

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

IMPROVED FLOATING GRAIN ELEVATOR.
The problem of how to effect a rapid transference of goods to and from ships has been very successfully solved during the past few years, especially in the case of grain, for by the aid of elevators and conveyers it is now removed with great rapidity and economy. Fixed elevators, however, necessitate the berthing of a ship alongside the warehouse to which they are attached, and it has therefore during the past few years become the practice to use a portable elevator, by means of which a cargo can be unloaded and placed in any shed alongside of which a ship may be moored.
The first type of portable elevator was one which could be lifted from a barge and dropped into the hatch, motive power being derived from an engine placed upon the deck of the ship, and obtaining steam by means of a flexible tube from a boiler carried by the barge. The use of elevators of this description has enormously increased, as is evidenced by the fact that in 188181,951 tons of grain were unloaded by their use, while in 1887 745,090 tons were so discharged in the two ports of Glasgow and Liverpool. These elevators are arranged to have two legs, so that they are practically duplex, and lift the grain from each side of the ship simultaneously, thus keeping it in even trim. By stopping the operation of one leg, a ship which has a list can be brought upright. It is not, however, with the portable type that we have so much to deal as with a development of that idea which is embodied in a floating elevator. A machine of this class is here illustrated.
It will be seen that the elevator is carried by a barge or pontoon moored alongside the vessel to be unloaded, and which also contains a steam boiler to supply the necessary power. The upright column is a double ane -internal and external-the inner one being fixed to -internal and external-the inner one being fixed to the lower base plate or foundation, and the outer to
the upper plate. Between the two plates a set of rollthe upper plate. Between the two plates a set of roll-
ers are placed, so that by means of a hand winch

NEW YORK, AUGUST 18, 1888.

[83.00 Whinear.
the case and bridge can be revolved, as is sometimes necessary in order to suit the position of a vessel and to house the elevator. At the upper end of the pillar two H -section girders are attached, which form a bridge or jib for carrying the elevator trunk. In addition to having freedom of circular movement, the bridge can be raised or lowered at the point or nose, as desired, by means of the wire stays attached to the short end of each girder. This provision is made in order to allow of the elevator trunk being easily placed to suit the delivery, and also to facilitate the housing of the elevator, as will hereafter be described. The requisite power is obtained by means of the winding barrel shown. The elevator trunk is carried in a light wrought iron frame, through which it can slide, the frame being in turn sustained by trunnions, which enable it to be oscillated when necessary.
In addition to the oscillatory movement there is also provision for moving the frame and trunk longitud inally on the bridge, by means of a traverse screw worked by a hand chain from the deck of the pontoon or barge. The range of longitudinal movement is, of course, limited, and is only intended to compensate for the variations existing in the beams of ships. To the head of the elevator leg or trunk is attached a wire rope, which passes over guide pulleys to a barrel, driven by gearing from a pair of engines fixed to the upper plate. By means of this the trunk can be drawn into a horizontal from the vertical position it is in when raising grain. A further lifting rope is taken from a third winding barrel, also driven by clutch gearing, and attached to a ring bolt at the lower end of the elevator case. In this way the latter can be vertically raised or owered out of or into the hold of a ship, and can thus easily follow the height of the cargo as the latter is unloaded. Two pairs of steam engines are fixed on the revolving base plate, by which the whole of the motions are controlled, one pair driving the three winche

The elevator trunk or leg is fitted internally with wo endless chains, running parallel to each other over pulleys at the top and bottom, and to which are attached at short intervals steel buckets. The necessary motion is communicated to these chains by means of pitch chains of special construction, working on sprocket wheels, the chain from the engine driving a second one placed on a shaft running alongside one of the bridge girders, and so communicating motion to sprocket wheels, which drive the elevator and conveyers. This method is clearly shown in the illustration. Attached to the elevator head is a telescopic delivery pipe, by which the grain is delivered to the conveyer band. If it is necessary to have more than one length of conveyer, a sprocket wheel is placed on the spindle of the roller at the extreme end of the first length, driving a similar wheel on the first roller of the second length. The distance to which the conveyers may be extended is thus very great, the whole of the power being derived from the engines on the pontoon or barge. The procket wheel and chain arrangement are of special design, easily detachable, and very convenient.
We had recently an opportunity to inspect a machine of this class which is being supplied to the Limerick corporation, and we can testify to its easy and efficient working. We have referred to the housing of the elevator. This is requisite when it is out of use or when the machine is being moved from place to place, and is effected in the following manner: A cargo having been discharged, the leg or trunk is, by means of the lifting winch, drawn up clear of the ship's hatch. It is then drawn round until it lies on the bridge, which is ε wung round until it is fore and aft of the barge, being then allowed to fall at the nose, until the latter rests on a trestle placed on the deck of the barge, the whole being then made fast. The gearing, etc., is then closed up, and the barge is then ready for transportation without any fear of accident
The buckets are stamped out of steel, cooper, or brass

IMPROVED FLOATING GRAIN ELEVATOR.
sheets in one piece, and even in the largest sizes are without a joint. A special plant has been laid down by the makers for this purpose, and they now make a large number of varioussized and shaped buckets. The arrangement of these on the elevator chains is such that the maximum duty is obtained, as no space is lost in any way. Each machine is arranged to raise 50 tons per hour, but can, if necessary, raise 60 tons. The whole arrangement is most complete, and the machine we inspected worked well and was well constructed. Our illustration represents a machine constructed for the transference of grain cargoes from large barges to ocean-going ships, weighing it in the process. This machine was made for use at Odessa, the grain arriving at that port by large sailing barges. As will be seen, one elevator leg is sustained at the end of the jibs or derricks, and raises the grain from the barge and delivers it to a conveyer. The latter empties it into a weighing machine placed on the pontoon carrying the elevator, which automatically weighs it, and delivers the grain so that it can be raised to the second elevator, which is carried by the upright frames shown. The second elevator delivers the grain to a conveyer. by which it is dropped into the ship.

The makers are Messrs. S. S. Stott \& Co., of Hasling den, near Manchester.-Industries.

The Fastest Railroad Train in the world.
Competition between two of the great English lines of railroad has recently taken the form of cutting down the running time. The London and North-Western and the Great Northern, striving against each other for the traffic between London and Edinburgh, have reduced the running time between these points to eight hours. By the first named road the distance is 401 miles, by the other it is 397 . For the entire distance the schedule is slightly exceeded by the short B. \& O. run between Baltimore and Washington, 40 miles in 45 minutes. But the length of the trip removes it from the comparison. On the North-Western road one run without a halt of 158 miles in three hours is a part of the trip. This exceeds the run from Fort Wayne to Chicago by 12 miles. To realize what this speed means, it may be compared with the trip from New York to Chicago by the Pennsylvania Railroad. The same speed would reduce the time between these points to a little over eighteen and one-half hours. It has been suggested that an afternoon train should leave New York and should reach Chicago in time for business the next day. The above proves the practicability of such a project.

Clouds of Moths.

The city of Reading, Pa., had a remarkable visitation of moths on the evening of August 1. Myriads of them infested the air, resembling at a distance a snow storm. They were first noticed flying around the electric lights about 8 o'clock, and gradually increased to such numbers as to obscure the brilliancy of the lights. Passengers on the street cars, as they passed under the lamps, were covered with the insects, and handkerchiefs, hats, and fans were plied vigorously to keep them off. Fires were built under the lights and beaps of the moths were burned. Penn Street saloon men were compelled to close their front doors to keep out the pests, which were attracted to the barrooms by the bright lights. The doors and windows of dwelling houses had also to be kept closed to keep them out. Local savants pronounced them cotton moths, and they evidently came from the South. They are said to precede a hot wave and a decided rise in the temperature is predicted.
At Easton, Pa., butterflies by the thousands flew around the sixty-four electric lights, lit on the carbons and then dropped dead in the globes. When the men who renew the carbons visited the lights, they found on an average two quarts of dead butterflies on each globe, a total of four bushels, besides the lot that had fallen on the ground during the night.

Moths Atracted by the Electric Light.
A curious and interesting spectacle is now presenting itself upon Third Avenue, New York. Myriads of moths are circulating around the electric lamps upon the corners of the street, their shadows being projected upon the sidewalks and opposite blank walls, asif upon the screen of a magic lantern. Passers-by are startled at perceiving these apparitions dart across their path and stand gazing astonished at the novel sight. The moths are barely a half inch long, but appear projected at least two feet, with outstretched wings in proportion.

Thomas Latham.

A $\$ 50,000$ Horse.

A remarkable auction sale took place on July 31, at Lexington, Ky., on the occasion of the sale of the celebrated three year old stallion Bell Boy. This horse had a record at three years of $2: 26$, and was bought four months ago for $\$ 35,000$ by Jefferson \& Seaman. To close the partnership, the animal was again sold as above, and brought on the block the large sum of fifty thousand dollars, the largest price every paid for a horse in this country. The purchaser of Bell Boy was C. E. Seaman.

Sfientific gesmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TEEIRS FOR THE SCIENTIFIC AMEIRICAN

Remit by postal or express money order.
Australia and New Zealand-Those who desire to receive the
ScleNTFIC AMERICAN, for il little over one year, may remit $£ 1$ in current Conial bank notes. Address

is a distinct paper from the SCIENTIFIC AMFRICAN. THE SUPPLLEMENT is issued weekly. Hvery number containg 16 octavo pakes. uniform in size

 ny to the Postal Union
throughcut the country.
Ciombined Rates.-The SCIENTIFIC A MERICAN and SUPPIEMENT
will be ent for one year, to any address in U.S. or Canada, on receipt of
seven dollars. seven eonars.
regis satested letter.
Australia and New Zealand.-The Scientific American and
SUPtLEMENT will be ent for a little over one year on receipt of E cur-
Address MUNN \& CO., 361 Broad way, corner of Franklin Street, New York.
NEW YORK, SATURDAY, AUGUST 18, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 659.
For the Week Ending August 18, 1888.
Price 10 cents. For sale by all newsdealers.
ASTRONOMY.-The Earth as Seen from the Heavens.-How our
earth would appear to the inhabitants of the planets.......... 10528

II. METKOROLOGY.-Measuring Earthquakes.-The principles
and applications of dififerent seismograps.- $-41 l i l u s t r a t i o n ~$
 III. MISCELLALANFOUS.-Darkening a I Leeture Room.-Effective
apparatus in use at Cornell Univerity for darkening the physical

 . NAVAL ENGINEERING. Niqht Navigation on the Suez Canal.

 PHYSICS - Vernon Harcourt's New Photometer.-The holoph

GEN. PHILIP HENRY SHERIDAN

On August 5, at 10:20 P. M., Gen. Sheridan passed away. His death, following upon the demise of Gen. Grant, removes another of the great leaders of the United States army in the civil war, and acts to still further relegate the conflict to the domain of history.
Gen. Sheridan's parents were natives of Ireland, and emigrated to this country about sixty years ago. He was born March 6, 1831, in Somerset, Perry Co., Ohio about twelve miles from the birthplace of Gen. Sher man, his companion in war and his survivor. His family were of pure Celtic blood, and many of the characteristics of the race are said to have appeared in Sheridan, especially in early life and during his West Point career. He graduated at West Point in 1853, and was sent to Texas, where he began his experience as a soldier in fighting the Apache Indians. Until 1861 he remained in the West. On the breaking out of the war he was assigned to various duties, principally clerical and in the quartermaster's department, until May 25,1862 . Then he took command of a regiment of cavalry, the Second Michigan, and at once began his brilliant record as one of the most daring commanders on the Northern side. His magnificent achievement at Winchester and elsewhere are matter of song and history.
In 1870-71 he was with the German armies, and witnessed many of the scenes of the Franco Prussian war He was often solicited to enter the field of politics, but persistently refused. In June, 1875, he married, and now leaves a wife and four children to mourn his loss. His quiet and retiring disposition serves only to make the memory of his actions in war the more enduring.

THE MECHANISM OF THE COUNTER ATTACK.

With the coming of quick-firing arms and more des tructive engines of war, tacticians are looking with more favor upon the feasibility of the counter attack, especially where a small force is operating against a larger one, being, as one might say, upon the defensive, and in this humor, allowed by the enemy to choose its own battle ground. It will be remembered that the French, in the early days of the Franco-German war occupying this latter position, invariably organized a counter attack and generally after the enemy's ranks had been terribly mangled by the play of the mitrail leuse. But the French, peculiarly fitted as they are for offensive rather than defensive operations, rarely followed up their advantages, and later on, the Germans adopting the same tactics with better organization kept a force in reserve to oppose the counter attack which, had the French been less discouraged, would doubtless have proved tardy, if, indeed, at all availing At least this is alleged in a recent paper of great inter est by Major W. M. Smith, of the Royal Artillery. There is an extreme school of writers on the conduct of war with the new arms who insist that to occupy the "weak intervals" of the battle ground with anything beyond a mere "screen" or outpost line of infantry is a waste of strength needed elsewhere. The element in which lies the source of strength is, according to Major Smith, the extent of the fire-swept glacis in front of the position, and the intensity of the hail of iron and lead that can be poured over its surface. The enemy, he says, must be compelled to cross that zone, and to suffer the utmost penalty in doing so, and for this purpose the frontal fire of infantry must be a maximum in volume and in its lateral extent without a break or even a quaver. All military readers will recal Napoleon's famous plan for "piercing the center"-a system which now has fallen into disuse; the "pivot and interval" system rendering it abortive, though doubtless a Napoleon could still break the line with it, as Epaminondas used to shatter the strongest line with a steel-tipped wedge of warriors.

TORPEDO WARFARE IN PRACTICE AND THEORY.

Captain Greenfell, late of the Royal Navy, having large experience with and little confidence in the locomotive torpedo, recently gave his conclusions to the Royal United Service Institution, where were many with equal experience ready and able to confute his most serious charges. Captain Greenfell thinks the big gun, such as modern ships carry, far more effective than the torpedo, the former having a battering range of from three to four miles, and the torpedo an effective range of only 500 yards. As to accuracy, he says: "Captain Gallway (an authority) speaks of a torpedo as being extremely accurate which showed a mean error at 400 meters of $2 \cdot 4$, say 94 inches, laterally, the depth being always within a small decimal of that at which the torpedo was set to run. Any modern gun will do for comparison. I take the first which comes to hand-the 24 cm .30 caliber long German gun. At a range of 2,000 meters (five times the other), its mean error is vertically 16 inches, horizontally 8 inches."
But Captain Greenfell admits it were impossible to train big guns on a moving torpedo boat, and with anfight would be equal. But the torpedo boat is looked to to take a big ship at a disadvantage, and we quote his own authority. Captain Gallway says that machine guns, which are looked to to beat off torpedo
chith
boats, are utterly unreliable in quick training. He says: "I know of only one occasion in which they have been tried in actual war. I hear from an officer out in the Min River, that a boat approached the French fleet in the night, the electric lights were turned on to her, and all the Hotchkiss guns of four ships were brought to bear on her, yet, in the end, they had to send two steam pinnaces to bring her alongside, and then they found she was not even hit!"
During the discussion of Captain Greenfell's paper it was shown that a torpedo boat built by Herreshoff, of America, was fired at by one of the big ships in Portsmonth Harbor, England, for a whole day without sinking her. Also that, on the Danube, a boat carrying a spar torpedo was actually discovered and a very heavy fire opened upon her, yet she kept on and delivered her fire. And an instance was cited, where a big ship, with torpedo netting set, in the Mediterranean, and looking for them, did not discover their presence till they were under the netting and against the hull. It was shown that a small explosive force, under or nearly under the ship, has a far more forceful effect than many times its quantity above, having, indeed, the water for a gun; the resistance of the water being greater than that of the ship.
From the great mass of testimony brought out by this discussion, we might fairly sum up as follows :

1. Torpedo boats, to be effective, should be operated in fairly smooth water.
2. The torpedo boat, advancing end on, has little to fear from the machine gun, even in broad day.
3. The discharge must be below rather than alongside the hull.
4. Several torpedo boats should be set to attack a single great ship, instead of leaving it to one.

Experiments in Feeding Sheep.

We have received Bulletin No. 2 of the State agricultural experiment station, Cornell University, Ithaca, N. Y. It gives the results of some experiments in feeding sheep to determine the economic value and the effect on health and digestion of foods rich and poor in nitrogenous compounds. We make a few abstracts :
From a flock of about 100 lambs, six months old, six were chosen with great care with reference to uniformity in size, weight, and shape. They were of mixed Cotswold and Southdown blood.
Their food from weaning to October 10 had been grass alone.
On the above date they were shorn and all placed together in a box stall and prepared for the experiment by being fed hay, and at first a small portion of corn meal and bran, which was gradually increased, until it reached, on November 11-when the experiment be-gan-about $3 / 4$ of a pound per head.
From this time on they were divided into two lots of three each, in such a way as to make the total weight of each as nearly equal as possible. They were provided with warm stalls on the ground floor of the barn. In order to make the feeding rations different in character, Lot 1 at the beginning of the experiment was fed daily $11 / 2$ pounds of oil meal and $11 / 2$ pounds of coarse wheat bran. Later on in the experiment, in order to make the nutritive ratio still narrower, one pound of cotton seed meal was substituted for one of bran. We will call this the nitrogenous lot.
Lot 2-the non-nitrogenous lot-was fed 3 pounds of corn meal daily.
Both lots were fed good mixed timothy and clover hay, great care being taken to give them only so much as they would eat up clean.
All ate their rations with avidity up to near the last of December, when that of Lot 2 had to be reduced for a short time to 2 pounds, and later on for three days they received nothing but hay, as they refused to eat their corn meal ; it was not until March first, when 4 pounds of mangolds were added to the rations of both lots, that they could be induced to eat their full ration.
According to the German standards of feeding rations, one to four is the narrowest (that is, one part of
protein, or muscle producing food, to four parts of protein, or muscle producing food, to four parts of
carbohydrates or heat and fat producing) and one to seven the widest ratio advisable for the purpose of fattening sheep. Since the nutritive ratio of the food of one lot was below the lower of these ratios, and that of the other above the higher, it is natural for us to expect very marked results. These results were noticeable almost from the beginning of the experiment. The lambs of Lot 1 were livelier, more sportive, plumper, and showed far better development and growth than those of Lot 2.
The difference in the amount of water that was drunk as the experiment progressed was very marked. Lot 1 drank 61 pounds in 6 days; Lot $2,211 / 2$ pounds. The solid voidings were of a very different character those of Lot 1 being soft, while those of Lot 2 were hard and dry up to March 1, when the ration of mangolds was added.
It was evident by March 1 that Lot 2 would not become fat enough or have sufficient development, without some change in the ration, to compare with

The added root ration not only toned up the digestion of Lot 2, and enabled them to consume more corn meal than they could without it, and to make a gain of 2% more in one month than they had in the two previous months, but it also shows that Lot 1 was greatly benefited by the addition of roots to their food. Their average gain for the four preceding periods was $113 / 4 \%$. The addition of the roots apparently increased it to 16%.
The average gain of Lot 2 for the same period was 712%. The addition of the 4 pounds of roots increased this to 13\%.
On the 25th of April the lambs were shorn and the wool of each lot weighed. The weight of the wool of Lot 1 was 55% greater than that of Lot 2 ; moreover, it was of a much finer texture and better quality than that of Lot 2 .
The lambs were slaughtered on the morning of the 26th of April by an expert butcher. Each lamb was weighed, then slaughtered, then weighed again to determine the amount of blood in each lot. Then the skin, liver, kidneys, spleen, heart, and several other important internal organs were separately weighed, and finally the dressed weight was taken. The bodies were hung up to stiffen for one day, at the end of which time each one was carefully cut into four sections. All the sections were photographed, and an average set chosen, from which colored plates were made. These are admirably executed, and form a part of the bulletin.
The sections show well the comparative disposition though the fat of each lot was not dissected out and weighed, it is quite evident from the cuts that the amount found on the lambs fed on nitrogenous food exceeded that produced by those fed on non-nitrogenous food. The lean was also increased to an equal or greater extent. Both these facts are shown especially well in the plates.
The live weight of Lot 1 was 21 per cent greater than that of Lot 2.
The metatarsal bones of Lot 1 were 22 per cent stronger than those of Lot 2.
The tibias of Lot 1 were 24 per cent stronger than those of Lot 2.
It is seen that the valuable parts are proportionately larger in those fed on nitrogenous food. The kidneys and spleen of the nitrogenous Lot 1 are also considerably larger, while all the other important internal organs are larger in those fed on non-nitrogenous food.

Although this experiment is but one of a series to be tried at the experiment station, and needs to be repeated many times before absolutely accurate results can be obtained, yet we may deduce from it that the effect of feeding an undue proportion of non-nitrogenous food to sheep is :

1. To decrease the production of wool by one quar-
2. To decrease the strength of the bones by one third.
[3. To reduce the production of both fat and lean neat.
Not one of these three important effects is desirable in sheep husbandry; hence we may conclude that corn alone is not the best food for sheep.

War Ship Charleston.

The launch of this new war ship was successfully effected at San Francisco on July 19. Over 20,000 spectators were present.
The Charleston is 320 feet long over all ; length on load line, 300 feet; beam, 46 feet ; draught forward, $171 / 2$ feet; aft, $191 / 2$ feet; mean draught, $181 / 2$ feet ; and displacement, 3,730 tons. There are only two short stump masts, with military tops for machine guns. All the steel used in the construction of the hull and all for the engines (except the crank and two line shafts, which were made by Krupp at Essen) is of domestic manufacture, known as mild steel, made by the open hearth process. The beams, outside plating, and protective deck plates were made in the East by Carnegie, Phipps \& Co. All the rivets, frames, and engine forgings, and all the steel castings, both for hull and engine, were made by the Pacific Rolling Mills Co., whose works are contiguous to the shipyards of the Union Iron Works. The stem, stern, and rudder pieces are single steel castings, the stem being ram shaped and specially strengthened by braces and other attachments to the steel protective deck. The sternpost was cast on June 22,1887 . There were 30,960 pounds of metal used, and the weight of the sternpost, when delivered complete to the Union Iron Works, was 11,130 pounds. The stem weighs 13,430 pounds, and the rudder frame weighs
9,420 pounds.
The plating of the Charleston is of rolled steel, the outside plating being from $7-16$ to $1 / 2$ inch thick, the inner bottom plating $1 / 4$ to $5-16$ of an inch, and the the protective deck, which extends from stem to stern, is 2 inches thick, and the sloping sides 3 inches thick The motive power of the Charleston is furnished by
separate water tight compartments. The screws are three bladed, made of manganese bronze, and 14 feet in diameter. There are six main boilers and eighteen furnaces, with a total grate surface of 485 square feet, and 2,578 tubes, with a heating surface of 15,600 square feet. There is a bunker capacity of 800 tons of coal, but the normal draught is 328 tons. On a natural draught there is an indicated horse power of 5,000 horses, and on a forced draught of 7,650 horses, a maximum speed of 18.9 knots being thus attained. Atan indicated horse power of 7,650 , which requires the consumption of 800 tons of coal, the Charleston is expected to be able to steam 2,013 knots at the maximum speed. At the normal draught of 328 tons of coal, at the hourly consumption
of 1.07 tons, and with 1,200 indicated horse power of 1.07 tons, and with 1,200 indicated horse power, she can steam 2,990.60 knots at 10 knots an hour; or with a forced draught of 800 tons of coal, $7,476 \cdot 60$ miles t the same speed.
The quarters of the officers and crew are all situated n the berth deck, as usual. Some improvements on the orignal plan, suggested by Naval Constructor Fernald, have greatly improved this deck. Farthest aft are the captain's staterooms, fitted in a sycamore veneering, dead polished, sliding doors, and furnished ike the wardroom, which comes next. The steerage is much larger and more comfortable than in most ships. The galleys for officers and crew are situated in the center of the ship, inclosed in a steel bulkhead and specially ventilated, to carry off the odors of cooking. The sick bay and dispensary are placed in the bows just abaft the paint room, divided from it hy a steel bulkhead. The space on this deck from the sick bay to the midship bulkhead is the space where the 308 men who will compose the crew will sling their hammocks and mess. Wire lockers are provided here for the utensils of each mess. Head room on this deck is about $61 / 2$ feet, and the ventilation and light are as good as it is possible to make them, two blowers being used of 10,000 cubic feet capacity a minute. The cruiser will be lighted by two incandescent electric plants of 3,200 candle power each. All the most modern appliances for navigating have been provided. The masts are made of half-inch plate, and one of them is used for ventilating the dynamo room. The masts, rigging, and boats are being constructed at the Mare Island Navy Yard. As there is no projecting keel on the cruiser, two bilge keels have been provided to prevent
rolling. These stand out 20 inches from the bilge, and are made of wood, plated.
Adverse criticism has been aroused by the failure to provide hydraulic gear for the heavy guns and the provide hydraulic gear for the heavy guns and the
substitution of 8 inch for 10 inch rifles, which latter are carried on the Naniwa-Kan. The machinery has been superintended by Chief Engineer W. S. Smith, U. S. N., and Assistant Engineers E. T. Warburton and I. N. Hollis, U. S. N.
The keel plates of the Charleston were laid August 27, 1887, less than one year ago, and the first rivet driven September 1. Herhull weighs upward of 1,350 tons. It is thought that the cruiser will be ready to be turned over to the government in five months' time. By the contract she should be finished by June 28, and a penalty is fixed for delay in delivering her. Her contract price is $\$ 1,017,000$; that of the English-built ship, the NaniwaKan, after which she was modeled, was $\$ 938,000$ complete. The San Francisco will follow the Charleston on the stocks. Only one steel vessel had been launched from the Union Iron Works previously, the Arago, a from the Union Iron Works previously, the Arago, a
1,100 ton steamer, and the yard was not ready for the construction of a 4,000 ton ship. But when the contract for the Charleston was obtained, a large slip was run out 80 feet broad and 300 feet long, on a foundation of 70 foot piles, calculated to sustain a weight of 1,500 tons. Additional offices and shops were erected, a hydraulic dock completed, and a 100 ton shears constructed.

Curculio and Chinch Bugs.

Bulletin No. 4 of the Ohio Agricultural Experiment Station discusses some elaborate experiments in preventing curculio injury to cherries, and treats in a practical way the best midsummer remedies for the chinch bug, which has lately appeared in destructive numbers in Ohio. In the cherry experiment, which was conducted by the station entomologist, Clarence M. Weed, twenty-two thousand five hundred cherries were individually cut open and examined, and the conclusion reached that three-fourths of the cherries liable to injury by the curculio can be saved, without danger to the user, by spraying with a solution of London purple soon after the blossoms fall.-Vick's Mag.

The American Institute Fair, New York.
Large numbers of inventors and manufacturers have for many years found it of interest, and profitable as well, to attend and take part in the annual exhibitions of the American Institute, held in the fall of each year. The fifty-seventh annual exhibition will open October 5, at the hall of the Institute, on Third Avenue, New York City, and promises to be in no way behind any of its predecessors in attractive features. Intending exhibitors should make early application to secure ing exhibitors should make early app
good locations and the space needed.

AN IMPROVED BALANCE ESCAPEMENT FOR WATCHES.

The application of a governor to the hair spring and balance wheel of a watch, in the form of a free curb actuated by the pallet or escapement lever, to lessen the effect upon the watch of jar or shock, is illustrated herewith, and has been patented by Mr. Sirus E. Kochenderfer, of Hollidaysburg, Pa. The escapement lever, shown in Fig. 2 (the escapement wheel not being shown), has a forked end in which works the pin on the balance staff roller, and the outer or back end of the

KOCHENDERFER'S BALANCE ESCAPEMENT FOR WATCHES.
lever is extended and bent to form a slotted arm, working through a slot in the top plate, as shown at a, in Fig. 3 , this arm engaging with a bent arm, b, of a vibrating rod or wire, \mathbf{B}, having its pivot, c, a little to one side of the axial line of the balance staff. This vibrating governor, B , has inwardly projecting curbs, $d d$, that serve to receive freely but moderately closely in between them the hair spring. This governor is vibetween them the hair spring. This governor is vi-
brated in common with the escapement lever, by which it is driven, and serves to equalize the motion and adjust to equal motion in any position the watch may be turned. In case of shock or jar the balance wheel is restrained from making lost motion by the curbs of the governor, while the pin on the roller of the balance staff is not liable to work out of timely relation with the fork of the escapement lever, avoiding danger of the fork of the escapement, lever, avoiding danger of
locking the balance or producing breakage of the pin locking
jewel.

THE AUTOMATIC RUBBER MIXER.

The accompanying illustrations represent a new appliance for the "compounding" of rubber which

Fig. 1.-THE AUTOMATIC RUBBER MIXER.

promises much in the way of rapid and economical work. The automatic rubber mixer consists of a stout belt of duck covered with rubber, which runs horizontally beneath the mixing rolls, occupying the place usually filled by the "compound box." The upper surface of the belt when in use is drawn against the

Fig. 2.-THE AUTOMATIC RUBBER MIXER.
face of the " back roll," as shown in black lines in Fig. 2 , and is brought up even with its top, where it is held by two strong springs. The turning of the roll sets the belt in motion, which results in the constant and even feeding of anything that drops between the rolls, to the top, for further grinding. When a "batch" is thoroughly mixed the belt can be released and dropped out of the way, as shown in dotted lines, and the rubber refined with as much care as if no belt were there. If, during the mixing, the piece goes over the back roll, the belt springs immediately lengthen out, and the belt goes on with its work of carrying up the compound as easily as before. To prevent the work ing out of the compound between the ends of the rolls and its loss by dropping over the edge of the belt, a pair of metal guides are attached directly below the rolls, which serve to throw it in toward the center of the belt.
he belt.
aid to man can run three or more grinders with it, and deliver one-fourth more work from each. Aside from this, the product is far more homogeneous than when the compound is fed with a hand shovel, and there is less danger of burning sensitive stocks.
Fig. 1 is a perspective view of the mixer attached to a grinding mill, Fig. 2 showing an end view of the same, the belt being drawn up over the back roll and in the act of feeding the compound to the top of the rolls. Both American and foreign patents have been secured upon this invention and a company, known as the Automatic Rubber Mixer Company, No. 38 South Market Street, Boston, Mass., are now building the machines. Models of the mixer, as well as machines in actual use, may be seen, or any other information in actual use, may be seen, or any other informar
desired can be obtained by writing to Henry Cear son, general manager, at the above address.

Japanese Lacquer for Iron Ships.

The Japanese Admiralty has finally decided upon coating the bottoms of all their ships with a material closely akin to the lacquer to which we are so much accustomed as a specialty of Japanese furniture work. Although the preparation differs somewhat from that commonly known as Japanese lacquer, the base of it is the same-viz., gum lac, as it is commonly termed. Experiments, which have been long continued by the imperial naval department have resulted in affording proof that the new coating material remains fully efficient for three years, and the report on the subject demonstrates that, although the first cost of the ma terial is three times the amount of that hitherto employed, the number of dockings required will be reduced by its use to the proportion of one to six. A vessel of the Russian Pacific fleet has already been coated with the new preparation, which, the authorities say, completely withstands the fouling influences so common in tropical waters. It occupied the native inventor for many years to overcome the tendency of the lac to harden and crack, but having successfully accomplished this, the finely polished surface of the mixture resists in an almost perfect degree the liability of barnacles to adhere or weeds to grow, while presumably the same high polish must materially reduce the skin friction which is so important an element affecting the speed of iron ships. The dealers in gum lac express the fear lest the demand likely to follow on this novel application of it may rapidly exhaust existing sources of supply.

AN IMPROVED WIRE FENCE.

A wire fence in which the posts are braced and sustained in a novel way, and are laterally adjustable to accommodate the expansion and contraction of the wires, is illustrated herewith, and has been patented by Messrs. Thomas Griffin and William J. Mitchell, of Noblesville, Ind. Each post is anchored in place by a rod looped around a stone or other weight, and secured to the post by a nut, while upon the opposing face of the post is a rack having a central longitudinal aperture and aligning recess, adapted to receive a rack plate and lug secured to one end of a brace, as shown in the small figures, the lower end of the brace resting upon a stone or other suitable block. The brace is held in connection with the post by a lever pivoted to the post by a staple, a rod from one end of the lever extending through the brace, and having its end threaded to receive a nut, the tightening or loosening of which causes the post to incline slightly inward or outward. as may be desired, on account of the expansion or contraction of the wires. These post braces may be used in connection with as many of the intermediate posts as is found desirable, but are designed to be atall times employed in connection with the end posts. That the wires may be properly spaced, they are tied together by spaced vertical clamps or stays, consisting of metal bars pivoted one upon the other at their lower ends, as shown in a small figure, having slots at the desired distance apart, so arranged that when one bar is folded upon the other, the slots in each will register. This stay may be attached to all but the top wire, or may include that also, as shown in the illustration.

A REMOVABLE CALK FOR HORSESHOES

A device whereby the calk may be securely held in place on a horseshoe, and readily removed therefrom or sharpening, is illustrated herewith, and has been patented by Mr. Thomas B. Mason, of 209 Warren Street, Trenton, N. J. A clamp is employed, shown in section in Fig. 2, having rocking portions connected together by straps and bolts, the toe clamp being formed with three rocking portions, the meetingedges of which are a slight distance apart, and have centrally beveled semicircular recesses, in which the calk is received. The

MASON'S REMOVABLE CALK FOR HORSESHOES.
calk has a shoulder which rests in these recesses, its inner end being screw-threaded, to engage a nut resting in an inside recess formed in the two adjacent rocking portions of the clamp, as shown in Fig. 3. As the calk is screwed into the nut, after the latter has been placed in its recess, the adjacent rocking portions of the clamp are forced apart, and cause the clips to be firmly pressed against the horseshoe. The clamps used in attaching the toe calks have a straight clip, which rests against the inner side of the horseshoe, with no projection to injure the horse's foot.

AN IMPROVED HEATING DRUM.

A drum for use in connection with stove pipes, either djacent to the stove or distant therefrom, to retard the current of heated air in its passage to the chimney, and secure the best radiation of heat, is illustrated

GRAN'S HEATING DRUM.

herewith, and has been patented by Mr. Edward C. Gran, of Jordan, Minn. The heads of the drum have openings in which rest pipes through which the air of the room may freely circulate, the drum being secured to thimbles receiving the ends of sections of a stove pipe. The interior of the drum has inclined partitions, through which extend the lateral pipes, the partitions directing the current of heated air entering from the stove pipe in the lower opening of the drum, as shown by the arrows, around the lateral pipes, to the upper drum opening. There is an opening covered by a slide in the bottom of the drum, from which soot may be removed, and, in order to check the draught through the drum, it has an opening provided with a wire screen and pivoted cover, above the lateral pipes, this opening, which serves also as a ventilator for the room, being adapted to be closed on the inside by a valve connected with the damper. There is no opportunity for the drum

GRIFFIN \& MITCHELL'S WIRE FENCE.
to become choked with soot, and thus rendered inoperative, and the construction is designed to afford a simple and effective means to utilize heat that would otherwise pass up the chimney.

AN IMPROVED AUTOMATIC CAR BRAKE.

A brake which is designed to be automatic, not affected by snow or ice, which adjusts itself to either direction in which the car is pulled, and which may be effectively operated when a train is moving at a high

rate of speed, has been patented by Mr. Frederick G. Taylor, of Cranston, R. I., and is illustrated herewith. A centrally hinged rod extends beneath the car from end to end, below the axles, supported by and reciprocating upon pulleys hung from the beams. The rods at the ends of the cars are threaded, and have couplings, as shown in Fig. 3, by which the several cars of a train are quickly united. A brake beam carrying brake shoes is suspended a proper distance in front of the wheels, and each end of one brake beam is con. nected to a lever fulcrumed to the extremity of a bar extended from the brake beam on the opposite side of the truck, the two levers crossing each other, and their free ends being each united to a spring secured to the bottom of the cars. A chain or rod is also connected to the free ends of the levers, the opposite end of the chain being secured to a spring fastened to a link in the center of the rod extending beneath the car. At
each end of the car, below the drawhead, are brackets carrying fenders on their outer ends, the fenders being adapted to hold the cars at a given distance apart, whereby all strain is removed from the rods extending beneath the cars, allowing them to reciprocate freely at any time. These rods are reciprocated from the piston of a cylinder beneath the cab or tender, as shown in the plan view, Fig. 2, whereby the levers connected with the brake beams are drawn forward or back. Fig. 4 illustrates a construction whereby the brake shoes are put in operation on all the wheels simultaneously, no matter in which direction the brake rod is pulled.

AN IMPROVED SIGNALING DEVICE FOR MINES.

A reliable and inexpensive electro-magnetic signaling device, easily operated by any one of ordinary intelligence, and especially adapted for use in mines, is illustrated herewith, and has been patented by Messrs. Logan M. Bullitt and Oscar C. Greene. Fig. 1 represents the general arrangement of the conducting wires, batteries, and signal bell, Fig. 3 showing a side post by which the wires are supported, Figs. 4, 5, and 6 showing hand circuit closing devices, while Figs. 7 and 8 show a bell or sounder attached to a circuit closer. The bell or sounder actuated by the system is placed in proper position relative to the engine, near the mine entrance, and the incoming and outgoing electric current wires connected with it and the main battery, branch wires being employed for differbranch wires being employed for differ-
ent chambers of the mine, extending from the main wires as required, so that the circuit is continuous to the signal bell along either of the main wires. The main wires and their branches are parallel with each other, and only a little distance apart, so that by connecting these adjacent wires any where along their length by a proper conductor the circuit will be closed and the signal bell sounded. Suitable hand instruments for so joining the wires and closing the circuit are shown in the small figures, Fig. 6 showing a circuit closer adapted especially to wires arranged one vertically over the other. The main battery may be made sufficiently powerful to supply the circuit on all the wires, or additional re-enforcing cups may be placed in the branch
wire extension circuits, as shown in Fig. 1. This sys tem of mine signaling has been for some time in practical use in mines of the Northern Pacific Coal Co., in Washington Territory, and is said to have given entire satisfaction. The apparatus is designed to be put up at a cost of not more than $\$ 50$ per mile.
For further information relative to this invention address Mr. Logan M. Bullitt, No. 141 South Fourth Street, Philadelphia, Pa.

The New Cast Iron Guns.

At the ordnance foundry of the South Boston Iron Works a large force of workmen is at present engaged in completing the third and last in the series of the three 12 in . cast iron rifled guns, with a steel tube and steel hoops. The work of putting in the steel tube, which is inserted at the rear of the barrel, extending through from the breech, has just been completed, after three trials, to insure getting a perfectly tight joint at the shoulder or casing of the gun. The gun was placed horizontally over a longitudinal pit, and was then covered in with boiler and sheet iron. A fire was built under it, extending from the breech of the gun to a point in front of the trunnions. The body of the gun was expanded by the heat, and the steel tube was inserted from the rear. A stream of cold water was kept circulating through the bore of the tube, to keep it cool, during the whole operation, which lasted about twenty one hours. The gun was then cooled down at the breech to make it grip the tube, so that in contracting the front end of the tube was brought to a tight joint against the forward shoulders in the casing or body of the gun. An ingenious arrangement of bolts and set screws, together with a 100 ton jack, was used in inserting the tube and holding it in place until the cooling was completed. The gun will be transferred to the lathe in a few days to be finished, bored,
and rifled, and will be delivered to the government early in the fall.

Artesian Wells in Sonoma.

A few weeks ago, according to the Weekly Bulletin, "a fine flow of excellent water was struck at a depth of ninety feet, on a lot a little to the east of the town of Sonoma, belonging to Mr. Gilbert. The next attempt was made at Mr. Winkle's vineyard, when at a depth of eighty-two feet a flow of 90,000 gallons per day was obtained. The tools were then moved about 150 feet south to the lands of J. Gundlach, where still greater success was met with. At a depth of one hundred and ten feet a flow of 100,000 gallons per day was reached. Both these wells are located in the foot hills, considerably above the level of the valley and supposedly in a very unlikely place to find such a result. The tools penetrated successive layers of sand, rock, and clay, the water being found below the latter. The water comes out with considerable force, and will overflow a pipe twenty feet above the surface. The fortunate owners of these wells consider them worth not less than $\$ 10,000$ apiece. The temperature of the water is constantly $72^{\circ} \mathrm{F}$., and what is remarkable is that it is exactly the same as that of several springs on the other side of the valley, four or five miles away. Many of the farmers and fruit growers of the valley are arranging to put down wells."

Australian Mice.

The mouse pest in Australia is much worse than the rabbit pest. The climate is so soit that they have thrived enormously, and there is said to be

BULLITT'S ELECTRO-MAGNETIC SIGNALING DEVICE FOR MINES.

AN IMPROVED DIE AND DICE BOX.

A closed dice box, mounted to be revolved on journals, the closed box having a chamber just the width of the dice, with recesses where the dice oome to rest, so that the numbers on their sides may be read through holes in the sides of the box, is illustrated herewith, and has been patented by Mr. Reinhold F. De Grain, of No. 657 Pennsylvania Avenue, S. E., Washington, D. C. The central chamber is just enough wider than the dice to permit them to tumble freely without changing their planes, the bottom recesses being angular to correspond with the angles of the dice, as shown in the interior view, Fig. 2, the side recesses being designed to cause the dice to turn in tumbling, to show different faces. The box has a knob or thumb piece at the top, for convenience in revolving it, and a

weight fixed to the bottom to cause it always to gravi tate to the proper position.

How Scarlet Fever Poison is Distributed.
Dr. J. Brooke, Surgeon U. S. Army, of Fort Monroe, Va., commanicates the following case: "A girl aged about eight, living at this place, was some months ago attacked by scarlet fever, the disease running a typical course. For a long time no possible source of contagion could be discovered. The child had not been absent from home, had been with no one lately exposed, and no other case was known to exist anywhere in the vicinity. Subsequently I learned that one of the house servants had nursed a case of scarlet fever in a distant city just about a year before. After the case terminated she packed some of her things, including some clothing then worn, in a trunk, and left the place. A year later she had the trunk sent to her here, opened it, and took out the contents, the little girl being present and handling the things. Very soon after the latter was attacked, as stated."-Medical Record.

Biting the Finger Nails.

Dr. Jerome Tuthill, of Chicago, Ill., in the Medical Record, says: A novel accident, resulting from a habit of very common prevalence among nervous people, was brought to my notice recently. A young lady presented herself at my office complaining of a constant rritation in her throat. Two weeks previously she had been taken with a severe "sore throat," which was treated by a neighboring physician. Under his care, she says, the inflammation quickly subsided, but there still remained a sensation of irritation. Examination revealed a small fleshy-looking object, about the size of a kernel of wheat, adherent to the tissues posterior to the left tonsil, by one end. The other parts of the throat were normal. The little mass could not be detached by a cotton-covered probe, but by the use of forceps it was easily removed, and on examination proved to be a piece of finger nail, which had become covered by a cheesy deposit. A broken piece of the nail was also removed from under the mucous membrane at the same spot by a sharp-pointed probe. The patient then confessed to the habit of biting her finger nails, and, moreover, could remember that a day or two previous to the onset of her throat trouble a piece of nail which she had bitten off had become lost in her mouth, but after it had caused a fit of coughing she had forgotten about it until reminded by my discovery.

A Gigantic Fossil.-Professor F. W. Cragin, of Washburn College, recently discovered at Downs, Osborne County, Kansas, the petrified remains of a huge "hardly a residence or store that is not pestered by fossil. Professor Cragin pronounces it the most re the plague. In some places they are so thick that, in markable specimen found since 1877. The animal comorder to get the stock properly fed, men have to watch while they are eating their provender. The week before the Coolah races the vermin got into the boxes at the station, and actually ate the bandages off the horses' legs, while from every side come tales of crops devoured so rapidly that many fields have had to be abandoned, what was left not being worth reaping."
plete was a little over 16 feet in length. The jaws measure 3 feet 8 inches, the neck between 4 and 5 feet long, and the body about 9 feet -long, and 3 or 4 feet through. It had immense teeth, about 3 inches in length. It had flippers quite similar to a seal's, and its feet, two in number, were short. It is plain that it was an aquatic animal of the reptilian age.
has followed the process thus far will readily understand that the manufacture of gas involves a good deal of labor and necessitatesconsiderable costly machinery.
In an upper room is the place where meters, both new and old, are tested. Here are to be seen spick span meters in the flush of youth, beautifully painted and decorated, waiting impatiently to start out on their career of usefulness. They have been weighed, as it were, and found not to be wanting, and upon their clock-like faces is an expression that inspires confidence. Close at hand is a row of meters that have come under suspicion, and they stand there like guilty things waiting to give an account of themselves. In a corner is a pile of worn-out, cast-off meters, so hardened that they would not tell the truth if they could. Now, like dead men, they tell no tales.
The gauge, where the meters are tested, is a very accurate instrument, and does its appointed task withaccurate instrument, and does its appointed task withers know that their meters are reliable from having had them tested at the works, they may rest assured that they are paying only for what they use. Your milkman, unintentionally perhaps, holds the measure tilted a trifle on one side, and you get a tablespoonful or two less than your quart every day; the dry goods clerk, in less than your quart every day; the dry goods clerk, in
measuring off a yard of cotton cloth, not infrequently measuring off a yard of cotton cloth, not infrequently
forgets to make allowance for the portion covered by his thumbs; your butcher-thoughtless man that he is! -throws a sheet of heavy wrapping paper upon the scales before weighing your meat, and so the list might be prolonged indefinitely. With the meter, however, it is quid pro quo, always provided, of course, that its moral sense has been preserved intact through all its years of service at your house. The company is always years of service at your house. The company is always
willing to test a meter whenever its honesty is doubted. willing to test a meter whenever its honesty is doubted.
The company has inaugurated a system of having all the meters in the city tested once in three years, which is done at its own expense and without annoyance to the consumer.
In addition to maketing the coke and coal tar for all sorts of uses, the company has recently been able to put the ammoniacal liquor into such a shape that it could be shipped. Formerly this liquor was permitted to escape into the Little River, and it is a fact worth noticing that the stream below Front Street was for 40 years entirely cleansed of the impurities which are so offensive to people living in the vicinity of Ford Street and along the rest of the river front. The authorities will soon have to provide for the proper treatment of the stream below Front Street, and, indeed, they have already contracted for the erection of a retaining wall there. The ammonia is shipped in large quantities to Syracuse, N. Y., where it is used for manufacturing purposes. It is chiefly by means of selling these various products that the company has been able to reduce the price of gas from $\$ 3$ per thousand feet, which was the rate ten years ago, to the very low price at which it is now sold.
To keep up with the progress of the age and to make the gas yet cheaper, the company, finding that the old retort house, containing 16 benches, was practically worn out and of little use from an economical point of view, decided some time ago upon a new building. It has therefore caused to be erected a building about 100×68 feet with walls 16 inches thick and 32 feet high, covered with an iron roof frame and slate laid in cement. The building, which is two stories high, contains a stack of nine benches, with regenerative furnaces on the Stedman-Stanley principle. The size of the benches and furnaces, being largely in excess of the common ones in use, will greatly increase their productive power at a largely reduced cost for fuel. It will probably effect some saving in labor besides very
largely increasing the comfort of the men employed. The benches are on the north side, the rear of the The benches are on the north side, the rear of the
stack being within four feet of the wall. In this stack being within four feet of the wall. In this
space is laid the main flue, through which the escaping gas from the furnace is conveyed to the large chimney, which is 150 feet high. On the south side have been laid the foundations for a corresponding stack of benches should they be needed in the future. Be-
tween the two is ample space for charging the furnaces. The cellar is ten feet high, and the floor above is of heavy cast iron plates laid on girders and supported by cast iron pillars. Coal will be raised to the charging floor by an elevator and put into the retorts. The coke when drawn from the retorts will be dropped through trap doors into the furnace below as needed or else conveyed to market, saving largely in the cost of handling.
The new retort house, as well as all of the improvements, were planned by Mr. John P. Harbison, the treasurer and general manager of the company, and its construction, even to the minutest detail, has been under his personal direction and supervision. Mr. Harbison, who was originally engaged at the works for a period of two weeks only, has been connected with the company since boyhood, and has conducted the affairs intrusted to him with remarkable sagacity and business foresight. He was recently elected an active member of the British Gas Institute, the largest and most influential organization of gas engineers in the old world.

The most recent advances in biological research aford a basis on which to erect a more or less plausible theory of the mechanism of diseases caused by microorganisms.
The domain of parasitism is far wider than has hitherto been accepted. The principles of evolution teach us life is one; living forms being but strands in a complicated web, no single fiber of which can assert its independent genesis and history from any other fiber, however remote, while each of these forms possesses a greater or less antagonism to other forms. So it would appear a large proportion of the maladies, whether in plant, fish, reptile, or mammal, are produced by para-sitism-the antagonism of lives-the lesser lives feeding on the greater. The higher animal organisms are but communities of living points, some floating free, others tationary-these last attached to their neighbors by protoplastic bonds of marvelous tenuity, justas adjoining households may have telephonic connection, bu with their individuality and their automatism unimpaired. A colony of inimical microbes obtaining access to this republic is similar to a hostile armed band entering a city-strife at once commences, the strangers attack and are attacked. If the strangers are all killed, no disturbance of health is produced. In any other event, the strangers increase and multiply at the expense of the normal inhabitants, the latter being rather destroyed by some special soluble toxic substance er creted by the enemy than in ány other way.
Each micro-organism seems to have a particular rate of multiplication, and when a sufficient quantity of toxic material has accumulated, then the phenomena of fever and eruptions are produced. So far as experimental research has gone, there is no true incubation; there is no mysterious localization of the invading band in lymphatic gland or vessel for days or weeks. The battle at once commences, but it is only when a certain number of the strangers have got the upper hand that a sufficient disturbance of function is produced to give external sign.
In the case of the individual little mass of bioplasm, a few hours may represent several generations, so that acquired properties are very rapidly transmitted; those poisoned by the excretion of the pathogenic microbes perish, those that more or less effectually resist continue to live and propagate, until, by a repetition again and again of this process, the body may be full of resistant living particles. In that case the foreign tribe is conquered, destroyed, expelled, and what is called recovery takes place.
If now a second colony gain access to the same animal tissue, it meets with descendants of the old heroes, and the attack is immediately repulsed. This is the nature of protection from a first attack.
Vaccination is but a modification of the same process. Colonies composed of the weaker members of some malignant tribe enter the citadel, a brief struggle ensues, the inhabitants finally destroy them, and the education thus acquired renders the inhabitants able to cope with a second stronger colony. This second successful fight renders the survivors and their descendants still hardier, and so the process may be repeated
until they are able to easily resist the strongest and most viey are able to easily resist the strongest and ena of protection by inoculation of attenuated cultures.
Lastly, it would seem from the experiments of M . Roux and others that the living points of the animal organism may be educated in resistance by being dosed with the excretory products of pathogenic organisms,
and that the inoculation of attenuated organisms is and that the inoculation of attenuated organisms is not necessary. If this is so, it would in no way alter the conception of the mechanism of immunity ; that is, it essentially depends on the production of a sufficient number of resistant masses of bioplasm, this resistance having been acquired by inheritance from ancestors who have made successful combats against a particular microbe, just as the descendants of Dr. Dallinger's saprophytes were ultimately able to live at a temperature of 158° F.-Public Health.

Great Guns.

In a recent debate on the army appropriation bill in the House of Representatives, Mr. Wheeler said : "I am unalterably opposed to a large army, and I do not know a better way to prevent the necessity for an
augmentation of our military force-so important to be avoided-than to keep up with the world on the question of material armament. A gun does not eat rations, wear clothes, or draw pay, but it is always on hand for duty, and can easily be moved to the place where it is most needed. There are now mounted upon vessels of foreign navies 129 guns which throw a projectile 10 miles and upward, and the caliber of these guns varies from 12 inches to 17 inches, and they throw projectiles which weigh as high as 2,000 pounds. It also appears that there are now afloat in foreign navies 66 guns which throw projectiles weighing from 900 to 1,250 pounds a distance of at least 9 miles." It is to be regretted Mr. Wheeler did not mention some of the ships that throw projectiles as he states. We fear it will be difficult to find the vessels.

AN IMPROVED TRUNK STRAP COUPLING.
A simple and effective coupling for connecting the ends of a strap for tightening it around a trunk, box, or package, is illustrated herewith, and has been patented by Mr. Henry B. Lum, of Red Bank, N. J. The main or lock plate of the coupling has at one end a buckle or loop, for engagement with one end of the strap, the under side of the plate being recessed to receive a bolt projected by a spring, and which may be operated by a key to release a hook formed on the free end of a straining lever, pivoted at its other end to the outer end of the plate. A metal retaining ring is also adapted to be caught under the flanges of the lock plate to hold the straining lever in locked position. The straining lever is also provided at each side, toward its back or pivoted end, with a flange or lip, which over hangs the body of the lever sufficiently to en gage inbent lugs on a catch plate buckle of the coupling, the outer end of the catch plate being formed with a loop for engagement with the other end of the trunk strap, whereby the two end parts of the strap may be drawn together to tighten it on the trunk or box to which it is applied. It is not essential that the catch plate buckle be used to fasten the strap around a trunk, as one end of the strap may have a hole through which the straining lever may be slipped prior to drawing down the coupling The trunk strap to be used with this coupling may be of leather, metal, or other suitable material, annealed corset steel answering admirably therefor. The coupling is made in con nection with such a metallic strap, about $11 / 4$ inches wide, which can be rolled up to take less room than an ordinary leather strap, affording a powerful lock and at the same time an ade quate support to sustain the heaviest trunk against breakage, and the manufactured strap is sold
by Mr. W. H. Parker, Jr. of No. 149 Broadway by Mr. W. H. Parker, Jr., of No. 149 Broadway, New York City.

A Railway Catechism.

How many miles of railway in the United States? One hundred and fifty thousand six hundred milesabout half the mileage of the world. How much have they cost? Nine billion dollars. How many people are employed by them? More than a million. How long does a steel rail last with average wear? About eighteen years. What is the cost of a palace sleeping car? About $\$ 15,000$, or $\$ 17,000$ if "vestibuled." What is the cost of a high-class eight-wheel passenger locomotive? About $\$ 8,500$. What is the longest American railway tunnel? Hoosac Tunnel, on the Fitchburg Railway ($43 / 4$ miles). What is the highest railroad in the United States? Denver and Rio Grande, Marshall Pass, 10,852 feet. What is the highest railroad bridge in the United States? Kinzua Viaduct, on the Erie road, 305 feet high. What is the duct, on the Erie road, 305 feet high. What is the
longest railway bridge span in the United States? Cantilever span in Poughkeepsie Bridge, 548 feet. What is the longest mileage operated by a single system? Atchison, Topeka and Santa Fe system, about 8,000 miles. What line of railway extends furthest East and West? Canadian Pacific Railway, running from Quebec to the Pacific Ocean: What road carries the largest number of passengers? Manhattan Elevated Railroad, New York, 525,000 a day, or 191,625,000 yearly. What is the fastest time made by a train ? Ninety-two miles in ninety-three minutes, one mile being made in forty-six seconds, on the Philadelphia and Reading Railroad. What is the fastest time made between Jersey City and San Francisco? Three days seven hours thirty-nine minutes and sixteen secondsspecial theatrical train, 1886 . What are the chances of fatal accident in railway travel? One killed in 10,000 , 000 . Statistics show more are killed by falling out of windows than in railway accidents.-Frank Leslie's.

The Agassiz Seaside Assembly.

During the past week, from August 6 to 11, the Agassiz Seaside Assembly has held its sessions at As bury Park, N. J. The general work of each day included an excursion-botanical, microscopical, or ento-mological--in the morning, followed by conversaziones and lectures in the afternoon. Educational Hall was used as the place of assembly, and audiences of good numbers greeted the various speakers. The opening lecture, on Monday, was delivered by Prof. Harlan H. Ballard, of Pittsfield, Mass., president of the Agassiz Association. He spoke of the objects and aims of the association and told how to establish a chapter. On the succeeding day Rev. L. H. Lighthipe read a paper on the "Flowers of New Jersey." On Wednesday Prof. F. C. Van Dyck, of Rutgers College, held a conversa zione on the use of the microscope. On Thursday Rev. G. D. Hulst, State Entomologist of New Jersey, was the lecturer, and on Friday Dr. T. O:Conor Sloane lectured on "How to Make Scientific Experiments with Simple Apparatus." On Saturday, after a highly suc cessful session, the meeting adjourned.

A new compound is mentioned in the Therapeutic Gazette to which is given the name of carbolate of camphor, and which appears to possess the antiseptic properties of carbolic acid, and the carminative properties of camphor, without the cauterizing properties of the former. It is prepared by dissolving camphor in a 95 per cent solution of carbolic acid to saturation. The carbolic acid will dissolve about three times its weight of camphor, and the product is a thin, clear, oleaginous mixture, having a strong odor of camphor,

LUM's trunk strap coupling.
and a very faint odor of carbolic acid. To the taste it has a strong, and, at first, slightly pungent flavor of camphor, but no flavor of the acid. It dissolves readily in vegetable oils and in vaseline, mixes with sulphuric ether, dissolves salicylic acid, cocaine, iodoform, and, in the proportion of forty grains to one ounce, disguises the odor of the latter. Taken internally, in ten drop doses administered in capsules, it produces a sensation of warmth in the stomach which is not unpleasant, and which continues for an hour or two. When applied to the skin it produces a slightly warm sensation for a few moments, and when applied to an abraded surface it smarts for a moment and then all pain ceases. Injected hypodermically it causes stinging, quickly followed by anæsthesia. When mixed with an equal quantity of cotton seed oil, and applied to a fresh wound on gauze or cotton, and kept well covered, no suppuration follows, nor does vesication or pain.-American Druggist.

an Improved device for hiving bees

A practical and inexpensive device whereby bees
 hiving bees.
that swarm on the limbs of trees, or in other high places, may be conveniently hived, is illustrated herewith, and has been patented by Mr. William J. Daniel, of Jeffersonville, Ky. It is constructed with a standard having points on its lower end to take a firm hold on the ground, as shown in Fig. 2, and a guide loop near its upper end for holding a sliding box or hive supporting section. The sliding section has a loop to clasp the standard, and at its lower end has a hinged extension piece, which serves as a handle for sliding the upper section, this extension piece having a sharp pin to strike into the upper secfolded position. The sliding section is held at any desired place by inserting a pin beneath it in holes provided therefor in the standard.
The total eclipse of the moon, on the night of July 22, was very generally studied by the astronomers connected with our colleges. At Amherst many photographs of the total eclipse and other phases were obtained with the large telescope. Professor Todd found that scores of faint stars were occultated by the moon during the progress of the eclipse, and that the illumination of the moon's surface during totality was much less than usual. It was irregularly illuminated, except near the time of central. The eclipse, when in the middle, was a large dark area, surrounded by a nearly perfect ring of light. At no time did the moon disappear from view, as it did during the eclipse of 1761, when no part could be seen, either with or without a telescope. The copper color was visible, but not so intense as ordinarily.

A Hypnotized Man Turning Robber.

May one who is free from vicious tendencies be made o commit a crime, while hypnotized, which he or she, with full command of faculties, would regard with abhorrence ? Experiments both here and abroad have abundantly illustrated the wonderful power possessed by the operator over his subject; the latter wholly subordinating his will: acting, speaking, and, to all appearance, even thinking and seeing as directed. A recent investigator, M. W. A. Croffut, would seem to have gone a step further on the road to practical accomplishment by inducing his subject to actually rob a house; a pre-arrangement, of course, the agent, however, having no knowledge of this. This agent, whom Mr. Croffut describes, in a recent paper, as of known probity, set out, while in a hypnotic state, to rob a neighboring house, which, together with the means of entrance, was fully described to him; being told that a heap of gold was to be found in a certain apartment. The operator's assistant accompanying him declares that, after gathering up the imaginary treasure and putting it in the bag provided him, the subject proceeded to purloin other articles, so thoroughly aroused was his cupidity, and getting safely out evinced an inclination to fly with the treasure instead of returning and dividing with the operator, as was agreed. Another subject, under similar influence, took a pistol, supposed to be but not really loaded, and, aiming it at his heart, as directed, pulled the trigger. If from these and similar investigations it should become apparent that all manner of real crimes may be committed by innocent persons while in this hypnotic or mesmeric condition, and if the vicious, having such power as that evidently possessed by Mr. Croffut and others, should actually employ the unsuspecting and unsuspected as their agents, how would society protect itself? How could the innocent agents be distinguished from those not under such influence, but setting up the claim when caught only to avoid punishment? A really when caught only the avos of his employer's office and honest clerk, with the keys of his employer's office and
safe in his possession, might be made, should he fall under such influence, to commit a burglary; the heir to an estate might be induced to kill himself; a trustworthy servant to commit murder or arson.
These are interesting psychological questions; questions, it may be said, which are by no means beneath the dignity of science to inquire into.

Prospects for Sugar on the Pacific.
The whole of the Pacific States and Territories can, no doubt, produce six to seven million tons, enough to supply 50 per cent more than the present consumption of all civilized countries. That consumption, though, is increasing very rapidly, and it doubles in the Uuited States in about twenty years. Thus in that time it would absorb all the possible production of the State. The value of $3,110,000$ tons of sugar would, at 5 cents per pound, be close on three hundred and fifty million dollars per annum. To obtain it one has to go abroad. Besides the return to the farmer, the industry gives steady employment at the rate of about one man to every 30,000 pounds of sugar.
The total product of all the sugar lands in California would, therefore, give work to not less than 230,000 men, representing a population of $1,600,000$, including traders, manufacturers, wives, children, etc. It would, besides, give support to a great and varied industry. It would need $21,000,000$ barrels to contain the sugar, and thus give support to a vast cooperage industry and lumber interest. The engines would consume 19 barrels of oil to each ton, or $58,000,000$ barrels to the total possible production of the State. This would, no doubt, exhaust all the crude oil that California can produce. The use of two per cent slake lime would call for over 400,000 barrels of lime a year. The machinery needed, too, in these mills would cost $\$ 48,000,000$, and would require renewing say every fifteen years, thus creating a foundry business of over $\$ 3,000,000$ a year. An immense quantity of coal would be consumed, so that it would give support to a great mining interest. And we have not yet nigh exhausted the list of all the new industries that this great one would support. We have delineated its possibilities. It would, of course, take a long series of years to arrive at the results here presented. That it is possible under any circumstances may be known from the fact that the last sugar made cost 484 cents per pound, and that it is stated on good authority it can be laid down in San Francisco for $31 / 2$ cents per pound, so that California can easily hold her own in beet sugar production.-San Francisco Journal.

Professor Reverdin gives the following formula of an antiseptic soap that is quite soft to the hands, cleansing and disinfecting them without causing any irritation

> Sweet alm
Soda lye..
Potash lye
> Soda lye...
Potash lye.
> Sulphocarbolate of zfnc
> Essence of rose.

COMBINED TRACTION ENGINE AND CRANE.
Our engraving shows a combined traction engine and crane constructed by Aveling \& Porter, of Rochester, England.
The jib swings on a crane post or shaft standing in front of the smokebox, this post being carried by a wrought iron plate framing of neat design. The chain barrel is mounted on the jib itself, and carries a bevel wheel which gears into a pinion cast on a sleeve which is mounted on the crane post. This sleeve has also cast on it a drum disk, which lies between the driving disk and the brake disk, this latter disk being fixed on the crane post. By means of taper clutch blocks actuated by the levers, the drum disk can be clamped to either the driving or the brake disk, and the load thus be raised, held, or lowered.
The driving disk is in one with a bevel wheel which gears into a bevel pinion on a diagonal shaft running along the left hand side of the engine. This shaft is kept continually running while the crane is in use.
The slewing is effected by a worm gearing into a segment on the crane post. The spindle of the worm carries a worm wheel into which gears a pinion, run-

The Sea Serpent.

Providence, R. I., Aug. 7.-The sea serpent seen off Watch Hill, R. I., is reported again in the same dis trict. The sloop Mary Lane, Capt. Delory, was lately on her homeward trip from New London, and when two miles southwest of Point Judith, on Saturday, Capt. Delory sighted a monstrous head two feet above the water and about fifty yards distant. The appear ance of the head is described as like that of an alliga tor. The jaws looked to be at least five feet in length and were studded with teeth six inches long, while the eyes were as large as the crown of a hat. Back from the head ran a huge fin. The body moved rapidly through the water. The entire length of the creature as estimated in its passing the boat was about seventy feet. The captain says it was within about ten feet as it swept by the vessel. Glimpses of its body, which was about the size of a barrel, showed bright grayish scales.

" Insect Life."

Insect Life is the name of a new periodical which is to be hereafter issued at least once a month by the United States Department of Agriculture, under the editorship
debris would greatly reduce that lake, perhaps entirely drain it, and would cause it to flow into Ontario and Hamilton. The increase of heat caused the edge of the great glacier to retreat from the southern border at Fort Wayne, where the water resulting from it flowed into the Wabash, and separated Erie and Ontario into two lakes. As long as the ice remained in the valley of the St. Lawrence, the waters found an escape into the Mohawk and Rome. The crest of one of the beaches formed by wave action is marked by the ridge road from Lewiston to Sodus. At this epoch, Erie was but wo-thirds as long as it is at present, and its area was but a fifth as great, and Toledo, Cleveland, and the Bass Islands were far inland. When Lake Ontario forced a new outlet through the valley of the St. Lawence, its level was reduced five hundred feet, and its area 90 per cent, and it thus became 30 per cent smaller than it is at present. The rising of the depressed land to the northward gave the lakes their present dimensions, and the oscillation then received a check. Whether the oscillation has entirely ceased or not, it is now so slow as to prevent the detection of any movement, the present level of the water having remained nearly constant for many centuries.

COMBINED TRACTION ENGINE AND CRANE.
gonal shaft through the friction clutches. There are mounted on the diagonal shaft two bevel pinions (both gearing into the pinion on the stud), these pinions running loose on a sleeve which encircles the shaft, and which has formed on it a collar between the pinions. The sleeve revolves with the shaft, and its ends are shaped so as to form in conjunction with the pinions a pair of friction clutches. The two sets of clutch wedges are connected by feathers which pass through the sleeve, so that they are actuated simultaneously by the clutch ring and levers at one end. According to the position of the clutch wedges, either of the pinions can be made to revolve with the shaft, or both can be left free, thus giving full control of the slewing motion.

The whole arrangement of clutches acts admirably, and it has the great advantage of giving full control of the hoisting and slewing movements without stopping or reversing the engine, this being an important point where-as in this case-a single cylinder engine is employed.
The crane is capable of lifting 5 tons with the jib ranging fore and aft, or of lifting and slewing a load of $21 / 2$ tons. - Engineering.

The gem for January is the garnet, for February the amethyst, for March the bloodstone, and for April the diamond. May has the emerald, June the agate, July the ruby, August the sardonyx, and September the sapphire. The opal belongs to October, the topaz to November, and the turquoise to December.
of Prof. C. V. Riley, the entomologist, and his assistants. It is to be devoted to the economy and life habits of insects, especially in their relations to agriculture, and is designed to form a speedy and regular means of publication of interesting matter which, for various reasons, cannot be used in the annual reports and which has hitherto been relegated to the archives of the entomological division of the Department of Agriculture. The following are the contents of the first number, which is dated July, 1888 : Salutatory; The Corn Pollen Syrphus Fly (illustrated) ; The Willow Shoot Saw Fly (illustrated) ; The Sugar Cane Beetle injuring Corn; Extracts from Correspondence; New Species of Oncoenemis; The Australian Parasite of Icerya (illustrated) ; The Privet Web Worm (illustrated) ; Notes.

cormation of the Great Lake

To the June number of the Forum Mr. C. K. Gilbert contributes an interesting paper on "Changes of Levels of the Great Lakes," the greater part of which is devoted to the geological history of the formation of these bodies of water. Lakes are formed chiefly by the upheaval of the earth's surface and by its erosion through the movements of glaciers. The beds of the great lakes, with the possible exception of Erie, were scoured but of the solid rock by the great glaciers of the ice age, their depth and influence the direction of their outflow. In the case of Erie, for example; the removal of this $\left\lvert\, \begin{aligned} & \text { inc }\end{aligned}\right.$

There are, however, other changes taking place from the action of the rivers. The St. Clair is feebly scouring its channel and forming a delta; the Niagara is eating its way back to Lake Erie; and the St. Marie, Detroit, and St. Lawrence are deepening their channels. All these changes are very slow, and for all practical purposes our inland seas are permanent, and their basins stable. The only modifications that affect our economy are those wrought by the waves upon their coasts. The changes noticed in the water levels are due to the variations in the rainfall upon the lakes themselves, and upon the land drained by the streams that pour into them. The amount of rainfall varies from year to year and from one season to another, and the level of the water oscillates around an average position that remains fixed. The variations in level relate to the entire surface of the lake.
A part of one may be raised and another part be depressed by a gale, especially in the case of Lake Erie, because of its shallowness. A gale has been known to raise the level of one of its ends seven or eight feet, and to depress the other to an equal amount. Differences in atmospheric pressure also affect different parts of the same lake. The rapid change in air pressures, as in the case of tornadoes, sometimes causes rhythmic undulations as high as the largest created by the wind. There are also tides that are as regular as on the ocean, but the highest spring tide rises but about three inches, while the average height is probably not more than one inch.

Osmose.
It is a well known fact that when two liquids of different compositions are separated by a porous membrane, there will result a double current in opposite directions through the membrane, the consequence is, the two liquids interchange their elements. Observation has shown that one kind of substance, known as cristalloides, when dissolved in water, will pass the septum with ease. The others, called colloides (gums, etc.), require considerable time for such passage. It becomes evident that if we separate diluted molasses from water by means of a membrane, a portion of the salts will leave the molasses and pass through the membrane into the water. Under these circumstances there would result a liquid, or molasses, the sugar of which might be crystallized. During the osmosing, a certain quantity of sugar is lost, but the reduction of the saline percentage of the molasses is so great that the residuum again constitutes a most valuable secondary product, from which sugar may be extracted. Some experiments have been made to ascertain if there existed any advantage in adding a small quantity of acid to the molasses during this process. It has been found that nearly 30 per cent of the total mineral substances will pass the membrane by the addition of acid, and only 25 per cent under ordinary circumstances.
As the molasses has been diluted by the cus tomary osmosing process, it is evident that the additional water must be evaporated, and this, in itself, represents an extra cost of fuel of no small importance. With every system of os mosing used, it requires considerable experi ence to determine within what limits the opera tion may be made profitable.
M. Dubrunfaut, the inventor of the first osmogene apparatus for molasses, called attention to the possible advisability of osmosing the sirups, or even the limed juice prior to evaporation. The objectionable salts would thereby be partly eliminated before the first crystal lization, and the quantity of residuum molasse considerably reduced. The working by osmosis of saccharine juices to which lime is added is generally accomplished cold. Through the membrane pass nearly all the salts set free by the lime. The subsequent operations are the same as in the customary methods of working beet juices.

In some cases the profit from working osmogenes is very considerable ; it will, therefore, be of the more interest to notice a similar but new process of beet sugar making, advocated by Dubrunfaut just before his death. This method consists in mixing lime with sirups from first centrifugals, allowing them to settle for several days, when the clear portion is osmosed in a boiling condition. The sirup, on leaving the osmogene, may be treated by carbonic acid separately, or added to the limed juices during carbonatation. The water of exosmosis may be evaporated, and worked for the alkalies, etc., it contains.-The Sugar Beet.

MACRONUS KETTLEWELLI.

Dr. F. H. H. Guillemard, in his interesting book "The Cruise of the Marchesa," says of his visit to the Sooloo Islands :
"Our ornithological rambles during this, our second visit to Meimbun, were productive of several species which we had not previously obtained; among others of two or three rare pigeons. Of all parts of the world, the New Guinea region is perhaps the richest in these birds, but we found them tolerably abundant here, and obtained no less than eleven different kinds. But our greatest prizes were two birds hitherto unknown to ornithologists. The first, a bush shrike of brilliant coloring, with the head and shoulders shining bluish black and the rest of the plumage bright orange yellow, I afterward named after the yacht, Pericrocotus marchesce. The other bird (Macronus kettlewelli), a babbler, with a curi ous tuft of white, hair-like feathers springing from the back, was an interesting species, of which we unfortunately obtained a sin gle specimen only." Of this we give an engraving.

THE Tay Bridge, Scotland, is over two miles long, has 86 piers, and spans varying from 58 to 245 feet.

JOHN WESLEY POWELL.

The American Association for the Advancement of Science is migratory. In 1887 it met in New York; in 1888 it gathers its members in Cleveland. A new president, representative as a leader in some special branch of science, is chosen each year. Biology, physics, chemistry, anthropology, and other sciences have been se lected in turn. Last year the astronomer Samuel P Langley* held that office, and this year he yields th place to a distinguished ethnologist.
John Wesley Powell was born in Mount Morris, N
ral history. He was elected secretary of the Illinois State Natural History Society, and given special advantages for continuing his researches.
At the beginning of the civil war he enlisted as a private in the 20th Illinois Volunteers, and when he reached the rank of lieutenant he was transferred to Battery B of the 2d Illinois Artillery, of which he became captain. He was promoted major and lieutenant colonel and declined a commission as colonel. He lost his right arm at Shiloh, but on his recovery returned to the front and remained in active service until the close of the war.
In 1865 he accepted the professorship of geology and office of curator of the museum in the Iowa Wesleyan University, but soon resigned to take a similar post at the Illinois Normal University. During the summer of 1867 he visited the Rocky Mountains with his class in geology, thus inaugurating the practice since followed by teachers elsewhere. This success led to his desire to explore the great Colorado River of the West.

The success of his explorations led to his re cognition by the government, and in 1870 Con gress established a topographical and geologica survey of the Colorado River of the West and its tributaries, which was placed under his direction. During the following years a systematic survey was conducted until the physical features of the Colorado valley, hitherto an un known country, embracing an area of nearly 100,000 square miles, became thoroughly ex plored. This expedition, originally conducted under the auspices of the Smithsonian Institu tion, was subsequently transferred to the De partment of the Interior and given the title of the Geographical and Geological Survey of the Rocky Mountain Region.
The existence of four separate surveys in the Western Territories conflicting somewhat with each other, and under different departments, resulted, in 1879, in their consolidation, forming the United States Geological Survey, of which Clarence King was appointed director. From the beginning of the controversy* Major Powell was the leading advocate of the consolida tion. He represented the Department of the Interior before the committee of the National Y., March 24, 1834. He is the son of a Methodist clergy- \mid Academy of Sciences to whom the matter had been man and passed his early life in different places in Ohio, Wisconsin, and Illinois. Unable to pursue a systematic college course, he studied at Illinois College and at Wheaton College, meantime teaching at intervals in public schools, and finally he spent the years 1854-56 at Oberlin College, where he followed a special course. His early inclinations were toward the natural sciences, and he began with botany, making collections of various plants. This led him into roving habits, and he made scientific excursions on the Mississippi to St. Paul and across the Wisconsin to Mackinaw. In 1856 he descended the Mississippi in a skiff, from the Falls of St. Anthony to its mouth, and in 1857 he rowed from Pittsburg to the mouth of the Ohio. A year later he went from Ottawa, Ill., down the Illinois River to its mouth, and then ascended the Des Moines River. On all of these trips he made collections of specimens, which he disposed of to various institutions of learning in Illinois, who had come to depend on him for material with which to illustrate their lectures on natu-

* See the sketch of Samuel P. Langley, in the Scientific American
for August 20,1887 . for August 20, 1887.

MAORONUS KRTTLEWELLI.
eferred by Congress for its consideration, and his luci statement before that body was, perhaps, the most powerful argument showing the necessity of consolidating the surveys that the committee received.
While exploring the Colorado valley he became deeply interested in the remains of the ancient cities of the Moquis, and, next to geology and topography, he made ethnology the chief object of his expedition. The material that he collected on this subject had been deposited with the Smithsonian Institution, and when his survey was stopped, three volumes of "Contribu tions to North American Ethnology" had been issued, and eight more were in course of preparation.
In order to prevent a discontinuance of this work, a Bureau of Ethnology, which has become the recog nized center of ethnographic operations in the United States, was established under the direction of the Smithsonian Institution. An appropriation of $\$ 20,000$ was secured in 1879, and Major Powell was given charge of the work, and has since continued at its head, issuing annual reports, beginning with the volume for 1879-80, and a series of monographs on special topics.

In 1881 Clarence King resigned from the directorship of the United States Geological Survey, and President Garfield at once appointed Major Powell to that place. He has since filled that office, ably administering the work of the greatest survey of the world.
In 1879 the survey was organized by Mr. King on a geographic basis, but with that remarkable power of system so characteristic of its present chief, it has been gradually reorganized, until at present nearly all of the work is classified by kinds. Geology, paleontology, chemistry, and geography are assigned to separate divisions. The geology is subdivided, partly by the nature of the phenomena, as

* A description of the early history of the national surveys is given in the sketch of Ferdinand V. Hayden, contained in the Scientific American for January \%, 1888.
the geology of quicksilver, volcanic geology, lithology, partly by stratigraphic divisions, as Archean geology, and partly by areas, as originally planned by Mr King. The paleontologic work is classified partly on biological grounds, the vertebrates, invertebrates, and plants falling into separate divisions, and is further divided on stratigraphic lines, invertebrate paleontolo gy being separated into paleozoic, mesozoic, and cenozoic. In the chemical division the necessary analytical work is performed, as well as various independent researches on physics and mineralogy. The principal divisions of the geographic work are areal.
For the further development of the survey two pro positions are now before Congress, both favored by the director of the survey, but both originating with the citizens of Western States. The first is a proposition to make a special investigation of the subject of irrigation, selecting the lands which should be devoted to agriculture with irrigation, and indicating for reservation the sites of irrigation canals, head works, and reservoirs for the storage of irrigation waters. The second proposition is for a special agricultural survey in connection with the general geologic work.
Major Powell has had in recent years but little time for original work, but he has not been unproductive He constantly furnishes ideas to his assistants which they assimilate and develop. He is intimately acquainted with the scientific work of the survey, and his fruitful mind guides by suggestion, or more explicit direction, a large share of the work. The ordinary bureau chief in Washington assumes a judicial attitude toward the work under his direction, deciding the questions that are propounded to him by his assistants or by outside parties. Major Powell, on the other hand, is exceptional in that he takes the initiative himself, originating plans and finding meansfortheir execution. The appropriations with which this work is carried on have been increased from $\$ 106,000$ in 1879 to $\$ 750,000$ in 1887.
His personal scientific work during the last ten years has been chiefly in anthropology. He had previously made and has since continued extensive obser vations in the linguistics, mythology, and sociology of American tribes, but this still remains largely unpublished. His published contributions have been principally devoted to the philosophy of the subject. These include his presidential addresses before the Anthropological Society of Washington, of which the titles of the more important are, "Outlines of Sociology" (1882), "Human Evolution" (1884), " From Savagery to Barbarism" (1885), "From Barbarism to Civilization" (1886), "Evolution of Civilized Man" (1888), and his contributions to the "Annual Report of the Bureau of Ethnology."
The degree of Ph.D. was conferred upon him by the University of Heidelberg on its 500th anniversary in 1886, and in the same year Harvard gave him an LL.D., on the occasion of her 250th anniversary. He is a member of many scientific societies, of which the most important is his connection with the National Academy of Sciences, where he was elected in 1890. Major Powell was president of the Anthropological Society of Washington from its organization in 1879 till 1888, and he was president of the Philosophical Society of Washington in 1884. He was elected a member of the American Association for the Advancement of Science in 1874, advanced to the grade of fellow in 1875, and served as vice-president in 1875, delivering an address that year on "Mythologic Philosophy," which was a most valuable contribution to anthropology, and resulted in calling the attention of the Association to the progress in that science, in consequence of which Lewis H. Morgan, the father of anthropology in this country, was chosen to the presidency of the Association for the following year.
At the New York meeting last August, Major Powell was elected to the office of president, and will conduct the sessions in Cleveland this year.
Major Powell's publications include many scientific papers and addresses and numerous government volumes that bear his name, including the reports of the various surveys with which he has been connected, the Bureau of Ethnology, and the United States Geological Survey. In addition to the works already mentioned, the special volumes that are more particularly his own are, "Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto" (Washington, 1876), "Report on the Lands of the Arid Region of the United States" (1879), and "Introduction to the Study of Indian Languages " (1880).

In the Academy of Sciences, Paris, on the snows, ice, and waters of Mars, M. Flammarion, in reply to some recent remarks on the meteorological condition of this planet, pointed out that the varying state of the polar ice caps has long been carefully observed by Maedler, Schiaparelli, and others, the inference being that Mars is not in a state of glaciation. On the contrary, its temperature is equal to, if not higher than, trary, its temperature is equal to, if not higher than,
that of the earth, and its polar snows melt periodically to a far greater extent than on our planet.
[Science.]
Object Lessons in Oriental Faiths and Myths.
A remarkable collection will soon be opened to the world in Paris. The municipality has given a plot of ground that cost two hundred thousand dollars on the Avenue d'Jena, and a large and beautiful stone structure has been erected on it by the state, under a law passed while the present president, Carnot, was finance ninister. This law secures over three hundred thousand dollars for the erection of a building, and endows the establishment thus formed with a perpetual an nuity of nine thousand dollars for purposes of mainte nance. The glass cases for the collection are partly placed and filled, and the public will be admitted in few months.
The collection is primarily intended to teach the history of the development, and the characteristics, of the Oriental religions. The importance of this study strikes us forcibly when we reflect that these forms of faith still deeply influence the daily lives of more than one-half of the human race, and that they have solaced and guided tens of thousands of millions of our fellow creatures.
The originator and collector of this unique series of objects is the well known student of Oriental languages, M. Etie:ne Emile Guimet, the son of a wealthy citizen of Lyons. He has spent more than twenty years of an ctive scholarly life in voyages to, and residences in, China, Japan, and other Asiatic lands, and has devoted several millions of francs from his large fortune to this work of public instruction. In his native town he is also known for his persistent and munificent efforts to secure high class musical entertainments for the people ; and, if his efforts are measured by the exquisite congregational singing that I recently heard in one of the Lyons churches, his efforts have been signally successfull.
Recently I spent the morning with M. Guimet, ex amining the collections already in place. We first lighted from both sides with high windows-halls, let me say, that would form admirable models for the future architects of the Metropolitan Museum. Here we found two comprehensive collections of potteryone from China and one from Japan-each arranged geographically and historically, beginning, in the case of Japan, with the southern provinces, and ending with the northern. These most valuable gifts of M. Guimet, however, do not belong to my present subject.
From these halls we entered the lofty library, where are already placed twelve thousand volumes of books and manuscripts containing official statements in the original tongues of the dogmas, creeds, and myths of all the important Oriental forms of belief. Thence we passed to an extensive hall, in which the Japanese religions are illustrated and classed.
Illustrations of the earliest form of the Shinto nature worship begin the extensive series. First we have the round metal mirrors resting upon mimic waves of sculptured wood, that stood high in the temple to catch the earliest rays of the rising sun ; then figures of the simply clad priests; then the implements for making the primitive offering of fire and incense to the unembodied god. In order of time follow the paraphernalia of the Buddhist priests, who, crossing from Corea, brought with them their gorgeous ritual and imposed it upon the nation. Then we have innumerable figures of Buddha and attendant deities in gold, silver, bronze, lacquer, and clay, representing the ideas of the important contending sects into which Buddhism was soon divided through the agency of sacerdotal ingenuity.
In the middle of the hall, under the skylight, is a representation of the interior of a Japanese temple of the first class, with original images of all the gods before whom worship is usually conducted. Here we may see how, in the imagination of the Japanese (the sacred Buddha sends forth four great agencies that save men through persuasion), they are shown to the
popular eye in the form of golden figures of prophets in silken robes; and also how four other emanations from Buddha, symbolical of darkness, compel men to do right through fear, shown as carved images of black devils with gnashing teeth.
Beyond this group are series of cases containing thousands of objects explaining Japanese myths, lives of saints, and the stories told about their sacred people and places. Another extensive hall contains a series of figures and other objects elucidating the forms of belief, the myths, and the folk lore of China. In another the Greek mythology is systematized, in another the Roman, in another the Egyptian. One of the most interesting cases is that containing original images from many places in the countries and islands bordered by the Mediterranean, showing the various steps by which the Egyptian gods were accepted and adopted under new names successively by the Greeks and by the Romans. The rooms containing the collections from the western lands are as yet but partly arranged. Enough can be seen, however, to show how important and complete the series of objects must beenough to show that the world furnishes no other collection of the kind nearly so large, or so well prepared
for the serious study of the development of Oriental and ancient civilization.
M. Guimet declared that he had no theory to support in forming his museum. He has excluded the Christian and the Hebrew forms of worship from his scientific treatment, and has confined himself to those lands where religion dawned upon mankind, and where great faiths that dominated extensive territories were developed. He simply presented the authentic documents and the authorized symbols for the use of the scholar. $-L$.

Curiosities of Coal.

Does any one except a practical chemist ever stop to think of all the substances which we get from pit coal and the almost inconceivable variety of their uses? Everybody is familiar with those of them that are in daily use, such as gas, illuminating oils, coke, and paraffine, but of the greater part few persons know even the names, science advances so rapidly and its nomenclature is so extensive and so abstruse. It is no wonder that merchants and manufacturers take advan tage of this ignorance to foist upon the public articles of food, of drink, or for the toilet that, if they are not always dangerous to the health, have not in them a particle of the substances which they pretend to contain. Though pit coal has been known for some hundreds of years, the discovery of its numberless products is confined to the present century. Illuminating gas was unknown a hundred years ago. Petroleum has been in use only about forty years, and it is scarcely more than fifty since some one discovered that stone coal was inflammable. Nearly all the other products derived from soft coal have been discovered and applied in the interests of science or of fraud within the last twenty-five years. The first thought in regard to coal is that it is made to give heat or warmth; the next that one of its principal uses is to illuminate. But there are obtained from it the means of producing over four hundred colors, or shades of color, among the chief of which are saffron, violet blue, and indigo. There are also obtained a great variety of perfumescinnamon, bitter almonds, queen of the meadows, clove, wintergreen, anise, camphor, thymol (a new French odor), vaniline, and heliotropine. Some of these are used for flavoring. Among the explosive agents whose discovery has been caused by the war spirit of the last few years in Europe are two called dinitrobenzine, or bellite, and picrates. To medicine coal has given hyp none, salicylic acid, naphthol, phenol, and antipyrine. Benzine and naphthaline are powerful insecticides. There have been found in it ammoniacal salts useful as ertilizers, tannin, saccharine (a substitute for sugar) the flavor of currants, raspberry, and pepper, pyro gallic acid and hydroquinone used in photography and various substances familiar or unfamiliar, such as tar, rosin, asphaltum, lubricating oils, varnish, and the bitter taste of beer. By means of some of these we can have wine without the juice of the grape, beer without malt, preserves without either fruit or sugar perfumes without flowers, and coloring matters with out the vegetable or animal substances from which they have been hitherto chiefly derived.
What is to be the end of all this? Are our coal beds not only to warm and illuminate, but to feed and quench the thirst of posterity? We know that they are the luxuriant vegetation of primal epochs stored and compressed in a way that has made them highly convenient for transport and daily use. They are nature's savings laid up for a rainy day of her children, the human race, and it is probably because they are composed of the trees, the foliage, the plants, the roots, the fruits, and the flowers of the ancient world that they now so largely supply the place of our forests, plains, fields, and gardens.-San Francisco Chronicle.

Large Photographs of a Great Job

We are indebted to Messrs. B. C. Miller \& Sons, house movers, 979 Bergen Street, Brooklyn, for a set of three large and splendid photographic pictures, showing the moving of the great Brighton Hotel, at Coney Island, N. Y., in April last. In the Scientific American for April 14 we gave illustrations showing how the building was moved by means of railway cars and locomotives. One of the photograph pictures is 3 feet 9 inches long, and shows the locomotives and connected tackle arrangements in working order. The building was 460 feet long, 210 feet wide, and weighed 5,000 tons. The arrangement of the tracks and cars by which this great load was moved is clearly shown in the pictures, which have a peculiar value as original illustrations of a novel and remarkable undertaking.

Trade Mark Case

In the case of the Russian Cement Company vs. Le Page, decided recently by the Supreme Judicial Court of Massachusetts, it appeared that the appellee formed a corporation to which he sold his business with the right to use his trade mark, "Le Page's Liquid Give." He afterward left the corporation and made use of the name, "Le Page's Improved Liquid Glue." The court granted an injunction enjoining the appellee from granted an injunction enjoinin
making use of the latter name.

DESIGN FOR A WINDMILL TOWER AND WATER TANK.
The accompanying design for a windmill tower is worthy of attention for the norelty and boldness of its conception. It is a striking departure from the common plan of such structures, which are ordinarily devoid of taste or elegance. This design shows how prettily such a subject may be treated. The example we give will serve a useful purpose in leading owners and builders to think and study how they may improve the forms and lines of all such structures. This windinill was erected at Narragansett Pier, R. I., by Edward Earle, Esq., to supply water for ten cottages built by him at that place. It was designed by Constable Brothers, engineers and architects, of this city, and, in its position among the summer cottages at Narragansett Pier, forms a very ornamental addition to the landscape. The water is supplied by driven wells, and is pumped up by the wind power into the reservoir at the top of the tower, whence it is distributed by gravity pressure throughout the ten cottages erected adjacent to it. It has proved adequate for all demands made upon it, and not only furnishes an abundant supply of water for domestic purposes, but provides an ample means of fire protection.

The engraving we take from the March, 1887, number of the Builders Edition of the Scientific American.

Manufacturing Ice

Strolling into one of these factories recently, in the belief that it would be cool, but finding that it was actually the hottest place he had been in during the entire day, an American reporter watched the process.
Passing through the outer office, you get abruptly into the factory, an enormous apartment and very lofty. Three graceful engines from fifteen to twenty-five feet tal were moving with mysterious strength at the head of the apartment, and several big pipes overhead connected them with the floor below and an upper room.
Negro men were walking about over square places in the floor, and occasionally lift ing the lid of one, they took out of it with a crank a block of ice weighing 200 pounds. This was attached to a chain suspended from a double bridge truck, rolled to one side, and tipped through a hole in the wall into the ice house.
There are in this factory about 1,000 of these little tanks. Each is filled with water distilled from the steam of the three engines; and each tank, which is made of galvanized iron, rests in a well of brine or salt water. Running about under these tanks, which form a flooring over the whole place, is a continuous coil of iron pipes,
 of brine and keep the salt water at a temperature of twelve degrees. After filling the tank with the distilled water it is left undisturbed for thirty-six hours. The lid is then raised, the iron tank or can is drawn up and dipped into a small vessel containing boiling water to melt the ice from the interior sides that it may be removed. This is the large block of ice one sees in the ice wagons. The ammonia comes from a factory at Wilmington, Del., in iron retorts carefully packed and air tight. When it is about to be used, a tiny escape is made through which the ammonia oozes in a gaseous form, though the contents of the retort are liquid. This gaseous ammonia is transferred directly to the submerged coils of pipe. Two charges during the summer will run a factory of fifty tons daily capacity. After this gas has performed its mission and passed through all the pipes, the engines suck it through the pipe overhead, pass it to the upper floor, and force it through pipes submerged in cold water, where it is condensed. It is then received into a large tank below and made ready for another tour of the pipes in the form of gas. In its rounds the gas makes more or less escape to the open air and is lost for all time, but very little is lost and the same ammonia is used until it is consumed by the escapes. Three hundred thousand pounds of ice are used every day in Nashville and the
towns for 100 miles around. One of these factories turns out thirty-five tons daily; the other produces forty tons, and there is being brought here eighty tons of lake ice. The three companies manufacturing and importing ice into Nashville sell to the small deal ers, who supply the consumers. They also ship to the neighboring towns. But the larger portion of this 300,000 pounds per day is consumed in Nashville. Nashville American.

Excavating and Handling Rock.
The " Charcoal Iron Workers" publishes a paper on the cost of excavating and handling rock, originally presented by Mr. Roger Rigly before the Western Pennsylvania Mining Institute, of which the following is a summary. The average weight of a cubic yard of sandstone or conglomerate in place is given as 1.8 tons, and of compact granite, gneiss, limestone, or marble, 2 tons, or an average of 1.9 tons, or 4,256 pounds. A cubic yard when broken up ready for removal increases about four-fifths in bulk, and one-fourteenth of a cubic

45 cents per cubic yard is a sufficient allowance for loosening hard rock. Soft shales and allied rocks may be loosened by pick and plow at a cost of 20 cents to 30 cents per cubic yard. The quarrying of ordinary hard rock requires from $1 / 4$ pound to $1 / 3$ pound, and sometimes $1 / 2$ pound, of powder per cubic yard. Drilling with a churn driller costs from 12 to 18 cents per foot of hole bored. Upon these data Mr. Rigly estimates the total cost per cubic yard of rock in place, for loosening and removing by wheelbarrow (labor assumed at $\$ 1$ per day of 10 hours), as follows : When distance removed is 25 feet total cost $=\$ 0537$, when 50 feet $\$ 0 \cdot 549$, when 100 feet $\$ 0.573$, when 200 feet $\$ 0 \cdot 622$, when 500 feet $\$ 0 \cdot 768$, when 1,000 feet $\$ 1 \cdot 011$, and when 1,800
profit.
When labor is $\$ 1.25$ per day, add 25 per cent to the cost prices given; when $\$ 1.50$ per day, add 50 per cent, and so on. In hauling by cart, the cost of loading, which will be about 8 cents per cubic yard of rock in place, and the additional expense of maintaining the road, must be added. Allowing, then, 851 pounds as a cart load, the total cost per cubic yard is estimated, when removed 25 feet, at $\$ 0 \cdot 596$, when 50 feet $\$ 0.599$, when 100 feet $\$ 0 \cdot 605$, when 200 feet $\$ 0 \cdot 617$, when 500 feet $\$ 0 \cdot 655$, when 1,000 feet $\$ 0 \cdot 717$, and when 1,800 feet $\$ 0 \cdot 94$.

Crystallized Fruits.
The following is the prize essay on this subject, by J. J. Pratt, superintendent of the Sutter Packing and Canning Company, read at the last meeting of the California State Board of Horticulture :
The process of preserving fruits in a crystallized or glaced form is attracting considerable attention at the present time. This process, though comparatively new in California, has been extensively operated in Southwestern France for years, the United States having been heavy importers, paying fancy prices for the product. The process is quite simple. The theory is to extract the juice from the fruit and replace it with sugar sirup, which, upon hardening, preserves the fruit from decay and at the same time retains the natural shape of the fruit. All kinds of fruit are capable of being preserved under this process. Though the method is very simple, there is a certain skill required that is only acquired by practice. The sereral successive steps in the process are about as follows: First, the same care in selecting and grading the fruit should be taken as for canning ; that is, the fruit should be all of one size and as near the same ripeness as possible. The exact degree of ripeness is of great importance, which is at that stage when fruit is best for canning. Peaches, pears, etc., are pared and cut in halves as for canning; plums, cherries, etc., are pitted. The fruit having thus been care fully prepared is then putin a basket or bucket with a per forated bottom and immersed in boiling water. The object of this is to dilute and extract the juice of the fruit. The length of time the fruit is im mersed is the most important part of the process. If left too long, it is overcooked and becomes soft ; if not immersed long enough, the juice is not sufficiently extracted, which prevents a perfect absorption of the sugar. After the fruit has been thus scalded and allowed to cool, it can again be assorted as to softness. The next step is the sirup which is made of white sugar and water. The softer the fruit, the heavier the sirup required. Ordinarily, about 70° Balling's saccharometer is about the proper weight for the sirup. The fruit is then placed in earthen pans and covered with sirup, where it is left to remain about a week. The sugar enters the fruit and displaces what juice re. mained after the scalding process. The fruit now requires careful watching, as fermen tation will soon take place and when this has reached a certain stage the fruit and sirup is heated to a boiling degree, which checks the fermentation. This heating pro cess should be repeated as often as necessary for about six weeks. The fruit is then taken out of the sirup and
washed in clean water, and is then ready to be either glaced or crystallized, as the operator may wish. If glaced, the fruit is dipped in thick sugar sirup and left to harden quickly in open air. If it is to be crystallized dip in the same kind of sirup, but is made to cool and harden slowly, thus causing the sugar which covers the fruit to crystallize. The fruit is now ready for boxing and shipping. Fruit thus prepared will keep in any climate and stand transportation.

The New York Times says: "The plans for two new harbor defense vessels attributed to the navy department are in some respects the most novel yet attempted in the way of naval construction. The charge of imitating European types cannot certainly be brought against these vessels, since nothing like them is known It is true that the single-turreted monitor type, which is said to have been adopted, is familiar enough; but such a vessel, of only 3,500 tons, yet able to carry a 16 inch gun in its turret and a dynamite gun in its hold, and developing a speed of 18 knots, must indeed be an original craft. The double-turreted monitors, having a displacement of 3,887 tons, or not far from the one proposed, carry two 10 inch guns in each turret, except the Puritan, which is of 6,000 tons, and is said to be intended to carry $101 / 2$ inch guns. The difference between that and a 16 inch gun is enormous."

ENGINEERING INVENTIONS.

A motor has been patented by Mr George W. Wimpee, of Summerville, Ga. Combined
with the reciprocating piston rod of a steam or gas with the reciprocating piston rod of a steam or gas
engine and the main crank and connecting rod of the motor are lazy tongs or compound levers arranged to increase the throw of the connecting rod, and
permit of a longer crank and increased leverage.
An anti-dead-center crank has been patented by Mr. Thomas C. Thomas, of Salt Lake City,
Utah Ter. The invention consists of a crank arm con. nected by a crank pin with an arm carrying an adjust able plate held atright angles to the crank arm, and carrying a second crank pin, for transmitting
with little loss and avoiding any dead centers.
A gas motor engine has been patented by Mr. Hugh Wiliiams, of Stockport, Chester County, England. It has charging and power cylinders of different diameters, with pistons operating as a single
piston, mixed gas and air being compressed into a piston, mixed gas and air being compressed into a reservoir by the charging cylinder, and flowing thence
into the power cylinder, where it is further compressed into the power cylinder, where it is further compressed by the power piston before explosioo
being employed coupled to one shaft.

AGRICULTURAL INVENTIONS,

A corn shocker has been patented by Mr. Edward F. Evans, of Wamego, Kansas. This into simplify the device, so that it may be readily carried from shock to shock and conveniently placed for use
by one person, and the shock readily compressed and by one person, and the shock readily compressed
tied, without danger of tilting or overturning it.
A spring attachment for agricultural implements has been patented by Mr. Charles R. Hartman, of Vincennes, Ind. It is for use where one or the ground by the action of the spring while turning the implement at the end of the row, or to assist the operator in guiding the machine, the invention covering
construction and combination of parts therefor.

miscellaneous inventions.

A draught lever has been patented by Mr. Frederick R. Webster, of Nashua, N. H. This invention provides a novel construction of a simple ap-
paratus, whereby a railway rail and heavy timbers may paratus, whereby a railway rail and heavy tumbers may
be expeditiously and conveniently moved without injury thereto, and with slight exertion on the part of the operator.
A chopping knife and slicer has been patented by Mr. Harvey W. Bridgman, of Lyons, slicing blade across one end of the opening, there being silcing blade across one end of the opening, there being
secured to the handle a shank having three arms, eacl one of which carries a curved blade with converging one of whic
taper ends.
A cuff holder has been patented by Mr. Benjamin F . Walker, of Warren, Pa. It is appli spring clamp with terminally dentated pivoted jaws, spring keeping the jaws closed on the cuff, while there is a safety pin for attaching the cuff holder to the sleeve of the coat or dress.
A watch case pendant has been patented by Mr. Frederick w. Schimmel, of Murray Idaho Ter. This invention covers a novel construc
tion and arrangement of parts in a watch pendan and push pin, designed to exclude dust and moisture, and also providing means for holding the pendant bow securely in the pendant.
A vacuum apparatus has been patented by Mr. Otto Bielmann, of Jersey City, N. J. It is for crystallizing sugar, and consists of a avacuum pan of
polygonal form, having a shell tapering toward the polygonal form, having a shell tapering toward the
ends, and mounted to rotate on fixed heads held on a ends, and mounted to rotate on insed heads held on a
shaft or spindle, through which steam is supplied to a coil in the midde of the pan.
A combined step ladder and chair has been patented by Mr. Phillip Braun, of Los Angeles,
Cal. This invention covers a novel construction and Cal. This invention covers a novel construction and
combination of parts designed to provide a convenient and ornamental piece of furniture, simple, light, and
durable, which may be readily converted from a chair into a step ladder and vice versa.
An electric insulator peg has been patented by Mr. William E. Joslin, of South Scituate R. I. It is made of wood, with threaded head and
tapering neck, the shank forming a smooth nonshouldered continuation of the neck, making a peg shouldered continuation of the neck, making a peg
which is strong without being unduly stiff, and affords which is strong without being unduly stiff,
no room for water to lie around the shank.
A grain dumping device has been patented by Messrs. James P. and John R. Sevier, of
Opel, Mo. It is a combined grain carrier and elevator, Opel, Mo. It is a combined grain carrier and elevator,
designed to enable one unaided to conveniently transdesigned to enable one unaiced to convenientiy trans storage or other bin without the necessity of handling the grain, as with a scoop.
A sash holder has been patented by Messrs. George K. Snyder and Comodore P. Fisker, of
Clay Centre, Kan. It consists of a rod with reversely Clay Centre, Kan. It consists of a rod with reversely
screw-threaded ends engaging a plate and a bracket screwed to the window frame, with other novel features, making a simple device for securing the eash at any
desired point, and seccurely locking it when closed.

A screw propeller has been patented by Mr. Alfred Conrad, of Patchogue, N. Y. The propeller is made with an elongated tapering hub, fitted by its axial bore on a screw shait, and having a single congradually increases in diameter from the smaller to the larger end of the hub.

A draught equalizer has been patent d by M. Wham Cazier, of Waveland, Kansas. It is esigned to equally distribute the strain when three with which the equalizer is employed, its construction being such that draught animals will be held very close the plow, implement, or vehicle.
A chemical stove has been patented y Mr. William M. Conway, of Baltimore, Md. It 18 eesigned for affording heat by slaking quicklime with
water, having one or more pans for the lime arranged ater, havmg one or more pans for the lime arranged
within a cylinder, in connection with a charger and a water tank, whereby a high temperature can be readily naintained with but little care and labor.
An improvement in suspenders forms New subject of a patent issued to Mr. Victor Dubreuil, New York City. This invention covers a novel con suspender designed to fit the body of the wearer without inconvenience, the article having but few parts nd being simply made.
A conical wheel has been patented by Mr. Aaron Twyman, of Pullman, Ill. It has its cir with a journal bearing, the surface of which is concen ric and parallel with the outer peripheral surface of ric and parallel with the outer peripheral surface of
the wheel, whereby to present a bearing surface at right angles to the resultant of the pressure upon the wheel.
A paper bag holder has been patented by Mr. James Cochran, of Custer City, Dakota Ter.
It consists of a number of U-shaped sections or slides fitted together and varying in height and width, the
bags being held horizonally in the eeveral sections and projecting beyond each end so that the user is en abled to remove the bags from either end of the holder.
A micrometer scale has been patented by Mr. Edmund Jones, of Cold Spring Harbor, N. Y. It ateral extension with a transersee scale, a gauge being mounted to work on this extension on a transerse guide, with other novel features, to facilitate measuring or plotting distances.
A hair tonic has been patented by Mr. William T. Wallace, of Troy, Texas. It is made of
tincture of cantharides, oil of cocoa, castor oill, amtincture of cantharides, oil of cocoa, castor oil, am-
movia solution, alcohol, bay rum, borax, flowers of sulphur, oil of bergamot, and other ingredients, and is phiri, on of bergamot, and ohter ingredients, and is
designed to prevent hair from falling out and promote its growth where the follicles are not dead.
An album has been patented by Mr. Felix Reifschneider, of Brooklyn, N. Y. It is a book in which the leaves form photographic mounts, and are
readily attachable and detachable, being designed for the use of photographic amateurs, the photographs being pasted in and afterward burnished, without damaging in any way their means of attachment.
A vehicle brake has been patented by Mr. Andrew W. Lane, of Susanville, Cal. It is constructed with novel-shaped side clips, each having an
overhanging flange or lip, one clip being adapted to be ermanently bolted to a brake bar, and the other being adjustable, whereby blocks of almost any thickness may be conveniently clamped to place to act as shoes.
A nut lock has been patented by Mr. Wiley S. Keyes, of Verona, Miss. It is especially designed for use in connection with railroad rails and ish bars, the improvement consisting in a polygonal nd to receive a key which fits in a recess in the nu ongitudinally of
attened surfacees.
A plaque or panel has been patented y Mr. Edward De Planque, of Hoboken, N. J. It is misture of glue, whiting, and pulverized woud, with sheet of paper fastened to one of the sheets of canvas or duck, and the sheet of paper having a coating of whiting and glue, on which the painting or drawing is produced.
A velocipede has been patented by Mr . Ceorge Kibbe, of Amsterdam, N. Y. This invention
covers a novel form of pedal levers and driving covers a novel form of pedal levers and driving
nechanism, with a peculiar construction and arrange ment of the stering head and cross bar, to render the
propulsion of velocipedes easier and porid for propulsion of velocipedes easier, and provide for a con-
venient variation of the effective driving force in ac effective driving

A buckle has been patented by Mr . Luther C. Voorhees, of New York City. It is made o spring or tongue integral with the frame or body of the buckle, which has parallel slots one above the other, and a row of teeth along the marginal portion of on
of the slots for the passage of the web or strap of the slots for the passage of
which the buckle is to be applied.
An automatic vehicle brake has been Morgan Ly Messrs. Linford E. Van Antwerp and corran L. Norton, of Susquehanna, Pa. It has stirrup brake beam, a suitabiy supported and arranged spring bearing against the stirrups, with other novel features, oo slacken the speed or stop a forwardly rupning vehicle
while allowing it to back freely bile allowing it to
A fish hook has been patented by Mr George Smith, of Brooklyn, N. Y. It is made of spring ire bent upon itself to form a double shank, the two ends bent out to form the hooks, a sleeve being held to slide upon the double shank in quch a way that a fish
drawing upon the hooks will cante the shank to slide drawing upon the hooks will cafye the shank to slide
through the sleeve, when the shank with the hooks at its ends will expand in the mouth of the fish.
A rotating trolling device for ships' logs has been patented by Mr. Oscar Kustel, of San
Francisco, Cal. It consists of a plate twisted and Francisco, Cal. It consists of a plate twisted and
having its longitudinal margins bent in reverse direc having its longitudinal margins bent in reverse direc
tions, forming curved flanges, with a wire secured on tions, forming curved flanges, with a wire secured on
opposite sides of the plate along the long ituainal edges
by the flanges, the rotator having at its forward end a
rounded eye or loop through which the drag line ig astened.
A process of treating native soda has been patented by Mr. Laurence F. J. Wrinkle, of Virginia City, Nevada. It is a novel method of treat-
ing natural soda from alkaline lakes, whereby the biing natural soda from alkaline lakes, whereby the bifrom sand, and to a larger extent from salt and sut phate, the process being less expensive than that here tofore followed.

A tanning process has been patented by Mr. Charles H. Perrin, of Jefferson City, Mo. It consists in first depilating the hides or skins, the steeping them in an infusion of black sage brush in
water first heated to a high temperature and afterward allowed to stand and partially cool, stirring them subsequently at intervals, such process being also applicable for treating hides or skins before the hair or woo s removed.
A vehicle axle has been patented by Mr. La Fayette T. Wever, of Sopchoppy, Fla. It is longitudinal aperture having a thread of coarser pitch a threaded spindle adapted to enter the aperture, with a plain collar in front of the thread, and an interiorly threaded Hanged sleeve sliding upon the spindle and locking the spindle and azle, making the axle strong at its union with the spindle, the latter being readily removable in case of breakage.

SCIENTIFIC AMERICAN

BUILDING EDITION

AUGUST NUMBER.-(No. 34.)

table of contents.

Elegant plate in colors of a dwelling at Glen Ridge, N. J., with floor plans, sheet of detail.
eight thousand five hundred dollars.

Plate in colors of a fre engine house of moderate cost. Details and floor plans.
3. Perspective view and floor plans of a residence a

Sketch of aptown block of attractive residences New York City.

Floor plans and perspective elevation of two Queen Anne cottages, lately completed at Bath Beach,
Long Island. Cost, four thousand dollars each.

Design and floor plans for a two thousand dollar Design and floor plans for a two thous.
house lately built at Bridgepcrt, Conn.

Perspective and floor plans of an attractive resi.
dence lately built at Bridgeport, Conn. Cost, two dence lately built at Bridgeport, Conn. Cost, two thousand eight hundred dollars.
A six hundred dollar cottage built lately at Bridgeport, Conn. Perspective and floor plans.
Plans and perspective view of a seaside cottage lately erected at Bath Beach, Long Island. Cost,
three thousand five hundred dollars.

Engraving and floor plans of a neat little double house lately erected at Bridgeport, Conn., costing
one thousand eight hundred dollars.

A country residence in France. Perspective and plans.
12. Engraving of the palatial stables of Mr. D. Edgar
Crouse, Syracuse, N. Y.
13. Plans and perspective for a carriage house, barn, etc. Cost, two thousand two hundred dollars.

Elevation and floor plans for a double house cost-
ing complete four thousand two hundred dollars.
New Congregational Church at Beckenham, Kent, England.
16. Page of designs of New England residences.

Miscellaneous contents: Vegetable glue.-Fourth of July fires.-The slag water closet.-Rust in
water pipes.-Laying out the joints of an elliptical vault, illustrated.-The tulip and other trees. -Architectural school houses.-Hanging baskets. -To estimate the power of a stream.-Manufacturing progress in the South.-How to grow
quinces.-Mixed wheats.-New ceiling for the quinces.-Mixed wheats.-New ceiling for the
Assembly chamber of the New York State Capi-tol.-Transplanting large pines.-Galveston artesian wells.-Poisonous wall paper and carpets.-
The testing of Portland cement.-The humming bird. -Manila hemp in plaster.-A perfect hen house.-Examination questions for plumbers. Road improvements.-The "Parten " metalic
shingles and siding plates, illustrated.-The pool of Bethesda.-Carl Pfeiffer.-Creosote wood preserving stains.-House heating by hot water circulation, illustrated.-Ohio's largest poplar.-Mortar.-Irrigating wheels.-Liquid fish glue.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 5 cents. Forty large quarto pages, equal to about
wo hundred ordinary book pages ; forming, practiwo hundred ordinary book pages; forming, practi-
cally, a large and splendid Magazine of Architeccally, a large and splendid Magazine of Architec-
vure, richly adorned with elegant plates in colors and ruke, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting examples of Modern Architectural Construction an Ilied subjects.
The Fullness, Richness, Cheapness; and Convenience of any Architectural publication in the world. Sold by all newsdealers.
mUNN \& CO., Publishers,
301 Broadway, Now York,
$\mathfrak{B u s i n e s s}$ and Wersonal.
The charge for Insertion under thrs head is One Dollar a linejor each insertion; about eight words to a line
Advertisements must be received at publication affic as early as Thursday morning to appear in next issue. All books, app., etc., cheap. School of Electricity, N.Y. Steam Launches.- New catalogue (free) by Wanted-Second hand toilet soap mill, plodder, and
chipper. Royal Soap Mfg. Co., Winnipeg, Manitoba. Iron Planer, Lathe, Drill, and other machine too:s of nen Pratt \& Letchworth, Buffalo, N. Y., solicit correspondence relative to manufacturing spec-
alties requiring malleable gray iron, brass, or steel castings.
Wanted-Hardware specialtes to manufacture, or
will buy good patents. Address, with particulars, Exelsior, box 70 , New York
For the latest improved diamond prospecting drills, ddress the M. C. Bullock Mfg. Co., Chicago, ill.
The best Coffee roasters, coolers, stoners, separators polishers, scourers, glossing apparatus, mepling and
peaberry machines: also rice and macaroni machinery are built by
Safety water columns. Cheaper than explosions or urned boilers. For illustrated price list, Reliance Gauge Nickel Plating.-Manufacturers of pure nickel an des, pure nickel salts, polishing compositions, etc. $\$ 100$ Little Wonder." A perfect Electro Plating Machine.
Agents of the new Dip Lacquer Kristaline. Complete Abfft for plating, etc. Hanson, Van Winkle \& Co., New-
outh
atk, rk, N. J., and 92 and 94 Liberty St., New York.
Perforated metals of all kinds for all purposes. The
Robert Aitchison Perforated Metal Co., Chicago, ill. The Railroad Gazette, handsomely illustrated, pubshed weekly, at 73 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federai St., Boston, and 93 Liberty St, New York, have just isproved forms of Pumping Machinery of the single and duplex, steam and power type. This
Link Belting and Wheels. Link Belt M. Co., Chicago Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma
chinery, and containing reports of tests, on application chinery, and containing reports of tests, on application Lockwood's Dictionary of Terms used in the practice
of Mechanical Engineering, embracing those current in Mechanical Engineering, embracing those curent in the drawing office, pattern shop, foundry, itting, turn
ing, smith's and boiler shop, etc., comprising over 6,000 deinitions. Edited by a foreman patternmaker. 1888 .
Price. $\$ 3.00$. For sale by Munn \& Co., 361 Broadway, New

Duplex Steam Pumps. Volker \& Felthousen Co., Buf Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical., or scien entific American Supplement sent to them free The SUPPLEMENT contains lengthy articles embracing he whole range of engineering, mechanics, and physica Billings' new Hand Vise, with parallel jaws. Drop Billings \& Spencer Co Hartford, Con
Steam Hammers, Improved Hydraulic Jacks, and Tub 60,000 Emerson's 1887 Book of superior saws, with Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U.s. A.
Friction Clufch Pulleys. The D. Frisbie Co., N.Y. city Veneer machines, with latest improvements. Farre "How to Koep Boilers Clean." Send your addres for free 88 page book. Jas. C. Hotchkiss, 120 Liberty St. Lathes for cutting irregular forms. Handleand spoke lathes. I. E. Merrit Co., Lockport, N.
Planing and Matching Machines. All kinds Wood Pring C. R Pattern makers' lathe. Back knife gauge lathe fo Mass.
"New Drill Chuck," holding straight taper or square shanks. Address Standard Tool Co., Cleve
frs. of twist drils, reamers, and special tools.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co.,

NEW BOOKS AND PUBLICATIONS.

The Animal Life of our Sea Shore y Angelo Heilprin. Philadelphia J. B. Lippincott Co. 130 pp. 5

This is a little hand book intended to meet the re quirements of the popular mind, and calculated to be specialty of the subjects treated of but still find and traction therein as different objects casually present themselves, especially during the sumer vacation The book has especial reference to the New Jerse coast and the shores of Long IIland, and treats more especially of the shell fish, jelly fishes, star fishes and
sea cucumbers, worms, moss polyps, sponges, etc.
The Internatio ANTHONY'S Photographic Bulle
TIN. Vol. I. 1888 By A. H. Elliott,
Ph.D., F.C.S, New York, and W. Jerome Harrison, F.G.S., London.
E. \& H. T. Anthony \& Co., New York E. \& H. T. Anthony \& Co., New York
H. Greenwood \& Co., London. Pp 643. Price
ntended to be an annual recelty in its way, since it is the Eastern and Western worlds, as elucldated by the
best writers and scientific experimentalists. In it we have the opinions and writings of English, American which is of itself a new but very agreeable departure Many of the articles are of practical value to both the amateur and professional photographer. It contains seven photogravure illustrations made by five differen processes, some of which are fully explained.
pecial developers, and photo-engraving processes, be sides illustrations of new and novel apparatus. sides illustrations of new and novel apparatus.
We commend the book as a reliable guide to

photograph

The Photographer's Book of Prac
TICAL Formules. Compiled by W
D. Holmes, Ph. B., and E. P. Griswold. Published in New Y
50 cents.
In this book are published nearly all of the reliable formulas of the present time, relating more especially to the most approved developers, the wet plate process, intensifiers, carbon process, toning baths, albumen and bromide printing processes, and many other useful things desirable for a photographer to have for con enient reference. The authors state that it is not specially original, but is merely a compilation of well
known formulas. It is well printed and contains much useful information. It should be found in the labora ory of every practical photographer. Any of the above books may be purchased through this office.

HINTS TO CORRESPONDENTS.

(1) F. K. P. asks : If a large quantity o basswood shavings, kiln dried, mixed with green basswood sawdust, partially green, are stored in a larg room at a depth of 8 feet, would the process of heating cause them to take fire? A. We should apprehend
(2) Theta.-Engines for utilizing the spent heat of exhaustion in vaporizing the highly volatile liquids, bisulphide of carbon, ether, and am in endeavors to make them a success, but so far sper form of combination has been a practical failure volatile liquids of the above class are exceedingly dangerous from tendencies to create fire or to suffocate persons exposed to their pungent odors. The use of gasoline in a vapor engine is now being introduced for running small laundries. This also requires great care as leaky joints may cause serious tronble by igniting
(3) A. B. C. asks if a thoroughbred horse does not have one more rib than an ordinary horse. A. Certain horses have 19 ribs; while other have only 18 , but we do not think that there is any rule by which you can claim that the horse having
number of ribs is any better than the other.
(4) J. A. H. asks: Is there any means preventing rain water stored in wooden cisterns fro becoming foul? A. Use charcoal of about the size of beans, with the dust sifted out, with which cover the
surface of the water in the cisterns. antiseptic that we can suggest that does not ine onl with the use of the water for all purposes. The cistern may be much improved, at the next cleaning, by washin the wooden surfaces, sides, bottom, and top, perfectly clean, and brushing a thin coat of pure Portland cemen all over the surfaces. Mix quickly with water to a creamy consistency, and spread with a whitewas
brush. Let it set for a few hours and go over it again In one day the cement will be set and the cistern ready use.
(5) D. C. S. asks: 1. Is there any wash that I can use to wash lime stains out of oak? A. No 2. Is there any kind of wash that I can apply to oak or Coat them with paraffin, and the lime will not hroug
(6) Gloss asks how to manufacture good liquid polish or gloss for shoes. A. We presume alcohol 3 quarts, dissolve, and add camphor $11 / 2 \mathrm{oz}$ an lamp black 2 oz. For details as to combination and other information, with numerous receipts, see John
Phin's " Trade Secrets and Private Recipes," which we Phin's " Trade Secrets and Private R
can send you postpaid for 60 cents.
(7) W. S. P. asks : 1. How many pounds weight will a cubic foot of air, in an air-tight vessel, sustain on the surface of water? A. About $62 / 2 \mathrm{ll}$., les
the weight of the inclosing vessel. 2. How many pounds weight will a cubic foot of vacuum sustain,
with same conditions? A. The same weight plus abon with same conditions? A. The same weight plus abon
535 grains. 3. Is the power of a cubic 535 grains. 3. Is the power of a cubic foot of com-
pressed air to sustain weight on the water greater or pressed air to sustain weight on the water greater
less than the natural air? And if so, in what proportion A. Less in proportion to the pressure. 4. Is there an buoyancy or weight-sustaining power on water than air, natural or compressed, or a vacuum? If so, what is it? A. A vacuum possesses the greatest buoyancy, surpassing that of air by the trifling amount indicated in
answer No. 2; hydrogen comes next.
(8) F. A. C. writes : Will you please (8) rometer Ihave noticed that from time to time an infrm above the mercurial column, and attach themelves to the inside of the tube, looking like fly specks . Possibly the tube contains air bubbles, which, as hey work their way up through the mercury and burst, arry up the minute particles you allude to. If so, your

$$
0
$$

(9) G. A. H. writes : I wish to have ade several cells of Lalande and Chaperon's oxide o pper batteries as described in Hospitalier's "Domestic ectricity for Amateurs "(C. J. Wharton), but desire the description: 1. Will commercial caustic pota o, or must it be the C. P. kind, such as is used by , or macists in the preparation of liquor potassa? A se commercial caustic potash. 2. What is meant by xide of copper, the black (cupric) or the red (cuprous) xide? A. Black or cupric oxide of copper. 3. What o you understand by the expression "the transformation of the potash into the oxide of zinc," etc.? A.
The potash dissolves the oxide of zinc. 4. Will this The potash dissolves the oxide of zinc. 4. Will the
battery (Fig. 11 for instance) answer perfectly for inor cautery, and furnish a current of sufficient capathy to make it at all times reliable? A. Yes. 5. Wil circuit, say one or two months of continuous disuse?
(10) C. S. W. asks : What will prevent full nickel bicycle from tarnishing or rusting at the he dust, Is there any substance which will notgathe constant trouble wtih nickeled parts of bicycles. We can only suggest vaseline. Address some dealer in
bicycle supplies, who may be able to offer a more effibicycle supplies, who may be able to offer a more ent anti-rust
(11) F. B. C. says he is troubled in obtaining sufficientdensity in his negatives. He employs a Seed plate and a ready prepared single solution de-
veloper. Exposing instantaneously or up to five veloper. Exposing instantaneously or up to five
seconds, he obtains no better results. A. Probably the developer contains hydro-quinone, and works slowe than pyro. You do not let the plate remain in the de-
veloper long enough. Half an hour is not too long, if he plate has been instantaneously exposed, and five minutes is not too short for a fairly exposed plate ou will save time and trouble by consulting a photo grapher in your locality. These images are due to too hort development, over-exposure, or to too little pyro
(12) F. H. asks: How much mercury in n half inch brass tube (half inch diameter) will be re quired by an application of heat, to raise a piston weigh-
ing 4 ounces, and what is the maximum of heat the nercury will stand? A. You cannot use mercury in a rass tube, as it will destroy the brass. Any amount will raise such a piston by the application of any de-
ree of heat. You may heat it to about 600° Fah fore it will. volatilize. Its expansion by heat is very light, and, under conditions named, is too slight to be of much practical use.
(13) A. G.B. asks : Is there any substance other fruit juices? A. Sulphur bution in apple cider as the desired tendency. A stick may be coated with melted sulphur, lighted and held in the half filled bar rel, which is shaken to cause absorption of the gas.
(16) T. H. C. desires instructions for me sort of a sizing, such as is used on campaign lags to stiffen them up and put on a gloss. A. Afte
the coloring has been printed, the flage are stiffened with starch size, and then passed through rollers.
(15) E. C. asks : Can lime be used to adantage with barn manures? If so, how? A. No; because it tends to set
escapes into the air.
(16) R. O. asks : Will you kindly tell mew I can remove the solder from platinum, so tha may be made comparatively pure. It is at presen can utilize platinum filings? A. If gold-soldered, the older cannot be removed without elaborate refin ing or melting at a high enough temperature to vola-
tilize the gold. If brass-soldered, nitric acid will disilize the gold. If brass-solnered, nitric acid will dis It will not pay you to try to work them up.

TO INVENTORS

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad, enable us to understand the qualed facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all oreign countries may be had on application, and persons abroad, are invited to write to this office for prices, whieh are low. in acoordance with the t are tensive facilities for sonducting the business. Address
MUNN \& CO.. office ScIENTIFIC AMERICAN, 361 Broad-

INDEX OF INVENTIONS

For which Letters Patent or the United States were Granted

July 31, 1888,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

gricultural imple C. R. Hartman
 ir brake, automatic, R. Solano
 libum, picture, c. Hood

Auger, post hole, F. P. Stanleg........
Augers and bits, machine for cutting foor lips
and spurs on. and spurs on, J. Swan.
Axle box, car, W. S. Sharp

Axle car. A. M. Wrigh Axle, vehicle, L. T. W Bail ear, T. F. Reilles

Bail ear, T. T. Reillee............
Bandage, hygienic, J. Grosal
Bandages, machine for making plastic, J. R. Rod
man............................
Bar. See Locomotive draw bar
Basket, fruit, W. A. Hess..
Basket, fruit, W. A. Hess.........
Battery. See Secondary battery.
Battery zinc, Carr \& Borde
Battery zinc, Carr \& Borden.......
Beam end protector, H. A. Goetz.
Bed b
Bed bottom, spring, D. J. Powers....
Bees, devie for hiving. W. J. Daniel
Bell striking mechanism, L.
Bench. See Work bench.

Block. See Printing block. Sawmill head block.

 Snatch block.Blower and ind
Murphy.
Blower and
Blower and i
Blower and induction apparatus, fan, F. Murphy Board. See Multiple switch board.
Bobbin winding
Boiler. Sise Steam boiler.
Boiler
Boiler, G. E. Hopk11
Boiler, W. B. Mack
Boiler tubing compound, galvanic, F. J. Clamer, Boiler tube cleaner, C. E. Kendall..................
Book stapling machine, Donnell \& McAulife.....
Boot or shoe, C. w. King Boot or shoe, C. W. King ..
Boot or shoe, W. H. Stevens
Boot or shoe heel, S. D. Densmore................
feather edging. A. Eppler, Jr.....................
Boots or shoes, machine for marking the uppers of, J. E. Plummer... Box. See Axle box.
Box fastener
Braiding machine, A. s. Hood............................... 3868
Brake. Brake. See Air brake. Car brake. Vehicle
brake.

Bridges, connection for end posts and bottom chords of, S. A. Buchanan. Bridle bit, H. W. Campbell
Buckle, L. C. Voorhees....

Lamp burner.

Bustle, A. H. Jackson

Bustle, A. H. Jackson....................
Cable gripper and pick-up, J. F. Thayer
Calk for hoseshoes, removable, T. B. Mason.
Camera. See Photographic camera.
Candle case, pocket, J. H
Car brake, F. . Taylor..
Car brake, F. G. Taylor.....
Car coupling, Conn \& Pugh.
Car coupling, C. E. Fox.....
Car coupllng, J. T. Haugh
Car coupling, J. Skinner...
Car coupling, H. W. Warn
Car heating apparatus, Timlin \& Heidinger
Cars, heating railway, Lyon \& Muore
Carriage, J. T. Clarkson....
Carriage spring, H. S. Smith............................
Carriage top irons, manufacturing, F. Schreidt
Carriage top prop, W. R. Jacobs.
Cartridge loader, A. I.utz...........
Case. See Candle case. File case
Cash indicator and register,
Casting, S. E. Thomas...
Cement compound, hydraulic, G. L. Eagan
Centrifugal reel, , . C. Eld
Chain, drive, B. A. Legg.
Chain, drive, B. F. Orton.....................
Churn, S. J. Loveless....
Churn, Rua asill \& Long.
Churn. A. Tschuor.......
churn. A. Tschuor.............
Cigar bunching machine, J. M
Cigar mould, H.
gigar mould, H. C. Palmbeck.
Cigar retailer. P. C. Osterber
Clay crusher and drier, R. Fre.......
Cleaner. See Boiler tube cleaner. Tube clean
Clip. See Felly clip.
Clock, calendar, P. F.
Clock, calendar, P. F.
Clutch, J. D. Westgate.
Clutch, friction, J. D. W.
Coffee pot fiction, J. D.
Coin-operated machine. C. F. Wi.....
Conical wheel, A. Twyman
Corn shocker, E. F. Evans.

Coupling. See Car coupling. Pipe coupling. Thill
reach coupling.
Crank, anti-dead center, T. C. Thomas.............
Crusher. See Clay crusher.
Cuff holder, B. F. Walker...........................
Cup. See Egg cup.
Cutter. See Feed cutter. Mining machine cut
Damper for cooking stoves, etc., regulating, , J.
Mahedy.....................................
Damper regulator for furnaces, G. A. Good-
Desk appendage, writing, E
Die. See Screw cutting die.
Door mat, metallic, S. Toffer.
Draw shave, W. B. Swan
Dredging machine, M. F. Brainard.
Drill. See Expansion drill. Rock drill.
Drilling or chipping device, w. S. Sherma Drum head strainer G. Van Zandt Drum, heating. E. C. Gran Dyeing apparatus, G. Jagenburg.
Dyeing apparatus,
Dyeing apparatus, Lee \& Bradshaw................
Dyeing colors by the simultaneous oxidation diamines and monamines. P. Monnet...........
Dyeing purposes, preparing a solution of indig
for, F. E. Schumuckert.
Egg cup, J. Casey
Electric converter, Shalenberger \& Byllesby..
Electric currents, automatic regulation for,

Electric cur Belfield

Electric machines, brush holder for, A. Schmid
Electric motor regulator, A. G. Waterhouse...... Electric motor regulator, A. G. Waterhouse...
Electric motors, regulation of. A. G. Waterhou Electric motors, regulation of. A. G. Waterhous
Electrical apparatus, coin-operated, P. Everitt...

lossing mach reegardin..
Flour bolting machine, C. Bostel................... 38689,959
Flue for electric transformers, E. Thomson...... 387,12
Frame. See Photographic printing frame.

echanism, C. F. West.

Grain binder, A. Tetrault.
387,036
357,027
386,905
Grain dumping device, J. P. A J. R. Sevier........... 386,919
Gunpowder mills, automatic feed and delivery ap-
paratus for. P. A. Oliver...........................
Hanger. See Door hanger. Hay carrier track
anger.
Harnessmaker's tool,
Harrow, R. G. Patton.
Harrow, I. C. Pratt. .
Harrow, rotary, M. D. Bronner.
Harvester, sugar cane, H. Fatic
Harvesters, adjustable wind board for, H. H. ${ }^{387 \%, 06}$
Hat stretching and blocking machine, w. Beck-
erve.........
Hat ventilator, c. Potter...............
Hay carrier track hanger, Burnham \& Miller.. Hay press, J. R. \& A. W. Bigham..
Hay rake horse, E. P. Jynch.......
Heat and power, plant for supplying, R. R. Zell...
Heat, apparatus for chemically producing, w. G.
MacLaughlin......................... 387,08
Heater. See Water heater.
Hinge, D. N. Br............................. Brant
Holder. See Cuff holder. Paper bag holder. Pen
Holder. See Cuff holder. Paper bag holder. Pen
and pencil holder. Pen or pencil holder. Pho-
tographic plate holder. Sash holder.
tographic plate holder. Sash holder.
Hook. See Fish hook.

Horse checking device, D. S. Munger............... 387
Horse checking device, Munger \& Price.
Horseshoes, machine for making, A. M. Sweder............... 386,969
Hose, clamping collar for attaching, C. Hecox... 386,88
Hot air engine or aerothermic motor, I. Genty.... 3877,063
Hydrocarbon burner, Cole \& Pihlstrom.......... 387,053
Station indicator.
Induction coil, coin-operated, Williams \& Roov-
ers..................
Ingot mould, McClean
Insole, C. W. K.
Insole, C. W. King..
Insulator peg, electric. W. E. Joslin.............
Iron and steel with rustless oxide, coating, A.
Breneman.. 887,046
$\begin{aligned} & \text { Sae Sifting jack. Shoe jack. Wagon } \\ & \text { jack. }\end{aligned}$
Jack. See Railway fish joint.
Journal bearing, J. W. G
Kiln. See Brick kiln.
Knife. See Chopping knife.
Knitting machine, s. Henshall............. $386,819,386,821$
Knitting machine, circular. S. Henshall....... Knitting machine, circular, S. Henshall............
Ladder and chair, combined step, P. Braun.... Lamp, G. W. Woodward.....
Lamp, Argand, L.J. Atwood
Lamp burner, E. H. Hickok..........
Lamp, regenerative gas, J. Franklin
Lamps, automatic regulator for electric. R. Bel. Bel
fleld.. 386,79
Lamps, storm protector for electric, T. H. Brady. 387,04
Lead pigment from galena ore, manufacturing
sublimed, , T. Lewis........................ 386,836
Leak stopper for ships, etc., C. H. S. Schultz...... 387,200
Leveling instrument, A. Kegel.................................38,924
Lever, draught. F. R. Webster..........36
Lever, draught. F. R. Webster........................
Lifter. See Plate or dish lifter. Transom lifter. Lifting jack, A. W. Anderson.
Lifting jack, , Baldwin......
Likht. See Magnesium light.

G. Hathoust with direetions for conom.-BY R

OIL WELL SUPPLY CO. Ltd

 THE MIND CURE.-BY MARY J. FIN

INEW CATALOGU
I VALUABLE PAPERS

OIL ENGINES.

Steam! Steam!

We build Automatic Engines from 2 to $200 \mathrm{H} . \mathrm{P}$.
A Large Lot of 2, 3, and 4-H. Engines
B. W. PAYNE \& SONS,

TO BUSINESS MEN.
 MUNN deco., Publishers,
 SOKRS AND CHEWERS.

delafield's Pat. saw clamp Hax

CITY OF IONDN AND SOUTH-

Ex mincoriol
\%mara
OTON

GUILD \& GARRISON
 Shepard's New \$60 Screw-Cutting Foot Lathe

 TU®T RTEADT Steam Boilers. A Practical Treatise on Boiler Con
truttion and SXamination. For the use of Practica
Boler Makers. Boiler Users, and Inspectors; and em
 Nor

 bY THE SAME AUTHOR.

 Tutaside Valfe Priciticnily Evilini

 HENRY CAREYBAIRD \& CO. School of Pharmacy. CORNELL UNIVERSITY.

VALUABLE BOOKS.

REED'S ENGINEERS' HAND-BOOK to th Local Marine Board. Examinations for certificates of
competency as First and Second Class Engineers. B W. H. Thorn, Member of the N. E. C. Inst. of Engineers
and Shipbuilders, with the answers to the Elementar Questions. Illustrated by 297 diagrams and 36 largeplates. MECHANICS' AND ENGINEERS' POCKET
BOOK of Tables, Rules, and Formulas pertaining to BOOK of Tables, Rules, and Formulas pertaining to
Mechanics, Mathematics, and Physics, including Areas squares, , cubes, and Roots, etc.., Logarithms, Hydraulics, Hydrodynamics, Steam and the Steam Engine, Naval
Architecture, Masonry, Steam Vessels, etc., Limes, Mortars, Cements, etc. Fifty-second Edition, 109th thous-
and. By Chas. H. Haswell. 1888................ $\mathbf{4} .00$ THE MECHANICIAN.-A treatise on the Con struction of Young Engineers and Scientific Amateurs,
comprising the arts of Blacksmithing and Forging, th Construction and Manufacture of Hand Fors, the various methods of using and grindicg them. and
the various details of setting out work incidental to th Mechanical Engineers' and Machinists' Art. Illustrate
by 147 engravings. By Cameron Knight. $1888 \ldots . . .87 .25$

 IMIUINTN de $\mathbf{C O}$

Perfectimispaper iLE

 CURE ${ }^{\text {ran }}$ NEAF

RUBBER BELTING, PACKING, HOSE VULCANIZED RUBBER FABRICS
 A1TP Bralke IEIOSO
 RUBBER MATS,
 RUBBER MATTINC,
 EADS

NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y

Clark's Adjustable Wing
 Ventilating Fans, I工eavヲ Fription. Fans FOR DRYERS. GEO. P. CLARK, Windsor Locks, Conn,
New York Agent,
LEAD SMELTING.-A FULL DESCRIP-

HSEESTUS

PENSIONS stamame

HYPNOTISM IN FRANCE.-AN INteresting review or the present status or this subject, by
Max Dessoir. Contained lin SCENTIIICAMERICANSUP
PLEMENT, No. 613. Price 10 cents. To be had at this
OAce

PIPE COVERINGS
Absolutely Fire Proof. BRAIDED PACKING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPFCLALTIES.

\% HARRISON CONVEYOR!

CAMERA BELLOWS.-FULLDESCRIP

PNEUMATIC DYNAMITE TORPEDO

 2nd Tiss MACHINERY

To any person about to erect a dwelling house or stao examine the latest and best plans for a church, school or low cost, should procure a complete set of the ARCHIAmpican.
The information these volumes contain renders the work almost indispensable to the architect and builder,
and to persons about to build for themselves they will find the work suggestive and most useful. They contain
colored plates of the elevation, plan, and detail drawtion and approximate cost. Four bound volumes are now ready and may be obnewsdealer. Hrice, $\$ 2.00$ a volume. Stitched in paper
news.
covers. Subscription price,

MUNN \& CO., Publishers, 361 Broadway, New York.

ASSICNEE'S SALE. Smith, Beggs \& Ranken Machine Co. Property. Embracing nearly an Entire Block of City Real Es-

 FOR SA LE-Candidian and English patents on hand
or power washing machine. W. T. Venable, Christians-

The Scientific American

 PUBLICATIONS FOR 1888.
\qquad year. $\dot{\text { yene Sientific }} \dot{\text { American, Export }} \dot{\text { Edition }}$ (monthly) one year, $\dot{\text { Scientiflc }}$ American, Architects and Builders
Edition (monthly) one vear The Sclentific COMBINED RATES. ${ }^{\text {Contan }}$ The Scientific Amertcan and Architects and BuildThe Scientific A Arerican, Supplement, and Archi-
tects and Builders Edition,

 Such has been the recent progress in our branch of
industry that wee are now abe eo aftrm that the James
Meanys shat hoe in in every respect equal to the shoes

 conntry. We wilplace them easily within your reach
nosty State or Territory if fou will investone cent in a
postal card and write to us, mentioning the ScIENTIFIC

TO TNVENTORS

 AND MANUFACTURERSThe 57th Annual Exhibition American Institute of the City of New York Will Open OCTOBER 3, 1888. Intending Exhibitors must make early application to
secure proper space and clasification. For blonks and
information, address NATURAL GAS INDUSTRY AT PITTS

T

 ELECTROTECHNICS, D E FIN I TIONS and Denignationsin.-Alist oft the esmbois proposed by
Mr. Jamieson for electrical units, magnetism, and elec
Mric measurements. With 4 figures. Contained in Sct

 Anestemitio ,umbe mizir
 2new Amateur Photographor,
a complete guide to pho-
tography, which accom tography, which accomis connededed to be thesim-
plest, most concise and
practicalwork published ROCHESTER OPTICAL COMPANY,

PATENTS

MESSRS. MUNN \& CO. in connection with the publifor Inventors.
In this ine of busmess they have had forty-one years
now experience, and now nave un egualea facilities for the
preparation of Patent rrawings, , , pecititations. and the
prosecution of Applications for Patents in the United Co. also antena. te the preparation of Caveats. Covyrights
for Books. Labels, Reisses. A Bsignments. and Reports on Infringements of Patents. All business intrusted to
them is done with ppecial care and promptness, on very
teano A pamphlet sent free of charge, on application. con-
taining full intormation about Patents and how to pro
cure the cure them; directions concerning Labels, Copyrights,
Design, Patent, Apeas, Reisisues, Infringements, As,
signments, Rejectea Cases, IIints on the Sale of Pa$5=4$ patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents, dina

INETV GAS ETMGINTE

"The Baldwin"

 Otis Brothers de OO.

Elevators and Hoisting Machinery, 38 PARK ROW, NEW YORK.

THE COPYING PAD.-HOW TO MAKE

 105MHKIE BOSTON
 AIR, PURIFICATION OF. - BY D

(1) QuLuMBIA

STMFIBAIMS

 curacy and ade

Simond's Rolling-MachIne Co., Fitehburg, Mase HOME-MADE INCUBATOR.-PRACTI

THE PENNSYLVANIA GLOBE GAS LIGHT CO.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent ranted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

LIGHTNING CONDUCTORS - DESCRIP-

Makes a perfect

Asbestos Patented Roofing
 FIRIMーPROOF

H. W. JOHNS MFG. CO., 87 Maiden Lane, N. Y.

Sole Manufacturers of H. W. Johns' Liquid Paints, Asbestos Fire-Proof Paints,

SYRACUSE MALLEABIE RONWORKS

ELECTRIC CONVEYORS.-DESCRIP tion of two ngenious systemsfor the electric carriag
of small packages. Illustrated with 13 engraving. Con

PHTHISIS.-A PAPER BY DR. H. C.

* • •・ー
 ฐ̌iantific American

ESTABLISHED 1846 .
The Most Popular Seientifie Paper in the World. Only 83.00 a Year, including Postage. Weekly.
This widely circulated and splendidily illustrated teen pages of useful information and a large number of teen pages of useful information and a arge number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam M achinery, New Inventions, Novelties in Mechanies, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture. Horticulture, Natural History, etc. Complete List of Patents each week.
Terms of Subscription.-One copy of the ScienTIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollnrs by the pubor Canada, on receipt of three dollars by the pub-
lishers; six months, \$1.50; three months, \$1.00.
Clubs.- Special rates for several names, and to Pest Clubs.-Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Pos
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inglde Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Ad-
dess dress all letters and make all orders, drafts, etc., pay-
able to

MIUNJN \& CO.;
361 Broadway, New York. TIETM
Scientific American Supplement.
This is a separate and distinct publication from
THer Scientrerc American, but is uniform therewith in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers, and accompanied with translated descriptions. papers, and accompanied with translated descriptions.
The SCIENTIFIC American SUPPLEMENT is published weekiy, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, A rchæology, Astronomy, Chemtstry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Shrp Building, Marine Engineering, Photography,
'ecchnology, Manufacturing Industries, Saritary EnCechnology, Manufacturing Industries, Sar.itary En-
gineering, Agriculture, Horticulture, Domestic Econo gineering, Agriculture, Horticulture, Domestie Econo-
my, Biography, Medicine, etc. A vast amonnt of fresh
gnd ving and valuable information obtainable in no other pab.
lication.
The most important Ensineering Works, Mechanisms, The most important Enjineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPIEMENT.
Price for the SUPPLEMENT for the United States and
Canada. 85.00 a year, or one copy of the Scientific AMERICAN and one copy of the SUPPLEM SCIT, both mailed for one year for 87.00 . Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y..

Builders Edition.
the scientific American architects' and Builders' Edition is issued monthly. $\$ 2.50$ a year. ingle copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a
large and splendid Magazine of Architecture, richis adorned with elegant plates in colors, and with othe ine engravings; illustrating the most interesting examples of mod
allied subjects.
A special feature is the presentation in each numbe of a variety of the latest and best plans for private residences, city and country including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, togetherwith full Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by al MUNN \& CO., Publishers

361 Broadway, New York.
PRTWTLNG TMTK THE "Scientific American" is printed with CHAS
ENEU JOHNSON CO.S INK. Tenth sndiom Sts., Phila., and 47 Rose St., opp, Duane St., N. \bar{Y}

