[Entered at the Post Office of New York, N. Y., as Second Çlass Matter. Copyrighted, 1888, by Munn \& Co.]
a WeEkly journal of practical information, art, science, mechanics, chemistry, and manufactures.

कximutifir gimerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
pUblished weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THHE SCIENTIPIC AMEIRICAN.
 Remit by postal or express money order
Australia and New Realand.-Those who desire to receive the
SCIENTIFIC AMEACAN, for alittle over one year, may remit $£ 1$ in current onial bank notes. Address
MUNN \& CO $3: 1$ Broadwas, corner of Franklin Street, New York.

The Scientific American Supplement

Is a distinct paper from the ScIENTIFIC AmpRICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size
 tng to the Postal Union.
 seven dolanes.
rekisterest tette
Australia and New Zealand.-The Scientipic American and rent Colonial bank notes.
Address MUNN \& CO., 361 Broad way, corner of Franklin Street, New York.

NEW YORK, SATURDAY, AUGUST 11, 1888.

Contents.

table of contents of SCIENTIFIC AMERICAN SUPPLEMENT

NO. 658.
For the Week Ending August 11, 1888. Price 10 cents. For eale by all newedealers.

11. CVIL ENGiNEERING.-Improved Water Ballast Steam. Roller.

 the proposed line...............

VII. NADAL ENGINEERING.- Now Additions to the French Navy.

2. PhYSIIOLOGY.-Effect of Rood Preservatives on the Action of

ERICSSON AT 85.

The 85th anniversary of John Ericsson, the wellknown inventor and mechanical engineer, was celebrated in this city on the 31st of July. Mr. Ericsson is still vigorous and still resides where he has lived for over a generation, at No. 36 Beach Street. All the other handsome dwellings in that vicinity were long ago given up to commercial uses; but the old philosopher declines to vacate. Long way he continue to hold the fort.
On the evening of the 31st ult., the venerable inventor was honored by a serenade by the United Scandinavian Societies, when the beautiful national hymn of Sweden was sung, and other Swedish music rendered. A special messenger from the King of Sweden and Norway also called on Mr. Ericsson to offer royal congratulations. For several years past Mr. Ericsson has been quite a recluse. Although it is stated he is in good health, it is rare that any one is allowed to see the old man. His body guard, Corporal Taylor, and other sentinels, forbid all approach, by orders, they claim, from headquarters.

"injorious influences of city life."

So far as health is concerned, city life has its evils as well as its advantages. The experience of the civil war showed that farmers' sons cannot bear the fatigue of forced marches like city lads, and inferences have been drawn from this tending to belittle their powers that are scarcely warranted by the facts. City lads and men are used to much walking, many being on
their feet all day, whereas, in the farming districts, it their feet all day, whereas, in the farming districts, it short one, and hence farmers are not up to walking. But one cannot live in the country, especially on a farm, without getting much exercise and development of the arms and the muscles of the upper part of body, while city lads get little or none. The medical reports of the war (Surgeon-General's Department) show that the farmers recovered from gunshot wounds quicker than those from big cities-their bodies being stronger and more generally developed.
In a recent paper. W. B. Platt, M.D., F.R.C.S. (English), declares that athletic exercise is essential to insure the health of city men. He finds these, as a rule, to be absolutely undeveloped above the waist. Their nervous system, he says, is injuriously affected by constant noise, and the brain and spinal cord jarred by continual treading on the stone and brick pavements. He says: "If there is one general physical difference between the country-bred and the city-bred man, it lies in the size and strength of the muscles of the shoulder and arm. It is almost impossible for a man to live in the country without using the arms far more than the city man. This use of the arms has, in both men and women, an important bearing on the general health, since it increases the capacity of the chest, and thereby the surface of living tissue where the blood is spread out in thin-walled vessels, through which the oxygen and carbonic acid easily pass in opposite directions, servivg thus the double purpose of feeding the body more abundantly and of removing a constantly accumulating waste product."

The Human Conscience.

Whether or no man's conscience inclines him to the right, that is to say, to that which biblical and civil laws concede to be just, is an interesting ethical question, and one on both sides of which much may be said. It is a frequent confession of the great Kant that the conscience of man and thestars of heaven above all else excite awe within him, inferring, as he does, that the human conscience tends naturally toward the good, i. e., what has been found to be, or at least appears to be, the best for society in general.

Mr. Herbert Spencer, in a recent paper, takes issue with Kant in this. He says that in Kant's day there were not so many books of travel as now, not so many expert investigators abroad, and consequently not so much was known of savage tribes or half-civilized peoples, but that now the conscience of man, as inductively known, has none of that universality of presence and unity of nature which Kant's saying tacitly assumes. He quotes Sir John Lubbock in support of his position ("Origin of Civilization," pp. 404, 405) : "In fact, I believe that the lower races of men may be said to be delieve that the lower races of
ficient in the idea of right.

That there should be any races of men so deficient in moral feeling was altogether opposed to the preconceived ideas with which I commenced the study of savage life, and I have arrived at the conviction by slow degrees, and even with reluctance."
Mr. Spencer first quotes from the observations of travelers of known reliability to show that the savage conscience often holds as worthy of respect the expression of those qualities which those of the higher civilization are taught to abhor. Then he shows that the |savage is sometimes found practicing all the virtues and again, that so-called Cbristian peoples often thirst for blood, the stronger robbing the weak, the rich grinding the faces of the poor. In other words, he holds that the conscience is neither wholly good nor
but adapting itself to circumstances and conditions Kant believed the stellar universe to be evolved, and, from the meager evidence before him, attributed to the human conscience the same origin and the possession of a real nature.

The Home of the Great Auk.

That strange bird, the auk, who had an immense body with wings so puny they would not suffice to lift it from the ground, is now extinct, or rather it is believed to be, and all that remains to remind us of its one-time existence are its bones and some aged and illlooking stuffed specimens or reproductions in the various museums; the same being in no two cases alike, neither as to shape, arrangement of plumage, nor general expression, and so it is we get only a confused idea of how the bird really looked. Funk Island, an exof how the bird really looked. Funk Island, an ex-
posed rock, 32 miles northeast of Cape Freels, Nova Scotia, was once famous as the resort of the great auk. Here these curious birds gathered in multitudes, and, in the breeding season, the weather being clear-a rare condition be it said-were often seen from the open sea standing in serried ranks, like line after line of an army drawn up in battle array; tall, gaunt, silent.
Last summer, Mr. Frederick Lucas visited this island, boat being sent with him and some companions from the Fish Commission's schooner Grampus; the weather being selected with care and arrangements made to camp, for the island can only be approached or quitted under most favorable conditions, so exposed it is, with a heavy surf on its seaward face and threatening rocks and angry currents to leeward. The whole island was found to be strewn with the bones of these birds; they had been slaughtered by the hundreds, perhaps by thousands, for they could neither fy nor fight, but only waddle slowly along whereso ever they might be driven. An inclosure was found, built of stones--a sort of shambles into which they were evidently driven to be despoiled of their feathers, though it is certain they were sometimes driven aboard boats over planks laid from gunwale to shore. Over a hundred sets of bones were gathered, the crania of each specimen showing signs of fracture, as if they had been beaten about the head with clubs.

Heating Buildings by Exhaust Steam

At a recent meeting of the New England Railway Club, John A. Coleman said :
I have had a long experience in heating buildings by steam. When the matter of using exhaust steam was agitated, and most people were opposed to it, we took a number of mills, using then a 16 foot tubular boiler and averaged a ton of coal a day. We heated the mill by using large pipes, having the circulation as straight as possible, open and free, with about two pounds back pressure on the engine, using no direct steam except in the morning in starting up and on Sundays. I had a similar experience in heating the building of the Providence Tool Company during the war. The building was 70 feet wide by more than 200 feet long, the rooms with 15 foot studs, and large windows, in an exposed situation, then heated by small pipes all around the walls, and using about a ton of coal a day for the boiler. In reconstructing, we took out the small pipe, cutit up In reconstructing, we took out the small pipe, cutit up
into coils, which we placed in the center of the building, using a 6 inch pipe as the main artery through the building, and a 2 inch socket pipe for the condensed water, avoiding bends everywhere as much as possible. Result was that the building was overheated by using only exhaust steam, and about two pounds back pressure, and no extra coal was used for the fires. My idea in heating is to use large pipes, and carry a large body of steam to the point where you want to use it, and not strangle it on the way.

What the Result will be.

The Milling World thus soliloquizes on some of the wonderful projects of the period. When the Keely motor successfully motes, when a man serenely in atmosphere floats, when Yankees are brought to the eating of oats, when motion perpetual shall be achieved, when cyclone pulverizing is proved and believed, and when grinding pneumatic is else than conceived, we shall look to see some inventor successfully utilizing the power of Niagara River at its exit from Lake Erie. Meanwhile said inventors are wilting their collars in struggling to acquire the prize of $\$ 100,000$ advertised to be awarded by the International Fair, Buffalo, N. Y.

Port Huron, Mich., has a gas well that is six years old. The finders did not know what it was when they struck it. It was put down for oil, and, as the Times says, the objects for which the work was undertaken not having been reached, it was abandoned, and by some strange phase in this wide-awake community it is being forgotten. The site of the hole was originally a hollow basin. It is now a mound. The action of the gas through those years has forced over 500 tons of matter out of the bowels of the earth and is still at work. A power that might have been utilized in lighting and heating our city is thus running to waste in building a miniature hill.

Straw Paper Making in Germany.

The process of making common yellow straw paper and straw pulp, although seemingly simple, requires exact knowledge and experience. The cheapness of the straw must not be exclusively considered, but the quality, as not only the quality of the paper, but the amount, depends upon it. Out of good, clean straw 80 per cent of paper or pulp can be obtained, while a poorer grade will yield scarcely 60 per cent. The Papier Zeitung, in a recent number, describes the various processes which different German makers use, and we give the article in condensed form : Old factories cook the straw, uncut, in wooden stationary vats without pressure. The straw is put in by layers, well packed down and a sufficient amount of $10-15$ per cent lime added, the lime being previously slaked and cleaned. The vat is then filled with water, covered, and steam applied, penetrating from below, which will cause the mass to boil in two or three hours. The boiling lasts four or five hours, and then the mass is allowed to cool slowly. It is then put in a hollander and washed out before the beating rolls are lowered and the grinding done. In larger and newer factories the straw is cut into short lengths before cooking, and a cylindrical or round pressure kettle is used for the latter process. Lime in the form of milk of lime is used and a steam pressure of four or five atmospheres is applied. The duration of the cooking varies from two to ten hours. In many factories the cooked straw is passed through the grinder before being put in the hollander, which crushes the knots in the stalks, but the tibers are hurt so that the paper made by this process has never the firmness and tenacity of that made in the wooden vats. The grinder makes air-dried pulp too greasy, so that it warps and cannot be used in bookbinding and cartoon making. Straw has fine, weak fibers, and they should be kept as long as possible. The best machine to produce flat-lying, smooth, firm pulp is a hollander, built in its several parts properly for this work, and the miller should understand the business. The best stuff and firm, knot-free paper can then be made in double quantities with the least power. It is highly requisite that the paper be well pressed and dried on the cylinders of the press and that the "overcloth" be neither too dry nor too damp. A clean cloth does not adhere to the paper. Lime or clay is often taken to saturate the cloth, but in using clay or china clay the starchy paste of ten mixes with the pulp. There is nothing better to make thin paper from weak, fibrous stuffs, like straw and wood pulps, than the usual paper machine, because the paper leaves the drying cylinder with a dried surface and then it can be passed through the cutter by hand to the reeler or rolling machine. The side of the paper next the cylinder is smooth like glass, the reverse rough. The paper when very thin of ten is charged with electricity in the outer edges, so that it will not cut off both the circular knives, but this is afterward done by the cutting machine. The straw paper machine is not suitable for heavy paper of more than fifty grammes to the square meter. The long sieve machine is specially adapted, because the drying surface of the cylinder is greater. Much brown and green straw paper is used. The brown is made by adding, before the cooking o the straw, 6-10 per cent of sulphate of iron, which wil make cheap wrapping papers, hard and tenacious. This sulphate of iron adds from 3 to 5 per cent to the weight of the paper and forms with the lime sulphate of cal cium and oxide of iron or rust, and this latter does the coloring. Green straw paper is much used for wrapping of fire boxes. The best bleached fiber is used and the color obtained by 3 per cent of extract of logwood and 3 per cent of blue vitriol. The coloring matter is rather dear, but there is none better or cheaper. All these processes are those used in the making of the cheaper grades of straw paper, because lime cannot wholly free the fiber from incrusting and cementing matters. This is principally done by caustic soda, which gives a pure cellulose.-Paper World.

Electricity in the Reduction of Low Grade Ores.
The Utah Mining and Reduction Company, whose works are located at Bingham, ten miles south of Salt Lake City, are using the new "Meech process" in the reduction of their low grade and rebellious ores with success.
The ore is passed through a crusher and rolls, crushed to forty-mesh fine, thence into a disintegrating machine, four tons at a time, through a valve, with sufficient water and chemicals to treat the sulphur and refractory elements. Steam is then admitted to a pressure of one hundred pounds per square inch, and, at the same time, the mullers are revolved at about thirty revolu tions per minute, generating electricity in such volume as to greatly assist in the decomposition of the ore.
This is continued for three hours. The ore is reduced to an impalpable powder, many times finer than is pos sible by other methods, and is thoroughly decomposed and desulphurized.
The water absorbs the chemicals, every atom of gold is made bright, and in condition for amalgamation. The pulp is now discharged into the amalgamator
feet in diameter, in which are copper plates placed lengthwise, and, by hydrostatic pressure, quicksilver is thoroughly pressed through the ore, by a "settler" of peculiar shape, having an electric copper wire broom to assist in gathering the fine amalgam before the tailings are discharged.
The cost of the treatment is from two to three dollars per ton, and, as the gold ores treated run from twelve to twenty dollars per ton, it leaves a handsome margin for the owners.
The ore veins are large, and thousands of tons, or enough to supply the mill for the next one hundred years, are already in sight.
By this process about ninety per cent of the gold is saved.
The works occupy about nine acres of land on the banks of the Jordan River, and consist of two main buildings, 32×64 and 24×34, one two-story boarding house, one blacksmith shop, two 35 horse power engines, one crusher, one roll, and other necessary appurtenances, are connected with the mines by the Denver \& Rio Grande \& Western Railway, and demonstrate in a practical manner the immense sums that can be realized from the treatment of low grade and refractory ore dumps, that, have heretofore been considered absolutely worthless.

Poisons and their Antidotes.

The following brief summary of the most rational and simple antidotes to the commoner forms of poison in daily use by artists and artisans has been compiled for the American Analyst by Dr. Francis Wyatt, and it will be seen that he has suggested the most appropriate to be applied in any emergency, pending the arrival or in the total absence of a skilled medical practitioner.
 fruit essence,
lute alcohol.
——
6.
6. Compounds
7. Compounds of arsenic.
8. Oxalicacid and its salts.

time. After several of thasese, tharge
draughts of lime water. Finally,
ounces castor oil.
$\left\lvert\, \begin{gathered}\text { Large doses of ordinary kitchen } \\ \text { salt dissolved in water after which }\end{gathered}\right.$
9. Nitrate of silver. sane dissooven
warm water
was.
10. Nitrous fumes of vapors,
arising in vitriol or chemical works. acetic acid and small doses of stroug stronger the better

Canadian Trepang

In the waters surrounding the Atlantic provinces, a holothurian, Pentacta frondosa, Jaeger, very similar to the trepang of the Malay and Chinese coasts, is found in great abundance. It is called by our fisherexperiments have been made on it as an article of food, and it has been pronounced good, with the flavor of lobster meat. Trepang, in the East, is prepared by dipping the live " sea cucumber" for two minutes in boiling water, then cutting open, then throwing into a second caldron of boiling water and mimosa bark. It is finally dried in the sun, and pressed for stowage. The market value has been quoted at from five to six dollars per hundred pounds; and the fisheries are considered of industrial importance. Will not some of our ingenious fishermen or fish dealers make a thorough test of our own "sea cucumber," and settle the ques tion whether there is to be any Canadian trepang or
not ?-Educational Review.

Speed of Trains.
An examination of the Official Guide for June shows that the fastest trains now on the time tables are two on the Baltimore \& Ohio, which are timed to run the 40 miles from Baltimore to Washington in 45 minutes, without stops, making the rate of speed 53.3 miles an hour. [It is stated, however, that these trains rarely succeed in making the trip in the time allowed.] No other train can be found which makes over 50 miles an hour, and the nearest approach to it is a train on the Pennsylvania, which runs from Jersey City to Philadelphia, making one stop, at an average speed of $48: 3$ miles an hour. On the opposition-the Bound Brookline one train makes the distance from Jersey City to Philadeiphia at the rate of 45.9 miles an hour, without allowance for the four stops. The quickest train beween Philadelphia and Baltimore runs at the rate of 1.6 miles an hour.

The fastest long distance run is that of the Chicago Limited on the New York Central \& Hudson River, which averages $41 \cdot 6$ miles an hour from New York to Albany, and 40.6 miles from Albany to Buffalo. The corresponding train on the Pennsylvania road runs at the rate of 38 miles an hour from Philadelphia to Pittsburg.
The trains which are timed to run over 40 miles an hour are thus found to be very few in number, and there are not many which are called upon to make more than 35 or indeed over 30 miles for any considerable distance. It must be remembered, however, that a train whose average speed is 40 miles an hour must make much faster time than that in parts of its run.
What is the slowest passenger train in the Guide is not easy to determine, but an "express" on a North Carolina line which takes 9 hours to run 100 miles-an average of $11 \cdot 1$ miles an hour-is a very promising candidate for the honor.-Railroad and Engineerin! Journal.

Columbia River Boat Railroad.

In view of the introduction into the United States Senate of a bill appropriating half a million dollars for the construction of this railroad, the Northwestern Railroader publishes a report made in 1885 by Major W. A. Jones, Corps of Engineers, U. S. A., giving estimates of the cost of boat transfer roads around the Dalles and Celilo Falls. The length of track for Celilo Falls is estimated at 4,500 feet, and the cost of track, Falls is estimated at 4,500 feet, and the cost of track,
car and machinery at $\$ 356,000$. The estimated cost of car and machinery at $\$ 356,000$. The estimated cost of
the Dalles transfer is $\$ 662,000$ for 9,000 feet of track. To make these portages available, it was estimated that $\$ 355,000$ must be spent in rock excavation from the channel at other points, making a total expenditure of $\$ 1,373,000$. The following is a brief description of the car and track proposed by Major Jones :
" The maximum grade of the track is 213.84 feet per mile. The summit is passed by a gentle curve quite within the limits of longitudinal flexure that will result from passing over the summit curve. The car is made up of cross girders supported by longitudinal built beams, which in turn are carried by the wheel axles, the whole suitably braced, and having sufficient iron introduced to prevent floating when completely submerged. It will be handled by cables from the stationary engine at the summit. It will have twenty-one tionary engine at the summit. It will have twenty-one in all, running on a two-rail track 25 feet 6 inches wide. The maximum load on a single wheel will be about 17 tons. Length and width over all, 190 feet and 48 feet, respectively. For the present only a single line of track is proposed. Should the traffic develop a necessity for it, another can be laid alongside."

English Decisions Relating to Electric Light. Justice Kekewich, London, has given judgment on the petition by Ferranti to declare the Gaulard \& Gibbs patent on distribution by transformers bad, as not sufficiently describing the patent, and because Gaulard \& Gibbs were not the first discoverers, and because the invention is not a proper subject for a patent. The judgment is given that the patent was bad, on the ground that it did not properly describe the process of distributing electricity. The judge ordered the patent to be annulled, and petitioners to have costs on the higher scale.
In the suit of the Edison and Swan Electric Light Company vs. Holland et al., Justice Kay declares the Edison patent, No. 4,576, of 1879, invalid, second claim far too wide, the specification not describing a commercial lamp, and the directions are insufficient to make carbons. Mixing carbon with volatile powder is injurious, and the coating with a non-conducting and non-carbonizing substance is of no use. The second claim reads: "Combination of a carbon filament within a receiver made entirely of glass through which leading wires pass and from which receiver the air is exhausted, for the purpose set forth."
Judgment was given against the defendants as infringing the Cheesborough patent, and an injunction was issued with costs against defendants. The claim made by the Cheesborough patent is in respect to the process known as "flashing."

MULTIPLE PUNCHING AND FORGING PRESS. The large press illustrated by the accompanying engravings is one recently constructed under Woodcock's patent for the Lancaster Wagon Company. It is capable of taking in plates of 12 feet in length by 4 feet wide, and punching at one stroke of the rams the whole of the holes required in such plates. It consists of three distinct presses, arranged so that they can be worked either separately, in couples, or all together. As shown in the engraving, which is frow a photograph, two of the presses are coupled, and the third is working independently. When used for forging, each of the presses can be used independently. The peculiar features of the presses made under the invention are : That the punches and dies are regulated as to relative

position for any required pattern by a very simple arrangement of three pattern plates, which may be made of cast iron. The holes for the dies and punches in these plates being of the same diameter, they can be drilled through the three pattern plates at one operation. This may be readily gathered from the detail engraving annexed, which shows the moving press bed, the die plate, and the punch-carrying plate. This arrangement of plates and punches can be used with any pressure, and wherever repetition work requiring large quantities of punching has to be done, all plates and bars punched by the machine are perfectly interchangeable, and the system makes templates unnecessary, and avoids the cost of marking, the pattern plates being the templates. Guide stops are arranged in the pattern plates, so that the plate or bar to be operated upon cannot be wrongly placed in the press. The economy in the work done by this system of punching, when done on the large scale, is so great that the first when done on the large scale, is so great that the
cost of the press is rapidly repaid. The Engineer.

Plant and Machinery of the Panama Canal.
At the recent Milwaukee meeting of the American Society of Civil Engineers, a paper on the above subject, by Mr. Williams, was read. At the early part of the work, the company owned the dredges, and they were run by the contractors. This was very unsatis factory, however, as the contractors would use the company's plant to its full capacity, making no repairs, and when the machine broke down from any cause, however slight, it was side-tracked at once and a requisition made for another. Under present arrangements the machines are owned or leased by the contractors, and are worked night and day, but are overhauled and repaired on Sunday. They average about 100,000 cubic yards per month. One dredge made 23
in a month, but it was in stuff that in a month, but it was in stuff that had slipped back into the channel and
was very easily removed. At first, when operations were commenced at numerous places and only light work was encountered, a large amount of plant was needed, but now that the work is more difficult, and consequently slower, there is a quantity of valuable plant lying idle and useless, rapidly deteriorating, because there is not room for it to be put to work. The climate is deadly, consequently contractors try to make the largest amount of money in the shortest possible time, so as to be able to escape to a more healthy climate.
The dredges in use are of American, Scotch, French, and Belgian manufacture. The American dredging company has fine repair shops at Gatun, and keeps its plant in good condition, enabling it to do constant hard work. The Scotch dredges are self-propelling, and sailed out from Scotland, one of
them across to the Atlantic end of the canal, the other going around Cape Horn to the Pacific end. The French dredges are sent out in sections and erected on the Isthmus. They cost about $\$ 100,000$ delivered at Colon. This does not include their erection at Panama, which is very expensive. For the contractors' tracks a seventy pound rail is used, with a height exceeding the base, and the locomotives overturn the rails, drawing the spikes. For these tracks a forty pound or a fifty pound rail, with a base equal to the height, would have been sufficient. Mr.- Williams hopes later to give a detailed paper on the dredging plant of the canal.

American Tin.

It is tolerably well ascertained that the Black Hills region, in Dakota, possesses a number of deposits of tin ore of sufficient richness and quantity to assure an abundant supply of this metal when they shall be judiciously developed.

MCCARTY'S CURRENT MOTOR.

AN IMPROVED CURRENT MOTOR

A current motor readily adjustable to high or low stages of the water, and also laterally adjustable, to take advantage of inshore and offshore currents to regulate the speed of machinery driven by it, has been patented by Mr. Michael McCarty, of Montrose, Col., and is illustrated herewith, the small figure showing a longitudinal sectional elevation. The current wheel is suspended from a framework by straps and chains, the atter connected to a shaft with a hand wheel journaled on the frame, the chains being wound or unwound to raise or lower the wheel. Ropes or chains attached to the casing of the wheel, on the sidenext the bank, lead fram similar shaft with hand wheel journaled on the
be drawn toward the bank. An anchoring rope is attached to the outer edge of the mouthpiece at the upstream end of the wheel casing, to hold the wheel steady in the water against the force of the current. The cur rent wheel consists of a spirally-bladed shaft journaled in the casing, skeleton wheels mounted on each end of the shaft revolving freely against anti-friction bearings within metal bands fixed to the up-stream and down tream ends of the casing. The skeleton wheel fixed to the down-stream end of the shaft forms the driving wheel, having peripheral teeth engaged by the links of a driving chain passing over a chain wheel fixećto a shaft journaled on the frame above, and carrying a wheel or pulley, from which a driving belt leads to the machinery (not shown) which it is desired to operate upon the bank of the stream. When this wheel is to be used in a swiftly running current, the flaring mouth piece, which gathers water to the wheel casing, may be dispensed with.

AN IMPROVED WEATHER STRIP.

A weather strip adapted to be easily closed against a threshold, but tightly held there when the door is shut, and which will readily clear the threshold when the door is opened, is illustrated herewith, and has been patented by Mr. Robert C. Redman, of Salem, Oregon. The weather strip is formed with a vertical portion projecting into a recess in the lower edge of the door, and rests on lugs secured by screws in recesses in the bottom of the door. To hold the weather strip up when the door is open, a spring is secured to a block fastened in the upper part of the recess in the lower edge of the door, and projecting into a slot in the vertical portion of the strip. Upon the lower side of the weather strip, near the hinged side of the door, is

REDMAN'S WEATHER STRIP.

a pin which engages a slotted plate on the threshold, when the door is closed, thereby drawing the weather strip down close over the threshold, as shown in detail in the small views, the slot of the plate being so cut out that the act of closing the door causes the pin, in bearing against the end wall of the slot, to tilt the weather strip so that its outer edge comes in contact with the threshold. The spring, which is brought under tension in closing the door, reacts as the door is opened, bringing the weather strip back so that it will readily clear the threshold.

AN IMPROVED FARM GATE.

A gate which may be readily opened and closed by a person in a vehicle or on horseback, by simply pulling cords at the roadside, has been patented by Mr. Martin L. Baker, of Wilton Junction, Iowa, and is illustrated herewith, Figs. 1 and 2 showing plan views of the gate and main gate post, and Fig. 3 representing the gate closed in dotted lines and open in full lines. The main post consists of two uprights framed into a sill timber, separated sufficiently to allow the gate to run between them, and connected at their tops by a head piece. The end uprights of the gate, one of which is higher than the other, are fitted with rollers adapted to travel upon metal tracks, one track extending over the roadway to a post on its other side, and being higher than another track which extends out to a post at right another track which extends out to a post at right
angles to the roadway in the opposite direction. A bar is fastened to the main post, ranging lengthwise of the
of the gate. By pulling on one of these cords, when the gate is in either closed or open position, the gate rollers are caused to ride up to and over the highest parts of the tracks, and will then run down the incline upon the opposite side until the upright on the end of the gate stops against the post. Depressions at the ends of the tracks, in which the rollers rest, prevent the opening of the gate, when closed, by stock rubbing against it, and only a short, sharp pull on the cords is necessary to readily open or close the gate.

AN IMPROVED MECHANICAL MOVEMENT.

An invention affording improved means of convert ing reciprocating or oscillating motion into rotary motion is illustrated herewith, and has been patented by Mr. Benjamin F. Andrews, of Myers, Mo. The apparatus comprises a shaft suitably supported so that it may be revolved, a slotted pitman, in the slots of which are racks, and an oscillating lever connected whith the pitman. On the shaft are loosely journaled with the pitman. On the shaft are loosely journaled
toothed wheels fitting close together at their inner toothed wheels fitting close together at their inner
faces, and rabbeted on their inner sides next their periphery, the two rabbets forming a way for rails or guide plates on the slotted pitman, the arrangement being such that one rack meshes one wheel to revolve it in one direction, while the other rack will revolve the other wheel in the opposite direction, the wheels being so clutched to the shaft that they will slip on it when turned in one direction and grip it when turned the other way, one wheel turning the shaft as the pitman is moved forward and the other as it is retracted. In connection with these wheels are also provided teeth within sockets on their outer sides for engagement by pawls, of which there are a number in recessed pawl carriers or supports, so arranged that by adjusting these pawls the apparatus may be operated to turn the shaft in one direction or quickly reverse it to the other. A sectional view showing the arrangement of the pawls and pawl trippers is given in Figs. 2 and 3, the trippers being either turned directly by hand or by means of a lever pivoted to the top of the frame. The lever reciprocating the pitman is supported to move at its axial center in a frame having rack teeth in opposite walls, the lever having a toothed segment meshing one rack and a toothed roller meshing the other rack. The lever has several openings or sockets, and a guide frame with notches registering with the sockets, serving as guides in stopping the connecting block, which is movable within the guide frame. By adjusting the connecting block, and with it the pitman, along the lever, to and from the center of motion, the length of stroke of the pitman may be varied. To relieve any shock or jar in the operation of the lever, and ease the
action of the machine, its supporting frame is provided action of the machine, its supporting frame is p
with spring plate cushions at its opposite ends.

Clean Your Grain.

Weevil, cockle, smut, husks, and fuzz and all other matter that does not make flour should be kept out of the flour as perfectly as possible. Clean, clean, clean, thoroughly, tirelessly, and systematically. The more you clean the grain, the more fine flour of the best quality you can make. Every particle of foreign substance that finds its way into the flour destroys something of its desirableness, weakening it, discoloring it, and making it less like what it should be. Clean always and everywhere. Let cleaning of the grain ke a hobby with you. It will pay.-Milling World.

AN IMPROVED FLUE CLEANER.

A flue cleaner having adjustable cleaning blades, readily adapting it for use in flues of different diameters, has been patented by Mr. James Newmon, of Haw Ridge, Alabama, and is illustrated herewith, Fig. 3 showing a sectional view, and Figs. 1 and 2 representing side and end views. The cleaner head has a flatfaced flange in which are a number of slots, the head having a central bore threaded at each end, the thread at the outer end being arranged for engagement with a set screw or bolt, whose shank passes through a clamping plate. Between the clamping plate and the flange of the head are placed segmental cleaning blades having peripheral serrated edges, each of the blades having a cross piece which rides in slots of the flange of the head, and in other slots in the clamping plate, whereby each blade may be readily moved toward or from the screw shank. The handle is threaded at one end for engagement with the thread in the bore of the unflanged end of the head, and upon the roadway, to which gate-opening cords are attached, handle is mounted a gauge for preventing the head their pendent ends hanging in convenient reach of any one approaching the gate from either direction. The cords pass between pairs of guide pulleys journaled in strap bearings fixed to the uprights of the main gate post, and their inner ends are attached to a stirrup or bail pivotally connected to the upper central portion
from being forced in too far.

THE man who is constantly absorbing information never poses as a "know it all," but he is usually a person who can impart very many valuable and prac-

MMPROVED TRUCK FOR LOCOMOTIVES AND STREET MOTORS.
A truck of simple construction, which provides for the swinging of the car body in passing curves, is illus-

PACKER'S LOCOMOTIVE TRUCK.
trated herewith and has been patented by Mr. Alonzo C. Packer, of No. 118 Forty-fifth Street, Pittsburg, Pa. Upon side rails of the truck body are arranged crossbars or shafts, upon which are mounted small wheels or rollers that bear upon the upper faces of the rails, and just outside these rollers are connecting links ex tending from shaft to shaft. Within the rails are mounted links supported by the crossbars, these links supporting springs upon which is a center bearing plate to receive the king pin of the body center plate. To each of the side rails are connected stop blocks, the bolts by which the blocks are secured to the rails being so placed as to allow the throw of the connecting links and parts controlled thereby to be varied, and providing for the swinging of the car body upon the truck,

ANDREWS MECHANICAL MOVEMENT

the range of motion being partially checked by the stop blocks. Trucks of this construction are now used on street car motors in Birmingham, Ala., the motors having 12 in . by 18 in . cylinders, driving wheels of 40 in. diameter, and the back truck wheels 24 in ., with rigid wheel base of 5 ft .9 in . These motors are said to pass easily around curves of 34 ft . radius, and to give entire satisfaction.

The 2,000 horse power engine of the Warren Manufacturing Company, R. I., drives all the machinery of the works from a rope pulley 32 feet diameter and 9 feet 3 inches face, carrying 43 ropes $13 / 4$ inches diameter, instead of a belt. One advantage this system possesses over belts is that several shafts can be driven at different speeds from the same driving pulley, thus saving much countershafting.

AN IMPROVED OIL CAN.
An oil can designed to automatically stop the flow of oil when the lamp being supplied from the can is practically filled, is illustrated herewith, and has been patented by Mr. George H. Coursen, of 1017 North Calvert St., Baltimore, Md. The can may be of any ordinary construction, but preferably should have a hermetically sealed top and bottom, the body having a strap at-

COURSEN'S OIL CAN.

tached to the rear at or near the base, which, besides serving as a hand-hold, makes a suitable rest for retaining the can in horizontal position, as shown in one of the figures, this being the preferred position for filling such a can through the spout. The tubular spout is preferably of metal, about half an inch in diameter, and extends within the can as shown, its inner extremity being designed to terminate as much as possible in the air space, and this end being cut obliquely and having a hinged whistle resting normally against its upper surface. This inner section of the spout has an aperture on its under side, near the top of the can, the area of the aperture being about one-third that of the spout. In filling a lamp, the spout is inserted until stops or pins near the end of the spout rest on the rim, when, upon tilting the can, the oil flows through the small aperture on the under side of the tube, leaving enough space in the tube to permit the air in the lamp to pass back into the can, thus producing a sound through the whistle on the inner end of the tube. When the oil in the lamp has risen to the end of the spout, cutting off the air supply, the oil will cease to flow and the whistling will be discontinued, thereby apprising the operator that the lamp is full.

A COMBINED SHINGLING HAMMER AND PLANE

A convenient and inexpensive combination tool for capenters and builders, which may be used either as a haumer, plane, or hatchet, and is designed mainly for use in shingling, has been patented by Dr. William S. Robertson, of New Germany, N. S., Canada, and is illustrated herewith. The narrower end of the hammer head has a flaring aperture adapted to receive a plane iron, the narrow opening for which is in a side of the hammer having a flat face from one end to the other. To guide the plane along the edge of a shingle,

ROBERTSON'S SHINGLING HAMMER AND PLANE.

a staple formed of a wire bent twice at right angles is inserted in holes formed in the handle on opposite sides of the hammer head, this guide being removed when it is desired to use the plane in the ordinary way The wedge inserted in the end of the hammer handle, to bind it in place in the eye of the hammer, is of steel, and has two beveled and sharpened edges, for use in
cutting and scoring, the wedge being also apertured to receive one arm of the guide staple.
For further information relative to this invention, address Mr. E. Davison, Jr., Bridgewater, N. S. Canada.

Ice on Mars.

At a recent meeting of the Academy of Sciences, Paris, M. Janssen, president, in the chair, observations wer made on the canals of the planet Mars, by M. Fizeau. The various circumstances connected with these appearances, as lately described by MM. Perrotin and Schiaparelli, suggest a strong analogy with certain phenomena of glaciation-parallel ridges, crevasses, rectilinear fissures, often of great length and at various angles-observed in the regions of large glaciers in Switzerland and especially in Greenland. This leads to the hypothesis of a vast development of glaciation on the surface of Mars, where, the seasons being relatively longer and the temperature much lower, the conditions must also be more favorable than on the earth for these manifestations. The reading of the paper was followed by some remarks by M. J. Janssen, who gave a guarded assent to M. Fizeau's "very ingenious and very beautiful" theory.

Primary Batteries of Light weight.

In a recent communication to the Societe d'Encouragement, M. Renard describes a form of primary battery devised by him to provide the power required for a navigable balloon. None of the batteries or accurnulators in existence at the time his experiments were made was sufficiently light, and a new one had therefore to be devised. After many experiments he found that by making use of a mixture of hydrochloric and chromic acids as exciting fluids, a cell giving very good results was obtained. The liquid in question is not very stable, as under certain conditions chlorine gas is liberated, but with care it can be kept for several days. The positive electrode of the cell is formed from a plate of platinized silver, carbon being unsuitable owing to its low conductivity, as a very high current density must be employed if the weight of the elements is to be kept down. The negative electrode is formed rom a very thin plate of non-amalgamated zinc, which is not dissolved on open circuit, provided that the CrO_{3} in the solution does not fall below 1-70 of the equivalent for the HCl present. The cells are tube shaped, made from either glass or ebonite, the diameter of the tube being about 1-10 its length. The normal potential of the cell is 1.2 volts, and from cells weighing but 33 lb .200 to 250 watts per second have been obtained during two hours and a quarter.

Wages in scotland.

The Paper Trade Review gives an official statement of the wages paid in Scotch paper factories in 1883, which are indeed higher than those paid upon the average in Germany, but not so much higher as commonly supposed :

Paper machine operator for 57 to 72 hours..... $\$ 5.25$ to $\$ 7.75$
Young men helpers of operator for 57 to 72
hours..
Calender operator and sorter for 57 to 64 hours.
Sorters (girls), for 57 to 64 hours..
$\begin{array}{ll}2.25 & \text { to } 4.00 \\ 5.00\end{array}$
Sorters (women), for 57 to 64 hours.
Rag sorters (girls and women), for 57 to 64
hours.
Machinists, for 57 to 64 hours.
Firemen, for 57 to 64 hours....
Men also earned (daily) on an average
Operatives also earned (daily) on an average... 1,00 to $\begin{array}{r}75 \\ 1.25\end{array}$
$\begin{array}{lll}\text { Operatives also earned (daily) on an average.... } & 1.00 & \text { to } \\ \text { Women also earned (daily on an average...... } & 183 / 4 \text { to } & 371 / 2 \\ \text { And in exceptional cases as high as.... } & \\ & & \end{array}$
$1.12 \frac{1}{2}$ to 1.50

Valuable Insulating Material.

A very valuable insulating material, described in the Chronique Industrielle, has just been produced. It is composed of one part Greek pitch and two parts burnt plaster, by weight, the latter being pure gypsum raised to a high temperature and plunged in water. This mixture when hot is homogeneous, viscous paste, and can be applied by a brush or cast in moulds. It is amber colored, and possesses the insulating properties of ebonite, and can be turned and polished. Its advantage is its endurance of great heat and moisture without injuring its insulating properties.

The Egg Shell Method of Preserving Food, particularly meat, without cans, recently patented by Dr. Henry Salzer, of Baltimore, Md., consists essentially in inclosing the meat or other article in an expansible wrapper, such as animal membrane, and subjecting it to a sterilizing steam heat long enough to kill all germs. It is then immersed in melted vaseline, which forms a permanent coating on hardening, and finally inclosed in a protective wrapper, such as gauze coated with plaster of Paris, or the coating of plaster of Paris may be applied directly on the expansible envelope, and the article then placed in a bath of vaseline or other plastic substance, the package thus prepared being wrapped in paper or tinfoil. This method of preservation necessarily avoids any contamination of the articles by metals or acids, and will enable housekeepers to keep all delicacies, such as game, tender parts of meat, etc.

AN IMPROVED CURRY COMB.

A curry comb which is light and strong, and not liable to accumulate dust or hair, has been patented by Mr. George W. Blythe, of Ashland, Mo., and is illustrated herewith. It is made with two smooth-faced plates, preferably of tempered steel, having concave and convex serrated working edges, and one square end to serve as a striking surface while cleaning the comb. The plates are mounted upon the handle wires, and held in fixed position parallel with each other, by bringing one of the plates against shoulders on the wires, placing thimbles upon the wires between the

BLYTHE'S CURRY COMB.

plates, and riveting the wires down upon the outer face of the outer plate.

Glass Balls for Refilling Wine Casks.
Wines which contain less than about 15 per cent of alcohol cannot be kept in casks, unless the latter are kept full, and protected from the air. When a portion of the contents of a cask is withdrawn, the vintner fills it up again from reserved stock until the particular brand gives out. He then used to, and still does, re sort to the practice of putting pebbles into the cask to occupy the volume of the displaced wine. But even with the best of care, some ferruginous or otherwise impure pebbles are apt to get in, which may injure the flavor of the wine. For this reason, glass balls are now being used by many in place of the pebbles.

AN IMPROVED PROPELLER FOR PLEASURE BOATS. A device whereby an inexperienced person may safely and conveniently propel a boat through the water is illustrated herewith, and has been patented by Mr. Israel G. Howell, of Hopewell, N. J. Vertical standards are secured to the bottom of the boat, at each side of a frame in which a seat is supported, and in these standards, and in bearings on the gunwales of the boat, are journaled crank shafts, the handles of which terminate at each side of the seat. Upon the outer pendent arm of each shaft is hinged a blade, the unattached extremity of the blade being supported by the upwardly curved outer extremity of the shaft, as best shown in the small figures. With this construction, as the operator reciprocates the shafts by means of the handles, the blade is alternately pushed against the water and easily drawn through it, the blade in the back stroke assuming a position parallel with the side of the boat. When the blades are not in use, they may be elevated above the gunwale and so held by pressing downward

HOWELL'S VIBRATING PROPELLER.
the inner arms of the shafts to engagement with the floor of the boat.

A TUNNEL near Samos, which dates from about 530 B. C., has recently been explored by a German expedition. It was constructed as a water conduit, and has been driven through limestone rock to a length of 1,235 feet.

The Mysteries of Iron and Steel.

Mr. Hadfield C.etails the remarkable results yielded by manganese steel under severe tests, and a series of tables appended to his paper certainly show singular extremes under tensile and other strains. In one case
as much as 190.62 per cent elongation was obtained, the 8 inch piece of material being drawn out cold $7 \cdot 6$ inches and being reduced in area 91.07 per cent. Under torsional tests the results were equally good. In Under torsional tests the results were equally good.
concluding his first paper, Mr. Hadfield remarks:
"A varied experience in the manufacture of steel has taught the author how limited is the knowledge of this branch of science, and how little room there is for dogmatic assertion." Mr. Hadfield's second paper begins with the query, "What is steel ?" He remarks that the definition of the word "steel" is becoming very difficult, and some decision must be taken before long upon its exact meaning. Hitherto the term has been applied to malleable alloys of mixtures of iron (Fe) and carbon (C), but there are also other compounds of a steely nature, which do not come within that category. In a work recently published by M . Bresson, steel is defined as "a particular state of iron produced by its union with bodies the nature of which can vary. There are three classes. First, of which can vary. There are three classes. First,
steels composed of iron and carbon; second, those steels composed of iron and carbon; second, those
of iron, carbon, and a third body; third, those formed of iron, carbon, and a third body ; third, those f
of iron and another body which is not carbon."
Mr. Hadfield accepts the accuracy of this definition, and proceeds to discuss certain leading properties of manganese steel. Water causes that material to becomestiffer, but in an entirely different way to hardened carbon steel. Mr. Hadfield, therefore, terms the process "water toughening." Under it the tensile strength of manganese steel rises from 40 to 60 and in some cases over 70 tons per square inch, and there
is a considerable increase of ductility or elongation, is a considerable increase of ductility or elongation,
whereas in all carbon steel (except in "ingot iron") the opposite effect is produced. In two specimens to which Mr. Hadfield alludes, the tensile strergth of the bar as received from the forge was only 36 tons per square inch, with 1.56 per cent elongation. After water toughening it rose to the extraordinary amount of 67 tons, with 44.44 per cent elongation, and even then the specimen was not fractured. The same result occurs if the steel be dipped when at a welding heat, although the carbon may be 1 per cent or even more. Mr. Hadfield says that after a large number of tests with regard to the action of heat and sudden cooling upon the material, it is found that the higher the heat and the more sudden and rapid the cooling, the higher is the breaking load and the greater the elongation. This property should be of great utility for certain purposes. Oil does not give such good results as water or sulphuric acid. Mr. Hadfield con-
fesses that it is not easy to understand the action of fesses that it is not easy to understand the action of the water quenching process. Chernoff explains that the effect of oil tempering on ordinary steel is to produce a metal of fine grain, but in manganese steel the change, if any, is rather in the direction of a more open than a closer grain. Mr. Hadfield is puzzled by a piece of the cast toughened 9 per cent manganese steel, at which percentage the crystallization is very peculiar, and shows that a broken ingot reheated to a yellow
heat and water-quenched, although greatly toughened heat and water-quenched, although greatly toughened thereby, showed no structural changes whatever. He
draws special attention to a specimen with 1.85 per cent carbon and 9.42 per cent manganese, which was cent carbon and $9 \cdot 42$ per cent manganese, which was
heated highly and plunged into cold water, yet was heated highly and plunged into cold water, yet was
not water-cracked, and slightly softer. He argues, therefore, that carbon seems to be entirely deprived of its usual hardening properties in this material. As to crystallization, Mr. Hadfield points out the higher the percentage of manganese, the less marked becomes th 3 crystallization, and he is evidently of opinion that tne material is not merely a mechanical mixture of the different elements, but a definite alloy. The manganese steel possesses the curious property of being almost entirely non-magnetic. When there is 20 per cent of manganese, a magnet produces virtually no effect, no matter whether the material is cast, forged, quenched, etc. This fact is a strong argument for the material of great strength exactly suited for certain parts of electrical machines and appliances. The maparts of electrical machines and appliances. The ma-
terial is also a bad conductor of heat, which is another property capable of being i:eely utilized.
Mr. Hadfield devo sis a special section as to the influence of carbon and manganese upon iron, and goes into the subject very carefully and thoroughly. As showing the curious behavior of the maganese steel, he says: "It would be impossible to chip any of the material containing 4 per cent, while a cast bar $21 / 2$ inches square, containing 9.5 per cent of manganese, is indented by a hammer or chisel, will bend 2 inches before
fracture, and, though exceedingly tough, is of a much fracture, and, though exceedingly tough, is of a much
softer nature." It follows that manganese cannot be the sole cause of the hardness, otherwise the more manganese, the greater would be the hardness. Mr. Hadfield cautiously remarks, as to the hardness of steel having hitherto been attributed entirely to carsteel having hitherto been attributed entirely to car-
bon and other minor elements, "May it not be possible bon and other minor elements, "May it not be possible
that the part played by the iron is equally, if not more,
important, perhaps owing to some change of form of
the iron itself hitherto not suspected ?" In support of the iron itself hitherto not suspected?" In support of
this supposition he mentions that bronzes, said to conthis supposition he mentions that bronzes, said to con-
tain high percentages of manganese, are easily machined, and only possess a tensile strength of about 30 tons, whereas the tensile strength of manganese steel varies from 50 to 70 tons. On the face of it there would seem to be considerable doubt as to the real cause of the hardening of steel, seeing that in the presence of high percentages of manganese steel is sof tened instead of being hardened when dipped in water. Mr. Hadfield calls special attention to the fact that no further advantage is gained in ordinary steel by adding more than 1.5 to $1 \cdot 75$ per cent of carbon, amounts above this not producing any greater degree of hardness. The analyses of the majority of the Sheffield carbon tool steels show not more than $11 / 4$ to $11 / 2$ per cent. If carbon itself were the sole cause of hardness, it would be initself were the sole cause of hardness, it would be im-
agined that 2 to 2.5 per cent should give greater hardness than 1.25 per cent, but in practice this is not found to be so. In view of this fact the question of crystallization or structure becomes of great importance, and obviously desorves further investigation. Professor Barrett notes another point of difference, in the shape of the fact that manganese steel when cooling does not give any "after-glow." A Sheffield rolling will also reports that in rolling 800 feet in one leng th of this wire, the finer it became the more it seemed to retain the heat-indeed, it appeared to gather heat in the process. In concluding his very interesting paper Mr . Hadfield urges that some understanding should be come to as to the meaning of the term "steel." In the past the word has sufficed for an alloy or compound of iron and carbon, but as the latter is now replaced by other elements, such as manganese, chromium, silicon, or tungsten, a newer and clearer definition is required.The Ironmonger.

The Storage of Life.

Dr. B. W. Richardson has often given evidence of his power of clothing familiar facts in attractive and novel garb, and of arresting attention while forcing home some well worn truths. This faculty he drew upon largely in his interesting address at the anniversary meeting of the Sanitary Institute of Great Britain, when he chose as his subject the "Storage of Life as a Sanitary Study." The conditions favoring the storage of life he dealt with under the headings of hereditary qualification, the virtue of continence, maintenance of balance of bodily functions, perfect temperance, and purity from implanted or acquired diseases. While urging the importance of maintaining the balance of the working organs of the body as a means of keeping up the storage of life, the lecturer spoke yet more emphatically upon what he termed "all-round temper-ance"-temperance in speech, action, thought, as well as in eating and drinking. Everything that quickened the action of the heart he regarded as a stimulant, taxing and reducing the storage of life. Necessarily the work of the sanitarian called for appreciative remark toward the close of the lecture, the prevention of "damaging diseases" promoting the storage of life. After all, in spite of the interest of the lecture, the moral is somewhat trite.
The advantages of a favorable family history, the disadvantages of acquired diseases, the influence of personal habits of restraint-all these have long been granted. The individual may toil and strive, but he is still largely at the mercy of his neighbor, whose erratic proceedings may greatly upset all the foresight of storage. While all admit the value of personal attention
to sanitary and physiological laws, most people will wish for greater powers of sanitary control over the actions of their neighbors.-Lancet.

Grasshopper Traps.

There are three principal methods of destroying the insects. Where the land had been plowed for wheat none hatched out, as inverting the soil destroyed the eggs, and no hoppers were found in the fields of growing wheat. But from adjoining fields, especially those where wheat was grown last year and then abandoned without plowing, they came in armies, sweeping the fields before them. In traveling this way a line of march is formed before which every green thing disappears. When Dr. Lugger left, some of the fields were eaten into several rods. The method adopted
prior to the arrival of kerosene and tar was to dig a ditch two feet deep and two feet wide just in advance of the approaching host. A few inches of straw is then placed in the bottom, and the locusts are driven into it by walking slowly along behind them. They cannot ju'np out and are burned; or, if straw is not to be had, hey are killed by drawing a log through the ditch. The tar is used by placing in a shallow sheet iron pan two feet wide and eight feet long, with a wide board astened to one side.
This is drawn sidewise across the field, the hoppers jumping against the board and falling into the tar, where they perish. But the handier, more rapid, and nost complete method is to use kerosene on canvas, against which the pests jump. Strong muslin or
canvas, a yard wide and fifteen feat long, is stretched
on a frame and carried on a sled-like arrangement pulled by a team. The canvas slants back, and is constantly saturated with kerosene. Every one that hops against this and touches his body to the oil dies instantly. One barrel of kerosene will go over about 120 acres, and will kill 200 bushels or more. Each farmer is given one barrel of oil, and promises to use it only for destroying insects. -Minneapolis Exchange.

Naval Balloons.

An experiment has been made at Toulon for the employment of captive balloons on board ship. The float ing battery Implacable, which had been fitted up with the necessary apparatus for producing gas, and provided with balloons and necessary gear, was towed out of harbor into the roadstead and moored opposite the Mourillon dry docks for the trial. Under the directions of Lieut. Serpette, and in the presence of the port naval authorities and officers of thc evolutionary squadron in the roads, a balloon of the cubic capacity of 310 meters (about 1,010 feet) was fully inflated at night in one hour and a half. The process of producing the gas was effected by means of some thirty or more metal vessels of alembic form, ranged side by side on the upper deck, and each containing a recipient charged with per deck, and each containing a recipient charged with
zinc filings and hydrate of lime mixed. The applicazinc filings and hydrate of lime mixed. The applica-
tion of heat sufficed to evolve hydrogen vapor in adequate volume to fill the balloon within the time mentioned, and with this operation the experiment concluded, as no ascent was attempted upon the occasion, and the balloon was kept attached to the Implacable. It transpired that the introduction of the aerial machine into the French naval service was accounted an innovation of special importance, and would be utilized in directing electric glares in the darkness toward vessels upon the surface of the waters, and discovering the presence or movements of a hostile fleet at various determined distances. The initiatory trials were deemed highly satisfactory and repeated the next morning upon a more extended scale, when a silken balloon of the measurement of 260 meters (932 cubic feet) was inflated by gas produced by other chemical transformations, but in a more expeditious manner. When all was ready for the ascent, Lieut. Serpette and one of his specially trained company of seamen took their places in a small car, which also contained a series of instruments and appliances for scientific research as well as a telephone cable.
The ascent was effected under the most favorable conditions, a perfect calm prevailing at the time, and the subsequent experiments in the air were consequently much facilitated. The balloon, by orders from the deck of the Implacable, was arrested at different altitudes, and Lieut. Serpette was enabled, by the aid of powerful field glasses, to survey the seaward horizon and count passing vessels, distinguish their class, rig, and nationality, or the course they were making. All these indications were passed instantly and viva voce to the attendance on the Implacable, which included, among other superior officers of the two services, Admirals Dupetit-Thouars and Amet. Signals were also readily exchanged by flags from the balloon to the nearest coast guard stations on shore, and the state of the vicinity of the ranges of look-out to the north of Corsica, and from Nice to the eastward and Marseilles to the west, were duly reported to the deck. Another ascent was made later the same day to the height of 1,300 feet, where Lieut. Serpette obtained some photographic views, and after signaling in turn to the Colbert, the flag ship of Vice-Admiral Amet, and corresponding with the Implacable, the end of the cable was transferred from the latter vessel to a steam launch. The examining committee having taken their places in the launch, they proceeded with the attached balloon a short distance out to sea and around all the vessels at anchor in the roads, composing the Amet squadron. Communications with the occupants of the balloon were continued by various methods, without interruption, during the progress, until finally the cable, into whose manufacture, it may be remarked, floss silk largely enters, was brought back to the Implacable, secured, wound in, and the balloon brought to deck after being over four hours in the air. Lieut. Serpette was warmly congratulated by the members of the Admiralty Cormmittee upon the successful solution of the question of determining reconnaissances afloat from aerial observation. It is arranged that the Implacable will follow the evolutionary squadron on the next cruise to continue similar experiments in the open seas. -Broad Arrow.

Canadian Tea.

Our scientific editor has been at a five o'clock Labrador tea. The beverage was a success-rated by some as superior to China teas. It was prepared simply as
follows: Leaves of the present season. Boiling water follows: Leaves of the present season. Boiling water
poured on, and kept covered for about twenty minutes; kept nearly to boiling point-but not allowed to boil. Sweetened with refined sugar. Cream or milk added. The dried leaf of Ledum latifolium could be put on the market, allowing the widest wargin, at ten cents per market, allowing the widest w
pound.-Educational Review.

The Jumbo Lace Machine

Like most other industries, that of the Nottingham lace trade has had to encounter a period of depression, from which it has not yot wholly emergea. Improvements in details of manufacture have, from time to time, been introduced; but, as a rule, they have not been of such a decisive and thorough character as to constitute a radical advance. For some little time past, however, some improved lace machines have been quietly at work in the lace factory of T. Hooley (Limited), at Long Eaton, near Nottingham, and have proved to be an important means of bringing about a better condition of things for their owners. These machines are known as the "Jumbo" lace machines, and were so named from their size being much greater than that of the ordinary lace frames, although the increase in size is simply nothing more than an increased width. In the early days of the Nottingham lace trade, and, indeed, not many years back, a machine 70 in . or 80 in . wide was an exception, and was regarded as a wonder. As, however, mechanical science advanced, lace frames were made wider, until in time a width of about 150 in . was reached. But here improvement in this direction
break to any appreciable extent, the work of making good the lace by hand sewing after it comes from the machine being greatly reduced.
The practical outcome of this invention is an increase of 25 per cent in the output of each Jumbo machine, the work being 200 in . wide instead of 150 in . But this mproved yield does not involve any extra working expenses beyond the mere cost of the thread, for the lace is produced from the same cards, with the same amount of driving power and supervision as the ordinary 150 in. lace, and it is dressed in the same way. After the first cost, which is comparatively small, it is therefore a practically clear gain of 25 per cent to the users. Messrs. Hooley are building a new factory at Sandiacre, which is now nearly completed, and which will be stocked entirely with Jumbo frames.-London Times.

THE FORTH BRIDGE

We give from Industries a sketch of the Forth Bridge, showing it as it will appear when finished, with dia grams indicating the progress of its construction up to the end of May, 1888. It will be seen that the great work is nov approaching completion.
arches or ribs, and each arch is composed of two cylindrical steel tubes, eighteen inchesin exterior diameter, one acting as the upper and the other as the lower chord of the arch. The tubes are in sections, each twelve feet long, and connected by screw joints. The thickness of the steel forming the tubes runs from one and three-sixteenths to two and one-eighth inches. These up.per and lower tubes are parallel and twelve feet apart, connected by a single system of diagonal bracing.

The double tracks of the railroad run through the bridge adjacent to the side arches of the elevation of the highest point of the lower tube. The carrlage road and footpaths extend the full width of the bridge, and are carried, by braced vertical posts, at an elevation of twenty-three feet above the railroad. The clear headway is fifty-five feet above ordinary high water. The approaches on each side are masonry viaducts, and the railway connects with the city station by a tunnel nearly a mile in length. The great tubular ribs were built out from each side of a pier, the weight on one side acting as a counterpoise for the construction on the other side of the pier. They were thus gradually

General View of the Structure as Completed.

Diagram Showing the Work Erected up to the End of June, 1887.

THE FORTH BRIDGE, NEAR EDINBURGH.

stopped, for any attempt to increase this width was attended with failure, inasmuch as the movable bars of the machine when over a given length sagged and vibrated, and, to use a term in the trade, would not "gate" when the machine was at work, thus causing frequent breakage of threads and consequent damage to the lace in course of manufacture. Even with the ordinary 150 in . machine a considerable amount of damage is frequently done to the lace through the breaking of threads. What the bar really wanted was a support in the center of its length, but for long it was not seen how this was to be accomplished without causing interference with the other working parts. It has, however, now been accomplished in a very simple but effective manner in the Jumbo machines, eleven of which, each weighing seven tons, we recently saw in operation at Messrs. Hooley's works, where they have been running for the past twelve months. The manner in which this has been effected is merely by giving the movable bars a support in the center of their length, which support is worked automatically by a. cam action, and moves with the bars. By means of this arrangement the machines are now made 200 in . wide, the moving bars being supported at the center, which practically gives two stiff machines of 100 in . each in one continuous length. This improvement in no way interferes with the lace, nor does it cause the threads to

This remarkable structure is situated at Queen's Ferry, about ten miles from Edinburgh. It crosses the Forth, an arm of the North Sea. We are apt to think that the great suspension bridge between New York and Brooklyn is a work of great size, but it is rather small when compared with the Forth Bridge. The latter has two main spans, each 1,710 feet in length, which is $1141 / 2$ feet longer than the span of the Brooklyn Bridge. The three main towers of the Forth Bridge are 375 feet high. The total length of the bridge is 8,084 feet.
The bridge is built on the cantilever system, of steel, of which there will be about 42,000 tons used in the superstructure.

The St. Louis Bridge

The beautiful bridge built by Captain Eads over the Mississippi River at St. Louis, bold in its design and excellent in its execution, is an object of admiration to all who visit it; but the impression of its importance, says Scribner's Magazine, would be greatly magnified if the part below the surface of the water, which bears the massive towers, and which extends to a depth twice as great as the height of the pier above the water, could be visible. There are three steel arches, the center one having a span of 520 feet, and each side arch one having a span of 520 feet, and each side arch
and systematically projected over the river, without support from below, till they met at the middle of the span, when the last central connecting tube was put in place by an ingenious mechanical arrangement, and the arch became self-supporting.

A Seaweed Dye.

F. Nettlefold, F.C.S., states in the Chemical News that, while experimenting on the production of gelatinous gun cotton, it occurred to the experimenter to nitrate alginic acid. This formed a low nitrated body, which was not analyzed. It was sufficiently elastic on compression, but not explosive. When dissolved in water in alkaline solution, it gave a brown color. The original color of the nitro-alginic acid was bright yellow and insoluble in water.
Unmordanted cotton dyed a fine Bismarck brown color, which was fast to soap, more than many aniline colors, equaling chrysoidine. Mordanting with alumina or tartar emetic did not increase the fastness or the depth of the color. The depth of shade was consider able, and could be worked to a great intensity. In an acid solution the dye failed to attach itself to the fiber, ammonia being the best alkali.
For wool the brown dye appeared to have little power of attraction. Mordanting did not increase the depth of attracti
of the dye.

THE GATE HOUSE AND NORTHERN TERMINUS OF

 THE NEW AQUEDUCT.Among all the criticisms which have been applied to the new aqueduct, upon which the future water supply of New York is to depend, no unfavorable ones can be found which are directed against the upper section, including the main gate house and connections. This portion has been exempt from the judgments so freely passed upon the main line. The majority of the operations have been conducted in the open air. Far less chance was given for carelessly executing the work than existed in the underground tunnels, and the desire of the city engineers to make the work a perfect one has been seconded to the utmost by the contractors.
We illustrate in the present issue the operations now in progress at the upper end of the aqueduct. They comprise the new gate house and its connections with the new and old aqueducts, with the present Croton Lake, and with the future reservoir to be established by the erection of the Quaker Bridge Dam.

The site of the work is Croton Falls. Taking advantage of the somewhat precipitous character of the banks of the Croton River at this point, the engineers in charge of the original aqueduct built here the famous Croton Dam. This impounds the waters of the river and forms the beautiful Croton Lake. The sloping banks that surround it form an admirable watershed. They are thinly settled, and in spite of many suggestions of contamination by factories, the inspection of the country tends to reassure the observer of the good character of the water supply.
On the southern bank of the lake just above the dam is situated the old gate house. This is the one now in use, and which has done service for so many years in the past. From it the old aqueduct starts, running westward for a long distance before it turns to the south. The object of its builders was to follow a given contour line very nearly, so as to avoid high or low work. It was their desire to make it as much as possible open cut work. This accounts for its sinuous line, its route being determined by the inequalities of the surface.

A short distance south and west of the old gate house is the terminus of the new aqueduct. This was built on principles the very opposite of those controlling the erection of its predecessor. The object was to makela rock tunnel which should be as far as possible an efficient conduit, without any lining, save in some weak or exposed places. Very properly, this design was supplemented by the adoption of a brick lining for the entire tunnel, backed up by rubble masonry. The latter feature has been criticised by some as an unnecessary expenditure, but from an enlightened point of view, it was eminently correct. The aqueduct should be of the best possible description, and the thought of any economy at the sacrifice of strength or durability is not to be tolerated. We have already illustrated the work on the main line. Its defects, we have shown, are in a fair way of being remedied.
This aqueduct starts from Croton Falls, and runs south and east, taking an almost direct line for the city. Its direction at starting is nearly opposite to that of

Fig. 1.-WEIGHING gases.
the old aqueduct. The character of a tunnel in solid rock was obtained by the selection of such a line. As far as possible, opencuts and sof t ground were avoided. Conditions exactly opposite to those sought for by the old engineers were desired.
On the south side of the Croton Dam, a high hill of solid gneiss rock rises. Through this the aqueduct is driven. So precipitous was the bank, that there was
no room for the erection of a gate house. The first operation, therefore, was to establish a platform by blasting out the rock. This was done, and an immense notch was formed, about ninety feet wide and upward of a hundred feet deep. At the back, the cliff left by blasting rises to a great height. Within this notch the foundations of the new gate house were laid.
The masonry is in three materials. Part is in course work of large blocks of limestone. The facings are in similar work of granite. Some of the partition walls are of brick. The whole is laid in Portland cement. As the building does not extend back to the natural rock, the intervening space is filled with concrete. In some places a thickness of over twenty feet of such fill ing is used: The new aqueduct, sweeping toward th west, enters the building at its southeast corner

GENERAL PLAN OF CONNECTIONS AT NORTHERN TERMINUS OF THE NEW YORK AQUEDUCT.

At the northeast corner two inlets, one vertically above the other, are situated. The lower one is termed the by-pass inlet. This provides for the withdrawal of water from the present Croton Lake. Fortyfour and one-half feet above it is a second inlet. This emerges from the bank far above the level of the top of the dam and west of its line. It is designed as a surface outlet for the new lake to be established by the Quaker Bridge Dam. Finally, on the north side of the building two additional inlets are arranged. One is at the level of the by-pass; the other, vertically above it, is sixteen feet higher in elevation. These also open into the valley west of the dam. One is termed the bottom inlet, the other the middle inlet.
Until Quaker Bridge Dam shall have been finished, only one inlet will be operative. This is the by-pass inlet. When the new aqueduct begins its work, it will receive all its water through this. The other three inlets are for use when the new lake will be established. Then the present Croton Dam will be immersed under many feet of water. The three inlets now exposed will also be submerged, and water can be taken from top, middle, or bottom layer, at will, of the new lake. Each inlet is circular and fourteen feet six inches in diameter.
There is no intention of abandoning the present aqueduct. Hence a second outlet is arranged which ultimately is to connect with it. This starts from the northwest corner of the gate house, and, sweeping toward the north, is eventually to be joined to the old aqueduct. Its diameter is eight feet six inches. It is circular in section.
The general plan of the building is well shown in the bird's eye view of its foundation. Some of the minor features do not appear, as they are hidden by the superincumbent masonry. Thus, a chamber is arranged for a turbine which is to supply power for the different operations. A drainage well and sump are arranged to keep the chambers clear of sediment. When completed, it will be one of the most substantial and complete buildings of its class in the world. Its foundations, as is clear from what we have said, will be almost monolithic in character.
As the submersion of much of the present roadway is inevitable when the great dam will be completed, a new one has been included in the plans. Along the front of the river bank a high retaining wall is to be carried, and the space back of it is to be filled in. The new road will run along this between the gate house and the reservoir.
The change to be effected in the surrounding country by the Quaker Bridge Dam is very great. The sites of many buildings will be immersed. The water will rise above the level of the old gate bouse, and will wash against the retaining wall nearly as high as its coping. The present lake will be increased immensely in area as regards the portion ahove the Croton Dam, while many miles of country between it and Quaker Bridge will also be converted into a lake. The scene of the operations we describe is well worth a visit, and the contrast between the lake of to-day and that of the next decade will be a most impressive one.

The man who has "grit" and ability and is willing to start in business, in a small way, usually makes a success of $i t$.

The Mosquito a Blessing to Man
A lecture was recently delivered at Madras, India, on that interesting and familiar pest, the mosquito. The lecturer, Mr. H. Sullivan Thomas, asserts that it is only the female mosquito that does the biting. He considers the mosquito a mostuseful pest, seven-eighths of its existence being devoted to the service of men and only one-eighth to their annoyance. It exists in the larval state twenty-one days, and during that period engages in sanitary work with ardor and thoroughness. Wherever there is dirty water, wherever there is a filthy drain, there the mosquito larvæ are to be found in hundreds, voraciously devouring the contaminating matter.-New Orleans Times-Democrat.

SIMPLE EXPERIMENTS IN PHYSICS.

 GEO. M. HOPKINS.In former experiments illustrating the diffusion of gases, it was shown that carbonic acid gas was very much heavier than air, by pouring the gas from one vessel to another, thus to a great extent displacing the air in the receiving vessel, in the same manner as it would be displaced by the pouring in of a liquid. In the case of pure hydrogen or illuminating gas, the order of things was reversed ; i. e., to fill the vessel it was necessary to invert it, so that the air might be displaced by the rising of the gas, which is so much lighter han air.
To show visibly that one gas is heavier than air and the other lighter, a pair of balances may be pressed into the service. If the balances are not at hand, a pair may readily be made of wire, as shown in the engraving. All the pivots should be made Vshaped, to reduce the friction to a minimum. The pivot of the beam should be a little higher than the bearing surface of the hooks at the ends of the beam. The conical scale pan may be made of paper, by radially slitting a disk, overlapping the edges, and sticking. them to gether. The paper box for receiving the gas is five inches in each of its dimensions, and is suspended from the scale beam by a wire stirrup, so that it may be re versed. After bringing the scale to equilibrium in air by placing some small weights in the pan, the air contained by the box may be displaced by pouring in car bonic acid gas. The box will immediately descend showing that carbonic acid gas is heavier than air. Allowing the weights in the pan to remain the same the paper box is inverted, when the carbonic acid falls out, and air takes its place. The balance beamagain becomes horizontal. Now, by opening a jar of hydrogen under the box, the air is again displaced, this time, however, by the rising of the inflowing gas When the greater portion of the air is replaced by hydrogen, the box rises, showing by its buoyancy that its contents are lighter than air. If the balance is allowed to remain for a time, the gas will be diffused, and the balance beam will return again to the horizontal position.
In Fig. 2 is shown a verysimple wheel, to be operated by gases. The wheel consists of a disk of light but stiff card board, mounted between two corks on a straight knitting needle, and provided around its periphery with buckets formed of squares of writing paper, attached to the periphery of the disk by two adjoining

Fig. 2.-GAS WHEEL.

edges so as to form hollow cones, as shown. The knitting needle is journaled in wire or wooden standards, and lubricated so that it may turn freely. Carbonic acid gas may be generated in a pitcher and poured upon the wheel in the manner illustrated. By making the wheel large enough and carefully balancing it, it may be turned by liberating hydrogen gas under the mouths of the buckets.

Indian Horsemanship.

A correspondent of the Omaha Herald has been among the Indians, and this is how he tells of what he saw :

In the Indian camp of the Arapahoe chief Friday, we saw many curious scenes and learned much of Indian life. One day Friday said to me he would like to show off his young men and let me see how well they could ride. At first I expected some treachery, as the whole herd of ponies was in the hands of the troops. The old chief, however, was so earnest and apparently honest about it, I told the captain, who had the herd in charge, he might let Friday have fifty ponies for his young men. In about an hour they drew up before the tents in war paint and feathers, and were as fine a looking set of young fellows as I have ever seen. Hardly one but was six feet in height and beautifully propor tioned. They sat their horses like centaurs, and were ease and grace itself in the saddle. At a signal from the chief they began their movements with a yell that sent the blood curdling to the heart, and was enough, if heard unawares or in the night time, to make one's hair stand on end. In a moment theyhad disappeared over a neighboring hill to the right, and I thought they had gone; but hearing a mighty trampling of horses, I looked to the left, and there they came. I can com pare it to nothing but the wind, and they swept by so compact that they looked like a ball of horses and men.
Splitting in two, one body swept to the right and another to the left, and again disappeared. In about two minutes the two bodies charged each other in solid lines, and I waited breathlessly for the shock, but, as the horses' heads almost touched each other, the files skillfully opened to the right and left, and the lines passed through the intervals without touching. Wheeling to the right about they passed back in an instant, and again disappeared over the hills. It was about fifteen minutes before they came in sight, and Friday informed me that they were blowing their horses. Presently on they came and wheeled by fours, formed columns, and finally deployed as skirmishers. It was now we saw the finest individual horsemanship. Some would approach lying so close to the pony's back that nothing but the horse could be seen. Others stood up and rode as circus men do. Some would hang with ore foot and one hand on the horses and sweep by, their bodies completely protected by the bodies of the animals. Some leaped upon the ground, holding to the mane of the horse, and after running a step or two would swing themselves up on the backs of the horses again as easily as any circus man could do it. The positions they assumed and the feats of horsemanship they performed were incredible, and 1 doubt if anything outside of a circus ring ever equaled it. They would throw objects on the ground and pick them up again while passing at full speed, the warriors hanging to the sides of the horses with one foot and one hand. They drew bows and shot arrows from underneath the necks and even the bellies of their horses while riding at a fast gallop.
Our cavalry could not learn to ride as well as these Indians did if each man was trained for twenty years. They exchanged horses while riding, and got behind each other. One man would fall off his horse as if wounded, and two others would ride up beside him, and, taking him by an arm and leg, swing him between their horses and carry him off. The exhibition, or drill, as Friday called it, lasted nearly two hours, and the men and horses were completely exhausted. I had never seen such magnificent feats of horsemanship in my life, and I freely said so. At this Friday was much pleased, and calling up the young men, repeated to them in a loud voice what I had said, and added a few words of his own, complimenting them. The young men were very proud of the manner in which they had acquitted themselves, and I could imagine the feelings of their parents and sweethearts. The performers were much worn out, some of them being hardly able to stand after their violent exercise, and all the evening I saw them lying in the lodges, where the Indian women brought them food, bathed their hands, arms, and limbs, and combed their hair.

British Frozen Meat Imports.

How firmly the trade in frozen meat is now established in the United Kingdom may be gathered from the following figures, which represent the number of carcasses of mutton and lamb imported for the first quarter of the present and three previous years

From	1885.	1886.	188%.	1888.
Australia	.26,886	2,364	32,366	16,192
New Zealand	97,538	155,974	128,397	209,096
River Plate, etc.	.51,682	91,405	83,548	25,097

The figures here given from the British Trade Journal refer only to the numbers imported via London. The bulk of the River Plate frozen meat is now directed to Liverpool, and how extensive it is "may be inferred from the fact that the frozen mutton alone, imported there from the River Plate, during the first three months of the present year, amounted to 163,000 carcasses."

The process of Bott \& Cousins, as described by the nventors, consists in passing molten steel or iron through a bath or filtering medium of a purifying and deoxidizing alloy of less specific gravity than either steel or iron, such bath or filtering medium rising and forming a stratum or film on the surface of the molten steel or iron, through which every particle of such steel or iron subsequently melted passes before reaching the lower part of the furnace from which it is tapped. The fusion is effected in a cupola of Mr. Bott's own design. The lower part or crucible of the cupola is surrounded by a cylinder of larger diameter, forming a chamber around the tuyeres, in which the air becomes effectually heated. With a pressure of blast such as is usually sufficient for an ordinary foundry cupola, Mr Bott's cupola will melt a mixture of 85 per cent of Bes semer rail scrap and 15 per cent of hematite pig, which in its descent is made to pass through an alloy, the chief active component of which is titanium. The alloy in question, which is produced in the cupola a the commencement of the operation, is obtained by using Belfast aluminous ore, which contains from 10 to 12 per cent of titanium. The stratum of alloy shoul not be less than $1 \mathrm{in}$. in thickness for each ton of iron or steel to be treated. The effect of passing the steel as
it melts through this deoxidizing layer is to clear it of impurities, especially those of a gaseous character, and the resulting castings are free from honeycombs or blowholes. Indeed, it is chiefly in this respect that the process is considered to be of greatest value, as a vast number of articles which, on account of the propensity referred to, could not be made as castings, but had to be either forged or rolled, are now actually being made by Bott \& Cousins' process as castings, and hat in green sand.
Some expansion joints for Knapp boiler tubes 3-16 in. thick were shown, which gave perhaps as good an idea of what the process is capable of as the more ponderous, but equally thin, chimney bases and domes, which are being made to the order of the Midland Railway Company. So valued is this property of soundness in castings, especially for ordnance purposes, when combined with the requisite tenacity and ductility of the material, that the attention of the gun makers to the process was very readily obtained, and their growing confidence is well illustrated by the repeated orders for various articles which enter into the composition of the most modern pieces. In this connection it may be mentioned that the Turkish government are making arrangements to purchase the right of using the pro cess at the Imperial Ottoman Arsenal. The ductile character of the material was clearly shown by a number of castings which had been twisted and battered into such shapes as one would imagine only the mildest Siemens steel forgings could be made to assume. A quantity of small rings and spanners had been thu treated, and some small cog wheels showed the ad mirable toughness of the metal by the way in which the teeth had stood without fracture the blows of a heavy hammer, the teeth having simply bent over and become flattened in the adjoining spaces. This ductil-
ity is obtained by annealing the castings in a suitable furnace, and although cast in steel of 1.50 per cent to 1.80 per cent' of carbon, the inventors claim that the castings can be reduced to the mildesttemper by packing them in sand or lime, by reason of the materia containing no graphitic carbon, as is the case with malleable cast iron, "the annealing simply settling the strain incidental to cooling and crystallization."
The inventors claim that the time required for annealing in this process is much shorter than with ordinary steel castings, and that therefore delivery can always be effected within a week from receipt of order. Other claims are also made which are of considerable mportance.
It is well known that, to obtain a sound casting in steel, with most methods in use, a very high "riser" is necessary, which also means a high gate, and conse quent waste of labor and material. By this process, however, the metal, being freed from all gaseous constituents, lies quiet in the moulds, and the precaution of a high riser is found unnecessary, which is no slight advantage, especially in casting small articles, when the weight of the waste metal may by the older process considerably exceed that of the articles themselves.
The purification referred to does not affect the tem perature of the molten metal at the moment of casting, the steel running quickly into the moulds, as wa evidenced by the thinness and superficial extent of many of the specimens shown. To obtain some of these articles, the steel is made to contain as much as 1.50 per cent to 1.80 per cent of combined carbon, and it will therefore be obvious that the material can be made to take a sharp cutting edge.
No comparative series of tensile tests appear as yet to have been made, the inventors having chiefly directed their endeavors to obtaining soundness and ductility in their castings; but some isolated experiments have given 32 tons per square inch, combined with great ductility.
Messrs. Bott \& Cousins believe their invention to be
pecially applicable to the production of ateel shells
and projectiles, the method for the manufacture of which they describe as follows: The green sand moulds are formed in the usual way, and dusted with plumbago or other heat-resisting facing, sufficient to withtand the heat of the melted steel. The core of the shell or other article is made collapsible. The metal, after being melted and passed through the alloy, is drawn off and poured into the moulds in the usual way. As the castings begin to cool they contract, and the outer mould, being changed from green to dry sand, peels off ; while the inner mould or core collapses and falls to pieces, thus allowing the articles to contract freely and equally, which is impossible if a baked composition mould and core had been used. The colapsible cores described have a green sand facing on a foundation of hemp or other fiber, carried on a perforated tube.
We may state that the process has passed far beyond the mere experimental stage, as it has been in operation at Penney \& Co.'s, limited, Lincoln, who have been working it since October of 1887; and since February of this year they have been steadily turning out about 3 tons of these castings per week, which, considering that a vast number of the castings only weigh a few ounces, is a sufficient proof of the ap preciation in which this tirm hold the process
There can be no doubt that the simplicity of the plant required, and the easy adaptability of the process to existing conditions, are advantages of such nagnitude that it must quickly become a powerful co-operator in the great field which is daily enlarging, and in which the manufacturers of the steel castings are reaping a rich harvest.-Industries.

A New Constituent of Tea.

At a recent meeting of the Physiological Society, Berlin, Prof. Kossel spoke on a new constituent of tea Inasmuch as the presence of caffein in tea does not suffice to explain its physiological action, he had ex mined it for other bases, and found in the leaves of tea, in addition to adenin, a new well characterized base whose composition is $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$, to which he has given the name of theophyllin. Theobromin and par xanthin have the same chemical composition as theo phyllin, but the latter differs from the former by a series of well marked chemical reactions. One question of special interest was as to the constitution of the new base, which belongs to that class of substances known as the xanthin bodies. Fischer has shown that xanthin yields alloxan and urea when oxidized; and, similarly, it is known that theobromin is dimethylxanthin, yielding, by oxidation, methylalloxan and methylurea as also that caffein is trimethylxanthin, yielding. by oxidation, dimethylalloxan and monomethylurea. The question hence arose as to the constitution of the new base, which, since it is isomeric with theobromin, is also presumably a dimethylxanthin. Since the speaker was in possession of so limited a quantity of the sub stance that he could not proceed to oxidize it, he pro ceeded by a different method, and introduced a methyl group into the molecule of theophyllin. On performng this experiment he obtained caffein, from which it nust be concluded that theophyllin contains one methyl group united to a residue of urea, and one to a residue of alloxan, and has therefore a constitution dentical with that of theobromin. It stili remains to investigate the physiological action of the new base.

An Interesting Trade Mark Decision

Vice-Chancellor Vanfleet, of New Jersey, rendered a decision, on July 24, which is of much interest as affirm ing the true legal status of a trade mark. The Cigar makers' International Union have a label which they authorize any manufacturer of cigars employing members of their association to use on his packages or boxes. The label has been counterfeited, and suit was brought under the trade mark law against a manufacturer alleged to have used such labels. The defense was made that no cause of action was shown and that the label was no trade mark.
The court sustained the latter ground of defense. It affirmed that a trade mark must have three characters. It must be new as regards the article to which it is applied; it must be applied to some article of traffic ; and the proprietor must put upon the market his article marked with the trade mark. No person can acquire right to a trade mark unless he puts merchandise or a vendible commodity on the market marked or dis tinguished by his particular mark. As the complain ants had not shown that they ever placed the label upon their own goods, their complaint was without force. The court held that mere adoption of a mark and a publicdeclaration that the mark so adopted will be used to distinguish goods to be put on the market at a future time creates no right.

Artificial mica.

A process is described by M. Doelter by means of which the author has artificially reproduced the chief minerals of the mica group, as well as of natural scapolite. He has already effected the synthesis of biotite, phloge
riety).

SAND GROUSE (Syrrhaptes paradoxus).
From articles published in the German papers during the last few weeks it appears that this interesting bird is becoming more common in Germany. The first appearance of the Syrrhaptes, whose home is in Asia, especially Tartary and Mongolia, was in 1857, and created a great sensation because the bird had only been known to zoologists and visitors at zoological gardens since its accidental discovery by Pallas during histravels through Siberia (1768 to 1774). It belongs to the Pteroclide family, but it shows many characteristic features peculiar to itself. Its anatomical construction has been said to combine the bustard, the dove, and the domestic fowl. It is of about the same size as the domestic dove, and the color of its plumage varies from ashy gray to light yellow, matching that of the wide desert plains of its native steppes so well that it is scarcely discernible even with the sharpest eyes. Its head and beak are proportionately small, and the wings, which run out into long, sharp points, do not cross and cover the back, but hang down at the sides and extend in the same direction as the tail, which is

Trees in Washington.

Mr. Peter Henderson, in the last number of Har per's Magazine, describes the tree planting which has been accomplished in the city of Washington during the last fifteen years. No less than 120 miles of streets or 240 miles of trees, have been planted in that time, and in no other American city has street planting ever been attempted on anything like the same scale, or has produced results immediately so satisfactory. An examination, however, of the list of trees which have been planted, shows that the commission who have controlled these plantations have been governed by the desire for immediate effect rather than for the per nanent embellishment of the city.
White maples, for example, line fifty-five miles of streets, or nearly one-half of the distance planted, sixteen miles are planted with the cottonwood, and ten miles with the ash-leaved maple or box elder. These are all excellent trees for the prairies of Nebraska or Kansas, where trees are needed that can grow rapidly in a dry soil, and where all other considerations are
secondary to immediate results, but they are entirely

The commission bave planted 273 oaks all told, includng some worthless European varieties. .Only 832 sugar naples have been planted, although this is one of the best street trees in the United States, while ten miles of Norway maples have been planted, in spite of the act that it is in every way an inferior tree, and often disfigured in this country in summer by thrip.
The white poplar of Europe is one of the ugliest trees ever introduced into this country ; 1,863 of these have een set along the Washington streets, or 600 more than the number of honey locusts used, yet the honey ocust is an excellent street tree-in many respects one of the best which has ever been tried in this country for the purpose. The trees to which we have here called attention-and there are many others which night have been selected in preference to thosc em ployed by the commission-have all been successfully planted in towns in different parts of the country. In the town of Flushing in this State, for example, where perhaps, more than in any other in this country which ve can now recall, there are lessons in street planting to be learned, both in regard to what trees to plant

SAND GROUSE-SYRRHAPTES PARADOXUS.
held horizontally, the middle feathers being pointed also. Its feet are especially remarkable; there is no rear toe and the three fore toes are thickly covered with feathers, so that the foot looks like a bent limb illadapted for scratching, or like a little fingerless glove. With his slow, tripping gait, the bird would remain far behind in a race with the red-legged partridge. His noisy flight seems very slow at first, but soon becomes remarkably rapid, making it exceedingly difficult fo pursuing falcon to carry out his murderous work.
These birds build clumsy nests on the ground, in which the hen lays not more than three or four eggs, so that the increase of the Syrrhaptes is about the same as that of the partridge. The eggs are of a pure elliptical form, their ground color varying from a light greenish gray to a dirty brownish gray, and on this ground there are usually dark brown spots. Its principal nourishment consists of grass seed and tender leaves. It will be a long time before this bird can be leaves. It will be a long time before this bird can be
considered as game, although special laws have been made for its protection.-Illustrirte Zeitung.

Santa Monica, Cal., Breakwater

Gen. Duane reported to the Secretary of War, in respect to the above work, that the construction of such a breakwater is believed to be entirely feasible, but its cost will be necessarily great, probably not less than $\$ 6,000,000$; and that the work could not be advantageously undertaken without at least an appropriation of $\$ 600,000$ to permit a proper beginniag.
out of place in a city of the architectural pretensions and of the climate of Washington.
They are trees with brittle branches, and neither long-lived nor in any way suited to adorn the capital of a country like the United States, rich in trees unsurpassed in beauty and variety. Indeed, it would be difficult to select three deciduous trees in the forests of this country less fitted for this particular purpose. They are very easily and quickly raised, they are readily transplanted, and they grow with great rapidity. They soon become unshapely and unsatisfactory, however, and any city where the streets are planted with them will have a cheap appearance, whatever may be the character of its buildings.
The number of fine trees which could be used to adorn appropriately the streets of Washington is considerable. The tulip tree is perfectly at home in that climate. It is one of the noblest trees of the American forest. There are few more beautiful trees anywhere. The commission have planted only 1,712 tulip trees. Some of the American oaks are admirable street trees, notably the pin oak, the red oak, the willow oak, the scarlet oak, and the shingle oak. These all thrive in the neighborhood of Washington, and they are all trees which can be easily grown and transplanted. They grow rapidly, too, as does the tulip tree, although less rapidly in youth than cottonwoods and soft maples, but they go on increasing in beauty for a century, and might be expected to last in Washington for a much longer period even.
and what trees not to plant, there are rows of noble tulip trees, and pin oaks, willow oaks and lindens, which speak for themselves, and show how beautiful a well planted street can be made.
The trees planted in Washington have been badly selected, and the perinanent results of these plantations cannot fail to be disappointing. The methods, however, of planting, of pruning, and of protecting the trees adopted by the commission, as described by Mr. Henderson, are admirable, and farahead of anything which has been done in urban planting in this country. It is not surprising, therefore, that the immediate results obtained are so satisfactory.-Garden and Forest.

The Poppy as a Bank Protector.

The Manufacturers' Record, in an article recommending opium culture in the South, says that, once sown, the poppy is self-perpetuating, and is, in fact, hard to exterminate, reciting the fact that within the last two or three years eminent French engineers have undertaken the sowing of railroad embankments with poppy seeds, as, when once established, that prolific plant would cover thesoil with a network of roots that would prevent it from washing away during heavy rains or from upheaval when frost was coming out of the ground in the spring.
The suggestion seems good enough to warrant a trial. Surely a bank of poppies would present advantages in an æsthetic point of view over a bank of pig weed, thistles, and tómato cans.

engineering inventions.

A car door has been patented by Mr. John W. Shewmaker, of Terre Haute, Ind. It is a
sliding door for a fright or grain car, the invention covering various novel constructions and formations of A car coupling has been patented by Mr. William H. Grifith, of Bolivar, Texas. Its construction is such that the coupling pin is normally held
in position for engagement with the link, and the in position for engagement with the link, and the
latter is also normally held to enter and engage the latter is also normally held to enter and engage the
meeting drawheads and automatically release the conpling pin, avoiding the necessity of train men going between the cars.
A machine for laying railroad tracks as been patented by Mr. Marion Smith, of Durham, at its rear end, a wheel supporting the front end of the truss frame, in combination with a rope passing over a pulley held on the truss frame, and a gauging and drawing device held on each end of the rope, with grip-
ping and supporting devices adapted to travel on the ropes, and other novel features.

AGRICOLTURAL INVENTIONS.

A wheel hay rake has been patented by Mr. Henry W. Kramer, of Newtonville, Ind. It is a rake adapted to carry its load to the barn or stack
before discharging it, thus avoiding the necessity of before discharging it, thus avoiding the necessity of
loading the hay upon wagons, the invention covering loading the hay upon wagons, the invention covering
various novel details of construction, combination, and arrangement of parts.

A grain drill has been patented by Mr . Alexander C. McClelland, of Island City, Oregon.
For opening the furrow a flat-sided disk is employed, in combination with a plate in contact with it at the forward edge, but separated at the rear side, so that they co-operate to form the furrow, the device also con-
ducting the grain to its place and avoiding side draught. ducting the grain to its place and avoiding side draught. A harrow has been patented Disene City George Melson and Robert H. Harper, of Eugene City and arrangement of the parts of the harrow frame or
beams, and of the headed ends of the teeth shanks or beams, and of the headed ends of the teeth shanks or
standards, as also a novel formation of the teeth, to standards, as also a novel formation of the teeth, to
promote the lightness, strength, durability and efficiency promote the ligh

MISCELLANEOUS INVENTIONS

Improvements in commodes, earth losets, and similar appinances form the subject of a Mo. The invention covers a novel construction and combination of parts in commodes or earth closets, and adapted to be readily cleaned.
A photographic bath has been patented by Mr. Alesander Anderson, of Elgin, Scotland. of the solution without applying the finger directly to he plate, for which purpose it has a novel form ngled finger pivoted to one end of the bath dish
An improved gearing has been patented by Mr. Ole O. Kravik, of St. Carl, Dakota Ter. This invention covers novel details and combinations
of parts in a gearing for rapidly transmitting motion, of parts in a gearing for rapidly transmitting motion,
and adapted, by duplication of its parts, for obtaining and adapted, by duplication of its parts, for
a rotary motion at any desired rate of speed.
A die and dice box has been patented by Mr. Reinhold F. De Grain, of Washington, D. C. It is a closed box or case with a chamber just the width of the dice, and having at one end of the chamber angula the sides of the case through which the numbers on the sides of the dice may be read.
A cooking stove or range has been paented by Mr. Isaac C. Schuyler, of Falls City, Neb This invention covers a novel constriction and comrevent radiation of heat into a room, the surplus hea being used to raise the temperature of the draught before it enters the combustion chamber
A stomach pump has been patented y Mr. Horace W. Parsons, of Wamego, Kansas. Thi tions of parts in an apparatus designed for washing ou and removing the contents of the stomach, bladder, or other cavities of the body, and ol

A trap for fish or game has been paented by Mr. George H. Kile, of Mound Valley Kansas. It consists of a cage with an opening having an inwardly tapering passageway, a grating hinged to
the lower side of the opening and double folding guide gratings hinged to the sides of the opening, with othe ovel features.
A fruit holding device has been pa tented by Mr. John J. W. Place, of San Mateo, Fla. It i a device for removing the rind from oranges, haviag a base in which is a pointed spindle, on which the orange in which the juice may run and will not soil the hands or clothes.
A fire escape has been patented by Messrs. Morris H. Marcus and Otis G. Moore, of Knox Pa. It consists of a flexible chute held extended by
rings, with intermediate elastic bands, and with rings, with intermediate elastic bands, and with
blanket or sheet secured to its lower end, that person may slide throngh the chute to escape from a fire, the
invention being an improvement on a former patented invention being an improvemen
iovention of the same inventor
A fire escape has been patented by Mr. T. R. Budd, of Carthage, N. Y. It is of that class of frame that slides upon a rope attached by one end to some suitable or convenient part of the building, and, by pulling upon the rope below the frame, the person
deecending, or one upon the ground, may regulate the rate of descent.

A hame has been patented by Mr Combined with the hame is a staple having along it ength open seats for the eye of the trace tug to rest in of the stap with a bar guided upon the end section springs, so as to hold the eye in any one of the seats in which it may be adjusted.
An electric governor has been patent by Messrs. Horace W. Parsons and John Hoduit, Wamego, Kansas. It is a centrifugal governor, with a
contact piece moved by the centrifugal action of the governor, and combined therewith is a condenser fo preventing sparks at the contact surfaces, for control-
ling the current from a dynamo and governing the eed of electric motors
A pea sheller and separator has been patented by Mr, William A. Slappey, of Fort Valley,
Ga. It has a cylindrical beater, armed with spikes, Ga. It has a cylindrical beater, armed with spikes, journaled in a suitable framing, in connection with a fan arranged in a suitable case to force air against the shelled peas and separate them from the husks, dust,

A storage battery has been patented Mr. John A. Enos, of Boston, Mass. Combined with the battery case and a horizontal shaft arranged to forming the two elements, the ribbons being insulated from each other and attached to the shaft, the invention
being also applicable in the construction of primary

galvanic batteries.

A current receiver for electric railwa cars has also been patented by the same inventor. It is charged at intervals along the line by contact of ter minals with posts or standards connected to a main generator, the car having long conductors adapted to be
brought into rubbing contact with brushes on the the conductors being adjustable to be raised or lowered as required in passing under bridges, etc.

SCIENTIFIC AMERICAN

BUILDING EDITION

AUGUST NUMBER.-(No. 34.)

TABLE OF CONTENTS.

Elegant plate in colors of a dwelling at Glen Ridge, eight thousand five hundred dollars.
Plate in colors of a fire engine house of moderate cost. Details and floor plans.
Perspective view and floor plans of a residence at Sketch of an uptown block of attractive residences, New York City.
Floor plans and perspective elevation of two Queen Anne cottages, lately completed at Bath Beach,
Long Island. Cost, four thousand dollars each. . Design and floor plans for a two thousand dollar house lately built at Bridgepart, Conn.
Perspective and floor plans of an attractive resi dence lately built at Bridgeport,
A six hundred dollar cottage built lately at Bridgeport, Conn. Perspective and floor plans.
9. Plans and perspective view of a seaside cottage lately erected at Bath Beach, Long
three theusand five hundred dollars.
10. Engraving and floor plans of a neat little double one thousand eight hundred dollars.
11. A country residence in France. Perspective and plans.
12. Engraving of the palatial stables of Mr. D. Edgar Crouse, Syracuse, N. Y.
3. Plans and perspective for a carriage house, barn etc. Cost, two thousand two hundred dollars. ing complete four thousand two hundred dollare
New Congregational Church at Beckenham, Kent, England.
6. Page of designs of New England residences Miscellaneous contents: Vegetable glue.-Fourth of July fires.-The slag water closet.-Rust in
water pipes.-Laying out the joints of an elliptical vault, illustrated.-The tulip and other trees. -Architectural school houses.-Hanging baskets. -To estimate the power of a stream.-Manufac quinces.-Mixed wheats.-New ceiling for the
Assembly chamber of the New York State CapiAssembly chamber of the New York State Capi-
tol.-Transplanting large pines.-Galveston artesian wells.-Poisonous wall paper and carpets.-
The testing of Portland cement.-The humming The testing of Portland cement.-The humming
bird.-Manila hemp in plaster.-A perfect hen house.-Examination questions for plumbers. shingles and siding plates, illustrated.-The poo of Bethesda.-Carl Pfeiffer.-Creosote wood pre-
serving stains.-House heating by hot water circulation, illustrated.-Ohio's largest poplar.-Mortar.-Irrigating wheels.-Liquid fish glue.
The Scientific American Architects and Builders
dition is issued monthly. $\$ 2.50$ a year. Single copies, Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of architec
vure, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by li newsdea

MUNN \& CO., PUBLishers,
201 Broadway, New York
$\mathfrak{P B u s i n e s s}$ and $\mathfrak{P e r s o n a l}$.
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line. Advertisements must be received at publication office

Wanted.-A business man, holding for 20 years a reponsible position with a large manufacturing corpora-
ion, now retired, wishes a situation where his experience Ion, now retired. wishes a situation where his experience No objection to travel. Highest testimonials sar formasiand Boston. Address E. W. G., care box 1253, Philadel A 20 ft . iron planer, 5 tons, $\$ 1,500$. J. O. Campbell \& Son, Louisville, Ку.
For Sale or Rent-A large brick factory, with engine boiler, etc. On river front, at Ravenswood, I. I., oppo
site $\overline{\text { Thth }}$ St., New York. Owner, box 3341. New York. Pratt \& Letchworth, Buffalo, N. F., solicit correspondence relative to manufacturing spec
alties requiring malleable gray iron, brass, or steel castings. For Rale Cheap-
Wanted-Hardware specialties to manufacture, o will buy good patents. A
celsior, box 773, New York.
For the latest improved diamond prospecting drills, dress the M. C. Bullock Mfg. Co., Chicago, Ill.
The best Coffee roasters, coolers, stoners, separators解 peaberry machines: also rice and macaroni machinery,
re buitt by The Hungerford Co., 69 Cortlandt Street, Sew York.
Safety water columns. Cheaper than explosions o urned boilers.
o., Cleveland, 0
Steam Pipe Covering, Sectional and Plastic. Write
for Pamphlet. Jno. A. McConnell \& Co., 69 Water St., or Pamphlet.
Nickel Plating.-Manufactarers of pure nickel anodes, pure nickel salts, polishing compositions, etc. $\$ 100$
"Little Wonder." A perfect Electro Plating Machine. gents of the new t. Hanson, Van Winkle \& Co., Newrk, N. J., and 92 and 94 Liberty St., New York.
Perforated metals of all kinds for all purposes. The Robert Aitchison Perforated Metal Co., Chicago, ill. The Railroad Gazette, handsomely illustrated, pubished weekly, at 73 Broadway, New York. Specimen

The Knowles Steam Pump Works, 113 Federa
st., Boston, and 93 Liberty St., New York, have just is proved forms of Pumping Machinery of the single and duplex, steam and power type. This catalogue will be mailed free of charge on application.
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma
chinerg, and containing reports of tests, on application. Lockwood's Dictionary of Terms used in the practice of Mechanical Engineering, embracing those current in he drawing office, pattern shop, foundry, fitting, turn ing, smith's and boiler shop, etc., comprising over 6,000 Price.
York.
Duplex Steam Pumps. Volker \& Felthousen Co., BufGardner \& Miller's Patent Belt Clamps, 8 sizes. Bil lings \& Spencer Co., Hartford, Conn
We are sole manufacturers of the Fibrous Asbesto Removable Pipe and Boiler Coverings. We make pure 419 and 425 East 8 th Street, New York.
The Improved Hydraulic Jacks, Punches, and Tube Safety Elevators, steam and belt power ; quick an mooth. The D. Frisbie Co., 112 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John Rotary veneer basket and fruit package machinery Send fornew and complete catalogue of Scientuf and other Books for ale by Munn \& $\mathrm{Co}_{3} 361$ Broadwa New York. Free on application.

there, if the ground connection is not perfect. The
modern practice has been to use large copper conductors strapped to the building with extra large ground water nnections, also of copper. Recent experiments have made it doubtful if the copper is a good material. See Scientific American, May 18, 1888, p. 312. 2. What causes the engraving of steel ball on last page of Scientific American to appear as though there was a com. oass needle quickly vibrating about its center. A pair good eyes in a light room can readily see it. A. The paper around the center. Such effect is more apparent o astigmatic eyes. 3. Where do astronomers count right ascension from? A. From the vernal equinox, or point in the celestial sphere at which the sun crosses the plane of the earth's equator in its ascending or northern passage. Owing to the precession of the equinox of about 50 seconds per year, the right ascen.
(2) T. G. T.-You will find a complete table of thecompression of air with the rise in temperaare, pressure, and volume, in Scientific American Supplement, No. 279, which we can mail for 10 cents. or preserving fence posts from rotting, either wet or from the end to 6 inches above ground in hot coal tar, or use crude petroleum, well soaked in, or strong brine of salt and water boiling, in which immerse the posts for a few minutes or until they heat through. A boiling one gallon of water is also a good preservative. In a good hydraulic ram one-seventh of the water flowing to the ram may be raised four times the height of the fall
to the ram, and one-fourteenth part to eight times the fall. The supply pipe should be in length five times
(3) D. L. P. (Curacao, W. I.) asks : 1 When it is said in the Scientific American that a will it rise and set here? Our city is situated $12^{\circ} 6^{\prime}$, latitude, $68^{\circ} 58^{\prime}$ longitude west of Greenwich. A. The ising and setting time for planets and stars is counted in hours from the sun's meridian, and as every place on he earth has its own solar meridian, the time as given for any meridian of longitude. The revolution of he earth upon its axis makes the time of rising and seting agree with clock time every longitude. The case is different for moments of time at which phe-
nomena occur, as of eclipses and the like. In such cases the clock time becomes variable with all meridiaus and throughout the 24 hours. 2 What can be recommended to make finger nails hard, when too thin? A. Try wetting them occasionally with alum water. What can be done to prevent the rusting of the spinles of our combination iron safe? -A. Try vaseline (4)
(4) J. M. asks (1) the easiest way to find the horse power of an engine. A. Multiply the rea of the cylinder by the mean engine pressure, which may be from 75 to 90 per cent of the boiler pressure, due o the cut-off. Multiply this product by the speed of
the piston in feet per minute. Divide the last product by 33,000 . 2 How many square feet of heating eur face are generally allowed per horse power for steam
ailer? A. 14 square feet heating surface for small boilers, 12 square feet in large boilers. 3. Which is the longest bridge in the world? A. The Tay $-10,800$ feet. Next the Forth Bridge, 9,200 feet long. The Montreal idge is 8,791 feet long
(5) G. B. W.-For concrete that does not shrink, use equal parts by measure of Portland or
Rosendale cement and clear, sharp sand. Mix quickly a thin paste with water, and then quickly mix thereith an equal bulk of fine broken stone, put in place nd use a large faced hand ram to work the concrete ven, with light strokes of the ram. A heavy shovel on will not corrode when set in concrete or asphalt omposition. Mortar does not corrode galvanized iron. Mortar of lime and sand is cheaper than cement.
(6) R. J. S. writes: I wish to gild a model of clay and to give the gilt surface a very bright by which this can be attained, and also the recipe for mparting to the gold leaf a burnished luster. A. First ive the model a coat of shellac varnish, then give it a coat of oil gold size. When this has dried to a point where it is slightly "tacky," apply gold leaf. If you want to burnish it afterward, you should use water
gold size in place of oil gold size, and burnish with an
(7) E. A. S. asks : 1. What determines hether or not dry colors mixed up with mortar and ements will be fast and not run? A. Colors not tar. Natural earth colors will stand well, as will the various oxides of iron, but very few of the chemical colors are serviceable. 2. Are not all the ochers fast colors when so used? A. Yes. 3. The receipt for a cement to unite pieces of cloth and leave them flexible?
A. Ordinary white lead paint will unite pieces of cloth A. Ordinary white lead p
and leave them flexible.
(8) S. E. H. asks the most inexpensive nd durable coating for the inside of cast iron water fanks for iron water whe orrtection paint made with red oxide of iron, or similar metallic pigment, and bolled linseed oil. No other ingredients, no turpentine. Clean the tank and scrape off old rust. Mix the paint, or oxide and oil, so that it will easily pread with a brush. Give the tank one coat and let it thoroughly dry for several days, then put on another coat and dry several days, when the tank will be ready for use and should last many years without showing
rust. This is the universal practice here. All ships tanks are painted in this way. We do not recommend tinning or galvanizing.
(9) H. Y. asks : 1. What is the weight a cubicfoot of iliuminating gas? A. 250 to 300 grains. What is weight of cubic foot of air? A. 535% gram. shape, say 75 feet long by 40 feet in diameter? A. The gas alone would have a lifting power of about 3,000
pounds. But this would be reduced in effective power
by the weight of cloth, varnish, net, car, appurtenances,
etc. 4. What would be the weight of the canvas, etc., etc. 4. What would be the weight of the canvas, et
required to make the same? A. About 600 pounds.
(10) J. W. asks the kind of acid used by jewelers for soldering purposes. A. The jewelers in the United States use no acids for soft soldering except
upon the cheapest class of work, upon which the or dinary tinman's act (chloride of zinc and ammonia) is used. For fine work, borax is used for hard soldering, used. For fine work, borax is used for
and Venice turpentine for soft soldering.
(11) J. S. S. asks (1) whether or not he can use type metal for a storage battery. A. Type
metal ${ }^{\text {is }}$ not suitable for a storage battery. You may use metal is not suitable for a storage battery. You may use
a little antimony alloyed with the lead. 2. What will be the cost of a pound of metallic sodium, and about what will be the bulk of that amount? A. Sodium is worth $\$ 5$
a pound. The pound contains about $\& 8$ cubic inches. 3 . a pound. The pound contains about 28 cubic inches. 3 .
Whether or not the atmosphere has a chemical symbol. Whether or not the atmosphere has a chemical symbol.
If so, what is it? A. The atmosphere is a mixture of If so, what is it? A. The atmosphere is a mixture of
about four parts of nitrogen (N) with one part of oxygen about four parts of nitrogen (N) with one part of oxygen
(O). As it is not a chemical compound, it has no symbol.
(12) C. C. C. asks : Could a speaking tube 1 inch pipe be made to work effectually at a dis-
tance of 3,000 feet with only 1 elbow at each end? A. tance of 3,000 feet with only 1 elbow at each end? A.
No. About 150 feet is as far as a one inch speaking tube will work to advantage. For a dista
feet a 12 or 15 inch pipe would be required.
(13) S. C. M. asks (1) for an oil that will readily mix with silica, one that will not dry after it
becomes old. A. Any non-drying oil, such as cotton becomes old. A. Any non-drying oil, such as cotton
seed, olive, or sweet almond oil. 2 . A glue for pasting labels on tin. A. Freshly made gum tragacanth paste.
(14) J. M. C. asks a formula by which to prepare that fly paper that makes the victim a pris-
oner by its adhesiveness. A. In a tin vessel melt tooner by its adhesiveness. A. In a tin vessel melt to
gether one pound of resin and add two fluid drachms of linseed oil. While the mixture is warm dip a spatula into it and spread what adheres to the blade on fools-
cap paper. Different samples of resin require varying cap paper. Different samples of resin require
proportions of oil to make it spread properly.
(15) J. B. S. asks how to can corn and peas (a good recipe is wanted). A. See the article on
"Canned Food" contained in Scientific American "Canned Food" conta
SUPPLEment, No. 499.
(16) IT. N. Writes : A newly filled boiler
burst here recently cause unknown. Will any mixture burst here recently, cause unknown. Will any misture
of air and steam form an explosive mixture? A. It
(17) C. S. W., of Texas, says : I send you a specimen of a poisonous insect, which please name for
me. It is principally found on fruit trees, especially me. It is principally found on fruit trees, especially
the fig here, and inficts a very poisonous wound after the manner of the centipede, by stinging with its feet. fered excruciatingly for several hours. He was stung on the third finger of the right hand, and the pains eftended up his arm to the shoulder. There was very
little swelling of thel hand or arm. Two blue spots little swelling of the hand or arm. Two blue spots
marked the location of the wound. The pain appeared to yield eventually to the free application of a mmonia. A. Prof. C. V. Riley says : I judge, however, from the account that the insect is the blood-sucking cone nose
(Conorhinus sanguisuga). You will find an interesting (Conorhinus sanguisuga). You will find an interesting fornia, with this insect, in my annual report for 1884 The account is as follows: " The blood-sucking con nose, or big bed bug (Conorhinus sanguisuga Lec.), is
also frequently found in beds, and its bite is very se vere. Professor J. G. Lemmon, of Oakland, Cal., wa induced, after a botanizing exploration in the mountain
of Arizona, to camp with his family in a cave." He of Arizona, to camp with his family in a cave." He
writes: "Suddenly Mrs. Lemmon screamed, and a large, fiat, nimble-footed bug was seen hurrying away
into a rock crevice. It was pitiful to see the tears rolling down her cheeks as she swung her arm about, while applying ammonia to allay the pain of the wound, which immediately reddened and swelled, forming a convex surface, one inch or more across. Others were
also bitten. . . The presence of this insect is not felt also bitten. . . The presence of this insect is not felt
untll the keen beak is inserted. This is very hard, over three-sixteenths of an inch long, and can, therefore, be inserted through any kind of clothing worn in summer.
The swellings made soon fester, occasioning great pain The swellings made soon fester, occasioning great pain
and itching, and discharging pus for several days."
(18) J. W. C. asks the best mixture for hardening Bessemer steel. A. Bessemer steel should
be treated in the same manner as iron for caseharden ing. If a very thin surface hardening only is required, mear surface with animal charcoal pulverized and $w \in$ thick enough to make a paste. Heat to the proper temperature and harden in solution of cyanide of potassium and water (an ounce to a pail). If a deeper carboniz-
ing is required, the pieces may be packed in animal charcoal in an iron box and given a longer time at a red heat, then raise the temperature to a cherry red and
(19) J. E. W.-You can do much for yourself by judicious study of books, at the same time examining the working of electrical plants in your;neighborhood. A course of electrical experiments as de-
rived from book illustrations and as published in back rived from book illustrations and as published in back
numbers of Scientific American and Scientific Ambrican Supplement would give you a very good understanding of the general principles of any branch of electrical science that might please your taste. A
good general book to start with, if you are a novice, is Elentricity and Magnetism, by Thompson, \$1.25, and Electricity in Theory and Practice, by Fiske, $\$ 2.50$, with many special works on Lighting, Electroplating,
the Telegraph, Telephone, etc., which you will find in our book list.- You cannot mend a broken emery mix a little good tallow with the oil by heating.
(20) R. H. asks (1) a good paint for iron boat's bottom. A. Clean the bottom of the boat and oxide paint which may be made darker in color with little lampblack or plumbago finely pulverized. 2. If a boat draws six inches of water, will a propeller
drive it? A. Yes. 3. If a propeller is half out of water and half in water, will it drive a boat 12 feet long? If
so, how many miles an hour can boat go? A. Yes;

3 or 4 miles with 12 inch wheel. 4. My boat is 12 feet
long, 4 feet wide 2 feet in depth. What size engine will drive it 3 to 5 miles an hour? A. Abont a 1 hore power, such as made by the Shipman Engine Company. Advertisement in Scientific American. 5. What kind of propeller will answer for my boat? It draws
from 4 to 6 inches of water. A. A 12 inch wheel, set to from 4 to 6 inches of water. A. A 12 inch wheel, set
dip below the bottom of the boat 3 or 4 inches.
(21) F. M. H. asks : What is the value of an American shilling as generally understood in the United States? If different in different parts
of the country, please state value in each. A of the country, please state value in each. A.
There is no American shilling, and no generally acThere is no American shilling, and no generally ac states, except as relating to the value of the English
shilling. Up to about 1860, from the depreciated cur rency of colonial times, what was called a New England or Yankee shilling, though there was no such coin, represented a value of 16% cents, and this value attached to the term in many other States; in New York currency the shilling similarly represented $121 /$ cents, in Pennsylvania curreucy $131 / 2$ cents, and in Georgia and South (22) J. G., Jr., asks: 1. How much pressure to the square inch will ordinary lead pipe $3 / 8$
inch internal diameter bear? A. $\$ / 2$ inch lead pipe vainch internal diameter bear? A. $\mathcal{F}_{\text {inch }}$ lead pipe va-
ries from 0.625 to $21 /$ pounds per foot. The thinnest ries from $0 \cdot 625$ to $21 / 2$ pounds per foot. The thinnest
may stand 20 to 30 pounds cold water pressure; the may stand 20 to 30 pounds cold water pressure, the
heaviest, 300 to 400 pounds cold water pressure. 2. How much will ordinary rubber tubing of the same size $?$ 3. How much pressure would it be safe to carry in brass boiler, made of a seamless drawn tube $1 / 8$ inch thick, 6 inches diameter, and 15 inches long. heads $\frac{3}{32}$ inch thick, riveted, with an internal flue $21 / 2$ inches
diameter brazed in the heads? A. The diameter brazed in the heads? A. The $\frac{3}{3 y}$ head is very
thin for a boiler, but if properly put together, the boiler thin for a boiler, but if properly put together, the boiler
should be safe for 30 pounds steam pressure. 4. Would such a boiler when used with a little grate arranged to burn soft coal, with a good draught, run an engine 1/4
inches by $11 / 4$ inches (slide valve)? A. The boiler would run the engine, but would do very little work.
(23) W. D. L. writes: We have a 14 foot by 3 foot mirror, which, by long continued cleaning by inexperienced hands, has become very much
scratched; the scratches are not very deep, but sufflctent to blur the surface. Would putty powder repolish it, nd how should it be used? A. The application of ne rouge might brighten your mirror, but experi-
ence is necessary to do it properly. Apply the maerial with water and a soft chamois skin, and finally
(24) A. S. L. asks what oil should be ased to protect the interior of a riffe barrel from rust.
Use vaseline. Do not forget to give the gun bore A. Use vaseline. Do not forget to give the gun bore a
good wash with hot water first, then dry and apply the
(25) W. R. writes : I have a Grove batery, and I find that something is the matter with it in regard to amalgamating the zinc. The first time amalgamated the zinc, the mercury stuck very well,
but the next time I found the mercury would not stick t all. On the inside of the zinc, where the porous cell fits, the mercury was corroded. A. You probably vell amalgamated. Clean it off with some sand rubbed on with a stick and reamalgamate, using dilute acid
with the mercury, and rubbing the latter on with a trip of!galvanized iron.
(26) F. E. F. asks : How many cubic inches of gas will 1 gallon (231 cubic inches) of No. 74° gasoline produce: Could you give me a formula to
work it out? A. About 70 cubic feet. No reliable ormula can be given.
(27) F. S. D. B. writes : In a round chimney 335 feet high, 28 feet diameter at the base, and 14 feet at the apex, how much will be the oscillation of
he chimney at the apex? A. The oscillation of a chim the chimney at the apex? A. The oscillation of a chim-
ney of your description from unequal heating by the ney of your description from unequal heating by the
sun depends much upon the thiokness of the walls, th depends much upon the thickness of the walls,
thin walls oscillating more than thick ones. For such a chimney properly constructed, 2 to 3 inches would proent in this latitude.
(28) R. T. K. asks : Could a small cupola be made so as to melt 100 pounds of iron? What
should be its dimensions? A. Small cupolas for meltno 100 to 200 pounds iron have been made for experi-
nental purposes. They should be 12 inches diameter inmental purposes. They should be 12 inches diameter in
ide, 4 feet high, having 2 tuyeres with 1 inch nozzles side, 4 feet high, having 2 tuyeres with 1 inch nozzles,
2 inch wind' pipe, and using No. 1 Sturtevant blower, which requires $1 / 2$ horse power. Place the tu
inches above the hearth for a 100 pound melt.
(29) W. W. asks the proper size of steam pipe and
inches.
make th make the steamports 0.07 of the area of the cylinder. Exhaust port double the width of the steam port. For
your engine, 2 inches by 3 inches, the required area is your engine, 2 inches by 3 inches, the required area is
3 inches $\times 0^{\circ} \cdot 07=0^{\circ} 21$ square foot, or a little over one-fifth of a square inch. For small engines the ports should half the diameter of the cylinder in length, or one
(30) C. F. H. asks a receipt for mixing o-called copper paint to keep bottom of vessels from fouling. A. Buy fine copper bronze and mix it with a
good wearing body varnish that is not affected by water, and you will have
hip bottoms.
(31) A. F. L. writes : I have a common Nock legging that comes to the knee, of 10 ounce duck. Now I desire to make this waterproof, and at the
same time soft and pliable. Please let me know how to do it. A. Immerse the leggings in a bath of 4° to 5° B. of acetate of alumina prepared by dissolving hy remain in the bath for one hour, then pressed dry, and
to expel the acetic acid from the combination, exposed to expel the acetic acid from the combination, exposed
a a temperature of 2300° to 248° Fah. in a steam box.
(32) W. A. wishes good recipes for making birch beer and ginger ale. A. See article on " Effer vescing Beverage
MENT, No. 270.
(33) A. M. D. desires a receipt for mak ing and coloring sirup used in making milk shake, soda
water, etc. A. The ingredients are simply milk, ice,
(34) R. G. asks what ingredient to use
(34) R. G. asks what ingredient to use
in the manufacture of ink for writing machine ribbons, in the manufacture of ink for writing machine ribbons,
so they may resist the action of a damp atmosphere,
as in wet weather I find that the glycerine rises to the surface of the ribbons, thereby causing them to smea the paper badly. A. Use vaseline in lieu of glycerine. (35) J. M. U. asks : Is there a simple and harmless process by which rough or ridged finger
nails may be made smooth? A. The ridges can almost lways be rubbed down with moistened pumice stone The nail brush ought not to ridge the nails.
(36) H. W. P. writes : Will you oblige a constant reader with some information as to the pro
cess of making crucibles out of lime? A. Cut them out of solid lumps of lime and drill out the interior cavity. (37) J. W. T. N. asks : Can you state what is a fair estimate (with ordinary city pressure)
for consumption of gas per hour, with the various sized common burners, and with Argand ditto? Also, what candle power they respectively represent? A.
Allow five to seven cubic feet per hour consumption for each burner ; and from sixteen candles to twenty or more, according to the quality of the gas.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and al foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this offlee for prices, which are low, in acsordance with the times and our ex
tensive facilities for conducting the business. Address mUNN \& CO.. office Scientific American, 361 Broad way, New York.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted

July 24, 1888,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]

Advertising novelty, W. Diebel....... 386,7
Air, apparatus for moistening and cleaning, W. Air, apparatus
Griesser..................
Air brake, F. Lansbera...
Album, F. Reifschneider
Air brake, F. Lansberg.....
Album, F. Reitschneider..
Aluminum fluoride, manuf Aluminum fluoride, manuf..........................
Ammune. Elwell............
Anvil, J. O'Brien..
A xle box, L. D. Clark
Axle, car, s. Gissinger
Axle, car, S. Gissinger.......
Bag or satchel frame, W. R
Baling crib,. . . Mitchell...
Bar. See Grate or ash pan
Ban
Bar. See Grate or ash pan bar.
Barometric reservoir, F. Rhind
Bethe
Bath. See Photographic bath.
Batteries. porous cup for ele
Wheelock...................
Battery. See Storage battery.
Bearing, anti-friction, T. F. Fl
Bedstead, folding, E. T. Smith
Bedstead, folding, E. T. Smith .
Bell or alarm, call, v. A. Germain
Bell or alarm, call, V. A. Ger
Bench. See Wash bench.
Bicycle, tandem. T. O'Brien
Bicycle. tandem. T. O'Brien.
Binder, temporary, w. E w
Blaser, temporary, W. E. Weeks........................
Blast oxhaust apparatus, J. Y. Smith
Blower and chimney draught controller bined, c. M. Currier........................... Bobbin winding machine, J. MeCreary
Boiler. See Steam boiler. Wash boiler.
Boiler
 Boot drier, G. A. Hess...
Boot or shoe sole, A. Ha Boot or shoe sole, A. Hunven.........................
Boring machine, W. D. Tripp..............
Box. See Axle box. Letter box Sheet Box. See Axle box. Letter box. Sheet metal
box.
Brake. See Air brake. Car Brake. See Air brake. Car brake. Vehicle
brake.
Brake mechanism, fluid pressure automatic, G.
 Bustle, K. Hendricks
Button, H. B. R bin Button, H. B. Robinson
Button, W. F . Whitin
 Cable grip device. J. T. Hodkins..
Cables, splicing, J. Collins........ Cables, splicing, J. Collins............
Camera shutter, Bliss \& Middleton Can. See Milk can. Oil can. Refrigerator can. Can
Car
car
Car Car brake. C. W. W. Lanmpher
Car brake, w. Car brake, W. B. Turner......
Car coupling, W. H. Grifith. Car coupling, G. Strader.
Car coupling, A. Switzer.
Car door, J. W. Shewmaker.
Car heater, J. G. F. Allen.
Car, rarouy, Eurves of eable r
for moving, w. A. Phillips. ars, curre
Enos..
Cars, stree
Cars, street or station in
Card grinder, J. Bishop
Carrier
Carrier apron, endless, L. Miller
Carving machine, S. Y. Kittle.
Case. See Latch case. Nail case. Show case.
Centrifugal machine, Q .
Check loop, side, H . Low
Churn w. F. Cornalin.
Chect loop, side, H. Low

386,514
364914
386,537

Churn, T. S. Urie.............
Cider puriter, J. W. Williams
Cigar cutter, Young \& Thomas
Clamp. See Floor clamp.
Clamp. Garrison \& Relukauff. 386,631
Cleaner. See Flue cleaner. Slate cleaner.
Cleaner. See Flue cleaner. Slate cleaner.
Clocks by the variations of temperature, device
for winding, I. L. Roberts...

hydrazin sulphonic acids on retenchinon, pro-
duction of, w. Kelbe....................... 386,709
Comb. See Curry comb.
Commode, earth closet, or similar appliance, c.........
386,578
386,447
Doll...........................
Condenser, v. H. Beker....
Condenser, smoke, B. Robert
ondenser, smoke, B. Robert
ondiment mill. D. C. Ripley........
Cores, device for moulding, R. A. Regester.....
Cotton openers, etc., evening mechanism for
c. Potter.. 38
Coupers, manufature of J. H. Simpson......
Coupling. See Car coupling. Pipe or tube coup-

Curculor catcher, H. Lutts................................. 38,3
Curry comb, ©. W. Blythe.................. 38
Cutter. See Cigar cutter. Paper cutter. Rotary
$\begin{aligned} & \text { Cutter. See Cigar cutter. } \\ & \text { cutter. } \\ & \text { Cutting press, W. G. Entrekin................... ... } 386,459\end{aligned}$
Cutting press, W. G. Entrekin......................... 3366459
Dental articulator, J. L. P. Ieman
Dental cabinet, J. W. Penberthy
De............. 386,492
Dental engine,
Dental engine, W. A. Knowles............................ 386.476
Dental mixing dish, J. A. Kimball 386750
erials, apparatus for, Houseman \&
Die and dice box, ,....................................... DeGrain................. 38686578
Distillation, vacuum, W. L. Horne.............. 386,47
Distillation, vacuum, W. L. Horne.................. 386, ,i47
Draw bars die for forreing, J. H. Simpon...... 886,224
Simpson...................................... 386,726
Drier. See Boot drier.
Drill. See Grain drill.
Drill. See Grain drill.
Drill guide, tubular, J.T. Connelly..
Dynamo and motor, C. E. L. Brown.
Electric machine, dynamo, W. Fritsche................ 38666755
Electric signal or alarm, E. Davis................. 386,772
Electrical call system, J. C. Mccauzhlin............... 386.72972
Elevator. See Wagon bed elevator.
Elevator pate, J. H. Preater........................ 386,605
Elevator safety device. F. Trabue................ 336656
Elevator shatts, fre shatter for, A.. . Page..... 386,490
Elevator wells, hatehwats, or other roof Gpenings,
Elevator wells, hatchways, or other roof Gpenings,
safety cover for, E. H. Ashcroft................ 386,620
Elevators, automatic stop for, G. P. Hedge.
.... 386,43
Elevators. slack cable stop motion for, L. S.
Es Graves...464
Ellipsograph, Wilson \& Foster...............
Engine. See Dental engine. Rotary engine.
Engine. See Dental engine. Rotary engine.
Steam engine. Wind engine.
Extractor. See Pen extractor.
Feed water heater, w. c. Armstr

Fruit gatherer, J. Alexander......................... 3866880
Fruit holding device, J. J. W. Place............. 386,64
Fruit jar, G. C. बawy Gauge. See Floor board gauge.

386,714

as generators, apparatus for supplying liquids
in, A. s. Hickleg.............................. . 386,544
ate. See Bridge gate. Elevator gate.
Glue, apparatus for setting and laying.............. \mathbf{c}. Keller.. s
Governor, electric. Parsons \& Hoduit.........
Grain drill, A. C. McClelland......
Grain meter, automatic. J. Henry.
Grate or ash pan bar, C. Knaggs
Gun, magazine, E. G. N. Salenius....................... 386 38,
Gund, safety lock for magazine, C. M. Spencer.... 386
Hent
Hair tonic, W. T. Walnace.............................
Hame, W.T. Stearn....................
Hammer and plane, combined shingling, w. s.
Robertson................
Hanger. See Track hanger.
Harrow, Melson \& Harper....................... 386,598
Hat brims, machine for planing the folded edges
of, . Eickemeyer.
of, R. Eickemeyer............
Hat sweat band, W. F. Greene.
Hay stacker, M. A. Yeakley...........................
Heater. See Car heater. Feed water heater.
Heater. See Car heater. Feed water heater.
Heater for watering tanks, A. Mctowen.........
Heel blanks, manufacture of loaded, F. F. Ray-
mond,, d................................ 386.55
Hitching strap fastener, s. E. Bauder............ 386,68
Holder. See Lampen shade holder. Pencil holder.
Ticket holder. Type line holder.
Hook. See Meat hook.
Hoop. See Tub hoop.
Hot air feeder, Clark \& King............................. 386,6330
Hot air feeder, Clark \& King.......
Indicator. See Station indicator.
Induction coil, coin operated, Williams \& Roov-

Ironer. neckband, A. T
Jack. See Lifting Jack.
Jar. See Fruit jar.

Knife sharpener, Johnson \& Stewart Knitting machines, latch opener for, L. Jones, Lacing, corset, A. 8 .
Lamp. H. E. Shaffer
Lamp, E. Tooey.
Lamp, central draught, F. Rhind Lamp shade, S. R. Kneeland.. Lamp shade holder, W. E. B
Lamp, signal, A. F. Prahm Lateh, J. H. \& T. D. Morris Leather crimping machine. J. F. K. O'Connor....
Leather, machine for the treatment of. H. Thu Lemon squeezer, A. Edie.. lifting Jack, E. Foust..

Lime vat agitator, A. A. My
Liquors, aging, W. L. Horne. Lock, G. G. Smith....

Loom, S. T. \& W. S. Thoma Loom picker, L. A. Carver
Loom shuttle, L. W. Fifeld Luoms, lag for patten chains of. K. Jowe Lumber triminer, M. Garland. Manholes and catch basins, cover for, J. J. Bur Measuring
Ehlers
Meat hook, J. W. Johnson, H. Howard. Metal cutting tools, composition of matter appliMetals from G. Montague etallic wheel, W. P. Bettendorf Milk can, C. M. Holden. Motor. See Sewing machine motor Mowing machine, G. G. Crowley aill case, W. G. Barnes. Sippers, cutting, H. S. Brownso ose ring, L. W. Wood oil can, W. H. \& W. J. Clark Neville....
Ore concentrator. F. M M Oven for gasolinestoves, w. Wells. Padlock, W. F. Troast.
Paper cutter, toilet, C. R. Williamson,
Paper rolls, stand and cutting knife Bolton...................................... en extractor, W. G. Collins encil holder hotographic bath, A. Anderson Pipe or tube coupling, w. Martin oke, animal, W. Macy.. ropeller, vibrating. I. G. Howell Pulley, friction, E. W.
pump, air, F.J. Wills. ump, oscillating. L. J. P. Pontalli Pump, well, O. E. Davidson. Radiator, W. E. Prall Rail joint, P. Brown
ailway signal circuit breaker, E. B. Iv Railway tracks, machine tor laying, M. Smith. Ralway traction device, D. D. Haray Railways, construction ot, Wood \& Fowle W. H. Knight...

Rake. See Hay rake
Reel. See Fishing ree
Refrigerator can, L. J.
Ring. See Nose ring.
Roof, J. Haish........ Rury engine, C. W. Doten Ruler and check cutter, combined desk, H. B Sash fastener. W. Yelland, J Scow, F. A. Lockwood.......
Seal for locks, etc., G. G. Smi Seal lock, W. F. Beasle,

Sewing machine, G. A. Annett.
Sewing machine motor w. Hus
Sheet met
Sheeler. See Pea sheller.
Sight feed lubricator, E. Lankenheimer.
Signal. See Electric signal.
Smelting pyrite G. Bradish

Spoons or forks, die for thickening bl Wallace.	
Sodium bicarbonate, apparatus for roasting, E. Solvay .	
Sower, seed, S. \& M. Freeman. Square, miter, and try square, combined, J. Mur	
Stamp, hand, H. H. NorriStand. See Music stand.	
Steam engine, rota	
Stone sawStone sam	
stove, zas, J	
Stove or range, cooking, 1.Stove, vapor, Z . Davis...	
Sringing apparatus, T. l .able. See Folding table.	
Trap. See Fish or game	
expander, T	
Tuyeree, J. CummingTuyere,A. Vansickl	
Valve, automatic cock. J. F. Carpenter............ 388,523	
Valve, automatic eas, M. \mathbf{C}. BrValvecontroller, electric, E.	
Valve for filter, A. A. J. West.........valve for hydrulic presses, L. mill	
Valve for water service pipes, automatic, C. Medbury..	
ve, ova	
Vehicle brake, A. W. Lane	
Vise, F. E. Farwell	
Wagon bed elevator, W. A. Holliday.... 386,469 Wash bench, ironing table, and settee, combined, o. S. Jennings 386,471	
ash boiler,W. M. Coventry.................... ${ }^{386,62626}$	
Washing machine, E: Herrington. Watches, balance escapement for, S. E. Kochen derfer	
Wheel. See M	
Windmill, A.R. Bowman. \qquad 386,	
Wire fabrics, flnishing woven, S. T. \& W. S Thomas..	
rod reel discharging, mechanism, F. H. Dan-	

DESIGNS.

Sride.front, F. M. Livingsto
Mrd, patter, B. C. Locket
Dress, girl's. C. Sheils..
en hoder barrel, G. H. Shattuck.
Photorraphic vignete, J. C Atkins
Purse or bag frame, H. S. Craus.
Skirt, lads's walking, C. Swain
Sleeve, E. L. Jenkins.

TRADE MARKS.
rackers, osster, D. F. Stauffer
Cutiery, and sherers or scissors, ta
toilet, Union Cutlery
Company
Diamonds, genui
heimer $\& \mathrm{Co}$
arvesting machines and parts thereof, Aultman
Hot air furnaces. R. W
Inks, T. Davids Company.
balsams, and ointments, and animals,
edicine composed of iron and sarsanarill.........
Yetal polishing preparation, Savaue Bros
Preparation used as an emmenagogue,
G. Lloyd.......................
Aazor strops. Union Cutlery Comp
alve or ointiment, M. Sulz-Bacher.
eed, annatto, A: s. Lacelles \& Co
oap. laundry and toilet, J. S. Kirk \& C
Soap, toilet and household
Teas. black, Ridgway $\& \mathbf{C o}$
F. Lewis
nilet preparations. certain named, Hall \& Rucke! 15,707
Tools and harmmers; edge, agricultural, and min-
ing, A. W. Wills \& Son................7522,
A Printed copy of the specitication and drawing of any patent in the foregoing list will be furnished from
this office for 25 cents. In ordering please state the name his office for 25 cents. In ordering please state the name Co., 36 Broà Bà wà, New York.
Canadian Patents may now be obtained by the inventors.for any of the.inventions named in the fore-
going list, provided they are simple, at a cost of $\$ 40$
each. If complicated, the cost will be a little more. For full instructions address Munn \& Co... 361 Broadway,

ARTESIAN

 Catalogee
PierceliEx
New
Ner CHEMICAL AND ALLIED INDUS

TCE-HOUSE AND COLD ROOM.-BY R.

OIL WELL SUPPLY CO. Ltd

PROPULSION OF STREET CARS.-

MATCPHMAKERRQ
TELESCOPES- THEIR HISTORY

VVATBIE MIOTORE.

RAILS FOR STREET RAILROADS.-

ART PIOTO ENGRAVING CO.

COMPARARATIVE VALEUE OF STEAM

Hydraulic Elevators water ${ }^{-A N O}$ Otors.

Tuerk Hydraulic Power Co.
12 Cortiandt St., Now York,
39 Dearborn St., Chicago. HYPNOTISM IN FRANCE-AN IN-

Scientific Rook Satalogue

 MUNN \& CO., Publishers scientific American,

ELECTRIC LIGHT AND POWER,

Industrial Publishers, Booksellers, and Importers, 810 Walnut St.. l'hiladelphia, l'a., U. S. A. Scientific Books 80 Revised Catalogue of Practical and and Circulars, the whole covering every branch of Science applied to the Arts, sent free and free of postage to any one in any part of the world who will furnish his address. School of Pharmacy. CORNELL UNIVERSITY. Courses in Practical Pharmacs, Pharmacognosy, Materia Medica, Chemistry, Toxicology, Botany, etc. A Descriptive circular, giving full information as to terms of admission and character of the work of the schoo will be sent on application to the Treasurer of Cornell University, ithaca, N. Y. Paris Universal Exposition OF 1889. Ofince of the U. S. Commission, Mills Building, 15 Broad St., AND 35 Wall St., NEW YORK. All persons, firms, or corporations who desire to make exhibits at the above named Exposition are hereby notifled that information and blanks for applications for space will be furnished by the undersigned upon application to the above address.

VALUABLE BOOKS.

REED'S ENGINEERS' HAND-BOOK to competency as First and Second Class Engineers. B W. H. Thorn, Membert Shipbuilders, with the answers to the Elementary Questions. Illustrated by 297 diagrams and 36 large plates.
Twelfth edition, revised and enlarged, $188884 .50$ MECHINICS' AND ENGINEERS' POCKET 300K of Tables, Rules, and Formulas pertaining to Squares, Cubes, and Roots, etc., Logarithms, Hydrau Architecture, Masonry, Steam Vessels, etc., Limes, Mor
tars, Cements, etc. Fifty-second Edition, 109th thous and. By Chas. H. Haswell. 1888.
THE MECHANICIAN.-A treatise on the Con struction of Young Engineers and Scientific Amateurs, comprising the arts of Blacksmithing and orging, th the various methods of using and grindizg them, and Mechanical Engineers' and Machinists' Art. Illustrate

 free of postage to any one on application. $\mathbf{I N T O I N} \mathbf{I N}$

Publishers of Scientific American MACHINERY PALACE OF THE PARIS the machinery Palace, and of the 3623 foot trusse

QUARANTINE SYSTEM OF LOUISI

ARCHITRECTRLL BOORS

Useful, Beautiful, and Cheap.

To any person about to erect a dwelling house or sta- ble, either in the country or city, or any builder wishing to examine the latest and best plans for a church schoo to examine the latest and best plans for a church, schoo or low cost, should procure a complete set of the ARCHI- TECTS' AND BUILDERS' EDITION of the ScIENTIFIC AMEHICAN.
 \qquad
 \qquad find the work suggestive and most useful. They contain tion and approximate cost. Four bound volumes are now ready and may be obtained, by mail, direct from the publisilers or from any newsdealer. Price, $\$ 2.00$ a volume. Stitched in paper
 MUNN \& CO., Publishers,
 361 Broadway, New York
 PRREGEEWPAPER The Koch Patent File. for preserving newspapers, Mag azties, and pamphlets, has been recenty improd and arice reduced. sulbscribers to the ScIENTFIC AMEH1 - $+3+3=$
 CURE DEAF
 2

WEITMTER PATENT FURNACE IDE Antomatic Engines, Traction and Portable Engine

Steam! Steam!
We build Automatic Engines from 2 to $200 \mathrm{H}$. P.,
equal to anything in market.
A Large Lot of 2,3, and 4-H. Engines
With or without boilers, low for cash,
B. W. PAYNE \& SONS,
Box 15,
Elmira, N. Y.

GUIL \& GARRISON

ROCK BREAKERS AND ORE CRUSHERS.

$\$ 10.00$ to $\$ 50.00$
 HISTORY OF THE ELECTRICAL ART

ICE \& REFRIGERATING

TO BUSINESS MEN

The value of the SCIENTIFIC AMEBICAN as an adver-
ising medium cannot be overestimat id. 1 as circulation

 For the SCIENTIFIC AMERICAN.
Fress tates see top of first column of this page, or ad-
MUNN \& CO.. Publishers.

ASSIGNEE'S SALE.

 Smith, Beggs \& Ranken Machine Co. Property.

 FOR SAIE.-Twenty patents, chiefy relating to the now amountsto over $\% 6,000$ per day P Princicials only deam
with. Address EXECTRIX, Box I32, Orilia, Ont., Cau. FOR SA LEL-Candian and English patents on hand
Or power wishing machine. W. T. Venable, ChristiansThe Scienificic merican publicarions for 1888.
The prices of the different publications in the United
States, Canada, and Mexico are as follows:
RATES BY MALL.
The Scientitic American (weekly), one year
The Scientitic American Supplement (weekly), $\$ \$ 3.00$

COMBINED RATES.
he Scientific American and Supplement, A anchitects and Buidd. $\$ 7.00$

This includes postage, which we p pay, Remit by posta
or express money order, or draft to urder of

W．L．DOUGLAS 43 SiPE FOR GENTLEMEN． The only fine calf 83 Seamless Shoe in the world
made without tacks or nails．As stylish and dura－ made without tacks or nails．As stylish and dura－
ble as those costing 45 or $\$ 6$ ，and having no tacks or nails comfortable and well－fitting as a hand sewed shoe．Buy the best．None genuine unless sta
＂W．L．Douglas 43 Shoe，warranted．＂ W．L．DOUGLAS $\$ 4$ SHOE，the original and made shoes costing from $\$ 4$ thoe，which equals custom－
． W．L．DOUGLAS \＄2．50 SHOE is unexcelled W．L．DOUGLAS．\＄2 SHOE is wo All the above goods are made in Congress，Button，and W．L．DOCGLAS，Brockton，Mass

TO TNVENTORS AND MANUFACTUBERS

The 57th Annual Exhibition American Institute of the City of New York Will Open OCTOBER 3，188s secure proper space and clasitication．For blanks and

WELLS BROS．\＆CO．，${ }^{\text {CREENFIELD }}$ WASS．

Screw Cutting Machinery and Toons for Machinists＇，
Carriage Makers＇，

NCKEL PLATING RPoLISHMG MATERALS ZUGKER \＆LEVETH Chemicalcentew Yorklus cs
 NICKEL ANODES， NICKEL SALTS， COMPUGES， OMPOSITION， BUFFING WHEELS，
LEETRO \＆NICKEL
PLATING OUTFITS．

PATENTS．

 on Infringementso of Patents．All business intrusted to
ithem is done with special care and promptness，on very
reasonable terms A pamphlet sent free of charge，on application．con－
tainnor full information about Patents and how to pro
eure them directions conceming cure them；directions concerning Labels，Copyrights，
Deigign，Patents，，ppeals．Renissuas．Infringemens，As，
signonts，Rejected Cases，Hints on the Sale of Pa－
tenta，etc，
 patents in alit the principal couptries of the worla．
MUNN \＆CO．，Solicitors of Patents，

 Otis Brothers deco． 38 PaRKKIROW，NEW YORK． THECOPYINGPAD－HOW TO MAKE

PRESERVATION RF MEAT

The Original Unvulaanized Packing．

EI．V．JOEENTE＇

Asbestos Patented Roofing
PIRRFMPROOR．
 H．W．JOHNS MFG．CO．， 87 Maiden Lane，N．Y． Chicago．Philadelphia． London．

CHALLENGE EMER ${ }^{\text {R }}$ GRNAR JAMES B．EADS．－AN ACCOUNT OF

エエエヨ

Sciantific American

ESTABLISHED 1846.
The Most Popalar Scientific Paper in the World． Onls \＄3．＇00 a Year，including Postage．Weekly． This widely ci rculated and splendidly illustrated
paper is publist．ed weekly．Every number contains six－ teen pages of useful information and a large number of original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures Chemistry，Electricity，Teiegraphy，Pbotography，Archi－ ecture，Agriculture．Horticulture，Natural History，etc． Complete List of Patents each week．
Termis of Su bscription．－One copy of the Scien－
TIFIC AMERICAN will be sent for one year－ 52 numbers postage prepaid，to any subscriber in the United States or Canada，on receipt of three dollars by the pub－ hishers；six months， 81.50 ；three months，$\$ 1.00$ ．
Clubs．－ Special rates for Masters．Write for particulars． Thessafest way to remit is by Postal Order．Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－ able to MIUINIT \＆CO．，

361 Broadway，New York． T 포푸
Scientific American Supplement． This is a separate and distinct publication from
THic ScIENIFIG AMKRICAN，but is uniform therewith in size，every number containing sixteen large pages full of engravings，many of which are taken from foreign
papers，and accompanied with translated descriptions papers，and accompanied with translated descriptions．
The Scientific American SUPPLemient is published The Scimntific American supplement is published
weekiy，and includes a very wide range of contents．It wresents the most recent papers by eminent writers in
pll the prinzipal departments of science and the all the prinsipal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy， Natural History Geography，Archæology．Astronomy，
Chernistry，Electricity，Light．Heat，Mechanical Engi neering．Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photogriphy，
Shat
echnology，Manufacturing Industres，Sar itary En Cechnology，Manufacturing Industries，Saritary En－
gineering，Agriculture，Horticulture，Domestic Econo－ gineering，Agriculture，Horticulture，Domestle Econo－
my，Biography，Medicine，etc．A vast amount of fresh
and valuable information obtainable in no other pub－ lication．
The most important En，ineering Works，Mechanisms， and Manufactures at home and absid and described in the SUPPIEMENT．
Price for the Suppiement for
Canada． 85.00 a year，or one copy of the SCIENTIFIC AM－ zilican and one copy of the SUPPLEMLNT，both mailed
for one year for $\$ \tau .00$ ．Single copies 10 cents． or one year for $\$ 7.00$ ．Single copies 10 cents．Address MUNN \mathbb{E} Co．， $\mathbf{3 6 1}$ Broadway， $\mathbf{N} . \mathbf{Y}^{2}$ ．， Scientifig american．

Builders Edition．

The Scientific American architects＇and BULLDERS＇EDITION is issued monthly．$\$ 2.50$ a year． Single copies， 25 cents．Forty large quarto pages，equal
to about two hundred ordinary book pages；forming a arge and splendid Magazine of Architecture，rich ly adorned with elegant plates in colors，and with other flne engravings；illustrating the most interesting ex－
amples of modern Architectural Construction and allied subjects．
of a variety of the latest and best plans for private resi－ dences．city ard country，including those of very mod－
erate cost as well as the more expensive．Drawings in erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Speciflcations，Sheets of Details，Estimates，ete The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world．Sold by al 50 a year．Remit to
MUSN \＆CO．，Publishers 361 Broadway，New York．

