a WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUTACTURES.

NEW YORK, SEPTEMBER 8, 1888.

THOMPSON'S GRAVITY SYSTEM FOR RAPID TRANSIT IN TOWNS AND CITIES- - [See page 149.]

§rientific elmminan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEHICAN.

 One copy, one year. for the U. S. or Canada.One cops, six months, for the U. S. or Canada
One cops, six months, for the U. S. or Canada
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the SCIENTIFIC AMERICAN, for a little over one year, may remit $£ 1$ in current MUNN \& CO

The Scientific American Supplement

is a distinct paper from the Scientific american. The SUPPLEment is issued weekly. Every number contains 16 octavo pages. uniform in size with Scientific american. Terms of subscription for Supplement, Ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
tiombined lates.-The Scientific ambitican and Supplement will be sent for one year, to any address in U. S. or Canada, on receipt of seven dollars.
The safest
registered letter.
Australia and New Zealand.-The Scirntific American and SUPPIEment will be sent for a little over one year on receipt of 22 current Colonial bank notes.

NEW YORK, SATURDAY, SEPTEMBER 8, 1888.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 662
For the Week Ending September 8, 1888. Price 10 cents. For eale by all newsdealers.

11. BIOLOG Y.-Vegetable Rennet-Instances of the occurrence of
 oot anutients.-The sodidue of an interestink problem in bridge

 VI. MECAR NICAL ENGINEERING.-Coul Hoist of the Philadel-

 Oot thisimportart piant from bin Engilish standpoint, givios the
scientific view of the subject.....

does excitement shorten life

Whoever may have studied man's earthly tenure and the causes which tend to lengthen or curtail it, will have scarcely failed to notice how contradictory is the evidence of those we naturally look to to explain them, and that their evidence, even when they agree, does not always accord with what would seem to be the facts, as they appear around us. One authority says general physical development is necessary to prolong life, while another insists this is not required if the day's employment does not call for physical exertion. Dr. D. B. Richardson, an eminent English authority whose remarks before the Sanitary Institute of Great Britain on the storage of life we quoted recently, de clares, among many obvious though scarcely novel propositions, that everything that quickens the action of the heart, any kind of excitement, taxes and reduces the storage of life.
If this were said of those naturally feeble, or inheriting disease, or even of those leading sedentary lives, and living from day to day without the invigorating benefits of fresh air and exercise, it would seem reasonable, for one does not have to be a skillful physiologist to know that excitement affects the nerves as well as the heart. But is the statement strictly true when referring, as here, to the entire human family ? Surely soldiers engaged in actual warfare and sailors in peace as well as war live among excitements, besides being notoriously addicted to indulgences as to drink ing and smoking, yet are they long-lived. Statistics show it and observation corroborates them. The pen sion list of the British ariny, giving the ages of the beneficiaries, men who have served in all climates for from 20 to 40 years, and excluding those pensioned sooner because of "wounds received while in the performance of duty," shows that soldiers do not die as other men do ; so it is with the naval pensioners of the Greenwich Hospital, now scattered over Great Britain, because of its abolishment.
In the merchant service to-day it is no uncommon thing to find a man 70 years old in charge of a vessel -a post requiring activity of body as well as of mind. Here in New York we have the proof near us, for at Sailors' Snug Harbor, on Staten Island, are 800 aged but for the most part hearty sailors. Most of these are between 70 and 80 ; active old fellows they are, with clear minds and good appetites. They will tell you they are not by any means the sole survivors of our one time werchant fleet; that many, if not most, of their mates are yet living, but distributed over the country, living with their grandchildren, perhaps wherrying for a living or engaged in other employments along a water front. From this it would appear that a sound human body can withstand hunger and exposure and even frequent excitement, if only there is plenty of fresh air and exercise of a vigorous kind thrown in

electrical lighting convention notes.

At the Electrical Lighting Convention, an account of which will be found elsewhere, President Duncan advised the companies to enlarge their plants at the earliest moment in order to enable them to supply power as well as light-a timely suggestion, be it said; indeed, some companies are already doing this, though yet in a small way, for the possibility of obtaining cheap power, like all other economical expedients, has only to be understood by the manufacturers to produce a large and steady demand. We have not, unhappily, yet reached that point where large parcels of power can be transmitted by wire in the form of electrical energy to great distances. But in shops where not more than say five horse power is required-and such shops may be counted by the thousand-the project of electrical transwission is already practicable.

The economy of the plan is immediately obvious. However small the steam engine, an engineer wust be employed. Then there is the expense of fuel, the removal of its attendant ashes, not to mention the smoke and dust and grease. Under the transmitting system, a small manufacturer can get what power he requires at far less expense and annoyance, doing a way with engine and engineer and getting more or less power, according as his business is brisk or dull. The electric lighting plant is peculiarly fitted for supplying power, because, during the day hours, when power is wanted, it may be devoted exclusively to that end, instead of, as now, lying idle, its great energies of steam engine and dynamos uncalled for. Thus a plant may be turned to double use, supplying power during the day, when light is not required, and light at night, when the workshops are closed.

In the paper on "A Basis from which to Calculate 50 Charges for Electric Motor Service," a pretty broad hint will be found, not only to the vendors of power, but as well to the user. We are told that mill and shop people invariably order and pay for far more horse power than they use, and that though the price per horse power received by the vendor may seem inadequate, in reality he is well insured against loss because the demand for power never comes up to the cause the demand for power never comes up to the
bench work, the full demand on the shaft would scarcely ever be called out, yet the amount of power seemingly required, and therefore paid for, would be the sum of the demands made by each lathe and roller.

The paper by S. S. Wheeler, expert of the Subway Commission, led to a protracted discussion, during which Mr. Wheeler admitted he could not explain how by any system of connections and distribution a sys tem of underground electric lighting could be made to compare as to econowy and efficiency with that now in use. He said the terms it was proposed to charge lighting companies was $\$ 1,000$ per mile for 3 inch duct, $\$ 800$ per mile for $21 / 2 \mathrm{in}$. duct, $\$ 750$ per mile for 2 in . duct, $\$ 550$ for $11 / 2 \mathrm{in}$. duct.
The presid ϵ nt of an electric lighting company asked him if his company had really decided to charge $\$ 800$ per mile for a year's use of a duct that only cost $\$ 500$, o which Mr. Wheeler answered that they had.
Several experts, both as to technique and cost, inter polated Mr. Wheeler as to the practicability of burying the lighting wires by means of any of the systems now known, and the discussion that followed was listened to more eagerly than any other that was had during the itting of the convention.
Facts were pointed out and figures exhibited show ing the obstacles in the way; the danger of running high tension currents so near to gas mains, water mains, and telegraph and telephone wires was explained, and the costliness of connecting up, with the amount of precaution necessary, was illustrated. Mr Wheeler did not answer these, fairly admitting he could. not, and could only say that, if his company were
given a chance, they would, he believed, after practi given a chance, they would, he believed, after practical experimentation, find a means of accomplishing what was required.
But the expense of these experiments would come out of the lighting companies, and even in the case of failure, and a suspension, by reason of this, of all elec tric lighting, the subway company would not consider itself liable for the resulting loss, but would only agree not to charge any rent for the time when good service was not rendered. The electrical lighting men objected to the monopoly being given to one subway company, believing the plan left room for exorbitant charges, as had already been seen, and had other objecionable features.
A suggestion that seemed to meet with no little favor was made during this discussion, as a means of avoid ing raany difficulties now presenting themselves in the problem of burying the lighting mains. It was to reduce high tension currents three-fourths in intensity. hus leaving out the element of danger to human beings, though not to animals.

The Watkin Position Finder.

The Watkin position finder, for which the British government paid $\$ 225,000$, proved its value recently in some experiments with an old pattern 9 inch muzzleloading gun, polygrooved and mounted on a carriage adinitting of upward of 35 degrees elevation. The position finder, worked by Major Watkin himself, was on a hill 230 feet above the sea level, and about a mile and a half from the battery. The target, which consisted of a raft 100 feet long by 40 feet wide, was sent drifting with the tide, which was running between five and six knots an hour. At ranges extending up to 10,200 yards (or close on six miles) most accurate shooting was obtained, several hits being recorded by observers placed on a tug close to the target, the greater portion of the forty rounds falling close round the object, which could not be seen from the battery.

A Perpetual Railway Pass.

When the Boston and Providence Railroad Company was chartered, Mr. John C. Dodge, of Attleboro, conveyed a portion of his land in consideration that he and his family should ride free over the line as long as the land was used for railway purposes. A granddaughter of Mr. Dodge now claims that she is entitled to the privilege named in the deed, and that the word family meant "descendants " of the grantor. The railway company demurred on the ground that the remedy of the plaintiff is at law, and not in equity. Judge Allen, however, has overruled the demurrer, and expressed an opinion that under the deed the Boston and Providence Railroad Company would be required to carry free the descendants of Mr. Dodge for all time.

Euglish Cotton Spinning.

Owing to the perfection of her spinning machinery and the large amount of capital invested in the business, England spins more woolen and cotton yarn than all the other countries combined, and yarns are among the most important of her exports. The quality of cotton yarn in England is expressed by counts or numbers denoting the number of hanks in a pound, signifying coarseness or fineness. This rule of numbering is very simple, being the number of hanks, each 840 yards long, requisite to form one pound in weight. Thus No. 40 denotes yarns of which forty hanks weigh one pound.-Dry Goods Chronicle.

Convention of the National Electric Light

Association.

More than 200 men connected with the electric lighting, motor, and kindred industries met at the Hotel Brunswick, New York, last week, to discuss matters relating to their vocation. The meeting lasted three days: Wednesday, Thursday, and Friday, August 29, 30 , and 31 ; and in attendance and interest it far surpassed any precedingit. In opening, President Duncan said that in February last there were 4,000 isolated electric lighting plants and central stations in the United States, which operated 175,000 arc lights and $1,750,080$ incandescence lights. Since then there have been added 1,361 new isolated plants and stations, operating 35,201 are lights and 392,944 incandescence lights
A complete record is kept of these, and from it appears that now there are 3,351 plants and stations, operating every night 192,500 arc and $1,925,000$ incandescence lights. There are also 459,495 horse power of steam engines devoted to electric lighting. The capital invested in the electric lighting companies during the past half year has been increased to the extent of $\$ 42,-$ $\mathbf{2 1 0 , 1 0 0}$. In February there were in this country 34 electric railways, with 138 miles of track, operating 223 motor cars, and utilizing 4,180 horse power for stationary engines. 49 new roads are now being built, having a total of 189 miles of track, and to use 244 motor cars. There are also several motor factories, some of them employing as many as 1,200 men. The president advised the lighting companies to reach out and arrange for supplying power as well as light, ere this business was taken out of their hands by separate companien.

Mayor Hewitt, being presented, explained his position in regart to burying the wires. He said that it was absurd to remave the wires from the streets before a practicable means of operating them underground was found, dwelling on the importance of the work they performed and how greatly it would embarrass affairs to render them useless. Some one had found a means of burying low tension current mains, but those of high tension could not yet be disturbed. He would not, even if he had the power, force the companies to sink their wires now. If the convention, after studying the matter, agreed that the time had come, he would act in accordance. There was little danger, he thought, from overhead lighting wires, if proper care was taken, and thought that the public as well as the companies should have inspectors. If the convention could not suggest a practical means of burying the wires, ne hoped it would explain how they could be made safe."

In an exhaustive paper on "Overhead and Undergreund Wires in New York," S. S. Wheeler, electrical expert of the Subway Commission, explained the plan by which it is proposed to bury all the wires. "The question of distribution of electrical currents from the main subway," he said, "had been largely left by the authorities in the city of New York to the preference of the electrical companies. Two systems of distribu tion are at present actually in use in New York by the Metropolitan Telephone Company. These are known as the house top system of distribution, an example of which may be seen at the corner of 6th Avenue and 55th Street, and the manhole system, at Broadway and Exchange Place. In addition to these there are five modes of distribution which can be readily applied to the subways as constructed in New York, and which will be allowed in cases where they are severally most expedient; to wit, the lamp post, the house front, the house vault, now used in Chicago, the back yard, and the manhole system."
The telegraph and telephone problem is practically solved. It is found necessary to resort to subways in order to get sufficient space for wires, and wires for this service are being drawn into the tubes as fast as the labor can be performed. There are about four thousand miles of telephone and telegraph wire already underground, and twelve thousand miles of cables about to be laid in the fall. It is estimated that the saving in cost of maintenance will be about $\$ 100,000$ per year, owing to the permanence of the style of work which is possible underground. The problem for laying of electric iight mains, he admitted, was not yet "fully developed," and, naturally, none of the companies cares to bear the expense of the first experiment. But after the initiative has been taken, the difficulties will be overcome as they arise, as in the development of all other enterprises, and the undergrounding will become a settled and accepted fact.
a Basis from which to Calculate Charges for Electric Motor Service.

by H. f. lufin.

There is a general average controlling the use of machinery which it will be safe for electric light and power companies to follow in making their charges for motor service, rather than adopt an arbitrary price per horse power, regardless of the character of service required of the notor. Fully three-fourths of the trouble found in electric motors arises from inproper shafting and belting. On all installations in basements and cellars
or where there is the slightest tendency to dampness, raise the motor off the floor on a frame or stand, and build around it on all sides of possible approach a low platform, using glass insulators as standards to support it. Single thread sewing machines, which are lightest running, consume the most power in operating. It is because this kind of machine is used on light work and operated at a higher speed than any other class. At equal speed, the volts consumed in a single thread machine as compared with a shuttle machine are about as 2 to 3 . In average commercial use the positions are reversed, and the ratio of volts consumed in the single thread, as compared with the shuttle machine, is about as 5 to 3 . To double the speed on a sewing machine requires about $21 / 2$ times the power. The author describes the work done and the power supplied in some big workshops. He then concluded that an electric lighting company would make money by presenting the customer (a manufacturer) with 30 small motors, charging him $\$ 1$ per month per motor for current, rather than let him buy a 2 horse power motor to operate the same machine, with the necessary shafting, at a charge of $\$ 18$ per month for current, counting $21 / 2$ volts per machine. From a 50 light machine you could run not less than 900 sewing inachines, or about 18 to the arc lamp. At $\$ 1$ per month per machine an income of $\$ 900$ per month would be derived from a 50 light machine, without any lamp expenses, such as carbons, etc. Can we sell current for $\$ 1$ per month for a small motor driving a sewing machine, and make a profit?
I answer yes. 50 cents per month for small motors driving sewing machines yields a better profit to the company supplying the current than $\$ 10$ per month per horse power in large motors to drive the same machines, besides the advantage which the small motors possess of keeping the circuit in much better balance, the fluctuations due to the stopping and starting of large motors being at times a serious matter. One electric light company, making a specialty of these small machines, rent the motor and supply the current
for $\$ 1.25$ per month per sewing machine and report for $\$ 1.25$ per month per sewing machine, and report that at this price the motor service pays them a better percentage of profit than their lamps.
Machine shops doing principally lathe work use a arger percentage of their contracted power than shops doing lathe and bench work with the same bands. In no case will the service of the motor exceed 65 per cent or 70 per cent of its contract use ; for machine shops, like sewing machine shops, will never average over 75 per cent of the shop capacity for operators the year round. The average, where there is much bench work, will fall as low as 40 per cent.

A paper by S. S. Leonard, of Minneapolis, Minn., n " Petroleum Fuel," was read by the secretary.
The author quoted C. E. Asheroft, who says :
The calorific power of petroleum, for the purpose of generating steam, and the evaporation of water, is several times greater than that of ordinary coal. The successful use of oil as a fuel has, however, been of very recent date, yet so rapidly has it grown in favor, that to-day it is regarded as a strong competitor of \cdot coal for steam generating purposes, or where heat and tire are wanted. It was with a great many knowing winks
and nods of the head from the engineers and firemen, who langhed at the idea of making steam by the use of oil, says Mr. Ashcroft, that I attempted the use of petroleum as a fuel. Of course it would not work, and it did not work. Wby? Because those who were using it did not want it to, as they wereafraid some one would ose his job.
We had seen enough of its workings to satisfy ourselves that we could make it a success, and the result is
that to-day we are saving from 20 to 25 per cent on the cost of the fuel and 50 per cent in labor, and these same men who laughed so hard in the start at our attempt to use oil would feel that this world was a poor place to live in were we to return to the use of coal. ts advantages over other fuels are many : it is easier handled, a steadier fire is easily kept up under your boiler, consequently the steam is kept at a more even pressure, a very important thing in the running of lectric lights; there is no opening of furnace doors al owing cold air to come in contact with the boilers and the
coal
When through with it, by a simple turn of the wrist your fire is put out and your ash pits are as clean as they were before firing. In less time than it takes to tell it, you can start your fire. It is only rivaled in handling by natural gas, and even then unless we have
all the modern appliances for the handling of this gas, it is far easier to manipulate. This is how we use it The oil is received in tank cars holding from 90 to 125 barrels each (42 gallons to barrel). From these cars it is drawn off through a valve in the bottom of the car to a storage tank or tanks, there being two of them, holding about 320 barrels each ; these are placed underground, so that the oil runs from the car into them by gravity.
In the top of each tank are man-holes and a ven
pipe. These tanks, boiler shaped, are placed end to en
with a space of about 8 feet between; this gives room to get at the various pipes. They are joined together at the bottom by a pipe which also connects with the supply pipe running to the boiler room; in the bottom of each is a drain pipe to allow for cleaning. The burners are fed by gravity. A hotter fire can be had from oil than from coal or wood, and there is absolutely no smoke. In economy of fuel, oil has an advantage, as said before, of from 20 to 25 per cent, and from 40 to 50 per cent in labor. Here are figures from tests recently made by Mr. Leonard : 111.34 H P ., running six hours, used 250 gallons oil, costing $\$ 5.50$, or at the rate of 70 cents per 100 H . P. per hour ; $104.8 \mathrm{H} . \mathrm{P}$., running 6 hours, used 3,461 pounds coal, costing $\$ 5.45$, or at the rate of 86 cents per 100 H . P. per hour. Another test gave the following figures : $96.45 \mathrm{H} . \mathrm{P}$., running 8 hours, used $4,014.75$ pounds of coal, costing $\$ 6.32$, or 80 cents per 100 H . P. per hour ; 115.54 H . P., running 7 hours, used 233 gallons of oil, costing $\$ 5.05$, or 62 cents per 100 H. P. per hour.
In the above figures, oil is from 17 to 32 per cent cheaper than coal. The highest evaporation made with oil was 14.8 lb . water per pound of oil with feed water at 103 , and with coal 5.38 lb . of water per pound of coal, feed water at 103. The coal used was a good grade of Illinois lump, costing $\$ 3.15$ a ton, but usually worth $\$ 3.25$. In the matter of labor, one man can easily attend from seven to ten 150 H. P. boilers, and then have less to do than firing one boiler with coal.

Chinese Rentaurants.
Mr. Wong Chin Foo, an Americanized Chinaman, and a well known journalist of New York, contributes a very interesting article on "The Chinese in New York" to the August number of the Cosmopolitan. In speaking of the gastronomic habits of the Chinese, Mr. Wong (the Chinese put the family name first) says that in their restaurants these people do not generally pay by the dishes ordered, but by the tables or spreads, called $g z u h$. A first class spread includes about forty courses, which it takes two days to finish, and which costs fifty dollars. A second class spread, with twentyeight courses, costs forty dollars. A third class spread, with eighteen courses, costs twenty-five dollars. The cheapest spread includes eight courses, and costs eight dollars. This is the lowest price for which a man can order a formal dinner in a first class Chinese restaurant (of which there are eight in New York City); but then the spread is made for any number of people within twelve. If a person simply wants to eat a short meal for himself and a friend or two, he can get ready made dishes of fish, chicken, ducks, pigs' feet, rice, tea, etc., cheaper than in any other restaurant. The foods are all chopped in small pieces, rendering knives and forks unnecessary. The Chinese table implements are chopsticks of ebony or ivory, a tiny teacup, and a porcelain spoon.
A staple dish for the Chinese gourmand is chow chop svey, a mixture of chickens' livers and gizzards, fungi, bamboo buds, pigs' tripe and bean sprouts stewed with spices. The gravy of this is poured into the bowl of rice and makes a delicious seasoning for the favorite grain. The tea is made by pouring hot water over the fresh oolong in a cup, and covering the latter with a smaller saucer to draw. Then, pushing back the saucer a little, the fluid is poured into a smaller cup, and more hot water is added to the grounds. This may be repeated five or six times, and the last cup will be nearly as strong as the first. The Chinaman always takes spirits with his meals, pouring rice whisky into a tiny cup from a pewter pot; but he always drinks moderately, and never apart from meals. When a party of Chinamen sit around a table, one dish of each kind of food is served, and all pick from the same dish with chopsticks. When there are several courses, the earlier dishes are never removed, and, by the time a good dinner has been served, the table is literally buried under dishes.
The walls of the restaurant are hung with long scrolls of Chinese writings-maxims from philosophers for the entertainment of those who eat-and frou the ceiling hang large fantastically painted Chinese lanterns, and flower baskets that resemble bird cages.
To the rear is the kitchen, which is always scrupulously clean. The stoves are curiosities. They are long ranges built of thin broad bricks. In the top there are great pits into which are firmly set iron gridirons imported from China. Two of the ranges have open pits only, and there are places where whole hogs are occasionally hung upon iron bars and roasted. Coal is never used in these Chinese kitchens, but only hay or hickory wood.

At least five hundred Americans take their meals "egularly in Chinese resta
ashion, with chopsticks."

A Correspondent writing from Johnson, Nebraska, says : Shortly after 8 o'clock P. M., on the 16 th of August, a meteorite, large, and of a green color, started a little north of east, and, about 25° above the horizon, fell slowly (apparently) to within about 5° of the horizon and vanished. It was in sight likely 6 or 8 seconds. zon and vanished. It was in sight likely 6 or 8 secon
I suppose it was moving nearly from west to east.

AN ALL-IRON GARDEN HOSE REEL.
A hose reel which is strongly made, of simple and inexpensive construction, and designed to be very durable, has been patented by Mr. Reuben D. Wirt, of Independence, Mo., and is shown herewith, one figure showing the handle and brace in position and the reel raised for reeling up hose, while the other figure shows the position of the handle when the reel is not in use. Its side circular sections, as well asitshandle and brace,

WIRT'S HOSE REEL
are preferably made of light iron pipe, the circular sections, instead of being united by welding or coupling collars, being joined by pins or rivets passing through them and through a filling block. Angular arms unite the circular sections, one of the arms having a cleat on its inner face to fasten the end of the hose. The handle is free to swing or turn over about the axle of the reel, and is connected at its inner ends, as by elbow couplings, with a bent foot brace, arranged to occupy an approximately right-angled position. When the

MCAFEE'S PAPER HANGING CLAMP.
reel is not in use, the brace rests upon the ground hold ing the handle raised and the reel in condition for wheeling away, but to reel up the hose the handle and brace are turned so that both rest upon the ground, and lifting the reel up from the ground.

AN IMPROVED FILE CASE.

A simply constructed case for filing documents that it is desirable should be filed for security, and at the same time be readily accessible at any time, is illustrated herewith, and has been patented by Mr. William F.

Altfather, of Weatherford, Texas. The case is made of two or more parts, so united as to allow of their being folded together, thus securing compactness and portability, and the case has extensible pockets, as shown in one of the small figures, to be made of heavy fibrous paper or any suitable material, formed with long folds, and with short folds at the bottom. The upper edges of the cases are made with a lip projecting inward, as shown in the cross section, to retain the pockets in their proper place, and a follower is employed to keep the papers filed so pressed together as to prevent their falling out of the proper compartment. The follower is made of such length that it needs to be slightly bent to place it in proper position, when its endsimpinge on the sides of the case and retain it in position against the papers, a strip of rubber being secured on the ends of the follower to insure their engagement with the sides of the case. These cases are designed to be manufactured in different sizes for use in banks and insurance offices, as storage cases for records of county clerks, etc., as well as in business offices of every kind. For such uses they can be made, at a moderate cost, of a good quality of bookbinders' board with cloth corners. These extensible pockets can also be used in the drawers of desks and tables, which can be easily fitted to receive them.

Purification of Yeast.

The Brewer's Guardian says that a new method of purifying yeast has been suggested, and that it has already been adopted by some of the Continental manufacturers. The yeast is added to a dilute solution of sugar, and the resulting mixture is subjected to the action of a centrifugal separator. By this means the living cells are effectually divided from the dead cells and the bacteria; the pure yeast leaving the machine in a concentrated condition, while the dead cells and the bacteria remain in the liquid. It is said that the process is so perfect that nothing but healthy cells are to be found in the separated yeast, and that the purified article possesses such remarkable germinating power that a glass which is one-quarter filled with it will overflow in the course of an hour.

A CLAMP TO FACILITATE HANGING WALL PAPER. A simple device to facilitate the work of hanging wall paper is illustrated herewith, and has been patented by Mr. John F. McAfee, of Pleasant Hill, Mo. On the upper end of the handle is carried a slightly inclined plate, to the inner side of which is fastened a brush. Across the upper end of the back of the plate is a groove into which fits a bar secured to arms of a bell crank lever fulcrumed on the back of the plate, as shown in Figs. 1 and 3. The other arms of the lever are pivotally connected with a rod extending downward along the handle, and having an offset or shoulder adapted to engage a bearing on the handle when the rod is pulled downward. The paper being covered with paste, one end is laid over the upper end of the plate while the clamp bar is in open position, as shown in Fig. 3 ; the operator then releases the shoulder in the handle rod from its engagement, when the bell crank lever, by the action of a spring, causes the clamping bar to clamp the paper, as shown in Fig. 1. The operator then presses the paper, by means of the clamp and brush, against the wall near the ceiling, disengaging the clamping bar by means of the handle rod, and striking downward with the brush to press the entire length of the paper against the wall.

AN IMPROVED WIRE BOX STRAP.

A box strap made from Bessemer steel wire, of great strength and so made as to admit driving a nail at any desired spot, is shown herewith, in section and as applied to cases of goods. This strap will not cut the hands, is somewhat flattened, and will lie closer to the case than would an ordinary twisted wire strap; a nail may be driven in the last hole of the strap, so that it cannot be bent outward. The strap is formed in a machine capable of turning out 125 feet per minute, cut to the lengths desired, and painted ready for use. It is estimated that box straps of different kinds are used by about 150,000 houses in the United States, and as the cost of wood straps has been steadily advancing, this improved wire strap is designed to meet a growing demand.
For further information relative thereto address Mr. H. Frank, No. 36 Elm Street, New York City.

A WINDOW STAND FOR FLOWERS, ETC

A novel construction of stand for flowers or house plants, designed to set before a window and made to revolve, for more conveniently taking care of the plants, is illustrated herewith, and has been patented by Mr. Herbert L. Starks, of Preston, Conn, The central post about which the shelves revolve is supported by any suitable base, there being a socket piece ar ranged within a central or eye portion of the bottom shelf, this piece consisting of two sections forming a single ring. The lower section has marginal recesses to receive the inner ends of the arms of the lower shelf, the upper section receiving upwardly diverging braces to carry the second shelf. The top shelf has a base portion supported by and free to turn upon

STARKS FLOWER STAND.
the top of the post, this base portion being connected with the lower shelf by diagonal brace rods, fastened beneath the lower shelf by nuts, whereby the upper rotating cap piece carries the whole weight of the shelves, the whole series being hung to rotate in a ree and level manner upon the top of the post.

AN IMPROVED WEATHER STRIP.

The accompanying engraving presents a further illustration of the construction and operation of a

REDMAN'S WEATHER STRIP.

weather strip described in our issue of August 11, and which has been patented by Mr. R. C. Redman, of Salem, Oregon. The invention consists principally in an angular strip loosely pivoted in a recess in the bottom of the door, and having a slot in the upper edge of one of its angular portions loosely engaging a de pending spring in the recess, its other angular portion projecting outward through a recess in the door, and having a pin adapted to engage an inclined slot in a plate on the threshold.

IMPROVED WIRE BOX STRAP.

AN IMPROVED POROUS CUP BATTERY.

The Axo battery, illustrated herewith, meets and overcomes nearly all the recognized defects in open circuit batteries of the porous cup class. The porous cup has a flange which rests on the rim of the jar and forms of itself a cover for the cell. The zinc passes through an independent aperture of its own in the shoulder of the jar. The carbon conductor has inclined sides, increasing in size from the top to the bottom. By gravitation, therefore, the particles of the surrounding mixture are always in perfect and continuous electrical contact with its surface. The carbon it-

self is provided with ventilating grooves extending along its sides, by which it is much more readily relieved of the bubbles of gas which form on its surface, And retard the electric action, than by the holes usually run through the seal and into the mixture. The well known lead cap of the carbon is dispensed with, and in its place is used a thimble, with thumbscrew, which can be slipped off and replaced in a moment. The battery wire passes through a small hole in the top of the thimble and into a recess in the carbon, against which it is clamped by the thumbscrew. The jar is square in form, but the bottom is decreased in size, and is round, thus serving three different purposes : to hoid the bottom of the porous cell in place, to keep it and the zinc separate at the bottom, and to raise the body of the jar above accumulations of dirt and mould in damplocations. A convenient method of setting up a battery of these cells is to set the bottoms of the jars in corresponding holes in a piece of board. The whole battery can then be taken up and removed without disconnecting the cells from each other.
This battery, which is covered by no less than six different patents, is put upon the market by the Leclanche Battery Co., the manufacturers of the celebrated Leclanche Gonda batteries.

The present series of experiments with orãinary live shells and shells charged with melinite and gun cotton against the Resistance, armorclad, have been concluded. The topsides and interior of the hulk are very much torn and rent, but the comparative values of the several explosives will not be determined until after a careful examination of the results has been made on board by a committee of experts. But the mere fact that it was possible to tow the ship into harbor immediately after the firing goes far to prove that the hull was not fatally damaged.

Fig. 1.-OIL Reservoir.

an Improved wrench.

A wrench which can be readily changed to operate as a ratchet wrench or plain wreuch, and the jaws of which can be easily adjusted to and released from a nut, has been patented by Mr. Jonathan M. Silvis, of Kittanning, Pa., and is illustrated herewith, Figs. 1 and 2 showing a vertical section, Fig. 3 a plan view and Fig. 4 a horizontal section of the head of the wrench Fig. 5 being one view of the pawl and ratchet me chanism. Sliding jaws are mounted in a support having a itubular shank, the latter, located in a shank of the handle, and extending across the upper end of a chamber therein, the tubular shank being formed with a ratchet with which a pawl is held in engagement by means of a spring, the pawl being mounted on a rod having an operating thumb screw. The pawl is made with two oppositely beveled sides and two oppositely V-shaped notches, and by rotating a quarter of a turn the rod on which it is mounted, a notched side is brought into engagement with a projection, as shown in Fig. 5, or a beveled side is projected into the path of the ratchet, in the former case locking the ratchet and preventing the wrench from acting as a ratchet wrench, and in the latter case permitting it to so act. The sliding jaws are adjustable on their support for different sized nuts, keing automatically moved into extended position. The handle is shown in shortened position, but the construction is such that it can be conveniently lengthened by disengaging a spring and extending the handle on the square end of the shank of the wrench. This wrench is designed to work between bars, or in close quarters, where other forms of wrench cannot be used, and the tubular shank of the jaw support allows the head of the wrench to go over the end of the bolt.

THE LUCIGEN.

The new system of lighting known as lucigen permits of obtaining an intense light of great brilliancy under very remarkable conditions. This system, which was devised by two English engineers, Messrs. Hannay \& Lyle, is based upon the atomizing of combustible liquids by means of a current of compressed air. We shall describe it with sufficient completeness to allow our readers to appreciate the interest of it. Let us first describe the oil reservair, which is represented in Fig. 1. The lucigen employs the most diverse oils--crude and rectified petroleum, naphthas, oils of tar, vegetable oils, waste lubricating oil, etc. It can burn all of these, but the luminous intensity varies with the amount of carbon contained in the oil used. It is indispensable that the oil be anhydrous, and that it contain no solid particle large enough to stop up the orifices of the burner.
The oil is poured into the reservoir through the sieve, E, which retains the solid particles, if there are any. It collects in a compartment, \mathbf{F}, which communicates with the lower part, D, through a tube provided with a cock shown to the right of the engraving. The compressed air enters through the pipe, A, descends through the tube, B, into the air chamber, C, and causes the oil to ascend in the tube, D, which leads to the burner. The oil reservoir has a double bottom that forms a feed chamber that can be filled during the operation of the system.
Fig. 2 will allow the operation of the burner to be understood. The oil enters the tube, A, under pressure, and makes its exit through a cylindrico-conic ajutage placed within the lamp. This ajutage is capped by a second ajutage, B, serving for the passage of the air and the atomized oil. The air enters through a conduit, C, parallel with the tube that

Fir. 2.-DETAILS OF THE BURNER.
leads the oil, circulates and becomes heated in the worm, D, placed in contact with the flame in the combustion chamber, K, and returns to the annular chamber, E, crowned by the exit ajutage. Here it heats the oil in a certain measure, thus rendering its division easier and surer, and finally seizes it between the two ajutages and carries it to the exterior under the form of extremely small drops. The outflow of oil and air is regulated by a double cock, R (Fig. 3), placed at some distance from the burner.
To complete the description of the burner, it is ne essary to mention the role of an accessory oil tube, \mathbf{F},

placed at the side and provided with a regulating cock, G (Fig. 2). The oil, on making its exit from this cock, enters a vertical tube, H, that debouches below in the combustion chamber. It here impregnates an asbestos wick, which, during the operation of the lamp, burns constantly, so as to light the burner automatically, in case the flame should become extinguished hrough any cause.
The apparatus here described is the one constructed and improved by Messrs. Rouart Bros., grantees of the Hannay system for France. It furnishes a broad, thick flame, which might aptly be called a "plume" of fire (Fig. 3, A). The denticulations, observed along the edges of the flame are produced by the shock of the gases in combustion against the surrounding air, which, although carried along in an ascending motion by the gnited, vapor, has an incomparably less velocity.
Messrs. Rouart have devised a series of apparatus designed for the various possible applications of this new mode of lighting. Where the apparatus are to be sta tionary, the burners are arranged at proper distances upon supports of various heights, according to their

Fig. 3.-A, appearance of the lucigen flame. b, movABLE SUPPORT. C STATIONARY SUPPORT.

Speed of Passenger Trains.

The accompanying table gives the speed of the fast est passenger trains and the average speed of all pas senger trains between most of the principal cities of the United States. The times and distances are taken from the Traveler's Official Guide for July, 1838. The average distance between the stations at which the fastest train is timed to stop is also given where possible. The time on which the speed is calculated in cludes all stoppages, and no allowance or deduction is made for ferries, etc. It is believed that in every train given in the table, through cars of some description are run between the termini given, though in some cases no sleepers are run, and in others the sleepers only are run through.'
The trains given in the table either run between or pass through 36 of the principal cities in the United States, and it is believed that Denver and Indianapolis are the only important omissions. The case of Brook-
without a stop over a road with such numerous curves and heavy grades as the main line of the Pennsylvania shows what can be done in long runs without stopping, and should encourage railroad managers to minimize the time wasted in stopping at points where no money can be earned and where traffic is delayed ather than accommodated.
The table shows very clearly that the train service between New York and Philadelphia stands out pre eminent both for speed and frequency of trains, while that between New York and Washington, Boston and Chicago respectively is not far behind. The average speed of all trains between New York and these cities is over 30 miles per hour, which is a higher average rate than obtains elsewhere, and is exceeded only by a ew of the fastest trains in the West and South.
The table shows that the fast trains between Chicago and Kansas City, which are said to have been such expensive luxuries, are, after all, run at a very EEN PRINCIPAL CITIES, JULY, 1888.

Whence-Whither.	Roate.	Fastest Train.				$\begin{gathered} \text { Mo. of } \\ \text { trains } \\ \text { cach } \\ \text { way per } \\ \text { day. } \end{gathered}$	Average of alt trains.
		Distance. Miles.	$\begin{aligned} & \text { Time. } \\ & \text { Hrs. Min. } \end{aligned}$	Speed. Miles per hour.	Average distance stopping stations Miles.		
New York-Philadelphia..	Philadelphia \& Reading.	$90 \cdot 4$		42.0	$12 \cdot 9$	10	$82 \cdot 6$
"، -Washington ...	Pennsylvania.........................	926 298	2 5 5	43.6 40.8	227		34 34 34
" - Pitssburg.....	, $\quad . . .1$..............	444	1130	${ }_{38}{ }^{40} 6$	89	4	${ }_{31}{ }^{34}$
." -Chicago........	,	912	250	36.5	102	4	29.9
". ${ }^{\text {. }}$..	N. Y. Central \& LakeShore.....	${ }_{977}^{981}$	25 28 0	$39 \cdot 1$ 34	${ }_{28}^{109}$	${ }_{3}^{4}$	-82\%
-Buffalo..	New York Central........	441	$\begin{array}{ll}28 & 30 \\ 10\end{array}$	$34 \cdot 3$ 410	28.7 110	${ }_{5}^{3}$	30.9 34
" -Bu! ${ }_{\text {a }}$	Erie	423	138	32.5			${ }_{31}{ }^{34}$
" ${ }^{\text {" }}$	Lackawanna	409	1240	$32 \cdot 3$	16	2	29.9
". -Boston..	Boston \& Albany.	234 213	$\begin{array}{ll}6 & 0 \\ 6 & 0\end{array}$	$\begin{array}{r}39.0 \\ \hline 35\end{array}$	${ }_{53}^{33} 5$	4	35.4
". "	New Y Ork \& New England..............	213 229	6 6 6	35.5 38.2	${ }^{53} \times 17$	5 4	31.1 327
Baltimore-Chicago.	Baltimore \& Ohio....	853	2540	33.2	25	*2	29.5
	Pennsylvania...............	801	2315	$34 \cdot 4$	33	4	28.5
Chicago-Minneapolis..	C., M. \& St. Paul.	$\stackrel{420}{419}$	1440	88.6	15.0	$\stackrel{3}{3}$	27.0
"	Cisconsin Central	419	14 15 15 15	$28 \cdot 8$ 31.3	18.0		${ }^{27} 5$
$\ddot{\square}$	C., St. Paul \& Kansas City	431	15 15	38.7 28	${ }_{22}{ }^{26}$	$\stackrel{2}{2}$	${ }_{26}^{28} 8$
" ${ }^{\prime}$	C., Burlington \& Northern..	442	1437	$30 \cdot 2$	19	2	28.3
". -Kansas ${ }^{\text {c }}$ City	C., Burlington \& Quincy.	487 488	$\begin{array}{rl}15 & 40 \\ 15 & 30\end{array}$	31.1 31.5	24 30 30	2 3 3	-2638
" ${ }^{\text {" }}$		${ }_{521}^{488}$	$\begin{array}{lll}15 & 30 \\ 16 & 35\end{array}$	$31 \cdot 5$ 31.5	$30 \cdot 5$	$\stackrel{3}{2}$	25.0 27
"	C., Santa Fe \& California.	458	20.25	22.4	$\ddot{4} \cdot \mathrm{i}$	2	${ }_{21} \cdot 7$
-Omaha	C., Burlington \& Quincy	508	1620	31.1	30	3	28.5
". ${ }^{\prime \prime}$	C., Milwaukee \& St. Paul....	490 500	18 16 18	26.1 $31 \cdot 2$	9.4.	$\stackrel{3}{3}$	25.0 28.5
\% -st. Louis.	Chicago \& Alton...........	$\stackrel{5}{283}$	10	${ }_{26}{ }^{31} 7$	18.5	$\stackrel{3}{3}$	${ }_{86} 8$
"	Wabash...	${ }_{289}^{286}$	$\begin{array}{ll}9 & 50 \\ 10\end{array}$	291	8	2	88.2
" "	Illinois Central..	299	1030	285	?		280
-New ${ }^{\text {c/ Orleans. }}$	" ${ }^{\circ}$	915			10		
Cincinnati- "،	Cin., N. O. \& 'Texas Pacific.......	${ }_{811}^{826}$	${ }_{25}^{25} 85$	32.3	${ }_{29}^{59}$	2	27.5
Lavisville-	Louisville \& Nashville	811 295	$\begin{array}{rr}25 \\ 10 & 20\end{array}$	$32 \cdot 4$ 28.5	25.3 10.5		28.0 28
St. Louls-Galveston.	Missourt Pacific.	1014					
	Iron Mountain.	869	3555	24.2	13.6	1	24.2
Omaha-Ogden.	Union Pacific.	${ }_{834} 1031$	$\begin{array}{ll}36 & 10 \\ 37\end{array}$	${ }^{28.5}$	${ }_{12}^{38}$		21.7
Ogden-Sar Francisco.	Central Pacific	$\begin{array}{r}834 \\ \\ \hline 895\end{array}$	37 11 15 15	22.9 2.0	12	1	21.5 22.0
St. Paul-Portland..........	Southern Pacific. Northern Pacific.	2495 1913	113 74 18	22.0 25	$31{ }^{\text {9 }}$	$\stackrel{1}{2}$	22.0 28

* Via different routes.

+To Council Bluffs Transfer.
lyn is of course exceptional. Care has been taken to \mid moderate pace, and their speed of 30 to 31.5 miles per make the table as accurate and representative as possible, but some errors are unavoidable.-Railroad Gazette.

ast rrains.

The term high speed is used somewhat indiscriminately, and to most has a very indefinite meaning. If the difficulty of running a train regularly at a high speed is taken to increase approximately as the cube of the speed, a train run at 30 miles per hour requires fully 50 per cent more care, skill, and attention to detail than one run at 25 miles per hour, while the task of running at 40 miles per hour involves fourfold the difficulties experienced in running at 25 miles. These proportions are merely speculative, but they have sufficient basis of fact to render important an increase of a few miles per hour in the speed of a train. The higher the speed, the greater the difficulty of attaining an additional mile per hour.
The table which will be found herewith contains some interesting information as to speed of passenger trains between the chief cities of the United States. The table has been carefully compiled, so as to represent as fairly as possible all sections of the country, and the rule of selecting as termini important cities indicates fairly the speeds at which passengers are conveyed between the principal centers of business. As it is practically impossible to make any fair allowance for the time lost in stopping at stations, or at level crossings, drawbridges, etc., the time given includes all stops. It is equally impossible to make any allowance for ferries, and the time given is always, as far as possible, that from city to city, and includes the time lost by any ferries, etc., between the terminal points. The average distance between the stopping stations as marked in the time tables is given, and indicates the frequency with which stops are made for traffic purposes. On the great majority of roads many other stops are made for water, 'grade' crossings, drawbridges, and other causes, both permanent and temporary. The Ramsbottom water trough and scoop renders it unnecessary to stop for water, and efficient interlocking signals can be used, which obviate all necessity of stopping at grade crossings. The fact that the famous Jarrett \& Palmer special train was run for 439.5 miles
hour is exceeded by two Southern roads, one of which has the disadvantage of worse gradients, while neither serves such enterprising Western cities as Omaha, Minneapolis, St. Paul, or Kansas City.
An unwillingness to run a through train at over 30 niles per hour, including a few stops, is a confession of weakness. Going south again, the table shows that very cheaply constructed road, the Central of Georgia, actually attains a higher average speed between two comparatively sinall Southern cities than the great competing companies of the West attain beween Chicago and Kansas City.
Even when the fastest trains between Chicago and Kansas City are compared with the fastest train between Savannah and Atlanta, the former come out only three miles per hour ahead. The stopping stations are nearly three times as frequent on the Southern road, and an allowance of only three minutes a stop makes the running speed equal.
The train between San Francisco and New Orleans is noticeable for the fact that it has the longest through car service of any line in the world, and in fact it would be impossible to find a continuous line of rail of this length on any other continent. The Canadian Pacific runs through trains from Montreal to Vancouver, 2,906 miles, but we believe sleepers are not run through for the whole distance.

The table shows that east of Chicago the speed of the fastest trains between the largest cities is about 40 miles per hour, including stops, while the average speed of all through trains is about 32 miles per hour. West of Chicago and in the South the speed of the fastest trains is about 30 miles per hour, while the average speed of all through trains is about 27 miles per hour. In the Southwest the speed of the principal through trains is about 23 miles per hour. These figures in all cases include all stoppayes.--Railroad Gazette.

A long trestle has been built by the Portland \& Vancouver Railroad to get across the bottom land of the Columbia and reach deep water. The trestle is $8,60 \mathrm{ft}$. long, with two truss spans across arms of the streàm, and extends 700 ft . into the stream. The river is crossed by ferry from the end of the trestle, in about ten minutes.

thompson's gravity system for rapid transit

 in towns and cities.A new system of operating passenger railroads in towns and cities, in which the cars are operated by gravity, is shown in our first page illustrations, the distances apart of the stations being approximately such as would be represented by the passenger stations on a city railway. The operative features of such a construction have had numerous illustrations in various switchback railways and coasting tracks at seaside resorts and other places, not to mention the famous switchback road at Mauch Chunk, Penn., which was used for many years to convey coal from the mines to the banks of the Lehigh, and where the inclines are extensive. It has, however, remained for Mr. L. A. Thompson, of Philadelphia, to perfect the working details for the operation of a city railroad on this plan, for which letters patent have been granted to him here and in all the principal countries of the world.
In this new system the locomotive is dispensed with. Hence the railway structure may be very light and simple, offering but little obstruction to the streets. At the stations, it will be observed, there are two undulations in each track, a car approaching the station being carried up and over the slighter elevation of the first undulation, where it stops to discharge and receive passengers, after which it is carried up over the higher undulation beyond, and allowed to proceed on its way to the next station under the action of gravity alone, whereby a high velocity is imparted to the cear. Attached under each car is a cable gripping mechanism designed to work automatically, and Figs. 2 and 3 illustrate the manner in which the cables are operated by the engine at the station, and extend out a short distance under the tracks at either side. As the car arrives at the end of each long incline, and without at all checking its speed, its gripping mechanism comes in contact with the moving cable, driven at the station, by which the car is kept continuously on its journey till the desired stopping place is reached, which is on a slight incline, when the cable is released. As the car stands on an incline, it starts of itself by the action of a lever.
The automatic gripping mechanism is shown in plan and section in Figs. 5 and 7, and in Fig. 6 is shown a transverse section of light elevated road construction deemed suitable for this plan of operating a railroad, the metallic supporting columns and cross beams carrying also the track supports (I-beams), adapted to serve as guards on the outside of the car wheels to prevent the cars from being accidentally derailed. The speed which the cars may be expected to attain will depend upon the grades adopted. It is calculated that an average speed of from ten to twelve miles an hour, including stops, can be readily obtained without having the tracks higher than they at present are in many places on the elevated railroads in New York City. Each car will be provided with a suitable brake mechanism to enable the train hands at all times to have complete control of its movement, and thereare devices for preventing any retrograde movement of the car while ascending inclines. At each station elevators will lift passengers from the sidewalk to the platforms.
Mr. Thompson has had much experience in building gravity roads. He erected numerous switchback railway coasting tracks in this country prior to 1887, when he went abroad and built a score or more of such roads in England and France, which have proved a great attraction at numerous seaside resorts, watering places, and centers of public resort. Our contemporary, La Nature, in describing these railways, recently gave Mr. Thompson due credit as the constructor, but said
he was an Englishman. He is, however, a wide-awake, he was an Englishman. He is, however, a wide-a wake, enterprising American.
The Thompson gravity or switchback roads are now in operation in Atlantic City, Lakeside, Gloucester, Paterson, N. J.; Neshaminy Falls, Chestnut Grove, Pa.: Bay Ridge, Md.; Washington, D. C.; Alexandria, Rich mond, Va.; Coney Island, Bowery Bay, Oak Point, Saratoga, Rockaway Beach, Rochester, N. Y.; Cheltenhan Beach, Chicago; Reeds Lake, Grand Rapids; Coronado Beach, Santa Monica, Cal.; Providence R. I.

Of the Thompson roads there are also now in operation, in London, three. Of the roadways, in Manchester, two; Newcastle-on-Tyne, one; Blackpool, one Liverpool, two ; Douglas (Isle of Man), two; one in Brighton, Skegness, Great Grimsby, Great Yarmouth and Folkestone ; in Glasgow, two ; Hull, one ; in Paris, three; Boulogne, one; Barcelona, Spain, one. Millions of passengers have been carried on these gravity roadways, and we believe no serious accident has ever occurred on them. Probably no safer mode of convey-
ance was ever devised. The form of these roads, as ance was ever devised. The form of these roads, as
erected by Mr. Thompson, will be seen by reference to the engraving of the roadway built by him at Boulogne, given on page 150.
Mr. Thompson's experience in this line has led him to the elaboration of the method herewith illustrated for street railway service. Among the advantages of
ing engines or motors of any kind, the construction of roadway need cost scarcely half the amount would be required if engines were employed. All coal are a voided. The roadway, being light and airy, does not darken the streets, and the cars running almost noiselessly is a feature of no small moment. The cars can be built very much lighter than any now in use on elevated railways, as there is no jerking or sudden stopping. The destruction of power by the application of air brakes at high speed in this system is entirely avoided, and no power is needed to stop. In other words, the force of momentum is utilized, as the car, encountering an incline on approaching the station, ascends by its own force nearly to the top; all the power required to complete the ascent being furnished by the short section of cable at each station, driven by small stationary engines, as shown in our engravings. The grip is entirely automatic, taking hold of the running cable while the car is in motion (butat reduced speed), and releasing itself automatically at top of incline.
The attendant, by application of a brake, stops the car for passengers to alight or get on. Upon releasing the brake, actuated by a levermovement, the car immediately moves forward of itself, as it stands on a moderately descending grade, and again coming in contact with the moving cable, which carries it over the elevation, and the car then speeds on to the next station. A notable feature of this railway is the construction of the roadbed, its cheapness, and yet efficiency, and absolute safety.
The longitudinal I bars, sustained by straining rods -with cross ties-being of uniform thickness and length, resting on the lower flange of I bars, and held there securely by rods passing through from one I bar to the other, between the ties, the trucks of the car when standing on the rail being so arranged that they cannot get off, the breaking of a wheel or axle could not precipitate a car into the street. Hence its great safety.
Of the practicability and economy of this system there can be no question, as these points have been settled by the numerous examples of such structures now in actual operation. 'The reduction of this gravity system of propulsion to the local wants of towns and cities for the purposes of rapid transit reflects the highest credit upon the inventive and engineering abilities of Mr. Thompson, and we trust it will not be long before his plans will come into extensive operation. The system is at once effective, safe, and desirable. It is cheaper than steam, horse, or electricity. It furnishes a delightful method of high speed traveling, at low cost, free from many of the dangers and inconveniences of the ordinary steam cars. Further information may be had by addressing the patentee,
L. A. Thompson, 914 Walnut Street, Philadelphia, Pa.

Blue Printing.

At the ninth annual meeting of the Ohio Society of Surveyors and Civil Engineers, Joseph N. Bradford, M.E., read a paper on the duplication of drawings, in which he recommended the following formula as giving the best results in the production of blue prints :

No. 1.

Red prussiate of potash. Water. 1	$\stackrel{\text { oz. }}{ }$
No. 2.		
Citrate of iron and anmonia.		

Use equal parts of Nos. 1 and 2. Keep these solutions in separate, ght-tight, well-stoppered bottles.

The function of the gum arabic or dextrin is to keep the sensitizing solution on the surface of the paper, the quantity used depending upon the quality of the paper-hard, firm paper requiring little; soft, porous paper, more. As the iron and ammonia solution undergoes change when kept, it is better to have the salt in the dry state in a well-stoppered bottle, making the solution as needed.
In preparing the sensitized paper, take a solid, firm paper, free from impurities, and apply the solution to the surface of the paper with a soft sponge or a broad; soft brush, being careful not to have the sponge or brush charged too heavily with the solution, or else the paper will have a streaked appearance, which will show in the finished print. Go over the surface of the paper in two directions at right angles to each other, to insure an even coating. The sensitized paper must be allowed to dry in the dark, and in a horizontal position.

At a recent meeting of the Paris Academy of Sciences, a paper was read on the thermic lconductibility of mercury above 100 degrees C., by M. Alphonse Berget. In continuation of a previous note-Comptes Rendus, A pril 16, 1888-the?anthor gives the results of his studies on the variation in the thermic conductibility of mercury between 100 degrees and 300 degrees
C. For 1 degree he finds the variation in the coefficient of thermic conductibility to be -0.00045 .

Gorrespondence.

A Curious Treatment for Hydrophobia.
 To the Editor of the Scientific American:

I recently met a gentleman of high educational attainments, who stated that, in six years' residence in the East Indies, he had known of three severe cases of hydrophobia, and that each case was permanently cured. The means used was to take the patient to a pool or stream of water, plunge him in and allow him to just about drown and then resuscitate him. In each case, as before stated, a permanent cure was effected.
W. T. G.

San Francisco, Cal., July 16, 1888.

Lightning in City and Country.

To the Editor of the Scientific American:
In answer to inquiry in Scientific American, August 25, 1888, as to comparative frequency of lightning strokes in cities and open country, a brief account may be found in an article in the United States Monthy Weather Review, December 1886, translated from the German, and giving the results of an investigation made by the Royal Prussian Bureau of Statistics. Sec tion 5 of this report says :
"The risk of danger from lightning decreases with increase, of number of houses contained in any given district. In Prussia the risk in the country is five times greater than in the city districts. In Berlin the number of fires caused by lightning averages only 0.2 to 0.3 of one per cent. For ant ordinary dwelling house which stands among others not particularly high, the erection of a lightning rod is not needed."
It may interest your correspondent T. H. S. and others to know that the same authority gives the statement, based on investigation, that of all trees the oak was most frequently and the beech least frequently struck by lightning. If 1 represents the frequency with which the beech is struck, 15 represents the value for pine trees, 54 for oaks, and other trees collectively 40. The determination of just where lightning is going to strike depends upon many variable conditions, among which are the geological and geographical features of the locality, the electrification of the cloud mass, the velocity of cloud motion, and the condition of the interjacent air as regards what Sir Wm. Thomson calls its electric strength!
There is no reason why lightning should not "strike twice in the same place," but we can see that it may be of rare occurrence to have a repetition of all the conditions which prevail at the time of a given disrupive discharge.
A. M.

New York, N. Y.
Oll on the Waters as a Preventive of Fogs.
T'o the Editor of the Scientific American:
Can you inform me whether the experiment of pouring oil upon the wateriof rivers, or ponds, or estuaries, or of the ocean, has ever been made with the object of preventing or removing fogs?
Brand's Dictionary of Science, Literature, and Art, under the head of Fog, says :
"Fogs, in general, are the consequence of the nocturnal cooling of the atmosphere. The air, by its rapid cooling, becomes surcharged with moisture; a part of which, being precipitated in the form of a cloud, gives rise to the ordinary fog. During the day the heat of the sun generally disperses the fog, because the quantity of moisture which the air is capable of holding becomes more considerable in proportion as its temperature is increased. In calm weather the surfaces of rivers, lakes, etc., are frequently in the morning covered with fog. The reason is this: During the night the air is cooler than the water; the strata of air in contact with the water are constantly heated, and become saturated with moisture. The mixture of the vapor with the air, together with its elevation of temperature, renders the air specifically lighter. It rises in consequence, and, mixing with the cold air in the superior strata, is cooled, and precipitates its moisture," etc. It is obvious that the above explanation applies equally to the giving off of visible vapor-the "smoking," as it is commonly called, of hot water when standing in any uncovered open vessel.
Now in this case, as I have found by experiment, though no doubt any practical scientist could have assured me of the result in advance, it needs but a small quantity of oil poured upon the "smoking" water to rrest at once the process of its visible vaporization.
Reasoning from this fact, I should suppose that there might be other uses for pouring oil upon the water than the quieting of the waves. I take it for granted that the fogs most dangerous to navigation are precisely those still fogs due to sudden though slight changes in the relative temperatures of the water and air which are illustrated; upon a small scale in the "smoking" of hot water in an open basin, and which can be prevented or stopped by the use of oil.
Again, if oil is effectual to prevent the vaporization of water, why may it not have a possible most valuable use, in river or sea-port settlements, to arrest the spead of malarial diseases, and even of yellow fever? Cambridge, Mass.
D. G. H.

BOULOGNE-SUR-MER.

Our illustration presents a general view of this agreeable and very accessible watering place on the shore of France. A stay in Boulogne is now rendered more attractive by the Grand Casino, in which Mr. Hirschler, the spirited proprietor, has done more in four years than did the previous administrators in forty. At the Casino will be found a newly arranged hydropathic establishment; swimming baths, continually renewed with fresh sea water, and professors to teach the art of swimming; and several hundred bathing machines, the most, commodious and best administered in Europe.
On these sands, free from shingle or rock, families can bathe, and children can paddle the livelong day, while the boats of the Humane Society are constant in their attendance for the prevention of accidents. The bathing here is considered healthy and safe at any time of the tide or day, provided that a couple of hours be allowed for digestion; whereas bathing in England finishes at noon or at one o'clock, after which time it is either contrary to the "by-laws" of the town or declared by the faculty to be injurious to health.
with them the scent of the tropics, making the nights delightfully cool during the long summers.
It has an average humidity, 72 per cent, summer and winter, and though to the Northerner the heat at 90° may seem greater than it really is, yet from a personal experience there is not that oppressive heat felt here on the hottest days that is felt in the Northern and interior portions of the United States.
Thunderstorms are not a rarity in this section, but there are fewer than further inland. The electrical displays are a marvel during a heavy thunderstorm, resembling more the presence of a body of artillery than anything else; the bolts flashing past trees and house tops in a manner to put to fright a person of but average courage, and a wonder that such az zigzag of fire can keep up for hours without apparent damage fills the thoughts of the beholder. Of rain in such heavy storms the heaviest that I have seen was four inches in about two hours.
The average annual rainfall is about fifty-six inches, equally divided between the months, making the equally divided between the months, making the
monthly average four and two-thirds inches, and

From three to five tons of catfish are shipped annually to the West from this point, and are caught by line in the surrounding lakes. The hunting and trapping is a sure means of livelihood in this section, also alligator, otter, seagull, and other skins, and the plumage of white cranes, the latter now nearly as scarce as the buffalo on the great Western plains. The feathers of the white crane of particular value will not number more than fifteen or twenty on each bird: They are a slenderly delicate aigrette plume, so white and airy that if held to the sun they are scarcely visible. These feathers are worth $\$ 400$ per pound in the city market, and I am informed that one man shipped two hundred pounds to France during last year.
A ride in the bayou boats is a novelty to the stranger unlike that experienced elsewhere. They have a distinct motion peculiar to themselves, more like the rocking of a cradle than anything else. Slipping through the drawbridge on one of these boats, lake after lake and bayou after bayou presents itself in this lovely sland country, the parish (St. Mary's) being scarcely more than a continuation of these wooded islands;

THE CASINO, BOULOGNE-SUR-MER, WITH SWITCHBACK RAILWAY, THE TOWN, QUAY, FLOATING DOCK, AND SWIMMING BATHS.

There is no lack of social and intellectual amusement proving that the heavy rains are not a frequent occurat Boulogne. At the Casino there is a band of sixty musicians, performing twice daily, in the delightful garden. The theatrical entertainments are either comedy, vaudeville, or opera comique by some of the leading Paris artists. There are children's balls and balls for adults at frequent intervals. The ball rooms, theater, and drawing and reading rooms, the restaurant, cafe, and billiard rooms are lighted by electricity, and thousands of fete and illumination lamps in the gardens are furnished in like manner.

A new feature has been added to the Casino; the old skating rink and lawn tennis grounds have been abolished, and in their place have sprung up flower beds, parterres, and shrubberies. A music kiosque has been erected, with a fountain, tents, lounging seats, and tables, and an outdoor cafe service. A continual source of amusement is the switchback railway. It was erected by Mr. L. A. Thompson, of Philadelphia, Pa.

[American Meteorological Journal.]

Notes on Southern Louisiana.
Thereare few, if any, portions of the United so wonderfully made as Southern Luouisiana from the Gulf coast to latitude $30^{\circ} 30^{\prime}$. It is a section of country where the highest temperature has never exceeded 97°, and the lowest rarely falling below 20° Fah. Warm southerly breezes prevail almost during the entire year, carrying
pronce.
The clear days, entirely free from clouds, will not average a third ; but the fair days are in excess. The heavy cumulus clouds are seen in magnificence nearly every evening, and are dispelled toward dusk by the winds blowing from the Gulf.
Of the prominent lakes, Pontchartrain, Maurepas, Borgne, Washa, Grand, White, Calcasieu, and Sabine the former and Calcasieu are probably those most used by residents as resorts. From New Orleans to Pontchar train is six miles by rail, where the population of the city go by the thousands each evening and listen to the music of a superb band, and go bathing or sailing. The waters of this lake are connected with the Gulf by the narrow Rigoletts at the eastern end of the lake.
Probably the most beautiful spot in Southern Louisiana is in the vicinity of Morgan City. This city is situated on Tiger Island, and is surrounded by Grand Lake, Flat Lake, Lake Poularde, Bayou Bœuf, and the Atchafalaya River
Morgan City is beautifully laid out, with wide streets, hard and white, that shed water rapidly. The streets are planted with oak and myrtle trees and the rich umbrella china tree. The railroad cuts the town in two parts. A great deal of lumber is shipped from this city to Texas, and the shipment of opened oysters in cans to the same State last year amounted to $21,000,000$ oysters.
passing pontoon bridges (each plantation has one), which seem to float like cobwebs across the stream. A planter owns both sides of these streams. Consequently the necessity of having a bridge for his cattle and teams to cross to cultivate the land on either side.
The trees on the Teche are the cypress and oak, moss covered and aged. Plantation after plantation was passed; rich fields of cane, orchards of melons and oranges, and the shading fig trees; arbors heavy with the finest of wine-producing grapes; pomegranates, plum, and peach trees furnished the shade. Out on the flat lands mushrooms grow plentifully, and watercressss are tangled over the clear streams. In the gardens are all kinds of vegetables, and about the houses the fragrance of the rarest of flowers, blooming in wild profusion. In the magnolia trees mocking birds were singing, and in the timber, the home of the deer and the haunt of the delicate bird, the hunter was seen ready for his next shot.
R. E. Kerkam

The new battle ship Sans Pareil, 15, 10,470 tons, 12,000 horse power, has been built by the Thames Iron Works Company. The Sans Pareil will be completed for sea at Chatham Dockyard. She will carry two 110 ton gl .s, one 10 in . gun, twelve 6 in . guns, twenty-one 3 ,ounder and 6 pounder quick-firing guns, a number of machine guns, and 18 Whitehead torpedoes.

THE TERMITE PEST OF THE OLD WORLD

jobn b. cortell

The ravages of the so-called white ant, but more properly designated termite, can hardly be comprehended by those who have not seen the resalts of its labors. These are so disproportionate to the size and apparent powers of the insect, that no one can be blamed for doubting, except upon the most positive evidence. It is for this reason, probably, that British officials, in termite-infested parts of the globe, have been moved to send to the home government specimens of what the little insect can do. At the South Kensington Museum of Natural History there are two notable examples of the destructive powers of the termite. One of these is the remains of a heavy, square lintel of teak wood, taken from the door of one of the government offices at Jamestown, St. Helena. The other is a piece of sheet lead, from Madras, which has been perforated by the insect. The latter is an extreme case, but the former is not a fair example of average destruction, although it gives a clear idea of what the insect is capable oí. In this case the wood has been completely eaten away to the heart, leaving that like a skeleton.
In many cases not even the skeleton is left. I remember once, in the south of China, having occasion to move a huge hardwood chest filled with records, in the shape of books. I called two men to come and lift the chest. They took it by its iron handles, and with one accord bent to it and lifted. It was like a signal for dissolution. It seemed as ifforce of habit alone could Ruve held the handles in their places, for the instant they were tugged at they came away, and the chest crumbled and fell to the floor a heap of dust and irregular, thread-like shreds of wood. The books then, on being. examined, proved to have suffered in the same fashion. Some of them crumbled on being taken up, and others remained so thoroughly riddled with holes as to be nothing better than a fragile lacework of paper.

If the insect destroyed only at times during its varied existence, it might be possible to guard against it better ; but when it is considered that as larva, pupa, and perfect insect it is alike and equally destructive, it will be understood what a pest it must be. Camphor is a shield against it, and camphor-wood chests are therefore used for keeping valuable articles in, but even the genuine camphor wood is not alwayestrongenough tokeep away the ravenous thing, and it has to be re-enforced by plentiful supplies of the gum
My first accquaintance with the insect was made one night in the fall of the year, at Canton, while dining with a merchant there. It was still warm enough to need the windows to be wide open and to have the huge fan or punka swinging steadily over the table. We were about half through with the soup when there came in through the windows such a swarm of the termites as soon filled every soup plate and every glass. They fell upon the table like hail, their wings, which they seemed to be losing, floating through the room and finding their way to our most unwilling mouths, in spite of every effort to avoid them. The windows were shut and the table cleared, and we went on with our meal, sweltering in order that we might eat.
These termites, which so bothered us, were the males and females out on their courting tour, and well it is that they were so easily destroyed; for if more than the very smallest percentage of the females were to live, the whole world would hardly be large enough to contain their progeny. One female will lay in the neighborhood of thirty-one millions of eggs in the course of a year. Of these eggs the smallest proportion are males and perfect females, the others being workers and soldiers, and the workers be ing in an excessive majority. These lat ter, neuter, classes are not produced, as with so many other insects, by special feeding or treatment, but are determined in the egg.
It has been stated that the female is impregnated during the flight, but this is not so. The insects merely pair at this time, and then such as are not destroyed are taken in charge by some workers who have a nest, but no queen, and are con veyed to a cell of unusual size and there practically imprisoned. A hole only large enough for a worker to pass in and out of is left, and then the female is impregnat ed. She lays the eggs, at the rate of eighty thousand a day, and as they are
laid the workers come along and take them to the cells to which they are assigned. The metamorphosis of the termite is not as strongly marked as with so many insects, the larva and pupa differing but little from the

final form which it is to take. The males and females are the only ones having wings, of which the number is four, and these wings are lost as soon as their purpose is accomplished. Of course the reason for the nuptial flight, or more properly the courtship flight, is a sound one. If the males and femades tere not enabled to leave the nest in this way, there would be the greatest danger of inbreeding, with all its disastrous effects on the termite family.
Perhaps the most extraordinary feature of the female termite is the manner in which she is fitted to perform termite is the manner in which she is fitted to perform
her duty in life. This duty being solely to lay a suf-
ficient number of eggs to prevent the possible extermination of the insect. she is so constructed that, having gone safely through the hazardous period of courtship, she is spared the necessity of having ever again to resort to it. She holds within her body, when pregnant, all the eggs she is ever going to lay. And as thirty-one millions are a great many and form a vast bulk, comparatively, even of the tiniest things, it follows that she must have some extraordinary means of providing for their reception. And she has. Before impregnation she is not much over half an inch in length, but when ready to begin to lay she has increased so enormously in size that she weighs one creased so enormously in size that she weighs on
There are several species of the termite, some of which make those great tent-shaped mounds of which travelers tell so much, and others building high up in rees. The sort which is so destructive to wood and books makes its home underground, and approaches the object it intends to convert into food by tunneling to it. By this means it renders any attempt to watch for its coming null. Usually it follows the grain of the wood in its progress, but this is not always the case the direction being determined by expediency. A chest which has not been totally destroyed will show that the insect has gone back and forth and up and down, just as the nature of the wood or its thickness renders th most expedient. Frequently the termite will perform a most singular work in the effort to make the best use of any wooden structure into which it has made its way. If, for example, it has bored through the length of a pillar supporting a house, and finds at the top that there is wood which it would like for food, it first use up the wood of the pillar and then fills the hollow shell thus created with mud packed until it is ashardas concrete. The pillars of one house taken down for rebuilding in St. Helena were found to be mere shells of wood compactly filled, except for a tunnel through the length
 with which the termite conceals its rav ages, and the manner in which it guards against the premature destruction of its means of approach to its food supplies indicate a high degree of intelligence.

Cantner', Process for Aluminum and Sodinm.

There is no difference of opinion as to the great variety of uses to which aluminum might be applied if it could be produced in sufficient quantities at a reasonable cost. Hitherto it has been produced almost entirely in France by the Deville process; and this process involves so considerable an expenditure that the results have been by no means satisfactory. About seven years ago, Mr. H. Y. Castner, of New York, began experiments in that city with a view to improve tho Deville process and cheapen the cost of aluminum by reducing the cost of producing the sodium from which it is obtained. Two years since, Mr. Castner erected experimental works at Lambeth, where he succeeded, after nearly eighteen months of further experimentation, in satisfying a number of men of science and others that he could produce sodium at one-fifth and aluminum at one-third of the cost previously incurred. A company was thereupon formed in order to take up and work the Castner patents.
In October last the foundation stone was laid of new works at Oldbury, near Birmingham, for the production of both sodium and aluminum on a large commercial scale. The works were virtually completed and the successful manufacture of these products was begun about a fortnight ago, and a large number of gentlemen were invited to visit the works on July 28 last and witness the processes in actual operation. Among those who accepted the invitation to be present were the Right Hon. A. J. Balfour, M.P., a trustee for the debenture holders; Sir Frederick Abel, C.B., F.R.S. ; Sir Henry Frederick Abe, C.B., F.R.S. ; Sir Henry Andrew Clarke, G.C.M.G., C.B. ; Prof. C. Roberts-Austen, F.R.S., of the Mint; Prof. Dewar, F.R.S. ; Dr. Crookes, F.R.S. ; Dr. Hugo Muller, F.R.S. ; Lord Rayleigh, F.R.S. : Prof. Huntingdon, and others.

According to the London Times, only one opinion was expressed by the gentleone opinion was expressed
men who visited the works -some of them among the highest authorities on the sub-ject-as to the practical success of all the operations witnessed, and the admirable arrangement of the plant employed. Mr. Castner was freely complimented on the skill and success with which he had developed his system.-Nature.
" Dairy" Batter.
In a dark and dingy-looking cellar, belonging to one of the large produce commission houses on the west side down town, two men were busily employed, a short time ago, in "flxing" numerous tubs of butter forthe retail trade. A Herald reporter watched the operation with interest. The house in question does a large retail trade up town, and the mode of "fixing" these tubs preparatory to leaving the down town establishment may perhaps explain why it is that the up-town consumer pays thirty-five cents a pound for "gilt edge creamery" while the market quotation for the same is but twenty cents.
After viewing the operation for some time and asking a number of questions, the reporter elicited the following facts, which may be said to apply not only to this house alone, but to most of the wholesale houses connected with the trade. John Smith, of Butterville, Ohio, for instance, will consign a number of tubs of butter to a New York house to be sold on commission. The butter is ordinary dairy butterany sort of butter for that matter-and the market price the day the butter is received is, say, eighteen cents. As this lot happens to be dairy butter, Mr. Smith, of Ohio, is credited on the books of the concern with the sale of so many pounds of butter at the ruling market rate.

Now comes the transformation scene. All the marks on the tubs are carefully scraped off and the butter weighed. Say the first tub weighs sixty-five pounds net - that is, with due allowance made for the weight of tub, etc. The top is then knocked off and the butter "tried" to see what sort of a "brand" it will stand. Then as much salt or brine as the tub will possibly hold is packed on top of the butter. This is the first step. A new top is then nailed on, this cover, by the way, having been soaked and being therefore much heavier than the first one, and the tub is now ready for marking or branding. Here are a few imaginary brands for which stencils have been prepared: "Silver Stream Creamery," "Rocky Spring Creamery, warranted gilt edge," "Fine Mountain Brook Dairy," and so on. Now comes the weighing process. The tub thus metamorphosed, with the addition of several pounds of salt and as many nails as can safely be driven in, is found to weigh seventy-three pounds. Its original weight was sixty-five pounds. This seventy-three pounds of "Silver Strean Creamery" then is sold for say twenty-two cents, yielding a net profit to the "commission house" of $\$ 4.36$, which, on one tub of butter alone, may be considered a handsome profit.
Sometimes the housewife who buys this "Silver Stream Creamery" at thirty-five cents per pound raises a complaint at the quality of the butter. The reply usually is: "Well, madam, this is genuine 'Silver Stream Creamery,' and it certainly ought to be
good," and then madam goes away with the reflection good," and then madam goes away with the reflection
that "perhaps it was the weather after all." Madam might have another idea on the subject if she but knew that most of these flowery named creameries had an existence only in dark and dingy cellars down town.

The Canvasser

The following from the Sewing Machine Journal applies not only to canvassers, but to all salesmen and mercantile representatives :
Many dealers who have recently come into the sew ing machine trade, and, while intending to push their business by means of canvassers, are looking around them for the proper material wherewith to organize a good and effective corps, have, in their lack of experience in the business, requested us to give them a few hints that might enable them to make their selections No department of an office doing a large local retail trade is so important as the canvassing department. It is the basis upon which the entire structure of the busi ness is built. Without it there would be little or no need of collectors, shipping clerks, and horses and wagons, and the duties of the bookkeeper would be remarkably light; while the proprietor himself would be apt to find time hang rather heavy on his hands, though the cash did not feel very heavy in his pockets. In making his selections, therefore, for this all-import ant branch of the business, he cannot be too circumspect and careful; for, while a good and active set of men will build up his trade in a very short time, on the other hand, a bad and lazy lot will do it incalculable damage in a much shorter time.
If possible, it is better to secure the services of men who have had experience in sewing machine canvass ing, on account of their knowledge of the best methods of showing up machines and inducing people to buy them; but experience is by no means absolutely neces sary, and it is much better to have the rawest and greenest hand possible out of work, if he is honest and industrious, than an unscrupulous old practitioner who has become an adept in the devious ways and tricks which the canvassing fraternity have the reputation of being thoroughly versed in. But all canvassers, green or not green, should possess these fundamental qualifications:
In personal appearance, since they come constantly
in the presense of ladies, they should be neat-a woman instinctively feels a repugnance to a shabby, untidy man. They should be free from offensive personal habits and not redolent of stale tobacco. Sobriety is a sine qua non. Unremitting industry is an essential; without it no sewing machine canvasser can be even moderately successful. He must work constantly, day by day, otherwise his efforts will be barren of results, and his position cannot be too soon given to some ina who is more thoroughly in earnest at the business.
Canvassers must have a thorough knowledge of the machine they are selling, the operation and uses of the several portions of its mechanism, and the ability to operate it well on every class of work that it is capable of doing. No man should be allowed to go out until he has learned this thoroughly.
In addition to this, canvassers should be instructed to be guarded in their promises to customers, and not let their anxiety to sell machines lead them into raising in the minds of buyers expectations that their employers wili disappoint.
They should also be required to say as little as possible about their rivals and their rivals' machines, but to give their whole time and energies to showing up the excellence of their own.
Canvassers who have been for years in the business, who have lived well, supported families, and made who have lived well, supported families, and made
money, owe their success to a strict adherence to these few and simple rules; and a force of men organized upon such a basis cannot fail of doing satisfactory work if they have a good machine to sell upon reasonable terms. And it is atways an encouraging example to canvassers to know that many who have worked faithfully as such have reached the best paid and most responsible positions in the business, while numbers have been enabled in time to do a profitable business on their own account.

Monte-Christi.

Mr. Thomas Simpson, U. S. consul at Puerto Plata, San Domingo, reports as follows to the State Department:
The town of Monte-Christi * was founded about three centuries ago, and was of some importance in the remote past, but from various inimical causes had dwindled into insignificance, when, in 1872, Mr. Juan Ysedro Jimenes, to whom its revival is directly due, established himself here. Prior to that date there was no business done here worth noting, but Mr. Jimenes soon commenced expopting mahogany, of which wood vast quantities were antually dipped hence antil 1876, when, the source of supply being practically exhausted, the exportation of dye woods was begun and still continues with activity.
In the opening months of 1885 the firm of J. Y. Jimenes \& Co. successfully achieved, at a considerable cost, the realization of a feat of practical engineering which has proved of inestimable public benefitin wany ways. Pursuant to plans drawn by Mr. P. Smith, an American engineer, who supervised and carried the undertaking to a successful ending, a branch of the river Yague was caused, by means of a canal excavated at the proper point, to return to and flow through a former channel (from which it had been diverted by natural causes many years ago), discharging into the sea near Monte-Christi. By thus regulating and confining the course of this stream, hitherto dispersed in innumerable lesser water ways and lagoons, large tracts of land formerly subinerged have been drained. These lands are thickly covered with virgin forests of logwood of superior quality, which, before unapproachable, hence valueless, are now being felled and exported. The canalization of this branch of the great
river of the Cibao has thus doubly benefited the river of the Cibao has thus doubly benefited the supply to the formerly waterless town of Monte-Christi, and imparting new vigor and prosperity to trade and to the community in general, by the redoubled activity in its chief staple of export.
Monte-Christi, at the present day, is a town of about 1,500 inhabitants, and its population continues to grow with its ever-increasing commercial importance.

The largest passenger terminus in London, Liverpool street, is to be enlarged, at a cost, for land alone, of $\$ 3,250,000$. The extension will enable the number of trains to be increased from the present figure, 700, to about 1,000 daily. The suburban trains will be run faster, and it is believed that the increase in suburban
passenger traffic will fully pay the interest on the capital cutlay. The increased passenger receipts during the last ten years were $\$ 2,500,000$, a large portion of which was due to workmen taken advantage of cheap tickets sold in packets at a reduced rate, and living in the suburbs and traveling to and fro every day to work in the city.
*Monte-Christi is situated on the north side of the island of San
Domingo, about 60 miles west of Puerto Plata, and near the boundary line separating this republic from that of Hayti. Weekly mail communi cation is maintained with this post by small coasting schooners, which
make the trip in from elght to ten hours, and monthly by the Clydz line make the trip in from elght to ten hours, and monthly by the Clyds line
of steamers, which occupy about five hours in the passage. On rare occasions mails are sent by laud, but as the country is very monntainons casions mails are sent by laud, but as the country is very monntai

How Artificial Flavors are Made.
In the wonderful laboratory of the growing plant, by processes of which we know almost nothing, the atoms of carbon, hydrogen, oxygen, and nitrogen are made to group themselves into compounds which give to our vegetables and fruits the delicious flavors characteristic of them. In most cases, this flavoring principle is so small in quantity, and so complex in its nature, that the chemist is unable to satisfactorily determine its composition, and it is probable that few of the natural flavors are simple chemical substances, but rather mixtures of different organic salts, ethers, and alcohols.
The flavoring principle of the majority of fruits can be directly extracted and preserved by simple means, forming extracts for flavoring food which are as unobjectionable as they are agreeable. Unfortunately, it happens, however, that many of these flavors can be imitated by various chemicals, which, while they are much cheaper than the natural product, are unwholesome and even dangerous. As a general thing, the artificial flavors are much coarser and ranker than the natural ones, and lack entirely the peculiar fruity taste distinctive of the latter. The greater part of the artificial essences belong to the class of compounds known as ethers, or, more strictly speaking, salts of an organic acid and base.
The artificial essence pineapple, for instance, is composed of ethyl butyrate, or a combination of butyric acid (the acid of rancid butter) and a radical known as ethyl $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, which is also present in common alcohol.
By combining the ethyl with pelargonic acri, werd tain an ether with a flavor resembling that of the quince. Ethyl caprate is sometimes known as œnanthic ether, and is one of the flavoring substances thic ether, and is one of the flavoring substances
found in old wine. Another radical, amyl $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$, is found in old wine. Another radical, amyl $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$, is
also the base of several artificial flavors. Amyl alcohol $\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{O}-\mathrm{H}$ is the poisonous fusel oil found in the poorer grades of whisky. Amyl acetate forms the well known essence of Jargonelle pear, while amyl valerianate is a very good imitation of the flavoring matter of the apple. Amyl caprate is found in Hungarian wine.
The natural flavors of the peach, plum, almond, ete. are due to nitrogenous bodies containing cyanogen, the base of the poisonous prussic acid. With the exception of the almond, these flavors are not often imitated, but a substance made from coal tar, known as nitro-benzole, has an intensely strong taste and odor of bitter almonds, and under the name of oil of mizbane is employed to a considerable extent as a perfume and flavoring extract. It is, however, a powerful poison, and should never be added to food. Vanilla, as is well known, is the product of a Mexican plant When pure, it is perfectly wholesome, but it has been said to sometimes undergo a spontaneous decomposi tion, which renders it dangerous. This, however, is not fully confirmed, and the bad effects observed may have been due to other causes. It contains a substance commonly known as vanilline, but chemists distinguish it by the brief appellation methylprotocatechuic aldehyde. This is now made artificially, in large quantities, from the gum of the spruce and other conifer ous trees.
There are many other organic bodies which possess very characteristic odors, although not commonly used for flavoring purposes. Formate of ethyl is sometimes used to give an agreeable taste to rum. Acetic ether, or acetate of ethyl, has the fragrance of cider, while acetacetic ether, $\mathrm{C}_{2} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right) \mathrm{HO} .0 \mathrm{C}_{2} \mathrm{H}_{5}$, has the odor of new-mown hay. Ethyl nitrite has a pleasant, applelike smell, while amyl nitrite has an odor peculiar to itself, which produces such remarkable physiological effects that it is extensively used as a medicine. Salicylate of methyl occurs in the oil of wintergreen (checkberry), and was one of the first vegetable products prepared artificially. With the exception of nitro-benzole, all the artificial flavors mentioned above are composed of three elements only-carbon, hydrogen, and oxygen.
All the wide differences in odor, taste, and chemical behavior are due to slight variations in the proportions of these elements, and probably, also, to the position in which their atoms are arranged in the molecule. Strictly speaking, the only difference between the odorless glucose and the fragrant pineapple oil is that the latter contains four atoms less of oxygen, and the relation between the chemical composition and the physical properties of the organic bodies is a most important but still unsolved chemical problem.
We may hope to know much more in the future, as many skillful and patient investigators are hard at work upon this very subject. Although many of the above flavors are so strong that only a very small quantity is necessary to flavor a large amount of food, yet their use cannot be recommended. They are unwholesome, to say the least, and some are actually poisonous. Only natural fruit flavors should ever be allowed in the kitchen, and the cheap artificial essences should be left in their proper place, on the shelves of the ehemist's laboratory.-Popular Science sheive
News.

Botio Paper
One of the interesting travelers known as " bottle papers," and which was set afloat by our oid friend Captain Henry Plater, of the ship Patriarch, has just come to hand. The following are the particulars:
The Patriarch was on her voyage to Sydney, passen gers all well, when, on 1st April, 1887, in latitude $1^{\circ} 7$ S., longitude $25^{\circ} 54^{\prime} \mathrm{W}$., the bottle was thrown over board, and a slip of paper with the above details was inclosed within it.
The bottle was eventually picked up on the shore of Galveston Island, in the Gulf of Mexico, having traversed (through the aid of the equatorial current) the Atlantic from the point of jettison to Trinidad or Tobago; thence it passed to the Caribbean Sea, and when opposite Cape Gallinas it trended to the channel between Yucatan and Cuba, passing thus into the Gulf of Mexico. It probably took the round of Campeachy Bay, thence traversing the west side of the Gulf until off Galveston Island. It was picked up on the 18th May. 1888, by Henry Middelegge, who was collecting driftwood along the shore. Thus in 413 daysit was carried by the current not less than 5,500 miles, being at an averge rate of $131 / 2$ miles per twenty-four hours.
Another of Captain Henry Plater's "bottle papers," which had been thrown overboard six days earlier, has reached us. It is to the following effect :

The Patriarch, 14 days out from London, and bound to Sydney, was in latitude $12^{\circ} 55^{\prime}$ N., longitude $25^{\circ} 47^{\prime}$ W. All well.

This bottle was picked up at Ambergris Cay, British Hondu ras, on the 25th of May, 1888. Taking the Cay to be in latitude $18^{\circ} 6^{\prime} \mathrm{N}$., longitude $87^{\circ} 50^{\prime} \mathrm{W}$., the bottle traveled for some time probably on the northern edge of the equatorial current, though afterward getting into its heart, a distance of 3,620 miles on a course N. $84^{\circ} \mathrm{W}$., which gives the current a mean rate of $81 / 2$ miles a day. The rate would, from the position, be slow at first, and subsequently accelerated.
Mr. A. G. Allan, of Te Kao, North Cape, New Zealand, writes as follows
While traveling on the Seventy-Mile Beach, West Coast, about a mile north of the small islet called Motu Pea, on May 4, one of the natives of Te Kao observed a bottle stranded on the beach, and found it contained a paper. He broke the bottle and abstracted the document. According to instructions given on former occasions, it was brought to me. On perusal it proved to be one of the marine cards cast into the sea to ascertain the direction of the ocean currents, by order of the Imperial Board of Admiralty in Berlin, from the ship-ofwar Bismarck, on her voyage to Sydney, two years and three months ago. The card, which is printed in the German language, is considerably chafed at both ends, and some of the words are obliterated; but the main portion of the print and writing is perfectly legible. I give the translation :
'This bottle was put overboard at noon on February 15,1886 , in latitude $47^{\circ} 17^{\prime} \mathrm{S}$., longitude $111^{\circ} 56^{\prime} 50^{\prime \prime} \mathrm{E}$. from Greenwich. Ascher, on board the ship Bismarck, on a voyage to Sydney. Whoever finds this paper is requested to send it to the Imperial Admiralty in Berlin." It is also requested that the finder should add some particulars as to the time and place at which the bottle was found. The existence of an ocean current setting in from the Indian Ocean toward the southern end of New Zealand is a fact well known for many years. It strikes the southern end ahout the Bluff and chiefly passes to the eastward, but apparently New Zealand to some extent divides it, and though the bulk passes to the eastward, a small stream comes up to the westward of New Zealand, and naturally impinges against the western side of the northern part of the Auckland provincial district. The bottle, when thrown overboard, probably traveled with the easterly set that runs southward of the Australian continent, thence through Bass' Strait, and onward toward the coast of New Zealand.-Nautical Magazine.

Adulteration of Food.

In reporting favorably to the House a substitute for the Lee bill to prevent the manufacture or transportation of adulterated articles of food, drink, and drugs, made in one State and intended to be sold in another, the House committee on agriculture, referring to the extent of adulteration, says :
"This state of facts amounts not only to a premium upon dishonesty, but is a threat to national health. Honest manufacturers and dealers are placed at a disadvantage or are forced into a reckless competition with fraud. Legitimate trade is handicapped and demoralized. It tends to make an Ishmaelite of both manufacturer and dealer. Recent investigations in the department of agriculture of cheese deceptions, frauds in milk, adulteration in beer and spirits, in spices and condiments and other things in daily use as food and beverage, emphasize the necessity for prevention or repression of these disreputable practicesstimulated by the greed of gain. Liquids, perhaps, even more generally than solids, are subject to this sophistication. Aged brandies are made from diluted alcohol ; cheap wines are mixed and manipulated to imitate expensive brands; beers are doctored to avoid the use of
expensive hops, and to cheapen the product or simulat some desired quality. Teas are mixed, colored with poisonous minerals, and spent leaves are dried and placed a second time upon the market. The animal industry which asks for the protection proposed in this bill reaches all the levels of life from the millionaire to the day laborer. It embraces more than all other in dustries in the country combined, the property of the poor."

OUR FIRST .IMPORTED LOCOMOTIVE.

The first locomotive imported into this country was bought in Manchester, England, of the Stephenson Company, by Kirk Boott, for the Boston and Lowell Railroad corporation. It arrived in this country in 1834, and, for convenience of transportation, had been stripped as far as possible, and upon arrival in Boston was placed on several boats of the Middlesex Canal Company and drawn to Lowell. With the locomotive came a planer and tools for building locomo tives, and as soon as patterns could be prepared a new locomotive was commenced. The imported machine was put together, and named "The Stephenson," in honor of the builder.
The new engine made at Lowell was named "The Patrick," after the president of the corporation, Patrick T. Jackson. This locomotive was completed three or four days before the Stephenson made its trip. The Stephenson weighed eight tons, and had four

MR. ELI COOPER AT THE AGE OF 84 YEARS.
wheels, with outside connections. The boiler had 113 tubes, which were small and intended for burning coal but in using wood they became clogged, and in order to clear them out the locomotive was stopped, and the fireman cleaned them with a long rod. The coach which was used in the trip was a small affair, with seat upon the side. The first trip was made from Lowell in June, 1835, and the distance, 26 miles, to Boston, made in seventy-seven minutes. The return trip was made n eighty minutes.
John Barrett was the first conductor and Eli Cooper whose portrait is given herewith, the engineer. Th passengers were : Patrick T. Jackson, James F. Bald win, the engineer, Major George Whistler, and associ ates. Directly after the opening of the road, "The Patrick" was put on, and after running four years "The Stephenson" was put in the machine shop and made over by Eli Cooper and others.
Mr. Cooper is now living in Woburn, Mass., at the age of 84 . He was born in Stockport, England, De cember 16,1804 , and came to this country with his parents in 1806. In 1824 he went to Lowell, where he learned the machine trade, and worked for the Locks and Canals Company, the Lowell Machine Shop, and the Boston and Lowell Railroad Corporation.

Work in the Navy

While the good work of building new vessels of war progresses, the old wooden ships are not being entirely neglected. At the various yards considerable work is being done in the way of rebuilding and repairing a number of these now old but still useful crafts. At the Portsmouth, N. H., yard the Kearsarge is being exten sively repaired, and will be ready for her officers Octo ber 1. The estimated cost of the repairs to this ship will be $\$ 47,792.26$. At the same yard the training ships Saratoga and Portsmouth will be entirely rebuilt, a an estimated cost of $\$ 68,000$, and will be ready about the inrst of the year. At the New York yard the Richmond is fitting out, ultimately to be the flagship of the

Asiatio station, and will cost, when completed, $\$ 20,596.94$. She will be ready for sea in about two months from the present time.
At the Norfolk yard the Pensacola, which will be flagship of the North Atlantio squadron, is being re paired, and the estimated cost to complete her entire is $\$ 27,311$. She will be ready in about tive months. This ship will receive an entire new set of boilers, which are now being forwarded from the Washington Navy Yard, where they have been in store for some time.
The double-turreted monitor Puritan will shortly be sent to the yard to be rebuilt, in accordance with an act f Congress approved August 3, 1886. The training ship Jamestown will also be repaired atthis yard, at an estimated cost of $\$ 12,000$, and be ready in about thre months.
At the Mare Island yard the greatestamount of work is being done. The Iroquois is nearly ready, and her estimated cost, when finished, will be $\$ 29,400$. She wil be ready for sea September 15. The steamship Monongahela is also being overhauled and repaired at this station, at an estimated cost of $\$ 25,000$. She will be sent again to the South Pacific as storeship of the station, with headquarters at Payta, Peru. She will be ready October 1.
The surveying steamer Ranger is being titted for one year's service on the Pacific coast at an outlay of $\$ 9,200$, and is now ready to proceed with her work. The Mohican is now in the dry dock, and after some sligh epairs are put on to enable the ship to leare the dock she will be repaired at an estimated cost of $\$ 14,800$, and be ready in sixty days.
The Vandalia and Adams, of the Pacific squadron are now on their way to the Mare Island yard for re pairs, and it is expected both ships will be there by the middle of October. The double-turreted monitor Monadnock is being rebuilt also at the California yard at an estimated cost of $\$ 600,000$, and will be ready in about two years.-Army and Navy Journal.

Hydrographic Expedition.

Commodore Walker, chief of the Bureau of Naviga tion, has decided to send another expedition of naval officers to Mexico and Central America to make the necessary observations in various points in those countries, in continuance of the important work of de termining secondary meridian of longitude by the use of the telegraph. Commodore Walker has from the beginning been most enthusiastic over this species of scientific work, and has given much time and attention in bringing it to perfection. Lieut. G. L. Dyer, hydro grapher to the bureau, has been a most able assistant to his chief, and all of the officers on duty in the hy drographic office, in fact, the entire service, are much interested in this particular work, which is attracting the attention of the scientific world.
In the last work of this kind, which was finished about three years ago, the chain of longitudes was carried from Galveston, Texas, to Vera Cruz, on the Gulf coast of Mexico; also from Panama up the west coast of Central America to Libertad in Salvador. It is now proposed to connect these points. From Vera Cruz a submarine cable extends to Coatzacoalcos on the Isthmus of Tehuantepec. Thence a land line extends across the Isthmus to Salina Cruz on the Pacific, and from this point a cable is carried down the coast. In making this measurement, Vera Cruz and Coatza coalcos will probably be the first points occupied. An observing party will be stationed at each of these places, and the difference of longitude between them will be determined. The exact longitude of Vera Cruz being already known, it will be only necessary to apply this difference of longitude to that position to give the position of Coatzacoalcos. This being done, the Coatzacoalcos party will cross the Isthmus to Salina Cruz and the Vera Cruz party will occupy the Coatzacoalcos station, and thus the work will proceed until all the links of the chain have been measured, when the expedition will return. The stations occupied will probably be the following, viz.: Vera Cruz, Coatzacoalcos, and Salina Cruz in Mexico, Libertad in Sal vador, and San Juan del Sur in Nicaragua.
The expedition will leave the United States about the middle of November, in order to arrive in Mexico at the beginning of the dry season, as clear and dry weather is absolutely necessary for the requisite astro omical observations.
The following officers will be detailed for this service viz.: Lieutenant J. A. Norris in charge, Lieut. Charles Laird and Ensign J. H. L. Holcombe, together with another officer who has not yet been selected. These officers are all experienced in the work. Lieut. Norris has been connected with all the longitude expeditions sent out by the Bureau of Navigation since 1874, Lieut. Laird first became connected with the work in China in 1881, and Ensign Holcombe is experienced in similar astronomical work, though he has not before assisted in measuring longitudes.
Five months will probably be necessary to complete the measurements, and the party will return home early in the spring of 1889. Several months will be mployed in making the computations, and the result will then be published.-Army and Naoy Journal.

ENGINEERING INVENTIONS.

A rotary engine has been patented by Mr. John Marvin, of Northport, N. Y. The plates fied shaft through which steam is admitted to and a e bausted from the points of the revolution and there being no dead enters.
A car heater has been patented by Messrs. George W. Carter and William T. Pickett, of Cauyonville, Oregon. It has a water base, with pipes and a guard or casing outside to prevent the contact of the heated surfaces of the stove with combustible ma

A station indicator has been patente y Mr. George C. Logan, of New Orleans, La. This parts, providing means whereby an and combination of may be indicated within a car, and the apparatus containing the names of the several stations may be oper ed from the engine or car the ataratus being simp nd durable and easily manipulated.
A car coupling has been patented by Mr. John P Turney, of Arlington, Oregon. This invention covers a novel arrangement of pneumatic coup-
lings and tubes, extending to the cab of the engineer, in witch cond with a compressed air reservoir and lings, the coupling and ancoupling being effected by the engineer.
A railroad rail has been patented by Mr. Gilbert A. Ewing, of Jackson. Ohio. It is of the lass of rails formed of two longitudinal interlocking less rail, with which fchairs and fish plates will not be needed, and wherein but few locking devices will be re quired, the rails also having an oval space between the
webs of sections adapted to carry insulated telegraph webs of
wires.

MISCELLANEOUS INVENTIONS

An inhaler has been patented by Mr. Almon K. Ives, of Missoula, Montana Ter. It has a and a suitable handle, with compressible air bulb and flexible tabe, for forcing air into contact with the flexible
powde
air.

A printer's galley has been patented by Mr. Frederick Schley, of Brooklyn, N. Y. The side and end pieces have a rib on the outer edge at the in engagement therewith, thus reducing the cost of manufacture and making a galley that will stand hard usage.
A pole attachment for vehicles has been patented by Mr. William P. Fest, of Brooklyn, N.
Y. The running gear of the vehicle has longitudinally extending spurs, and the pole has eyes, one in advance of the other, adapted to receive the spurs, whereby the
fitting of the pole will be facilitated, and all rattling at the connections will be avoided.
A gun sight has been patented by $\mathbf{M r}$ George W. Wood, of Granville, N. Y., and James W Carver, of Pawlet, Vt. This invention provides in one or long range, and which may be used to gavge the wind, and also affords the advantages of a peep or closed sight and an open sight.
An animal trap has been patented by Mr. William H. Harden, of Quitman, Ga. It i designed mainly for rats, the invention covering suspending, tripping and locking mechanism, and auto matically opening doors which permit the animal to enter, but do not allow of escape.

A seal lock has been patented by Mr. George W. Lewis, of Portsmouth, Va. It has a slotted metallic 'casing, a locking block eccentrically pivoted therein, having a lip with a perforation, in combination
with a fragile seal, being especially adapted for secur ing a freight car door, so that the fastener cannot b eleased without breaking the seal
A puzzle has been patented by Lizzie E: Simpson, of New York City. It consists of a boar provided with a series of pin apertures arranged in in tersecting lines and baffle apertures promiscuously ar
ranged upon the board, contiguous to the lines of pin apertures, being intended to afford an interesting stud and pastime to children and adults.
A washing machine has been patented by Mr. John W. Lasswell, of Augusta, Kansas. It 18 machine of that class in which two oppositely recipro cating rubbers are employed in a tub or vat, the inven
tion covering novel details of construction, designed to provide a machine which will be thoroughly effective, simple, and durable.
A galvanic battery has been patented by Mr. Howard Cassard, of Baltimore, Md. It has a tube communicating with the fuming cell of the batter and trapped in the liquid seal, with other novel features, the battery being designed with reference to greate efficiency and to prevent the escape of gases.
A well has been patented by Mr. Henry Piering, of New York City. This invention covers a metallic cylindrical curb support, with teeth
on its bottom, perforations around its body, and a flang on its top, to be placed in the bottom of a partly exca vated well hole and sunk to the desired deptin as the masonry wall is built up from the flang
A corn husker has been patented by Mr. Theodor H. Mehring, of Niobrara, Neb. It is an implement which may be worn upon the bare hand, or
upon the hand when incased in a glove or mitten, bein made in two sections, sliding one upon the other the device being simple and cheap, and capable
quick adjustment to suit the breadth of any hand.

An elevator and conveyor for unload ames F. Simmons, of Manistique, Mich. This inve tion covers a novel combination and arrangement o parts in a machine having a universal adjustment, per mitting its use in many positions, as for transferring ous other purposes
A lock has been patented by Mr Henry Van Hoevenbergh, of New York City. This in vention relates to what are known as "pin tumble locks," especially adapted to places in which the con-
trol of the lock is limited to a given time or particula trol of the lock is limited to a given time or particula
persons, and is intended to obviate the necessity o changing the lock when a change of ownership or con rol is made.
A middlings purifier has been patented by Mr. Victor Monnier, of Dundas, Mınn. The interior of the machine is in separate compartments, the air or which are regulated independenty, where by each grade of material may be treated separately
without affecting the other grades, and there are vari ous other novel features of construction and combin tions of parts.
A sad iron has been patented by Mr. Horace S. Pease, of Cincinnati, Ohio. This invention relates to a former patented invention of the same in-
ventor, the fluting plate being made attachable and entor, the fluting plate being made attachable and operator's hand from contact with the hot chimney and from the heat arising from the heated smoothing iron.
An apparatus for the manufacture of harcoal has heen patented by Mr. Jacob Scherffius, of Winona, Minn. The charring of the wood is effected pass without entering the heated air being continuously sed, while provision is made for gathering and cot densing all products given off by the wood during the

A spring bed bottom has been patent-
d by Mr. Anthony Huber, of New York City. The ed by Mr. Anthony Huber, of New York City. The body of the spring bottom is formed of thin metal cross
strips, riveted together at their intersections, at which strips, riveted together at their intersections, at which
points are attached spiral springs, the construction being such that the springs can be readily applied where desired and conveniently removed when the cot is to be folded.
A feed bucket has been patented by Mr. Albert M. Smith, of Westerly, R. I. It has a frame with inwaraly extending arms holding a sprine
poon which rests a feed receptacle, a detachable partition being hold within the receptacle, whereby the horse will be unable to obtain more feed at a time than he can con
An ice velocipede has been patented by Messrs. George B. M. Ribble and Charles C. Spencer, of Cortland, N. Y. It is made in triangular form, and so that the front runner and main frame have free tp and down movement independent of the two rear of nov
rider.
A smoke consumer has been patented by Mr. Robert H. F. Sewall, of Birmingham, Ala. the smoke passage communicating therewith, an oil supply pipe leading into the chamber, and a perforated urner pipe, with other novel features adapted to securing a more p
construction.
A drier has been patented by Mr . por Buel, of New York City. It has sections porous refractory material secured to frames and
connected to form an endless apron, with drums over which the apron passes, in combination with furnace penings and a drying oven, and other novel features, e invention being especially appicable in the drying
A combined cradle and rocking chair as been patented by Messrs. William Furl and Rudolph raenzel, of Lock Haven, Pa. The construction is out of the crib frame and adjusted for use, and get out of the crib frame and adjusted for use, and get
readily adjusted for telescoping therein, the several ockere
A tobacco pipe has been patented by Messrs. Thomas B. Whitledge, George W. Kenner, and Michael Rueckert, of St. Mary's, Mo. Combined with o each other, the cap, and the interior of the bowl, to prevent the tobacco from falling from the bowl, for pressing it more closely or loosening it,
An ice creeper for horses has been paThe by Mr. Charles S. Acheson, of Philadelphia, Pa. The body of the creeper is formed of a flat plate
adapted to set up against the forward part of the bottom of the shoe, and having a recess fitted to receive the toe, with threaded sockets in which spurs are
inserted, the creeper being attached to the horse's foot inserted, the creeper be
by a strap and buckle.
An apparatus for transporting and setting stone has been patented by Mr. Donald Mc Donald, of Louisville, Ky. Combined with a suitably supported and adjustable mast is a cable having itt
end portions disposed around guides on the mast, with other novel features, forming an apparatus designed to facilitate the lifting of stone, carrying it and lowering it in position, as required in building bridge piers, constructing buildings, etc.
A fireplace forms the subject of a patent issued to Mr. Robert B. Berrie, of Lexington, Mo. The grate hae a rearwardly inclined back, above held in front a corrugated top plate, a fised hood being held to slide thereon, to increase or diminish the opening between the top plate and hood, whereby the
draught can be easily regulated and the heat directed

A last block fastener has been patented by Mr. William Cook, of New York City. The last block has in its under side a slot open at its upper fastener having a shank connected with the last body and constructed with a flattened head, in such manner hat the head may be grasped by the ordinary pinchers or pliers, the fastener being quickly and easily mani
pulated to lock the block in place or allow of its re

A fifth wheel has been patented by Messrs. Jonathan G. and Lemuel H. Huff, of East he axle iron, has a king bolt opening formed through it leading to the axle iron, and is provided with a key way or slot, the upper section having a king bolt with key fitted to the keyway of the lower section, such king bolt being extended through the opening in the
ower section and bearing at its lower end on the axle king bolt
lower sect
iron.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities-for procuring patents everywhere. A
synopsis of the patent laws of the United States and a ynopsis of the patent laws of the United States and al oreign countries may be had on application, and persons abroad, are invited to write to this office for prices ensive facilities for conducting the business. Addres MUNN \& CO., office SCIENTIFIC American, 361 Broad

SCIENTIFIC AMERICAN

buILDING EDITION.

AUGUST NUMBER.-(NO. 34.)
table of contents.
Elegant plate in colors of a dwelling at Glen Ridge N. J., with floor plans, sheet of detai
eight thousand five hundred dollars.
2. Plate in colors of a fire engine house of moderat cost. Details and floor plans.
3. Perspective view and floor plans of a residence Black Rock, Conn. Cost, six thousand dollars. Sketch of an upto
New York City.
5. Floor plans and perspective elevation of two Queen Anne cottages, lately completed at Bath Beach
Long Island. Cost, four thousand dollars each.
6. Design and floor plans for a two thousand dolla house lately built at Bridgeport, Conn.
Perspective and floor plans of an attractive resi dence lately built at Bridgeport, Conn. Cost, two thousand eight hundred dollars.
8. A six hundred dollar cottage built lately at Bridg port, Conn. Perspective and floor plans.
9. Plans and perspective view of a seaside cottage
lately erected at Bath Beach, Long Island. Cost, three thousand five hundred dollars.
10. Engraving and floor plans of a neat little double house lately erected at Bridgeport, Conn., costing one thousand eight hundred dollars.

plans.

Engraving of the palatial stables of Mr. D. Edgar Crouse, Syracuse, N. Y
Plans and perspective for a carriage house, bar
etc. Cost, two thousand two hundred dollars.
etc. Cost, two thousand two hundred dollars.
levation and floor plans for a double house cost ing complete four thousand two hundred dollars. England.
16. Page of designs of New England residences.

Miscellaneous contents: Vegetable glue.-Fourth
of July fires.-The slag water closet.-Rust in water pipes.-Laying out the joints of an elliptical vault, illustrated.-The tulip and other trees. -Architectural school houses.-Hanging baskets.
-To estimate the power of a stream.-Manufac turing progress in the South.-How to grow quinces.-Mixed wheats.-New ceiling for the
Assembly chamber of the New York State Csit Assembly chamber of the New York State Capi-
tol.-Transplanting large pines.-Galveston arte The testing of Portland cement.-The hummin bird.-Manila hemp in plaster.-A perfect hen house.-Examination questions for plumbers.-
Road improvements.-The "Patten " metallic shingles and siding plates, illustrated.-The poo serving stains.-House heating by hot water cir Mortar.-Irrigating wheels.-Liquid fish glue.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 5 cents. Forty large quarto pages, equal to about
wo hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by

MUNN \& CO., PUBLIBERRE,
201 Broadway, New York
ßusiness and Personal.
a charge for Insertion under thes head is One Dolla a line jor each insertion; about eight words to a line. as early as Thursday morning to appear innext issue.

All books, app., etc., cheap. School of Electricity, N.Y. NTalcott's combination patent belt hooks, self-clincbI. and wish Providence

Wanted-Capitalist to assist me financiallyin perfectMal.," Novelty Sikn Works, Covington, Ky .
Wanted-A mechanic in every shop in the world to act as agent. No interference with rezular work. No capital. Free samples and good commissions. Send for
samples and particulars to F. N. Carter, 176 St. Clair St., Cleveland, 0 .
A System of Easy Lettering. By J. H. Cromwell. 26 plates. Pric
New York.
Steam Launches.- New catalogue (free) by Iron Plat or riant, Lathe, Drill, and other machine tonls of Pratt \& Letchworth, Buffalo, N. Y.,
olicit correspondence relative to manufacturing spec-
For the latest improved diamond prospecting drills, Fdress the M. C. Bullock Mfk. Co., Chicago. Ill.
Nickel Plating.-Manufacturers of pure nickel an"Little Wonder") A perfect Electro Plating, Machine Agents of the now Dip lacquer Kristaline. Complete outtit for plating, etc. Hanson, Van Winkle \& Co σ... Perforated metals of all kinds for all purposes. The The Railroad Gazette handsomely illustrated, pub. lished weekly, at ${ }^{7}$ 3 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federal St., Bostoc, and 93 Liberty St., New York, have just is-
ued a new catalogue. in which are many new and improved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be

Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The Holly Manufacturıng Co., of Lockport, N. Y., ill send their pamphlet, describing water works maLockwood's Dictionary of Terms used in the practice of Mechanical Engineering, embracing those current in , drawing office, pattern shop, foundry, ftting, turnng, smith's and boiler shop, etc., comprising over 6,000

definitions. Edited by a foreman patternmaker. 1888. | Price, |
| :--- |
| York. |

Supplement Catalogue.-Persons in pursuit of infor-
mation of any special engineering, mechanical, or scienic subject, can have catalogue of mententical., or scienNTIFIC AMRRICAN SOPPLEMENT sent to them free. the whole range of engineering, mechanics, and physical Duplex Steam Pumps. Volker \& Felthousen Co., Bufalo, N. Y.
Catalogue of Books on Civil, Mechanical, and Electrical Engineering. Arts, Trades, and Manufactures, 118
ares, free. E. \& F. N. Spon, 12 Cortlandt St., New York. Iron, Steel, and Copper Drop Forgings of every deeription. Billings $\&$ Spencer Co., Hartford. Conn. The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city. Tight and Slack Barrel Machinery a specialty. John reenwood \& Co., Rochester, N.Y. See illus. adv., p. 28. Pedestal tenoner. All kinds woodworking machinery. b. Rogers a Co., Nowich, Conn.

Rotary veneer basket and fruit package machinery.
L. Merritt Co., Lockport, N. Y. . E. Merritt Co., Lockport, N. Y
Send for new and complete catalogue of Scientific and other Books for sule by Munn \& Co., 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information, and not for publication.
References to former articles or answers should Reterences to former articles or answers should
give dateo of paper and page or number of question
In quiries not answered in reasonable time should
be reated n quiries not answered in reasonable time should
be repeated correspondents will bear in mind tha
some answers require no
though we endeavor to reply a to a lll e eitherer by, lett
or in this department, each must take his turn.
or in this department, each must take his turn.
Spal Wilten In Wormation on maters of
personal rather than general interest cannot be
Scientilic Amorrican Ansupplements referred
to may be had at the ollice. Price 10 cents each.
Books referred to promptly supplied on receipt of
price.
winerale sent for examination should be distinctly
marked or labeled.
(1) Subscriber asks: Is there such a thing known as anything being set on fire by spontane ous combustion? If so, when, how and where? A. We hay in stacks, and oily cotton waste, such as accumu
lates in mills, often becomes ignited by spontaneou combustion. Spongy platinum will ignite hydrogen
(2) D. T. G. writes : I wish to. get 1 German silver has about $19 \cdot 6$ times the resistance o German silver has about $13 \cdot 6$ times the resistance of
copper wire, $2 \cdot 75$ feet of No. 24 (American wire gauge

German silver wire will have about 1 ohm resistance.
It will be an approximation only, as every sample of wire varies more or less.
(3) C. C. wants to know how many coats of lacquer should be put on gas fixtures, for ten years' wear, and how to make the different colors. Can it be
put on hot? If so, what is the process? A. Only heat the articles to about $200^{\circ} \mathrm{Fah}$. before lacquering. For the process and how to make lacquer, see "Techno-
Chemical Receipt Book," which we can mail for $\$ 2$.
(4) C. B. P.-The crank pin of an engine is supposed to travel with an even motion or as nearly qual pressure upon the piston in the first and second half of its stroke. The impulse given during the first half of the piston stroke slightly accelerates the crank
velocity. It is the piston Itself that has a variable velocity. It is the piston itself that has a variable
motion under the regulating infuence of the fiy wheel, so that from the dead center to the first quarter revolution of the crank, the piston travels farther than for the second quarter, or to the next dead point; the difference being greater for a short connecting rod.
(5) H. W. S., Jr., writes : I have a cistern from which a lead pipe connects with a pump in the
kitchen. The water is of a yellowish cast and very fonl. The water drawn from the neck of the cistern with a bucket is of good taste and void of odor. Can you give me a remedy. A. The surface water of your circulation by which the water at the bottom is brough the surface. The oxygen or air that is caried int in oxidizing the vegetable and other matter in. he water. When no more oxygen is availsble a putrid de composition sets in, which is the trouble that you complain of. The only remedy is thorough and often cleaning of the cistern, or forcing air down to the bot tom, allowing it to bubble up through the water. A
amail force pump will answer the purpose. A bag of smaincorce pump-will answer the purpose. A bag of
charcoal pushed dows to the bottom, and held there
(6) F. G. B.-You can remove most of the old varnish from your guitar by rubbing thy
scratched parts with 95 per cent alcohol on a clean raf antil the colos appears even, then varnish with a magat varnish, using a fiat camel's hair brush, going over the work quickly. You may make the mastic varnish by mastic, and 3 parts elemi in 150 parts 95 per cent acohol. Put the whole in a bottle and warm in a water bath until the gums are dissolved, then add 6 part of Venice turpentine and thoroughly shake up warm. If too thick to spread freely, add alcohol to suit the re quirement.-For hardening small tools, rub soap pon the surface, and in the threads of taps and dies then heat to a cherry red and immers
(7) B. W.-For a good cup grease melt and thoroughly mix while hot equal parts fresh clari fed tallow and heary petroleum oil or engine oil. For axle grease add to the above 15 per cent by warght of gronnd plumbago.
the mixture perfect.
(8) C. H. C. asks a receipt for the cleans ing of oil drippings, such as caught in the pans nnder the A. The purification of such oil drippings by chemica processes is entirely unsuited to ordinary shop work We can ouly recommend settling the oil in a large open can and dipping from the surface. If this does no make it clear enough for use, fill the can half full of
water, or filter the settled oil through a sponge stuffed n the bottom of a can
${ }^{-}$(9) F. M. desires a formula for making dark mahogany stain from aniline for furniture and chairs, one that will not fade. A. We would recom-
mend the following in preference to aniline. Boil half pound madder and 2 ounces logwood chips in 1 gallo water and brush well over while hot. When dry go asing it strong or weak, the color can be varied.
(10) A. P. Y. desires (1) a formula for beaching hair. A. For bleaching the per cent solution of peroxide of hydrogen, concerning
which, its preparation and application, see the article on that subject in Scientific American Supplement Nos. 339 and 545 . 2. Also same for the menthol pencil for headache. A. Menthol having a melting point of $4{ }^{2} \mathrm{C}$. is fused and then poured into metal moulds Usually, however, the menthol is diluted by mixture
with varying proportion of wax, steariue, or paraffine.
(11) T. B. asks: 1. Is there any sub stance or method by which froth on a saccharine liquid could be avoided or killed, for instance in aerated mineral waters? A. A little vapor of ether will tend to 2. Could you give me a good and cheap recipe for 2. Could you give me a good and cheap recipe for 4 ounces essence of peppermint dissolved in 95 pe cent alcohol. Color with $1 / 2$ pound powder of turmeric infused in 1 gallon spirit 95 per cent.
(12) M. M. H. writes: At the recent eclipse of the moon, the earth's shadow appeared as a thin veil over the surface of the moon, the light shining through with a dull reddish hue. If the moon at this
time of her opposition was exactly in her uode, consequently totally eclipsed, why was any light visible? It seemed different in this respect from any previous total eclipse. A. The moon was nearer to the earth in this
eclipse than in others less remarkable. The light on the moon during totality was derived from the sun ray refracted by the outer or thin portion of the earth's atmosphere. The outer atmosphere being a globe of very low density, acted as a lens, drawing the sun's raysin and crossing the earth's dark shadow.
(13) G. G. writes : I have been using asphalt varnish to renew the gloss on rubber boots and
shoes, which in a degree is a success: Can you sugges shoes, whitch a degree is a success. Can you suggest
any addition to perfect the same, aleo to kill the fume of the asphalt? A. Asphalt varnish is the only article that we know of that can be used for the purpose mentloned, and we can only suggest, as there are
grades of that varnish, that you secure the best.
(14) J. B. writes: Can you furnish me the piece inclosed? "A. The paper is is suturated with resinous varnish, and you will find in Spons' " Workshop Receipts." second series (which we can send you post paid for 82), a description of its treatment. Try
paper brushed over with boiled oil in which a little paper brushed over with boiled oil in which a little
shellac has been carefully dissolved over a slow free shellac has been carefully dis
then suspend on a line till dry.
(15) C. F. S.-S is right. The hydro static pressure is the power that discharges the water
It is always equal for equal heights without reference to the always equal fo
(16) A. E. S. asks: Which possesses the greater strength when placed horizontal, standing on inches, or piece same length, but 14×16 inches? A. The 12×18 inches is the strongest, its moment of inerti beam is only 4,778 , and their safe load at center 6,026 beam is only 4,78 , and th
pounds and 5,555 pounds.
(17) F.C. M. asks how to make the or dinary torpedoes, such as cost about five cents a pack age. A. They consist simply of a few grains of coarse
sand twisted in pieces of paper containing a small quan lity of fulminate of mercury.
(18) H. J.-The surface of the earth in traight line 8.04 inches.
(19) H. S. T. asks : The process of dyeing in colors sheep skins that have been tanned with
ool on. A. To dye the hair on the leather, use re eipts similar to those employed in dyeing ordinary wool. Anilines for instance can be used, but in order o avoid spoiling the fur, you had better consult some of the text books on dyeing.
(20) J. A. H. asks: 1. How to make the re, but in a liquid or semi-liquid state, as a salve or linient, to be rubbed on different parts of the body, etc. . Menthol cones are made by muxing menthol with various waxes. It is the proximate principle in oil of pep-
permint, and can be obtained by cooling the oil to 15° permint, and can be obtained by cooling the oil to 15°
C., whereupon the menthol crystallizes out of the oil. ., whereupon the menthol crystallizes out of the oil. . A grapesirup, not an artificial sirup, or one for fountable use, etc. A. Take 20 lb. ripe freshly picked and elected tame grapes, put them into a stone jar and pour ver them 6 quarts of boiling soft water: when sufficiently cool to allow it, well squeeze them thoroughly with the hand, after which allow them to stand 3 days on the furnace with a cloth throwu over the jar, then squeeze out the juice and add 10 lb . of crushed sugar; let it remain a week longer in the jar: then take off the scum, strain and bottle, leaving a vent until done fermenting, when strain again and bottle tight, and lay infusion, or tes of malt and hops to. be used as a ton, drink, what to add to preserve it if anything. A Take extract of malt 4 fiuid oz.; phosphate of iron U. S. P. 1880, 128 grains; water 1 fluid oz.; fragrant elixir enough to make 1 pint. Dissolve the phosphate of iron in the water with the aid of heat, add the exract of malt and snfficient fragrant elixir to make one int; allow the whole to stand 24 hours and then filter. 4. What quantity of what sabslances (bicarbonate soda, etc.) to charge water with gas in bottles or and acid), to gain the time necessary to cork bottle I thought to place powders in separate gelatine cap sules, etc. A. To one gallon of water add 5 lb . of loaf sugar, one ounce Epsom salts, one ounce cream tartar, nd 5 oz. tartaric acid. Boil the preparation well, skimming off the refuse matter accumulating upon the sur face. After cooling set it away in bottles in a coo place. When drinks are desired. put 2 or 3 tablespoon uls of this sirup into a tumbler two-thirds full of soda, stir briskly, and the efferyescence will be equal that from fountain soda. 5. To make" Sozodont" or close imitation of the same, or something similar and
 wintergreen and oil of rose sufficient to fiavor. 6. I
have some suppositories made of quinine and cocoa have some suppositories made of quinine and cocoa
nutter; how can I find out how much quinine there is n each? Can I do this myself? Or how much cost to have this done? A. If you are au analytical chemist, pe determination of the quinine can be made by known epend upon his reputation.
(21) H. M. writes: We have a set of black hair cloth furniture that has been fiooded. How the preparations recommended in Scientific American Supplement, No. 158, for cleansing fabrics from pots and stains, and the woodwork should be rubbed down with furniture polish.
(22) C. B. M. asks: 1. How long will power of attrac-
contact with its nds, it will last for many years. 2. How are they charged ? A. By stroking in one direction with an-
other magnet, or by placing the limbs within cuils of ther magnet, or by placing the limbs within cuils of ire and passing strong currents through the coils. 3 . an the power of the same be increased or diminished net ? A. Their power varies greatly, and below the maximum without regard to size 4, of whut is the one composed? And where is it obtained? A. Loadtone is an oxide of iron, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, and is found in a great many localities, in Sweden, in the Ural Mountains, and
(23) C. S. A. writes : What kind of a wash can I use to remove tobacco stains from new pine oors? I have just finished a new house, and the mesal soaa and hot water does not entirely remove. A. Take one part calcined soda and allow it to stand
$3 / 4$ hour in 1 part slaked lime, then add 15 parts water 4 hour in 1 part slaked lime, then add 15 parts water
and boil. Spread the solution thus obtained upon the
floor with a rag, and after drying rub with hard brush and fine sand and water. A solution of 1 part concen-
trated sulphuric acid and 8 parts water will enliven the wood after abplication. When dry, wash an wax the fioor.
(24) I. E. P. asks : 1. How to make ex ract of carnation pink ? A. See the article on "Per fumes and Formulas for their Manufacture." in Scien tific American Supplement, No. 472.
for making a disinfectant which, after evaporating, leaves a pleasant odor like mint. A. Take 1 part rec tified oil of turpentine, 7 parts of benzine, with the ad mixture. Almost all essential oils act as disinfectants but their value is slight.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

August 21, 1888,
AND EACH BEARING THAT DATE

Alarm. See Fire and burglar alarm
Alloy, metallic, Ostermann \& Lacroix.... 388,145 to
Alloy, non-mannetic, A. II. R
Animal trap, w. H. Harden..
Axle box. car, D. Allen.
Axle boxes, dust guard for, J. W. Wyatt..........
Axle lubricator, J. H. Hewes Axle spindle and bearing, C.
Bar. See Vehicle reach bar.
Bar. See Vehicle reach bar.
Barber's chair, F. Melchior.
Barber's chair, F. Melchior..
Barrel heater, E. D. Hughes.
Battery.
tery.
Battery
tery.
Battery zinc, B. Scarles..............................
Batting, cotton or other, W. I. Lewis.
Bearing, anti-friction, T. N. Subers..................
Beer, wine, etc., pasteurizing, H. Schaarwachter.
Bird and packing bot
Bit. See Bridle bit.
Blast furnace, F. W. Gordon......................... 388,27
Block. See Thrust block.
Board. See Multiple switch board.
Board. See Multiple switch board.
Boiler. See Sectional boiler. Steam boiler.
Bolt, C. W. F. Thode...
Bookmark and clasp, S. Powell...............
Books, identif ying label for, J. M. Beers...
Boot or shoe, W. T. Hooker
Boot or shoe shank, C. Coop
Boot or shoe shank, C. Cooper....
Boot, woven felted, J. C. Hillman.
Bottle case,
Bottle case, , L. L. Walker
ger
Box. See Axle box. Bird and packing box
Match box. Milk box. Tool holding box.
Bracket. See Curtain pole bracket.
Brake. See Car brake.
Bridges, safety guard for railway, J. E. Childs...
Bridle bit, overche
Brush, R. W. Ilir.
Buggy top, folding, W. G. Mille
Buor, sounding ularm, A. L. Wood worth.
Burnisher and seat
Button, F. Meyers..
Buttonhole tab, S. A. Saeger.
Button. separable, M. D. Shipman....
Button setting machine, J. H. Vinton
Calculating machine, W. s. Burroughs... 388,116 t
Can bodies, die for forming, G. W. K
Cans, die for the manufa
Car brake, J. J. Coates.
Car brake, Wescott \& Bristol
Car brake and starter, D. Kn
Car coupling, J. P. Turney..
Car heater, Carter \& Pickett
Car heater, railway. T. M.
Car wheel, J. N. Weikly..
Car wheel, J. N. Weikly.................................

Card, playing, S. Bretzfeld.....
Carpet sweeper H. W. Ru Ton.
Case. See Bottle case. Check case.
Cash register and indicator, L. Ehrlich
Caster socket, w. P. Tracy.
Ceiling, netallic, w. R. Kinn
Ceiling, metallic, W. R. Kinnear.........
Centerboard for vessels, H. W. Wells.
Centrifual reel, W. R. Du
Chain wheel, R. J. Smith.
Chair. See Barber's chair. Rail chair.
Chair, E. Eshleman........
Check case, G. E. Bower.
Check row attachment, L.S
Chopper. See Cotton chopper.
Churn, w. H. \& C. K. Moore...
Churn, W. H. \& C. K. Mo
Churn, R. C. Robinson..
Ciarar making machine, A. H. Shock.
Circuit closer for call systems, C. . .. Dey
Circuit closer, pneumatic intermite
ney................
Cleaner. See Gun barrel cleaner.
Cloth pressing machine, D. Ge
Clothes drier, J. B. Johnson
Clutch. C. Wehner.
Clutch for hoisting
Coat, M. Cohen
Coat, M. Cohen
Collar, horse, C. Block...
Collar or cuff, E. Kipper.
Coloring matter, blue azo...... Di......................
Conduits, machine for the manufacture of, M.
$\begin{gathered}\text { Meehan................ }\end{gathered}$
Conveyer, w. Griesser
Cooler. See Water cooler.
Coop. chicken, J. H. Brewer.
Corkserew, L. W. Fairchild.
Cots, folding head piece for, F. C. Hannahs.
Cotton chopper, C. T. McIntosh...............
Cotton openers, dust trunk for, H. C. Perbam.
Coupling. See Car coupling. Thill Cradle and rocking chair, combined, Furl \& Fr
zel
.
sh. Cur
cultivator, J. W. Kraus
, mix
Curtain pole bracket, Reubel \& Lindberg.
Curtain ring or hanger, J. W. Leslie................
Cuspiors and the like, lifter for, w. $\mathrm{H} . \mathrm{Smith} . \mathrm{I}$
Dental engine, Hoid Dental engine. Hood \& Reynolds...
Distilling apparatus, W. L. Horne
Distilling apparatus, w. L. Horne
Door check, Reardon \& Gardner.
Draught equalizer, M. Frambach
Draught equalizer, M. Frambach.................. .. 588,358
Drawing and tracing apparatus, W. P. Thompson 388,158
Drawing knives, adjustable chamfer gauge for,
W. H. Perkins.

388,148
388,337
Dredging apparatus, A. B. Bowers.......................... 388,
Dredging apparatus, hydraulic. A. B. Bowers..... 388,2
Dredging Dredging machine, A. B. Bowers
Drier

388,252
388,253 Drier. See Clothes drier.
Drier, A. Buer
Drier, A. Buer.... 388, ,
Flectric machine, dynamo, M. Waddell....... 388,03
Elevator. See Water ele,
Elevators, safety apparatus for, J. A. Moore...... 888
Elevators, safety apparatus for, J. A. Moore......
Embroidering machines, holding frame for, F.
Gegauf...
Engine. See Dental engine. Gas motor engine.
ngine. See Dental engine. Gaa motor engine.
Motor engine. liotary engine. Steam en-
Motor engine. Hotary
gine.
Engines, apparatus for heating the ignition tubes
of gas motor, N. A. Otto....................
Engines, igniting apparatus for gas motor, N. A.

Fence post, R. R. Spoor
Fence, wire, B. Scarles.
Fence wire twister, J. M. Borer....................... 388,175
Fifth wheel, J. G. \& L. H. Huff............... 388,201
Files and similar tools, handle attachment for, D.

Fire and burglar alarm, combined, W. B. Murray. 388.2
Fire escape, W. W. Howard...................... 388.29
Fireplace, R. B. Berrie...................
388,17

Folding screen, H. C. Trip.................................. 388,161
Food for cattle, Brinck \& Rehnstrom............. 388,339
Frame. See Picture frame.
Fuel, apparatus for burning liquid as a, A. Wilkin 388,327
Ruddick..................................... 388,375
unnel, bnttle, Xander \& Thomas..... 388,366
Funnel, bnttle, Xander \& Thomas...............
Furnace. See Blast furnace. Heating furnace.
Soda ash furnace.
urnace, A. J. Hill
Furnace, A. J. Hill 388,360
Furnace grate, S. J. Gavin................................. 388,273
Furnace grate, T. Kirkwood..........
Furnace grate, T. Kirkwood........................ 388,204
Furnace mouth, feed water heater and linig for,
Lanmprey \& Bugbee.......................... 388,367
urnaces and stoves, automatic re....... 388,367
G. \& A. B. Stevens................................ 388,057
Galvanic battery, H. Cassard... 388,181
Gas distribution. system of, G. Westinghouse, Jr.
Gas lighter, electric, J. J. McGowen............. 388,294
as lighting and extinguishing device, automatic.
R. F. Bridewell...388,372
Gate. See Farm gate. Fsed gate.
Grapple, self-adjusting, A. Beckers................. 388,109
Gun barrel cleaner, J. Hartness...188, 186
Gun sight. Wood \& Carver.................
Hanger. See Curtain hanger.
Harness. J. S. Hendrickson........................$~$
388,040

Heater. See Barrel heater. Car heater.
Heating furnace, Magee \& V an Vorst.............. 388,293
Heel machine, G. Bresse...............................55
Heel trimming machine, c. H. Trask........... 388,230
Holder. See Music holder. Oil can holde........ Pa-
per holder. Photographic plate holder. Plate

holder.

S. H. Howland............................

388,088
Justifying apparatus, J. Thorne...................
Kill.. See Wood drying kiln.
Kitting machines, trimming device for, E. c.

Lamp burner tiame extinguisher. L.................... Bullard...
Lamp standard, W. Patzer......
Last block fastener, W. Cook...
Lathe for turning articles having longitudinally
curved surfaces, C. A. Benedict.................
Lawn rake, J. W. Calef
lemon squeezer, C. M. Footlit
Lifting jack, B. F. Nelson
Lifting jack, B. F. Nelson
Lifting jack, A. A. Strom..
Lifting jack, C. E. Bradley..
ock. See Hasp lock. Nut lock. Seal lock.
Loom let-off mechanism, J. Morton
Loom shedding mechanism, Stafford \& Barrett..... 388,318
oom temples, manufacturiug rings for, e. S.
Stimpson
Stimpson
ooms, shuttle binder for, \mathbf{L}. Barsalou.............
ounge, extension, B. Rumpel
Lounge, extension, B. Rumpel.......................... 388
Lubricator. See Axle lubricator.
Mail bag catcher, Gollehon \& Bonham 388

Metals by electricity, working, N. Benardos.......
Metal wires and strips, machine for tempering, F
Sedgwick Sedgwick.........
Milk box, E. J. Colby
Mirrors, lighting device for toilet, H. S. Duff. . Mor spray, N. \boldsymbol{A}. Otto............................. ${ }^{2}$. Multiple switch board, M. G. Kellogg388.052, 338,18
Music holder, G. Duebendorf..., Nailing machine, I. Goddu... Nails, mach
Needle and cord, combined, E Numbering machine, consecutive, J. H. Rein
hardt Nut lock, C. M. Baldw in Nut lock, W. Kail.... Oil can holder, E. A. Durfe
Paper barrel, A. Brab..
Paper barrels, machine
erling
Paper hold

Paper reel, H. T. Wilson
 Paper reel, H. T. Wilson

Photographic plate holder, G. Eastman Pianoforte, J. P. Richardson
Picture frame, E. Dietri
Pipe. See Tobacco pipe.
Pipe. See Tobacco pipe.
Pipe coupling, flexible, R. Bodycomb. Plipes and boilers, covering for steam,
Planing machine, Woods \& Thomas. Planing machines, sectional adjustable pressur bar and chip breaker for wood, C. S.
Planter, check row corn, L. A. A spin wall. Planter, seed, F. W. Ayers
Plate holder, W. H. Lewis Plate holder, W. H. Lewis Plew, Wied \& Lurssen.....
Plow, sulky, S. M. Campel Pole attachment for vehicles, W. P. Fest Powder dusting machine, E. A. Dodgson Powder iller, G. Blum ..
Printer's Ralies, shle
Printing machines, feed guide for, J. T. Hawkins
Printing machines, operating mechanism for type
beds of cylinder, Kahler \& Brookes.......... Printing roller machine, hand, J. II. E Pug mill, H. Woodcock
Pulleg, split, w. L. Field... Pulverizer, wheeled,
Punching device, che

Puzzle, IL E. Simpson

Rack. See Hay rack
Rail chair for girder rails, R. W. Welc Rail fastening, J. Quinn, J Rails into angle bars, rolls for converting old,

Railing and guard, metallic, A. Bataill
Railway, cable, E. C. Phillips... Railway, cable, E. C. Phillips Railway rail, G. A. Ewing. Railway rail joint or chair,
Railway signal, T. P. Curr Railway tie end rail Curry......................... Railway tie, metallic, A. J. Hart ford.. Railways, current collector for electric, Black well.............
Rake. See Lawn rake.

Register. See Cash register.

Requlatior. See Tempera
Ring. See Curtain ring.
Ring. See Curtain ring.
Rull housing, W. R. Jones.
Rolling mills, guide for, L.
Rotary engine, J. C. Robertson et al
Rotary engine,
Sulesman and chankemaker, automatic, Morse
Chase....
Sawmill, band, W. F. Parish.
Sawing apparatus. J. S. Hendrickson scale and coin tester, letter, E. Knight............
creen. See Extension screen. Folding screen Seal lock, L. A. Brown.
Seal lock, G w Secondury battery, J. Beattie, J
\qquad
Diekinson.......................
Selling machine, J. A. Williams.
Sewing machine buttonhole attachment, w.

ewing machine thread unwinder, C. E. Wilkin
sewing machines, oscillating hook for, J. Va
Shelf, S. J. Murphy
Shingle painting apparatus, L. Siebert
Ships, apparatus for recovering
from sunken, J. H. Brown..
J. H. Brown...............

Sign, window, G. H. Babcock
Signal. See Railway signal.
ignaling, electric,
Slate, school, J. Hackenber
Slink, trip, J. Byrne..
Snap hook, E. Bradle
oda ash furnace, J. F. Kennedy
Eschellmann.
Sole laying machines, pad for, A. F. Smith
Spinning mule, Kimball \& Hersey
Springs, making double loop, H. Torle
stamping apparatus, mail, Laas \&
Station Indicator, G. C. Loga
steam boiler, J. G. Bryan..
Steam boiler, S. P. Hedge
H. Fietoch, Jr..
${ }^{2 \times 2 \times 25}$

 388,34 | 388,302 |
| :--- |
| 338,283 | 88,270 388,126

388,009 388,009 288,307 , 051 .348
113 ,079

DESIGNS.
Card, campaikn, F. E. Housh.
Carpet, E. Fisher.
Carpet, C. W. Swa
Collar, G. H. Barnard
Glass, beveled O. C. Hawkes.
Handkerchief, s. B Turpe
Handkerchief, S. B. Turpin..
Hot water heater, E. Gurney

TRADE MARKS.
Buttons, pearl, Ostheimer Brothers. Candles, Dearborn Manuf acturing Company Cigars, G. G. Cuervo..................... Extracts of meats, J.
Flour, D. M. Gedge Flour, D. M. Gedge $\&$ Co.. Medicine for the treatment of gonorrhea and
 pany
ysters,
Ludington \& Co...........................
metallic, Clinton Metallic Pa
Pens, steel. Ormiston \& Glass
Nerfumes, and odoriferous and
Nonantum Worsted Company
Prints and cotton piece goo \qquad
\qquad
15,802,
Print
15,78,
Soap or compound of an abrasive character Tea, J. Friess.
Toilet powder, G. Lorenz.....
Whisk 5 , Blake, Bruce \& Co
Whisks, Blake, Bruce \& Co...........................
Woolens, jeans, and like goods. Old Kentucky
woolen

A Printed copy of the specitcation and drawing of
any patent in the foregoing list will be furnished from his office for 25 cents. In ordering please state the name Co., 361 Broadway, New York.
Cnnadian Patents may now be obtained by the
inventors for any of the inventions named in the fore going list, provided they are simple, at a cost of $\$ 40$ auch. If complicated, the cost will be a little more. For
faul instructions address Munn \& Co., 361 Brondway

The DUNNING BOILER

DELAFIELD'S PAT. SAW CLAMP We build Automatic Engines from 2 to 20 H. P.,

 $\frac{\text { Bafier and Acid mowers. Air Compresnors et. }}{\text { FIFTY YEARS' PROGRESS IN TELE }}$

USEFLL BOOKS.

chanics, Builders, men of leisure, and professiona men, of all classes, need good books in the line of
their respective callings. Our post office department their respective calings. Our post office departmen
permits the transmission of books through the mails at very small cost. A comprehensive catalogue of useful books by different authors. on more than iffy free circulation at the office of this paper. Subjects a copy, have only to ask for it, and it will be mailed
to them. Address, to them. Address,
MUNN \& CO., 361 Uroadway, New York.

TOOTMNS ETIOLOGY OF SCARLET FEVER-A

Steam anil hot Water HEATING.
Over 13,500 in use.
N. Y. Central Iron Works,

THE MICHIGAN NINING SCHOOL,

 IMITING NUMBERS OF TEETH IN

 $\underset{\text { G. Hatfleld. with directions for const }}{\text { ICtion. F Four }}$ $=2=2=\mathrm{m}$
 A Large Lot of 2, 3, and 4-H. Engines
B. W. PAYNE \& SONS, Box 15

Elmira, N. Y.

Oldest and Bes

ELECTROTECHNICS, DEFINITIONS
 Scientific Cook Catalogue

ILECENTLY PUBLISHED. Our new catalogue containing over 100 pages, includ-
ing works on tore than ffrt difierent subjects. Will be
mailed tree to any address on applicution. MUNN \& CO., Publishers Scientific American,
\qquad

ELECTRIC LIGHT AND POWER.
 THE Mot

PNEUMATIC DYNAMITE TURPEDO tun. An exhaustive aceount of this new weapon and
of the experimentise wade with it; thong withia descrip-
tion and illustration of a proposed dynamite cruiser.
 HOME-MADE INCUBATOR.-PRACTIcal directions for the manufacture of an effective incu-
batorr that has been carefun y tested and found to per
form all that may be reasonably expected ; with direc.

OTATERE
 THE GENERATION OF STEAM.-A

I NEW CATALOGU
I
VALUABLE PAPERS
 GOVERNMENT RKEEDING FARM FOR Cavalry Horses.-A paper by Lieut. S. C. Robertson, U. U .
S. A. outlining a plan for the establish ment of a breed-

$\begin{array}{r}\text { DERFEGT\& } \\ \text { NENSPAPER } \\ \hline\end{array}$ The Koch Patent File, for preservink newspapers, M. ag-

CUREEDEAF:

WEITMYER PATENT FURNACE IDE Automatic Engines, Traction and Portable Engine BMFAMI ROAD ROOTIRIRES

Foundry and Machine Department

SAWS Hog to Straikhen and Aum all kind.

Diseases of dynamos - A Paper

Gras ENGINEERING, RECENT PRO-

 and perfect per formancenable prices
our for Catalogue
VAN DUZEN \& Ti FT.

GLACIAL EPOCHS AND THEIR PE
 periodic and alternate return of these in the that hi hemi-
spheres.
ment of cosely connected with the secular displace
ment

The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. 1 its circulation

ICE \& REFRIGERATING

 Cill Boilery ror the United Sin ieg Mryive

 $\underset{\substack{\text { mir } \\ \text { hir } \\ \text { and } \\ \hline}}{ }$

in

bo

WILLIAM C. Whitney. Se retary of

ARGHIIECTHRLL BOXSS.

Useful, Beautiful, and Cheap.
To any person about to erect a d welling house or sta-
le, either in the country or city, or any builder wishing to examine the latest and best plans for a church, school
house, club house, or any other pullic building of high O low cost, should procure a complete set of the ARCHI-
TECTS' AND BULDES'

The information these volumes contain renders the ork almost indispensable to the architect and builder, ind the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ings of almost every class of building, with specifcaFon aur bound volumes are now ready and may be obtained, by mail, direct from the publisicors or from any
newsdealer. Price, $\$? .00$ a volume. Stitcheu in paper overs. Subscription price, per annum, $\$ 2.50$. Address

MUNN \& CO., Publishers, 361 Broadway, New York.
HOR SAATH_
An interest in an invention, consisting of a swinking
metal weather-strip for a car window, which is utilized

TAREREA MONON ROUTE

o. Mcthermick, Gent: Pass. A south

2nd Ress MACHINERY T MACHINERY PALACE OF THE PARIS hhibition of 1889 .-Description of the main pallery or
he machinery Palace, and ot the z32* foot truses
nich are to be used in its construction. With 2 en-

BARREL
Put an Electric Bell in your house or shop.

 COMPARATIVE VALUE OF STEAM

The Scientific American Publications for 1888.

The prices of the different publications in the United
States, Canada, and Mexico are as follows:
 he Scientitic American Supplement (weekly), one 5.00 The Scientific American, Export Edition (monthly) ${ }_{5.00}^{5.00}$ The Scientific American, Architects and Builders
Edition (monthy), one vear. The Scientific American and Supplement, . . $\$ 7.00$ The Scientific American and Architects and Build-
ers Edition, The Scientiffe American, Supplement, and Archi-
tects and Builders Edition. This includes postage, which we pay. Remit by posta
or express money order, or draft to urder of
MONN \& CO., $\mathbf{3 6 1}$ Broadway, New York.

W. L. DOUGLAS \$3 SHOE

 Ras. NL. DOUGLAS \&. 3.50 POLLICE SHOEE.
Railiroad Men and Leter Carriers all wear the.
Smoth inside as a Hand-Sewed Shoe. No Tacks or Wax Thread to hurt the feet. SHOE is unexcelled

 All made in Congress, Button and Lace. If not sold W. L. DOUGLAS, Brockton, Mass. MALEABL HYATT FILTERS.

 LONG BRANCH, NEW JERSEY,
and ATLANTA, GEORGIA) systenl argest Sugar Refineries, Paper Makers, and other
Manu factories in all parts of the country have for sears
Mat Manu factories in ull parts of the country have for e ears
used onr fliters with
Wreat have sutisf HYATT PURE WATER COMPANY

To INVENTORS AND MANUFACTURERS

The 57th Annual Exhibition American Institute of the City of New York Will Open OCTOBER 3, 1888. Intending Hxhibitors must make early application to
secure proper space and clasitication. For blanks and secure proper space and clasitication. For banks and
information, address Geenerrit superinendent,
American linstitute, New York
 Automatic ${ }^{\text {Cut }}{ }^{\text {Ot }}$ Engines
 YORK MANUF'G MOChineryot Many deseription.

PATENTS.

 MUNN \& CO., Solicitors of Patents,

Patent Rivoted Monarch Ribbber Bolting.
 BELT of UNUSUAL STRENGTH is required.
THE QUTTA PERCHA AND RUBBER MFG. CO.
New York, Chicago, San Francisco
2nvaz

H. W. Johns Manufacturing Co. B7 Maiden Tane, NTOVTFOIR, H. W. Johns, Asbestos, Miliboard, Sheathings, Building Felts, Fire-Proof

 curacy and nice ety of fnish warrant-
ed umanale
tion. Samples and prices on appica-
Simond's Rolling-Machine Co., Fitehburg, Mases. PRESERVATION OF MEA MEAT SEVERN AND MERSEY TUNNELS.-

 THE AGE OF THE STARS. - BY

BRA $\$ \subseteq$ TORT

JAMES B, EADS.-AN ACCOUNT OF

Sciantific Amrricau

ESTABLISHED 1846.
The Most P-palar Scientific Paper in the World. Only 83.00 a Year, including Postage. Weekly.
This widely circulatied and splendidy illustrated
paper is publisted weekly. Every number contains sirteen pages of useful information and a large number of original engravings of new inventions and discoveries. representing Engineering Works, Steam Machinery,
New Inventions. Novelties in Mechanics, Manuf: New instry, Electricity, Telegraphy, Pbotography, ArchiComplete List of Patents each week.
Terms of Subscription.- One copy of the ScIEN-
TIEIC A IVERICAN will be sent for TIFIC Aligrican will be sent for one vear- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollarn by the publishers; six months, 11.50 ; theree months, 11.00 .
Clubs.-Special rates for several names, and to Post Clubs.-Special rates for sever
Masters. Write for part culars.
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., puyable to MIUININ \& CO., 361 Broadway, New York. TIET포
Scientific American Supplement.
This is a separate and distinct publication from
TEK Scientiric American, but is uniform therewith Tn size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers, and accompanied with translated descriptions. THE SCIENTIFIC AMERICAN SUPPLIEMENT is published
weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the prinsipal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History Geokraphy, A rchæology. Astronomy, Chemistry, Electricity, Light. Heat, Nechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photogr:uphy,
Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Econo
my, Biography, Medicine, etc. A vast amunnt of fresh and vazuable information obtainable in no other publication.
The most
The most impcrtant Engineering Works, Mechanisms and Manufactures at home and abroad are illustrated Price for the SUPPIEMENT for the United States and Canada. 85.00 a year, or one copy of the ScIENTIFIC AMELICAN and one copy of the SUPPLEMIINT, both mailed
for one year for $\$ 7.00$. Single copies 10 cents. Address for one MUNN \& Co., 361 Brondway, N. Y.,
Publishers ScIENTIFIC AMEIICAN.

Builders Edition.

the Scientific American architects and BUILDERS' EDITION is issued monthly. \$2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magazine of A rchitecture, richly adorned with elegant plates in colors, and with other
fine engravings; illustrating the most inter fine engravings; illustrating the most interesting ex amples of mod
allied subjects.
A special feature is the presentation in each number
of a variety of the latest and best plans for private residences. city and country, including those of very mod erate cost as well as the more expensive. Drawings in
permpective and in color are given, together with full Plans, Specifcations, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work have won for it the Laruest Circulation of any
Arehitectural publication in the world. Sold by al

[^0]361 Broadway, New York.
PRINTING INKS
Then

[^0]: MUNN \& CO., Publishers

