 2$ knots, the engines devel oping 1,400 horse power. The alteration effected may be briefly described as follows: The old machinery paddle wheels, and boxes have been removed, but the forward and after sponsons and their houses on each side have been retained and connected, the houses forming quarters for the ship's officers, storerooms, etc., the old paddle wheel space decked over and formed into a large additional space for cattle. The necessary alterations have been made about the stern of the
proved appliances for about sixteen years past. According to a recent official report, 2,500 miners are engaged, the total population of the island being 10,000 The remainder is composed of fishermen, officers, me chanics, surface laborers, and a floating population of hangers-on to the miners. The latter have daily rations sold at fixed prices. These consist of rice, vegetables, pickles, tea, fish, beef soup, and occasionally beef, the total daily cost being under 10 cents. The daily earnings are 22 cents to 24 cents, and the total reductions for necessary expenses are altogether 14 cents, leaving between 8 cents and 10 cents clear, while the scale of dietary is far above the average of the same lass elsewhere in Japan.
Married and unmarried men live apart. The latter live in buildings containing living rooms, dormitories, and eating rooms. The kitchens and offices are all apart from the dwellings, with special drainage into main conduits. The rooms are warmed by large fireplaces, and ventilated and lighted by windows fitted with sliding Venetian shutters. The area allotted to each man in the living rooms is about 500 cubic feet of air space. The married people live in separate apartments, giving about 2,000 cubic feet of air space. From July to October the island is put into a state of semiquarantine against all outside communication, partly with a view to prevent the importation of epidemics, but also to prevent the sale of deleterious foods brought from the mainland. All such food as seaweed, unripe ruit, uncooked vegetables, shellfish, etc., is strictly forbidden, as is also the drinking to excess of intoxicating liquors.

A Novel Ewimming Dress.

A swimming dress, resembling a diver's dress, and made of double India rubber, has, according to a foreign contemporary, been adopted in the German navy. On the chest is a valve through which air is blown into the interior of the dress, which covers the whole body and leaves only the face free. To prevent the swimmer from being too much tossed about by the sea, the space round the chest is especially large. The swimıer wears a belt, which divides the dress into two parts, to prevent a too great loss of air if the dress were torn about the legs, and consequent difficulty in swimwing. The swimmer wears shoes with leaden soles to secure his equilibrium, and for his defense a dagger, which is fastened to the girdle. The swimmers are to be employed for the blowing up of mines and hostile craft, and are provided with a box containing an explosive charge, which they have to fasten to the mine or craft, and ignite. Before the explosion occurs they are out of the reach of danger. The swimming dress has been already tried in Germany. During the attack on the harbor of Kiel on August 29, swimmers were dispatched from the ironclads to destroy the mines closing the port.

The San Diego Flume.

The total length of the flume, when finished, will be thirty-five and three-quarter miles, and the thirtyfourth mile is now completed. The red wood came from Humboldt and vicinity, in Mendocino County. Red wood was used exclusively in the box of the flume. It was strictly clear selected redwood, without knots or sap. The work of the contractors began early in June of last year. On June 27 the first load of lumber was hauled out. An idea of the gigantic character of the work that has since been done can be gained by noting the number of animals and men that were employed. As high as 500 head of horses and mules have been in service at one time, being driven in eight and ten horse teams. During a good portion of the time, sixty teams have been traveling back and forth haul ing the lumber. Besides the teamsters, from 75 to 125 men were constantly employed in the work of construc tion. With the yard hands and other helpers, it is safe to say that 200 men were constantly employed in the various departments of the work. Mr. Carle estimated the amount of lumber used in the flume at $9,000,000$ feet. This is a very conservative estimate, and in all probability considerable more was used. The vastness of this amount of lumber can better be impressed on the mind of the reader by some comparative statements. Had this lumber been all loaded on wagons at one time it would have required 3,000 wagons and 25,000 horses to haul it. The string of teams, if drawn into line one after the other, would make a procession over fifty miles long; the amount of lumber used in the construction of the flume would be sufficient to erect over 200 large two-story residences and would load nearly forty large ships. A tree that will yield 1,000 feet of lumber is a large one, and yet it would require 9,000 of such trees to furnish as much lumber as was consumed in building the flume. This number of trees, as can readily be seen, would make quite a forest.

In the course of the flume there are 315 trestles, the longest of which is 1,700 feet in length and eighty five feet high. Its construction required 250,000 feet o lumber. This is the Los Cochos trestle. The Sweet water trestle is 1,200 feet long and 85 feet high. The main timbers used in these trestles are 10 by 10 and 8 by 8 . They were put together on the ground and raised to their position by horse power. There are eight tunnels in the course of the flume, the longest of which is 2,100 feet in length. The tun nels are 6 by 6 feet in size, with convex-shaped roofing. Each wile of the flume required, on an average, 250,000 feet of lumber for its construction, and the redwood used in the box is all two inches thick.
The San Diego flume is pronounced by men experienced in such enterprises to be the largest ever built in the world. So stupendous was the undertaking that at its conception many declared that it could not be built. Every obstacle has been now overcome, however, and the last spike in the flume driven. The water will be brough to the reservoir, about ten miles from San Diego, from which point it is proposed to pipe the wate to the city. In regard to the meghanical work done in the construction of the flume, all who have examined it declare that it is first class in every particular. Engineers have fixed the grade every mile in order as near as possible to insure perfection in that important particular. The flume has a uniform grade of four and seven-tenth feet to the mile. An idea of the difficulties that have been overcome in the construction of the flume may be gained from a consideration of the fact that much of the lumber had to be drawn 700 and 800 feet up the sides of steep and rocky mountains. The lumber was loaded on cars that ran on a portable track. The cars were attached to a heavy wire cable. The motive power was furnished by a portable cable engine. The flume is now completed, and as the work of
laying the pipes from the reservoir is comparatively an easy one, it will not be long before the water from the great flume will be flowing into our city.-San Diego (Cal.) Sun.

AN IMPROVED METHOD OF MOULDING.

A method by which two sets of patterns way be moulded in the sand facing each other, one portion of each set of patterns being arranged to form a gate or passage from one mould to the other, a single sprue being formed by means of a removable core in one section of the mould, is illustrated herewith, and has been patented by Mr. Edward Reddy, of Little Falls, N. Y.

REDDY'S METHOD OF MOULDING.
The patterns are attached to removable plates adapted to be held in the flask as it is held open, while the two inner sections of the mould are formed. The two outer sections of the mould are then formed upon the backs of the plates, one being provided with a sprue core, when the plates are removed and the four sections are put together, making the mould cowplete. In this manner the bottom and top of each mould are formed of two separate and independent sections of sand, and both moulds may be filled through a single sprue.

AN IMPROVED ARTIFICIAL LEG

An artificial limb designed for use by a person whose leg has been amputated between the knee and foot, and which will not chafe the stump of the wearer, is illustrated herewith, and forms the subject of two patents issued to Mr. Alexander Gault, of Medford, Minn. Figs. 1 and 8 show side elevations and a central vertical section through the ankle piece and foot, with parts broken away. Three sockets are employed, a thigh socket, a stump socket, and an outer socket for holding the stump socket, the outer socket being supported from the ankle or foot piece by brace rods. The stump socket is shown in Fig. 5, and is composed of hard vulcanized rubber or other suitable material possessing the desired rigidity. The thigh-socket supporting arms are supported from the stump-supporting arms shown in Fig. 2, being hinged thereto, and forming upward extensions of a base plate secured to the ankle piece by bolts which pass downward at each side at the back. The ankle bolt is of the ordinary form, but the joint is made of gutta percha or hard rubber. At the back of the ankle piece is a vertical bore in which works a rod, shown in Fig. 3, designed as a practical

coiled spring on the heel rod aiding the wearerin bendng the knee and lending a natural movement to the same, while, by means of the sole plate and guide bolt, with the heel spring, the solid "wooden" sound, so noticeable with the ordinary artificial limb, is obviated.

Electricity as an Employment.

Recently, in the course of some remarks on this subject berore the Young Men's Christian Association, in this city, Mr. Francis B. Crocker said : The question is asked, What kind of a man is required in this business? The answer is that it does not require a peculiar individual. A man need not let his hair grow long to inake a good electrician. Any person of ordinary intelligence, without regard to race, color, or previous condition of servitude, is eligible.
As to whether it is best to go into the business or scientific branch of the industry, that depends entirely upon the man's taste and ability, and he can generally decide that point readily for himself. There is room at the desk as well as in the laboratory, drawing table, and work bench, and no one of these places is more important than the other, and the possibilities of success and a good salary are about equal in each case.
The preparation for entering this business is education and experience, and even these, though of course very desirable, are not absolutely necessary. It would generally be sufficient for a man going into the strictly business part of electricity to have had experience in some other branch of trade. In fact, a boy might go directly from an ordinary school into electrical business and have a very good chance of success; but if a young man has the time and money to spare, he will do very well to take a course in electrical engineering at some college, like Cornell or Stevens Institute, where particular attention is given to this subject, or at one of the scientific schools of Harvard, Yale, or Columbia. It is not necessary to go abroad to study, as more is actually done in one State on this side of the Atlantic than in the whole of Europe, including England. This education is more important to one going into the scientific part than to the prospective business man, but it would be time well spent in either case. Self-education is perfectly possible, and frequently produces the highest results. Edison himself is a distinguished example of this. I think persons generally stand too much in awe of the difficulty of understanding or even partially understanding this subject by their own exertions. A general idea of it is by no means difficult to obtain. Three or four days spent in studying an electrical book, or, still better, an electrical factory or station, will give one quite an inkling, and this improves and grows rapidly without much effort, if one is brought into daily contact with electrical things.
The next point to decide is what branch or application of electricity to select. This also depends somewhat upon the individual, but in most cases a young man would probably take the first good chance offered. But I think as a man can usually steer his own course more or less, it is well to know which way it is wise for him to try to go. It is considerably easier to go with the current than against it. In other words, there are some applications of electricity that are advantageous and easy of themselves, and some that are not, and if a man takes up one of the former class he is likely to be comparatively successful, whereas, if he takes up one of the latter classes, he will have uphill work, entirely irrespective of his own industry and intelligence. To take extreme examples, electricity will run these arc and incandescent lamps very satisfactorily, but so far it has not been found practicable or anywhere near practicable to run an ocean steamer by it. Any one taking up arc or incandescent electric lighting as a business will probably do well, but if any one was visionary enough to attempt making a business of building or operating electric ocean steamers, he would be very apt to die in the poorhouse or lunatic asylum. Of course it is possible that all this inay be changed at any time by new discoveries, but all one can do is to judge by what is already known, and in the case of a beginner, it certainly is not wise to go beyond this. To carry this idea still further, one can judge of the likely directions of electrical progress, even before the advance occurs, and it is in one of these favorable directions that a man should try to go. The generation and distribution of electricity for light, power, and other useful purposes is a very good branch of the business to choose, because it is the fountain head, and all electrical progress will probably benefit it.
substitute for the heel cord commonly employed, and also intended to obviate the necessity for a toe cord or an nstep cord. That it may rock backward and forward, his heel rod is hinged at its lower end to the upper end of a bolt or guidepost of a heel spring, shown in Fig. 4, the bolt extending downward to a plane with the ball of the foot, while below the head of the bolt is a rubber or elastic block socketed in the upper face of the heel of the foot. With the movement of the body in walking, the ankle piece rocks on its joint, the

The propulsion of street cars by electricity is just now of particular importance, and this business is desemployment of hundreds of intelligent young wen to un the central generating stations. The telegraph, which is the oldest and best established electrical business, is still a pretty good field. The telephone. which is financially the most successful of all, is a better field. Lighting is growing very rapidly, and will probably spread still faster in the future. Motor manufacturing and renting is one of the most promising branches.

THE NEW GAS HOLDER OF THE CONsoLDATED GAS
The largest gas holder in America is now rapidly approaching completion in this city. It is situated on Avenue C, occupying the block between Fifteenth and Sixteenth Streets. During the past summer the great framework has formed a conspicuous object for passengers on the steamers passing through the East River. When the sections of the holder proper rise between the uprights of the frame, the structure will appear still more impressive.
From the engineering standpoint, it is of special interest. The problem presented was the erection of a holder of the largest attainable capacity upon a piece of ground which not only was limited in area, but which was of the most unstable character at any great depth below the surface. To have made the usual excavation and to have built within it a brick tank would have been very expensive. The upper stratum of earth was what is called made ground, composed of dumpings from all parts of the city, underneath which quicksand was liable to be found at all places.
For these reasons it was decided to dispense with the sunken brick tank, and to build an iron one resting practically on the surface of the ground. To economize depth the holder is made in three sections, telescoping into each other. Thus the holder can rise above the tank curb to three times the height of the tank.
The ground where the tank stands was leveled off by excaration to a depth of about eight feet. One thousand twelve-inch piles forty feet long were driven over an annular area lying mostly within and corresponding to the general circumference of the tank. This left a circular area without piling in the center. Two feet of concrete were now laid, and on this the bottom plates of the tank were placed. The entire foundation is two hundred feet in diameter.
The tank is made of wronght iron. The plates at the lowest course are $7 / 8$ inch thick, and are laid double, so as to give $13 / 4$ inch thickness of metal. The plates are arranged to break joints. Where two plates abut, a strap of iron with six rows of rivets is carried over the joint. For each of these butt joints there is one strap, either inside or outside the tank, according to the locality of the joint. As the sides rise they diminish in thickness. The tank is 192 feet in diameter and 42 feet 9 inches deep.
Around the top of the tank a box girder is carried which forms the curb. Upon this the twenty-four standards used to guide the holder rest. These are made of iron channel bars and are tied together by lat tice girders, of which'several courses surround them Between the girders diagonal bars extend, crossing in the center of the panel. At their crossing they are secured, so as not to strike against each other in stormy weather. At the top special trussing is used to resist any outward thrust that may be brought to bear upon the standards. The framework rises 125 feet above the curb, or about 150 feet above the street level.
The holder, as already stated, is in three sections, each about 41 feet high. At the upper curbs each section carries twenty-four roller brackets. The roller work in guide rails carried up the uprights. The brack ts are provided with both radial and tangential rollers. The first kind is identified with English and American practice; the tangential rollers are of French type. The combination of the two in the same brack et originated in England, and we believe is used in this holder for the first time in America. In the holder we are describing, the radial rollers are the larger and wore securely fastened; the tangential rollers, com paratively small, are treated as subsidiaries.
The crown of the holder is stiffened circumferenti ally by a box girder. This is contained within the holder and is practically concealed. The outer circle of top plates and the upper circle of side plates form two of its sides; a horizontal circle of plates within the holder forms the lower element, and the open side is filled with lattice trusswork, so as to allow the gas free access. The crown is provided with internal radial trusses, extending to a central kingpost, which carrie their inward ends when the holder is empty.
The general structure is based on recent English practice. The old style of columnar frame is departed from, and the securely braced uprights, with horizontal and diagonal bracing, recall the framework of the great Birmingham holders, illustrated in a former issue of this paper.*
The capacity of the holder is three million two hundred and fifty thousand cubic feet. Separate pipes are provided, one for inlet and one for outlet. They are thirty inches in diameter.
An impressive idea of its magnitude may be formed by ascending to the tank curb. The great crown lies on one side of the observer, and the East River is in clear view. As a schooner sails by with all sail set, the observer may recollect that there would probably be ample room to dock her, masts and all, within the gasoweter when inflated.
Our illustrations give an excellent idea of the immense work, and also show the apparently risky work
hat has to be done in securing the diagonal members of the frame. It is gratifying
yet been lost in the erection.

An Anaconda killed in the streete of New York.

It came out of the manhole of a sewer near the corner of First Street and Second Avenue on Wednesday afternoon, October 3, just as school was letting out at grammar school No. 79, on First Street, a few doors away, and hundreds of children were pouring out. When first seen it was gliding along First Street toward First Avenue. The children saw it and shrieked.
" Look out for the crocodile!" screamed one of them as they ran. Their cries brought hundreds wore of persons flocking from doors all along the block, and heads appeared at every window. The school janitors and other grown persons hustled the children back into the building and up the high stoops in the neighborhood. As the snake moved along, men, women, and children fled before it, screaming warnings to thers ahead.
At first the snake took its time about covering ground, but in a minute or two the throng pressing closer behind it apparently annoyed or terrified it. It stopped and threw itself into a coil, with three or four feet of very vicious-looking body vibrating upright from the center and a mouth eight inches long gaping open to let a forked tongue spit out. The children screaned louder than ever, and everybody that could run did so.
It was at this moment that Mr. Burckhardt first saw the snake that he had coiled up in his market basket the day before. The noise in the street had called him o his window, and just as he had taken one look at it the creature sprang forward. Mr. Burckhardt's hair still rises perceptibly as he tells of it.
"I could just sec it, as it flashed by," he said. "Four men had run out from the wheelwright's shop with whatever they could lay hands on for a club. The snake stopped again, seeing the crowd, and made itself into a coil ready to spring. One of the men jumped forward and hit it a terrible blow on the back of the neck. It dropped to the pavement, and before it could get up again the rest of the men, and everybody else that could get anything for a club, were on top of it, hammering the life out of it. It fought desperately, but it had no chance."
The snake is undoubtedly a genuine anaconda, nearly full grown. Its body measures easily a foot in circumference at its thickest part, and its length of nine feet six inches was verified by Mr. Burckhardt, who stretched it out on his floor and measured it. It is so cut and bruised from the beating it had with clubs that it is doubtful if its skin can be preserved. It is supposed that it came from some South American vessel unloading at an East River dock, crept into the sewers and along them to the place where it reached
the street. Some sailor probably brought it from South America. It may have come from there when young, hidden in fruit or other cargo, and have grown o its present size in the sewers, bat that is not likely. $-\boldsymbol{N} . \mathbf{Y} . \boldsymbol{S u n}$.

Electric Light in Night Firing.

The Weser Zeitung gives an account of an interesting series of trials recently made in Germany for testing the value of the electric light in night firing. The targets were placed at a range of 400 meters from the iflemen, while the electric light generator was situated 200 meters behind the firing party. The apparatus consisted of a steam engine, an electric dynamo mounted on a carriage, and a projector. The steam
engine registered 18 horse power. The light was obtained from an incandescent lamp, which may be placed at a distance of 200 meters from the dynamo. The intensity of the cone of light produced by the arc is 80 great that pencil writing can be read at 4,000 neters. The result of the experiments was that nine shots out of ten struck the targets. The apparatus can only be placed hors de combat if a shot should strike and break one of the carbon supports, but this is an extremely improbable contingency. The illuminat-
ing wagon, as it is called, has been attached to the ing wagon, as it is called, has been attached to the defenee engineers, and will be used in considerable to admit of its being extensively used in the fleld.

Effect of Flour Mill Dust

In order to test the effect of constant inhalation of dust in fiour mills on the animal organism, M. L. Poincarre kept guinea pigs for two years in the mos dusty part of a flour mill-that is to say, the depart ment where the corn is cleansed from all extraneous matter by a special machine before being ground. Of twenty animals, ten remained alive at the end of two years. Those that died were mostly young ones. None of these showed traces of tuberculosis, but catarrhal pneumonia with profuse desquamation of epithelium also in some cases localized interstitial pneumonia and starch, etc., was found, more particularly on the nasal nucous membrane, but only to a mmall extent in the bronohi.- Lanoet.

Correspondence.

Beating the Weighing Machine.

To the Editor of the Scientiflc A merican :
The Scientific American of October 13 contains an article, "Beating the Weighing Machine." The write has witnessed a worse beat than the one mentioned. One of these machines is stationed at a certain railroad station in this State. The same room contains a newsstand, attended by a boy who will tie a string to a aickel, step on the platform, drop the nickel in the wachine, and get his weight. Before stepping off, he calls up next, the machine giving their combined weight. The boy steps off, at which the machine gives the correct weight of No. 2. This process is repeated until the supply of subjects to be weighed is exhausted. Now, before the last party steps down, the boy, who has held on to the string all this time, carefully pullsin the string and gets his nickel back. I am of the opinion, when this machine is examined for cash, there will be little found.
"S. M."
Indianapolis, Oct. 13, 1888.

Black Snake with a White Ring.

To the Editor of the Scientific American:
In your issue of October 6 last I noticed an article on "Habits of the Black Snake," taken from the Finvest and Stream. With your kind permission, I would like to make an exception to the above article.
The writer, in referring to the black snake with a "white ring" around its neck, writes with considerable emphasis as to the " white ring" being "all imagination," and claims that "natural history does not mention the species."
The latter assertion I am not sufficiently informed upon to write with any degree of certainty. As to the "white ring," however, I have in my possession a small snake as black as the "ace of spades" with a perfect white circle around its neck.
I have killed several of the same species within the past five years.
They are quite rare, however, and out of three or our hundred snakes that I have dispatched nithin that period, of all descriptions, from the harmless garter to the deadly copperhead, I find, upon careful comparison of habits and form, that differ only in length, the "white ring" measuring from 16 inches to 2 feet 6 inches, while those without the rings vary from 1 to 7 feet. The scarcity of the former, however, may account for the absence of the large ones.
I have not the slightest doubt, howerer, there are "white rings" as large as their "solid colored" friends, and if not classified, must be closely related.
At all events, there is such a reptile as a black colored snake with a "white ring" around its neck, and black and white are the only colors found upon the snake in question. An old stone fence or rubbish heap seems to be the favorite abode of the " white ring." Sometimes it is captured on a dry, dusty highway, sunning itself, or twisted around some stunted oak or maple in search of birds, field mice, and toads.
As to being chased, I cannot speak from experience, as I never have been in the humor to run. I prefer fighting every time. I know of timid people, however, whose word could not be doubted upon ordinary occasions, who speak with great positiveness as to running away and having a big snake chase them.
In the warm spring days, when the black snake is mating, I have noticed him to be more aggressive than at any other time, and would show fight in preference to running away.
W. S. Post.

Saugerties, N. Y., Oct. 8, 1888.

Brick the Beat Building Material.

Insurance wen, as a general rule, claim that a building which is largely constructed of iron is not necessarily ireproof. This may be true to a great extent, says the American Builder. Iron, when heated, bends very readily under weight, and therefore of itself cannot be called fireproof. There is much, however, to be said in favor of iron construction. It prevents fire from spreading, and unless there is a large amount of inflamable waterial within reach of the flames, there is little danger that fire will make very much headway.
Stone and granite are very little better than iron to withstand the ravages of fire. There is no material that can be used for construction equal to brick. Every brick bears its own weight. Brickshavealready passed the fiery ordeal before they are used in buildings, and are tempered. Cast iron is not substantial enough, and wrought iron, which is an improvement, stands fire but little better. For a fireproof building we would construct one of fire brick. Then glaze them and give them a good appearance, which is rathe ornamental than otherwise.
There are, however, many kinds of material made for the purpose of fireproofing a building after it. is constructed, but we are only speaking here of material which is used in construction, and we have the opinions of both insurance men and heads of fire departinents, who vie with each other that brick bas stood the test bottor than any other matorial.

AN ELEVATOR FOR HOISTING CARRIAGES. A mechanism for hoisting vehicles, etc., outside of buildings, to land them upon an upper floor with facility, while saving the space that would be required within the building for a hateh or inclined way, is illustrated herewith and has been patented by Mr. George L. Loomis, of Northampton, Mass. A platform hav-

loomis' carriage elevator.

ing a surface large enough to hold a carriage is adapted to be projected between the jambs of a door and beyond the wall of a building on the second or a higher floor, the platform being secured upon a frame consisting of two beams extending from the outer end of the platform inward between the joists. These beams have their inner ends united by a cross piece extending beneath two or more joists, and rest upon friction rolls journaled in the joists, whereby the beams can be moved over the door sill, or in grooves cut in it, to move the platform out andin. In a line centrally with the frame, and to the rear thereof, is a windlass frame in which is journaled two drums, a cord from the lower drum passing over a pulley secured beneath the door sill, and being made fast to the frame, whereby the latter may be moved in and out, as the drum is ro tated in one direction or the other by means of its crank-handle. From the upper drum on the windlass frame, which is provided with the usual pawl and ratchet and, crank handle, a cord passes through a hoist ing block upon a beam projecting from the building, the outer end of the cord being provided with a sling upon which the vehicle to be raised or lowered can be readily secured. The platform when retracted is adapted to pass over the floor proper, leaving, when extended, a surface over which things may be easily and safely moved.

THE BUTTING VIPER

Although Africa contains no Crotalus nor Bothrops nor Trigonocephalus, she is, in return, the country of vipers, for, with the exception of a few species that in habit Europe and Asia, all the rest are peculiar to that country. The butting viper (Vipera arietans), which forms the subject of this article, is found throughout entire Africa, with the exception of the Mediterranean re gion, and is met with especially along the coasts of the southwest as far as to the Cape. Two huge specimen of this species have just reached the reptile menagerie of the Paris Museum from Senegal. The body of this serpent, which is short, thick, and squat, rarely exceeds four feet in total length. It tapers considerably in the cervicalregion and terminates in front in a triangular head with rounded angles, somewhat cordiform, much wider than the neck, and very much depressed. The tail is conical and very short. Its thickset form gives the animal a hideous aspect. The nostrils, which are widely open, and their circumference destitute of scales, are very close to each other, and situatad directly above the snout, and not at the sides, as in other species of the same genus. This is what led the German naturalist Merrem to group the vipers that present this peculiarity under the generic name of Echidna, reserving that of Vipera for those in which the nostrils open laterally. Behind, and extornally to the nostrils, are

THE BUTTING VIPER.
quickness of a flash upon its prey, which it pierces with its long, venomous fangs, and which in most cases utters a cry of distress. Then it springs back with the same abruptness and waits, motionless, until the venom has accomplished its work of death. The victim, which at first seems filled with astonishment, soon falls upon its side, as if paralyzed, and, after a few con vulsive motions, expires in the space of one or two minutes. The viper then returns to it with a slow gliding motion, noses the entire body, and finally seizes the latter by the head and swallows it.
From the manner in which these animals attack their victims, one would be tempted to believe that they are conscious of the terrible effects that the inocu lation of their venom immediately produces. But such is not the case, for they behave in the same manner when recently killed animals are offered to them, and boas, too, coil around such animals, in order to strangle them, just as if they were living. These acts which seem due to reason, are instinctive.
The venom of the butting viper cedes in no respect to that of the rattlesnake. Dogs of large size rapidly succumb after being bitten, and cases are cited in which man has been unable to resist its action. It is even asserted that the Hottentots, whose country is in fested with these reptiles, use the venom to poison their arrows by mixing it with the juice of certain plants.
The reptile endures captivity well, provided that the temperature of its cage is sufficiently high. It feeds with considerable regularity, and is easily preserved for several years.-La Nature.

AN IMPROVED GAUGE FOR WOODWORKERS
A gauge which can be readly adjusted for mortis ng, cutting, or marking, two or three different widths, or marking one or two widths and cutting another, or

LITTLE'S COMBINATION GAUGE.
for marking a width from the shoulder of a rabbeted or otherwise checked piece of wood at will, is illustrated herewith, and has been patented by Mr. Wm. B. Little, of New York City. On its tubular stock is mounted to slide an adjustable cylindrical fence with a set screw for clamping it in the usual way, and near the outer end of the stock, on one side, is fixed a projecting marking point, a cutting point being fixed sowewhat nearer the outer end on the opposite side. On the outside of the stock, angularly midway between these points, is fixed a mortisewarking point, inside of which is a longitudinally adjustable mortise-marking point, riding in a slot in the stock, and projecting from a cylindrical nut sliding within the stock, as shown in the sectional view, Fig. 1. The nut is threaded to work on an internal threaded spindle, the outer end of which has a milled head projecting out of the stock. The stock also carries another directly opposite longitudinal slot, in which rides another marking point also carried by the nut, and adjustable therewith. The fence is closed at its outer end by a metallic face plate, shown in Fig. 2, and at its inner end by a detachable metallic bearing plate, mortised in and attached to the back of the fence, as shown in Fig. 3, and in one side of the fence is a longitudinal tubular guide, in which slides a cylindrical nut carrying a marking point which project through a slot on the outside
of the guide. This point can be readily adjusted to any desired distance from the front of the fence, for use, as usual, in marking a line inside of a checked piece of wood.
For further information in relation to this invention address the inventor, in care of Mr. Thomas Young, of No. 5 Greenwich Avenue, New York City.

Electrical Production of Diamonds.

The Hon. C. A. Parsons describes in an interesting communication to the Royal Society, which is published in abstract in Engineering, a number of experiments which he has recently made on carbon at high temperatures and under great pressures, and in contact with other substances. The primary object of the experiments was to obtain a dense form of carbon for use in arc and incandescent lamps, for, as it is well known, could the life of the carbons of either variety of lamp could the life of the carbons of either variety of lamp
be prolonged, a considerable economy could be effected in electric lighting.
Looking at the experiments from this point of view, it may be stated that the experiments were not entirely successful, though a very dense form of carbon was in
set of experiments was when the mould around the rod was filled with a layer of slaked lime about one-fourth inch thick, surmounted by two inches of silver sand, followed by a layer of lime of the same thickness, and finally by a layer of coke dust. The pressures used ranged from five to thirty tons, and the current from two hundred to three hundred amperes, the carbon being in different experiments from one-fourth inch to five-sixteenths inch in diameter. Under these conditions there was obtained on the surface of the carbon rod a powder of a gray color, harder than emery, and capable of scratching the diamond. This powder is, therefore, very probably the diamond itself.

SIXTEEN HORSE POWER WINDING ENGINE.

We illustrate a winding engine exhibited at the recent Nottingham show. This engine is fitted with two large winding drums, each connected to its own shaft by independent clutches, so that eitherdrum can be used quite independently of the others. The frame is made of steel or wrought iron girders, the engine being specially designed for use in countries whereskilled labor not being available, repairs are troublesome and
shore, or wherever the torpedo station is. Fore and aft on the upper vessei or hull, which is the only one which is seen at all above the water, are two flags, which serve as sights by which to guide it. The upper cigar is 18 inches in diameter and 44 feet long. The lower one is 24 inches in diameter and 40 feet in length, this latter being charged in the head with about 300 to 400 pounds of high explosive, which is fired either by the percussion of the cylinder against the side of the vessel or by an electric current from the shore, as desired.
The lower hull also contains the engines, which are of the 6-cylinder type, and the supply of compressed carbonic acid gas with which they run; also a device by which the gas is heated. The heating of the gas is accomplished by coils of copper pipes incased in cylinders containing sulphuric acid and having lime chambers at each end. The sulphuric acid and the lime may be brought in contact by electricity when desired, and will, in less than a minute, heat the gas up to $600^{\circ} \mathrm{F}$., and keep it hot from one to three hours. The engines, each of which takes up only fifteen by twenty-four inches of space, can run 800 turns per minute, at which

SIXTEEN HORSE POWER WINDING ENGINE.
one case obtained, but nevertheless some results are of very great interest, as, though the author expresses himself very cautiously, it would appear that he has succeeded in producing diamond dustartificially. The arrangement of the experiment was as follows: A massive cylindrical steel mould, of about 3 inches internal diameter and 6 inches high, was placed under a hydraulic press; the bottom of the mould being closed by a spigot and asbestos rubber packing-similar to the gas check in guns. The top was closed by a plunger similarly packed; this packing was perfectly tight at all pressures. In the spigot was a vertically bored hole, into which the bottom end of the carbon rod to be treated fitted. The top end of the carbon rod was connected electrically to the mould by a copper cap, which also helped to support the carbon rod in a central position. The block and spigot were insulated electrically from the mould by asbestos; and the leading wires from the dynamo being connected to the block and mould respectively, the current passed along the carbon rod in the interior of the mould. The free space in the mould was filled in turn with different hydrocarbons and with other materials.
Among the liquids acted on were benzine, paraffine, treacle, chloride and bisulphide of carbon, and the solids included silica, alumina, carbonate and oxide of magnesia and alumina. The pressure employed ranged from five to thirty tons per square inch. In the experiment with silica the density of the carbon was increased 30 per cent, and in no other case. The mostinteresting
cylinders and one or two minor brackets. Each drum is fitted with a brake, and there is also one on the flywheel, so that complete control is secured under all circumstances. The cylinders are 9 inches in diameter with 16 inches stroke, and the engine is fitted to carry a working pressure of 100 pounds. The Engineer, to which we are indebted for our illustration, says a large number of similar engines is in use in the mining districts of the various colonies. They are thoroughly well made, and calculated to stand a great deal of hard work.

Trial of a New Torpedo.

The Naval Board of Ordnance, at College Point, N. Y., have been testing recently a torpedo which is the invention of two Americans, Messrs. Geo. E. Haight and Wim. H. Wood, the former of whom is now in France instructing the naval officers of that country in the use of the invention, the French government hav ing bought one for trial.
The board consists of : Capt. A. P. Cook, president Capt. C F. Goodrich, Lieut.-Comdr. R. B. Bradford Lieut. A. R. Couden, and Lieut. S. P. Comley.
The torpedo is cigar shape and is united to a float of the same shape, which lies three feet above it, by four knife-edged stanchions. The torpedo projects beyond he float at the bow, and at its stem is a propeller, above which is the rudder. From the stern there trails above which is the rudder. From the stern there trails
speed each will develop ${ }^{75}$ horse power, the speed of the torpedo being 20 to 24 miles an hour, which speed can be maintained for a run of one to one and a half niles with one charging of gas.
The torpedo is expected to cut through rope netting of inch hemp rope and strike the target fair and square, exploding at once. The entire torpedo, with its propelling and steering machinery and its charge of dynamite, nitro-glycerine, or whatever other explosive is chosen, weighs $21 / 4$ tons, the engine weighing 524 pounds.
For the experiments before the board, the navy yard tug Nina anchored behind a net target 130 feet long, three-quarters of a mile from shore, representing a man-of-war, defended by her torpedo nettings, the explosive charge consisting of a can of powder on top of the forward flag of the torpedo, but fired by the regular cap head of the submarine weapon.
The distance, three-quarters of a mile, was covered in 2 minutes 52 seconds, official time, or at the rate of say 18 miles an hour. Subsequent examination showed that the torpedo cut clean through the netting, broke her forward stanchion in so doing, and then headed away in a go-as-she-pleased trip. The torpedo also snapped her connecting wire.-Army and Navy Jour.
M. Cievreul has entered his 103d year. The other day he walked through the Sanitary Exhibition, at the Palace of Industry, Paris.
an interesting electrical experiment. There is a very pretty electrical experiment which al ways excites considerable curiosity and interest, that, so far as known, has never been described in print. One end of a piece of soft cotton string, about four inches long, is pasted, by means of a small bit of paper, to the inside of the cylindrical glass front of a show case, in about the position shown at a in the engraving, in such a manner that the string hangs freely down. The outer surface of the glass, frow a to c, is then briskly rubbed from side to side with the back of the hand or with a dry silk handkerchief. The glass is thus elec trified, and the string also takes a charge either by induction or leakage, and is repelled by the rubbed glass. At each movement of the hand the string sways from side to side, and finally, when the glass is sufficiently excited, it curls up so as to touch
the unelectrified part of the show case, at b, as shown by the dotted line. If the finger is now held for a few moments against the glass at a, the string is discharged, and is forthwith attracted up to the front of the case in the position shown by the dotted line at c. Pressing the finger against the glass at c discharges it there, and the string quickly jumps away and clings to some place that is still electrified. This action may sometimes be repeated five or six times before the glass is wholly discharged, the string being made to fly to and fro until one is tempted to believe it endowed with life.
As in all experiments in frictional electricity, dryness is essential to success, and if one's hands are at all moist the experiment fails. In summer it is almost impossible to make the string do more than sway slightly when the glass is rubbed; but on a dry winter day it is as lively as a grasshopper.
A. B. P.

INEXPENSIVE CARBON PLATES FOR GRENET bATTERIES, ETC.
 by chas. fetzes.

The following is the method adopted by the writer for the utilization of cast-off electric light carbons in making plates for a small motor battery :
At almost any electric light station which uses arc lights may be obtained numbers of rejected carbons, which are unfit for use in the lamps, owing to some defect in the manufacture. These defects, however, do not injure them in any way for use in the battery These carbons can be had for the asking, or for a moderate sum.
The ordinary carbon is long enough to allow of being cut into two pieces about six inches long, but plates of the whole length and as wide as desired may be made. For simplicity's sake, a plate $6 \times 13 / 4$ inches is represented in the sketch, which also represents the manner in which the carbon rods are pressed together and held flat while being soldered, the first office being per formed by the wedge, W , the latter by the strip of wood, X ; the whole arrangement being made of wood, except nails and screws. To prepare the carbon rods, the copper coating is removed by nitric acid, taking care to leave about one or one and a half inches of cop

per on one end of each rod. When taken from the acid they should be washed and dried, then placed in the "holder," as shown in the sketch, having all the coppered ends together. Apply soldering acid in the grooves between the coppered ends, and with a soldering copper, heated just enough to melt common solder, rub the solder in until it "takes," which will be in moment.
When one side has had all the grooves filled, turn the plate over and repeat the process on the other side. Before using the plate in the battery, itshould be coated with paraffine for about one-half inch below the copper, and the paraffine should be worked into the grooves, otherwise the acids from the battery would be'drawn up by capillary attraction and soon destroy the copper and cause the rods to fall apart. The writer has made
these plates and used them in a battery for driving a
small motor, and can say that they are equal to any of the plates manufactured by the trade for battery pur poses-in some cases superior-as the carbon rods are very compact and of fine texture.
It is best when applying the paraffine to warm the plate, have the paraffine melted, and apply with a small brush.

Tractive Power of Locomotives.

Mr. M. N. Forney thus explains the meaning of the terin tractive power of a locomotive. It is the force with which the locomotive is urged in a horizontal di rection by the pressure of the steam in the cylinders and which therefore tends to move the locomotive and draw the load attached to it. The tractive power is due to the pressure of steam on the pistons, and therefore its amount is dependent upon the average steau pressure in the cylinders on the area of the piston and also on the distance through which the pressure is ex-erted-or, in other words, on the stroke of the piston Thus, if we have a cylinder 17 inches in diaweter and feet stroke, and an average steam pressure of 50 pounds per square inch, then, as the area of such a piston would be 227 square incies, the average pres sure on it would be $227 \times 50=11,350$ pounds, and, as each piston moves through 4 feet during one revolution of the wheels, the number of foot pounds of energy exerted by it would be $11,350 \times 4=45,400$, and for the two cylinders of a locomotive double that amount, or 90,800 foot pounds. If the driving wheels are 5 feet in diameter, their circumference will be 15.7 feet, and therefore the locomotive will move that distance on the rails during on'e revolution, if the wheels do not slip. The 90,800 foot pounds of energy is therefore exerted through a distance of 15.7 feet, and therefore

$$
\frac{90,800}{15 \cdot 7}=5,783 \text { pounds, }
$$

which is the force exerted through each foot that the circumference of the wheel revolves and the locomotive moves. If the wheels were only half the diameter, or $21 / 2$ feet, then their circumference would be $7 \cdot 85$ feet, and the tractive power would be

90,800

$7 \cdot 85-11,566$ pounds,
or double what it was before. It will be seen, then, that the tractive force of a locomotive is dependent upon 1. The average steam pressure in the cylinders. 2. The area of the pistons. 3. The stroke of the pistons. Aud, 4. The diameter of the driving wheels. The tractive power of a locomotive is, therefore, found by multiplying together the area of the piston in square inches, the average steam pressure in pounds per square inch on the piston during the whole stroke and four times the length of the stroke of the piston, and dividing the product by the circumference of the wheels. The result will be the tractive power exerted in pounds. The adhesion must, of course, always exceed the tractive force, otherwise the wheels will slip.

Our Population in 1890.
The census of 1890 , preparations for which are already being made, promises to show in the United States a population of more than $70,000,000$. The population in 1880, according to the census of that year, was $50,155,783$ persons, of whom $43,475,840$ were native and $6,679,943$ foreign born. The natives had increased $10,484,698$ from the figures of $1870-32,991,142$-or 31.5 per cent. The foreign element had gained more slowly, however, bringing the percentage for the entire population down to 30 per cent. The same rate of increase applied to the census of 1880 will, according to the Philadel phia Record, give an increase of $15,046,639$ persons during ten years ending in 1890.
The immigration between 1870 and 1880 was com paratively light, only $1,112.714$ persons having come to this country during that decade. For the past few years, however, it has been unprecedented. The immigration since the last census has been as follows:

1880.	457,257
1881.	669,431
1882.	788.992
1883.	603,322
1884..	518,592
1885.	395,346
1886.	334,203
1887.	490,109
1888 (8 months).	380,000
	4,637,252
Estimate for 2 years and 4 months.	1,100,000
Total for 10 years	5,737,252

Add this total to the increase in the native-born popu lation at the rate which prevailed from 1870 to 1880 , and it, will be found that the probable increase in popula tion during the present decade, after making due allowances for births and deaths, will have been $20,246,639$ and the total population in 1890, native and foreign born, $70,322,479$, divided as follows :

Native	32,991,142	43,475,840	58,522.479
Foreign born.	5,567.229	6,679.943	11,800,000
'Total..	38,558	50.15	70,322,479

It is very evident that the foreign element will form
over before. In 1860 this proportion was about 18 per In 1890 it will not be far from 18 per cent.

EXPERIMENT WITH MIRRORS.

Erery one knows that in images produced by a miror there is lateral inversion ; that is, right and left are reversed. We have become so accustomed to this inversion that we rarely notice it unless a printed page is held before the inirror, when the fact that the words appear "backward" recalls it to us. If we arrange two mirrors so that there is a double reflection, the inversion is got rid of, and some curious effects are obtained. Put two mirrors edge to edge, at an angle somewhat less than 90 degrees, and hold a book in front of them in the position a in the sketch. An image of the book is seen in each mirror, but because of the two reflections, indicated by the dotted lines, there is no inversion; a fact which we recognize by the words appearing in their natural order. Now stand at a, and, fixing the attention on one of the images of the face in the mirrors, attempt to brush the hair. The result is ludicrous. The brush is almost surely put to the wrong side of the head and the hair brushed the wrong way, and it is usually some little time before one sufficiently becomes accustomed to the odd effect to use the brush with confidence.
A. B. P-

Pottery in Limoges.

China is selling at a lower rate now, says Consul Guffin, of Limoges, than it has done for many years past, the reason being that the price of labor has decreased 10 per cent in the last five years, machinery has in many instances replaced hand labor, and the saucer maker has entirely disappeared since the strike in 1883. The rates of interest and insurance greatly favor the manufacturer. The price of coal and wood is lower than in previous years, the former costing from 25 francs to 35 francs per ton delivered at the fac tory, and the price of the latter is from 10 francs to 12 francs per stere. The year 1887 shows a decided decrease in the production of china; there was a steady decline from 1882 to 1886 . In the year 1887 there was employed in the manufacture of china at Limoges 1,621 coal furnaces, as compared with 1,528 in the pre ceding year, and 324 wood furnaces, against 323 in 1886 Some manufacturers burn wood, although it is more expensive than coal, the reason of this being that they think the sulphurous fumes from the coal injure the color of the china. Few colors have yet been discovered that will resist the gases of coal, so wood is used exclusively to heat the moufles, the furnace where the paintings are fired. Limoges china is in demand all over the world, but by far the largest share goes to the United States. The production last year amounted to over $\$ 1,600,000$, nearly half of which was exported to the United States.

EXPERIMENTAL ELECTRIC FUSE.

Nothing interests a class in electricity more than a homely illustration of some industrial application of the science. An experiment, if it be a good one, is all the more effective when performed without the aid of elaborate apparatus from the instrument maker, and if it be one which the student can repeat at home, he is the better pleased

One of the minor applications of electricity with which every one is familiar, but which is rarely illustrated in the class room, is that of firing blasts at a distance by means of an electricfuse. Young people will enjoy the following illustration. Wrap a short piece of very thin iron or platinum wire about the fuse of a fire cracker, as shown in the figure at a. Stout copper wires are attached to the ends of the thin wire, and led through the window on the sill of which the cracker is placed. On connecting the copper terminals to the poles of a battery, the thin wire is heated to incandescence, the fuse is lighted, and in a moment the cracker explodes. If it is desired to make the blast instantaneous, a pinhole is made through the middle of the cracker, and the thin wire is threaded through it so as to be in immediate contact with the powder. When a sufficiently thin wire is used, a single Grenet or Bunsen cell is enough to fire the fuse. For economy's sake it is better to use iron than platinum wire in these experiments. Very thin iron wire can be bought on spools, and it may be easily made still thinner, if necessary, by inmersing

A B. \mathbf{P}

AN IMPROVED CALCULATITG MACHINE.

There has lately been invented by Mr. Dorr E. Felt, of Chicago, a calculating machine which he has named the comptometer. It is a practical machine operated by keys for the computation of numbers and the solution of mathematical problems. The rapidity and accuracy with which computations are made on the comptometer when in the hands of a skillful operator are calculated to meet the approval and win the admiration of all.
In the construction of the comptometer all the operating parts are made of the finest hardened steel, thus insuring the greatest degree of durability. The accuracy and durability of the machine have been thoroughly tested in the actuary's department of the United States Treasury at Washington, where one is in constant use. It will add, subtract, multiply, and divide, from which it is evident that all arithmetical problems can be solved on it. Particular attention is called to its availability in computing interest, discount, percentage, and exchange. It is a neat, compact machine, fourteen and one-quarter inches long, seven and one-quarter inches wide, and five inches high, weighing eight and a half pounds.
By referring to the cut, it will be seen that each key has two numbers on its top, one large and the other small, but for the present leave the small one out of consideration, and understand every reference to be to the large one only. It will be seen that the keys resolve themselves into rows running from right to left and rows running from the operator. For convenience in explaining, the rows running from right to left will be called rows, and those running from the operator will be called series. It will be further noticed that every key in the first row has the figure 1 on its top, those in the second the figure 2 , those in the third the figure 3, etc. The fig ares on the tops of the keys in the series run from one to nine inclusive The first series represents units, the second tens, and the third hundreds, etc. To add, it is merely necessary to touch on the machine the numbers to be added; thus, if we have 5,673 plus 932, we touch the figure 5 in the fourth series, 6 in the third, 7 in the second, and 3 in the first, when 5,673 will be skown.on the register; we next touch 9 in the third series, 3 in the second, and 2 in the first, when the sum of the two numbers, 6,605 , will be shown by the register. This operation can be continued until the limit of the machine is reached, which in. the standard size is $999,999,899$.
Subtraction, multiplication, and division can each be as rapidly and as easily performed.

By again referring to the cut, it will be seen that at the front of the machine is a plate in which are a number of square openings, which is called the register plate. At these openings are shown all results by numeral wheels, which are below the plate and which stand side by side on the same shaft, stand side by side on the same shaft, and each of these
numeral wheels is acted upon by its keys numeral wheels is acted upon by its keys direct and also by the carrying part of the numeral wheel next lower in order, something that has never been practically accomplished before in any mathematical calculator operated by keys. The carrying mechanism in this machine is entirely independent of the keys struck, and the power required for carrying is gradually accumulated and automatically released at the propermoment, therefore requiring no additional effort to depress the key when, through the operation of the carrying device, the next numeral wheel in order above has to be moved, than when such is not the case; therefore, when a succession of nines occur on the register, and a key is struck in one of the lower orders, it is impossible to discover that any more power is required than when one nine only appears on the register. In this machine two positive stops are employed for each numeral wheel, one to prevent over-rotation of the numeral wheel under the impulse of the key stroke, and the other to prevent over-rotation of the numeral wheel when actuated by the carrying mechanism. As there is no frictional device employed to prevent overrotation, the machine always responds to a light touch on the keys; and as each numeral wheel is always in positive engagement with its controlling devices, ab solute accuracy is insured at all times. It having been stated that the carrying device is independent, it will be at once seen that when a key of one of the higher orders is struck, the carrying device of the next lower order is at once released, allowing the numeral wheel on which the key struck acts to move independently of all numeral wheels lower in order. The result of any operation being obtained, the machine is returned to operation being obtained, the machine is returned to
naught by depressing the lever whichiappears on the
right and turning the knob above it until the figares seven appear on the register, whon release the lever and continue turning the knob, and the machine will stop at the ciphers.
The comptometer is being manufactured by Messrs Felt \& Tarrant, 53, 54, and 56 Illinois Street. Chicago

The Buried Forents of New Jereey.

An industry the like of which does not exist any where else in the world furnishes scores of people in Cape May County, New Jersey, with remunerative employment, and has made comfortable fortunes for many citizens. It is the novel business of mining cedar trees-digging from far beneath the surface immense logs of sound and aromatic cedar. The fallen and submerged cedar forests of Southern New Jersey were discovered first beneath the Dennisville swamps 75 years ago, and have been a source of constant interest to geologists and scientists generally ever since. There are standing at the present day no such enormous specimens of the cedar anywhere on the face of the globe as are found embedded in the deep muck of the Dennisrille swamps. Some of the trees have been uncovered measuring six feet in diameter, and trees four feet through are common.
Although ages must have passed since these great forests fell and became covered many feet beneath the

FELT'S IMPROVED CALCULATING MACHNE.
theory, while they were yet living trees are as sound to-day as they wer the day of their uprooting. Such trees are called "windfalls" in the nomenclature of the cedar mines, as it is thought they were torn up by the roots during some terrible gale of an unknown past. Others are found in the wreck that were evidently dead trees when they fell, and to these the miners have given the name of "breakdowns." The peculiar action of the wind and water in the swamp has kept these breakdowns in the samestage of decay they were in when they fell, as the same agency has preserved intact the soundness of the living trees.
The theory of those who have made this mysterious collection of buried cedar trees a study is that they in some unknown age formed a vast forest that grew in a fresh water lake or swamp that covered this portion of New Jersey, the properties of the soil of which were necessary to the forest's existence. According to Clarence Deming and Dr. Maurice Beasely, eminent geological authorities in Southern New Jersey, the sea either broke in upon the swamps or the land subsided and the salt water reached the trees. This destroyed the life of many of them, and subsequently some prehistoric cyclone swept: over the forest and leveled it to the earth. The heavy trees gradually sank intn the soft soil of the swamps until they reached the substantial earth or rock beneath it, where they reposed, unknown and undisturbed, until their presence was accidentally discovered in 1812. Ever since then the logs have been mined, and have been an important factor in the commercial and business prosperity of South Jersey.
The buried forest lies at various depths in the swamp, and the uncovering of the trees or working the " cedar mine" is done in a very simple and easy manner. The mine" is done in a very simple and easy manner. The
log miner enters the swamp and prods in the coft woil
with a long, sharp iron rod. The trees lie so thickly beneath the surface that the rod cannot be pushed down amiss on its testing orrand, for the prodding is not 80 much in search of a tree as it is to test whether the tree is a "windfall" or a "breakdown." When the prod strikes the log, the miner chips off a piece with the sharp point of the tool, which bríngs the chip or splinter to the surface when drawn out of the muck. By the appearance and order of this chip the miner can tell at once whether the tree he has tested is a sound or a dead one. If the former, he quickly ascertains the length of the trunk by prodding along from one end of it to the other.
That ascertained, he proceeds at once to raise the og from its hidden bed. He works down through the mud a saw similar to those used in sawing out ice in illing an ice house. With this he saws the log in two as near the roots as he cares to. The top of the tree is next sawed off in the same way, and then the bigcedar stick is ready to be released from its resting place. A ditch is dug down to the log, the trunk is loosened by cant hooks, and it rises with the water to the surface of the ditch. A curious thing is noticed about these logs when they come to the surface, and that is that they invariably turn over, with their bottom sides up. After mining, the \log is easily "snaked out" of the wamp and is ready for the mill or factory.
These ancient trees are of a white variety of cedar, and when cut have the same arowatic flavor intensified many degrees that the common red cedar of the present day has. The wood is of a delicate flesh color. One of the mysterious characteristics of these long-sunken trees is that not, one has ever been found to be waterlogged in the slightest. It is impossible to tell how many layers deep these cedars lie in the swamps, but it is certain that there are several layers, and that with all the work that has been done in constantly mining them during threequarters of a century, the first layer has not yet been removed from the depths. At some places in the Dennisville swamp the soil has sunk in for several feet and become dry, and there the fallen cedars may be seen lying in great heaps, one upon the other. No tree has ever been removed from the Dennisville swamp from a greater depth than five feet, but outside the limits of the swamp they have been found at a great depth, which shows the correctness of the deep-layer theory. Near the shore of the Delaware, eight miles from Dennisville, white cedar logs have been exhumed from a depth of 12 feet. At Cape May, 20 miles distant, drillers of an artesian well struck one of the trees 90 feet below the surface. It was lying in an alluvial deposit similar to the Dennisville swamp. Another log was found at Cape May 20 feet below the surface, and a third at a depth of 70 feet. These deeply buried logs were among the largest ever brought to light, and heir location so far away from the Dennisville marsh indicates the great extent of that ancient forest area. The uses to which the cedar logs are put are many. The principal use is the making of shingles and staves. The longevity of articles made from the wood is shown in shingles, tubs, pails, and casks made from it over 70 years ago, and which have yet to show the slightest indication of decay. The shingles and staves are worked into shape entirely by hand, the only machine work that is permitted in manipulating the cedar logs being the sawing of them into proper lengths for the uses to which the lumber is to be put. The Dennisvil.e cedar shingles command a price much higher than the best pine or chestnut shingles.
What it is in the amber colored swamp water and red muck at Dennisville that preserves these trees so that, after the lapse of centuries, their fiber is as clean and smooth and strong as it was when the green branches of the cedar were waving over the swamp is a mystery that scientific men have as yet been unable to solve. $-N . Y$ sun.

The Now British Rifle.

Experimental firing with the new British military rifle at ranges beyond 2,000 yards has given the following results. The targets were small field fortifications ten yards long. The firing, volleys by about thirty men, was almost wholly from direction, sighting being impossible, owing to the hazy weather : yetat 2,000 yards out of 870 shots there were 159 hits; from 367 shots at 2,400 yards there were 96 hits; and from 629 shots at 2,800 yards there were 104 hits. Penetration at the extreme ranges had been thought doubtfol but some bullets at 2,800 yards struck an iron target and were bullets at 2,800 y

engineering inventions.

A car wheel and axle has been patented by Mr. John H. Smith, of Paterson, N. J. This invention provides means whereby one wheel will run in-
dependent of the other, producing less friction on curves and preventing strain upon the axle, the axle curves and preventing strain upon the axie, the axie
and attached wheels being of simple, durable, and economical construction.
A car coupling has been patented by Mr. Abraham G. W. Foster, of Whitesburg, Ga. It is so constructed that the coupling pin may be set to be
automatically thrown into coupled position with coupling link and the latter guided into place in the drawhead, providing also for the uncoupling of the cars without the operator going between them.
A safety applianee for car trucks has been patented by Mr. Gavin Rainnie, of Portland, New
Brunswick, Canada. It consists of a heavy or strong Brunswick, Canada. It consists of a heavy or strong
bar bolted to the truck frame and bent to cause it to pass over the main tetionary bolsters, being applied in such way as to keep the cars on their tracks in case of derailment, and to operate as a safety means in case of a broken rail.

AGRICOLTURAL INVENTION.

A cultivator has been patented by Mr. Henry \mathbf{H}. Hooker, of Wilmot, Kansas. The cutter ediges, the vertical side portions having adjusting apertures for the attachment of a bail with which the handle is connected, the blade being adjusted at any required angle, and the device being especially designed for cultivating garden vegetables, young onions, etc

miscellaneous inventions.

An ironing table has been patented by Mr. Frederic A. Clark, of Newark, N. J. It is a table that is simple and durable in construction, and can be
easily folded up, the invention covering various novel details in the construction and arrangement of parts.
A load elevator has been patented by Mesers. Jacob Lane and Nelson McPherson, of Gains-
borough Ontario borough, Ontario. Canada. It is made with a com-
bined drum and ratchet wheel oflpeculiar construction, the ratchet wheel being formed of inwardly tapering the ratch.

A truss pad has been patented by Mr. Edward W. Holt, of Brooklyn, N. Y. It is flexible and hollow, and adapted to be inflated with air, water, or whereby the inflating medium is kept from shifting whereby the
A tether has been patented by Mr. George S. Sergeant, of Greensborough, N. C. It is made with a standard or stake on which a bracket or carrier is supported, so that it may rotate on or be adjusted
along the stake, in connection with a pole and a spring connection supporting the pole.
A sunshade for vehicles has been patented by Letitia V. Luce, of New Orleans, La. It
is a simple and reacily manipulated device whereby the eyes of the driver may be shielded from the sun,
the device being such that it can be readily withdrawn the device being such that it can
and concealed when not in use.

A garment has been patented by Mr. Paul T. Forsyth, of Memphis, Tenn. This invention covers a garment provided at each side of the front
opening of the skirt portion with pockets which may opening of the skirt portion with pockets which may
be slipped over the knees of the wearer in riding or be slipped over the knees of the wearer in riding or
driving, as a protection against cold, winds, or storms.

A new composition for dyeing aniline black has been patented by Mr. Benjamin F. Cresson, of Pbiladelphia, Pa. It consists of water, chlorate of iron, aniline oil, muriatic acid, and tartaric acid, com pounded in a manner and in proportions prescribed.
A double clamp has been patented by Messrs. Wiliam Carroll and Charles A. Hill, of Columbus, Ohio. It is for holding the doors of stoves in place on the stove casing while fitting on the hinges,
pintles, etc., the clamp rods being held within casings pintles, etc., the clamp rods being held within casion
in such way as to be acted upou by coiled springs.
An adding machine has been patented by Mr. Charles B. F. Lincoln, of San Francisco, Cal.
This invention covers various novel features in the combination and arrangement of parts in an adding machine, whereby greater simplicity, convenience in use, and rapidity in operationare attainable than usual
An automatic fan has been patented by Mr. Henry Goodspeen, of San Marcos, Texas. It is ceiling of a room in any desired position, the invention covering a peculiar construction and arrangement
of parts, the fan to be operated by a suitable driving of parts, the fan to be operated by a suitable driving

A foot rest for chairs has been pa tented by Mr. Henry S. Parker, of Peterson, Iowa. I high chairs, the invention covering a novel construction which may be conveniently attached to chairs of dif ferent widths, and also conveniently adjusted ver
tically.
A life preserver has been patented by Mr. Samuel Pemberton, of Alpena, Mich. It consists
of two hollow belts connected together at one side by a tube and at the opposite side by a bellows, the ing air through both of them, the apparatus forming a ing airable harness.
An improvement in stereotyping has been patented by Mr. Lucius Goss, of New York City This invention covers a method of casting and cutting plates of single column width, to be used to extend
across two or more columns of a newspaper page to
facilitate the arrangement of pictures it
matter used by "ready print" newspapers.
A sash balance has been patented by Mr. Charles Fowler, of East Springfield, N. Y. Th cords in the window or sash frame and friction pins in the sash, with means for taking up any slackness of the hanging wires or cords as it occurs, ordinary to and wights not being necsary.
A bag holder and fastener has been patented by Mr. Aloysins, of Loretto, Kansas. Comdetachably secured to the mouth of the bag at on side, and formed with eyes at its ends, making a support for the bag when not in use which may be employed to fasten the bag after it is flled.
A battery electrode has been patent d by Mr. Horatio J. Brewer, of New York City. The with projections on its surface, an envelope or ba being drawn over the projections to form pockets, in which a granulated or powdered electro negative ma erial is pac
A fishing reel has been patented by Mr. Michael Cashin, of New York City. The reel is made with an operating mechanism fish is hooked, the mechanism being so arranged that the control and winding and unwinding of the line may be readily effected.
An ironing machine has been patented by Mr. Frank Corbett, of New York City. This in oluble ironing rollers are hollow, to receive the steam or other agent by which they are heated, the invention
covering novel features of construction and the arrange covering novel features of construction and the arrange ment of parts.
A grapnel tongs has been patented by Mr. Thomas J. S. Davis, of Davis Wharf, Va. It specially designed for loosening and raising oysters in
deep or shallow water, and consists deep or shallow water, and consists of two rake
adapted to swing toward and from each other, rack
bein being connected with the rakes, and a gear wheel, drum, and ropes, for operating the racks and rakes.
A folding bed has been patented by Mr. John S. Roe, of Chicago, Ill. Combined with casing and racks secured to its sides are toothe
wheels on the sides of the bed, rods pivotally connecte to the casing and to the bed, with a spring for holding the toothed wheel in engagement with the rack and the bed in a vertical position, with other novel features. A tin can has been patented by $\mathbf{M r}$ Francis J. Marmion, of New York
but few parts, easily jointed together, forming a double seam on the sides of the can and on the joining edge of the flanges or sides of the steeple-shaped top,
whereby the can is made very strong, the Jouble joints whereby the can is made very strong, the Jouble joints
acting as braces to all the sides and the top of the can.

A gas pressure regulator has been pa ented by Messrs. John W. Carter and Joseph Miller of Greenfield, Ind. This invention covers a novel con struction of the supply valve and its seat, with mean whereby the valve is automatically opened and closed reducing to a minimum the pressure in the service pipe the device being also adapted to serve as a steam liquid pressure regulator.
An automatic advertising device has been patented by Mr. Edward C. Magnus, of Chicago springs and weights for utilizing the jolting, trembiin and swinging motion of public vehicles, as cars, stage etc., or frames of any kind to which a sign may be at tached, to give motion to parts or the entire surface

A gas check for waste pipes has been patented by Mr. Henry B. Eareckson, of New Yor City. It is for use on the waste pipes of wash basins and other water fixtures, to permit the discharge of the waste water while automatically preventing the back
flow of sewer gas, a self-closing tiap valve opening b flow of sewer gas, a self-closing tap valve opening by
the pressure of the waste water, and closing tightly by the pressure of gas from the drain.

A window shade attachment has been patented by Mr. Charles Niss, Jr., of Milwaukee, Wis t is intended for window shades known as Venetia linds, in which transverse elats are strung upon cords, ee altachment furnishing a simple and convenien ready fastening of the blind to the winovide for prevent its being blown inward when the window is

A check hook has been patented by Mr. Clinton C. Lovejoy, of Bethel, Me. The hook return the check rein, being retained by a suitable device connected to the frame of the hook, and also the retaining device for unch hook to be thrown off from a driver may check up and uncheck the horse witho leaving the vehicle.
A pipe joint has been patented by Brussels, Belgium. Combined with the plain flanged ends of two pipes connected by screw bolts is a thimble having an external under-cut flange, the thimble filting loosely in the bore of the pipes, and the flange intervening between the abutting edges, a soft packing
being placed between the under-cut faces of the flange being placed betw
and the pipe ends.
A stump puller has been patented by Mr. James M. Moore, of Union City, Tenn. It has sills with barallel runners, a derrick on one sill and a
standard bearing on the other, to which is fulcrumed a draught-beam lever, there being a lever-hoisting tackle on the derrick and a brace jointed loosely at its ends the top of the derrickand to theother sill, whereby a
greatest and the
ment of the pull.
An apparatus for teaching arithmetic has been patented by Messrs. Ignatius L. Unterbrink, St. Rosa, and Albert G. Vandenbrock, of Cassella,
Ohio. It is made with a casing having two vertical eries of horizontally aligned polygonal rollers having numerals on their faces, and an intermediate vertical polygonal roller separating the series and having algebraic signs on its faces, with other novel features,
designed to save time and labor for both teacher and designed
pupil.

An apparatus for automatically reguating the flow and temperature of fluids has been patented hy Mr. George A. Gustin, of Washington, D. C. It consists of a valve operated by electro-magnets and
battery, in connection with a thermostat and a battery, in connection with a thermostat and a weight, so that the thermostat can be set at any desired emperature, the thermostat being operated by the tem-
perature of the water it is intended to control, and conected electrically with one or more of the magnets which operate the valve.
A machine for wiring corks in bottles has been patented by Mr. Benjamin Adriance, of rooklyn, N. Y. This invention covers an improve ment on former patented inventions of the eame in entor, and consists principally in means for giving to
he intermittingly rotated spindle a varying velocity of otation, and in means for locking the spindle against axial movement while it is being moved longitudinally, ogether with means for operating the twisting pliers nd clamping or tension jaws for holding and releasing the wires.

SCIENTIFIC AMERICAN

BUILDING EDITION.

OCTOBER NUMBER.-(NO. 36.)

TABLE OF CONTENTS

. Elegant plate, in colors, of a suburban dwelling plans, sheet of details, etc.
. Elegant plate, in colors, of two cottages costing twelve hundred and sixteen hundred dollars,
spectively. Sheet of details, floor plans, etc. . A residence at Richmond Hill, N. Y., lately built, a a cost of ten thousand dollars. Perspective and floor plans.

Floor plans and perspective.
5. Villa at Fontainebleau-M. E. Brunnarius, architect. plans and perspective.
6. View of the new Protestant church at Lyons, France. Cost, eighty thousand dollars.
7. Page of engravings showing the house at Stratford-on-Avon in which Shakespeare was born-Anne Hathaway's cottage, near Stratford-on-Avonspeare is buried-The residence of Mary Arden, the mother of Shakespeare-Old Elizabethan house, Stratford, showing' the domestic architec ture of the time of Shakespeare.
8. The chancel, Holy Trinity Church, Stratford-on Avon, show the stained glass window, the bust and American visitors.
9. A suburban villa lately built at Sound View Hill, vong Island hundred dollars.
0. Design for a cottage by S. W. Whittemore, architect, Brick Church, N. J. Perspective and floo
11. A Queen Anne cottage in Rochelle Park, New Rochelle, N. Y., costing tive thousand six hun red dollas.
An English double house of moderate cost. Per ,
La Farge, architects, New York.
Miscellaneous contents : A new regimental armory,
New York City. - Ventilating pipes - National New York City. - Ventilating pipes. - Nationa ing pit for burning shells.-Roman road construc-tion.-Beauty of the larch.-Sewage disposal in proof wire lathing.-A clematis porch illustrated. Some ways of using the Virginia creeper, illusWood that will not blaze.-Fall of a stone church ower.-A ruined city in Texas.-Loofah as a Defects in plumbing in the Maine Insane Asylum. An improved reversible shaper, illustrated.-Im proved hand and foot power saws, illustrated.Practical hints on disinfection.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of Architecrure, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples or Modern Architectural Construction and
allied subjects. The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.
ßusiness and æersonal.
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line. advertisements must be received at publication office

Magic Lanterns and Stereopticons of all kinds and

 prices. Views illustrating every subject for public ex ment. 152 page ilustrated catas, agu fome entertain Manufacturing Optician, 49 Nassau St., New York.John M. De Pool, 62 Broad St., N. Y., translator of rench, spanish, Dutch, German, and tran an languages Specialty
writing.
U. S. Patent No. 389,583, on carriage elevator, illus-

Fuel oil busners. A. E. Jenkins, Scranton, Pa.
Model and experimental work a specialty. Reason ble terms. Kenton Electrical Works, Covington, Ky.
For Sale-U. S. patent No. 388,530 , on check row For Sale-U. S. patent No. 388,530, on ch
planter. Address John Clark, Sheffeld, Iowa.
Insulation-For formula and control of satisfactory
material for insulating electric wires, liberal terms will material for insulating electric wires, liberal terms will

Wanted-A situation as foreman in a manufactory of steel hoes, forks, rakes, etc. 20 years' experience. Good
references given. Address "B.," P. O. box 7ts, New York.
For Sale Cheap-A Springfield gas machine. About
500 burners. Address P. o. box 1091, New York.
Ein politechnisch und anderweitig wissenschaftlich gebildeter und federgewandter Herr kann dauernde journalistische Beschaftigung erhalten wenn er sich
sofort mit Angabe der von ihm gemachten Studien, sofort mit Angabe der von ihm Remachten Studien,
seitherike Beschaftigung u. s. w. sowie Anspruchen seitherige Beschartikung u. s. W. sowie Anspruchen
schriftlich unter. Adresse " Techniker," per adresse
Chen schriftlich unter. Adresse "Techniker,",
Chas. Meyen \& Co., 154 Nassau St., New York.
Private line telephones. See illustrated adv., page 237. Just Published-Elements of Electric Lighting, including electric generation. measurement, storage, and
distribution. By Phillip Atkinson. A.M., Ph.D., author of Elements of Static Electricity. 280 pages; ; 104 illus-
trations. Price, $\$ 1.50$. For sale by Munn $\&$ Co., 261 Broad of Elements of
trations. Price, $\$ 1$
way. New York.
Iron Planer, Lathe, Drill, and other machine tools of Pratt \& Letchworth, Buffalo, N. Y., solicit correspondence relative to manufacturing spec-
ialties requiring malleable gray iron, brass, or steel castings.
Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical. or scien titic subject, can have catalogue of contents of the SCl entific american Supplement sent to them free
The Supplement contains lengthy articles the whole range of engineering, mechanics, and physica
ng drill address the M. C. Bullock Mf. Co., Chicaro, Ill.
Nickel Plating.-Manufacturers of pure nickel anLes, pure nickel salts, polishing compositions, etc $\$ 100$ Agents of the new Dip Lacquer Kristaline. Complete outat for plating, etc. Hanson, Van Winkle \& Co., New

Perforated metals of all kinds for all purposes. The Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The Holly Manufacturing Co., of Lockport, N. Y., ill send their pamphlet, describing water works maLockwood's Dictionary of Terms used in the practice
 ng. smith's and boiler shop, etc., comprising over 6,000 ide, sitions. Edited by a foreman patpernmaker. 1888.
defice.
Price. $\$ 3.00$. For sale by Munn $\&$ Co., 361 Broadway, New detniti
Price.
York.

No. 11 planer and matcher. All kinds of woodworking achinery. C. B. Hogers
Wrinkles and Recipes-Compiled from the Scien-
tific American. tific American. A collection of practical suggestions, processes, and directions for the mechanic, the engineer
the farmer, and the housekeeper. Illustrated colored the farmer, and the housekeeper. Mlustrated colored
frontispiece. Edited by Park Benjamin, Ph.D. Third edition. Price, $\$ 2.00$. For sale by Munn \& Co., 361 Broad-
ind wition. Price,
way, New York.
Billings' Drop Forged Steel C Clamps. Drop Forg.
ngs, all kinds. Billings \& Spencer Co., Hartford, Conn. The Improved Hydraulic Jacks, Punches, and Tube Hoisting Engines, Friction Clutch Pulleys, Cut-off Couplings. The D. Frisbie Co.. 112 Liberty St., N. Y. Veneer machines, with latest improvements. Farrel " dry. Mach. Co., Ansonia. Conn. Send for circular. "How to Keep Boilers Clean." Send your address
or free 85 page book. Jas. C. Hotchkiss, 120 Liberty St., N. Y.

The best Coffee roasters, coolers, stoners, separators,
polishers. scourers, glossiog apparatus. milling and eaberry machines: also rice and macaroni machinery, Woodworking machinery, planers, surfacers, matchrrs, beaders, etc. Rollstone Machine Co., Fitchburg.
" New Drill Chuck," holding straight taper or square shanks. Address Standard Tool Co., Cleve
mfrs. of twist drills, reamers, and special tools.
Split Palleys at low prices, and of same strength and pparance as whole Pullegs. Yoc Works, Drinker St., Philadelphia, Pa.
Send for new and complete catalogue of Scientific and other Books for asle by Munn \& Co. 381 Brosivay

NEW BOOKS AND PUBLICATIONS
The Elements of Electric Lighting. Including electric generation, measBy Philip Atkinson, A. M., Ph.D. 260 pages,
Price $\$ 1.50$.
This work, although it has been condensed into a volume of less than 300 pages, covers very fully the field
of electric lighting. It is intended as a popular handbook, and is free from unnecessary technicality and mathematical formule. Beginning with the theory of the dynamo, it covers the ground of its development until the complicated form is reached as represented by the types used in our large plants. The subject of the
electric lamp, both arc and incandescent, is treated in the same way, and the differentsystems, as represent ed by the Swan. Weston, Edison, Sawyer-Man lamps and others, are described and represented. A chapter is devoted to the subject of the secondary battery and its theory and practicability as a means of storing power is
treated of. There is also a chapter on the method of treated of. There is also a chapter on the method of
distributing the electricity from a central station to the distributing the electricity from a central station to the
consumer or for use in lighting towns and cities. In consumer or for use in lighting towns and cities. In
this connection is discussed series and parallel installaion, the electric regulator, the meter, and the different duction of the system of general illumination. The round covered by this work is extensive, but the subject has been skillfully handled, and as a handbook for
the practical mechanic, the beginner in clectrical subthe practical mechanic, the beginner in clectrical subjects, the stude
Swine Plague, with Especial ReferENCE TO THE Porcine Pests of
THE Worly. An etiological, pathoanatomical, prophylactic, and criti cal contribution to general pathology
and state medicine. By Frank S.
Company, State Printers. 1888. Pp. Com
414.
This monograph, issued by the University of Nebraska, is the second report from the patho-biological subject is treated very fully, but, from its nature, it does not lend itself to a review. The work may be noted, however, as attractively printed and bound and ance of the affected parts and of the micrococci charance of the afected part
A Treatise on the Law of Building ferring to Building Contracts, LEASES, EASEMENTS, AND LIENS, Bar. Boston: Houghton, Mifflin \&
Co. New York, 11 East Seventeenth Street. The Riverside Press, Cam-
bridge. 1888. Pp. li, 618. Price 50 cents.
This work is strictly a law book, a manual of building law. It claims to be the first work upon its subject. Although it may seem rather designed for lawyers,
it is one of those books that should be in the possession of all interested in building, as, owing to its extensive will be appreciated by such. It is distinctly American, and American decisions will be found liberally quoted. Mechanics' liens are very extensively treated, and chapters devoted to building contracts, building leases tc., are given.
The Proceedings of the Michigan Engineering Societs, at its ninth annual convention, in
Jannary last, constitute an octavo pamphlet of 144 pages, published by Messrs. Ihling Bros. \& Everard, of Kalamazoo, and sold at 50 cents. Similar reports can
be had of former conventious, since 1882, in which many valuable papers are preserved in permanent form or convenient reference.

hints to correspondents.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. or no attention will be paid thereto.
information, and not for publication.
References to former articles or answers should
give date of paper and page or number of question.
Inquirien not answered in reasonable time should
some answers require not a little research, and
though we endearor to reply to all, either by lette
or in this department, each must take his turn.
Special Written Information on matters of
personal rather than general interest sannot be
Scientific American Supplements referre
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt price
(1) E. F. B.-You will find the subject of japans treated in Spons' "Workshop Receipts," and in the "Painter's Encyclopedia." We causupply you
witheither for 22 .
(2) O. W. K. asks: 1. How many cubic feet of water gas is required to give the same heatas
one pound of ordinary bituminous coal? A. About 15 cubic feet of gas. 2. Also how many cubic feet of air is required to effect the perfect combustion of
(3) H. A. E. asks : 1. Is common stove pipe iron without the glaze on it just as good as Russia iron with the glaze on it for the magnet cores of
simple electric motor? A. Almost as good. 2. How simple electric motor? A. Almost as good. 2. How
many carbons (each being one-hall inch diameter by many carbons (each being one-half inch diameter by
Ave inches long) will it take to get the same carbon ave inches long) will it take to get the same carbo
element as you described, five by seven inches? A. Ten.
pint of electropoion fluid, to drive the motor? A. About
20 , arranged five in parallel. 4. Can the brush-holding disk be made out of wood just as well? A. It can be made of wood. Vulcanite would cost 25 to 50 cents.
(4) G. D. writes: I have an unde ground ice house with close board fioor above. It ha become so charged with carbonic acid gas, arising from the leaves with which the ice is covered, that we cannot
go down with a lamp, which immediately dies out. I go down with a lamp, which immediately dies out. I have tried throwing in quicklime, which does very
little good. Can you tell me how to expel the gas, as little good. Can you tell me how to expel the gas, as
it is very unsafe to go in? A. Slake the lime thoroughly with water before putting it in the ice house. Use the lime while still fresh. It is very dangerous to descend into a
lamp.
(5) H. J. D. asks by what process oil and water can be mised. A. By dissolving gum tragacanth or some similar substance in the water a mechani cal mixture known as an emulsion can be produced. A
caustic alkali such as soda will decompose the oil, and so effect a " destructive " mixture.
(6) E. P. asks if cigarettes are made with the hands like cigars or-if made by machinery. A. They are made both w
1,200 per day by hand.
(7) H. W. S. asks : Could I run a dyitlight a private house with incandescent lights to th extent of about 175 candle power? What dynamo should I use? A. A one horse power motor would
not be sufficient for your purposes. Double that size not be sufficient for your purposes. Double that size
would be preferable. Use the dynamo described in Supplement, No. 600; wind three or four extra layer (8)
(8) H. D. asks what processes are used to refine lard, or where he can find information on
this subject. A. The fat, as fresh as possible, is treated this subject. A. The fat, as fresh as possible, is treated
in a boiler with steam at 60 to 80 pounds for 6 or 8 hours. The separated lard is floated off by adding lard separated when cold.
(9) F. W. B. asks: 1. Can the armaure core be made-for the 8 light dynamo-of iron wire in the same manner as the drum armature given
for the hand power machine and give as good results as the ring armature? A. Yes. 2. Why should the iron the ring armature? A. Yes. 2. Why shouid the iron
wire be varnished?
A. To avoid metallic contact. The object of dividing a core is to avoid Foucault currents. If the parts were in contact, the core would be practically solid,
efficiency.
(10) J. C. F.-Gas made from kerosene is entirely too heavy for ballooning purposes. Hydrogen may be made by acting on zinc or iron scrap with
acid or by passing steam through a tube filled with white cut iron scrap. This is a very buoyant gas, but leaks out rapidly from the balloon.
(11) F. P. A. asks: Will you please tell me how to prepare and apply the black enamel used on bicycles? A. The best quality of japanning put on by oven process is employed. For description of same we
refer you to " Workshop Receipts," vol iii., which we can send you for $\$ 2$ by mail.
(12) J. J. C. asks : 1. Please give me the eceipt for a good baking powder, and directions or making. A. Mix together perfectly dry 83 parts by weight of bicarbonate of soda and 188 parts of acid tartrate of potash (cream of tartar). 2. I have a pint bottle of Stephens' commercial ink which writes very lightly. What kind and what quantith of nut galls add anything to the ink. You would do beterer to buy a add anything to the ink. You would do betyer to buy a
new bottle. 3. What must I mix bronze powder with new bottle. 3. What must I mix bronze powder with has been soiled by wearing in hot weather; how can make it fit to wear? A. Try sponging with ammonia
and alcohol. It is doubtful if you can remove the mand alco
atains.
(13) M. W. S. asks : How is absorbent cotton, used by surgeons, made? A. Take of the best
quality of carded cotton batting any desired quantity, and boil it with a 5 per cent solution of caustic potassa or soda for one-half hour, or until the cotton is entirely
saturated with the solntion, and the alkali has saponified all oily matter. Then wash thoroughly, to remove all soap and nearly all alkali, press out the excess o water, and immerse in a 5 per cent solution of chlorin
ated lime for 15 or 20 minutes, again wash, first with a ated lime for 15 or 20 minutes, again wash, frst with a
little water, then dip in water acidulated with hydro chloric acid, and thoroughly wash with water, press out the excess of water, and again boil for 15 or 20 minutes in a 5 per cent solution of caustic potassa or soda; now wash well, dipping in the acidulated wate
and washing thoroughly with pure water. Afterward press out and dry quickly. The amount of loss by this
process is practically 10 per cent. A sample of 360 process is practically 10 per cent. A sample of 360
grains lost, on boiling with alkaii and bleaching, 15 grains, or 417 per cent, and 270 grains of this bleaching sample lost, on again boiling with an alkail, 14 grains,
or $5 \cdot 18$ per cent, a total loss of $9: 35$ per cent. When or $5 \cdot 18$ per cent, a total loss of $9 \cdot 35$ per cent. When tely become saturated and sink to the bottom.
(14) T. P. H. asks : 1. Why should the combined resistance of all the relays on a telegraph line
equal the resistance of the line and battery ? A. Any equal the resistance of the line and battery ? A. Any
such rule is empirical. The correct method is to have he resistance of the entire external circuit line relays plying Ohm's law it will be found that with this arrangement the maximum current is obtained with the minimum number of cups. But for economy of chemicals the resistance of the battery should be as low as possible. 2. What is the best elementary work on elec-
tricityland the telegraph ? A. We recommend. and can ricityland the telegraph? A. We recommend. and can supply by mail, Larden's "Electricity for Schools and
Colleges," price \$1.75; also Thompson's "Elementary Electricity," price \$1.25; also "Electricity and the Electric
price $\$ 5$.
(15) C. W. asks : 1. What acids wil ombine with asbestos? A. No acid will combine with an inch thick, so that they are perfectly plane on one side. In what way can I do this the easiest ? A. Plane
them as true as possible, then grind them with emery in them as true as possible, then grind them with emery in
sets of three, rubbing first plate against second, and sets of three, rubbing first plate against second, and
then third against first and second until finished, so as not to grind them in pairs. 3. Be kind enough to tell me what is the powder inclosed. I think it is a car fully test it. A. The powder is a carbonate. Analysis
will cost 85 . 4. Can you furnish me with a new book will cost $\$ 5$. 4. Can you furnish me with a new book
called the "Techno Chemical Receipt. Book " ${ }^{\text {A. We }}$ called the "Techno Chemical Receipt. Book" ". We
can send the "Techno-Chemical Receipt Book,"" by mail, for \$
(16) A. B. asks: Is there anything that will make the ink that is used with rubber stamps in-
delible when used to stamp linen? A. Probably delible when used to stamp linen? A. Probably
printer's ink is the most available. Or try the followng: 100 gr . hydrochlorate aniline, 60 gr . sodium hlorate, $31 / 2 \mathrm{oz}$. water. $1 / 2 \mathrm{gr}$. vanadate of ammonia
Collect and dry the precipitate and make into paste with gum arabic, water, and glycerine.
(17) J. L. B. asks for the best way to test cetic acid. A. Test acetic acid either by acidiment ing with standard solution of alkali, or less perfectly
by specific gravity. We refer you to Dussauce's "Treatise on Vinegar," price $\$ 5$.
(18) W. V. D. asks: What are the cross hairs in instruments for surveying and leveling made of, and how put in? A. Spider web or unspun silk fibers
or fine platinum wire are used. They are cemented acrossaring which is secured within the tube of the
(19) T. G. P. asks : What is the correct pronunciation of dynamo ${ }^{\circ}$ and dynamite ? A. Dina'mo,
di'namite, the first syllable pronounced in both cases hort like "bit."
(20) F. S. asks : What process is the best to fill up the pores of Portland cement tiles or artificial stones? A. We can recommend no process
that would be thoroughly satisfactory. Melted parafine might be tried applied to the tiles while warm, o the tiles might be washed with or dipped in
water mixed to the consistency of cream.
(21) Acekay writes: I have a tortoise shell watch chain, from the links of which the polish what is the general process of finishing rind polishis what is the general process of finishing and polishing
tortoise shell ? A. Tortoise shell is finished by scraping. Then it is polished with pulverized charcoal and water on a woolen cloth perfectly free from grease This is followed by water and washed chalk or whiting the article being moistened with vinegar. Finally it is hand-rubbed with dry whiting or rotten stone. From
above description you can tell how to treat your chain
(22) W. F. S., Jr., asks: Can iron or
teel be deposited on any of the other metals? Also, would itibe possible to plate a worn bearing with iron or . 359, and Supplem Ent, No. 605, which we can send b mail for 10 cents. It would be doubtful if it would be o
(23) A. A. S. asks : 1. In experimenting with carbon oil from petroleum would there be any dan Ther of getting an explosion with acids and the oil. A There is not much danger of an explosion, though it is a
possibility. 2. Can you give the characteristics of Lima, Ohio, crudejoil? A. In early wells the oil had a sp. gr. of 36°.., later it has reached 37° and 38° B., and in
one instance (McCullough well) 41° B. It contains arge percentage of offensive sulphur compounds. It is claimed thatjit yields 65 .per cent of completely deodoriz ed illuminating oil. For analysis address David T. Day Esq.,United States Geological Survey, Washington, D. C.
. What will precipitate lime from a solution a 3. What will precipitate lime from a solution? A. I
depends on the form in which it is present. Oxalate of ammonia, a poison, is the universal precipitant. When the lime is in solution as bicarbonate, boiling will do it
(24) J. P. E. asks: Can beeswax be plated with nickel, and if so, how should I proceed
a. Coat it with plumbago, dust on fine iron powder immerse in a sulphate of copper bath for a few minutes, and then plate with battery.
(25) C. S. P.-Exposure to the sun under glass is said to bleach ivory. For binoxide of hydro which we can send you by mail for ten cents.
(26) G. A. J. asks : 1. What is used to put polish on brass, such as hanging lamps and the like ute cleanliness is needed in applying it. The metal after polishing with rotten stone and oil must be washed and dried and shellacked while hot. 2. What is good to remove fiy specks from brass § I have tried soap and water, gasoline, kerosene, etc., but have not succeeded.
A. Rub off with ground pumice, followed by rotte A. Rub off with ground pumice, followed by rotten
stone, and apply shellac as above. 3. Is there any lubri cating oil void of acid? A. Yes. 4. Does an ounce of bout 50 per cent more volume.
(27) M. N. writes : Is it necessary to have the windows of a school room (heated by hot air with ventilators around the sides near the fioor) down at
the top? It is very uncomfortable to have the windows the top? It is very nncomfortable to have the windows
down a foot or more, but our teacher insists on having them Iso. A. We favor ventilation, and believe that is right.
(28) C. C. G. asks for a recipe that will produce an innocent green color, with linseed oil. A Use chrome green, a mixture of lead chromate and
(29) T. J. asks: Can a molecule exist apart from gravity? A. Gravity is an inherent property of matter. If all matter were annihilated except
ne molecule. it would possess gravity, althoug nothing would exist for it to react apon. It would he an analogous case to the firing of a cannon in the mids duced, though there wonld be no being to hear it.
(30) Old Reader asks how to clean out paint brushes that are hard with old paint. A. Soak
e bristles only in washing soda and wash out with ot water. Soaking in turpentine may be sufficient, and so, will be less trying to the brush.
(31) T. S. C. asks: What can I put in um arabic to keep it from souring and at the same me keep it neutral ? And also to prevent it from racking when mixed with color, as I want to use it for ffect. A. Glycerine or honey will prevent cracking. very little oil of cloves will preserve it from turning
(32) L. M. W. asks : I would like to arn how to take tin types. Could you give formulas for the sensitive developing and fixing baths, also how
ow to repair and place the film on the plate? A. See the very complete formula published in "The Ferroype, and How to Make It," which we can supply for 50 cents.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for paents at home and abroad, enable us to understand the
aws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all oreign countries may be had on application, and persons ontemplating the securing of patents, either at home or hich are low, in ac.oordance with the times and our exensive facilities for sonducting the business. Address MUNN \& CO.. offlce SCIENTIFIC AMERICAN, 961 Broad-
way, New York. way, New York

INDEX OF INVENTIONS

or which Letters Patent of the

October 91888

AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Adding machine, C. B. F. Lincoln................... $390, i$
Alarm. See Burglar alarm.
Allog. J. Hurych.

Allog. J. Hurych.. 390.9729
390.749
xler. H. Burdick.......
Axle box lid, car, Morris \& Lawrence 330,981
Axle boxes, dust zuard for car, J. Stier........ 390,991
Bat
Bar. See Crate bar.
Barley flakes. Farwell \& Rhines.................. 390.849
Barley flakes, making, Farwell \& Rhines.............. 390.849 390
Battery. See Galvanic battery.
Batting, machine for making cotton, Walker \&

Bell pull, electric, P. A. Harris...................................... $390,80,778$
everage shaking and mixing machine, B. F. K.
Jennings.. 390,9
Bicycle, F. M. Drake
30.

Blast pipe, A ppleby \& Robinson.............................. 390,9937
Block. See Ppuley block.
Board. See Ironing board.
Bobbin winding machine, C. F. Wickwire.......... 990,932
390,866
Boot or shoe uppers, implement for futing, c. T.
Bottle rinsing machine..91,002 990.688
Botles, machine for wiring corks in, B. Adriance 390,4i4
Bottles, machine for wiring corks in, B. Adriance 390,742
Box. See Fare box. Journal boo.
Box or canister, A. F. Fitz Gerald................... 390,763
Brake handle, B. L. Wright.................... 391,004
Brake shoe, J. A. Smithhisler.... 390.
nrick machines, device for breaking up the lami-
nations of the clay io screw, \mathbf{C}. D. McClellan... 390.879
Brush. L. Strickel.................................. 390,715
brook.. 390,956
Buckese, cover for sap, H. Walcot.......... 390,728
Buildings, construction of freproof iron,
Weston 990,732
Bureau, D. C. Clap... 390,732 38040
Burglar alarm J. G. Schuirmann............ .. 330,989
Burner. See Gas burner.
Bustle, Jeffery $\&$ Stern.

Button, R. Liebmann.. 390,869
Button setting tool, E. H. Taylor.............818

Car ventilator, C. P. Weiss........
Car wheel and axle, J. H. Smith.
Car wheels, making, J. Munton....................... 390.8969
Carbon contact or commutator brush, C. J. Van
Depoele.
Card, feeding a, P. J. Connelly.
Carpet fastener, E. R. Taylor.
Carriage, baby, H. C. Seip...
Carriage wrench, $\boldsymbol{\text { F. A. A. Wegner. }}$
Casting hooks into eyes, C. L. Sage.
Centering gauge, c. Gage.
Chairs, foot rest for, H. s.
Chimney cap, H. M. Hansen.
Chlorine, manufacture of, A. R. Pech
Churn closure. J. McDernaid.......

Clamp. See Double clamp.
dow cleaner.
Clock, alarm, A. M. Lane................ 280,78

tch mechanism，locking device for，A．H．Mer－ ríman．	Journa		W的ertisements．
Collar fastening．J．R F Farrell．．．．．．．．．．．．．．．．．．．．． 380.848	Enit dr		
Combination rauge，w．B B Little．．．．．．．．．．．．．．．．．300，783	Knit fa	rne	
	${ }_{\mathbf{K}}$		
Corn silking machine，J H．Cuskieg．．．．．．．．．．．．．．．．． 309,418			
Corset，M．L．Geffrs．．．．．．．．．．．．．．．．．．．．．．．．．．．so，771	A．M．Nemlands ．．．．．．．．．．．．．．．．．．．．．．．． 30.8981	Sole channel cementing apparatus，W．Gordon．．．． 390,773 Sorghum furnace，W．H．H．Spradlin	
nnberry geatherer，D	Lereme		－
Cuff holder，A	Iamp．in	Springs，apparatus for making，w．8．Over．．．．．．．． 390.892 ．	
cup．see oll	1．amps，klobe for electric arc，w．W．Downing．．．．．30，3086	Stamping soa	
Cut		Sta	
${ }_{\text {cher }}^{\text {cuter．}}$ Dee			
Dental linim	，	8te	the
Dental plate，foil lined，J．A．Daly．．．．．．．．．．．．．．．．．．．390，654	Lathe for	Sione，composition for artictal，A．Von Gera－	
Desk，school，H． B B．Hite	Lev		
Diour lock，	Life preserver．S．Pemberton．．．．．．．．．．．．．．．．．．．30．803		
${ }_{3}^{390}$		${ }_{\text {Sto }}^{\text {Sto }}$	DS．－AN ACCOUNT OF
\＄90，8	ifting Jack	Stoves，boller attachment for，A．Greenaway．．．．．．so，${ }^{\text {s，}}$ ， 4	
at equalizer，J．D．Willet．．i．i．．．．．．．．．．．． 390	Liquid meter，G．Teldeman．．．．．．．．．．．．．．．．．．．．${ }^{390}$		
rm	${ }^{\text {Liq }}$		
${ }_{\text {Dress }}$ form，A．S．Hall	ck．	$\left.\right\|_{\text {sur }} ^{\text {sur }}$	
er．See Fruit drier．Lumber dria	lock．Vehicle seat lock．		
Drill．See Twist drill．		Switch．See F switch．	
	Lounges，head and arck for，A．G．Phillipg．．．．．．．． 3 30，703	Teachicg arithmetic，apparatus for，Unt erbrink \＆ Vandenbrock	
Ear protector．H．J．Weldon．．．．．．．．．．．．．．．．．．．．．． 390,	Lumber drier，A．8．Nichols．．．．．．．．．．．．．．．．．．．．．． 380	Telegraph，mechanical，J．B．Bennett．．．．．．．．．．．380，642	
	ing machine．uprikht，Woods \＆Thomas．．．．．${ }^{\text {sel，003 }}$		
	Measure and protractor，aduastable angle．W．${ }^{\text {Quasle } .30,05 ~}$		
se，Jr	Me	Tin can，F．J．Marmoin ．．．．．．．．．．．．．．．．．．．．．．．．．．．300，791	
mac			sifit，No． 632 Price 10 ce ofloe and from uil newsiealers．
		Towel rack and receptacle，comblned，D．W．Ken－ dall． ．． 30.681	
Elect			
Electric translating devices，rekulator for，o．B．		$\begin{gathered} \text { Cog puza } \\ \text { J. F. } \end{gathered}$	
		Tra	
call	Oill	Trimmer．See Heel trimmer．	
300			
		Tub	
Engine．See Gus enkine．Steam engine．			
Extractor．See Cork extract		Twist dill，H．E．Holmes．．．．．．．．．．．．．．．．．．．．．．．． 3 30，6is	円IP，BT MLATI
，automatic，	Pap	$\left.\right\|_{\text {Typ }} ^{\text {Typ }}$	
Fare box．F．B．Brownell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．30．966	Paper r		
330，		Valve	
Feed water，apparatus for purifging，W．Webster 39	blanks，machine for cross rolling the nibs of	Vaporizer and	
Fer	¢old．E．W．liey．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 300,934	Venicle，w．W．S．Forsth．．．．．．．．．．．．．．．．．．．．．．．．． 30.681	5 thohes long，will cat 3 323 wire，－．．． 80 cents
Fence machine，picket，Odell s Hopper ${ }^{\text {and }}$			
	Pipe connectiou，8．E．Thomas．．．．．．．．．．．．．．．．．．． 8 \％o，821	Vehicle seat lock．R．Cameron ．．．．．．．．．．．．．．．．．．．． 300.838	
ncing，machine for making barbed，Jordan \＆ Templin			
e cutting machines，chisel holder for， \mathbf{H} ．	Plan		
Michel		Vehicle spring shackie，J．J．sullivan．．．．．．．．．．．．．．．． 330.927	
		Vehicle，two－wheeled，D．s．Pembroke（r）．．．．．．．．． 10.922	
Fishing reel M Cashin	inson	Vehicle wheel，J．e．Fisher．．．．．．．．．．．．．．．．．．．．．．．． 330,762	
Fluids，apparatus for automatically regulating the flow and temperature of，G．A．Gustin．．	Pla	Velocipede，T．L．Goble \qquad $\mathbf{3 9 0 , 6 6 2}$	
ot pow	Plate，co		
速	${ }_{\text {Prosel }}$		hack，8aw blaces．In use over two years in all parts of
okeeness	Potato sprinkler，Q．A．Farrand．．．．．．．．．．．．．．．．s80，657	Wa	
Kone	Pr	wa	
H．Ceg．．．．．．．．．．．．．．．．．．．．	${ }^{\text {Pr }}$	Wa	
$\begin{gathered} \text { Gauge } \\ \text { bir } \end{gathered}$			
Galvanic battery，D．Humphress．．．．．．．．．300，644 to 390.67	Pulles block，C B．De Lamarre．．．．．．．．．．．．．．．．．．．300，45		STORY OF THE ELECTRICAL ART
	Pul		$\begin{aligned} & 3 r_{-} \\ & \text {big } \end{aligned}$
	P	Wheel， C	
${ }^{390} \mathbf{3 0 7 5}$		Wheel riveting machine．D．Warner．．．．．．．．．．．．．．． 38.924 Whiffetree hook，G．T．Wilson．．．．．．．．．．．．．． 20.788	
Gas compressing and refrikerating apdaratus，L．	Pump rods，spring connection for		
		w	N
		Window cle	
das		Window screen，M	
	$\left\{\begin{array}{r} \text { Railw } \\ \mathbf{S u} \end{array}\right.$		（4）Manufacturers of everything needed for
Gate，J．A．Miller．．．．．．．．．．．．．．．．．．．．．．．．．．．． 30,0 en	Rallwav switch，H．K．Whitnor．．．．．．．．．．．．．．．．． 580,73		
th， cu	${ }_{\text {Ra }}^{\text {Ra }}$		
s8 labels，furnace for heating，J．．．Dawes．．．．． 30.844		Zither，F．Wiganal．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8 saisiso	
${ }^{300087}$			Wition WA NTED as sup
${ }^{50,009}$	Re		
dr	Rolle	Handle for spooss，forks，etc．，R．H．Klingel．．．．．．．18．675	
If picker，H．Mundell．．．．．．．．．io．．．．．．．．．．	${ }_{\text {Ru }}^{\text {Roo }}$	${ }_{\text {Kinted }}^{\text {Kuk．} \text { S．Mar }}$	
F．H．Perry		Slipper case，J．F．Lockwood．．．．．．．．．．．．．．．．．．．．．．．．．．18．67	
de．		Tollet case，J．F．Lockwood．．．．．．．．．．．．．．．．．．．．．18，676	
arnees roseste，E．F．Plueger．．．．．．．．．．．．．．．．．．30，702	Sush		
Mrow，spring tooth，A．A．Stimbon．．．．．．．．．．．．．． 390.812	${ }_{\text {Sam }}^{\text {Sas }}$		
ater．Soe	Saw plates，manufacture of，w．H．Singer．．．．．．．30．8099	RADE MARK	
el trimmer，J．H．Busell	－Saw settrin		
ee．hand，P P	Scoop	37	
older．see Bag holder．		proprietary，McPike \＆Fox．．．．．．．15，94	，
older．Sash holder．	Screen．See Window screen．	umatic and guut．G．W．Brooks．．．．．．15，931	a copy，have only to ask for it，and it will be mailed
Hook．See Whifietree hook．	runner		to them．Address， MUNN \＆CO．， 361 Broadway，New Yor
	runner	Spectacles or eyeglasees，otumm	
See．See Drying house．Feed ho	Separator．See Grain separator．Liquid seDa－	and coffee in packages，Jones Brothers．．．．	－BARREL，KEQ，
		as binder twine, J. Lyall	
	wing	A printed copy of the specincation and drawing of any patent in the foregoing list will be furnished from	
E．Adams．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．390，41			
Into		name and number of the patent desired， Munn \＆Co．， 301 Broadway，New York．	
	Stiogle，motallio．Warron \＆Dualey ．．．．．．．．．．．．． 200.08		

A New and Important Book on Metallic Alloys, Solders, etc.

The Metallic Allovs

Engineers' Pocket-Book. Mechanics' and Engineers' Pocket-Book of Tables, Rules, and
Formulas pertaining to Mechanics, Mathematics, and Physics: including Areas, Squares, Cubes, and Roots, \&c.; Logarithms
Hydraulics, Hydrodynamics. Steam and the Steam-Engine, Naval Architecture, Mason
ry, Steam-Vessels, Mills, \&c.; Limes, Mor-
 Edition. By CHAs. H. HAswELL. 12mo,
Pocket-Book Form, $\$ 4.00$.

Capt. J. Ericsson to the Author.

 HARPER \& BROTHERS, NEW YORK.

Use Adamant Wall Plaster
 Hard, Dense \& Adhesive check or criack. It is impervious to wind,
water, and disease germs. It dries in a few hour
kine appied in
kind of weather It is in general use. Licen-
ses granted for the mix.
ing, using and selling.
Address
 ETIOLOGY OF SCARLET FEVER-A lecture by Dr. E. Klein, F.R.S. on the communicability

ASBESTOS FELTING WKS. $\begin{aligned} & \text { Hair-Felt } \\ & \text { Cement Felting }\end{aligned}$ Malden Lane, N.Y. 1 For Heater, Steam \& Water Pipes

 GEOLOGY EXPLAINED IN ITS SIM-

DERFECTsun $S P A P E R$ $N E N$ E

 The Koch Patent File. for preserving newspapers, Mag
 CURE ${ }^{\text {Tim }}$ DEAF W

GULD \& GABRISON
 FOW TO MAKE AN INCUBATOR.-

GAS ENGINEERING. RECENT PRO

Eass Action, Rapid Work, Durable,Complete Wilibe shipped anywhere c. o. D., with privilege on
examination, and in ont satisfactory, can be returned
by merely paying express charges both ways.
 PETROLEUM FUEL-AN ACCOUNT

THE RICHARDS OIL ENGINE

 FOR SALE! THE HAMPDEN WATCH CO.
 THE DEVELOPMENT OF THE MER-

ARCHIIECHURAL BOOKS.

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta-
ble, either in the country or city or ans builder wishing to examine the latest and best plans for a church, school house, club house, or any other public building of high
or cow should pr cure a complete set of the ArchiTECTS' AND
AMERICAN.
The information these volumes contain renders the
work almost indispensable to the architect and builder and to persons about to build for themselves they will find the work suggestive and most useful. They contain
colored plates of the elevation, plan, and detail drawings of almost every class of building, with specificaFour bound volumes are now ready and may be ob-
tained, by mail, direct from the publishers or from any tained, by mail, direct from the publishers or from any
newsdealer. Price, $\$ 2.00$ a volume. Stitched in paper
Subscription price, per annum, $\$ 2.50$. Address

MUNN \& CO., Publishers,
361 Broadway, New York.
2nd RES MACHINERY
TO BUSINESS MEN.
The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. $1 t s$ circulation is many times greater than that of any similar journ
now pubhished. It toes into allt the States and Territ
ries, and is read in all the principhl libraries and readin

NEW CATALOGUE
 VALUABLE PAPERS $\frac{\text { nuss © C Co., } 361 \text { Brondway, New York. }}{\text { THE NEW CROTON AQUEDUCT.- }}$

Tho TRENTON ENGINE

HARRISON CONVEYOR!
${ }_{\text {Handing }}^{\text {For }}$ Grain, Coal, Sand, Clay, Tan B.rk, Cinders, Ores, Seeds, \&C. $\underset{\substack{\text { Send for } \\ \text { circulars. }}}{\text { | BORDEN, }}$ SELLECK \& CO., $\left\{\begin{array}{c}\text { Sole } \\ \text { Sonu'Pers, }\end{array}\right\}$ Chicago, Illo
 PATENT BELT HOOKS

HOME-MADE INCUBATOR.-PRACTI

TIIE MIND CURE.-BY MARY J. FIN

CLARK'S NOISELESS RUBBER WHEELS Different styles. $\begin{gathered}\text { Catalogue Free. }\end{gathered}$ IRRIGATING MACHINERY ON THE

ALCOHOL, SWEET POTATO. - AN

MACIC

 CITY OF LONDON AND SOCTHF

DENSIONS Siso, ionoino for fol

WOOL HAT MAKING. - FULL DE-

VOLNEY W. MASON \& CO., FRICTION POLLETS CLDTCHES and ELEVATORS

新

 MUNN \& CO.. Publishers, $\underset{361 \text { Broadway, New York. }}{ }$

To Filectro-Platers

 Dry Air refrigerating machine.

COSTS IN MANUFACTURES.-A LEC ture by H. Metcalfe. U. S. A, delivered in the sibley
College course. An elaboration of a system for the
management of fictortes and employes. A valuable

[^0]

TVE KODAK CAMERA

Price， $\mathbf{s 2 5 . 0 0}$ The Eastman Dry Plate \＆Film Co．
 ICE－BOATS－THEIR CONSTRUCTION

STFII BATISS．

－

 THECOPYING PAD－HOW TOMAKE MAKE

NEW YORK TRADE SCHOOLS，

MATCHMAKERROM

SYSTEMS OF DISTRIBUTION OF

THE AMERTCAN BELL THFPHONE CO 95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March
7 th， 1876 ，No． 174,465 ，and January 30th 7th，1876，No．174，465，and January 30th 1877 ，No． 186,787 ．
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use，and all the consequence thereof，and liable to suit therefor．

MESSRS．MUNN \＆CO．in connection with the publi－ amine improvements，and to act as Solicitors of Patents
for Inventors．

 them is done with special care and promptness，on very
reasonabole terms
pamphlet sent free of charge．on application，con－

 MUNN \＆CO．，Solicitors of Patente，

 Shepard＇s New \＄60 Screw－Cutting Foot Lath
 Foot and Power Lat hes，Drih
Presses，Scroll，${ }^{\text {Saw }}$ Attach
menter，Chucks．Mandrels，Twist ments，Chucks．Mandrels，Twist
Drins，Doss，
Lathes on Ciliers eto trial．Lathes on
 13 HOW TO MAKE THE WIMSHURE WRT

THE FORTH BRIDGE－A PAPER BY

IMPROVED AUTOGOPYIST．

PIPE COVERINGS

Made entirely of asbestos．
Absolutely Fire Proof． BRAIDED PACKING，MILL BOARD，SHEATHIVG，CEMENT，FIBRE AND SPECIALTIES

WORKING MODELS And Rxperimental

 or FIRE－BRICK－－BY R．A． $\mathrm{COOK}, \mathrm{A}, \mathrm{M}$,

BIB＇S C Celbrated ORthen Pimi HEATERS
 com

LEAD SMELTING．－A FULL DESCRIIP

ANTENN SLIDES
 SHIP WAVES－ BY SIR WIL WIAM

Scientific Book Calalopule RECENTLY PUBBLISHED．
new catalogue containing over 100 page
orks on more than fifty difirerent subject mailed tree to any address on application．

프 W．JOFINS＇

Asbestos Sectional Pipe Covering

A Non－Conducting Covering for Steam and Hot Water Pines，Boilers，elc．

[^1]

NATURAL GAS IN DUSTRY A T PITTTS－

JACKET KETTLES，

FEVERN AND MERSEY TUNNELS．－ Full description of these two important engineering
works，with toengravings．Contained in SilkTIPI
AMERICAN SCPP

14

OIL ENGIES．

卫理畐

Zrinntific Amcricau

The Most Popalar Scientific Paper in the World． Only $\mathbf{8 3 . 0 0}$ a Year，including Postage．Weekly．
This widely circulated and splendidly mustrated paper is pub ist．ed weekly．Every number contains six－
teen pages of useful information and a large number of original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery， New Inventions．Novelties in Mechanics，Manuf acctures，
Chemistry．Electricity，Te＇egraphy．Pbotography，Archi－ Chemistry．E＇lectricity，Te＇egraphy，Pbotography，Archi－
tecture，Agriculture．Horticulture，Natural History，etc． tecture，Agriculture．Horticulture，Natural Fistory，etc
Complete List of Patents each week． Terms of Subscription．－One copy of the SCIEN－
TIFIC A $\|$ ERIC AN will be sent for one year－ 52 numbers－ postage prepaid，to any subscriber in the United States
or Canada，on receipt of thiree dollarw by the pub－ or Canada，on recelpt of three dollar rs by the pub－
ishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－Speclal rates for several names，and to Post
Casters．Write for particulars Masters．Write for particulars．
The safest way to
The safest way to remit is by Postal Order．Draft，or
Express Money Order．Money carefully placed inside Express Money Order．Money carefully placed inside
of envelopes．securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Ad－ dress all letters and make all orders，drafts，etc．，pay－

MIUINAV \＆CO．
361 Broadway，New York． TEETB
Scientific American Supplement．
This is a separate and distinct publication from
THK SCIENTIFIC AMERICAN，but is uniform therewith in size，every number containing sixteen large pages full of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions．
The SCIKNTIFIC AmERICAN SUPPLicmint is published eekly，and includes a very wide range of contents．It
resents the most recent papers by eminent writers in all the prin3ipal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy， Useful Arts，embracing Biology，Geclogy，Mineralogy，
Natural History Georraphy，Archæology Astronomy， Cbemistry，Electricity，Light．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining，
Ship Building，Marine Engineering，Photogr：iphy， Technology，Manufacturing Industries，Sanitary En－ my，Biogra phy，Medicine，etc．A vast amunnt of fresh my，Biography，Medicine，etc．A vast amunnt of fresh
and valuable information obtainable in no other pub－ lication．
The most important Engineering Works，Mechanisms，
and Manufactures at home and abrosd are illustrated and described in the SUPPI，EMENT．
and described in the SUPPI，EMENT．
Price for the SUPPIMEMENT for the United States and Canada，$\$ 5.00$ a year，or one copy of the SCIENTIFIC AM－ Elicican and one copy of the Supplimentr，both mailed
for one year for $8 \mathrm{mi.00}$ ．Single copies 10 cents for one year for $\$ 7.00$ ．Single copies 10 cents．Address MUNN \＆Co．， $\mathbf{3 6 1}$ Broadway，N．Y．，
Building Edition．
The Scientipic American architects＇and Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Archit ect ure，rich－ Iy adorned with elegant plates in colors，and with other ne engravings；illustrating the most interesting ex－ allied subjects． A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－
ences，city a and country，including those of dences．city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in erate cost as well as the more expensive．Drawings in
perspective and in color are given；together with full
Plans，Specifications，Sheets of Details，Estimates The elegance and cheapness of this mapnificent work have on for it the Laruest Circulation of any
Archicectural publication in the world．Sold by al mader． 850 a jear．Pemit to

MUNN \＆CO．，Publishers．

361 Broadway，New York．
PRINTING INKES

[^0]: The Scienificic American Publications for 1888.

 The Scientific American (weekly), one year $\quad \$ 3.00$
 The Scientific American, Architects and Builders
 Edition (monthly), one vear. COMBINED RATES.
 The Scientific American and Supplement, . . $\$ 7.00$ The Scientifif American and Architects and Build-
 ers Edition, The Scientific American, Supplement, and Arohi- ${ }^{\text {and }}$ tects and Builders Edition This includes postage, which we pay. Remit by postal
 or express money order, or draft to order of MUNN \& CO., 361 Broadway, New York.

[^1]: IE．WV．JOhns MMapuracturing Oompany， SOLE MANUPACTURERS OF
 W．Johns＇Asbestos Roofing，Building Felts，Fire－Proof Paints，Liquid Paints， W．Johns＇Asbestos Roofing，Building Folts，Fire－Proof Paints，Liquid Paints，
 $\mathbf{8 7}$ Maiden Lane，New York．
 chicago．PHILADELPHIA．LoNDON．

