
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LVIII. - No. 16. $]$	NEW YORK, APRIL $21,1888$.	$[\$ 3.00$ per Year.

THE VOLNEY W. MASON HOISTING MACHINERY AT THE GREAT HAY DEPOT OF THE NEW YORK CENTRAL RAILWAY, NEW YORK CITY.-[See page 244.]

\%̌ientific ghmerical.

HSTABLISHED 1815.

MUNN \& CO., Editors and Proprietors.

PUBLISHED WEEKLY AT

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S. or Canada.One copy, six months, for the U. S. or Canada
One copy, six months, for the U. S. or Canada.......................... 15300
One copy, one year, to any foreign country belonging to Postal Union, 400 Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the
ScIENTIFIC AMERICAN, for a little over one year, may remit $£ 1$ in current SCIENTIFIC AMERICAN, for a
Colonial bank notes. Address
munN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMRRICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pakes. uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMET with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEment,
$\$ 5.00$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belonging to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
combined Rates.-The Scientipic American and SUPPLEMENT
will be sent for one year, to any address in U. S. or Canada, on receipt of will be sent for one year, to any address in U . S. or Canada, on receipt of
seven dollarg. seven dollars.
The safest
rexistered letter.
Australia and New Zealand.-The Scientific American and SOPPLEMENT will be sen
rent Colonial bank notes.
rent Colonial bank notes.
Address MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.
NEW YORK, SATURDAY, APRIL 21, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

INO. 6里8.

For the Week Ending April 21, 1888. Price 10 cents. For sale by all newsdealers.

II. Biograppre - Arthur sthopenhauer. The hife of the preat

IV. BoTANY.-The Myrobalan or Cherry Plum.-The Prunis cerasi

V CHEMISRTR.-A Nem Alkallod-CCalycanthine.-Its chemical

VI RLECTRICITY.-The Filectrical Odontoscope. An apparatus

 X. MECHANICS.-How to Turn a Sphere.-Two practical desgorip-

central park vegetation.

Rain and sun a-plenty have hasterfed along the somewhat tardy vegetation of the Central Park. The lawns and hillsides seem daily to become greener and more lixuriant, and the flock of Southdowns over in the Western pasture nip less eagerly toward the close of day; the lambs having more time for sport among the rocky hillocks and knolls at the southern limit o their domain. But there is a deal of moisture in the ground, and "Shep," the collie, who has charge of the flock, must needs keep moving around for fear of rheumatism, even keeping his long, bushy tail well clear of it, though later on, when the grasses are tall and dry, and the flock quieter, he will doze a way the sumumer afternoons under the wide-spreading elm near the Western promenade. Many thousands of tulips and other perennials planted last autumn are well up above ground, and others, less robust, are lifting up ittle trapdoors of soil above them farther and farther daily. The daffodils will be blooming a maze of gold in a fortnight or so, and the lilac bushes will be covered with bunches of purple perhaps even earlier. The daisies and pansies, set out from the hotbeds a few weeks ago, are now in luxuriant bloom, and when they go, probably about the middle of May, will be succeeded by the coleus and geranium and the summer plants. Pretty soon, now, the wistaria that has been so much admired at the arbor near the Casino-72d street near the East drive-will be in bloom.' The coreopsis, whose seeds, not the flower itself, as the name would imply, have the resemblance of a bug, is developing rapidly, and by the last of May will be in bright yellow bloom-a bloom that will last till frost comes again.
On the rocks near the Art Museum is a mass of that curious plant, Live Forever, with succulent thick leaves; a hardy plant it is, that minds neither hottest sun nor prolonged drought. Then there is the genista, the broom plant, also low-growing, whose yellow flowerets will be a-bloom in June; the wild asters of the wood, that throw out their white and purple blossoms toward the last of summer. Further along is the redhot poker (Tritonia), being like a lily, and indeed it is sometimes called torch lily. It is a late flower, not coming till autumn, but when its neighbors have well nigh exhausted their bloom, it will throw out a spike of brilliant scarlet flowers. In a field near the hothouses is a large bed of perriwinkle, with its diminu tive purple flowers in full bloom. It is used for car peting under shrubbery like ivy. Near by is a quantity of German iris, now only a. mass of green leaves, butin June it will be filled with white, and red, and yellow, and blue, and purple flowers.

One of the most beautiful trees in the park is the viridis] (Forsythia). There is a pair of them over on the west side, just above the ball ground. They stand about eight feet from the ground, and are covered with a luxuriant mass of yellow spires, that make great curves outward, and droop till they touch the ground, thus forming a bower. It is easy to understand why they have been given the name "golden bell," for they bear a strong rese
The honey locusts along the Western drive are thriving apace toward blooming, being one of the hardiest trees known for rocky soils. Its proper name is Gleditschia triacanthos, its foliage being made up of many finely pinnate dark green leaves, having smal flowers and long irregular pods filled with highly polished seeds. These seeds are surrounded with a pulp of intense sweetness, with a delicate flavor well known to most boyish palates; but these pods are not so easily gathered, for, as if nature was opposed to their being indulged in too freely, there are formidable spines growing along the trunk, which will discourage the most ambitious climbers, being stout as hickory and sharp as a serpent's tooth.
The cedar of Lebanon (Pinus cedrus), also on the Western drive, is in bud, and is alone worth a visit to the park, being at once majestic and beautiful. It comes from historical Mt . Lebanon, and is the same variety of which the palace of David and temple of Solomon were built. Once, as we are told, it covered the hills of Lebanon, some of the trees having diameters of seven and eight feet, and, because of the fragrance anddurability of their wood, being in demand for great that forest after forest disappeared, till finally, great that forest after forest disappeared, till finally,
in the time of Justinian, not enough could be found to build a single house.
The spreading junipers (Juniperus virginiana) are beginning to burst their brown and yellow aments, and
are giving other evidences of activity. So are the are giving other evidences of activity. So are the Scotch pines, the Austrian pines, the Nortile and the mulberry

The Characteristice which Surround old Age.
An English physician, who has investigated the characteristics and surroundings of centenarians, says he found that the average qualities were a good family history, a well made frame, of average stature, spare rather than stout, robust, with good health; appetite,
and digestion, capable of exertion, good sleepers, of placid temperament and good intelligence, with little need for and little consumption of alcohol and animal food.

An April Thunder Storm.

A dispatch to the Associated Press from Tionesta Pa., says: During the frightful thunder storim that passed over the oil regions on Friday afternoon, April , Simon Frey was in his barn, looking out of the door. A blindfig flash of lightning was followed almost im mediately by a terrific thunder clap, and Frey saw a ball of fire run along a wire clothes line from a post in the yard to a corner of the house, to which one end of the line was fastened. When the ball struck the house, Frey saw the splinters fly from the timbers, and the ball disappeared.
Frey's wife and baby were in the house. He ran to he house to see if they were injured. He found the baby lying in one corner of the kitchen and his wife in the middle of the floor. Both were apparently dead. He dashed water in his wife's face, and she slowly re covered. Frey then succeeded in restoring the baby His wife's shoes were lying side by side under the table. When he lifted his wife from the floor he found a round hole burned in her dress between her shoulders. He stripped the dress off and discovered a red spot on the lesh, from which two red streaks led, one to the right hip and down the side of the right leg to the toes. The other streak led in the same way to and down the left eg to the toes.
As soon as Mrs. Frey was able to speak, she told bee husband that she had been sitting in one corner of the kitchen, holding the baby, when she suddenly felt a great shock, and that was all she remembered. She had her shoes on at the time. The electric fluid which Frey had seen had evidently struck Mrs. Frey after it entered the house at the corner, separated, and passed down each side of the body, tearing off her shoes, and leaving the marks of the passage as described. No marks were found on the baby, which had been harled across the room.
On looking for further traces of the electric current, Frey found that it had passed through the floor into the cellar, where it had burned the iron hoops off a vinegar barrel and made a hole in the bottoms of three milk pans.
A bolt struck the house of William Oadel, a quarter of a mile from Frey's. It came down the side of the chimney, hurling the bricks in every direction, and pulverizing many to fine powder. It followed the chimney into the garret of the house, ran along the garret floor to a partition, when it went through the floor, half of it on one side of a partition wall on the story below and half on the other side. The half that was on the left side of the wall jumped into the room when half way down, setting a bed on fire, tearing the baseboards away on all sides of the room, and then passing throngh the floor again to the kitchen, where it knocked a servant senseless, broke a table to ${ }^{\text {splint }}$ ers, set fire to a splint bottom chair, and then passed down into the cellar.
The part of the fluid that went down the right side of the partition up stairs entered a bedroom where one of Oadel's sons was lying sick in bed. It splintered the footboard of the bed, ran along the floor, burning the carpet as it weñt, returned to the párition, and, passing down into it, knocked it entirely away between the dining room and kitchen, and disappeared through the floor into the cellar. With the exception of the servant girl, no one in the house was injured, although there were seven persons in the dining room and two besides the girl in the kitchen. Mrs. Oadel ran up stairs to her sick son, and found the carpet on fire.
The invalid was uninjured. The fire had barely been extinguished when the house was struck the second time, the bolt passing through the roof and entering the sick man's room. It knocked the headboard of the bed to pieces, and ran along the four sides of the room, and, uniting again on one side, whereit passed through the floor, splintered the casing from a window in the room below, and tore the clapboards off the side of the house for several feet, spending its force against a cherry tree, to which it jumped from the house, splitting its trunk as if it had been done with an ax.
The servant whom the first stroke of lightning rendered unconscious had not been restored when the house was struck the second time, but she came to without anything having been done to restore her, immediately after the house was struck the second time. Every person in the house, except the servant and the invalid, was made deathly sick by the second stroke, some of them suffering with distressing nausea, attended by a strong sulphurous taste for hours afterward. The invalid was not affected in any way by the fluid, although he declared that a flame the size of a lamp flame rested on his forehead while the current was flashing about his bed, and that from it a thousand jets and sparks issued and seemed to envelop his head. No fire resulted from the lightning, except the burning of the carpet in the invalid's room, but the damage to the property will require the almost entire rebuilding of the house.

The recent practice of the French Mediterranean squadron under Vice-Admiral Amet, in the roads of Toulon, aptly illustrated how advantageous to the French are the present changes in the mode of conducting naval operations. When good seamanship was the primal consideration, the Anglo-Saxon had a manifest superiority; he being a born sailor and possessing that phlegmatic coolness and endurance which counts for so much in the handling of sailing craft. But now that the sailor is succeeded by the engineer and machinist, when the rigors of sea life have gineer and machinist, when the rigors of sea life have
been reduced by science to a minimum, and quickness been reduced by science to a minimum, and quickness
and ingenuity are of the first importance, the Latins are and ingenuity are of the first importance, the Latins are
showing well to the front; for, if we may rely upon the accounts of the recent practice of this French squadron as given in L'Avenir Militaire, there were fewer breakdowns and mishaps and quicker response to orders than in any similar practice of modern ships, whatever their nationality. The squadron was made up of six ships of the line, Colbert, Devastation, Amiral Duperre, Courbet, Redoutable, and Friedland, the floating batteries, Indomptable and Terrible; the Milan, a first-class steel cruiser; the Condor, a cruising torpedo boat ; the Balny and Doudart de Lagree, sea going torpedo ships; and six torpedo boats of the harbor defense type. The squadron was manned by 6,000 men and carried a battery of 130 big B. L. guns, besides a formidable display of machine guns. Though there a a stiff breeze of wind and a heavy sea running, the uadron formed line, divided into two columns, and Cowned crescent and wedge without running afoul the one ship of the other, or falling astern from mishap
or lack of coal. To those who have studied such displays this will scarcely fail to be looked upon as remarkable.

In the new regulations for the conduct of field operations of the German army (Felddienst-Ordnung) the careful observation and mathematical precision of the German mind is clearly discernible. The composition of the advance guard and the rear guard of a marching army has been variously formulated by military writers, with a general tendency to strengthen the van and neglect the rear. In the new German orders this is reversed; the rear guard being made by far the strongest, because it cannot look for any support, while the advanced guard if in need of re-enforcements has only to fall back or wait for the main body to come up. Itis,however, where directions are given as to keeping a portion of the road clear on the line of march and the treatment of troops while en route that these orders are most original and interesting, and, with no intention of giving an opinion as to their efficacy, their reasonableness is obvious. Students of military history will remember how often armies with everything favoring their success have been detained or even demoralized
by long marching without food. It is the footsore inby long marching without food. It is the footsore in-
fantry and the lame horses of the cavairy that give the trouble, for, as the strength of a chain is not greater than that of its weakest link, so an army cannot move faster than its slowest sections. Napier, in his admirable history of the Peninsular war, describes the disastrous effects of that penny wise, pound foolish polig of saving an hour that should be given to rest, and tien losing six because of premature fatigue of the soldier, and there have been many modern instances of this.

Major Wachs, of the German army, in an extended examination of the place held by Britain among the nations, and especially as to her military strength, declares her to be weak in her insular defenses and as having by no means adequate power to defend her possessions. These latter, he thinks, are likely to tend to her utter discomfiture in the future, for that once her strength is put forth to defend them, she will leave her immediate coast assailable, and in proof of the danger of this he quotes Napoleon's remark: "Six days' command of the channel, and on the fifth I shall be in London." He does not believe that the guns made at Woolwich are to be depended upon, and cites the accidents aboard the Collingwood and Thunderer as evidence in support of this belief, and a recent order of the British Admiralty to the captains of the fleet, forbidding the firing of big guns save under special instructions. From a translation of this paper printed in the Royal United Service Journal, we quote: "Major Wachs reproaches us [the English] with our inaction and irresolution in allowing the favorable opportunity of the great war of secession [American civil war] for putting down our dangerous rival for the dominion of the North Atlantic to pass away. When the war which he foresees with America once commences, he prophesies the loss of Canada, which he supposes not to have forgotten its French origin."
A French military writer, M. De Fletres, in an essay on the education of the French infantry, makes some very serious charges against the French soldier. The latter, he says in effect, has serious moral as well as physical defects; grossly abuses his offcers when out of hearing, is careless and slovenly, has no heart for military service, and, when opportionity comes, conceals all trace of its insignia.

How to Make Crayon Portraits.

by r. w. ourrier.

Supply yourself with some charcoal pencils, a tretcher covered with Whatman's crayon paper, and hamois skin palette, a chamois stump, tortillons, a porte crayon, some sticks of black Conte crayon No. 3, some innely pulverized pumice stone, an easel, a mahl stick. Having now purchased your materials, you.proceed to sketch the head you are going to make with a lead pencil on thin, smooth paper. Having made the sketch, rub charcoal entirely over the back. Now lay this sketch over the stretcher and trace the outlines with a hard lead pencil on the sketch, remove the sketch, and you will find the drawing nicely transferred on the stretcher.
Now grind up some crayon very fine with emery paper, and saturate the chamois palette. Dip your chamois stump into the crayon sauce and work in the principal shadows, preserving their form and depth. After the crayon is thinner on the stump, rub in the half tints. After this is done take a tortillon and place in your porte crayon holder and work in the shadows all over the face, evening up the shadows and smoothing up the entire face. Mix some of the pulverized pumice stone with the powdered crayon and rub this preparation over the background and drapery with the end of your finger, using a circular motion. By practicing on drapery awhile you will acquire the knack of doing this evenly and without any difficulty. Preserve the shape of the high lights, also the catch lights in the eyes. Never rub the shading of background over the head. Let all the shading of the background be at the sides. Back of shoulders, and extending above them a trifle, a little higher toward the edges of the portrait, a piece of Green's ink eraser can be used in the porte crayon holder to advantage at times for cleaning up shadows where they are too dark; also for working backgrounds. A jet black background is sometimes suitable for portraits where the drapery is white. This can be best made by rubbing the crayon all over the surface of the background, and then smoothing it up and rubbing it in with the finger or thumb. In making lace, rub in the shadows and rub in the half tones all over the lace. Then pick out the pattern and high lights with a piece of Green's ink eraser. In this way lights with a piece of Green's ink eraser. In this way of doing it.
Point crayon work is much more difficult. The portrait is entirely stippled over with the point of a No. 3 black Conte crayon. Some artists use a crayon sharply pointed, and draw in lines very lightly over the shadows and cross them with parallel lines, making diamondshaped interstices all through the shadowed side of portrait. The crayon must be worked very lightly in trait. The crayon must be worked very lightly in
doing this class of work. For anateurs, we would addoing this class of work. For amateurs, we would ad-
vise them to stick to the stump and tortillons. Very fine portraits can be made by this method alone. Considerable practice will be necessary before the pupil will be able to execute fine portraits; but by following patient practice, to do a satisfactory piece of work.

The Work of Counting $\$ 150,000,000$.
The money stored in the United States sub-treasury building on Wall Street is now being weighed and counted ${ }_{2}$ and this is rather a more serious undertaking than the average citizen would suppose from his own experience at taking account of funds. The necessity for the count arises from the fact that assistant treasurer C. J. Canda is about to retire from office to be succeeded by Judge A. McCue. The retiring assistant treasurer must give an account of all funds that have come into his hands during his incumbency, in order that he may be released from liability under his bond, and may take a receipt from his successor ior the amount turned over to him. The count is made by diat W of the secretary of the treasury and treasurer supervision of Major J. F. Meline, who has under him eight expert counters and weighers of money and eight able bookkeepers and accountants. These gentlemen, two other gentlemen appointed to look after the interests of the outgoing and incoming assistant treasurers respectively, and to represent them in the settlement of any disputed questions that may arise during the progress of the count, sixteen laborers to handle the coin, and an occasional honest-appearing representative of the press-these are the only witnesses of this interesting operation. The amount of money to be
counted, weighed, and accounted for is, in round numbers, $\$ 150,000,000$. In notes of various kinds and denominations, the connt of which began on Tuesday, February 28 , and is now finished, there were $\$ 25,000,000$. The denominations of these notes ranged all the way from $\$ 1$ to $\$ 10,000$, and the number of them was about 440,000 . When currency is put up in packages each of which contains notes of only one denomination (and care is taken at the sub-treasury that this shall be
done), an expert and rapid counter, according to the estimate of Cashier William Sherer, can count, if the Cills are in fairly good condition, about 6,000 per hour. like denomination in the same package ; but if a bill o
another denomination has found its way into the package, as sometimes happens, the counter must detect it. When this fact is borne in mind, and the further fact that each counter of bills is responsible under a bond for the perfect accuracy of his work, it will be seen that to count 6,000 bills an hour, or 100 a minute, is pretty rapid work; but even at this rate it would take one man something over seventy-three hours to count the 440,000 bills which go to make up the $\$ 25,000,000$ of currency in the sub-treasury.
The gold is weighed and estimated in the same manner as the standard silver dollars, a description of which will be found below. Up to Saturday night $\$ 49,000,000$ in gold had been weighed and found not wanting, and $\$ 41,000,000$ remained to do.
To weigh and count the silver is the most tedious task the counters have, because much of it is fractional silver which cannot be accurately estimated by weight, but must be laboriously counted piece by piece. Four and a half million dollars of silver have been counted, and about $\$ 34,000,000$ remain, which of itself will occupy the whole force of counters for at least three weeks. Of fractional silver there are about $\$ 10,000,000$ Every piece of this must be handled and counted, because, owing to the loss by abrasion, no reliable estimate can be made of the amount by weight. Of two bags weighing about sixty pounds each, and each containing the same value of fractional silver, the weight will indicate, as a rule, a difference of from $\$ 5$ to $\$ 10$ in value, while cases have been known in which the difference has been as great as $\$ 30$. Of quarters 4,000 pieces go to each bag, and a rapid counter will count ten bags a day. If the whole $\$ 10,000,000$ of fractional silver, therefore, were in 25 cent pieces, as it fortunately is not, its counting would keep one man reasonably busy for the greater part of three years. When a bag is filled, it is marked with the initials of the counter, who is thenceforward responsible for the accuracy of his count.
Standard silver dollars are kept in linen bags, sixty pounds to the bag. The value of these bags can generally be determined by weight. The bags are passed from the vault in which they are stored to the scales, and thence, if they pass the test, they are removed to another vault. When a bag fails to pass the test, as about 1 per cent of them do, it is opened and the contents counted. * It is generally found in such cases that the bag contains its full complement of dollars, which have suffered rather more than an average amount from abrasion. The weight in the other pan of the scales is a test bag of silver dollars which have been in circulation, with $\$ 1$ added, because most of the silver being weighed has lain in the vaults for years and has been in circulation very little, if at all, and has not, therefore, suffered anything from abrasion. Some bags are found broken by the pressure under which they have lain, and their contents spilled about the floor. In such cases counting and rebagging are of course necessary. Some idea of the amount of pressure to which some of these bags are subjected may be had from the fact that they are stored in tiers, a tier containing as high as 800 bags in some cases, each bag weighing sixty pounds. The bags are handled by muscular 'longshoremen, but the work is so heavy and so constant that it is found impossible for even one of these men to work at it more than one hour at a time; so they work in relays, each working one hour and resting one hour alternately.
So far no discrepancy has been found between the count of coin and the books of the department, and it is not likely that any will be found. Many counts have been made of the funds in the nine sub-treasuries since their establishment, but no serious discrepancy has ever been found. It must not be understood that a change of officers is the only occasion on which an examination of the sub-treasury funds is made. On the contrary, assistant treasurers, for their own information and as a check upon any fraud that might exist in the department, institute such examinations very frequently. The cost of the present examination will probably not be less than $\$ 5,000$. $-N$. Y. Jour. Commerce, March 12.

New Poatal Arrangement with Canada.

By the new postal arrangement between the United States and Canada, which went into effect on March 1, 1888, articles will be allowed to go into either country, if admitted by the domestic law of either, except sealed packages (which are other than letters) and publications which violate the copyright laws of the country of destination, liquids, etc.
All articles exchanged under this arrangement are required to be fully prepaid with postage stamps, at the rate of postage applicable to similar articles in the domestic mails of the country of origin, and are required to be delivered free to addresses in the country of destination.

Articles other than letters, in their asual and ordinary form, on their arrival at the exchange post office of the country of destination, will be inspeeted by customs officers of that country, who will levy the proper
customs duties upon any articles found to be dutiable under the lawn of that country.

Diphtheria from Poultry.

In the Bulletin Medical of January 22, 1888, Dr. Paulinis publishes an interesting report of an epidemic of diphtheria, occurring in one of the Grecian isles, of dich lends considerable weight to the arguments in which lends considerable weight to the arguments in
support of this theory. The epidemic began in the support of this theory. The epidemic began in the
summer of 1884 , in Skiatos, a small island having a population of about four thousand souls. For over thirty years no case of diphtheria had been seen on the island, according to the testimony of a Dr. Bild, who had practiced there during that time. In the early part of June Dr. Paulinis was called to see a child aged twelve years, suffering from sore throat, and found her twelve years, suffering from sore throat, and found her tonsils and pharynx covered with false membrane.
This child died, and seven other cases occurred in the immediate neighborhood, five of them terminating fatally. The epidemic soon spread through the entire community, over one hundred being attacked, and thirty-six dying during five months.

An examination was made to discover, if possible, the source of the disease, and it was found that a flock of turkeys had been received some three weeks before from Salonica. Two of the turkeys were sick on their arrival, and each of the others was attacked in succession. Dr. Paulinis found two of them still sick, and inspection showed patches of pseudo-membrane on the mucous membrane of the vault of the palate and of the pharynx. On detaching strips of the exudation by the forceps, the mucous membrane beneath was seen to bleed slightly. The glands of the neck were swollen, and in one of the fowls the diphtheritic processhad extended to the larynx, as was shown by the hoarseness of the cry and evident dyspnœa. One of the turkeys, which had recovered from the throat affection, suffered from paralysis of the legs, being unable to walk. The garden where the turkeys were was at the northern extremity of the town, and the first children attacked were in the immediate neighborhood. There had been no immediate contact between the fowls and the children, nor between the first child attacked and the others, but there was a north wind blowing the greater part of the time, and the author believed that it was in this way that the disease was spread. He concluded, from this experience, that the diphtheria of the ordinary barn yard fowls was similar in its course and symptoms to the disease occurring in man, and that it could be carried from the one to the other, someit could be carried from the one to the other, some-
times through the medium of the air.-Medical Record.

The Philadelphia Manual Training School.
The second annual catalogue of this institution affords evidence that its work is now well under way, there being 283 students in the school. The school affords an opportunity to those who have finished the ordinary grammar school course to continue their literary, scientific, and mathematical studies, and also receive a course in drawing, and in the use and application of tools in the industrial arts. The combined course of study covers three years, the time of the pupils being divided into one hour per day for drawing, two hours to shop work, and three hours to the usual academic studies. This school is supplementary to the public schools of Philadelphia, admission thereto being obtained by promotion from the other schools.

A TICKET AND CHECK HOLDER FOR RAILROAD CARS.
A novel device designed to be attached to railroad passenger cars, for holding and checking the tickets of the occupants of a car, is illustrated herewith, and has been patented been patented
by Mr. John by Mr. John
B. McIntyre, of Turtle Creek, Allegheny County, Pa. A rod or shaft is sup-

MCINTYRE'S TICKET HOLDER FOR RAILROAD CARS.
ported in suitable holders lengthwise on each side of the car, above the seats, the shaft carrying perforated ticket receivers, which, on turning the shaft in one direction, are lowered, and on turning it in the opposite direction are raised to be out of the way. These ticket receivers are on the ends of short arms secured to the shaft, one arm with a receiver for two tickets for each double seat, the tickets being plainly seen through openings in the receiver. Each shaft has an end crank
or bent portion, upon which a spring catch engages to hold the shaft in a position that will keep the ticket receivers raised or out of the way, or turned down to receive the tickets, as when a conductor is passing through the car and punching them; the conductor, after lifting all the tickets in the car, operating the crank end of the shaft to lift the ticket holders out of the way.

AN IMPROVED NECK YOKE FASTENING.

A detachable fastening, whereby the strap connecting the ends of the neck yoke with the harness collar need not be buckled or unbuckled, but can be simply attached or detached, is illustrated herewith, and has been patented by Messrs. Adolph P. and William C. Koch, of Effingham, Ill. It is a metal sleeve of novel form, shown in Fig. 2, adapted to receive and retain a

KOCH BROS.' NECK YOKE FASTENING.

collar strap, and to slip over the ferrule or point on the end of a neck yoke shown in Fig. 3, the ferrule having a projection on its end corresponding in form with a recess in the sleeve. In use the collar strap is attached to the detachable sleeve, which is then slipped over the ferrule while its point or projection is turned upward, to permit its passing through the corresponding recess in the sleeve, after which it is turned down to the position shown in Fig. 1, by which the sleeve is securely held in position on the neck yoke, being disengaged by reversing this operation.

Proposed Increase in the Patent Office Staff.
A correspondent of the New York Tribune says: An item in the legislative appropriation bill, which was lately submitted to the House by the appropriations committee, provides for the appointment of thirteen additional examiners for the Patent Office, and for twelve more $\$ 1,200$ clerks. The committee has also so shaped the appropriation for the Land Office that the law providing for the evicting of the Land Office from the Interior department building in December must be enforced. This will in itself accouplish much toward heightening the efficiency of the Patent Office force, which has been crowded together until the breathing of foul air and the necessity of climbing over somebody every time one moved from his seat seriously interfered with the progress of the work.
Two of the new positions thus provided for will be for principal examiners, and thus two new divisions will be created to aid the present twenty-nine divisions in disposing of the ever increasing volume of business pouring in upon the office. Mr. Butterworth, of Ohio, who was Commissioner of Patents under President Arthur, introduced the matter to the attention of the committee and procured the incorporation of the above provisions in the bill. If he was as successful in convincing the members of the House at large that the Patent Office should be run upon a non-partisan basis for the benefit of Ainerican inventors, who pay the bills, as he was in driving that point to the mental consciousness of his colleagues on the appropriations committee, Saturday, that item of the bill will go through untouched. It certainly does seem absurd that any picayune considerations of "reform"economy should keep Congress from appropriating sufficient sums out of the money which inventors pay into the treasury promptly to transact the joint business of the inventors and the government.
All salaries and expenses of the Patent Office, together with expenses of conducting and maintaining the great building popularly known as "The Patent Office," but which also contains the office of the Secretary of the Interior, his assistant secretaries, and clerks, are paid out of the patent fund. This fund is replenished by the fees paid by the inventors at various stages of Patent Office action upon their applications for patents. Not a cent comes out of the government's pockets for the support of the Patent Office. On the contrary, the surplus of the fund is continually increasing, and is now about $\$ 3,000,000$. This vast amount of money sucked from the pockets of American inventors -who are generally poor as church mice-lies idle in the treasury, while their business in the Patent Office is so far in arrears through an inadequate force and in-
adequate accommodations that in some cases six months pass after an application has been filed before it is heard from, and after that a period of three months must elapse after each letter written in the case by the inventor before he gets an answer. Consequently, where there happens to be a difference of opinion between the examiner and inventor as to the scope of his claims, the case may drag on for years, while the new art is adrancing at the rapid rate of mechanical development of the present age, some other inventors are coming in with conflicting applications, and endless confusion results, to the loss of the inventor, the vexation of the examiner, and the fattening of the patent lawyer. One can imagine the high rate of speed with which an argument advances, when three months pass between the statement of each proposition and the answer thereto.
In the face of all this the appropriations committee every year cuts down the salary of the principal examiners in the Patent Office to $\$ 2,400$, while the law says they shall be $\$ 2,500$, while chiefs of divisions in the treasury of the same rank get the full $\$ 2,500$ for work which does not require the abilities and special knowwhich does not require the abilities and special know-
ledge called out in the daily decisions in the Patent Office upon rights involving thousands of dollars, and turning upon the finest legal and scientific points; and while the surplus Patent Office fund goes on accumulating.

Fluorine a Universal Solvent

Iron gives an interesting account of what it calls the universal solvent, and which it declares, though long known to modern chemistry, has only just been separated, and cannot even now be retained in its isolated state, simply because it destroys everything. This fury of the chemical world, it goes on to say, is the element fluorine. It exists peacefully in company with calcium n fluorspar, and also in a few other compounds; but when isolated, as it recently has been by Henri Moissan, it is a rabid gas that nothing can resist. It combines with all metals explosively. When they are already combined with some other non-metallic element, it tears them from it and takes them to itself. In uniting with odium, potassium, calcium, magnesium, and aluminum the metals become heated even to redness by tie fervor of its embrace. Iron filings, slightly warmed, burst into brilliant scintillations when exposed to it. Man ganese does the same. Even the noble metals, which at melting heat proudly resist the fascinations of oxygen, succumb to this chemical siren. At a moderate temperature glass is devoured at once, and water ceases to be water by contact with this gas.

AN IMPROVED HAND DRILL FOR MINERS.

A device which permits a quick and sure adjustment of the drilling tool and the drilling post for hand drill ing is illustrated herewith, and has been patented by Mr. James O. Patridge, of Wellston, Ohio. The post consists of two uprights connected at the bottom by a cross piece having a downwardly extending point, the cross piece at the upper end having a square aperture into which fits a hollow bar with teeth on one edge adapted to be engaged by a supporting plate, the bar being internally threaded to receive a screw rod having a point on its upper end, and with handles for turning the rod in the threaded bar, whereby the post is firmly fixed in position by the points being forced into the bottom and ceiling or sides of the mine. The two up

PATRIDGE'S HAND ROCK DRILL.

rights of the post have apertures in their front edges in which is held a vertically adjustable nut of peculiar construction, into which screws the threaded shank of the drilling tool, the nut consisting of two parts hinged together so that one part can be thrown open for the admission of the drilling tool. With this construction the post can be quickly and accurately fixed in varying locations, and the drilling tool placed ready for work in any desired position.

IMPROVED CAP PROTECTOR FOR CARTRIDGES. A protector and shield for the percussion fuses of dynamite cartridges, to prevent accident in case the fuse fails to explode and it becomes necessary to remove the cartridge, is illustrated herewith, and has been patented by Messrs. Thomas De Coar and William Keast, of Russell Gulch, Col. The shield is pointed at one end and has at the other end a head, slit to form an opening through which the cap is introduced, the cut made by slitting forming a lid which may be bent down to partly close the opening after the introduction of the cap. By the employment of this shield the cap is saved from being injured by tamping, while its efficiency in exploding the cartridge is not diminished, and in case of the failure of the cap to explode it may be safely withdrawn, the head affording facilities for grappling the shield without disturbing the cap.

Large Torpedo Shell. One of the new elements of construction rendered necessary

CAP SHIELD FOR CARTRIDGES. y the invention of the dyna-
the evil now complained of can be overcome, and the lungs be spared from the poisonous gases they are now forced to inhale, as it is a well known fact that no gases are more poisonous than those of sulphureted hydrogen or coal gas that permeates our dwellings.
From whence the barbarous practice of constructing our chimney flues in the separate system emanated we know not; but whoever instituted that system, if held responsible for the deaths caused by it, would have a great deal to answer for.
We trust and hope our remarks on this subject will not go unheeded, as a careful observation of any one in their own house will go to prove and substantiate whatever we claim. We need not carry the examination into any other house, but look in our own to satisfy ourselves of the glaring and dangerous defects, as demonstrated herein. We have but to apply the simple principles in ventilation to prove our assertion. As rarefied air expands, it therefore requires a greater area of space in order to travel upward. This principle is wholly ignored in the construction of our chimneys. What the objection can be to one large flue with an area guaranteeing an upward current at all times, we certainly are at a loss to know. In the good old days of yore we frequently heard it said that we had healthy homes and less sickness than at the present day. In those days we had flues constructed of the capacity that we speak of, that always guaranteed ventilation and pure atmosphere to breathe. Therefore, let the separate flue system be condemned at once, and we will have stronger walls, purer air, and healthier homes, and plumbing would come in for less misapplied complaints, when in reality the cause emanates from the defects we speak of.

AN IMPROVED BUTTER TUB.

A butter tub having an air tight cover, and provided with a simple and effective fastener, is illustrated herewith, and has been patented by Mr. Alexander C. Howe, of Idana, Kansas. The chine of the tub is grooved, or made in two diameters, and is flared outwardly to receive the beveled rabbeted edge of the cover, arranged to fit tightly in the grooved chine of the tub, so that when pressed down into place it will be practically a ir tight. Near the rim of the tub are fastened right-angled ened right-angled
clips which ex-

HOWE'S BUTTER TUB. tend over the chine, and to the top of the cover are pivoted latches with beveled ends, adapted to wedge under the ends of the clips, thus forcing the cover downward into the chine, and holding it securely in place.

Six-Wheel Trucks for Freight Cars.

At a recent meeting of the Western Railway Club, Mr. J. N. Barr read a paper as above. The arguments in favor of such a construction were :
First.-It is very likely that a much smoother riding car would be obtained. This would have a beneficial effect on the entire structure. For some kinds of traffic, as live stock, an improvement in the motion of the car would be a decided advantage.
Second.-The increase in bearing surface would not be affected by increased velocity of the bearing surface, as is the case when the journal diameter is increased.
Third.-It is generally conceded that wheels under cars of 40,000 pounds capacity are subjected to a service very nearly equal to their safe limit of strength. The addition of two more wheels will distribute the load of the heavier cars, so that no heavier duty will be required of the wheels as a whole.
This difficulty might be met, to a certain extent, by increasing the weight of the wheel. The increased pressure between the wheel and the rail, however, will, in four-wheel trucks, cause much more rapid wear in the wheels, and likely in the rails, and will also enhance decidedly the effect of any flat spots or irregularities in the wheel or in the track. In the six-wheel truck the distribution of the load will have a tendency to reduce the causes of destruction just named.
Fourth.-In the case of breakage of wheels or axles, the tendency to derailment and extensive damage is very decidedly in favor of the six-wheel truck. In fact, with a good six-wheel truck the liability to derailment in case of a broken wheel or axle is not great, while with four-wheel trucks such breakage will almost certainly produce derailment.

AN MMPROVED DOOR FASTENER.

A door fastener which is adapted to be caught in the crack between the door and jamb, so as to hold the door closed without reference to the lock or bolt, has been designed by Mr. Edward Kendall, of McCook, Red Willow County, Neb., and is illustrated herewith. It consists of a toothed plate with pivoted abutment plates and a wedge plate, the device being shown folded in one of the views. To apply the fastener, the toothed plate is opened out singly and laid against the rabbet in the door jamb, with its teeth toward the jamb, when the closing f the door forces the teeth into the wood of the jamb, and th rirt side abutment plates are turncd over against the door and door casing. If the crack betwe the door and its jamb is very large, the wedge plate is also turned over parallel with th back of the toothed plate. The device is especially designed t be used in hotel rooms and other places where the lock of the door is liable to be picked or opened with a false key after having been locked on the inside.
A COMBINATION TOOL FOR LOADING CARTRIDGES.
A machine for loading the ordinary form of paper shell cartridges, whereby the exploded primers may be removed and new ones applied, and the shell loaded and crimped, is illustrated herewith, and has been patented by Mr. Francis P. Devens, of No. 1306 Forest Avenue, Kansas City, Mo. In loading cartridges, the shells are passed up through the aperture in the forward end of the clamp plate into the shell tube, which is then moved back so that its upper end will be beneath the funnel-like filler at the rear. The proper charge of powder having been supplied, the tube, in being moved forward to the position shown in the illustration, withdraws a wad from the central wad tube, which is forced down within the cartridge by the depression of the lever. The capping and decapping device, which screws into the lower end of the plunger, is shown in a small figure, its convex upper face being used for capping, while the projection carrying a pin is adapted to remove an exploded primer from the anvil of the cartridge. If two wads are to be placed on top of the powder, the shell tube is again passed under top of the powder, the shell tube is again passed under
the wad tube, when another wad is extracted and the wad tube, when another wad is extracted and
pressed home by the plunger as before, after which the shell tube is passed back to the funnel-like filler for its charge of shot, extracting another wad as it is again moved backward, which is forced to place in a similar way. The crimper consists of a block mounted on a short shaft supported beneath the forward end of the clamp plate, there being an annular groove in the upper face of the block, and its lower edge being formed of cam faces, the shaft being operated by a crank arm. The open end of the cartridge is first dc pressed by a claw adapted to engage with the thread of the plunger, so that it will enter the annular groove in the upper face of the crimping block, when, by a slight downward pressure on the lever, at the same

DEVENS' CARTRIDGE LOADER.

time rotating the crank arm, the edge of the shell will be turned over and properly crimped. As will be seen, this implement may be used as a loader, a capper and decapper, and as a crimper.

The Springfield (Mass.) Foundry Company, in a cirular, remind their workmen that "the average losson a bad casting is from five to seven times the profit onl a good one."

EXPERDGRNTS ILLUSTRATING THE PRINCIPLE of THE DYNAMO.
${ }^{\text {Br }}$ GRO. M .
After noticing the effect of plunging a magnet into a coil of wire, it is not very difflcult, in the light of pres ont electrical knowledge, to understand how the process of induction is carried on in a continuous way in the armature of a dynamo.
The simplest form of armature for illustrating this point is undoubtedly that known as the Gramme ring armature. In the action of this armature the prime factor is magnetic induction. It is perhaps unnecessary to go into the details of the construction of the Gramme ring, as commonly used in dynamos. A very crude ring answers the present purpose. Its core is formed of a compact circular coil of soft iron wire, which, in cross section, may be circular or of any other form. The core is wrapped with tape and varnished to insure insulation.
Around this iron ring or core is wound an insulated copper wire, arranged in a spiral coil f, like the winding of an ordinary electro-magnet. The ends of the copper winding are joined by soldering, thus form ing a closed coil. The ring is mounted upon a circular wooden support attached to a spindle, so that the armature may be revolved in front of the poles of a magnet, $a a^{\prime}$, as shown in Fig. 9. In the wooden sup-

GRAMME MACHINE FOR ILLUSTRATION.

port, in a circle concentric with and near the spindle are inserted six or eight wire nails, e^{\prime}, arranged at equidistant points. The copper winding of the ring is spaced off into as many sections as there are nails in the circular row, and at the end of each section the insulation of the copper wire is removed a short distance, and a wire, i, is attached by soldering. These attached wires are each connected with one of the

 wire nails. Now, all that remains to complete the Gramme dynamo or motor is the application of two conducters, $g g^{\prime}$, to the circular row of wire nails, as shown in Figs. 10 and 11. This dynamo has all of the essential features of the regular machine-the field magnet, the iron armature core, the conductor wound upon the core, the commutator cylinder formed of the wire nails, and the brushes consisting of wires held on opposite sides of the commutator cylinder.
This dynamo is constructed for illustration only, and not for practical use. It will generate a current, and may be driven as a motor by a current, but of course not with the same advantage as a more complete machine. In investigating the phenomena of the armature, it is well to begin with the simplest case of magnetic induction. When a bar of soft iron is held before the poles of a magnet, as shown in Fig. 12, it becomes itself a magnet. The magnetism developed in the bar by the action of the magnet is opposite that of the mag-
 net. That is, the magnet-

Fig. 12.-Magnotic Induction. ism developed in the end
of the bar opposite the N pole of the magnet is S , and, similarly, the magnetism developed in the end of the bar opposite the S pole is N . The center of the iron bar is neutral
By substituting an iron ring for the straight bar, as shown in Fig. 13, the effect will be the same. The portions of the ring opposite the poles of the magnet acquire polarity by induction, as in the first instance, and the magnetismextends in the ring
Fig. 13.- Induction in an Iron Ring. tends in the ring X X, which forms a right angle with a line joining the poles of the magnet. In the figure of the ring the loca-
tion of the magnetism in the ring is indicated by the shading.
By turning the ring upon its axis, the mass of the ring moves, but the polarity of the ring maintains a fixed position relative to the poles of the magnet.
When the ring carries a coil, as shown in Fig. 14, the magnetic poles of the ring remaining stationary, while
the material of the ring and coil arerevolved,there is a continual passing of the sec tions of the coil through the mag netic field sur rounding the po arized portions of the armature core and the poles of the magnet, which is the same in effect as the passing f a magnetic bar through the coil of the armature.
Besides the inductive effect produced by the magnet ization of the armature core, the passing of the conduc tor through the magnetic field of the inducing magnet augments the current.
Each half of the armature between the neutral points is practically a single coil of wire, terminating at two of the commutator bars--which in the present case are the two nails-at diametrically opposide sides of the commutator cylinder; all of the remaining comm tator bars and their connections being idle.
In Fig. 9, two circuits are shown in connection with the machine-one in full lines, the other partly in dotted lines, both connected with the battery, c. When the circuit represented in full lines only is em ployed, the machine runs as a motor. When the wires shown by full lines are disconnected from the brushes, $g g^{\prime}$, the rotation of the armature in the field of the mag net, $a a^{\prime}$, produces a current in the manner already in dicated, and this current is taken from the armature by the way of the wires, i, the nails, e^{\prime}, and the brushes, $g g^{\prime}$.
This machine when used as a generator is strictly a magneto-electric machine, although an electro-magnet is employed as a field magnet. A permanent magnet might be substituted for the electro-magnet.
For the sake of securing the greatest possible simplicity, certain modifications of the action of the arma ture have been omitted.

A Lost Locomotive.

"In the construction of the Kansas Pacific and Atchion, Topeka \& Santa Fe railroads," said H. L. Carter a railroad contractor of St. Joseph, the other day, " one difficulty of frequent occurrence was met with, which, as far as my experience goes, is unique in railroad his tory. I refer to the trouble arising from quicksands. From Western Kansas to the mountains, quicksands are to be found in nearly every stream, no matter how mall, and to successfully bridge them required an expenditure out of all proportion to the size of stream to be crossed. We tried pile driving, but the longest piles disappeared without touching the bottom. Then filling with earth and stone was attempted, and met with equally poor success, as the quicksand was ap parently capable of swallowing the entire Rocky Moun tains. The only means of crossing was found to be to build short truss bridges across them. This was very expensive, but was the only thing to be done. As an instance of the practically bottomless nature of the quicksands, I may cite the case of an engine that ran of the track at River Bend, about ninety miles from Denver, on the Kansas Pacific. The engine, a large freight, fell into a quicksand, and in twenty minutes had entirely disappeared. Within two days the company sent out a gang of men and a wrecking train to raise the engine. To their surprise they could not find a trace of it. Careful search was made, magnetized rods were sunk to the depth of sixty-five feet, but no engine could be found. It had sunk beyond human ken, and from that day to this has never been dis covered. Cattle and horses are frequently lost, the only animal that is safe being a mule-the only anima that never gets caught. No greater instance of the same intelligence of this much maligned quadruped can be cited than the skill and care with which it avoids all unsound bottom. As its hoofs are much smaller and narrower than those of a horse, it would mire down in places where a horse could safely pass. Recognizing this fact, whenever a mule feels the ground giving away under its feet, it draws back instantly and cannot be induced to advance a step, although a whole drove of horses may have immediately preceded. Those who think a mule is stupid are much mistaken."

Curious Alloy.

Put into a clean crucible an ounce of copper and an ounce of antimony. Fuse them by a strong heat, and pour the alloy into a mould. The compound will be very hard and of a beautiful violet hue. This alloy has not yet been applied to any useful purposes; butits excellent qualities, independent of its color, entitle it to consideration

©arrespondence.

Another Remedy for Ivy Poison.

To the Editor of the Scientific American:
I have noticed a number of brief articles upon the subject of ivy poison and its remedies, in your valuable paper, and am led by them to offer the experience of an amateur botanist with this dreaded vine. During the past ten summers, your humble correspondent has been blistered two or three times each season, with Rhus toxicodendron, and has tried about every remedy known to the physician or to the old ladies, who always have a remedy for every ailment. No remedy which I have tried has been so speedy and effectual as the bruised leaves of nightshade (Solanum nigrum), and cream. This remedy is safe and simple, and
applied like a poultice to the affected parts.

Kirksville, Mo.

Ivy Poisoning.

To the Editor of the Scientific American:
Referring to the article in your paper of April 7, by Mr. Jessop, who says he has never found a sure cure for ivy poisoning, like Mr. J. I was repeatedly poisoned by ivy when a boy, and found no relief till an uncle told my mother to give me a tablespoonful of thoroughwort tea each morning before eating during the month of May, and I never would be poisoned again. Che followed his directions, and the result was I never have been poisoned since, although I was exposed to it more or less each summer for a number of years after-
ward. The above may not be a sure cure in all cases, ward. The above may not be a sure cure in all cases,
but it is worth trying, as it can do no harm if it does no good. Albert S. Trask
St. Paul's School, Concord, N. H., April 9, 1888.

An Ohio Gas Well.

To the Editor of the Scientific American:
Thinking it might be of interest to your readers, I herewith state you something of one of our gas wells here, of which we have quite a number in our county, among them some good ones. The well referred to was closed in 1887, but seems to have been leaking, at least some way or another it canght fire, and the woodwork burned away, leaving it the chance of partially leaking. This happened about three months ago, and it has been burning ever since. Now lately it starts to make a fearful noise. The well is about six miles west of my house, and I can hear it very plainly and distinctly. The sound is very irregular and is like the sound of a good thundering of a coming thunder storm, then stopping for awhile, then at once the roaring, thundering sound starts again. It seems to be subterranean, making the feeling as if the earth was shaking, but only then when the thundering sound is there.

I have been at the well and found a moderate gas flame, seeming to be the gas leaking out between casing and pipe proper, which pipe is closed by two valves.
The casing projects about 2 feet out of earth, and The casing projects about 2 feet out of earth, and
pipe about 2 feet out of casing. Now the pipe is leaking at a point about 2 feet above casing, where it has an elbow with a horizontal pipe having the valves, and it seems that the sound is caused by the vapor coming out of pipe, and which seems to be no gas, as very out of pipe, and which seems to be no gas, as very
little of it burns, although the fire of the leaking gas from between casing and this pipe burns right under it, and ought certainly to ignite it. I have tried and diverged this egressing gas by holding a piece of long board near orifice, then a little more of it burns.
Has anything of the kind been ever before experienced, and what may be the cause of it? Should like to hear others on this subject, as it is quite new to us.
J. M. Kramer.

Maria Stein, Mercer County, Ohio, April 2, 1888.

The Boston Hot Water System.

To the Editor of the Scientific American:
In your issue of April 14, under the head of "Hot Water System," you said that the pipes of the new system of heating by hot water, in Boston, are clothed with mineral wool.
We take the liberty of calling your attention to the fact that these pipes (some eight miles in all) are clothed with our patent fire felt covering, which is composed entirely of pure asbestos, with an outer waterproof jacket, which is laced over the covering.
The peculiar feature of this covering of especial interest to mechanical men is the fact that it will stand both heat and moisture, an advantage not secured by the ordinary methods of covering pipes.

The Chalmers-Spence Co.
New York, April 12, 1888.
Strikes in the United States.-Striking was one of the principal occupations of the laborers of the United States in 1887. According to an estimate in Bradstreet's, the total number of strikes for the year was 858, involving 340,854 laborers.

Compressed Air Tramcar.

On the lines of the London Street Tramways Company, between King's Cross (Metropolitan) Station and Camden Road, Holloway, several tramcars are to be seen in regular work propelled by compressed air on the Mekarski system. The journey undertaken by these cars is a little less than two miles in length, and being a length of 100 yards with a gradient of 1 in 27 with a curve of about 50 feet radius at the top of it, while in another part of the line, for a length of nearly three-quarters of a mile, the gradient varies from 1 in 60 to 1 in 40. The rails have been laid for a very considerable time, and are of shallow depth, supported on the old fashioned longitudinal wooden sleepers, so that the track is not nearly so well able to carry a heavy car as if it were laid on the girder rail system. Altogether the route is a very difficult one, and if the airdriven carsare successful in running upon it for a fair length of time, their capacity for complying with the conditions of tramway traffic met with in this country will be more than demonstrated.
The Mekarski carshave been running in the town of Nantes, in France, for some years, but they have had to be very considerably modified to adapt them to the conditions imposed by the board of trade in this country and to the requirements of the tramway companies. The work has been carried out in Sir Fredrick Bramwell's office under the superintendence of Mr. H. G. Harris, and amounts to a practical redesigning of the entire arrangement. The distinctive features of the original invention are retained, but, the mechanical arrangements have been worked out afresh, and it is upon the suitability and perfection of the mechanical arrangements that the success of a tramway at the Inventions Exhibition, where it carried many thousands of passengers backward and forward over a short course, without the slightest hitch, and now five of themare going to be submitted to an extended trial under the very difficult conditions we have already
alluded to, with a view of affording practical proof of alluded to, with a view of affording practical proof of
The cars are 4 feet $81 / 2$ inches in gauge, and each is capable of carrying thirty-eight passengers in addition to the driver and conductor, the general appearance being very similar to that of a horse car, except that the floor is at a somewhat higher level to give space for the machinery underneath. The compressed air is carried in six horizontal cylinders or reservoirs, three at each end of the car, below the floor. Five of these reservoirs are connected together by pipes, and are called the battery, while the sixth is independent, and is called the reserve. These cylinders are filled with compressed air at a pressure of 450 pounds on the square inch. This air, however, does not furnish the entire motive power for driving the car. It is a special feature of the Mekarski system that a store of heat is carried in two " hot pots." one at each end of the car, the formation of ice and snow in the cylinders, and to some extent increasing its volume. The hot pots are filled with water from a steam boiler working at a pressure of 80 pounds to the square inch, at the same time that the store of air is received. The heat is transmitted to the air by causing the latter to bubble up through the water on its way to the high pressure cylinder of the engine, and by conducting it, after it has been expanded in this cylinder, through a heater immersed in the water before it passes to the second cylinder. By this arrangement the air is twice heated, first by direct contact with the water, during which it picks up sufficient moisture to lubricate the valves and pistons, and second by passing through heated tubes of considerable surface. Normally, the air from the battery is admitted to the hot pot and so to the engine cylinders, but should a very steep rise be encountered at the end of a long run after the air pressure has fallen, or should a stop be made half way up a hill, then the battery can be shut off, if necessary, and air at the full pressure of 450 pounds be admitted from the reserve reservoir. This reserve is not touched
except in emergencies of this kind, and can be relied to pull the car through any possible difficulties that it can encounter. A regulating valve is fixed at the top of each hot pot, a single hand wheel being provided for the two, so that the one out of use cannot be tampered with by the public.

The rotation of the hand wheel forces plunger into or out of a chamber completely filled with liquid. As the plunger enters, the pressure in the chamber is increased and acts upon a brass-faced rubber diaphragm which forms its bottom. A spindle or stalk on this diaphragm is in contact with the valve, which is held up by a spring. When the plunger is moved down, the valve is opened, and vice versa. By this means the driver controls the pressure admitted to the engine according to the requirements of the track and the gradients.
A good many pipes are naturally required to effect the distribution of the air.
The high pressure cylinder is $51 / 4$ inches in diameter, and the low pressure cylinder 8 inches in diameter, the
shaft, which is geared to the driving axle by compound spurwheels of special construction. These wheels have been designed to run without noise and vibration, and they fulfill their object very completely, since it is impossible to hear them even when sitting immediately over them. Each wheel is formed of four steel plates, which were originally clamped together, and had the teeth formed on them in a wheel-cutting machine. The plates were then placed separately in a lathe, and a good deal of the superfluous metal was removed to lighten them, and at the same time the teeth were slightly reduced in width. The plates were then were slightly reduced in width. The plates were then
bolted together so as to make a stepped wheel, brown paper being inserted between the surfaces in contact, and the hollow spaces between the plates being filled with hard wood to deaden the sound. To keep the wheel always accurately in pitch in spite of the play of the springs of the car, a novel arrangement of axle box has been introduced. The box is curved, and plays in guides curved to a radius struck from the center of the crank shaft. Thus, however much the car body may rise or fall, the pitch circles of the two wheels always remain in contact.
Elaborate means are provided to control the speed of the car. In addition to the regulator and the reversing lever on each platform, there is a foot brake, and an air brake, which can be applied either by hand or by the automatic action of a centrifugal governor. This governor is driven by a band from the axle, and operates a valve by which air is admitted from the reserve to the brake cylinder. The action of putting on the air brake also automatically cuts off the supply of motive fluid to the engine by admitting the pressure to act upon a piston which operates a valve in the main air pipe. The governor does not open its valve until the speed of the car exceeds ten miles an hour, when it immediately puts on the brake and shuts off the air. As soon as the speed falls the brake comes off, and the engine starts again witbout attention on the part of the driver. There is also a speed indicator driven by a band.
The frame of the car is strengthened by a truss which rises to the level of the under side of the seat. For moving it in the shed there is provided a hand turning gear consisting of teeth cast on the inside of one of the driving. wheels, and engaging with a three-toothed pinion turned by a handle.-Engineering.

Jeddah and Mecea.

Many parts of the East are rendered mcre unhealthy rom the want of sanitary arrangements than from heat, locality, and situation. If the authorities in these parts are awakened to the necessity of cleansing the oads and streets, and providing drainage and water, there would be opened to engineers and contractors a large field in carrying out the necessary works. The following example, though a bad case, is probably not an extreme one :
The once important town of Jeddah, on the Red Sea, now chiefly known as the landing place of the pilgrims constantly visiting Mecca-46,000 last year-and at which there was a serious outbreak of cholera in 1864, has at length obtained a water supply, but in other respects its sanitary state is not improved. Jeddah is about forty-five miles from Mecca, has a resident population of about 30,000 , continuously augmented by pilgrims, the bulk of whom belong to the poorer classes, the prevailing temperature is a damp heat of 90°, and beyond the immediate suburbs the country, as far as the foot of the hills-ten miles-is a desert. Until ecently the scanty supply of water for the inhabitants of the town was derived from a few cisterns and wells in the desert outside. For years attempts were made to have water brought into the town from the adjacent hills, where there existed a plentiful supply in a natural reservoir at a distance to be traversed in four hours. For a long time these attempts failed, owing to the opposition of the proprietors of the cisterns and wells, as they derived a considerable income from the sale of the water, which was sold in ordinary seasons at 1d. per pail or $1 \cdot 14 \mathrm{~d}$. per gallon, and in seasons of drought at much more. With the exception of two slight showers, no rain fell between December, 1886, and January, 1888. Fortunately, the waterworks begun some years previously had been completed, the scheme having at length been carried to a successful issue, and public fountains are erected in various parts of the town for the gratuitous supply of water to the inhabitants. The quality of the water is excellent, and it is hoped that some improvement may be looked for on the general unhealthiness of the town; but before this can take place much more will have to be done. There is no system of drainage. A large cesspool is constructed in the foundations of all houses when being built. This cesspool when full is emptied by the simple method of digging a big hole before the door and transferring the contents thereto. The repetition of this practice has converted Jeddah into a mighty cesspool, which, added to the absence of sanitary precautions generally, excessive
heat, and scarcity of water, sufficiently accounts for the great mortality from fever, causing it to be the most unhealthy town on the Red Sea.

Preventing Noise on Railway Bridges.

According to La Semaine des Constructeurs, the government administration of the new metropolitan railroad in Berlin has devoted considerable attention to the subject of diminishing the noise of trains passing over the viaducts and bridges, which, of course, form the principal portion of the road. Wherever possible, the viaducts are built of brick or stone, and the sound of light trains running over these is not veryannoying; but arches of masonry cannot well be used in crossing crowded streets, and the metallic structures employed in such places rattle and reverberate in a manner which not only upsets the nerves of pedestrians, but by startling horses passing beneath is frequently the cause of accidents. In experimenting to find means for overcoming the trouble, it is found that the form of the bridge does not perceptibly affect the noise from it, a lattice truss, notwithstanding the multiplicity of joints, producing no more sound than a plate girder ; but the length is a very important factor, so much so that the noise is considered by the German engineers to be directly proportioned to the span of the bridge. Where the rails rest on wooden cross ties, or on timbers running longitudinally, the sound is less than where they are secured directly to the metal, and it may be still further diminished by placing cushions of felt or rubber under the timbers before bolting them to the bridge construction.
To cover an iron bridge entirely with planking does not appreciably diminish the noise from it unless the planking is covered with gravel, a thin layer of which has a marked deadening effect, while still more im. provement is obtained by thickening the layer of gravel about the track so as to bury the cross ties or longitudinal timbers on which the rails rest. Profiting by these suggestions, the Berlin engineers have adopted two different systems for diminishing the noise of trains on their viaducts. One is to bolt to the bridge structure long troughs of sheet iron, about 16 in . wide, so

THE RESTORATION OF A PORTION OF A ROAD BY THE RAILROAD AND TELEGRAPH REGIMENT.
arranged that a rail will come in the center of each The troughs are then filled with gravel, in the middle of which is buried the longitudinal timber carrying the rail, and the space between the troughs is covered with iron plates on which is spread a thin layer of gravel. The second method, which is found to be more efficient than the other, consists in placing a continuous series of shallow iron troughs, about 5 ft . square, along the line of the tracks. These are filled with gravel, on which the ties and rails are laid.
[In New York it is noticed that a heavy fall of snow renders the elevated railways almost noiseless.]

Horse, Steam, or Electricity.

Mr. Ransom, writing on the comparative cost of steam, horse, cable, or electricity, takes a sample road, six miles long, with twenty-four cars, a speed of six miles an hour, and running twenty hours out of twenty-four. This would require forty-eight horses on the lines and 192 in the stables, costing, with harness, initially about $\$ 38,400$. The initial cost for electrical plant he estimates at $\$ 26,500$, for cable plant $\$ 35,000$, and for cpmparison these figures may be put:
A motor plant of horses costs $\$ 38,400$; of electricity, $\$ 26,500$; of cable apparatus, $\$ 35,000$. With ragard to the road, the estimate is for horse road single track per mile, $\$ 9,000$; electric varies, according to system, from $\$ 10,000$ to $\$ 23,500$; cable roads from $\$ 30$,000 to $\$ 110,000$; steam, $\$ 9,000$. If old roads have to be adapted to the new traction, the cost of adaptation is given for a six mile road : For cable, $\$ 265,200$; for electricity, $\$ 70,500$; for steam, $\$ 40,000$. In conclusion, Mr . Ransom says: "In original cost, expense of operating, cost of maintenance, outlay in applying to old roads, steam distances every other mechanical system."

MODERN MILITARY APPLIANCES,

In modern warfare those preparations which faciliate the rapid transportation of the army, the communication of the several sections with one another,
the army, and the latter by the use of transportable field bakeries. The separable field ovens of the "Payer system," which are used in the Austro-Hungarian army, proved, during the last great maneuvers,

ERECTION OF THE TELEGRAPH BY THE RAILROAD AND TELEGRAPH REGIMFNT.
and the prompt and satisfactory supply of provisions to the troops, play as important a part as the arming, equipment, and leadership of the army. For years past the Austrian war department has made a point of improving and perfecting the existing military arrange-
to be excellent. The ovens are taken apart, and they with the other utensils belonging to the field bakeries, are placed on special wagons and carried with the troops so as to be ready in case of need. A field bakery generally consists of three sections of forty-eight ovens, each section being divided into four parts, and each of these parts containing four ovens, which latter are always set up and operated in pairs. It requires four hours to set up the ovens and tents. A field bakery of this kind can deliver $\mathbf{1 7 , 9 2 8}$ loaves of bread for nine "heats," each loaf forming two rations.
With the very extensive fronts of the large armies of the present day, it is not always possible to communicate by telegraph, specially when two divisions are separated by marshy ground. In such cases the field signaling apparatus can be used to advantage. This is an optical telegraph which consists essentially of ar triangular and a hexagonal piece of linen, which can be so arranged in different positions in relation to each other that full dispatches can be transmitted very quickly. As, however, an apparatus of this sort cannot be employed in foggy weather, numerous electric telegraphs must take its place. The construction of the latter (particularly the laying of the cables) is attended to by the railroad and telegraph regiment which has been formed in Austro-Hungary during the past few years. This is a corps similar to the pioneer corps, and is, like the latter, armed with the pioneer sword and also with the extra corps gun; and the uniform is of the same gray with steel-green trimmings, bearing the winged wheel as a special mark. All of the officers of the telegraph regiment, as well as those of the pioneer regiment, are mounted. In placing the telegraph wires they are allowed to run off a drum which is mounted on two-wheeled cart, and then secured to the light, transportable telegraph poles which are supplied light, transportable telegraph poles which are supplied
with insulators. Furthermore, the construction of with insulators. Furthermore, the construction of
short connecting railroads for the transportation of short connecting railroads for the transportation of
troops, ammunition, and provisions forms a part of the
direction.
It is very important for the welfare of the troops that they should always be provided with fresh meat and bread. The former is obtained by driving cattle after

FIELD BAKERY.
MODERN MILITARY APPLIANCES.
duty of the railroad and telegraph regiment, while structed that it can be thrown in and out of gearanother important duty consists in replacing parts of thrown in when operating, and thrown out to draw the roads destroyed by the enemy. This regiment, like the chain out its full length for the next pull, to avoid the pioneer corps, has a special train for carrying the build- moving of the lever.
ing material, the necessary tools, blasting materials, etc.-Ilustrirte Zeitung.

Sugar from Coal Tar

The wonderful coal tar sugar story, which has been published in nearly every newspaper within a year, is again revived, and from a recent article in the German sugar Manufacturer's' Journal it appears that a factory for the production of that wonderful product known as saccharine is now completed, and will be fully equipped for work in a few weeks. It is located in Westerhausen, near the old historic city of Magdeburg. This coal tar sugar, having a sweetening power 300 times greater than cane sugar, it is \&aid, will be used for rixing with glucose, and it is presumed will, in a large measure, displace the product of the cane for the same purpose. The journal from which we gather the above facts also states that one pound of the new saccharine mixed with 500 parts of glucose gives a compound as good as the best sugar used on the Continent, while it can be supplied at a much lower price.

A SIMPLE AND POWERFUL STUMP PULLER

A stump pulling machine in which the power is applied on the screw principle, through a worm wheel working horizontally, in connection with a chain wheel, and by which the most difflcult jobs can be readily and economically performed, has been patented in the United States and Canada by Mr. John Cornelius, and is represented in the accompanying illustration. The framing of the machine is preferably of iron, to give greater strength and durability, and in the frame are journaled horizontal and vertical shafts, the latter having an upward extension to receive the sweep to which the team is hitched. The vertical shaft is stepped in a socket block, with washers, to save wear, and is provided with a worm which meshes with a worm wheel on the horizontal shaft. This vertical shaft is so con-

MODERN MILITARY APPLIANCES-FIELD SIGNAL STATION.
be made to clear.from one to two acres of ground without moving it, the machine adjusting itself, as each stump is loosened, toward the nexi strongest stump, and so on as the operation proceeds, until all the stumps are extracted. The serv ices of two men and one boy are all that are requir ed to work the machine successfully, and when in operation from one to five or more stumps at a time can be seen yielding to its great power. It is also well adapted for the pulling of standing timber of the post oak variety and for mov ing buildings and othe heavy bodies.
For further particulars with reference to this in vention, or machines made under it, address Mr. John Cornelius, Buffalo, N. Y., where the machine is now on exhibition.

Sick Headache.

Dr. S. F. Landrey says in Popular Science News that the headache of indiges tion, accompanied by sco toma, or scintillations and dazzlings of light before the eyes, is always due to acidi ty and evolution of gases in There is rigidly fixed on the horizontal shaft, in con-|the stomach. When not accompanied by aphasia or by nection with the worm wheel, a chain wheel, on which the chain is wound in operating or unwound by throwing vertical shaft out of gear. The chain wheel is formed with a radial circumferential groove adapted to receive the size of chain to be used, there being three different sizes made of the machines, which vary only in the use of a lighter or heavier screw wheel, and in the different chain wheel required for the stronger or lighter chains best adapted for various classes of work. Guides, in the form of tubes or throats, are fitted for the passage of the chain through them to and from the chain wheel, the machine being adapted to pull with either direction of movement. The machine may be anchored to the ground or to a central stump, and under strain will assume position with the receiving guide in the direction of the greatest strain, the machine conforming to the variations in strain. A principal point claimed for this machine over others is that, while the latter are carried or drawn from one stump to another, this machine, being anchored to a central stump, can

Natural History Noten

A principal attraction up at the Central Park is the monster elephant recently purchased, and now in the big stable back of the "Lion House." Though evidently very young, he is quite as large as "Samson," who will be remembered as by far the largest of the great herd that have made the park their home for many a day, but now gone to Europe with a circus, and Superintendent Conklin, well versed in elephant lore, says if he keeps on growing he will soon be much larger than "Jumbo" was, and consequently surpass in height any captive elephant of these times. He has an oblong head, concave forehead, and small ears, which proves him to be of the order Elephas indicus; the African variety having a rounded head, convex forehead, and enormous ears. With increasing tissue and bone, though now nearly nine feet high, his appetite grows apace; he having an eager tooth for carrots and turnips, and consuming daily about $21 / 2$ trusses of ha5, 200 pounds of vegetables, washing it down with about 80 gallons of water. Curiously enough, the natural enemies of the elephant-the tiger and the rhinoceros -are both near by, in the adjoining "Lion House," and, when the doors are open, almost in clear view of their prey
Another curiosity is the infantile agouti, Dasyprocta isthmica, the Chloromys of Cuvier, born a fortnight since, and the only specimen ever bred in North America. It looks like a rabbit when it sits up on its haunches, the mother having the general appearance of a great rat, whence its common name in the language of Central America, mountain rat. It has sharp and well developed claws, which would lead to the belief that it is both a burrower and a climber, yet it is neither. Like the rabbit, its hind legs are longer than the fore. It sits erect while eating, holding its food between its forepaws, and though now having nothing to fear, barred safely in its cage in the park, it cannot overcome the habit of caution it inherits, of stopping continually while feeding, looking furtively around, and then, as if to make assurance doubly sure, testing the air in its immediate vicinity with its acute nose to discover if enemies unseen are lurking about. The agouti is allied to the rabbit and cavy, and its flesh is highly prized as food among the Indians of Central America.
The newly arrived tayra (Mustelides) is about eighteen inches long, with a thick coat of jet black fur, changing to golden yellow about the throat, and sparkling, restless eyes. He is from South America, and evidently unused to confinement, being continually in motion, in a vain attempt to discover a loophole of escape to the delightful country now surrounding him in the park; an eagerness by no means lessened by the vernal odors that now and then are wafted through the open window just before him. Of the weasel order and cousin to the badger, the ermine, and the ferret, and the like, he is loose jointed, serpentine in movements, crafty, and cruel, and, in order to conform strictly to his class -Mustela-he has an elongated body, short legs, round ears, five toes on each foot, and sharp claws. He will atiack any kind of small animal, his favorite hold being just back of the head, and his jaws and teeth are so powerful he will often crush the skull of his prey, killing whenever he can, apparently from pure maliciousness. In his native country he is regarded as a pest, for, because of his slender body and loose joints, he manages to get at poultry, let them be cooped up ever so tightly, and will carry his thirst for blood among fowls even to the point of extermination, if not detected and driven off in time
The recently arrived Philippine Islands deer is a shy beast, rarely venturing out of his straw bed in the little house in the deer park, though perhaps it is the climate he dreads rather than the nurses and children that, all through the day, peer into the wired inclosure, for coming from the Eastern archipelago, on the border of the China Sea, it is very warm, being, indeed, in the tropics, and he would doubtless prefer more rain and not quite so much snow, as it never snows where he was raised, though raining, for quite half of the year. He raised, though raining for quite half of the year. He
resembles not a little what is generally called the hog deer, a specimen of which is also to be found in the park, and will be pointed out to you by the keeper if you ask him. His body is very large, considering his
height and the size of his legs. The coat is brown and height and the size of his legs. The coat is brown and
The spotted cavy, Coelocenys cavy, also a rece arrival, is of the order Rodentia, like the agouti, but, unlike the latter, does not sit upon its haunches and eat out of its fore paws. It bears a strong resemblance to a Guinea pig, comes from Brazil, and, like our own prairie dog, undermines large areas with burrows just under the surface of the ground, where he lives.
The recent blizzard proved too much, for many of the pea fowl and Guinea fowl, which are left to run free in the park all winter, were frozen. The two big white polar bears in the large inclosure under the hill northwest of the Arsenal were the only animals in the park who really appreciated the blizzard; and when a gang of men, muffled to the tops of their heads, went out to dig out the deer, in the inclosure opposite to the bear
pit, who were like to be snowed up tight in their house,
they discovered the polar bears sitting in the most exposed part of their den, with the gale rushing through and appearing to be thoroughly happy, as if this wa he frot time they

Watersponte.

The March supplement to the government pilot hart, issued by the Hydrographic Office, Washing ton, contains a map showing the localities of the oc currence of several recent waterspouts, with reports concerning some and other general information. W abstract the following :
Waterspouts are simply special cases of whirlwinds nd tornadoes, as these are special cases of cyclones, but on a much smaller scale. The general principles underlying all these phenomena may be stated as follows: A layer of warm, moist air at the surface of the cean happens to have above it a layer of cooler drier air. This condition of things is one of unstable squilibrium, and sooner or later the warm, light air at the surface rises through the cooler and heavier air above. This process sometimes takes place gradually over large areas, but at other times it is more local and there seems to be formed in the upper layer a break or opening through which the air of the lower ayer begins to drain upward, as through a funnel. Under favorable conditions-that is, when the differences of temperature and moisture and the supply of warm, moist air at the surface are great-this action becomes very intense, and this intensity is still fur ther increased by the fact that as the air rises its moisture is condensed, the latent heat thus liberated adding to the energy of the rising column of air. Now, as this surface air rushes in and escapes upward through the opening thus formed in the upper layer, it takes up a rotary or whirling motion, the velocity of which increases toward the center or axis of the funnel, and a suction or partial vacuum is created, as indicated by the low reading of the barometer at the center of a cyclone or whirlwind. In the case of a great cyclone or hurricane, the direction of rotation is determined by the revolution of the earth about its axis, and the well known law of storms is founded on the fact that this rotation is, in the northern hemisphere, invariably against and in the southern with the hands of a watch as you look at a watch laid down with the face up. In the case of tornadoes and waterspouts, this direction of rotation is not so uni form, although the same law holds good in most cases When a whirlwind is thus formed over the ocean water is often drawn up the center of the whirl some distance, owing to the suction created, and at the same time the moisture in the air is condensed as it rises so that the name "waterspout" is very applicable Indeed, sometimes a spout will burst over a vessel and flood her decks with water, as a cloud burst does a mountain side. When a spout is forming, its upper portion is often visible first, seeming to grow downward from the clouds. B observing carefully with a telescope, however, it will ee seen that the motion in the column itself is upward, although the moisture in the air which is rising is condensed lower and lowier down, thus rendering the whirl visible lower down continually, and making it appear to be actually de scending.
A report has been received from Captain Dexter, American steamship City of Para, who saw severa large spouts, January 22 , in latitude $31^{\circ} 47^{\prime} \mathrm{N}$., longitude $74^{\circ} 33^{\prime} \mathrm{W}$. The wind was strong from the northeast and the sky overcast, with light scud, but the sea was comparatively smooth. Three huge spouts were seen at once, and six in the course of half an hour. The
water seemed to be drawn up from the sea, mounting in spiral columns of tremendous thickness, with a loud, roaring sound. Some of the columns were vertical, some inclined at a considerable angle, all of them increased in size at the top and blended with the clouds. A fine rain or mist filled the air and continued for some time. The wind soon after changed to east.
Captain Cleary, British steamship River Avon, stat that on the 28 th , in latitude $39^{\circ} 30^{\prime} \mathrm{N}$., longitude 57° 20^{\prime} W., he saw what he took to be a heavy squall to the southeast. Upon looking at it with his glass he saw that it was a whirlwind, raising the water to a great height. It must have been over a mile in diameter, but he hesitates to even estimate the height to which the water was raised or the size of the spout, although it must have had terrific power. Shortly afterward a smaller one passed close to the ship, whirling along the water and raising the spray to a height of fully a hundred feet. Even as far south as Bermuda the conditions were the same, for on the 27 th a whirlwind swept across the parishes of Southampton and Warwick, unroofing houses, blowing down trees, and damaging property generally.
Similarly, two cyclonic storms, which seem to have originated about the Bermudas on the 10th and 12th of February, as indicated in the weather review published on the March pilot chart, were attended by water spouts, at least one of which was disastrous to
shipping. February 10, at 9 A. M., Captain Smith, British steamship Ethelbald, in latitude $28^{\circ} 18^{\prime}$ N.,
longitude $74^{\circ} 06^{\prime} \mathrm{W}$., reports a large spout traveling in a northeasterly direction, rotating, apparently, with the hands of a watch. The barometer was rising, fresh, variable winds, mostly southerly, sky overcast, with very heavy rain. At this time the American bark Reindeer, Captain Strandt, was about 200 miles to the westward of the Ethelbald, running up the coast toward New York, in the Gulf Stream. On the 11th, the weather became squally, with light southerly winds, and at $10: 30 \mathrm{~A} . \mathrm{M}$. , in latitude $33^{\circ} 04^{\prime} \mathrm{N}$. longitude $76^{\circ} 06^{\prime} \mathrm{W}$., when the vessel was under full ail, a heavy waterspout passed over her, completely dismasting her below the heads of the three lower nasts. No previous warning was received, the weathe was apparently clear at the time, and the whole affai was over in a few minutes. The dismasted vessel reached Bermuda on the 16th.
That portion of the North Atlantic from the northern coast of Cuba to the 40th parallel, and from the Atlantic coast of the United States to the Bermudas, is pre-eminently a region where waterspouts are liable o occur, owing largely to the warm, moist air which hangs over the Gulf Stream and the cool, dry air brought over it by the northwesterly winds from off the coast. A glance at the pilot chart, which shows the general course of the Gulf Stream and the positions where waterspouts have been reported, indicates this fact very clearly. This great warm ocean current is now beginning te reassert itself after a period of comparative quiescence during the winter months, and with increasing strength and volume is approachin its northern limits as the sun moves north in declina tion.
The warm, moist air overhanging this great "river n the ocean," and the cool, dry air brought down rom the coast and from over the cold inshore current to the northwest, are thus the elements whoseintermingling generates these dangerous whirlwinds on the cean.
Everett Hayden, of the division of marine meteor logy, says : The attention of masters of vessels is again called to the desirability of making full and accurate reports of these, as of other marine phenomena, by means of which our knowledge can be still further increased. The most important observations regarding a waterspout are the temperature of the air and water, the reading of the barometer, direction and force of the wind, and the changes which take place in each while the spout lasts. Also, the direction of rotation of the whirl, and an estimate of its size, char acter, and changes of form, with, if possible, sketches, however rough, of its appearance at the various stage of its formation and progress. Many naval vessels are now provided with photographic apparatus, and portable cameras are in such common use by travelers that it may not be too much to expect that advantage will be taken of some favorable opportunity to secur instantaneous photographs from the deck of a vessel to illustrate these remarkable phenomena. Such pho ographs would be of the greatest value and interest to this office. J. R. Bartlett, Commander, U. S. N.

Hydrographer to the Bureau of Navigation.

Lipaninesin a substitute for Cod Liver Oll.

Cod tiver oil is in certain cases so wonderful a medi cine, that we must regret that we do not know its active constituents with exactness, so as to be able to administer them in a form less repugnant than that of the oil itself. M. Mering has performed an experiment in this line that should be noted.
Starting from the theory, adopted by most doctors and pharmacologists, that cod liver oil owes its superiority over other fatty oils to its richness in oleic acid-white oil contains from 0.18 per cent to 0.71 per cent, and brown oil 2.54 per cent to 5.07 per cent-the author has tried experiments with a mixture of olive oil (100 parts) and oleic acid (6 parts), to which he has given the name of lipanine, and to which he attributes the following advantages :
Lipanine would have no disagreeable taste and would be perfectly digestible, because of its high emulsive power, oleic acid saponifying with the alkalies of the bile and pancreatic juice. For this reason it could be administered for long periods in large doses without in jury to the digestive faculties. In fact, M. Mering reports that for a period of six months he administered this remedy to forty patients, of whom thirty were children, and that all took it without repugnance and without subsequent ill effects. The dose varied from one to four teaspoonfuls, according to the patient's age, and this was continued from six weeks to three months. Most of the patients were scrofu lous or rickety, some consumptives or diabetics. All of them under this treatment increased in weight, their general condition improved, their strength re turned, and these good results were obtained also among a great number of children in charge of Professor Kohts. In a word, these effects would appear absolutely comparable with those obtained with cod liver oil,; but the advantages of lipanine in its freedom from taste, easy toleration by the stomach, and capa-
bility of administration in the hottest summer weather bility of administration in the hottest summer weather are equally obvious.-Reoue Scientifque.

EXPLOBION of an ostrich egg.

Our sketch shows a scene in the basement of the Peabody Museum, New Haven, Conn., at the time of the explosion of an ostrich egg in the hands of Dr. George Baur, who was experimenting with it. An odor was produced in the building worse then condensed sulphureted hydrogen and rotten eggs combined. When Dr. Baur came to New Haven to assist Prof. Marsh in the Peabody Museum, he wrote to Dr. Atherstone, in South Africa, for some ostrich eggs. They were shipped on November 14, 1885, in the bark Aurelia. She was wrecked near Trinidad, but the eggs were saved, and reached New Haven several months ago.
On the day of their arrival Dr. Baur found four of them in the box, and began at once to get the embryos out of the shells, for they were what he wanted to observe. He had filed two little holes in two of the shells, and had blown out their contents successfully.
He wrapped a towel around the third, and began to file a hole in its shell. A hiss and an explosion followed. file a hole in its shell. A hiss and an explosion followed. which knocked over a
when he recovered he found himself cut and covered with the contents of the shell. None of the stuff had hit him in the eyes, but his face was considerably cut up.
Dr. Baur says that the first two eggs had been punctured and treated with sulphate of mercury, which prevents fermentation, while the third had not and its long voyage had stirred up a lot of powerful gas inside its $181 / 2$ inch circumference shell, which burst as soon as the file had weakened it enough. The shell is an eighth of an inch thick, and so tough that it cannot readily be broken. As far as can be learned, it is the only accident of the kind on record.

Plows and Plowing.

Professor J. W. Sanborn, of the Missouri State Agricultural College, has issued a bul letin giving the results of experiments made by him, in which he shows that as plowing is usu ally done there is a great loss of power, resulting in either inferior work or overtaxing th team from the improper ad justment of plows with reference to depth and width of cut, improper adjustment of harness, the use of colter of any form, and the non-use of wheel or truck under the end of beam to regu late the depth of fur row. The tests of draught were all made with the dynamometer previously testcd for its correctness, and its indications carefully not
ed, so that the results arrived at can be accepted as correct.
Most farm harnesses have an extension of the hip straps with a loop at the end, through which the traces pass ' $: 0$ hold the latter in place when the team is unhitched. This loop is about on a direct line of the tiace , hen the horscs are hitched to a farm wagon; but when saken from e wagon and hitched to the plow the doubletrec: are so much lower than when on th wagon as iu caus an angle in the trace from where it passcs through the supporting loop to the whiffletree. Such conditions h c found caused a rious rease the draught. The least draught is found where the trace extends in a direct line from its attachment at the hame to the center of draught in the plow when adjusted to its best depth for working.
The use of a colter of any kind also added to 'he draught, while the use of a wheel under the end of th beam-now fallen into disuse-lessened materially 'he draught. Thus, as a result of several tests, with and withont the truck or wheel, the following a verages were reached: Average draught per square inch of furrow turned with wheel on, 4.87 pounds; without wheel,
5.56 pounds; per cent of draught saved by use of wheel, $14 \cdot 1$. In the test of colters, the old and new style knife and rolling colters were used, with the folowing results : Average draught with colter on, per square inch of furrow turned, 5.77 pounds; with colter off, 4.99 póunds; loss by use of colter in per cent, $15 \cdot 6$, or about the same as the gain by the use of the wheel.

Explorations at Sepharvaim.

Mr. W. St. Chad Boscawen the other day delivered at the British Museum a lecture on the subject of the recent identification by Mr. Hormuzd Rassam of the ancient city of Sepharvaim. Mr. Boscawen began his ecture by saying that considerable interest had been aroused in the subject of Babylonian explorations by the statement that an American expedition was about o undertake explorations on the site. According to traditions recorded by Berossus, the city of Sippara had existed before the flood, and it was in the record cham-
bers of its ancient temple that the books recording the
also, the remote antiquity of the inscription was certainly to be admitted.
Mr. Boscawen then proceeded to describe some other inscriptions found on this site, among which were some cylinders recording the restoration of the great canal known as the Nahr Malka by Khammurabi, a monarch who reigned about B. C. 2200. These inscriptions, coupled with others written nearly fifteen centuries later by Nabupalassar, the founder of the new Babylonian empire, showed that during the long time which had elapsed the Euphrates had shifted its course to the westward. In the remote period of the primeval Sargon (B. C. 3800) the river no doubt flowed close to the walls of Sippara, but in B. C. 2200 it had removed so far west that a canal had to be cut to connect the city with the river, and in B. C. 550 this canal had to be still further prolonged to meet the still receding river. These factsafforded geological evidence of the antiquity of the city. Mr. Boscawen then proceeded to describe the temple which Mr. Rassam had discovered, and pointed out the close resemblance which it presented to the Jewish temple. Its internal arrangements, and even the names of the different portions, were identical with those of the Jewish temple. The Holy place (hekal) was separated from the Holy of Holies (parrako) by a veil.

The lecturer next passed to a study of the civil portions of the temple, and remarked how close a parallel these presented to those of the Mohammedan mosque. The temple was the treasury. It, was also the school, and, like the mosque, was supported by glebe or wakuf estates and by a regular tithe. As an interesting example of the tithes levied in Babylonia, Mr. Boscawen quoted a very important tablet recording the payment of the tithes by the major domo of Belshazzar, and also a list of dues paid by the prince himself on behalf of himself and his father.
The lecturer then described the remarkable discovery made by Mr. Rassan of the treasury of the temple, in which several thousand tablets were stored. These tablets were of the greatest importance, covering a period reaching from the fall of Nineveh, in B. C. 625, until the time of Alex ander the Great. These archives threw the greatest light upon all branches of Babylonian social customs, and enabled us to restore the life of the people in the bygone past with the fullest detail. Mr. Boscawen, in concluding his

EXPLOSION OF AN OSTRICH EGG.

history of the beginning and progress of civilization until the coming of the Great Cataclysm were placed by Xisathrus, the Chaldean Noah. Explorations on th site, al'shough not indicating so remote an antiquity as antediluvian times, nevertheless clearly assigned to the temple of the Sun God, which formed the center of the city, an antiquity far exceeding any hitherto as ribed to events in Chaldean history.
Th lecturer then described the discovery of this site y Mr. Hormuzd Rassam, in 1880, in the ruins at Aboo Hubha, about nine miles from the banks of the Euphrates and about forty-five miles fr mabylon. The explorations in tl. temple resulted in the recovery of several inscriptions which clearly proved the existence of 'he temple and city' is early as the 39th century before the Christian era. Mr. Boscawen carefully described the evidence on which the antiquity of the famous Bi bylonian Sargon's inscriptivn wiss based. The historical statements on the cylinder of Nabonidus were in all other particulars accurate. The presump tion was, therefore, strongly in favor of the authen ticity of this remote date of 3,200 years prior to the restoration, in B. C. 550. On palmographical grounds,
account of the work, said that great as had been the thrown upon the history of the city, of which few years ago we knew so little, it was very meager compared with what might be done when the still buried portions of Sepharvaim shall have been thoroughly explored, and he trusted that the work would now be undertaken and thoroughly and systematically carried out.-London Times.

The Canada Fishery Question.

Fish, like insects, swarm around a light, and this fact nay have an imrortance which the Evening Journal (Ottawa) thinks may have a bearing upon the fishery dispute between Canada and the United States. The United 'tates stcauship Albatross has been fitted up with electric lamps for fishing purposes. These lamps arc incased in wire netting. The fish, attracted by the ights, stiarm into the nets and are easily caught without other bait. If the electric light, as is now claimed, will answer all th purposes of bait, the Americans will havè no occasion to buy of Canadians, and Canadian fishermen will lose one of the natural advantages that they now have over Americans.

ENGINEERING INVENTIONS.

A car coupling has been patented by Mr. Antoine Muller, of Terre Hante, Ind. It has a link adjuster by means of which the link may be held at dif-
 an elevating shart extending to the sii
which the coupling pin may be lifted.
A cut-off valve has been patented by Messrs. Roland Bentley, of Dreaden, and Thomas Ford, Messr8. Roland Bentiey, or Dresden, and Thomas Fora,
of Lonton, Stafford County, Englan. It consisto
an equilibrium hollow cylindrical slide valve worked
equen an equilibrium hollow cylindrical slide valve worked
by an eccentric from the main shaft, with cylindrical by an eccentric from the main shaft, with cylindrical
valves inclosed therein and worked by an eccentric and governors, or otherwise, as an automatic variable cut-
off or expansion valve for steam, air, and water engines.

miscellaneous inventions.

A bed pan has been patented by Kate M. Duffey, of Astoria, Oregon. The invention covers
certain details of construction whereby such a device certain details of construction whereby such a device
may be used with as much convenience as possible, and may be used with as much convenience
can be readily and thoroughly cleansed.
A trace supporter has been patented by Mr. Alfred Anderson, of Stromsburg, Neb. It is atto hold the trace high or low, according to the size of the horse or the work to be done, the supporter having the horse or the work to be done, the
no direct connection to the back pad.
A perforator for printing presses has been patented by Messrs. Robert and George Kennedy,
of New Westminster, British Columbia, Canada. It has an oscillating bar carrying a series of perforating has an osciliating bar carrying a series of perforating
teeth, and adapted to be supported in the form, in combination with devices for oscillating the bar.
A whiffletree hook has been patented by Mr. Jay C. Davis, of Marshffeld, Wis. It consists of a loop having a sloot dividing and leading into itt, the slot being Pormed in a line diagonal to the direction of
length of the loop, with a supporting plate adapted for length of the loop, with a supporting p p
connection with the whifflerree or bar.
A nail brush has been patented by Mr. George \mathbf{H}. Coursen, of Baltimore, Md. The rear
nd of the handle of the brush is provided with a end of the handle of the brush is provided with 2
central nail-cleaning projection and guards on opposite sides to protect the nail cleaner from injury, the design iving a very efflcient shape to the nail cleaner
A floating oil distributer for vessels has been patented by Mr. John Ericson, of Sabine Pass,
La. It consists of a boat of suitable size to be readily La. It consists of a boat of guitable size to be readily
carried upon and secured against the weather side of a carried upon and secured against the weather side of a
vessel in case of storm, to automatically, by the action of the waves, distribute oil upon the waters to calm of the
A barbed fence has been patented by Mr. Orlando Huffman, of Friend, Neb. The cables are formed of two strands, one above another, the barbs ables, with other novel festures, the fence being designed not to injure stock while affording an efficient obstacle to their passage.
A folding chair has been patented by Mr. Hirant, troug and to be light, strong, and inexpensive, folding perfectly folding settee, the invention covering varions novel features, and being an improvement on a former patented invention of the same inventor.
A candlestick has ioen patented by . Y. Robert H. Mehl and Robert Knott, of Brooklyn, rnamenting Christmas trees, etc., and consists of wire bent to form a supporting arm, and near its upper end a loop with a reflector, and a pin wheel pivoted on
A miter box has been patented by Mr. Charles Lyman, of Clarinda, Iowa. It consists of two
hinged boxes having their approaching ends beveled, and their upper faces with a longitudinal groove, with other novel features, being especially adapted for
tinners' ase in jointing eaves troughs or gutters at an tinners
angle.
A vest protector has been patented by rr. Benjamin Ives, of Chicago, 1 . It consists of an apron having a perforated bindig along its apper edge, holes of the binding and adapted to engage the edges of the vest pockets, making a simple and efficient device or protecting garments.
An addition register for pencils has been patented by Mr. Henry C. Rose, of Leadville, registers which are mounted upon the end of a pencil, and provided with register wheels and an index hand to indic
tions.
A trunk has been patented by Mr. William J. Large, of Brooklyn, N. Y. To the tray are one piece and the two arms at right angles to the body and adapted to be held in suitable bearings at the back of the trank, so that in raising and lowering the tray oth ends will move together.
A perfumery stand has been patented by Mr. James C. Aastin, of Brooklyn, N. Y. It is adapted more especially for holding bottled perfumery or exhibiting it to castomers, and is designed to pre vent theft, while affording full view of it in an attrac tive manner, the invention covering
features in the construction of the stand.
A reach coupling for vehicles has been patented by Mr. Stephen M. Wier, of New Haven, Conn. Combined with the axle and reach are conical
bearings secured to the axle, and conical sockets atbearings secured to the axle, and conical sockets at-
tached to the reach for receiving the bearings of the axle, thereby providing large adjustable wearing surfaces in which the king bolt is not subjected to wear.
A gate has been patented by Mr. John
that whether a person approach the gate from one side or the other, by drawing on the operating cord the gate perating cord on the opposite side the gate will be losed and latched.
A mouth piece for pipes has been pa tented by Mr. Henry C. Rose, of Leadville, Col. It ha an attachment formed as a tubular stem with a bulbo end, having an annular opening around the balb, which tight angles to the stem, modifying the effect of carrent of smoke.
A washing machine has been patented by Mr. Horatio J. Lockhart, of Fostoria, Ohio. Thi invention relates to washing machines in which the ma one or more of them having a longitudinal reciprocatin movement, and covers various novel features in a simple, durable, and easy running machine.
A brick truck has been patented by Mr. James C. Steele, of Statesville, N. C. The inven parts in a hand truck especially adapted for transporting short brick hacks, either in the hack or on pallets, without rehandling or rehacking them, the truck being rong, light, and easily handled.
An apparatus for making drills has been patented by Mr. John H. Kane, of Huntington, West Va. It has a pair of grooved rolls, a roll-advanc-
ing mechanism, a gauge arranged in connection with the rolls, and a gange-operating mechanism, being designed to make straight and spiral ground drills An and onlin
An apparatus for transferring pig iron from its bed has been patented by Mr. William H.
Fredericks, of Johnstown, Pa. It consists of a combiFredion of lifting jacks, an elevated track frame mounted upon movable sections of the jacks, and bearing rails features, for transferring pig iron to the breaker for re ducing it to proper lengths.

SCIENTIFIC AMERICAN

bUILDING EDITION.
APRIL NUMBER.-(No. 30.)

TABLE OF CONTENTS.

Elegant plate, in.colors, showing perspective elevation of a residence of moderate cost, with floor plans, sheet of detalls, etc
Plate, in colors, of a cottage costing nineteen hundred dollars, with floor plans, sheet of details, etc. Perspective view and fioor plans of a house costing
four thousand five handred dollars. four thousand five handred dollars.
Perspective elevation and floor plans of a dwelling costing two thousand two hundred dollars.
Floor plans and perspective view of a house costing three thousand two handred dollars.
6. Plans and perspective elevation of a dwelling for two thousand eight hundred dollars.
A dwelling costing four thonsand five hundred dollars. Perspective and floor plans.
Sketch of a dwelling in New Haven, Conn., with floor plans.
9. A city house of moderate cost.
10. Perspective view of a country house in Connecticut. 1. Floor plans and perspective view of a seaside residence erected at Long Brani
thousand five hundred dollars.
12. Elevation and floor plans of economical workingmen's homes
ish Prussia.
3. Engraving and plan of a town hall or church.

View of Country residence of Mr. Kurtz-F. Geb hardt, architect, Ellwangen.
15. Page of engravings showing temporary trestle for Chamber, Capitol Building, Albany, N. Y.
6. Vicarage House, Herrington, Durham.
17. Full page perspective view of the Caldwell Hotel, at Birmingham, Ala., Edouard Sidel, architect. 18. Page of drawings representing some of the exhibits New York. A Spanish Grille. A French Farm House. A row of New Houses, New York. J. H. Duncan, architect.
Miscellaneous contents: Trees for Marsh and Concrete.--Bulbous Plants for Apartments, ongravings.-Color in Greek Temples.--Fever from engravings.-Color in Greek Temples.--Fever from
Sewer Gas.-New Use for Dynamite.-Wall Plates. The Underpinning of the Great Yarmouth Town Hall.-A Relic of Old London.-Use of Sawdust and Shavings.-Dry and Damp Rot.-The Rose ent Extension Plumb and Level, illustrated.-The Painting of Iron Roofs.-The Reed Rocking Grate, illustrated.-The Dunning Hot Water Boiler, illastrated.
The Scientific American Architects and Builders cents. Forty large quarto pages; equal to abos, two handred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitegTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and
allied subjects.
The Fullness, Richness, Cheapness, and Convenience
The Fullness, Richness, Cheapness, and Convenience of any Architectural pablication in the world. Sold by all newsdealèrs.

MUNN \& CO., PUBlishirrs,

A CAPRICIOUS APPETITE,

Ing. Anybody who "knows how to keep a hotel" can
ing ell by long experience that these are the hardest people
to provide for. With digestive apparatus demoralized by ypspepsia, these people hardly know what they want, and thep are, not satisfactorily nourished even with the daintiest dishes that can be set before them. A hearty
and generous eater is easier to provide for, and what he and generous eater is easier to provide for, and what h credit of those who feed him.
Dyspepsia and indigestion are domestic horrors which all may rejoice to be rid of. It is a plorious thing to be so well as to get away with pretty fair quantities of
good food. "I could not eat with any comfort" is the good food. "I could not eat with any comfort" is the
record of many a dyspeptic before taking Compound record of many a ayspeptic before taking compound
Oxygen. The corresponding record after a treatment by means of this great vitalizer is, "I have a hearty ap petite, and now enjoy my food." Worth trying. Write
o Drs. Starkey \& Palen, 1529 Arch Street, Philadelphia, to Drs. Starkey \& Palen, 1529 A rch Street, Philadelphia,
Pa. for pamphlet about dyspepsia, also interesting trea
tise on Compound Oxyken. Sent free.

ƏBusiness and Personal.
The charge for Insertion under thes head is One Dollar a line for each insertion; about eight words to a line. Advertisernents must be received at publication office
as early as Thursday morning to appear in next issue.

All Books, App.,etc.,cheap. School of Electricity,N.Y Expert aid rendered inventors in designing and con tructing machinery. Benjamin's Scientiflc Expert

Wanted-A practical tool maker. An experienced
mechanic, capable of managing that department in a mechanic, capable of managing that department in a
hardware manufactory, may apply for situation to hardware manufactory, may apply
Hardware," P. O. box 773, New York.
The success of some of the agents employed by B. F. Johnson \& Co., Richmond, Va., is truly marvelous. It
is not an unusual thing for their agents to make as is not an unusual thing for their agents to make a high as 830 and 830 a day, and sometimes the profts run
up as high as $\$ 40$ and $\$ 50$-even more. But we hesitate
to tell you the whole truth, or you will scarcely bellieve we are in earnest. Write them and see for yourself hat they will do for you.
Special facilities for the manufacturing of all kinds fight machinery, hardware, and novelties by contract Bress work and stamping done on short notice. Acme
B. H. Att. Co., Limited, 745 th Ave., New York. Patent for Sale--Rare chance to make money. Small
capital required. W. L. Lightbown, No. 468 N St. S. W. Washington, D. C
For Sale-Two hundred shares of the Burgess Paten Steam Generating Company, of New York, at a low fig-
ure. Address A. B. C., Drifton, Penna., Luzerne Co. Active, influential cipals, who can introduce the Edson recording stean gauge to the notice of steam users in their vicinity. For
particulars address Jarvis B. Edson, 91 Liberty St., New York
For the specific parpose for which they are designed Patteries manufactured by the
Partz Electric Battery Co.
1723 Chestnut Street, Philadelphia, Pa.,
best in the world. Catalogue now ready.
Steel name stamps, 15 cts . per letter. Steel figares, 81 per s
Ohio.
Wanted-Draughtsman on printing machinery. PerCo., Boston, stating age, experience, and pay required. Duplex S
alo, N. Y.
Brass, iron, and steel work of all kinds. Send sample or description of what you want, and we will name price. T. F. Welch \& Co., 8 and 10 Medford St., Boston For the latestimproved diamond prospecting drills, address the
Chicago, 1 II .
Barnham's tarbine wheel is sold at net price to mill wners. Catalogue free. Address York, Pa .
The Diamond Prospecting Co., 22 W . Lake St. prospecting drills.
Foree Bain, 76 Market St., Chicago, designer and constructor. El (
chinery, etc.
Nickel Plating.-Manufacturers of pare nickel an odes, pure nickel salts, polishing compositions, eta 8100
"Little Wonder." A perfect Flectro Plating Machine. Agents of the new Dip Lacquer Kristaline. Complet outit for plating, etc. Hanson, Van Winkle \& C
ark, N. J., and 92 and 94 Liberty St., New York.
Perforated metals of all kinds for all purposes. The
The Railroad Gazette, handsomely illustrated, pub lished weekly, at 73 Broadway, Nè̀ York. Specimen The Knowles Steam Pump Works, 113 Federa tt., Boston, and 93 Liberty St., New York, have just isproved forms of Pumping Machinery of the single and duplex, steam and power type. This catalogue will be ailled free of charge on application.
Link Belting and Wheels. Link Belt M. Co., Chicago Iron Planer, Lathe, Drill, and other machine tools of nodern design. New Haven Mif. Con, New Haven, Conn.
Pressee \& Dies. Ferracute Mach. Co., Bridgeton, N.J
The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Cortis Preseare Regulator and Steam Trap. See p. 77 Supplement Catalogue.-Persons in parenit of information of any special engineering, mechanical, or scientifl subject, can have catalogue of contents of the Sol
INTIFIC AMERICAN SUPPIEMENT ENTIFIC AMERICAN SUPPLEMRNT sent to them free
The SUPPLEMENT contains lengthy articles embracing the whole range of engineering, wichanics, and physical science. Address Munn \& Co.. Publisigrs, New York.
We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure
asbestos Roods of all kinds. The Chalmers-Spenoe Co.

Drop Forgings. Upward of 3,000 different articles.
illings \& Spencer Co., Hartford, Conn. For best forges, blowers, exhansters, hand and power rills address Bufraio Forge Co., Butalo, N. Y.
The Improved Hydraulic Jacks, Punches, and Tube Gang drills for light work, $3 / 8$ and under. Automatic lever feed. Dwight Slate Machine Co., Hartford, Conn.
Hoisting Engines, Friction Clutch Pulleys, Cut-off
ouplings. D. Frisbie \& Co.. 112 Liberty St Tight and Slack Barrel Machinery a specialty. John
"The Improved Greene Engine." Flat slide valves, ine Co., sole builders.
No. 11 planer and matcher. All kinds of woodworking machinery. C. B. Rogers \& Co., Norwich, Conn.
Rollstone variety lathe-bores, beads, and turns at the Patent foot Patent foot power scroll and circular saw, mortisers,
athes. Seneca Falls Mfg. Co., 666 Water St., Seneca alls, N. Y.
A Perfect Engine-Syracuse water motor, for driving
ight mach'y. Tuerk Water Meter Co., Syracuse, N. \mathbf{y}. aht mach's. Tuerk Water Meter Co., Syracuse, N. Y.
Improved fine tools for mechanics-Manufactured by Improved fine tools for mechanics-Manufactured by
L. S. Starrett, Athol, Mass. Send stamp for full list.

NEW BOOKS AND PUBLICATIONS.

DEFENSE OF THE SEA COAST OF THE United States. By Bvt. Brig.-Gen.
Henry L. Abbot, U. S. Army. New
York: D. Van Nostrand. 1888. Pp. York
167.

In this b are contai ivered by the eminent author before the U. S. Nav
War College, in November, 1887. The subject is treat from all aspects, and a very clear idea of the prese: status of coast defense is presented. Many figures of artillery practice and results add to the value of the reatise. The author's personal views are of course strongly brought out. Thus, his devotion to submarine mines, and his opposition to the pneumatic dynamite gan, which he intimates should be called a mortar, are equally clear. He claims that the last named
weapon would be of great injury when used by the weapon would be of great injury when used by the
defense, as it would interfere with the success of fixed mines, by countermining or exploding them,
mas destroying its own defenses. But by the use of ordinary stroying its own defenses. But by the use of ordinary
care in its manipulation, it would seem secure from this danger. It is also perfectly clear that the enemy might use the pneumatic gun with great success, as a countermining, so that its uses in war are rather emphasized

L'Electricité: Notions et ApplicaTions Usuelles. Par Aug. Michant. 410.

This book covers the whole science of electricity and all its applications. Much is necessarily treated in an abridged style, but the whole subject is very well presented. Upward of 300 illustrations, among which we recognize some reproductions from the columns of the of the work, as they are generally well chosen and pertinent to the subject.
Easy Experiments for Schools and Families with Home-made ApPa-
Ratus. By A. R. Horne, A.M., D.D.
Chicago : A. Flanagan. 1886. Chicago: A. Flana
Price 35 cents.
Send for new and complete catalogue of ScienFree on application.

HINTS TO CORRESPONDENTS.

(1) C. V. A. writes: 1. Iny our Scienrific American of April 23, 1887, you describe the winding of the armature for an 8 light dyuamo machine. Can two layers of wire be substituted for the four layers therein prescribed, making one layer of wire per sec-
tion instead of two? Of course I would not expect such ood results, but would find it much easier to coustruct in this manner. A. You can make coils of one layer Better follow the instructions and remain the same. Better follow the instructions and use two layers in
asch coil. 2. Can ordinary paint be used for costing the top edges of a Leclanche battery cell to prevent he ealts of sal ammoniac from forming? A. Paint is not of much value for this purpose. Better use parafine, tallow, or wax.
(2) W. O. D. asks : 1. How long will ichromate plunge batteries last in constant use? A.
hree or four hours. 2. Are they expensive to keep in order (recharging, etc.)? A. As compared with steam or gas for motive power, yes. 3. Would the same pattern serve to use on bells and other experimental purposes? A. It is not adapted to ringing bells, but is excellent for great variety of experimental work. A. Would a and of course developing less power? A. Yes.
(3) H. R. Y. asks: 1 . Is the dynamo electric machine deacribed in SOPPLLEMRNT, No. ©00,
suitable for electroplating? If not, what change shoold suitable for electroplating? If not, what change should
be mades A. The dynamo referred to is not suitable for electroplating, but, by winding the armature with No. 12 wire, one layer in each coil, and the field magnet with No. 9, it may be made to answer the parpose. 2
Will cast iron do for the feld magnet and armaturecore Will cast iron do or the field magnet and armaturecore
of the simple electric motor, deseribed in No. 11, carrent volume of the Scirntific Ambrican? A. Cast iron will do for the field magnet, but the armatare core should be made of iron wire.
(4) E. C. asks (1) if a piece of wrought iron of the required dimensions would not answer fo Wrought iron will answer, but not as well as iron wir 2. And if a fifld magnet made of wrought iron wo not answer for the one made of strips of Russia in
A. Yes. 3. Also if a battery, used for an electric would develop sufficient power to ran the moto withont using it to ran anything
have is a pile Leclanche. A. No.
(5) Old Subscriber.-SCIENTIFIC AmerCAN SUPLLEMENT, No. 384, contains directions for (a) A.
(6) J. A. M. asks : 1. How can I find the required height of water in any steam boiler? A. In orizontal tabalar boilers, the water line should be a top of the shell. In locomotive stationary boilers, the water line should be one.third the distance from the top of the crown sheet to the top of the shell. In ver tical boilers of ordinary make three-fourths of the
tubes should be in contact with solid water. 2. How to make flanges on boiler and dome heads. A. Put langes on boilers with a putty made of white'lead, iron borings, and Prince's metallic paint, equal parts, made up with boiled linseed oil. 3. How can I make a vertical steam boiler any size, at small cost? A. We can not teach an easy way of boiler making. Make boile in the regular way with good material and workman
ship. 4. In making vertical boilers with the tabes exship. 4. In making vertical boilers with the tabes ex-
tending up above the water, fo there not danger of the fines leaking? A. We do not approve of the use of vertical boilers, where a horizontal one can be made available. The exposure of the upper end of the tabes and tube sheet to undue heat is not desirable, and gives mach troable in that class of boilers, especially when
(7) F. W. P. asks : Is there any chemi cal which, added to melted glae, will keep it in a liquid state when cold? A. An excellent liquid glue is made
by taking a wide monthed bottle, and dissolving in it 8 ounces best glue in $1 / 2$ pint water by setting in a vesse of water and heating until dissolved. Then add slowly 21/6 ounces strong nitric acid of 36° Banme, stirring al
the while. Effervescence takes place with generation of fumes. When all the acid has been added, the liquid sal y ior to cool. Keep it
(8) J. G. F. desires a good receipt fo making root beer. A. Take 1 ounce each of sassafras, wild cherry bark and coriander, x ounce hops, and quarts molasses. Pour sufficient boiling water on th ingredients, and let them stand 24 hours, filter th liquid and add $1 / 2$ pint yeast, ard it is ready for use in 24 hours.
(9) C. J. W. asks: Can cast iron be sol dered so as not to leak water, and how? A. Solder cannot be made to flow on cast iron. Pare tin may be tinner's acid, with a soldering iron.
(10) R. R. J. asks : Could an 8 light dynamo be ran by windmill to charge a storage battery for lighting, and what power would be required to ran It? A. Yes; eight 16 candle power incandescent
lights will require about $11 / 8$ horse power with an economical dynamo. A windmill of. 2 horse powe shonld be able to charge a storage battery for an eve
(11) H. F. B. asks : Who was the pat
ee of the monks, and is the name spelle Monkey or Moncky? A. "Monkey" is the proper spelling. The name is largely used for mechanical and nautical appliances. The wrench is very ol
do not know that it was originally patented.
(12) S. E. H. writes : I wish to make some hollow lead castings, about 4 pounds in weight,
shell $1 / 8$ inch in thickness. The crooked shaoe of casting prevents digging the core from the center and learing it from obstructions, although there is a hole o opening at each end. Can I cast them in iron mould (in halves), using a suitable shape core, and use a liquic A. Make the core with flour paste, as little as possible to hold the sand. Make it in halves, so that you can excavate a passage clear through the center when
the halves are pasted together. Scratch out all the sand the halves are pasted together. Scratch out all the sand
possible from the casting and make a connection with possible from the casting and make a connection with
a waterfaucet or pump and wash out the central parts a waterfancet or pump and wash ont the central parts.
If the sand does not all wash out, pour in sulphuric acid 1 part, water 2 parts, mixed. It will soon loose the sand so that it will wash.
(13) M. B. asks (1) a good cement to fil in the cracks of a floor before painting or staining it
A. You had better use strips of wood driven in and planed offis smooth and even with the floor. Cement will break up and look rough in a short time. 2. What preparation is used for lamp wicks to obviate the necessity of trimming them?
for incombustible lamp wick.
(14) F. G. B.-The common varieties of prepared mucilage are made by treating dextrine with sulphuric acid, which in time destroys the color of the stamp. Better use a mucilage made by dissolving gam
(15) J. C. B. asks the best way to cover steam pipes laid in very damp, moist soil. Cold spring
water around them condenses the steam as fast as it water around them condenses the steam as fast as
flows in. A. You cannot protect the pipes when water flows in. A. You cannot protect the pipes when water
has free access to the covering. Make a drain beneath
the pipe, then box the pipe with an air space of 2 inches
all around the pipe. Pipe can lay in chocks in the box oneep it in place. Cover the ends of the box to preent circulation of air.
(16) J. S. G. asks how to straighten out ieces of zinc (which are cut for shoe patterns) so as to make perfectly flat. The number of zinc is 14. A. This work requires as much care as to flatten a saw blade. Gently hammer on a flat iron upon the parts that draw
ap or bulge, not on the bulge itself. A little practice
(17) V. L. C. asks : 1. How to make a trong cement to mend china. A. See the article on "Cements" in Scientific Amprican Sopplement, arblef figures that are greasy and very dirty. A. Make a paste with fuller's earth and hot water,cover the spots
therewith, let it dry on, and the next day scour it off with softyor yellow soap.
(18) M. asks for a recipe for a yellow ye or stain, to stain sap pine or cypress. A. Either
brush over the work with a tincture of turmeric or arm the work, and brash it over with weak nitric acid, varnish or oil as usual, a very small bit of aloes acia, va
put into
wood.
(19) A. H. T. asks a receipt for a strong percussion cap, one that explodes easily. A. Use 100 rains of fulminating mercury triturated with a wooden oller on marble, with 30 grains of water and 60 grains
gunpowder. A solution of gum mastic in turpentine as a medıum to attach the mixture to the metul
(20) J. L. P. asks how to make com on glue dissolved mix with linseed oil and remain so. A. We know of no means by which this can be accom-
plished. An alkali such as soda or potash would prohibly make them mix, as soda or potash would proably make them mix, but its effect
(21) C. J. S.-You will find full direcons for pressing plants and forming a herbarium in
(22) J. E. C. asks : What, articles comined will produce spontaneous combustion in the
hortest time? A. Water and potassiom.
(23) T. B.-Ampere's theory states that arrents of electricity travel around a magnet in planes tright angle to its axis, as if a fine wire were wrapped
round it. No theory of any note holds that longitoand it. No theory of any note holds that longimore than a framework to organize facts. If the ob-
mis erver looks toward the north pole of a magnet, the carrent is assumed to move in the direction opposite to the hands of a watch.
(24) S. W. writes : I wish to use a low asing solder of lead, tin, bismath, and cadmium, and find difflculty in making a strong joint. What should I nse as a flax to obtain a clean solid joint, and not raise the melting point of the alloy, which is 150° Fah.? A.
Use Venice turpentine or Canada balsam.
(25) J. S. asks: What kind of woods re the best to resist the action of steam, with the least
(26) G. W. H. asks: What kind of oil hould be used in oiling base ball bats after they are tarned out, and how should the oil be rubbed in? A. Use boiled li
(27) C.
(27) C. E. H. asks the best way of cleaning a bronze chandelier, soiled with fly specks, etc. A.
See Scientifio American Supplement, No. 39, prosee Scientifio Ambrican Supplemer
(28) E. C. H. asks : 1. Will you kindly nswer through your paper, whether the body of fleld magnet, or armature core of electric motor described in on without injury 17, 1888 , conking or the power of notor? A. Yes. It has been described and illustrated in our columns. \&. Is there any way or process to melt dissolve small pieces of carbon, such as thrown on 14 inch and apward in thickness? A. No. Yon may grind them to powder, and mix into a paste with sagar and water, and after moulding may heat them in a covred receptacle to full redness. This will give an in erior product, unless a retreatment with the sirap, followed by a second baking, is given.
(29) J. P. F. asks : 1. Can you inform Simple Eng the battery recommended will ran the March 17, 1888, number, before becoming exhausted? A. Three or four hours. 2. Can the battery described on page 390 of the December 17, 1887, number be used to
run this motor? A. The battery is too small for the run this m
parpose.
(30) W. E. asks: 1. Could I not double the dimensions of the one described? A. Yes. 2 .
Would I need a larger size of magnet wire? A. The magnet wire may remain the same, and you can adapt its resistance to your battery by connecting the coils
inches parallel. 3. How many cells of bichromate battery would be required? A. About 12. 4. What power would it develop? A. Probably $1 / 1 / 2$ horse
(31) O. M. W. asks : 1 . What is the best and cheapest battery to run simple electric motor decribed in Scientific Ambrican (vol. lviii., No. 2), the will generate current enough to run two sewing machines? A. The plunging bichromate battery is best or the parpose. It will require about 8 cells. We ex Could motor be run with an open circuit battery. Leclanche or Bunsen). If so, how many cells of either would be required? A. The Leclanche battery is no hort time. 18 or 20 cells of Bunsen connected up in hort time. 18 or al cells of Bunsen
(32) W. P. K. asks: Is there anything
portions of the paper will be a condactor, while the
portions covered by printing will be a non-conductor of electricity? A. Use bronzed paper and write on it with thick India ink. The surface of the paper will th
a conductor, except where protected by the ink.

TO INEENTORS.

An experience of forty years, and the preparation of tents at home and abroad, enable us to undicarstand the
laws and praction laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere.
synopsis of the patent laws of the United States and a foreign countries may be had on application, and person contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices Which are low. In accordance with the times and our ex
tensive facilities for conducting the business. MUNN \& CO., office ScIENTific American, 361 Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of the
United states were Granted
April 3, 1888,
and each bearing that date.
[See note at end of list about coples of these patents.] Acids of the diamidoazolbenzidines,'production of
disulpho and dicarbo, L. Paul.........s80,402,
 Animal trap, H. Barry....
Animal trap, O. Haftman.
Animal trap, 0 . Haffiman
Axle box, car, K. Zallud..
Axle oiler, car, \mathbf{E}. Housel

Baling press, R. W. Archer.....
Barrel lifter,.
tery.
Bed pan, K. M. Duffey
Belt carrier tightener, R...............................
Bett, electric, C. B. Harness. W. Menke................
lasting cartridges, cap protector for, De Coa
Kobbint.
Bolting reel, , m machine, C .
Boot tor shae, C. F. An...

Boot or shoe sole trimming maxhine, c. H. Trask uppers of, s. machine for un. W . Robinson..
 box. Miter box.
Brace. See Saw brace
Brace. See Saw brace.
Brake. See Elevator brake. Vehicle brake.
Brine, apparatus
Brine, apparatus for makin
Broom holder, E. Gash.....
Brush, fountain, J. A. Pearce.
Brush, nail, G. H. Coursen.
Brush, nail, G. H. Coursen..................................
Burner. \&ee Gaseous fuel burner. Vapor barne Butter tub, A. C. Howe.....
Button, R. Liebmann.......
Can opener, W. P. Quentell
Candlestick, Mehl \& K Kott.
Car coupling, A. Muller.
Car conplinn, A. Muller..................
Car heater and lighter, L. E. Truesdell.
Car heater grates, support for. W. C. Baker....... Car, Btock, N. Z. Seitz........
Car ventilator, J. Hutton..
Cars, electric signal for railway, J. R. De Mier....
Cars. head and back rest for railway, H. B. Cars, head
8mith....
Cars, safety
Cars, safety appli.......................................
Cars, ticket holder for railway, J. B. McIntyre... Carrier. See Hay carrier.
cash register and indicator, W. Aldrich
Cash register and indicator, Patterson \& Heady. Casting ingots, mould for, Hampton
Centrifugal machine, G. ND Centrifugal machine, G. N. Downs.............
Chair. Chair, G. Hunzinger.... Chair, G. Hunzinger....................................... 380,62
 Cigar tip cutter, V. Howell.
Clump. See Skate clamp.
Cleaner Cleaner. 7 Siee Pen cleaner.
Clothes drier, J. L. Lincoln.
Clutch, friction, H. C. Crowell
Clutch, friction, J. A. Keller
Coat holder, automatic, simmons \& Eastman
Cock box, stop, N. Barry, Jr..
Coffee or tea pot, J. J. Royle.
Coiled spring, Fowler \& Waldort
Corn sheller, \mathbf{E}. Herrington
Cotton chopper, A. Fleming
Cotton chopper, A. Fleming
Cotes, J. E. Lockett.
Counter stinfener machine,
Coupling. See Car coupling. Pipe or hose coup
Coupling. See Car coupling. Pipe or hose........
ling. Thill coupling. Vehicle reach coupling.
link. Thill coupling. Vehicle reach couplink
Creases in sheets of flexible or elastic materia
making, W. A. Lorenzz...
Cuffastening, F. W. Allen.
Curfastening, F. W. Allen....................
Cnitivator for listed corn, J. W. Brown
Cnitivator for llsted
Cup. See Oil cup.
Cut-off valve, Bentley \& Ford........................
Cutter. See Cigar tip cutter. Rotary cutter
Wire cutter.
Cutter head and cutter head gauge, S. J. Shimer.
Dental engine hand piece. H. S. Grac
Dike or breakwater, L. M. Haupt..
Door check, E. Tyden,
Door plate and indicator, W. N.
Door, slitina jail, D. MCDonald
Draught detal
Draught detachink device, A. R. Hunsake
Draught equalizer, J. Putman
Drier. See Clothes drier.
Drill. See Bow drill.
Drills, apparatus for making, J. H. Kan
Drills, universal table for, J. J. Hardy..............
Drilling aud countersinking apparatus, H.
Brown........................

Is the American authority on Horticulture，Landscape
Gardening，and Forestry，and its columns must be con－
sulted for the best information on these subjects．A large number of the forremost specialists of the time in America and Europe write for it，and the new journal
has been pronounced by the press to be the ablest and has been pronounced by the press to be the ablest and
most attractive journal of its class ever published in It is indispensable to Superintendents of Parks，Cem－
eteries，and other public grounds，and should be eteries，and other public grounds，and should be taken
by railroad men and by people interested in the im－ provement of country towns and villages．
The illustrations are original and artistic， pictures of plants never figured before．
For sale on all news stands at 10 cents a number．Sub－
scription price，\＆4．00 a year ；or $\$ 1.00$ for a trial subscription Azents wanted to canvass on liberal commission．
The Garden and Forest Publishing Co．g d．a．munro，Tribune Building，N．Y． ARCHIREYTVRLL BOOSS
Useful，Beautiful，and Cheap．

To any person about to erect a dwelling honse or sta－ ble，either in the country or city，or any builder wishing

 te，either in the conntry or city，or any builder wishingto examine the latest and best plans for a church，school
house．club house，or any other public building of high or low cost，should procurea complete set of the ARCHI－ trcts＇and butiders＇Edition of the Scientifio
amemican． The information these volumes contain renders the and to persons about to build for themselves they will And the work suggestive and most useful．They contain Ings of almost every class
tion and approximate cost
Four bound volumes are now ready and may be ob－ tained，by mail，direct from the publishers or from any
newsdealer．Frice， 8.00 a volume．Stitched in paper covers．Su

MUNN \＆CO．，Publishers， 361 Broadway，New York
 THE BEST NOW MADE

Valuable Books．

Just Published．

Dynamo－Electric Machines，Prinelplen
 The Portable Enyine，its construction and management，a practical manual for owners and ussergor steam engines eneraly．By W．D．Wand brough．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Theory and Practice of Electro－Deposi－ tion，Including every known mode of Depositing Sare Railway Working：A treatiseon Rail way Accidents，their cause and prevention，with Ceyclopædic，Sclence：Simplifed by J，H．

 A Manual of steam Bollers：Their design， Every intellige
 ${ }^{*}{ }^{*}$＊Any of the above works sent by maill，pre paid，to any part of the world on receipt of price．
 Our new book catalogue or 104 pages will be sent free to any one，in any part of the world， who will send us his addres
 MUNN \＆CO．，
 NO．SG1 BROADWムさ，
 NEW YORK，
 Publishers of＂SOIENTIFIO AMERIOAN．＂

ICE－H O U SE AND REFRIGERATOR．

Air Brush．

PHTHISIS－A PAPER BY DR．H．C．

HARMON＇S IMPROVEO Leveling Instrument．

THE FORTH BRIDGE－A PAPER BY

Steanl Steanl

We build Automatic Engines from 2 to 200 H．P． A Large Lot of 2， 3 and 4－H．Engines B．W，PAYNE \＆80N8， Box 15，

ROCK BREAKERS AND ORE CRUSHERS．

THE COPYING PAD－－HOW TO MAKE

W．BAKRER \＆CO，Dorchester，Mass，

STEAM ENRINES． Horizontal and Vertical．
 York Mfg Oo．，York．Pa．J．8．A． DISEASES OF DYNAMOS－A PAPER

Telegraph and Plectrical

BROOKS＇NATINNAHMETETION
 AMMONIA SULPHATE－－A PAPER

$\$ 100$ to $\$ 300$ Ao MONTH can be made

PULLEY8，HANGER8，PROGRHES MAOHINE WORES，

ICE \＆REFRIGERATING

Proposals for Conotrucing n Stem Propeller：

 Extend ing the New Haven Bren kwaier．－

 RAILS FOR STREET RAILROADS．－

New Zealand Railways．
 eommink Candidate forthe A ppointmentis of Chief
s

GOING INTO THE POULTRY BUSI－

－PACHINERY．
barreL
MACHINERY． B．\＆R．HOLMES，
2nd nas machlery

 MACBINERY PALACE OF THE PARIS

MONON ROUTF

E．O．McCormick，Gen，Pass．Agent，Chicazo

COUNTY AND STATE RISHTS

 IT PAY8 $\begin{gathered}\text { to sell our Rubber stamp．Free Catalo } \\ \text { to agents．Chandier } \& \text { Pisher，Clevelund，o．}\end{gathered}$

$>$ 娄書 ！mThemost successfill Lubricator LOOSEPULLE YATILER

The Scienific American puiluctrous 50 हि 188.

NEWSPAPER FILE

 Dafdoreas who wishes to preserve the paper

MUNN \＆CO．，

HOME－MADEINCUBATOR．－PRACTI－

＂TOOTH BRUSH REFORM．＂

10000

Malleablé

SUN DIALS－PRACTICAL DIREC
 SAWS Wanted 50，000 sumpers and Lum

 THE PHONOGRAPH．－A DETAALED

PATENTS．

In thit line of busness thee have had forty－one year＇s

 them is done wit
reasonable terme

patents in all the principal countries of the eoria．
MUNN \＆CO．，Solicitors of Patent，
31

 H．W．JOHNS MANUFACTURINO CO．g
－W．Johns＇Fire and Wator－Proof Asbestos Roofing，shoathing，Buildiag Foits： MULOABESTOM，Moulded Piston－Red Packing，Rings，Gaskots，Shoet Penting，etc

（4）Wisw
 New Gas Engine The Baldwin＂

 Elevators and Hoisting Machinery， THE AgE AF GF THE STARS．－BY

STORAGE BATTERIES FOR ELEC

MATCHMAAKERR

THE DEVELOPMENT OF THE MER

MAGNESIA 8ECTIONAL STEAM－PIPE AND BOILER COVERINGS．

RIDI

CHEMICAL AND ALLIED INDUS－

SHIELDS \＆BRON CO．
 Steam，Gas and Wiater Pipes，Drams，Heators，ote The Beet Non－Cond uctor of Heat $\&$ Cold in the World

DSEFIL BODKS．

 permits the transmission of books through the mails at very small cost．A comprehensive catalague of
useful books by direrent authors on more than Afry asiffereo kb bj ciisferent authors．on more than iffy
different subjects，has recently been published for dirferent subjects，has recently been published for
free eirculation at the office of this paper．Subjects classified with names of author．Persons desiring
a copy，have only to ask for it，and it will be mailed a copy，have only to ask for it，and it will be mailed
to them Adadress，
MUNN －mond

95 MILK ST．BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March th，1876，No．174465，and January 30th The No．186，787．
Thansmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsiblefor such unlawful use，and all the consequence thereof，and liable to suit therefor．

DRY AIR REFRIGERATING MACHINE

The Originial Ourulcaized Pacting．

TELESCOPES－THEIR HISTORY

 SVRALUGE MALEEABLE IRTUN WORMS

ETIOLOGY OF SCARLET FEVER－A

THE FLORIDA

 STEAM HEATER．Will Never Rust Out or Explode． Sectional．Purtable，Automatic．
Magazine or surface Feed． 16 sizes． Send for Illus．Book and Estimates． Pierce，Butler \＆Pierce Mfg．Co．， ェエロ

Scientitic American

The Most Popolar Scientific Paper in the World．

This widely circulnted and splendidy ylustrated paper is published weekly．Every number contains six－
teen pages of useful information and a alarge number of original engravings of new inventions and discoveries，
res repres nting Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufnctures， Chemistry，Klectricity，Telegraphy，Photography，Archi－ tecture，Agriculture．Horticulture，Natural History，etc． Complete List of Patents each week．
 postage prepaid，to any subscriber in the United States por Canada，on recelpt of three dollars by the pub－
 Clubs．－Special rates for several names，and to \mathbf{P} Mastera．Write for particulars．
Express Mones Order．Money carrefuly placed inside
 seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，dratts et． dress all letters and make all orders，drata
ableto
IUIUNTV \＆$C O$.

361 Broadway，New York．
Scientific American Supplement．
This is a separate and distinct pablication from
THis Scientirio Am inican．but is uniform theremith of enize，every number containing sixteen large pages full apers，and accompanied with translated descriptions． He Scientipic Am brican supplement is published presents the most reeent papers by eminent writers in all the prinsipal departments of science and the UsefuiA ts，embracing Biology，Geclogy，Mineralogy， Chemistry，Electricity，Light．Heat，Mechanical Engl－ eering．Steam and Railway Engineering，Mining， echnoiogy，Manufacturing Industries，Saritary En－ ineering，Agriculture，Horticulture，Domestic Econo－ my ，Biography，Medicine，etc．A vast amunnt of fresh and valuable in
ication． The．
The most important Enjineering Works，Mechanisms， and described in the SuppiEment． Price for the SUPPLEMENT for the United States and Canada． 85.00 a year，or one copy of the SCIENTLFIC AM－ for one year for $\$ 8.00$ ．Single copies 10 cents．Address and remit by postal order，express money order，orcheck， MUNN \＆Co．， 361 Broadway，N．Y．，

Builders Edition
The scientiftic American Architects＇and BUILDERS＇EDTHION is issued monthly． 8.50 a year．
Single copies， 25 cents．＇Forty large quarto pages，equal to about two hundred ordinary book pages；forming a arge and splendid Magazine ot a rchitecture，rich－ y adorned with elegant plates in colors，and with other amples of modern Architectural Construction and A special feature is the presentation in each number d a variety of the latest and best plans for private resi－ ences．city a perspective and in color are given，togetber with fall Plans，Specifcations，Sheets of Details，Estimates，etc．
The elegance and cheapness of this magnificent work have won for it the Isaryest Circulation of any Architectural publication in the wo

MUNN \＆CO．，Publishers

361 Broadway，New York．
PRINTIINTG INTKE：
THE＂Scientific American＂is printed with CHA

