A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.


1. Old chimpey, height 192 ft.; new chimuey, height 335 ft. 20 Vertical section of chimney at base. 3. Horizontal section at level of ground. 4. General view of Newark aul surrounumg country from tup. 5. Metal THE HIGHEST CHIMNEY IN THE UNITED STATES, RECENTLY FRECTED AT THE CLARK THREAD WORKS.-[See page 245.1

## grientifir gesmicau．

## HSTABLISHED 1845.

MUNN \＆CO．，Editors and Proprietors． published weekly at

## No． 361 BROADWAY，NEW YORK．

O．D．MUNN．<br>A．E．BEACH．

TERMS FOR THE SCIENTIFIC AMERICAN． One copy，one year．for the U．S．or Canada．．．．
One copy，six months，for the U．S．or Canada． One copy，one year．to any foreign country b
Remit by postal or express money order
Remit by postal or express mones order
 MUNN ${ }^{\text {Co }}$ ．Adaress

The Scientific American Supplement




 rent Colonial banks notes．
Address $M U N N$ d $C O$ ．， 3111 Broad way，corner of Franklin Street，New York．

NEW YORK，SATURDAY，OCTOBER 20， 1888.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO．668．
For the Week Ending October 20， 1888. Price 10 cents．For sale by all newsdealere．
I．ARBORICULTURE AND BOTANY－A Alimentary Aquatic Plants．



II．ASTRONOMY．－The Variable Star Al｜

ornia cetacean，its














 ones Conternial Merbiburne Exhibition．Thio Austriaian Coil－



## amERICAN INSTITUTE FAIR．

The visitor to New York，if in the neighborhood of 63d Street and 3d Avenue，might walk by a modest little Dorian entrance on the east side of the street and never suspect he was close upon a great hive of indus－ try，where steam－driven shafting is flying among many curious machines，with stone breakers hammer ing away，electrical dynamos giving out that mysteri ous energy which here is setting a hundred light aglow and there pumping water or pouring silently into a sleeping battery a potentiality that will awaken into light and power when fly wheels are at rest．It is the fifty－seventh annual exhibit of the American In stitute，and whoever may have seen last year＇s will easily discover the progress made in a twelvemonth by a comparison of mechanical devices and the mode of applying them．What is most noteworthy is，perhaps， the silence of the electrical generators；the buzz that used to shake the floors and send bits of paper scoot ing through the air like Japanese butterflies is gone So still they are，one stands among them tempted to ask if they are＂going．
Then there is machinery for grinding grains and land，aroadcast，for working over the summer fallow show of parde are fruits and liowers－the stereotyped any fair，or，saving the trouble，find in any florist＇s window ；and wild flowers that are not shown at fairs and florists do not keep，the charming little plants that ornament the woods and paint the fields and hillsides， not so fresh，to be sure，nor so brilliant，as those the gardener shows，for they do not bear plucking so well， yet beautiful they are，and more familiar and interest ing to those who love the country．Here is the golden rod that has long been turning the fields to gold，and its burning rival，the bitter－sweet，that climbs the hill sides and peeps up from under the rail fences with copper burnished blossomings；the woolly，long－leaved mullein，that biennial herb that springs from the stoniest pasture，bearing flowers in large terminal racemes ；the evening primrose that blooms morning as well as evening despite its name，and with four petals of deepest yellow；the Jerusalem artichoke with it miniature sunflowers and enormous stalks；the wild carrot in white，the bog onion in scarlet with its single cup of fire，ruddier than the tulip and like a torch upon the roadside，and phlox，smart－weed，spiderwort Jack－in－the－pulpit，sweet balsam，yarrow，butter－and eggs，sweet barbary，bur－marigold，thistle，wild aster and the rest of them．
There is a fine collection of foot and hand machinery， none the less interesting because not always new though those familiar with its type will find instruction in novel devices seen here and there．Here is the cir－ cular rip－saw，by the aid of which one man can do the work of three working in the old way；the work as true and square as that by steam or water power，and as easily dressed with the plane．It will rip boards or planks of either hard or soft wood up to $33 / 4$ inches， and of any width up to 19 inches．Then there is the improved combined machine，a scroll saw and a circu lar one，the scroll saw easily removed while on its mandrel while its mate is being used ；the boring at tachment for the combined machine with a sliding table for the work，moving on firm ways and carrying it pre－ cisely to the auger or bit；new cutter heads for making grooves，gains，dadoes，rabbets，etc．；the improve foot－power former having pedals like a bicycle，and used for moulding brackets，scroll and panel work－ the speed of the knives being about 2,000 moves a minute．
There is not，of course，anything novel in the sight of a gas－engine driving a dynamo with the latter alter nately working a pump，setting electric lights aglow，or charging a battery．Yet it is a very interesting specta cle，one not easily seen，and possessing a power for in－ structing the general public that volumes of electric lighting literature could not hope to accomplish． ＂Why not use the gas－engine directly with the pump？＂ is the question that naturally suggests itself to the ob server．The amiable attendant explains to him that far more power can be got out of the coal when trans－ lated into gas and then into electrical energy than when used directly under the boilers of the engine driv－ ing the dynamo．He means by this that the residuents of gas making are so valuable that they almost off－set the cost of making the gas，which，because of greater intensity，is a more economical fuel than the coal it is made from．The secondary battery，too，placed as it is on a shelf in clear sight，is an enjoying study in itself． You can see how it is connected up to the dynamo，how cut off ；the operation of the little incandescent lights， depending from the ceiling above，glowing when they are connected up with this battery，even when the gas engine and the dynamo are at rest．Among the lamps overhead sixteen－candle－power lights are made to glow directly from the dynamo：the gas－engine working the latter being of 4 horse power－eight lights to the horse power．But，if the dynamo be connected up with the secondary battery for five hours，then，with all connec tion with the dynamo cut off，it will feed 52 of these little lamps for several hours，and if then the dynamo
and all，as is obvious，coming indirectly from the energy given out by a 4 horse power gasengine．
The system of arc lighting used to light up the build ng at night is wholly new，and in itself will well repay a visit to the exhibition．We are not in a position to verify the statements as to its economy nade by its projectors，not having seen any tests，and o are content to give a simple description of the sys tem，repeating what those most interested say for it． The lamp，even to the magnet，is new；the method of regulating quite different from others，and the gen－ erator as well．As will be remembered，in the early days of are lighting the lights were unsteady as well as costly，requiring，most of them， $11 / 2 \mathrm{H} . \mathrm{P}$ ．per light， an extravagant expenditure of power，which later on was reduced to $1 \mathrm{H} . \mathrm{P}$ ．and quite recently to a little less than that per lamp．It is easily calculated，this divergence between the 18 to 20 ampere types and the $9 \cdot 6$ to 10 ampere systems，by the well known equation $\mathrm{C}^{2} \times \mathrm{R}=\mathrm{W}$ ；that is，the square of the current multi－ plied by the resistance of a lamp equals the power in watts，and 746 watts equal one horse power．The 20 ampere systems burn，it is said，a short arc or with carbons close together．The 10 ampere systems burn a long are or carbons separated from $\frac{3}{32}$ to $\frac{8}{16}$ of an inch． A greater resistance in the lamps is the result；the 20 ampere systems having 2 ohms and the 10 ampere systems 5 ohms resistance in each lamp，though there is a variation in this according to the conditions in which the work is done．One of the sponsors of the new system says ：＊Under this rule we find that the 20 ampere systems give $\frac{800}{7} \frac{0}{6}$ horse power per light，the 10 ampere systems give $\frac{500}{74} \frac{0}{6}$ horse power per light．But， n practice，they do not begin to attain 100 per cent effiency［this is clearly manifest］，and we find them taking one and one－half horse power and one horse power per light．＂At a recent test of a new eight－light dynamo worked by a gas－engine of seven indicated H P．，the eight full are lights were kept running，it is said，with only $5 \cdot 18$ actual H．P．，the engine having ample power to spare；consuming no more than 132 cubic feet of gas per hour．This consumption came down to 102 cubic feet when four lights were cut out． The machine was then short－circuited without sparks or injury to it，the expense of gas coming down to 42 feet per hour．If this statement is not exaggerated，the new machine made a fine showing，for five full arc lights is about all such a gas engine can get from the older types of dynamos．
Here are the figures of this test as given by the mak rs of a well known gas engine who conducted it ：

|  | Number of lights． |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 菏 | $\begin{aligned} & \text { घio } \\ & \text { din } \end{aligned}$ | $\dot{\alpha}$ | 离 | 容 |  |  |
| Gas consumed per minute． | $2 \cdot 2$ | 21 | 2 | $1 \cdot 9$ | 17 | 0.71 | 0.5 |
| Kevolutions of engine per minute | 180 | 180 | 180 | 180 | 180 | 184 |  |
| Revolutions of dynamo per minute．．．．．．．．．．．．．．．． | 1，300 |  |  |  |  | 1，320 | 1，320 |
| Slip of belt．．．．．．．．．．．．．．．．．． |  | 10 | 10 | 10 | ${ }^{10}$ | 10 |  |
| Actual H．P．，including | p．c． | p．c． | p．c． | p．c． | p．c． | p．c． |  |
| friction．．．．．．．．．．．ing | 5．18 |  |  |  | 358 |  |  |
| Gas taken per hour in cubic feet．．．．．．．．．．．．．．．．．．．．．．．．．． | 132 | 126 | 120 | 114 | 102 | $42 \cdot 6$ | 34 |

The new dynamo has long bearings for the armature shaft，contains less wire than the old style，and conse quently has less resistance．The armature is of the closed circuit type，the core being made of large iron disks，insulated，the one from the other．The brushes on the dynamo are not moved in regulating．The field magnets of the dynamos are saturated to an extent necessary to produce the standard current，and any in crease of current does not go around the field magnets， as is the case in other systems，increasing their strength and the current，but a path is provided outside the ma chine，so that the regulator may adjust the current－pro ducing capacity of the dynamo to the standard，and thus insure the safety of the apparatus．Resistance，it is true，is made use of in regulating，but not for the purpose of compensating for the amount of resistance turned off on the line．In regulating，it is usual to let the current traverse the field magnet coils to the regu－ lator．When the current is increased，dependence is placed upon the controlling magnet of the regulator moving a mechanism and the brushes on the commu tator，thus short－circuiting the current through the armature．But the current in the field magnets is always the same as that on the lamp line．Suppose it is not necessary to burn all the lights，and some of them e turned off．
By the old method no reduction can be made in the current in the machine，but the surplus is short－circuit－ ed through the armature．This is a heating process and，while the method will work under slight changes and a few lights can be turned off with safety，user must be cautioned not to turn off lights below a certain number，say 50 per cent of the rated capacity of the machines；unless the lights ean be reduced to one，and the one light be maintained at standard for any length of time on the largest machines，it is not automatic
regulation. With the regulator of the new machine, on the other hand, as each light is turned off, the current in the machine is reduced. So, too, as lights are turned off, the current cannot build up, as is the tendency in other systems, because the source of its induc tion has less lines of force; the automatic adjustment allowing a sufficient amount of current to pass around the field magnet of the dynamo to produce on the lamp line the standard current. All this is what the projec tors of the new system say for it.
A colony of bees is a notable exhibit; the bees, of the yellow striped Italian type, moving restlessly about because of the light coming through the glass case that incloses them and the store they have been laying in all summer. They are "city" honey gatherers, ranging the parks, the flower markets, the private gardens, and window flowering plants instead of the broad fields, and are the more interesting because of this fact. The hive is of the type used by the city bee keepers; a sect little known, yet quite numerous, so it is said. The combs are easily removable without disturbing the workers. Swarming is prevented by a simple device, and the bees safely wintered in their summer stands. The hives are kept upon the house roofs, whence, according to Mr. A. J. King, an authority, the bees range for four or five miles, sometimes as much as 100 lb . of honey being taken from a single hive, with enough remaining to keep the bees through the winter. He says he kept 100 hives for five years on a roof in Park Place, half a block from the Post Office, and with good results.

## THE HOME OF THE HOP.

Puyallup valley, the center of the hop industry of Washington Territory, has recently completed the harvesting of an enormous crop, and its farmers are congratulating themselves on the price obtained-twenty-two cents per pound. The total cost, baled and delivered at the railroad, was nine cents, and the yield exceeded one ton to the acre.
The climate and soil of the Territory and of this particular valley are is so well adapted to the growth of the plant, and its freedoin from the pests of lice, mildew, and other drawbacks experienced elsewhere is here so uniformly complete, that a maximum annual yield can be depended upon with the same certainty as the summer's sun.
The only "glorious uncertainty" about it is the market price. As, this fluctuates from five to one hundred and twenty-five cents per pound, according to the supply and demand, the business is truly exciting.
An extensive grower, with hops at ${ }^{-}$five cents per pound, finds himself unable to meet his liabilities, while the following year the same hop yard may pay a profit of $\$ 1,800$ per acre if marketed at one dollar per pound.
As the land, cleared of timber and planted with vines, in rows seven feet apart and properly poled, costs $\$ 300$ per acre, to which must be added a kiln or oven for drying and other paraphernalia, a man of small means can only commence on an extremely small scale.

The picking, which constitutes one-half of the expense of raising, is done by hand and must be paid for in cash every night. It furnishes light and agreeable employment for men, women, children, Indians and Chinese. The two latter excel the whites in rapidity and thoroughness. One dollar per box holding ten bushels is paid for gathering, and nimble fingers are necessary to till two boxes per day.
The drying of the herb in the ovens is a delicate operation, requiring the experience of an expert, as its proper performance gives value to the commodity.

## Experienced Foundrymen on Melting Iron.

by robert e. masters.
Any one who is about to purchase a foundry cupola, after reading the gilt edge representations in the different circulars and catalogues they receive, is liable to become thoroughly confused about which style to select.
Each of them is represented to do more than any or all the kinds that have ever been operated. On account of some peculiarity in their construction, one is made to believe they cause the wind to do a contortion act or go through some performance that "melts the iron more rapidly than any cupola" that has ever been introduced, and each one of them will "produce a hotter and more fluid iron of uniform strength all through the heat" than can possibly be obtained from any other, and no matter which one is selected, we are
told it will effect a saving in fuel of from 25 to 40 and told it will effect a saving in fuel of from 25 to 40 and even as high as 50 per cent over any other cupola bian Nights stories go on, followed by a lot of references and records of wonderful results obtained until ences and records of wonderful results obtained until
the unsophisticated foundryman concludes, by the introduction of one of the cupolas, he will require little else than wind to melt his iron.
Foundry foremen have told me that the publishing of such phenomenal results in melting iron as occasionally appear in circulars and mechanical journals has injured them in the estimation of the firm who employed them. For instance, a superintendent who is
not a practical foundryman, and therefore does not know that the most advantageous conditions must exist in cupola, blast, fuel, and iron to produce the best results, reads an account of high figures obtained in
melting by some one who is ambitious to have his name attached to a performance that is to surpass all previous records. The superintendent does not stop to consider anything about the size of the cupola, or whether it is a 7,000 or a 70,000 pound heat, but he goes to the foreman of the foundry and points out the economy of melting at the figures contained in the account. Oceasionally a foreman who has not the courage to stand up for what he knows to be right, and is afraid he will be considered incompetent, makes the coke weigh light and the iron weigh heavy in what he calls a trial heat, and presents a report that satisfies the superintendent, and another magical melting act goes on record.
During the past fifteen years the writer has traveled considerably, and while investigating this question has operated cupolas of various types from 18 in . to 72 in . inside diameter. I have in a plain 38 in . cupola, where everything was in right proportion and worked in harmony, melted 10 pounds of iron to one of fuel in a heat of 24,000 pounds, and the metal was fluid enough to run light castings clean and solid, but I do not pretend that these figures are a basis for any one else to work on, for I have then gone in a foundry where they had the most approved and improved type of cupola, and could not melt $71 / 2$ to 1 and call the iron melted if the fate of the nation depended on the result. I have never been able to reach the extraordinary high figures claimed by some men. My experience in actual practice has been on an average of 7 to 1 , and in the exercise of strict economy it has often been less than that figure; much depends on the class of iron melted and the quality of work to be poured with the fluid iron.
I have frequently called at foundries where these monumental reports originate, in hopes I could see Aladdin with his wonderful lamp operating the cupola; but the days I called on the different foundrymen claiming to melt with such a low percentage of fuel there was always some reason why the lamp could not be rubbed up to its proper brilliancy to make the genii appear and produce the results published. If space allowed, I could tell some very amusing stories of how some of these reports are made up.

Mr. W. W. Snow, manager of the Ramapo Car Wheel Works, who I believe has had as much iron melted as any man in the United States, tells me that 7 to $71 / 2$ pounds of iron to one of fuel gives him better results than a higher ratio in producing good solid clean castings, even in large heats. From conversations and correspondence I have had with a large number of other prominent foundrymen, I select the following letters on this subject from gentlemen who are well known as contributors to the technical press :
From Thomas D. West, author of "American Foundry Practice and Moulder's Text-Book," Cleveland, Ohio:
"With reference to fuel and melting, I can only say that best of conditions must prevail, and the iron cannot be expected to successfully run light castings where 1 to 10 or less fuel is used in the cupolas now being enerally used in the country.
"As for myself, I find no economy in trying to exceed 1 to $7 \frac{1}{2}$. To express what I mean by economy would fill many sheets, but my articles on this subject show the stand I take

It will not pay any foundry in the long run to try melting with lowest percentage of fuel possible. Any one could melt 1 to 10 , and even higher, but the ques tion is, what kind of liquid metal would be produced?"
From Geo. Vair, manager J. D. Murray Manufacturing Company Foundry, Wausau, Wisconsin :

Our average result for good hot iron is 1 to 6 , using Connellsville coke. We have no scrap at present, and our pig is heavy. I have melted at a higher ratio than this, but the castings would show cold shuts, there fore I consider it more economy for ine to melt 1 to 6 or even less than above that figure.

There are better cupolas than the one we are operating, especially for coke, from which better results may be obtained; but were it known, more cupolas would be found melting 1 to 5 than over 1 to 7 , and it is an injustice to foundrymen to advertise such big esults merely to gain reputation."
From David Spence, Supt. Foundry Geo. W. Brown \& Co., Galesburg, Illinois
"In regard to melting I could never do better than 1 to 77 and get good results. Where they claim such big things in melting there are always two piles of castings, the good and the bad, and it is hard to tell which is the largest. My experience has been with a plain shell, and in every case I have remodeled to suit myself with good results.
" Last May I was on a visit to New York. While there I took charge of a cast for a friend of wine. They use - patent cupola, but I could not get the big results make a visit to one of these shops where they get such great results. I have had charge of foundries in Nova

Scotia, Boston, Connecticut, and Illinois, and I have failed to find it only on paper."
From L. C. Jewett, Supt. Otis Bros. \& Co., Yonkers, New York :
"The very best melting that I have ever done was $71 / 2$ to 1 ; that was in a good cupola with an excellent blast and excellent Lehigh coal, and in a heat of 18 tons, in Hartford, Conn. At present we are melting about $61 / 2$ to 1 . The W yoming Valley coal I am using is not as hard or durable as the Lehigh Valley, consequently have to replenish the bed oftener. Considering the quality of the fuel, I do not feel discouraged with the new cupola I recently put up. The following is the result of a heat :

## Amount of iron melted..... 20,000 3,100 <br> Amount of fuel consumed. Ratio of fuel to iron used $3,100 \cdot{ }^{\circ}$ " 645

'It should be said, however, that I melt iron, and I claim good results cannot be obtained unless iron is melted hot. My ladles and cupola are in good condition when the heat is over, and bottom drops clean.
' With good Lehigh coal in a heat of 10 tons I feel sure I could reach $71 / 2$ to 1 , but one thing certain : I will have the iron hot enough to look like white watered silk as it comes from the spout if it takes 4 to 1 .
'Here is a heat at the rate of $81 / 3$ to 1 :
Amount of iron melted...
$20,000 \mathrm{lb}$.
2,400
" We have a cupola that lines to 46 ", air chamber all round with 12 tuyeres evenly distributed, tuyeres $15^{\prime \prime}$ from bottom plate, No. 6 Sturtevant fan running 2,800 revolutions, and I want to see some one take off a heat at the above figures with best anthracite coal and make a success of it. What I mean is, more castings will be lost for not running or poured short from the metal sticking to the ladles and thereby deceiving the moulders; the value of said loss would be greater than it would to have melted at the rate of 2 to 1 of coal.
' Let us analyze the two heats given at 1 to $8 \frac{1}{3}$. We have 700 pounds of coal saved over the figures in the first heat. Our coal costs us here $\$ 5.50$ per gross ton : taking the 700 pounds we have saved at the spigot $\$ 1.72$, and wasted at the bung by bad castings, badly bunged-up ladles and cupola, and, worst of all, bad temper from melters to core boy, well, say $\$ 10$ in a ten ton heat ; that is not extravagant to lose by cold shuts, etc., as the result of dull iron.
"I am not conceited, and when you find any one who can melt on an average at big figures, please send him to me, as I am anxious to learn how it is done."
We will not stop to consider heats of 25 to 100 tons, for they are the exception and not the rule, but will take them as they average in foundries throughout the country. I have before me about all the reports of cupola workings that have been published for several years past, and I find among them a number from men who claim, with cupolas of 35 in . to 40 in . inside diameter, and in heats of less than 18,000 pounds of iron, to be able to melt from twelve to over nineteen pounds of iron to one pound of fuel. For instance, the following figures look well on paper :

| Amount of iron melted. | Amount of fuel consumed. | Ratio. of fuel to iron used. |
| :---: | :---: | :---: |
| 17,920 pounds. | 1,232 pounds. | 1 to 14.54 pounds. |
| 9,800 8800 | ${ }_{530}^{635}$. | 1" ${ }_{16}^{15.60}$.. |
| 10,700 ${ }^{10}$ | 610 | 1 " 17.54 " |
| 13,100 " | 680 " | 1 " 1926 |

Simply because I have not been able to reach these high flgures, or see any one else do it, I do not say that it cannot be done. I try to be progressive, and am a thorough advocate of any improvement in machinery or advancement in mechanical work, but I am not going to try to compel any man who is in my employ as foundry foreman to produce results in melting iron that are beyond anything I have known to be accomplished.

I would like to see some of these figures demonstrated, and I am now talking to the men who claim to produce them. I will present any man with $\$ 250$ who will come to our works (Marshall, Texas) and melt 18,000 pounds of iron in a 38 in . cupola at a ratio of over fourteen pounds of iron to one of fuel, and have the metal fluid enough to produce good, clean, solid castings for locomotives, architectural work, and machinery. These figures will give the one who undertakes it the highest amount of iron to melt and the lowest ratio of iron to fuel given in the above table.

I will furnish as good, or better, cupola to melt in than can be found in the average foundry ; good blast, first-class dry Connellsville coke, Scotch and American pig iron, and a regular run of car and locomotive cast scrap. All I ask is to do the weighing on the charging floor and keep the figures jointly with the nan who is to accomplish it, and I will take pleasure in publishing the results.

We have the greatest number of miles of railroad track of any country in the world, but the Argentine Republic can beat us and every one else for taking theirs straight. On the road from Buenos Ayres to the foot of the Andes is a stretch of 211 miles without a curve.
attached to a shaft mounted in a frame carrying the feeding and cutting mechanism. Centrally on this shaft is a roller, over which, and over other loose rollers mounted in the frame, passes an endless belt, leading the loose grain to the thrashing cylinder. Above this belt, over one of the loose rollers, is a grooved feed roller, mounted in vertically sliding, adjustable, and spring-regulated bearings, the bearings being adjust ably connected by a link and lever with a feed bar in front of another grooved feed roller, and below which is a roller over which passes an endless slat belt reaching to the front end of the frame, and there passing around another roller. The rotation of the thrashing machine imparts motion to the endless belt the grooved feed rollers, and the slat belt, the two belts forming carriers for the grain to the machine the grooved feed roller having the spring bearings ris ing and falling according to the amount of grain car ried forward, while the link and lever connections of these bearings with the feed bar operate to prevent too much grain from passing to the machine. To a rock shaft extending across the frame above the slat belt knives are adjustably secured, being held in yielding position in relation to the slat belt, so that they will adjust themselves according to the amount of grain thereon. The side bearings of the rock shaft slide between guides on the side beams of the frame, so that the shaft can be readily moved toward and from the front end of the frame, and locked in position thereon, to suit bundles of different lengths. A belt-tightening device is provided to automatically take up any slack caused by the rising of the grooved feed roller and its pulley.

## AN IMPROVED SLED.

A sled particularly adapted for transporting logs in places where bare patches of ground are frequent in places where bare patches of ground are frequent in
otherwise snow-covered roads, or in crossing bridges,

John W. Chisholm, of Liverpool, N. S., Canada. In the front of the drawhead is a recose adapted to roceive the coupling link, and in a vertical central rearward and upward extension of this recess is pivoted a dog with a weighted upper end, the dog having a slot, through which passes the pivot pin, secured in the drawhead. On the lower end of the dog are two noses or offsets, as shown in the small figures, one extending horizontally and adapted to support the coupling pin, and the other extending downward and adapted to be operated on by the coupling. The head of the coupling pin is pivotally connected with the lower end of an arin having a slot in its upper end, through which passes a pin secured in a bracket on the end of the car, operating chains extending from the upper end of the arm to the sides and top of the car. In the front end of the drawhead a key is held to slide in an inclined slot, the key having a slot through which passes a pin secured in the drawhead. The lower end of the key is adapted to pass into the coupling pin aperture to hold the coupling pin temporarily in position, as shown in the small figure to the right, when the dog stands vertically, and it is desired to cut out a car in a train of cars, the conductor raising the coupling pin and letting the key slide downward. The coupling pin is drawn to its uppermost position by one of the handles at either side or the top of the car, when the dog drops into the position shown in the small figure to the left, its nose supporting the pin, the link being held in horizontal position in the opposite drawhead by the nose of the dog resting on it, and the coupling being effected by the entrance of the link, which then pushes against the bottom offset of the dog, causing the latter to assume a vertical position and allowing the link to drop.

## A BAND CUTTER AND FEEDER FOR THRASHING MACHINES.

An improved device for cutting the bands of sheaves and feeding the loose grain to the thrashing cylinder of a thrashing machine is illustrated herewith, and has been patented by Mr. Karl G. Bareis, of Livingston, Grant County, Wis. The thrashing machine cylinder has at one end a gear wheel meshing into a gear wheel

bareis' band cutter and feeder.


## WENZEL'S SLED

is illustrated herewith, and has been patented by Mr Karl Wenzel, of No. 91 First Avenue, New York City. To the outer sides of the opposite side rails of the sled frame, nearer the rear than the front end, are pivoted the upper ends of arms having bearings at their lower ends, in which is mounted a transverse axle having wheels on its outer ends, whereby, when the arms are swung down, the rims of the wheels will be below the sled runners, and, the front end of the sled being raised by the draught strain, virtually its entire weight will be carried on the wheels. To adjust the wheel-carrying arms, ropes or chains are attached to the runners about in a vertical line with the top pivots of the arms, and carried rearwardly around double pulleys mounted on the axle, then around pulleys attached to the runners in front of the end fastenings, the forward ends of the two ropes being then attached to one end of a strong chain. This chain is carried forward around a sprocket wheel on the front end of the sled, then rear ward, and its free end connected with two other ropes or chains which run rearwardly over pulleys attached to the opposite top rails behind the axle, thence forwardly around the double pullers on the axle, and rearwardly again to a point of attachment farther back on the top rails. The sprocket wheel on the front end of the sled has reverse ratchet wheels and pawls, with a single removable ratchet lever having a handle by which the operator, while on the sled, may readily turn the sprocket wheel in either direction, to adjust and lock the wheels in position with their peripheries below the runners, or swing them rearward and up ward to allow the runners to rest on the ground.

The Compass Finger Ring.
The old style of finger rings with a setting containing a small compass is now being brought into use by elec trical engineers. Held near a line wire, the movement of the compass shows at once whether a current is passing.

AN IMBROVED WRENCH.
A wrench which can be conveniently used where nuts of different sizes and shapes have to be manipu lated is illustrated herewith, and has been patented


WHITE'S WRENCH.
by Mr. Oscar C. White, of Wichita, Kansas. In making this wrench for ordinary shop use both sides are made parallel, one end being adapted for square and the other for hexagonal nuts. What may be styled a bicycle pattern is designed to have one end of the wrench smaller than the other, and both ends adapted for hexagonal nuts. Either end of the wrench serves as a handle for the jaw operating at the opposite end, the jaw desired for use being easily adjusted by means of the central thumb nut acting on the screw rod.

## Painless Poultry Killing.

Mr. F. Baden Benger, the president of the British Pharmaceutical Conference, adopts and recommends the following plan for the "happy dispatch" of poultry. A large wide-mouthed stoppered bottle is kept charged with an ounce of chloroform. When a chicken has received sentence of death, it is held firmly under the left arm and its head slipped into the mouth of the bottle. A few deep inspirations follow, and the bird without a struggle becomes unconscious. Then, holding it by the legs, its neck is dislocated by a quick stretch. The plan is so simple that it might be generally adopted.

## AN IMPROVED SASH LOCK.

A simple sash lock, easy of operation, and which cannot be released from the outside of the window, even by a force greater than the sashes could withstand, is illustrated herewith, and has been patented by Mr. George W. Keeler, of Trenton, N. J. The upper sash is formed with one or more vertical recesses or mortises in the inner face of its side rail, parallel with the face of the parting strip between the two sashways, on which a vertically swinging bar is pivoted, the short rin of the bar being adapted to enter one of the reesses, when, to lock the sash, the long arm is swing downwardly across the top rail of the lower sash, and engaged by a stop secured to the window frame. The pivoted bar, when not in use, lies vertically against the face of the parting strip, as shown in dotted lines. The meeting rail of the lower sash is cut away to allow of its movement past the locking bar, and the upper sash may be lowered to a greater or less extent, and locked in the open position by locking the bar with its short arm in one or another of the vertical recesses in the side rail of the upper sash.


KEELER'S SASH LOCK

## AN IMPROVED SCREW PROPELLER．

A propeller wheel for water，wind，or steam，and adapted for use as a ventilator wheel，or for similar


HODGEMAN＇S SCREW PROPELLER．
purposes，has been patented by Mr．Henry D．Hodge－ man，of Larawie City，W yoming Territory，and is il－ lustrated herewith，the small figure showing a central vertical section．The blades radiate in a diagonal line from the central hub，and turn as they approach the yeriphery to lie in a plane at right angles with the hub， being merged at their outer extremities into a peri－ pheral band or ring，while being thickest at the point of intersection with the hub and thinnest at theirinter－ section with the periphery．This arrangement affords a series of substantially circular openings between the hub and periphery，projecting diagonally through the wheel in a double curve，the blades presenting at the proper point an efficient bearing surface，while，owing to the peculiar curve of the apertures，the wheel may be made light and yet strong．

## AN IMPROVED FANNING MILL．

An attachment for fanning mills by which the grain and chess are gathered in convenient receptacles，and


## RISSER＇S FANNING MILL．

thus prevented from falling on the floor，is illustrated herewith，and has been patented by Mr．John C．Risser， of Paris，Ill．The bottom of the mill is made into a re－
conveniently removing the chess，which only falls there when the chess box above is removed，for emptying or other purposes．The screen and the chess box are of any approved construction，but the screen，instead of discharging on the usual chute，discharges on a gathering chute having at its upper end a down wardly turned edge fitting over the upper edge of the usual chate．The gathering chute passes a short distance through the front board，and is provided on each side with upwardly extending flanges，which diverge from the bottom upward，so that the upper ends fit on the ends of the screen．A gáte is held in the lower end of the gathering chute，pivoted at one end to the front board，the gate having an inclined bar on which is held to slide a weighted ring or collar．When the gate is swung upward，as shown in the illustration， the weight slides to the back end of the bar，and thus holds the gate open，the weight moving for－ ward as the gate is closed，to hold the gate down，and prevent grain from passing out of the chute．

## AN IMPROVED WAGON BODY．

A wagon body designed especially for farm use， wherein the boards of one side may be thrown up on the opposite side，so that articles may be conveniently thrown in as the crop is gath ered in the field，and having an adjustable end gate，de－ signed to form a platform to facilitate unloading，is illus－ trated herewith，and has been patented by Mr．Thomas Ty－ son，of Mound City，Mo．One side of the wagon body con－ sists of three boards and the other side of two boards，the lower board of the latter side being of a height equal to that of the top and bottom opposite boards，and the up－ per board of a height equal to the central board of the opposite side，the lower sec－ tions of both sides being se－ cured to the wagon body． The front end gate is made in two sections，the upper


TYSON＇S WAGON BODY． section being recessed from the center outward，a block being inserted in the of a clutch and motor；the openings to the regulator recess，hinged at the upper end，whereby the block may be folded upward．The rear end gate is hinged to the bottom of the wagon body，and adapted to extend up－ ward a distance above the sides，side strips being at－ tached to the inner face of the end gate，which，when the end gate is closed，are adapted to extend without the sideboards．The end gate is retained in vertical position by hooks engaging eyes screwed in the outer face of the end gate，and an additional fastening is af－ forded by an eye in the cheek section，to which a hook is pivoted adapted to enter an eye in one of the side－ boards．For gathering potatoes，corn，or such articles in a field，the wagon body is arranged as shown in the illustration，with the lowest side next the operator． When the wagon has been filled as high as the upper edge of the first sideboard，the intermediate section is brought over to its normal position，and the filling goes on，the upper board being finally brought over．If it is desired to have a low wagon body，one central sec－ tion may be removed，with the upper section on the opposite side，the upper section of the front end gate chamber；the horizontal and two vertical rudders，and the tubes surrounding the twin screws．The shell is of brass．All other parts are of phosphor－bronze，except the flywheel and propeller shafts，which are of steel． Fig． 2 shows all the machinery in the torpedo，the shell and supporting rings being removed，and the outline of the shell indicated by dotted lines；$a$ is the flywheel， to the axis of which are geared the two propeller shafts； $b$ is the automatic immersion and steering regulator， which weighs $61 / 2$ pounds．It operates the tiller rod，$c$ ， connecting with the horizontal rudder，and two tiller rods，$d$ ，connected to the vertical steering rudders， power for this purpose being transmitted from the fly－ wheel by a worm，$f$ ，on the propeller shaft and a gear wheel in the regulator．
The torpedo can be set to run at any depth from one yard to twelve yards．It is caused to stop at any desired distance on its range by an attachment to the propellers －not shown－and it rises to the surface，having a few pounds buoyancy．The torpedo can be made to sink at the end of its run，or float with the firing pin locked， as may be desired．Before launching，the firing pin is

be $50 \frac{T_{1}^{3}}{} \mathrm{ft}$. per second when striking the water. Therefore, this deflecting force being insignificant compared with the flywheel energy, the resultant roll will be small. The directive force and propelling power are stored in a steel flywheel by giving it a high velocity of rotation, the source of power being external to the torpedo. The stored power is then transmitted di rectly from the flywheel to the propellers, and does not require to be worked off through an engine, as in other systems of propulsion. At 10,000 revolutions of it.s flywheel per minute, the energy in the 8 ft torpedo is 375,000 foot pounds- 167 foot tons; at 12,000 revolu I vessel's movements, or of pointing, and the energy the fly wheel. This is accomplished by allowing a slight rolling motion to the discharge tube, or to the torpedo support within it, which auto matically returns to normal position when the motion ceases. The roll in these circumstances is small. If the torpedo be launched when rolled, the steering rudders at once operate to right it, without deflection.
The Howell torpedo, by its gyroscopic principle, is the only torpedo entirely auto matic in maintaining its direction. It has no ballast, but, after launching, automatic ally takes the depth for which set, and di rects itself in a vertical plane. Its course in a horizontal plane is straight, and independ ent of the action of deflecting forces. It steers itself automatically, though not in the generally accepted sense of boat steer ing. Ordinarily, a boat is steered on a course by using a rudder to return to such course when forced off it by any agency; but the torpedo when acted on by similar exterior forces, simply rolls to the right or left, instead of changing course to the right or left, and this rolling causes the regulator to give a series of impulses to vertical rud ders, which produces a resultant motion of the torpedo opposite to that given by the exterio deflecting force. The result is that the torpedo, having been rolled by a deflecting force, is rolled back to normal position by the automatic action of the rudders, there having been no change in the original direction or course. This directive force was practically tested with a small 30 in. model having a 15 lb . flywheel, by a board of U. S. ordnance officers, who attempted to turn it in the water, the propellers being detached, and the wheel revolving 9,000 turns per minute, and they reported as follows :
" On taking hold of rear end of torpedo and pulling at right angles to length, it moved parallel to itself, rolling of the same time, but no deflection-could be produced." This force is at its maximum at the moment of launching, when a torpedo is subjected to the strongest deflecting influences, and may be explained as follows to those who are not familiar with the principles of the gyroscope: Viewed from the right hand side of the torpedo, the wheel revolves, as shown by arrows, $a, b$-Figs. 3 and 4. A force acting on the point of the torpedo, tending to deflect it to the left, would act on the flywheel as a force at A and B tend ing to slue the latter; but the force at $A$ acting on the particles moving in the direction, $a$, would have a resultant in the direction, $A^{1}$, and the force at $B$ acting on the particles moving in the direction, $b$, would have a resultant, $\mathrm{B}^{1}$; hence the torpedo can only roll to left instead of being deflected. The vertical rudders there upon acting to turn the tail of the torpedo to the left and its point to the right produce a resultant, C , until the wheel-and torpedo-are rolled back to their normal vertical position, and without deflection from the torpedo's course. The amount of the roli depends upon the relation of the deflecting force to the energy of the wheel. In the 8 ft . torpedo the radius of gyra tion of the flywheel is 5.4 in ; ; therefore, at 10,000 revo lutions per minute, the average speed of the particles is 470 ft . per second, and the energy is 167 foot tons. If the torpedo be discharged, point first, into a wave from the broadside of a vessel moving at high speed, the deflecting force will operate to roll the torpedo, and also move it in the yielding medium, parallel to itself until submerged. If the speed of the vessel in this case be 30 knots, the side velocity of the torpedo wil


coX's clothes drier.
tions it is 550,000 foot pounds-245 foot tons; the elastic limit of the wheel is not reached under 14,500 turns per minute, when the stored energy would be 778,800 foot pounds- 347 foot tons. The force is imparted by means of a motor actuated by either steam, electricity, compressed air, etc., as may be most convenient for the required service, and can be so imparted in thirty seconds, and thereafter sustained for any length of time, and until the instant of launching through tube or from a protected port. By taking a longer period to apply the force, as when preparing the vessel for action, or to charge upon the enemy, a motor of less power can be employed; in a small vessel the motor can be operated by stored force. It takes one minute to charge the 8 ft . torpedo with 375,000 foot pounds of energy, using a motor of 12 horse power, and five minutes for the same transmission of force with a motor of two horse power. After attaining 10,000 revolutions per minute, and detaching the motor, the flywheel of the 8 ft . torpedo, geared to its shafts and propellers, continues to revolve for one hour in the air.
As the energy in the flywheel increases as the square of the revolutions, while the resistance to propulsion varies as the square of the velocity, the speed of the torpedo should increase in direct proportion to the number of revolutions made. It is found that the increase is in somewhat greater proportion with the higher speeds-speeds above 18 knots being more easily attainable in wholly submerged bodies. With the wheel spun to 6,400 revolutions-an energy of 150,470 foot pounds-the mean speed of the 8 foot torpedo is 18 knots for the first 200 yards of a total range of 500 yards. With 8,400 revolutions the mean speed is 24 nots for the first 200 yards of a total range of 800 yards-an increase of one-third speed with less than one-third added revolutions. This wheel is now run at 10,000 revolutions, and two fifths of the entire energy are expended in giving relatively higher speeds before the revolutions are reduced to 8,400, when, as noted, the mean speed becomes 24 knots for the fol lowing 200 yards; and three-fifths of the energy expended before the revolutions are reduced to 6,400 . The twin screws of the 8 foot torpedoes are $53 / 4$ inches diameter, $71 / 2$ inches pitch, and are geared down--3 to 5 -to the flywheels by bevels, making 6,000 turns per minute when the flywheel makes 10,000 . The speed is greatest at the start, and gradually decreases during the run of a thousand yards. It was at first intended to equalize the speed, and an attachment was designed to give a uniform thrust of the propellers for 600 yards. It is, however, found preferable to develop a very high speed for 300 yards, and a high average for a greater distance, retaining the long range. The mean speed for each 100 yards is easily determinable, and will be marked upon a sight. Furthermore, for bow fire, the initial speed is now so great that the danger experienced in fast vessels of overrunning their own torpedoes would be avoided.-The Engineer.

## AN IMPROVED FLY NET.

A fly net in which the transverse straps are more securely held than by the ordinary fastenings, the net being more solid and durable, and adapted to lie snugly upon the horse, is illustrated herewith, and has been
patented by Messrs. Vinton A. and Frank S. Weaver, of Moundsville, West Va. The longitudinal straps or bars of the net are made with perforations, either round or oblong, to receive through them the engaging ends of the transverse straps or lashes, arranged in pairs. The two transverse straps of each pair have their ends continued sufficiently beyond the edge of the longitudinal strap to allow of their projecting end portions being secured each to the body of the other by wire clips or other suitable fastenings. Each strap is thus secured by two clips or fastenings instead of one, there by giving the craps a more solid hold, although no in

## creased number of clips is used.

## AN IMPROVED CLOTHES DRIER.

A device for supporting lines for drying clothes, whereby the lines may be readily raised or lowered as desired, and which will afford a large amount of drying room in a small space, is illustrated herewith, and has been patented by Mr. George Cox, of No. 123 South Sixth Street, Reading, Pa. The posts are preferably arranged three in a row, the two outer ones inclined away from the central vertical one, and all arranged adjacent to suitable walks. The posts are provided in one face with a guideway, as shown in section in Fig. 2, in which sliding bars are adapted to move up and down, the bars having pegs projecting through the slots to which the lines are secured. The pegs are of different lengths, so that the clothes on the upper lines may fall clear of those below. In hanging clothes, the sliding bars are all lowered, the bars being raised as the top lines are filled, and when all are hung the lines will be held straight, as shown in the dotted lines, the bars being held in their
uppermost position by a pin inserted under them in each post. The incline of the end posts is such that the end of each line is raised practically in a line tangent to the arc of a circle struck from the center of its peg in the vertical bar, so that the line is kept nearly taut in any position, except when the vertical bar is down.

AN IMPROVED BRIDLE FOR BROOMS OR BRUSHES.
A simple and cheap bridle for effectually retaining a broom head in its proper place between the rows of broom corn is illustrated here. with, and has been patented by Mr. Robert E. Copson, of Omaha, Neb. It consists of a single piece of wire bent to form a loop, and with an upwardly projecting arm having an eye, the illustration showing the bridle open, closed, and as applied to the broom. In the eye is inserted a wire nail which is driven into the inner end of the handle. It is


COPSON'S BROOM OR BRUSH BRIDLE. claimed that only one row of stitching will be needed when this bridle is used, that the broom corn can be worn down to the bridle, and that the broom will not get loose on the handle.

## The Huckleberry and Blueberry

They are the only ones of the popular berries, says a contemporary, that have not been improved by cultivation. Middle-aged men can recall the time when the strawberry and blackberry were rather poor, commonplace fruit, but they have been cultivated, grown from seed, and the result is the toothsome berries which now adorn our tables. But the huckleberry we eat now is the same which tickled the palates of our great-grandfathers. Word has gone forth to improve this berry, to grow it in gardens from seed, and select the variety which gives the best result. It is not generally known, but nearly all our edible plants and fruits were originally weeds, or of so inferior kind as to be scarcely fit for human uses. But for countless generations man has been improving his environment, but more especially the grains and fruit upon which he now lives. The human palate itself must have been greatly improved in sensibility, owing to the difference between what fruits and vegetables were and what they are. There are those who think that this process is to go on, and that other weeds will be turned into useful plants, and that by scientific methods the quantity of food will be at length so great that no human being will ever die of starvation.

THE GREAT CHIMNEY AT THE CLARK THREAD
WORKS, KEARIJEY, N. J., HEIGHT 335 FEET
We illustrate in this issue the great chimney recently erected at Kearney, near Newark, N. J., by the Clark Thread Co. It possesses the distinction of being the tallest chimney in America, and the fourth tallest in the world. It is the highest chimney ever built for boiler furnaces. The others that surpass it in altitude were erected for carrying off the products of chemical processes and for distributing the noxious gases produced.
The chimney stands in a quadrangle surrounded by the mill buildings of the new thread works and by the engine houses and present factory. It presents a most graceful appearance, and for the traveler passing through Newark, it forms an impressive feature of the scene. The ground on which it stands is on the eastern bank of the Passaic River, a rather low, fiat area, so that the chimney bears somewhat the same relation to Newark that the Washington monument does to Washington. The latter structure is the only one in America that can dwarf it.
The shaft is circular and rises with a perfectly uniform batter from the bottom to the neck below the cap. Its diameter at the base is 28 feet 6 inches, and at the neck is 14 feet. This gives a batter of 7 feet 3 inches, or 2.85 inches for every ten feet. Its total height is 335 feet. Its internal diameter is 11 feet, giving one circular flue. At the summit it expands into a well proportioned capital surmounted by a cast iron coping. The latter weighs six tons, and is composed of thirty-two sections. They are bolted together by inside flanges; so as to present a smooth exterior.

The foundation is in concrete. The ground was excavated until a layer of firm gravel was reached, one foot below the water. Upon this the concrete was deposited. It was composed of crushed limestone 6 parts, sand 3 parts, and German Portland cement 1 part. It is 40 feet square and 5 feet deep, forming a block of 8,000 cubic feet volume, and weighing about one million pounds.
On this the base was started, composed, like the shaft proper, of brick laid in cement wortar. For this portion, up to four feet above the ground, a mixture of $11 / 2$ parts sand to 1 part German Portland cement was used for the mortar. The shaft up to a height of 160 feet is laid with the following mixture: Sand 6 parts, lime 2 parts, and cement 1 part. The sand and lime were made into mortar and had stood threa months before use. This method of treatment is considered to improve the quality of wortar. Just before use the cement was added. From this point up the proportion of cement was increased until, at the top, the proportions became: Sand 3 parts, lime 1 part, and cement 1 part.

Two qualities of brick were used. The outer portions were of the first quality North River, and the backing up was of good quality New Jersey brick.
Every twenty feet in vertical measurement an iron ring, 4 in . wide and $3 / 4$ to $1 / 2$ inch thick, placed edgewise, was built into the walls, about 8 inches from the outer circle.
As it starts from the base the chimney is double The outer wall is 5 feet 2 inches in thickness, and in side of this is a second wall 20 inches thick and spaced off about 20 inches from main wall, and, of course, concentric with it. From the interior surface of the main wall eight buttresses are carried, nearly touching this inner or main flue wall, in order to keep it in line should it sag. The interior wall, starting with the thickness described, is gradually reduced until a height of about ninety feet is reached, when it is diminished to 8 inches. At 165 feet it ceases, and the rest of the chimney is without lining; no fire bricks are used in the lining.
As the chimney receives two horizontal fiues placed diametrically opposite to each other, a 12 inch deflecting wall is built across the vertical shaft, starting from the base and rising 16 feet. The plane of this wall is perpendicular to the axis of the flues.
The two flues just alluded to are arched tunnels feet wide and 8 feet high. An arched opening is formed for their entrance into the chimney, and a space of two inches is provided between the outside of the flue and the inain structure. The walls of the horizontal flue as they enter the stack are 16 inches in thickness.
In these flues it is proposed to place feed water heater for the boilers. About one thousand pipes will be included,in them. It is believed that much more of the waste heat can thus be economized than is usual, as, owing to the great height of the chimney, a comparatively slight heat in the products of combustion will generate ample draught. The advantage, in an engineering sense, of so large a chimney will be derived from this factor of economy.
Twenty-one boilers of $200 \mathrm{H} . \mathrm{P}$. each will depend upon the great chimney.
The general methods of construction adopted were characterized by simplicity as well as by efficiency. A steam elevator, with a platform 3 feet 6 inches by 3 feet, was arranged to run up and down inside the shaft. It had $3,000 \mathrm{lb}$. capacity, but never had to raise more than 800 lb . Two uprights, $4 \times 6$ inches, were braced
against the inside walls and served as guides to the
elevator. As the work progressed these and other fixtures of the elevator were carried up until finally the crane, carrying the main sheave, was above the coping nearly 340 feet from the earth. Interior scaffolds were built every few feet as the work progressed ; two beams, $3 \times 8$ inches, being built into the walls to carry each $3 \times 8$
one.
The

The greater part of the main shaft and lining was executed by eight bricklayers and five helpers. Their executed by eight bricklayers and five helpers. Their
material was supplied from below by seven laborers on material was supplied from below by seven laborers on
the ground. A system of bell and flag signals was arthe ground. A system of bell and flag signals was ar-
ranged, so that no confusion could exist, and the men ranged, so that no confusion could exist, and the men
below could tell at once what material to send up in the elevator.
Two operations were needed to keep the chimney true. The circle had constantly to be verified or trained. By accurate plumbing a series of center points were carried up, one being established at every forty feet of height. From the line of those representing the axis of the shaft the training was done. The other operation was the plumbing. The batter or slope being a constant, a mason's plumb rule was planed off to give the true slope, and the sides were constantly tried with this. Both these operations were in cbarge of one man, who constantly was training or plumbing. By many hours of practice he acquired the art so perBy many hours of practice he acquired the art so per-
fectly that he never looked to the ground, his eye fectly that he never looked to the
not ranging below the end of his rule.
Eventually the chimney was plumbed from a height of 300 feet, a forty-foot plumb bob being used. The deviation from the vertical was practically imperceptible.

The foundation, base, and 18 feet of the shaft were built in December, 1887. The work was then closed in for the winter. Operations were resumed in April, 1888, and continued when the weather permitted. The brick work was completed in September. Altogether 150 days of 9 hours each had been devoted to the con-struction-a remarkably short period for so great a work.
The total weight of the chimney is put at 5,000 tons, divided as follows :

| Brickwork. | 9,051,899 | lb. |
| :---: | :---: | :---: |
| Concrete. | 1,000,000 | " |
| Ironwork | 40,000 | " |

The bearing surface is 1,600 square feet, giving about 2.8 gross tons per square foot, or more exactly $6,312 \mathrm{lb}$. The total number of bricks in the stack is $1,697,231$; 201,000 were used in the base and foundation, and 66,277 in the caps.

No means are provided for ascending the chimney after the elevator is removed. Should it become neces sary to do so, a balloon, with a line, can be sent up through the central flue and allowed to lose its gas and descend on the outside. This will provide means for drawing up a line of sufficient size to enable a man to ascend the shaft.
We append some dimensions of the three chimneys that exceed this one in height :

Townsend's Chimney, Glasgow, Scotland.


Tennant \& Co.'s Chimney, Glasgow, Scotland. Height from ground to coping................ 435 feet 6 inches.
Outside diameter, at ground ................ 40 ". Outside diameter, at ground
top.
Dobson \& Barlow's Chimney, Bolton, England. Height from ground to coping............... 367 feet 6 inches. Octagonal in section.


Over three years were devoted to the building of the Townsend chimney. Tennant \& Co.'s s.was built in one ear.
The Clark chimney was erected by the company, under the superintendence of their foreman, Mr. Cunningham. It cost $\$ 30,000$. From the point of view of architectural beauty, as well as perfection of structural features, too much credit cannot be awarded to all concerned in its erection. It is of interest to note that no workman was injured in any way during the progress of the work. A good idea of the general view
of the surrounding country as seen from the top of the surrounding country as seen from the top of right of the page. This represents the appearance of the chimney when the sketch was made, about two weeks ago, and it will be noticed that the iron hood shown in other views of the completed chimney had not yet been mounted in position. The chimney at this point is 20 feet in diameter, and the platform is so roomy
that, in spite of the enormous height, an inexperienced visitor even is likely to experience no sense of giddiness, save, perhaps, from the slight swaying motion that is noticeable when the wind is blowing. The builders have allowed for about six inches of sway, which is about the amount of motion anticipated during a vio
lent blow.

## Gorrespondence.

## Dangers of the Emery wheel.

To the Editor of the Scientific American:
Noting the paragraph in your issue of September 15 regarding "Dangers of the Emery Wheel," we think you might do good service to your large circle of readers, many of whom doubtless use emery wheels, by calling attention to the facts of this case (or a supposed similar one), showing the dangers resulting from ignorance and recklessness. In this case, young Dunwald, who seems to have been more than usually intelligent, was trusted to buy his emery wheel, selecting the size he chose for the machine, put on one much too heavy, and running at a speed which subjected the wheel to a strain of more than twice that of the speed at which it was marked by the manufacturer as proper to be run, evidently not understanding that the "cen" trifugal strain increases as the square of the velocity." For this ignorance he has paid a severe penalty.
In an experience of some twenty years in the emery wheel business we have seen a great many instances of this kind; in fact, have never found but one or two instances of broken wheels that could not be traced directly to carelessness or misuse. Other causes besides too high speed are as follows: Forcing wheels on the arbor; too small flanges, which should be at least onethird of diameter of wheel; one flange smaller than the other, the large one being concave; neg'ecting to put an etastic washer between flanges; screwing up flauges too tight, thereby straining the wheel ; allowing emery wheel to get out of true; the arbor running loose in the bearings; letting work get caught between the wheel and rest, etc.
The matter of speed is the most serious one, and we have been amazed at the reckless use in this respect. We often find parties running wheels at even double regular speed or four times regular strain. Our ouly wonder is that so few accidents happen. We would say that we think nearly all manufacturers test their wheels at least three times regular strain, and therefore cousider themselves free from blame, and assume that the user is responsible for breaking. H. P. H. Waltham, Mass., Sept. 15, 1888.

## an improved adger.

The auger illustrated herewith, which has been patented by Mr. Harry W. Richards, of Eden, Fla., has lateral cutters at the upper end of the spiral, and integral therewith, in the same vertical plane with the outer edge of the spiral.
When a hole has been bored, the turning of the auger is continued, the cutters keeping clear of the hole until they come to the rough edge at the bottom of the hole, where a single turn causes the cutters to clean the rough edge:

## Old wooden Water Pipes.

At a recent meeting of the Newcastle Society of Antiquaries, one of the members presented some pieces of wooden pipes that were recently discovered in the Side, while some new telephone lines were being laid. They were made of elm, and illustrated two methods of joining pipes. There was, in one method, a butt joint, which was made water tight by an iron ferrule. There was also the spigot and faucet principle, a pointed end fitting into a cup-shaped socket, fastened with a pin. It was mentioned at the meeting that in 1698 an act was obtained to supply the town with water, and four-inch pipes were put down from the Town Moor and across to Gateshead. It was believed by some that these were part of the water pipes used.

## A Railload Racing Dog.

James Griffin, of Danbury, Conn., has a small terrier dog that is surprising the people of his town by his abilities as a runner. Every evening during the summer, when the 6:45 train from the West blew its whistle a few rods from the Main Street crossing, the dog would bound out of the house near by and take the track head of the train for the station, half a mile away. The train crosses Main Street at the rate of fifteen miles an hour, and between the crossing and the station is a restle about 300 feet long. Over this the dog flies, always keeping just so far ahead of the train, slackening his speed as the air brakes are applied, and coming into the station at the same distance ahead of the train as he took when he started the race. Once or twice the engineer has put on steam to try and overtake the dog, but he has not yet succeeded in doing it. The dog never looks back, never barks, and never pays any attention to the calls of his master. When he reaches the station he looks up at the engineer, gives two or three short yelps, and quietly trots home up the track. This performance is repeated with unfailing regularity, and if an effort is made to keep him in the house at train time, he raises an unearthly yelping. It is the custom now for crowds to gather to see the exhibition racing,-N. Y. Sun.

## MOUGIN'S "FORT OF THE FUTURE."

In the domain of the art of war a new fact has recently becowe known, which is of a nature to carry with it consequences of great importance-a new fact, we say, but not an unlooked-for one. A problem which was long regarded as insoluble has finally been solved. Artillery, the progress of which is continuous, has found a method of firing, without danger of premature explosion, hollow projectiles charged with breaking explocharged with breaking explo-
sive substances. It must be sive substances. It must be
admitted that this discovery is of a nature to modify the art of war profoundly. A revolution is announced, which, considered from the standpoint of the extent of the results, may be compared to that which occurred on the occasion of the invention of gunpowder. The firing of a melinite or gun-cotton shell is capable of producing singularly powerful effects, the verification of which has already upset the principles of the art of constructing permanent fortifications

Instructed by the first experiments to which he has recently been led, the military engineer is unable to disguise the fact that. without the concomitance of great expense, it is no longer possible for him to construct walls capable of resisting the power of these new methods of attack. At the same time, he has found himself constrained and forced to suppress within his works those military structures hitherto called bombproof, because they consisted of a series of connnected vaults, generally of 19 feet span, and 3 feet thickness at the key, and covered with a mass of earth from 9 to 13 feet in depth. Such structures, by the force of things, have become singularly vulnerable and easily destructible even. The military engineer can therefore no longer derive any waterial advantage from the masonry that has hitherto been the principal element of his structures; but, can he still count upon the properties of masses of earth properly arranged? No : earthworks cannot withstand the fire of projectiles filled with a breaking charge. Under the action of the bursting of the shell, the earth shoots up into the air, disperses in powder, and finally disappears. And, more than this, acting after the manner of a tamping, the mass of earth converts the projectiles that have entered it into dry torpedoes, and hence it is more injurious than useful. As the engineer can bring into play neither earth nor masonry, what resource remains to him?

It has been many times observed that progress makes its way in a quasi-circular path. The human mind, in pursuing the end that is assigned to it, merely describes cycles always passing through the same points. An idea is suggested to it, it grasps it, then repudiates, and then again returns to it, so that, in the course of ages, extreme civilization often nearly touches extreme barbarism. Fortification offers us a striking ex ample of this mode of evolu tion in a circle.
In the times of the great historic alluviums, quaternary man, as we know, dwelt in caves. Some of these places of refuge could contain two or three hundred persons; but, although the interior was roomy, the entrance was narrow. In time of peace, this exit was closed by means of a curtain made of reindeer's skin, while in time of war a number of rocks, properly. piled, performed the functions of a defensive door, and the joints formed embrasures through which the inclosed people shot out their projec tiles. The quaternary cavern was therefore nothing else than a fortress.
Well, in our own day, in the last years of the nineteenth century, we are about to see the military engineer return to the idea of the defensive cavern. In the num ber of prehistoric fortifications, seience admits those


Fig. 2.-PLAN OF THE FRONT OF THE FORT.
strange structures that have been discovered in France, Germany, and Scotland, and that have re eived the name of vitrified forts. These inclosures, situated upon ancient formations, crystalline or otherwise, are formed of various materials, granite

ble dimensions. The obstacle consisted of a wall which was no less than from 60 to 95 feet in thickness. The scarps of Nineveh, for example, and those of Babylon, were more than 85 feet. Why did ancient engineers adopt such dimensions, which now appear to us so huge? Because it was necessary to oppose a great resistance to the action of demolishing apparatus, especially to that of the battering ram.
Well, in our day, the military engineer who is embarrassed by the firing of shells containing a breaking charge would have to have recourse to such thicknesses. If he does not decide to do so, one of the reasons is that the marvels of modern industry permit him to substitute for masonry masses of metal having the same resistance with less thickness.

Then it has been found that beton and a metallic cuirass alone resist the action of shells containing a breaking charge -such as melinite or gun-cotton. Hence it follows that these two elements of construction should be able to suffice the engineer. That being the case, it is evident that the forts that it is neces sary to construct cannot any more resemble those that now constitute the defenses of our frontiers than the latter re-
gneiss
of fire
Well, in our day, the military engineer recommends,


Fig. 1.-BIRD'S 'EYE VIEW OF THE' PLAN OF THE' SUBTERRANEAN FORT.
not the vitrified rockwork, which he knows not how to make, but beton, which is analogous to it.
In historic times, during the long period styled antiquity, fortified inclosures had a profile of considera-


Fig. 3.-PLAN OF THE FOUNDATIONS.
A. Infirmary. B. Quarters of lieutenant commander and surgeon. C. Projectile magazine. D. Room for charging projectiles E. Cartridge factory. F. Powder magazine. G. Generators and kitchen. H. Coal room. I. Office of the commander and telegrapher. J. Room for spare stores. K. office of accountant. L. Provision room. M. Accumulator.
semble the strong castles of the middle ages.
The neo-modern fort, conforisable to the type devised by Commander Mougin (attache to the General Direction of the Forges of St. Chamond), the construction of which upon a certain position selected near our frontier has been ordered by a ministerial decision of July 23,1887 , has a singularly original character.
Let one imagine to himself a bulging of the earth, recalling on a large scale one of those hillocks produced by the subterranean work of the mole. We have not here, however, a mass of earth, but rather a block of beton. This artificial rock, measuring fifty yards in length by from thirty to forty in width, rises from $\bar{\AA}$ dozen yards beneath the natural ground. Its maximum projection above the earth does not exceed three or four yards. Externally, then, it exhibits the aspect of an ellipsoidal calotte gently sloping to the earth and nearly invisible to the eye of an observer, provided that it has for a base the bottom of a depression in the ground (Fig. 1).
At the center of this rock rise, flush with the surface, three armor-clad turrets established en coin-one and two-each armed with two guns of large caliber; at the circumference, four small disappearing turrets, each armed with rapid-firing guns; and at three other properly selected points, armor-clad observatories. Of these latter, one permits of watching the ground of attack, and the two others are designed for projecting fascicles of electric light at night, and thus illuminat-
ing the dangerous points of the territory. Each of these turrets and observatories turrets and observatories
closes a cylindrical well having cuirassed sides, and debouching at the base in a system of subterranean apartments (Fig. 2). These latter are arranged in part as storerooms for provisions and rooms for provisions and ammunition and in part as
machinery rooms. The undermachinery rooms. The under-
ground machinery department includes a powerful steam engine, with cistern and duplicate boiler, a battery of ventilators for renewing the air, accumulators with pumps, and hydraulic motors for raising, lowering, and revolving the turrets and elevating the ammunition, etc., and, finally, dynamos and electric accumulators ior internal lighting and projecting light externally (Fig. 3).

How is this cave entered? Communication with the exterior is had through a tunnel, whose top is eight or ten yards beneath the natural level of the earth. This gallery, the length of which necessarily varies with local conditions, branches and
runs, on the one hand, to the apartments above mentioned, and on the other to the bottom of a cuirassed well. A winding metallic stairway runs along the sides of this well, but is not attached thereto. This well, with sufficient opening to allow of the passage of duplicate materiel, forms an integral part of an iron plate framework, capped by a horizontal plate 8 inches in thickness. This plate, which normally closes the mouth of the well, is protected by the cross fire of the two disappearing turrets.
If it is desired to give access to the fort, it is only necessary to cause a hydraulic piston to act through a simple maneuver of a cock, and thus raise the internal framework, the staircase, and the plate $61 / 2$ feet. All forwarding of material and every relief of the garrison is signaled by telegraph or telephone. The doorkeeper does not maneuver the hydraulic elevator until he has heard the password and the disappearing turret on guard has recognized the comers. Moreover, there are arranged along the tunnel a number of obstructions analogous to those that the engineers of the middle ages used to multiply in the galleries giving access to their fortified castles. Finally, the entrance to the catacombs is itself provided with a door, defended by two witrailleuses.
The garrison is reduced to thirty or forty mechanicians and specialists having in charge the manipulation of all the machinery above noted. The situation of this personnel is not without analogy with that of the mechanicians and stokers of armorclad ships, who also are only able to Freathe through the artificial ventilation provided. These men, however, can be very frequently relieved.
Commander Mougin's fort, as just described, with its three large two-gun cuirassed turrets, its four small turrets with two rapid-firing guns, its three obstructions, and all its internal machinery, will not exceed in cost the net sum of $\$ 500,000$. This is relatively cheap.

Upon the whole, the conception of the fort of the future presented itself long ago to the mind of professionals in the form of a relatively invulnerable armorclad ship run aground on the position commanding the defile or railway to be defended. Commander Mougin has certainly done a useful service in showing how such a conception can be carried out.

His solution of the problem offers the advantage that, with equal live power, that is power in artillery, it permits of reducing, in the ratio of ten to one, the effective personnel necessary to perform the service. All our generals deplore the fact that, in the present system, the constitution of the regular garrisons absorbs, at the hour of nobilization, several hundred men, who might keep in the field, and the presence of whom on the field of battle would be of a nature to lead to decisive results. In this new system, the absence of a few mechanicians and assistants, taken from the ranks, will not perceptibly reduce the territorial regiments that are called upon to furnish them.La Nature.

## The Gas Meter Specter

F. H. Carruth, on the joys of what he terms suburban life, is not confined to any locality, but his well told experience with the gas man illustrates the belief many gas users cherish :
Every other day a man comes from the gas works, and after we let him in he goes down to the foot of the basement stairs and holds a secret conference with the meter. He opens a little door in it and takes a poker and stirs it up inside. Sometimes during the executive session we overhear him sort of growling away to himself, and complaining about the way the meter acts. He will explain to it that it isn't doing as well as Brown's, and that Robinson's is'way ahead of it. Then he will punch it again with the poker, and we can hear the wheels buzzing around in it. He says meters are like other folks, liable to shirk and to'tend to business. Then he will hit it another whack, and ask it pointedly if it wants to bankrupt the company. When hegets it running with a low, steady hum, he will shut the door and take down some figures in a blankbook, and as he comes up the stairs we will hear him saying: "Three and four and one are eleven and five is eighteen, and seven is twenty-nine, and six is forty-one, and four to carry is fifty." Then he will go around and look at our burners and dig a way at them with a screwdriver and an old jackknife, and will try to sell us some new jet tips which look like old fashioned open top thimbles. He said one day that the superintendent told him that the company wasn't making nothing. I asked him how the stock was selling, and he said that he understood there wasn't any on the market just at present. He thought it had been withdrawn to be watered or something like
that. Probably they would be awful glad to get rid of it after that.

## A PREHISTORIC BEAR.

Large quantities of the bones of various animals, such as the lion, hyena, bear, and prehistoric dog, have been found from time to time in caves in various parts of the world. It is probable that, as far as Europe is concerned, these caverns were more abundantly filled a few centuries ago than at present. In the prescientific era of medicine, a brisk traffic took place in these prehistoric bone deposits, as in the analogous case of Egyptian mummies. A physician of Gratz, Styria, writing in the year 1695, describes how he received many hundreds of bones and teeth, as well as four dragons' heads, and that, with these potent implements, he achieved numerous noteworthy cures. It has since been ascertained that these skulls and bones belonged to bears. The receptacle where they were ound is still called "Dragons' Cave."
Ourillustration represents the skeleton of a prehistoric bear (Ursus spelous), as well as a second gigantic skull, which were found about four years ago in the Peggan Cave, near Gratz, Styria. The entrance to the cave is in a perpendicular rock face, some hundreds of yards in
height, and the animal remains were covered with a


A PREHISTORIC BEAR.

Lower Animals.
In the last issue of the "Transactions of the Seismoogical Society of Japan," Professor Milne, the wellknown student of volcanic phenomena, discusses the effects of earthquakes on animals. The records of most great earthquakes refer to the consternation of dogs horses, cattle, and other domestic animals. Fish also are frequently affected. In the London earthquake o 1749, roach and other fish in a canal showed evident signs of confusion and fright; and sometimes after an earthquake fish rise to the surface dead and dying.
During the Tokio earthquake of 1880, cats inside a house ran about trying to escape, foxes barked, and horses tried to kick down the boards confining them to their stables. There can, therefore, be no doubt that animals know something unusual and terrifying is taking place. More interesting than these are the observations showing that animals are agitated just before an earthquake. Ponies have been known to prance about their stalls, pheasants to scream, and rogs to cease croaking suddenly a little time before a shock, as if aware of its coming. The Japanese say that moles show their agitation by burrowing. Geese pigs, and dogs appear more sensitive in this respec than other animals. After the great Calabrian earthquake it is said that the neighing of a horse, the braying of an ass, or the cackle of a goose was sufficient to cause the inhabitants to fly from their

Many birds are said to show their uneasiness before an earthquake by hiding their heads under their wings and behaving in an unusual manner. At the time of the Calabrian shock, little fish like sand eels (cirricelli), which are usually buried in the sand, came to the top and were caught in multitudes. In South America certain quadrupeds, such as dogs, cats, and jerboas, are believed by the people to give warning of coming danger by their restlessness; sometimes immense flocks of sea birds fly inland before an earthquake, as if alarmed by the commencement of some sub-oceanic disturbance. Before the shock of 1885 in Chili, all the dogs are said to have escaped from the city of Talcahuano.
The explanation offered by Professor Milne of this apparent prescience is that some animals are sensitive to the siuall tremors which precede nearly all earth quakes. He has himself felt them some seconds before the actual earthquake came. The alarm of intelligent animals would then be the result of their own experience, which has taught them that small tremors are premonitory of move ments more alarming. Signs of alarm days before an earthquake are probably accidental; but sometimes in vol canic districts gases have emanated from the ground prior to earthquakes and have poisoned animals. In one case large numbers of fish were killed in this way in the Tiber, and at Follonica on the morning of April 6, 1874, "the streets and roads were covered with dead rats and mice. In fact, it seemed as if it had rained rats. The only explanation of the phenomena was that these animals stalactite deposit from five to ten inches thick, which had been destroyed by emanations of carbon dioxide." had effectually preserved them from decay. Under the stalactite was a conglomerate several yards in thickness, composed of calcareous spar, quartz, and limestone. Several days were occupied in chiseling the bones out of this solid mass. A hole was made in the hinder part of the lower skull represented in our illustration, for the purpose of examining the interior. Its blunt and colossal shape differs considerably from the modern type, and indicates that this bear belonged to a very early period. The skull of an ordinary cat is given underneath in order to show the comparative size. The skull of the bear is wonderfully well preserved, the teeth are firm, and the bones bright yellow. To look at they might have been under the earth some dozen years, instead of at least twenty or twenty-five thousand. This skull is about twenty inches long and twelve inches high. The tusks are about four inches ong. The skull of the skeleton is rather longer, but not quite so high. The entire skeleton is over nine feet high. The living animal was probably over ten feet. The Glaphic.

The amount in the U. S. Treasury to the credit of the Patent Office fund is $\$ 3,500,000$, a sum ample, one would think, to enable the Patent Office to employ a unfficient force to keep the work of the office so well up that but little delay should occur in disposing of every application for a patent, but unfortunately some of the classes are very much in arrear with their work.

## Pelicans Flying South.

Residents in the north part of the city were treated early one morning recently to a rare and interesting spectacle in the flight south of a large flock of pelicans. There were several hundred of the great birds, divided into two sections. They were quite low, and the pouch under the lower bill and throat of each could be plainly seen. The first section was over one hundred in num ber, flying slowly in an almost unbroken single line, and crossing the river to the Illinois side just above the upper ferry. The second division came along immediately after, but instead of at once making passage over the Mississippi, began circling, as though at a loss which way to proceed. This movement was continued fully ten minutes, when a leader suddenly started in a bee line for the southeast, the rest trailing after and soon getting out of sight.
It was said by persons familiar with the bird that it was the American white or rough billed pelican, weighing when full grown about 18 pounds. The bill is 14 inches long, and the pouch is some 7 inches deep at the widest part. During the winter the species is frund along the Florida and Southern coast, but in the summer goes to the interior of the fur countries at the North, where it breeds. It was claimed the going to the South at this time presaged early cold weather.St. Louis Globe-Democrat.


The Saturday evening, or popular, lecture to the working classes given during the recent meeting of the British Association was delivered by Sir John Lubbock, who took for his subject the "Customs of Savage Races."
After intimating that the primitive condition of man was one of savagery, and that the history of the human race on the whole had been one of progress, Sir John Lubhock said: It seems from the study of modern savages that we can gain a fairly correct idea of man as he existed in ancient times, and of the stages through which our civilization has been evolved. At the same time the study is by no means easy, because many things which seem natural and obvious to a sarage appear to us absurd and inconsequential. Moreover, if we often find it far from easy to understand savages, they naturally have much greater diffculty in understanding us. All over the world nations on first seeing white men have taken them for ghosts or spirits. Our weapons, tools, animals, in fact, all our belongings, are at first a source of great wonder. An Australian tribe, for instance, when they first saw a wagon drawn by oxen, were much puzzled as to what the oxen could be. It afterward appeared that some thought they were spirits because they had spears on their heads, while others maintained that they were the wives of the white men, because they carried the burdens, which awong Australians is the special duty of women. Again, the modes of salutation among
savages are sonetimes very curious, and their modes of showing their feelings quite unlike ours Kissing seems to us so natural an expression of affection that we should expect to find it all over the world, yet it is unknown to the Australians, the New Zealanders, the Papuans, and the Esquimaux and other races. I mentioned this fact about the negroes in one of my books many years ago, never supposing that it would give any offense, and was surprised to receive a most violent anonymous letter from a negro of St. Domingo on the subject. He abused me in unmeasured terms, on the subject. He abused me in unmeasured terms,
and ended by saying that he would like to drink my heart's blood.
The Polynesians and the Malays always sit down when speaking to a superior ; in some parts of Central Africa it is considered respectful to turn the back to a superior. Captain Cook asserts that the inhabitants of Maliedo, an island in the Pacific Ocean, show their admiration by;hissing ; the Todas of the Neilgherry hills in India are said to show respect by raising the open right hand to the brow, resting the thambon the nose; it is asserted that among the Esquimaux it is customary to pull a person's nose as a compliment; a Chinaman puts on his hat where he should take it off, and among the same curious people a coffin is regarded as a neat and appropriate present for an aged person, especially if in bad health.

Among the Yombas of West Africa, who take great care of their teeth and scrub them well at least three times, a day, an old tooth brush is regarded as a touching present, not being so much intended for actual use indeed, but rather as conveying a sort of implied message that as the sender took the greatest care of his teeth and used his tooth brush continually, so his friend was also in his thoughts morning, noon, and night.
Mr. Taplin, a missionary to whom we are indebted for an excellent account of the natives of Australia, tells a curious story against himself. "When," he says, "I I asked the word for sin, they gave me the one for 'thin,' and so I was led into representing that it was hateful to God for men to be thin; that they would be condemned for it. So they came to the conclusion that it was pleasing to God for people to be fat. In fact, I had been telling them that all lean people went to hell, and fat people to heaven.'
Some ideas, indeed, which appear to us inexplicable and fantastic are very widely distributed. For instance, medicine ; our system seems so natural ; send for a doctor, get prescription, pay him, take wedicine. By no means. 1. Sorcerer: evil spirits, noise. 2. Wizard : charm on board. 3. Doctor: drinks his own medicine. 4. China: pay while well.
In many parts of the world a man is strictly forbidden to speak to his mother-in-law. Again, probably every Englishman who had not studied other races would be astonished to meet with a nation in which, on the birth of a baby, the father, and not the mother, was put to bed and nursed; yet though this custom seems so ludicrous to us, it prevails very widely. In some parts of Australia, when a man warries, each of the bride's relations gives him a good blow with a stout stick, by way, I suppose, of a warm welcome into the family.
Among the Kalmucks of Central Asia, again, the marriage ceremony is very romantic. The girl is put
on a horse and rides at full speed. When she has got a fair start, the lover sets off in pursuit; if he catches her she becomes his wife, but if he cannot overtake her the match is broken off, and we are assured, which I can well believe, that a Kalmuck girl is very seldom caught against her will.

This idea of capture in marriage occurs almost all over the world. Hence no doubt the custom of lifting the bride over the doorstep, which occurs, or did occur, among the Romans, the Redskins of Canada, the Chinese, the Abyssinians, and other races. Hence also perhaps our custom of the honeymoon, and hence, may be, after a wedding things are thrown, as McLellan has suggested, in mock anger after the departing bride nd bridegroom.
It is remarkable how persistent are all customs and ceremonies connected with marriage. Thus our bride cake, which so invariably accompanies a wedding, may be traced back to the old Roman form of niarriage by confarreatio, or eating together, and is found also in other parts of the world, as, for instance, among the Iroquois of North America. It must, we know, be cut by the bride, because it is the duty of the wife to prepare food for her husband. It has always seemed to me that one of the clearest proofs of the low mental power of savage men is that afforded by arithmetic. For instance, in no single Australian language is there any word for "five." They said, "One, two, two, one, two, two, many." The fingers are greatly used as a help in these simple calculations, and all over the world we find the word "hand" standing for "five" in reference to our five fingers; indeed, if we had had six we should probably have had a duodecimal notation, which would have been in many respects a great improvement on our present system. Even our own word "five" is a case in point, though it is so much worn by use that its original form is almost unrecognizable.
The original Indo-European word for "hand" is found little altered in the Persian penze. In Greek penze becomes pente, in German funf, whence our "five." The Punjab is the country of "five rivers," "five." The Punjab is the country of "five rivers,"
from penge, "five," and $a b$, "water," a root which we find again in many Celtic names, as, for instance, in Aberdeen, Aberystwith.
Carver astonished the Canadian Indians by allowing them to open a book wherever they pleased, and then telling them how many pages they were from the beginning. The only way they could account for this was by concluding that the book was alive, and told him whatever he asked.
We know that among many races, when a man died, his wives and slaves, sometimes, also, his horse and dog, were killed and buried with him, in order that their spirits might accompany him to the other world. But the preparation for eternity did not end here. Just as the survivors killed the wife and slaves, so they also "killed"' his arms and implements, bris clothes and ornaments, so that their spirits also might go with their master, and he might enter the other world as a great chief should.
The Red Indian, Mr. Sproat tells us, quite understands that the things themselves remain in the grave, but believes that the phantoms of the things accompany the spirit of the dead. Even among the Greeks we know that a coin was put in the mouth of the dead in order that he might have the wherewithal the dead in order that he might have the wherewithal
to pay the ferryman, Charon; and the Chinese are said to burn paper money with the dead-a process much to be commended from a banking point of view.
Our own sovereigns are still crowned on a stone, the Lia Fail or Stone of Destiny, which is said to have been the pillow on which the patriarch Jacob slept at Bethel when he saw "the ladder set up on the earth, and the top of it reached to heaven, and behold the angels ascending and descending on it." It was carried o Ireland, then to Iona, subsequently to Scone, and brought to England by Edward I., though some Irish antiquaries maintain that the true Lia Fail is the upright stone which stands on the hill of Tara.
We all remember the significance attached by Joseph's parents and brethren to his dreams, as well as the political importance of Pharaoh's dream, which Sir Sawuel Baker has recently attempted to explain by supposing that the Abyssinians had dammed up the Atbara river. It is not an uncommon belief among savages that as a man dies so he will rise again, and
that this applies to the body as well as the mind. Moreover, the way to the land of spirits was long, dangerous, and beset with demons. Many perished on the way, and no one who was not in possession of all his faculties could hope to arrive in safety. So coninced were the Fijians of this, that as soon as a man elt the least sign of old age he was anxious to start on his long journey.
Mr. Hunt tells us that one day a young man in whom he took much interest came to him and invited him to attend his mother's funeral, which was to take place the next morning. Mr. Hunt accepted the invitation and went. As he walked along in the procession he was surprised to see no corpse, and asked the young man where his mother was, when he pointed to a woman who was walking along just in front, to use Mr. Hunt's words, "as gay and lively as any of those present.

When they arrived at the grave she took an affec tionate farewell of her children and friends, and then submitted to be strangled." So general, indeed, was this custom in the islands, that in many villages there were literally no old people, all having been put
o death ; and if we are shocked at the error which led o such fearful results, we may at least see much to admire in the firm faith with which they acted upon their religious belief.

## Our New Navy.

The gunboat Petrel is being built by the Columbia Iron Works, of Baltimore, and is nearly complete in very respect. None of her machinery will be put aboard prior to launching, as it is the desire of the contractors to have as little weight as possible on the ways. The boilers and engines are all ready, and will be placed on the ship very soon after she is launcbed. The Petrel will be barkentine rig, steel hull, and of about 885 tons displacement. She will carry four guns in her main battery, besides. several machine guns on deck. It is expected that the ship will be turned over to the government complete in every respect about the latter part of December.
The work on the Chicago still continues at the New York yard, and it is hardly probable that she will be put in commission much before the first of next year. The double-turreted monitor Amphitrite was lately taken out of the dock at Wilmington, Del. Her bottom has been painted and otherwise fixed up. The department has as yet reached no decision as to whether the ship will be rebuilt at a private yard or at some navy yard.
The new cruiser Charleston, now building at San Francisco, Cal., will be completed about January 1, the contract time, as the department is in receipt of reports from the contractors saying that the work is progressing very rapidly, and that the ship will be turned over to the government at the time specified. Of course she will be assigned to the Pacific station, and will be the flagship.
The Philadelphia Inquirer says : "The Philadelphia, it is expected, will beat the Baltimore in speed, as Messrs. Cramp will supply their on engines to the former, whereas the firm of Humphreys \& Tennants, England, will provide the motive power for the latter. In the one case Messrs. Cramp guarantee a speed of nineteen knots, in the other they only guarantee horse power. It will be interesting to compare the work of the two sets of engines when both vessels are in commission. The model of the Philadelphia, although an English design, is considered by the Messrs. Cramp to be a very good one, and capable of but little improvement in view of the work the vessel will have to perform.

The dynamite cruiser Vesuquius was sent down the river October 1 to try how the engines worked. The affair was kept very quiet, only a privileged few being notified of the event. So far as could be learned, the trial was a most successful one, the vessel showing extraordinary speed, making a run of $131 / 2$ miles in 29 minutes, being an estimated speed of nearly 27 miles an hour. As the guaranteed speed is only 20 knots an hour, this, if correct, is eminently satisfactory. Allowance has, however, to be made for the tide, which would deduct about two knots off the record, but even then the result exceeds the expectations of the builders."
We learn that everything worked well on this trial. There was no heating of journals and no leaks anywhere and very little vibration. Two hundred and forty revolutions were reached without effort, but no measurements of speed were taken, as the trial was only made to find defects in the engines, if any existed. One of the builders has written to an officer of the. War Department that a speed of 20 knots was obtained with a pressure of only 135 pounds. All indications point to additional speed when the full working pressure of 180 pounds is put on, and it is then expected fully 23 knots will be made.
In the naval appropriation bill approved September 7, 1888, provision was made for the construction of seven new vessels, and an appropriation of $\$ 5,550,000$ was wade, and an additional appropriation of $\$ 2600000$ for a composite ship to be used as a practice vessel for the midshipmen at. the Naval Academy. Secretary Whitney has now under consideration a number of designs for these new ships, and as soon as the designs are adopted, work will be immediately started on the plans and specifications, and the contracts awarded.Army and Navy Journal.

## An Application of the Phonograph.

R. J. Hewett, in the Electrical World, says: The phonograph seems to be a promising auxiliary to the Wheatstone antomatic system. The phonograph can be substituted for the ink recorder, and the signals read off by a Morse operator at his leisure at lower speed. The phonograph motor would require two different speeds-a high speed for receiving the automatic telegraph signals and a slow speed for reproducing to the Morse operator. The slow speed should still further be variable within a smaller range, so as to suit the ability of the receiver. Thus the automatic and manual servise would be combined, the automatic being used for transmission, while the manual service, aided by the phonograph, can be employed for receiv-

PAVILION OF THE REPUBLIC OF CHILI AT THE PARIS EXPOSITION OF 1889.
Since the opening of the preparatory period of the Universal Exposition of 1889, a large number of foreign countries, desirous of participating in it brilliantly by the erection of structures worthy of the part that they are to play, have decided to put their projects out to competition in order to utilize the capacity of the most renowned specialists, and, by skillful selection, reach as perfect results as possible. Among the most remarkable competitions may be mentioned the one opened by Chili for the erection of its pavilion. There were three French firms of builders who obtained the rewards offered by that republic, and, of these, Messrs. Moisant, Laurent, Savery \& Co. obtained the first prize
and were a warded and were a
The location accorded to the Chilian government consists of a quadrilateral of 65 by 80 feet, situated at the angle of the small park of the Champ de Mars to the right of the Eiffel tower. with respect to a visitor standing upon the bank of the Seine and turn ing his back to the Trocadero.
The conditions of the competition were particularly severe, and, in order to show how they were carried out by the successful architect successful architects, we present herewith,
from $L e$ Genie Civil, from $L e$ Genie Civil,
a view of the front of a view of the fron
the adopted plan
The building consists of a central structure surmounted by a dome and flenked by four rectangular towers, surmounted by small domes which are sur rounded by decorative capitals placed upon the uprights of the towers, which themselves consist of metallic caissons whose faces are provided with terra cotta panels.
Tḥe entrance, which is formed of a projecting portico extending to the top of the building, gives of the building, gives
the latter the truly monumental character required by the specifications. A flight of steps of the whole width of the portico leads to the peristyle upon which open the bays, giving open the bays, giving
direct access to the direct access to the
interior of the edifice. These bays are three in number, one large central one and two small ones all having folding doors to prefolding doors to pre vent entrance and exit from being impeded. The side opposite the entrance has a projection representing a large winter garden, intersected mid way by a balcony communicating with the gallery of the first story. Balconies, in fact, exist on every side, for the portico likewise has one, as well as the sides of the pavilion, but these latter ones project from the facade, and each has a roof and supporting columns, giving it the as pect of a veranda
pect of a veranda.
In addition to iron, the use of which was made obligatory, and which the builders have used not only ais a framework, but also for decorative purposes, in various parts of the edifice, the materials that enter into the structure are terra cotta, compressed beton, bricks, tiles, slabs of plaster, and wood, the latter in very small proportion and only where the use of it was indispensable. Naturally, all these materials are emindispensable. Naturally, all these materials are em-
ployed either in panels or in portions of very definite


PAVILION OF THE REPUBLIC OF CHILI AT THE PARIS EXPOSITION OF 1889.

The highest speed practically attainable in daily service with passenger trains has always been a point on which much discussion has been raised. The recent race between London and Edinburgh seems, however, to afford a tolerably complete solution of the problem. The official figures, giving the actual time and load for each day of the run, when analyzed, give the following average results for the London and Northwestern route from Aug. 6 to Aug. 31 inclusive. During this time the schedule time was 8 hours for the 400 wiles, If
and the train arrived in Edinburgh ahead of schedule
time 22 days and was 37 minutes late on one day only, owing to a flue on $t h e$ locomotive collapsing. With this exception, the running was remarkably regular, the trains arriving with in 1 minute for 11 days in succession. The average speed for the whole period was a fraction over 50 miles per hour including stops, and slightly under 55 miles per hour excluding stops. The average time accn-
pied in the three stops was 40 minutes, one stop being for dinner. The train dinner, The train eight-wheel cars, with F. W. Webb's radiating axles. The cars were each 42 ft . long over bodies and weighed $42,500 \mathrm{lb}$. each. Three different classes of engines, weighing respective ly $61,000,76,000$, and $94,000 \mathrm{lb}$. in working order,were employed on different portions of the route, the lightest engine run ning over the tignt est orades night est grades. The minimum weight o engine, tender, and train was $287,000 \mathrm{lb}$ and the maximum $339,000 \mathrm{lb}$., the aver age being 305, 000 lb . The grades varied considerably, the worst being one $91 / 2$ miles long averaging 67 ft . per mile, and another $41 / 4 \mathrm{mile}$ long of 70 ft . per mile. The best performance over the section containing the former grade was 101 miles in 104 min utes (which was done on three occasions), and over the latter 90 miles in 90 minutes, in both cases from start to stop. The fastest run over the more level portion was 158 miles in 166 minutes, start to stop, or 14 minutes under schedule time. The feat appears to have been so easily anything is to be done, it should have immediate performed that on the Northwestern it was not conattention.

## Idaho Streams that Vanish.

One of the peculiar features of Idaho scenery is the requent occurrence of dark rocky chasms and channels of lava into which streams and rivers plunge and are apparently forever lost.
These fissures are supposed to be old lava beds. The outside of the molten mass cooled and formed a roof, the fiery stream below became exhausted, leaving an empty chamber. A break in this roof having occurred, an opening was formed into which the river or stream now disappears, to reappear as a mysterious lake, basin or spring on some distant mountain or plain. On the banks of the Snake River one of these streams reappears, gushing from a high cliff in a cataract to reappears, gushin
the waters below. sidered necessary to employ the compound engines, and the fast running was done with comparatively old engines of far less weight and power than the compounds, which were reserved for the heavier trains. These facts merely emphasize what has repeatedly been urged in these columns-the importance of good signals, which aid fast running far more effectually than heavy engines. It will thus be seen that with a light train, stoppages averaging 100 miles apart, good permanent way, and somewhat severe grades on the northern portion of the journey, a speed of 50 miles per hour, including stops, was maintained with ease. This certainly marks. a considerable advance on previous practice, and shows that where sufficient inducement offers, modern railroad appliances are capable of approaching very closely to the apparent limit of a mile a minute--Railroad Gazette.

## ENGINEERING INVENTIONS

A valve for engines has been patented by Mr. James Des Brisay, of Kamloops, British colambia, Canada. Combined with a valve adapted to is a ring held on the projection and pressing against th valve, with other novel features, the valve being operated directly from the main shaft.
A car dumping device has been patented by Mr. Daniel T. Denton, of Tower Mines, Minn. Thi mprovement is specially adapted for cable cars loaded with ore, coal, or other material, and covers a novel construction and combination of parts by which the
loaded cars are easily, quickly, and automatically loaded ca
dumped.
A car coupling has been patented by Mr. Simon J. Freeman, of Rochester, N. Y. Th drawhead has a projection in its bottom, behind which is a recess, combined with a vertically sliding and longitudinally swinging arm extending up through a slot, with other novel reatures, whareby the coupling and ancoupling of cars may be readily effected withou
A car coupling has been patented b Mr. David N. Tarbox, of Cedarville, Ohio. Combine with a drawhend in which is journaled a hooked coup
ling link is a transversely swinging weighted operatin ling link extending through the drawhead and operating arm extending through the drawhead and having being a pivoted retaining cam on the arm adapted to bear on the drawhead

A steam boiler has been patented by Mr. George Kingsley, of Lowell, Mass. Combined with a double shell horizontal boiler having an inner
and outer fire space and a water space between are inand outer fire space and a water space between are in-
clined laterally projecting tabes screwed into the inner shell having the in innor ande alosed und alovatad and
projecting into the inner fire space, stay bolts alternating with the tubes and connecting the shells, the in-
vention covering an improvement on former patented inventions of the same inventor.

## MISCELLANEOUS INVENTIONS.

A lotion to be used in the treatment of sores has been patented by Mr. Thomas Tomlinson, of
Clarinaa, Iowa. It is made of gambier, salt, zulphric
acid, and water, compounded in specifed proportions, acid, and water, comp
A ratchet drill has been patented by Mr. Peter B. Erickson, of Ishpeming, Mich. The inventio coversa novel construction and combination of parts,
whereby the drill may be readily inserted and the whereby the drill may be readily inserted and the action of the drill reversed, and wherein also the device

A vehicle spring has been patented by Mr. Edwin Jarrell, of Harper, Kansas. The invention consists in novel constructions and combinations of
parts designed to render available in a simple manner parts designed to render available in a simple manner
the square torsion of the spring bars, with other special features.

A latch bolt has been patented by Mr. Franz Spengler, of Berlin, Germany. It is made in
wedge-like form, having its end beveled from edge to wedge-like form, having its end beveled from edge to
edge and from side to side, being designed to reduce edge and from side to side, being designed to reduce
the friction between the head of the bolt and the keeper on the door casing to a minimum.
A shingler's gauge has been patented by Mr. Franklin P. Sanborn, of Standish, Me. This invention cosers a device, of novel construction to be
used in applying shingles or clapboards to the roofs or walls of buildinge for determining the proper position of each course with respect to the preceding course.
A mole trap has been patented by Mr. Samuel J. Grimmett, of West Plains, Mo. Combined with set or fall sticks a board is used having pins on
one side and a longitudinal knife on the other, the pins being adapted to impale or imprison a mole, and the knife for destroying snakes.

A bicksaw frame has been patented by Mr . Joseph W. Thompson, of Mount Pleasant, Iowa.
The invention covers a novel construction aud arrangement of parts and details for an improved saw frame in ment of parts and details for an improved saw frame in
which each of the end pieces is made of a U-shaped bar which each of the end pieces is made of a
so as to combine lightness with strength.
A wall protector, to prevent defacing of walls by furniture, has been patented by Messers. Roldin S. Robbins, of San Francisco, and Alphonzo
H. Broad, of Berkeley, Cal. It consists essentially of H. Broad, of Berkeley, Cal. It consists essentially of with a retaining band or wire, to protect both the walls and furniture.

A garment stay has been patented by Mr. Edward K. Warren, of Three Oaks, Micb. It is a
covered stay for dresses or other garments, having a stifitening strip covered by separate pieces of fabric projecting beyond the side edges, and there stitched to form selvedges through which the seamstress may stitch and secure the stay to the garment.
A weather board holder and gauge has been patented by Messrs. Madison G. Stanley and
William F. Jones, of Kenton, Tenn. The device simple and easy of manipulation, and is designed to simple and easy of manipulation, and is designed to
dispense with driving nails in the previously put on boards, while affording means for expeditiously gauging the amount of lap to be allowed.
A crutch attachment has been patented by Mr. William J. Donald, of Tunnel City, Wis. crutches which have an elastic foot and a spar, either of which may be adjusted for nse alone by resting the foot on the ground or floor to screw or unscrew it,

A magic lantern slide has been patented by Mr. Edward T. Petter, of Newport, R. I. It consists of a continuous band or strip of fiexible transparent or translucent material, carried by reels or
spools, apon which the views or spools, apon which the views or flgures are portrayed,
combined with a motor for drawing the band throngh combined with a motor for drawing
the lantern from one reel to another.

A portfolio for maps, periodicals, etc., York City. It has a series of fastening devices arranged on the inside of the covers, and consisting of
verlapping metallic strips hinged to staples, bein verlapping metallic strips hinged to staples, being
designed to display maps, time tables, etc., in prominent places
A hammock has been patented by Mr. Barry A. Norris, of Houston, Texas. It is made with lats, each provided at its ends with a transverse aperture through which passes a cord or wire for holding the slats together, making a hammock designed to he
imple and durable and yielding to the motion of the body.
A wheeled dumping scraper has been atented by Mr. Cyrus A. Kenney, of Nicholasville, y . The scoop is adapted to be lowered to present it
cooping edge to the ground for filling, while it may be raised to a greater or less height and be dumped backwardly, the invention covering a novel combination ad construction of parts.
A pay device has been patented by Mr. David W. Bundy, of Toronto, Ontario, Canada. The nvention consists mainly of a tray having a series of ploye, in connection with money boxes adapted to be received in the pockets and bearing a corresponding number.
A heating gas burner has been paented by Mr. Albert J. Doty, of Philadelphia, Pa. It flaring slits are formed, the disk being swaged up so that the edges will be beveled and the slits made narrow, with parallel edges,
of orifice for the gas and air
An image has been patented by Mr with an inner wooden section and outer plastic side
w. sections, whereby great strength is obtained and th muscles can be brought out naturally, as desired fo mages or flgures of animals to be
with carrousels or merry-go-rounds.
A chill mould apparatus has been pa ented by Mr. William Fawcett, of Jersey City, N. J. it is an apparatus for casting sash weights or simila hollow sectional moulds being arranged in a rotary rame abos suitably attached.
A geometrical drawing board has been patented by Mr. James M. Pringle, of Bathurst, New or facilitating the teaching and explaining the principles of that branch of solid or descriptive geo netry used in construction, also illustrating these prin ciples in the teaching of mechanical drawing.
A lock hinge has been patented by $\mathbf{M r}$ Leonard Tilton, of Brooklyn, N. Y. It consists of vertical plate, with a slotted horizontal plate, in combination with a pirot-bolt hetd in the slot, an arm, rack,
and locking bolt being held in an aperture in th window frame, making an improved fastener fo

An apparatus for casting metal ingot has been patented by Mr. William Huffelmann, of
Germaniahutte, Prussia, Germany. It is for casting Germaniahutte, Prussia, Germany. It is for casting
small ingots suitable for the manufacture of wire, etc., small ingots suitable for the manufacture of wire, etc.,
and designed to produce great density at their outer and designed to produce great density at their oute
part, with as little loss as possible from waste in th part, with as little
An attachment for bicycles has been pa ented by Mr. Herman H. Holtkamp, of New Knoxville Ohio. It consists of a runner or shoe arranged for con ing plates which may be clamped to the peripheral face of the driving wheel, whereby the machine may be

An ice cutting machine has been patented by Messrs. Louis C. Hartung and William A Haussner, of Stillwater, Minn. The frame is mounted ing of the on wheels and in froit on anners, the turning of the wheeis, which are spiked, acting on a shat
to drive a saw, the weight of the frame forcing the evolving saw down into the ice.
A drag saw has been patented by Mr. John Harrigan, of Brooklyn, N. Y. It is designed fo
cutting off the npper ends of piles and similar uses, and combines with a support to be fastened to the pile yoke pivoted on the support, and having parallel way adapted for the saw to slide therein, the saw having handle set at an angle to the face of the blade.
A journal bearing has been patented by Mr. George L. Griswold, of Bellows Falls, Vt. This in
vention provides a bearing box or reservoir having network of oil or labricant passages or channels in it, at a number of the intersecting points of which are
cavities or receptacles, the device being adapted for lubricating flat as well as convex or cylindrical surface A toilet paper cutter has been patented by Mr. Henry H. Harrison, of New York City. It ha from a drum, in combination with a pivoted blade and springs, and other novel features, whereby the pape may be conveniently drawn out and cut off in the mesired lengths.
A velocipede has been patented by Mr John Hagan, of Atlantic City, N. J. Combined with se main asle and driving wheels, springs are so
secured to the main frame that power may be stored up therewith, by means of a crank arm, and can be
used asdesired in propelling the velocipede, provision used asdesired in propeling the velocipede, provision
being also made for the use of an electric motor and

A rowing gear has been patented by Messrs. Oren Tippy and Fred D. Smith, of Ne Carlisle, Ind. This invention provides a device by
means of which a boatman may pall a boat in the di means of which a boatman may pull a boat in the di-
rection in which he is facing, it being denigned that

## with efflciency and esse.

A brick machine has been patented by Mr. Robert A. Willett, of South Amboy, N. J. This and clay is compressed in the form of bricks by differe plungers, and in which the pressure may be adapted to different qualities of clay and the slow or quick move
A gate has been patented by Mr. John . Rutledge, of Shannondale, Ind. It is designed be opened and closed by a person in a vehicle or o horseback, and is constracted to prevent snow and ic merfering with the action of the catches, and to rende latch, while the gate may readily be tightened an braced as required.
A wrench has been patented by Messrs. Albert M. Spaulding, of Flowerfield, Mich., aud Herbert L. Case, of Bristol Center, N. Y. It is of vehicle axles, and comprises a bar having a wrenc head between its ends and arms mounted adjustably o the bar, the opposite ends of each arm being adapted to engage a spoke.
A breasting attachment for heeling machines has been patented by Messrs. Martin C. McGeuness and John Tweedie, of Jefferson City, Mo. This invention covers a novel combination and arrange ment of parts in a device designed to accurately trim
the inner edge of the heel of a boot or shoe, without cutting the sole, while the top piece is put in place at cutting the sole,
the same time.

## SCIENTIFIC AMERICAN

buILDING EDITION
OCTOBER NUMBER.-(NO. 36.)

## table of contents.

. Elegant plate, in colors, of a suburban dwelling costing eight thousand five hundred dollars. Floor

Elegant plate, in colors, of two cottages costin twelve hundred and sixteen hundred dollars,
spectively. Sheet of details, floor plans, etc.

A residence at Richmond Hill, N. Y., lately built, a cost of ten thousand dollars. Perspective and floor plans.
4. A dwelling for three thousand five handred dollars. Floor plans and perspective.
5. Villa at Fontainebleau-M. E. Brunnarius, architect Cost, eight thousand six hundred dollars. Floor plans and perspective
View of the new Protestant charch at Lyons,
France. Cost, eighty thousand dollars.
Page of engravings showing the house at Stratford-on-Avon in which Shakespeare was born-Anne Hathaway's cottage, near Stratford-on-AvonTrinity Charch, Stratiord-on-Avon, where Shakespeare is buried-The residence of Mary Arden,
the mother of Shakespeare-Old Elizabethan the mother of Shakespeare-Old Elizabethan
house, Stratford, showing the domestic architecture of the time of Shakespeare.
3. The chancel, Holy Trinity Church, Stratford-on Avon, showing the Shakespeare memorial bust and American visitors.
A suburban villa lately built at Sound View Hill, Long Island Sound, near New York. Perspective view and floor plans. Cost, five thousand eight
hundred dollars.
Design for a cottage by S. W. Whittemore, archi-
tect, Brick Church, N. J. Perspective and floor tect, Brick Church, N. J. Perspective and floor
plans. Cost, three thousand five hundred dollars.
A Queen Anne cottage in Rochelle Park, New Rochelle, N. Y., costing tive thousand six hundred dollars. Plans and perspectiv
An English double house of moderate cost. Perspective and floor plans.
13. Design for the Duquesne Club House, by Heins \& La Farge, architects, New York.
Miscellaneous contents : A new regimental armory, New York City. - Ventilating pipes. - National
Zoological Park.-Lime from oyster shells, showing pit for burning shells.- Roman road construcing pit for burning shells.-Roman road construc-
tion.- Beauty of the larch.-Sewage disposal in tion.-Beauty of the larch.-Sewage disposal in
Great Britain.-Orchids, illustrated.-Test of fireproof wire lathing.-A clematis porch illustrated.
-Some ways of using the Virginia creeper, illus--Some ways of using the Virginia creeper, illus-
trated with 3 flgures.-Feeding coal to the fire.trated with 3 flgures.-Feeding coal to the flre.-
Wood that will not blaze.-Fall of a stone church tower.-A ruined city in Texas.-Loofah as a substitute for sponge. - A California farm.-
Defects in plumbing in the Maine Insane Asylum Defects in plumbing in the Maine Insane Asylum.-
An improved reversible shaper, illustrated.-Improved hand and foot power saws, illustrated. Practical hints on disinfection.
The Scientific American Architects and Builders
 wo hundred ordinary book pages; forming, practically, a large and splendid Magazine of architrcTURE, richly adorned with elegant plates in colors and with ane engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects
The Fullness, Richness, Cheapness, and Convenience of his work have won for it the Largest Circulation
of any Architectural pablication in the wor'd. Sold by all newsdealers.
muNN \& CO... PUBhisher
P1 Broedway, Now York
ßusiness and æersonal.
The charge for Insertion under thes head is Ons Dollar The charge for Insertion under thes head is One Dollar
a line jor each insertion; about eight words to a line. advertisements must be received at publicaivon office as early as Thursday morning to appear in next issue.

Pattern letters and figures to place on patterns for
astings. (H. W.) Knight \& Son, Seneca Falls, N. Y. All books, app., etc., cheap. School of Electrcity, N.Y. Private line telephones. See illustrated adv., page 237 . Boiler Explosion.-Agents wanted to sell new book Just published. Every owner of a steam plant and very ileman in the foited states wants $1 t$, and mus 18 So. Fourth St., St. Louis, Mo.
One hardly realizes the immense loss sustained in maby the old was of single forgings, or cutting out of solid metal, conpared with the modern appliance of drop forging. With a die, by a single stroke or two, thousands are made exactly alike, in size and form, ready for the
inishing, either of the best tool steel, Bessemer steel finishing, either of the best tool steel. Bessemer steel,
iron. or cipper. Mr. Charles Robertson. Broadway, Revere, Mass., makes a specialty of splendid drop forgings. All orders by letter, or in person, promptly attended to
and perfect satisfaction is guaranteed.

Rare Chance to Invest !-Cos's clothes drier. Useful n every family. Patent for sale, either as a whole or by
States. A pply to patentee, Geo. Cox, No. 123 So. 6th St States. Apply
Wanted-Purchaser for patent of successful wate motor, or partner with capital to manufacture. Will
sell on royalty. Geo. E. Reid. 46 Elm St., Albany, N. Y. Just Published-Elements of Electric Lighting, in cluding electric generation. measurement, storage, and
distribution. By Phillip Atkinson. A.M., Ph D., author of Elements of Static Electricity. 260 pages; 104 illus trations. Price, 81.50. For sale by Munn \& Co., 361 Broà trations. Price,
way, New York.
Iron Planer, Lathe, Drill,'and other machine tools of Pratt \& Letchworth, Buffalo, N. Y.,
solicit correspondence relative to manufacturing spec-
alties requiring malleable gray iron, brass, or steel cast ings.
Supplement Catalogue.-Persons in pursuit of infor gation of any special engineering. mechanical. or scien tilc subject, can have catalogue of contents of the SCl The SUPPLEmENT contains lengthy articles embracing the whole range of engineering, mechanics, and physica

For the latest improved diamond prospecting drills, address the M. C. Bullock Mfr. Co., Chicaao. III .
Nickel Plating. - Manufacturers of pure nickel an odes, pure nickel salts, polishing compositions, eta $\$ 100$
"Lttle Wonder." A perfect Electro Plating Machine Agents of the new Dip lacquer Kislanio. Complet outtat for plating, etc. Hanson, Van Winkle \& Co., New
ark. N. ${ }^{\text {. }}$, and 92 and 94 Liberty St.. New York. Perforated metals of all kinds for all purposes. The
Link Belting and Wheels. Link Belt M. Co., Chicago.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J
The Holly Manufacturing Ca., of Lockport, N. Y. ill send their pamphlet, describing water works ma Lockwood's Dictionary of Terms used in the practice the drawing office. pattern shop, foundry, ftting, turn-
ing, smith's and boiler shop, etc., comprising over 6,000 ing, smith's and boiler shop, ect., comprising over 6.0.00
iefnitions. Edited by a foreman pattern maker. 1888 . Price. 8.
York.
York.
No. 11 planer and matcher. All kinds of woodworking achinery
Billings' Patent Screw Plates. Drop Forgings, all
inds. Billings \& Spencer Co., Hartford, Conn. The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city Wrinkles and Recipes-Compiled from the Scien processes, and directions for the mechanic, the engineer
the farmer, and the housekeeper. Ilustrated colored the farmer, and the housekeeper. Illustrated colored frontispiece. Edited by Park Benjamin, Ph.D. Third
edition. Price, $\$ 2.00$. For sale by Munn \& Co., 361 Broaday, New York.
Tight and Slack Barrel Machinery a specialty. John Double boring machines. Double spindie shaping achines. Rollston Belting.-A good lot of eecond hand belting for sale Special Specially adapted for machine shops-Talc
nation patent helt hooks. Providence, R. I.
(7) Send for new and complete catalogue of Scientrif and other Books for sale by Mun
New York. Free on application.

NEW BOOKS AND PUBLICATIONS.
Eirst Annual Report of the Board OF MEDIATION AND ARBITRATION
OF THE STATE OF NEW YORK. Coin missioners, Willian Purcell, Gilber Robertson, Jr., Florence F Donovan.
Transmitted to Legislature
January 16, 1888. The Troy Press January 16, 1888. The Troy
Co., printers. 1888. Pp. 734.
In this report of the Board of Mediation and Arbitra tion of the State of New York the condition of several branches of manufacture, as revealed in the examina-
tions of operatives and employers by the Senate com. tions of operatives and employers by the Senate committee, is given. The work is an interesting one, desplte
the unattractive form of question and answer in which the unattractive form of question and answer in which
mont of it is necessarily presented, and many of the
revelations of the examination as to the small amoun
of wages earned by immensely long hours of work are very sad. It is published by the State, and it would be well if its contents were read and studied by all who
have a direct or indirect interest in the cause of the have a dit
many.
The Chemical Analisis of Iron. A
complete account of all the best
known methods for the analysis of known methods for the analysis of
iron, steel, pig iron, iron ore, limestone, slay, clay, sand, coal, coke, and
drew Alexander Blair Philadel An-
J. B. Lippincott Co. $1888 . \quad$ Pp. $2 ष 2$.
Price $\$ 4$. Price ${ }^{\Phi} 4$.
This excellent treatise is devoted primarily to the analysis of metallic iron; this is given in detail with all ing them. The analysis of iron ores is treated in special chapter, and then the analysis of allied sabstances is spoken of, such as limestone, clay, slags, fire
sands. coal, and coke. and furnace gases. A chapter of sands. coal. and coke. and furnace gases. A chapter of
tables giving atomic weighte, factors, etc., concludes tables giving atomic weighte, factors, etc., concludes
the work. It is very well illustrated by nearly 100 cuts the work. It is very well illustrated by nearly 100 cuts
of apparatus, and a satisfactory index is given. It can berecommended, not only on account of its author's all chemists interested in the anulyses of blast furnace and rolling mill and steel works material.
The Lixiviation of Silver Ores with
Sell Process. By Carl A. Stetfeldt
Sell Process. By Carl A. Stetfeldt. 18 Broadway. Pp. xx, 234.
The title of this book discloses its nature. It is in
effect a very extensive and elaborate monograph, and effect a very extensive and elaborate monograph, and
one which will undoubtedly be of value to all who are gpecially interested in this process. It is illustrated by a number of cuts showing the different apparatus ent-
ployed in the process treated of, while many figures, ployed in the process treated of, while many figures, add largely to its value. It is indexed, and the cuts already alluded to-thirty in number-embodied in the
text are supplemented by several folding sheets showtext are supplementer by several Polding sheets show-
ing the arrangement of different portions of the lixiviation plant treated of in the work.
Railroads and Rolling Stock. A
catalogue giving cost of plant and
lines, to which is added a chapter on
river steamers and light craft, also
river steamers and light craft, also
dredging plant. Prepared by John
Birch \& Co., engineersand merchants,
Liverpool. Pp. 232.
All that can be said of this catalogue is that it describes, notes, or illustrates almost everything that can be thought of under its title. Although a trade catalogue, it forms a very convenient and attractive manual
for those interested in railroad and machine engineering.

## 

HINTS TO CORRESPONDENTS.
Names and Address mast accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. Referencen, to former articles or answers should
give date of paper and page or number of question. Inquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that some answers require not a little research, and
though we endeavor to reply to all either by letter
or in this department, each must take his turn. Special Whitten Information on matters of
personal rather than Eneral interest zannot be
expected without remuneration. cientilic Americanl Supplements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt
price
miners
(1) G. F. asks how to make a good flash light for photographic purposes. A. Purchase one ounce of magnesium powder and one ounce of
negative gun cotton from dealers in photugraphic negative gun cotton from dealers in photographe
materials. Place on a dust pan enough cotton, when pulled out, to measure about $31 / 2$ inches in diameter. Sprinkle it over with twenty grains of magnesium
powder to form a thin, even film. Lay over the magpowder to form a thin, even film. Lay over the mag.
nesium thus arranged a very thin. layer of gan cotton. Connect to the bunch of cotton a small fuse of end to the side of the dust pan. Then set the pan on a step ladder near the object, and when ready, light the gun cotton fuse with a match, when instantly a brilliant
flash will ensue. There are several ready prepared flash will ensue. There are several ready prepared
magnesium componnds now sold with special devices nd lamps to fire them.
(2) J. C. asks for a receipt for removing mildew from white silk. A. Perhaps naphtha will do it. Take to dye house, or try following: Dip a piece of
flannel in alcohol and water, and well rub the place iron on wrong side, putting a piece of damp cotton
(3) E. F. Co. write : We recently noticed an article in Scientific American upon the
subject of size of fire box under boilers to give best resubject of size of fire box under boilers to give best re-
sulte, and stating that the fire boxes are usually too large. We have suspected that we used too much fuel, and want to ascertain what size our grate between
door and bridge wall ought to be under our boiler, 13 feet 6 inches long. 5 ft . djam., 84 tabes $21 / 3$ inches, steam pressure required 80 pounds. A. The amonnt of grate surface required for your boiler is dependent upon the The article in question allades to the construction of
boilers of fnll capacity for the work to be done. If a
boiler with large grate surface can only keep ap the
steam required by strong fring, there is nothing gained
by reducing the grate and urging a still stronger fre. steam requirement that the gain is made by reducing the normal grate surface to the proportions mentioned in the article alluded to. Really, the great economy is madein having the boiler at least 50 per cent large than the steaming capacity required, as usually com puted. Then with a reduced grate surface and quick fir
the utmost economy will result. The whole gist of steam economy is in saving the waste heat of the chim taken to prevent loss of course proper care must be heated surfaces around boiler, pipes, and cylinder. Before we can advise a reduction in your grate, we
should know the temperature of the gases of combusshould know the temperature of the gases of combus-
tion as they leave the heating surface. The difference between this temperature and the temperature of the if the present firing is strong or dull; it being most important factor in making a change forecong to know the relative proportion of heating surface in the boiler to the amount of steam produced or wor done. It is a mo: common practice to urge a boiler to excessive duty and then complain of excessive coal consumption. We can only advise that, if you desire to make an experiment of any real value, you accurately Theigh the fuel used for a day, or better for a week,
Then put a row of fire brick on cach side of the grate Then put a row of fire brick on cach side of the grate,
three or four bricks high, making your actual grate sur face 9 nches narrower. By urging the fire with th Perably a week if you can-you may have an absolute
test of the economy of the change in your case. If you succeed, your boiler is large enough for your wants. It not, the conclusion is that for economy you should have a larger boller. The art of fring is an essential
feature in steam economy, too often overlooked in the complaints as to fuel consumption. Adiferonoo of ton
per cent or more may be made by variation in the nagement of doors and dampers.
(4) P. I. J. asks: 1. Can a wine artificial in its make-up, or that has been coiored or improved A. It is sometimes very difficult to do. The anilin colors are tested for, and special tests applied for sus pected adulterants. 2. Where may a full account of the various fruit ethers be obtained? A. These have to be studied in chemical treatises. There is no work devoted exclusively to them. 8. In making a vanilla ex-
tract, difficulty in completely pounding the bean to a tract, difficulty in completely pounding the bean to a
pulp in a mortar is experienced. Can you tell an eff pulp in a mortar is experienced. Can you tell an effi-
cacious method? A. Add white sand, and pulverize cacious method: A. Add white sand, and pulverize and and beans together. 4. Are there any specia colognes that are made, usually by simple solation o on distillation? A. We know of none 5. Which would make the best emulsion of wax-Castile soap o caustic potash ? A. Neither will answer. Try dissolving the wax in oil and making an emalsion of the pro duct with water and gum tragacanth.
(5) G. A. J. asks : 1 . What is used for a gold bronze for wood, and how applied A. The pre
paration is sold as a powder, and is applied mixed with a suitable varnish, or the surface is first varnished and
the powder applied with a pad while the varnish is the powder applied with a pad while the varnish is
still tacky. 2. Does the use of mica oil in boilers still tacky. 2. Does the use of mica on for the pre-
lessen the heating capacity ? The oil is used for
vention of scale, etc. A. Not to any appreciable extent vention of scale, etc. A. Not to any appreciable extent,
unless used in large quantities. The boiler should be blown off frum time to time. There is some danger of corrosion. 3. How to sugar-cure beef. A. Care 12 days with dry salt to which a little saltpeter has been added, along with some sugur and black pepper.
It is then hung ap until required. Folded in dry paper and hung in a dry place, it will keep two or three months. 4. Is there any way to temper brass wire after
it has been hot? A. Light hammering, redrawing to slightly smaller size, heating followed by a very slow of platinum, such as used in wire, etc. 9 is it used coin in some countries? A. $\$ 9.00$ an ounce. It has
cole been used in Russia for coinage.
(6) C. G. H., of Wallingford, Conn. sends two worms found on a snowball bush. Whe
they touch the hand, he says, it is badly nettled and in famed for a few days. What is it? A. Professor V. Riley says they are larve known commonly as sad-dle-backed caterpillars. They are the larve of a tively common almost all over the country. The larvo feed upon a great variety of plants, but are perhapa found more often upon corn than upon anything else They belong to the groap of stinging caterpilars, and
the effect of their spines upon the skin is similar to that of a nettle.
(7) A. S. E. rsks (1) how to deodorize wood alcohol to fit it for burning? A. No efficient and cheap way is known. 2. What cement will secure to one side. A. Use bicycle tire cement, or dis solve 1 part India rubber in 12 parts benzine and add 20 parts of shellac and carefully heat until benzine is expelled. There is much danger of the benzine ignit ing. 3. How to make the aniline colors, getting them
in the crystal forms. A. You can buy aniline color in the crystal forms. A. You
from the dealers in chemicals.
(8) W. B. K.-The terms "cold-bloodef
refer principally to the excitability or non-excitability of the individual, and not really to, any difference in the lation in all persons in health is about $88^{\circ}$ Fah.
(9) I. A. C. desires a receipt to make marking ink, black and red,either or both, to mark cotth bales and sacks. It must be cheap, as we sell by water 25 parts, gum arabic 2 parts, and of either larts black. Venetian red, or ultramarine a sufficiency. solved, and withdraw from the fire. When the solution has become cool, complete 25 parts with water and add the coloring matter to bring the ink to suitable consist-
ence. When it is to be used with a stencil, it mnst be made
brush.
(10) T. R. M. asks a formula for charg ing Babcock's fire extinguisher. A. The extinguisher is and sulphuric acid in a glass bottle, the latter, when re quired for use, being crushed with a screw, spilling the acid into the charge of soda and water. Carbonic acid gas is instantly generated, by which a pressure is ob tained sufficient for throwing the whole contents of the
apparatus with much force through a nozzle for fire apparatus with much for
extinguishing purposes
(11) J. E. L. Co. asks how to cleanse ponges of the sand and white particles found in them as they are sold by the trade. A. Shake and wash, with
(12) C. W.
(12) C. W. B. asks the quickest and cheapest way of putting a ine polish on light-colored woods, such as white holly, etc. A. Rub paraffine on and polish with a white woolen cloth. Mastic varnish
is suitable for white holly. Also, bleached shellac is suitable for white holly. Also, bleached shellac
makes a good varnish, using 95 per cent alcohol for so makes a
lation.
(13) D. N. desires a receipt for making mocking bird food. A. Mix together 2 parts corn meal,
2 parts pea meal, and 1 part moss meal (made by dryghand grinding the imported German moss seed), add little melted lard, but not sufficient to make the mix pan for $1 / 2$ hour, stirring constantly, and taking care ot to let it burn; this makes it keep well.
(14) G. H. P. and others.-When a locomotive is drawing a train around a curve, the outside drivcrs slip backward. When running by momentum the surface condition of tracks or treads, and also upon excess of weight thrown on outer wheels by centrifugal ore dae io anoity ond amallness of curye. When
braking up or with reverse steam on curves, the sllp is
(15) J. M. B. asks : Is there any method of giving to the surface of an iron stove a copper or hat could be cheaply renewed from time to time? A. There is nothing in the paint or polish line but plum ago stove polish that will stand the heat. Nickel plat-
ng is mach used now for ornamenting stoves.

## TO LIVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for patents at home and abroad, enable us to understand the equaled facilities for procuring patents evergwhere unsynopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons foreign countries may be had on application, and persons
contemplating the securing of patents, either at home or contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, which are low, in acsordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO., office Scirntific American, 961 BroadMUNN \& CO., off
way, New Yort.

## INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

## October 2, 1888,

AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Abdominal supporter, L. B. Craig
Advertising device, automatic, E. C. Magnus.
Adver Advertising frame, G. G. Green Alloy of copper, nickel, and lead, G. F. Pottle.
Armature core for dynamos, w. s. Hill. Arma, vehicle, S. J. Kurtz.
Badge, I. R. Hansen.
Bak. See Paper bag.
Bale cover, cotton, A. J. McGehee
Bale cover, cotton, A. S. Ranlett.........
Balling twine, etc.. machine for, J. Good
Band cutter and feeder, w. S. Nichols..
Band cutter and feeder, W. S. Nichol
Basket handle, w.J. Van Deusen....
Basket handle, W. J. Van
Bath tub seat, G. B. Sloat
Batteries, porous cup for kalvanic, e. M. Hewett.
Batteries, system of utilizing secondary, H. Ed-
nunds............................
Bearing, anti.friction, M. B. Wood...
Bed stay, C. Bethes.
Bed stay, C. Bethea....
Belt fastener, I. Jackso
Belt fastener, I. Jackson...........................
Belts, device for stretching and tightening el
Vator, J. J.|Doughty
Bicycle attachment, H.
Bit.
Bit. See Bridle bit. H. H. Holtkamp
Block. See Hat block. Pulles block
Block. See Hat block. Pulley block.
Board. See Drawing board. Plow mould board.
Boat launching carriage, H. J. Woods...........
Boat launching carriage, H. J. Woods..............
Boiler. See Steam boiler.
Boll r. G. P. Erhard.
Bolts, mesh clearer for, W. H. George...........
B
Book, copying, e. R Golut...
Book, copying, E. R. Bolliday.............
Book covers, sheath for, . H. Carsl...
Book holder, F. P. Harbaugh............



Box. See Folded box.
Box, H. s. Munson

W. Locke........
Bracket, T. Koehler

Brake. See Car brake
Brake, E. w. Sn
Brake, e. ... Snyder.........
Bridre gate, sw inking, C. Ro
Bridge rate, swinking, C. Ross......
Bridle bit, E. R. Cahoone .........
Buckle, suspender, ,. F. R. Ardat.
Buckle, suspender, J. T. Budd.....
Buckle, suspender, J. T. Budd....

Bucksaw frame, J. W. Thompson
Burner. See Gas barner.
Burner. See Gas burner.
Butter package, D. W. Mille
Buter package, D. W. Mille
Butter worker, J. W. Butto
Button, F. B. Crooks........
Button, F. B. Crooks ...................
Button setting machine, A. M. Knklish
Cake dropping machine
Cake dropping machine, P. F. Carro
Camph refning, M. J. Schreiter
Candle, sulphur, C. H. Shaw
Cane shredder
Cane shredder, s. Fiske.
Car brake, H.
Car brake, H. Otenhouse..
Car coupling, J. W. Chishol
Car couplign, s. J. Freeman
Car coupling, L. E. Hunt.
Car coupling, J. S. Miller
Car coupling, D. N. Turbox.
Car dumping device, D. T.
Car rnuter, J. H. Cook....
Car starter, C. H. Brown
Cars, feed trough for stock, G. D. Burton
Carbon flaments, making. T. A. Edison
Carnake top, F. R. Merrell
Ca-rier. See Cash and parcel carrier.
Cart, road, N. H. Hill
ca.rier. See Cash and parcel carrier.
Cart, road, N. H. Hill...........
Cartridge, accelerating, H. P. Hurst.

Case. See Show case.
Cash and parcel carrier, D. Lippy................
Cash and parcel carriers, railway for, $\mathbf{G}$.
Green.......................................... ${ }^{950,2}$
Castink metal ingots, apparatus for, W. Huffel-
mann........................
Cattle quard. ..................................................................30,592
Cattle, head frame for, J. o. Dorris............. 390,28

Chill mould apparatus, w. Fawcett.
Chimney, ventilating. L. Boutin.....

ock, synchronizing apparatus, C. E. Hoefling.... 390,230
Coset, See hat lock, Young \& McCrea
Coin operated lock fur receptacles, L. M. Ryfen
burgh ...............
Comb. See Curry comb.
Compound enzine, Berwict \& Sellers.
Condensing apparatus, J. U. Lloyd
Coop, chicken, Booth \& Dawson.
Cotton gin rib, o. Washburne.
Counter skiving machine. E. F. Belding.............
Coupling. See Car coupling. Pipe conpling.
Shaft and pulles coupling
Shaft and pulley coupling. Thill coupling.
Curf holder, C. R. Hart...
Cultivator, C. E. Morton
Cultivator, orchard and vineyard. J. Morgan.
Cultivators, spring tooth attachment for
Curry comb.....................
Curve scriber, E. A. Giesel
Cuspidor, D. H. Murphy....



uspidor, D. H. Murphy................................ ${ }_{3}^{390,484} 3{ }_{30,614}^{380}$
Feed cutter. Keyseat
cutter. Paper cutter. Sod cutter.
Cutter and cutter bar, Morton \& Brown........... 390,505
Decoy duck, C. D. Gammon...................


Richmond .................
Digger. See Potato digger.
Door check, E. Wicks
Draught equalizer, S. Case.............
Draught reeulatar, P. W. Cornwell..
Druwbere chect plat
Drawbare, check plate for, W. H. Hover....
Drawing board, geometrical, J. M.
Drawing board, reometrical, J. M. Pringle........
Drawings, duplicating archltectural and similar
Drill. See Rock drill. se...........
Drills, machine for cutting twist, J. Gasiorows
Drilling machine, center, F. H. Richards.... Drilling machine, center, F.
Drum tug, Foleg \& Wibur.
Dust collector, J. S. Smith................
Dynamo, alternate current, E. Thomso
Eyamo, alterघate current, . T. Tomson............
Electric circuit controller, A. L. L. Willatowsy..
Electric conductors, device for protecting, E. $G$.

son............................................
klectric machine, dynamo. N. Tesla................
Electric machine or motor, dynamo. N. Tesla... Electric machine or motor, dynamo, N. Tesia.....
EElectrical distribution, system of. N. Tesia.....
Electrical testlng apparatus, J. W. Packard...... Electricity for lightin,
of. H . Edmunds.

End gare, wazon, E. \& J. P. Reich
Engine. See Compound engine.
Eraser. blate. G. Wilkening.......................... 390,
Etching and producing inextinguishable metalic

## 390,548 330,46 330,506 330,35 390,479 390,276 330,484 390.340 390,614

300,521

390,274
990,450
390,284

390,577
380,223
$.590,520$

390,186
390,481
390,439
30,414
390,415
330,413
390,310
390,463
390,54
39,035
390,253


Fork. See Carving fork.
Frame. Soe Advertising frame. Bucksawframe.
Window frame.


|  |  |  | 2hivertisements. |
| :---: | :---: | :---: | :---: |
| apparatus or the manutacture of peat, D. $\mathrm{D}_{3} 30.555$ | Nout | sto |  |
|  |  |  | Ime |
| Alikman.............. |  |  | , |
|  | , 30,25 | sum |  |
|  |  | ${ }_{\text {sup }}^{\text {sup }}$ |  |
| aces. draugnt appliance it |  |  |  |
| 退 |  |  | + 5 |
| Cole |  | Tank |  |
|  |  | Tap |  |
| 为 |  | A. |  |
| ee Bridge gate. Ruilwry gate. |  |  |  |
| West............................... |  |  |  |
| ratus | Pen holder and fountain, |  |  |
| Ine | lings ..................................... 30.355 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Ee fastering, W. S. |  |  | SEBASTIAN,MAY\&CO |
|  | Pipe trreading die stock, H. Brown.................30.44 |  |  |
|  |  |  |  |
| ard | Plane, M. Dosecher.............................. 30.54 | Toogran, Wate \& bromn........................30,62 |  |
| cosen |  |  | Drill Presess, Chucks, Drils, ${ }^{\text {aty }}$ |
| Gun, prine |  | Tor, |  |
| A. will |  |  | Cater |
| s |  | Track haneer.L. Lerry.il | CAMERA BELLOWS.-FULL DESCRIP- |
| ee, m a. |  | Trap. H. . . weeden.......................... 30,64 |  |
|  |  | Truck car. C. Thomosan |  |
|  |  |  |  |
|  | Post |  |  |
|  |  |  |  |
|  |  |  |  |
| Heat, means tor utilirin | Pre |  |  |
| Heatert |  | Val | d |
|  |  |  |  |
|  | (en |  |  |
| Mccie |  | Venicie, Vo-mhee | SEVERN AND MERSEY |
| 30, | Rals, or bars, toughening steel J. Comn...........330.266 | veneri. |  |
| tion and coin |  | Violin bow, J. Bohmann. $\qquad$ |  |
|  |  |  |  |
| (laer. See Book holier. Curs holier. Line | 246 |  |  |
|  |  |  |  |
| . See check hook. mapap hook. |  | Weather strip, w. H. Wo odard................30.3037 |  |
| House. See Portable house. Hub attaching device, E. K. Emig..................... 390,465 | Ral |  |  |
| Tor vehice wheels, E. $\mathbf{Q}$. Moulton.............30.6.13 | $\xrightarrow{\text { Rak }}$ |  |  |
|  | Ree | ${ }_{\text {Win }}$ |  |
| aino |  | ${ }_{\text {Wir }}$ | 01 PRICE $\$ 1.50$ <br> or |
|  |  | Wre fromins machine ${ }^{\text {a }}$ | mailed |
|  |  | 30.386 |  |
| Jes eat unter, porabie, M. Morton................30,30, | Roll |  |  |
| Alinn packaze, c. C. . Macocrair................30,610 | Rolling metal. R. A. Carter........................30,34 |  | pt of |
|  | Roling mili aparatus, F. H. Dantels................ 30.22 |  |  |
|  |  |  |  |
| cois | Ro |  |  |
|  | Sall |  |  |
| rm protector for feectrle, |  | TRADE MARES. |  |
|  |  | Beer, ale, and porter, 1ler $\&$ Burr weerer............ 15.99 | BAILEY \& CO. 1 Bemoirl irret |
|  |  |  |  |
| Laths and cutting reneers, machine formen | Sawmill band, D. B. Hasaon...................30.227 |  |  |
|  |  |  |  |
| thing.machine |  |  |  |
|  |  |  |  |
|  |  | silk, or wool and silk, piece, Brigg, Neumann |  |
| areme |  |  |  |
|  | Seat | Medic |  |
| purification, apparatus for, W. Oliphant... 590 | Ser |  | PHONOGRAPH.--A DETALED |
| See Coat or hat lock. Coin operated lock lock. Nut lock. Per tation loci. Sash lock | $\begin{gathered} \text { \& Stone.............................................. } 390,539 \\ \text { Sewing machine loop takers, mechanism for im- } \\ \text { parting motion to, W. Beecroft... ............. } 390,278 \end{gathered}$ |  |  |
| nd latch, J. Cocks.................................. 3 for weaving double pile fabrics, pile warp |  | Smedies or lummens, toical $A$ |  |
|  |  |  | ROCK DRILS |
| Som, buthe | Ster | Shade farice, HB B Wi |  |
| 1.0 brooks. |  | Sosp | AIR COMPRESSOR |
|  |  |  |  |
|  | Sight feed lubricator, $P$. <br> Signal See Station sig | Wood pulp, household articles made of, Amoskeag |  |
| Malt powder, making dietary, A. R. Leerbec | ${ }^{\text {Sta }}$ | Indurated Fiber Ware company.............. 15.9 | RIL1 |
| co.us | Sil |  | TRAMWAY, FLEXIBLE GIRDER.-DE- |
|  |  |  |  |
| na garments, |  | Chair cover, G. Marchetti................ Corsets, ornamentation of, L. Kraus. |  |
| leareland................. |  |  |  |
|  | Somer | $\begin{aligned} & \text { citem } \\ & \text { tem } \end{aligned}$ |  |
| Grinding mill. Rolling mill. |  | Necktie. W. Von Brennerberg. |  |
|  |  | Tumbler or other klassware, S. Hipxins, Jr. |  |
|  |  |  | W \& WIGHTMAN |
| trap. | sq |  |  |
| Motion, device for oonereting, Montromery \& |  | $g$ please stat e the name d, and remit to Munn \& |  |
| w. |  | 361 Broadway, New York. |  |
| Mustal listrument, meehanicall, J. Mc crammany. |  |  | IC LIAHT AND POWER. |
|  |  |  |  |
|  |  |  |  |
|  |  |  | eet, Phiompany |


| HENRY CAREY BAIRD \＆Co． |
| :---: |
|  |  | ENGINEERS

POCKET－BOOK Engineers＇Pocket－Book．Mechanics＇and En gineerss＇Pocket－Book of Tables，Rules，and
Formuas pertaining to ematics，Ond Physics：including Areas，
Squares，Cubes，and Roots，\＆c．Logarithm Hydraulics，Hydrodynamics，teamand the Steam－Engine．Naval Architecture，Mason
ry，Steam－Vessels，Mills，Xc．Limes，Mor－ Yy，steam－Vessels，Mills，\＆c．；Limes，Mor－
tars，Cements，，\＆c．；Orthography of Techni
 Edition．By CHAs．H．Haswell．
Pocket－Book Form \＆4．o．
Capt．J．Errcsson to the Author．



 HARPER \＆BROTHERS，NEW YORK．
 Use Adamant Wall Plaster
 Hard，Dense \＆Adhesive check or cirack．
 Lis． seigrated forthemin．
 ETIOLOGY OF SCARLET FEVER－A

 HAS

 THE DEVELOPMENT OF THE MER





Automaticut Engines
 on Red and purple chloride





## 

THE NEW CROTON AQUEDDUCT．－



## PERFECTHEW SPAPER ILE




VUMCATYYP THMFRY VTHFOTS

 Thousands of manufgiturers testify to te belng the Strongent，most Dar－
able，and Heathies Emery Wheol made． NEW YORK BELTING AND PACKINE CO．

$\underset{\text { Large Whels made on Cast lron Centers if de－}}{\text { sired }}$ Knife Grind $\quad$ Warehouse： 15 Park Row，New York

 WOOL HAT MAKING．－FULL DE DE
 elouring oñ With


STORAGE BATTERIES FOR ELEC fric Locomotion－A paper by A．Reckenzaun．oftering
few facts and Agures reating to the presents tate of the
subject of the applicalion ons
 HE PENNA．DIAMOND DRILL \＆MFG．CO． BIRDSBORO，PA．，Builders of High Class
Steam Engines．Diamond Dritling and General
Machinery Flour Mul

MACHINERY PALACE OF THE PARIS
 GUILD \＆GARRISON
 Agitators．Condensers for Paser，Engines，Steams
Pumps，Vacunm Apparatus．etc．




FOR SALE！ THE HAMPDEN WATCH CO． Covering about one acre of ground，with Engin
 ARGuIfectural boxis． Useful，Beautiful，and Cheap．
be，either in the country or city，or any builder wishing to examine the latest and best plans for a church，school ouse，club house，or any other public building of high
r low cost，should procure a complete set of the ARCHI－ tects＇AND Buldoers＇Edition of the scientific The information these volumes contain renders the work almost indispensable to the architect and builder．
and to persons about to build for themselves they will
find the work suggestive and most useful．They contain lored plates of the elevation，plan，and detall draw－ ins of almost every class of bulling，with specifica－ Four bound volumes are now ready and may be ob－ ained，by mail，direct from the publishers or from any
newsdealer．Price，$\$ 2.00$ a volume．Stitched in paper ， MUNN \＆CO．，Publishers， 361 Broadway，New York． HOW TO MAKE AN INCUBATOR－
 2nd RNAW MACHNERY 菜总
 PROPULSION OF STREET CARS．－ A paper by A．W．Wright．in which an endeavor is made
to sol the probier as the the amount of power requrred
to start a street car and keep it in motion under
．

 TO BUSINESS MEN． The value of the ScIENTIFIC AMERICAN as an adver－
tising medium canote boverestimated．Its circulation
is many tim es reater than that of tny similar journal



WFTTMTMR PATFNT FTTRNACP
 Foundry and Machine Department，
Harrisburg，$P a_{0}$ ，U．S．A．


TRENTON ENGINE

ELECTRICAL STRESS．－AN INTER－




## 

ICE－HOUSE AND COLD ROOM．－BY R．



（3）CLARX＇S NOISELEES ROBBER WHEELS No More Splintered Floors．
Different Styles． ELECTROTECHNICS，DEFINITIONS and Designations in．－A list of the symbols proposed by
Mr．Jamesoon for eleetrical unite magnetism，and elec
ric meesurement With

$\$ 10.0010 \$ 50.00$ 學䋨：


W．BAKFR \＆CO．，DOrChester，Mass： LIGHTNING CONDUCTORS．－DESCRIP



A
 anEW CATALOCU I VALUABLE PAPERS Contained in ScIENTIFIC AMERICAN SUPPLEMENT，se
free of charp
MUN





## 

ICE\＆REFRIGERATING

FACTORY TO LET．
 DISEASES OF DYNAMOS－A PAPER by S．P．Thmpspon，D．Sc．．discussing the maladies to

The Scienifific $A \underline{\underline{\text { merican }}}$ PUBICATIONS FOR 1888.

The prices of the different publifations in the United
tates，Canada，and Mexico are as follows： RATES BY MAIL．
The Scientifl American（weekly），one year $\quad \$ 3.00$ y ear． The Scientific American，Export Edition（monthly） $\begin{gathered}\text { one year，} \\ 5.00\end{gathered}$ The Scientifle American，Architects and Builders
Edition（monthly），one vear．
2.50
The Sclentific American and Supplement，．．$\$ 7.00$
ers Edition，
The Scientific American．Supplement，and Archi－
tects and Builders Edition．
This includes postage，which we pay．Remit by postal


认HDertisements．





These Hack Saws will cut Iron and Steel be

 8 inch Blades，sent by mail，prepaid，on receipt
of $\$ 1.50$. Hardwere dealers will furnigh them at
at the same price．All saws marked with a star，
and boaring our name are fully warranted． and buaring our name are fillilis Co．， TH E COPYING；PAD－HOW TO MAKE


## TIE KODAK CAMERA



## Price s．es．00．Relondius s．2．00．

 The Eastman Dry Plate \＆Film Co Rochester，N．Y． 115 Oxford St．，London．Snd for copy of Kodak Primer with Koldk Photrograph PNEUNATIC DYNAMITE TURPEDO Gun－An exhaustive account of this new weapon and
of the experimentiomade with it alon with deacrip－
tion and ilustration of a propsed dynamite cruiser．
 SOMETHINGNFW，A PROFTPABLE BOOK Over 3000 inventions of patents，arranged in arphabet－
ital order，coverink every ueful mechanical art in iite．
Wit STEET BAIIS．


8 imond＇s Rolling－Machine Co．，Fitthbars，Mase． TELLESCOPIC OBJECTIVES AND MIR－
Rers．Their preparation and teating．－By H．Grubb，F．

 OIL WELL SUPPLY CO．Lid．
 AIR．PURIFICATION OF．－BY D． Prince．MPD．An experimental study in re ation to the
remova from the air ofthe uast or particu ate material．
supposed to produce sellow fever．smallipax．and inther
 The DUNNING BOILER路都 Oldest and Best Steam and Hot Water HEATING．

## Over 13，500 in use．

 N．Y．Central Iron Works， PATENTS． MESSRS MU
oation of ine
amine iuprove
for nventors．
In thins line of business they have had and


 reasonable terms
a pamphlet sent free of charge．on application．con－
tsining full information about Patents and how to pro－


 Rinch oryics－Noo and en Fstrot，


The Oricinial Durulaaized Packing．





 CEBOATS－THEIR CONSTRUCTIN，

Barnes＇Patent Foot Power Machinery．


LEAD SMELTING．－A FULL DESCRIP－
 DELAFIELD＇S PAT．SAW CLAMP




## MALLEABLE <br> THOMAS DEVLIN \＆CO

THE CONTINENTAL TRON WORKS， Fommentis CORRUGATED BOLLER FLUES

Under their own patents and those of SAMMSN FOX of Leeds．England．
MADE IN ALI．BIZES，WITRH FLANCED OR PLAIN ENDS．

THEAMERTCANBELL THRHPRONE CO．
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th 1877．No．186，787．
The transmission of Speech by all known forius of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use，and all the consequences

## RUENVCD MAGICLANTERNS

 QUEENZQ SCIODTICONS


PHTHISIS．－A PAPER BY DR H C

WATCHMAKERS HYPNOTISM IN FRANCE－AN IN



ICE and REFRIGERATING MACHINES

## 

Cas IING METALS UPON COMBUSTI



## AUTOMATIC CUT OFF ENGINES E ERy <br> ERO ENGNE CO COM

Scientific Book Catalogue RECENTISY PVIBI．ISH E：D．
catalorue containing over 100 pages，includ－
on more than fifty difierent subjects．Will be ing works on more than tifty yifierent sum．
mailed tree to any address on application． MUNN $\mathbb{C}$ CO．，Publishers Scientifc American，
$\mathbf{3 6 1}$ Broadwny，New York． PANAMA CANAL－－A PAPER BY DR． W．Nelson on some of the diffcultilies to be orercome in
Che prosecution of this wrik．Dmmme her
River
Extent


## WIRE ROPE <br> 

 The Most Popalar Scientific Paper in the World． Onls 83.00 a Y．Y̌ar，incluciling ipontage．Weekly． Thin widely circululed and splendidy illustrated teen pages ou usefu＇information and a large number of orifinal engravings of sew inventions and discoverles representing Engineering Works．Steam Nachinery， New inventlons．Novelties it Mechan！cs．Manuf：ctures
Chemistry Electricity．Te egraphy Puotograuhy，Archl－ Chemistry Ellectricity．Te egraply Puotography，Archl－
te ture．Agriculture Horticulture，Nutural IIstory，eto． Complete List of Patents each week．
 matage prepaid．to uliy subscriber me the Enited States
post or Canada，on recelpt of chire dollurm by the
ushers six monilis．81．50：toree months，\＄1．00． Clubs．－Special rates for siveral oamen and to Post
Masters Write for part culars The safest way to remit is by Posta Order．Draft．or
 seldom goes astray，but ts at the sender＇s risk．An－
dress all detters and make all orders．draits， aress all ．etters
able

MIUINN \＆CO．，
361 Broadway，Néw York． T 표
Scientific American Supplement．
This is a separate and distinct publication from
Titr Scimatific americas．wut is untform therewith In size．every number containink sixteen large pares full
 TEK Sctrimific Anirican Sulplumedt is published weekly，and lucluded a very wide range of contents it presents the most recent papers by eminent writers in all the prinipal departments of science and the
Useful Arts，embracing Biology，Gecligy， Useful Arts，embracing Biology，Gecilogy，Mineraloky，
Natural History Geokraphy，A rchæology Astronomy， Cbenistry．Electricity，Light Heat，Nechanical Engl neering．Steam and Rallway Engineering，Mining，
Ship，Building，Marine Enzineering．Photogr：iphy． Tecinolugy，Manufacturing Industries，Sanitary En． my，Biokraphy，Medicine．etc．A vast amunnt of fres and valuable information obtainable in no other pub． lication
The most impcrtant Engineering Works，Nechanisms，
and Manufactures at home und abrord are and described in the SUPPII ExאMT． Price for the St Pblicment for the United States and Canada．85．ln a year，or one copy of the Scientific Am． Elican and one copy of the Suiplrimkit，buth malled
for one year for 8 it 00 ．Single coples 10 cents． and remit by pustal order，express mones order，Addres


## Building Edition．

The Scientific American architects＇and Buiderss Edision is issued monthly． 82.50 a year．
Single coples， 25 cents．Forty lirge quarto pages，equal to about two bundred ordinary bnok pages：forming a large and splendid Magazine of A relhil ecture，rich－
ly adorned with eleonnt plates in colors，and with other ly adorned with eleonnt plates in colors，and with other
Ane engravings；illustrating the most interesting ex－ fine engravings；Illustrating the most interesting ex－
amples of mudern Architectural Constraction A special feature is the presentation in each number of a variet $y$ of the latest and bert plans for private resi－
dences，city ard country，includina those or dences，city ard country，including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given．topether with full
pline， Plans，Spec fications，Sheets of Detalls．Estimates，te． The elegance and cheapness of thls inapnificent work
have won for it the lareat Cliculation of have won for it the laruent Circulailion of any
Architectural publication in the world．Sold by al

MUNN \＆CO．，Publishers，
361 IBroadway，New York．

[^0]
[^0]:    PRINTING INKS．
    

