

A WEEKLY JOURNAL OF FRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. $\left.\begin{array}{ll}\text { Vol. LVIII. }- \text { No. 10.] } \\ \text { [NEw series.] }\end{array}\right] \quad$ NEW YORK, MARCH $10,1888 . \quad$ [$\$ 3.00$ per Year.

srientifit gmmerican.
 \section*{ESTABLISHED 1845.}

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN.

One copy, one year. for the U.S. or Canada...
One copy, six months, for the U. S. or Canada
One copy, one year. to any foreign country belonging to Postal Union, 450
400 Remit by postal or express money order.
Australia and New Zealand.-Th
Australia and New fealand.-Those who desire to receive the SCIENTIFIC AMERICAN, for a little over one year, may remit $£ 1$ in curre
Colonial bank notes. Address
MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.

The Scientific American Supplement
is a distinct paper from the Scientific Amprican. THE SUPPLement is issued weekly. Every number contains 16 octavo pages. uniform in size
with Scientipic American. Terms of subscription for Supplem ent, $\$ 5.00$ a year, for U. S. and Canads. $\$ 6.00$ a year to foreign countries belongIng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughout the country.
will be sent for one year, to afy address in U. S . or and Sopplement seven dollars.
The safest way
registered letter
Australia and New Zealand.-The Scientific American and Supplement will be sent for a little over one year on receipt of $£ 2$ current Colonial bank notes.

NEW YORK, SATURDAY, MARCH 10, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 686.
For the Week Ending March 10, 1888. Price 10 cents. For sale by all newsdealers.

1. CHEMISTR Y-T Test for Aniline Colors in Wines or Fruit Juices.- 1016 The Chemistry of Substances Taking Part in Putrefaction and Antisepsis.-By .JoHn M. THoMPson, F.R.S.E.-The second of hese important lectures,

ELECTRICITY.-Cooper's

motor of 1884 , the invoper's Thermo-magnetic Motor.-A simple -1 illustration.
Magnetism Produced by Steam.-A..................................... The Last Model of thm illustrated and described.-1 illustration The Last Model of the Aron Elect ric Meter.
The Position and Prospects of Electricity as A pplied to Engi-neering.-By William Geipel..-An exhaustive practical view of the practical applications of electricity to industrial uses..
III. ENGINEERING.-Rigg's High Speed Revolving Steam Engine -A new and ingenious sype of four cylinder engine, capable of thaining 2,000 revolutions per minute.-2 illustrations The New Dufferin Bridge, Benares.-A recent iron railroa
bridge crossing the Ganges.-Dimensions and cost of the struc ture.-4 illustrations.
 n progress on the Isthmus.- 9 illustrations.
IV. ENTOMOLOG Y.-A Curious Form of Caterpillar.-............... 4 illustrations.
V. MISCELLLANEOTJS.-The Necessity for a Patent System, and the advantages to be derived therefrom.-By GEO. O. G. COALE.-An enlightened review of this question, and the opinion of inventors and others concerning it...
The Universal Exhibition
The Universal Exhibition at Barcelons in 1888.-The opening of 2 illustrations..
Two Puzzles.
trations
NAVAL EN... Howard Folime.-An interhe First Atlantic Steamship.-By on of the navigator of the first steamer that crossedthe Atland with characteristic entries from her log book.
II. ORDNANCE.-Dynamite Shells Fired from Ordinary Guns.he recent experiments with Lieut. James W. Graydon's plosive shells.-Their effects upon a turret segment.- 3 illustrations...
The Pneumatic Dynamite Gun.-The English view of the
zalinski gun.-A eulogistic lecture by Capt. HAIG before the United Service Institution of Great Britain..
III. PHOTOGRAPHY.-New Direct Platinotype Process.-Full account with formulæ of the new process.
EX. TECHNOLOGY.-An Inverted Clamond Lamp.-An applicatio of the regenerative principle to this well known incandescen burner.-1 illustration..
Dietzsch's Kiln for the Continuous Burning of Cement Limeobtained by its use.-Comparison with other recentforms.-1 illus ration..
Moulder's Tools. - The tools of the foundry moulder and their uses.-
tions.

MUNOR PHENOMENA OF THE INCANDESCENT ELECTRIC LAMP.
The incandescent electric lamp has already been cited as giving an illustration of irradiation. When in full action, it presents no longer to the distant eye a simple loop of glowing carbon. By irradiation the outline is lost, and it resembles a gas flame. The same object illustrates very perfectly some of the phenomena of persistence of vision. The old example of the whirling ember, the thaumatrope and many other scientific toys, could be cited that are based upon this principle. It is also well known that if a spot of specific color is looked at intently for some time and the eye is then turned upon a white surface, the complementarily colored spectral image of the spot will appear. The nerves of the eye, it is assumed, become fatigued for the original tint, and hence, receiving white light, are affected by the residual colors. This is the reverse effect of persistence of vision. By the latter, properly speaking the true image retains its effect. But the two are intimately related, as opposite effects so often are in the vorld of nature.
Ii an incandescent burner is gazed at while near the eye, the filament can be distinctly seen. Now, if the eye is closed, the image of the filament remains, and appears in clear outline in a purplish or violet color. The characteristic shape of the particular filament is especial ly distinct. If, in looking at it, particular care is taken to avoid remembering its appearance (and this disciplining of the mnemonic faculty is not difficult), the spectral image seen with the closed eye will vividly portray the filament and its peculiarities. Sometimes it seems as if the effects of irradiation could be partly overcome; as if the image of a distant lamp could be reproduced free from the glow of irradiation. To a degree this may be possible, but a fully ignited and distant lamp always gives a confused spectral image to the closed

The filament of the high resistance lamps illus trates elasticity very well. Surrounded by a vacuum so as to be free from the damping effects of the air, no object more sensitive to vibrations or shocks can be found. The least tremor of the wall to which the lamps are attached makes the loop vibrate for a long period. This only takes place when they are cold. When the current is passing and they become red or white hot, they are no longer so elastic, and cannot be made to vibrate as before.
By the same vibrations sound is often produced The vacuum of the globe prevents the sound from being heard by atmospheric transmission. But the filament is in solid connection with the globe and socket. If it is set in strong vibration, and the lamp is held pressed against the ear, a ringing metallic sound will be heard. This cannot be done with all burners. A certain size is naturally essential, as the sound is at best a weak one.
It would seem possible that a visual seismograph of extreme sensitiveness could be made on the general lines of an incandescent burner. It is probable that a filament could be obtained in this way more affected by external vibrations than is the most sensitive device now used.

TESTS FOR MODERN WAR SHIPS.

Admiral Fremantle, R. N., had some valuable experience recently, when, in a sham battle, he tried to break through the lines established by Admiral Hewitt, in the Irish Channel, and it is for this reason mainly that his paper on " Speed as a Factor in Naval Warfare" has a special value. Once more the man of action shows the mistakes of the theorist. Once more figures that are said never to lie are shown to be at least capable of deceiving. In not a single case, it seems, have the big war ships fulfilled the promises made for them by their builders; for though apparently within the power of the mathematician to calculate what speed can be got out of a certain shape and weight with engines of a certain power, when tried in smooth water and under favorable circumstances, they are apparently wholly unable to estimate what this mass can accomplish under other and less favoring conditions, and this inclines the old sailor, like Admiral Fremantle, to look upon all their computations with suspicion. In the recent experiences in the Irish Channel and North Sea, when the seas were heavy and the winds high, many of the ships set down on paper as the fastest fell sadly behind, and those which had been recommended for steadiness and mobility, to make up for their want of speed, often refused to answer their helms.
Admiral Fremantle has learnt, he says, that the best way to test a modern ship is to send her to sea and let her go her best for say 1,000 miles. This will show what she is good for in all weathers as to speed, how she minds her helm in a beam, quartering, fair, and head wind, the length of time her bunkers are capable of supplying her with coal, and the distance she can get over without recoaling. Such cruises would, of course, run up large coal bills, but, as he says, they would pay in the end, because furnishing reliable data of what can really be expected from each individual ship.
After explaining how important speed is in working
ships, the Admiral proceeds to look with favor upon many of the ships which gave such a poor account of themselves in the recent maneuvers, because they are in his opinion, well enough in their class. He says : "The ironclads of the 'Admiral' class and the belted cruisers designed by Sir N. Barnaby form groups of the fastest vessels in the world of their respective classes." But it has been and is a subject of controversy whether or no some of these classes are useless because wholly unable to serve the purpose for which they were designed. If, for instance, there is any service to which the slow belted cruisers with smal batteries can be put, the same has not yet been shown.
There are ships twice as powerful now afioat, which There are ships twice as powerful now afioat, which are fast enough to overhaul them when it comes to speed. They are not heavy enough to resist the guns of a modern fortress, and have not sufficient stability to carry heavier batteries.
Naval Constructor White, who is quoted by the Admiral, throws every other condition aside and demands speed first of all. He says: "Wide differences of opinion exist on many if not most of the features of war ship design, but there is almost absolute agreement that high speed is of primary importance in all classes. It has been well said that, in future naval actions speed will be the equivalent of 'weather gauge' in the past. The swiftest vessels have the power of choosing their range and relative position, forcing or voiding an action."
In other words, in the general action of the future no one will stop to learn if such or such a ship is really fast "for her class;" if she cannot stand the pace she must fall behind, or if too slow to get away from heavier batteries, she myst go down before them. This is the practical principle which Naval Constructor White is pressing to the attention of the British Ad miralty, and it would seem a sound one for us to keep in view in building our new navy. Another interest ing study for us will be found in these coming long distance tests of the several classes of British war ships, if they are really made. Admiral Fremantle says ' We want practical trials as to the possibility of turret hips keeping the sea and making a passage at speed in dirty weather in the bay. Are the barbette vessel better sea boats and better able to steam fast? Have the echeloned turret ships any advantages at all?
The answer to these questions we may await with quite as much impatience as the British, for until we have them, we cannot proceed with naval construc tion with open eyes and proper precaution.

THE KEROSENE EMULSION FOR SCALE INSECTS.

A paragraph is going the rounds of the agricul tural press entitled " Remedy for Scale Insects," quot ing Professor Riley as having had the best results in fighting scale insects with kerosene emulsion prepared after the following formula: "Take the white of two eggs, three tablespoonfuls of sugar, three-quarters of quart of water, and one quart of kerosene. Mix thoroughly, by working them together by means of a force pump and cyclone nozzle for five or ten minutes. The emulsion so produced can afterward be diluted with water to any desired amount."
This is in reality, as we have reason to know, quite misleading. What Professor Riley has said in reference to this matter is contained in the introduction to his last annual report as United States entomologist:
' In connection with the subject of kerosene emulsion, I may put on record here an important discovery made last spring, in carrying on further experiments at the office in emulsifying this oil. It is that the white of eggs with a little sugar may be used as a satsfactory substitute for milk where this is not acces sible.
' If the white of 2 eggs, about 3 tablespoonfuls of sugar, $3 / 4$ quart of water, and $11 / 4$ quarts of kerosene are worked through a force pump and cyclone nozzle for from 5 to 10 minutes, a cream-like emulsion is produced, which can be diluted with water to any desired amount without any separation of the oil ; provided that the emulsion is not allowed to stand for any length of time.'
This method of emulsifying kerosene oil is, as will be seen, suggested only as a substitute for milk where that is not accessible. The formula that Professor Riley has from the beginning recommended, and which is frequently attributed to others, is really that found to be most satisfactory in experiments made under his direction by Mr. G. H. Hubbard, in 1881. It is as follows:

$$
\begin{aligned}
& \text { Kerosene.............................. } 2 \text { gallons }=67 \text { per cent } \\
& \left.\begin{array}{l}
\text { Common soap or whale oil soap........ 1/2 pound } \\
\text { Water................................ } 1 \text { gallon }
\end{array}\right\}=33 \text { per cent. }
\end{aligned}
$$

Heat the solution of soap and add it boiling hot to the kerosene. Churn the mixture by means of a force pump and spray nozzle for five or ten minutes on cooling and should adhere without oiliness to the surface of glass. Dilute before using, 1 part of the emulsion with 9 parts of cold water. The above formula gives 3 gallons of emulsion, and makes when diluted 30 gallons of wash.

Military Notes.

The magazine rifle selected for the use of the British army was recently put through a series of tests to measure its accuracy, penetration, range, etc. The dilatoriness of the English seems to have stood them in good stead this time, for while the Germans are discarding the "Mauser-70-86" magazine rifle scarcely a twelve month after its adoption, because of its caliber (11 mm .), they have benefited by the experience, and pin their faith to a caliber nearly one-third smaller. The new gun weighs no more than the Martini-Henry, which, modified more or less, has been in continual use in the British army for seventeen years. It has a detachable magazine placed in front of the trigger guard and holding eight rounds, with one more rammed home in the breech, making nine. When one magazine is exhausted, it is detached with a single movement and another snapped on. The powder is compressed on the Swiss system, with the result that smaller and lighter bullets may be used. The soldier will be able to carry 115 rounds, where before he had only 70. Still better, the trajectory is flat and the range much greater than that of the old style rifle.
.The fear that France or Germany, in the event of war, will attempt a rush through Belgium, has inspired the Belgians to tremendous exertions to prevent such a calamity. The new fortifications on the Meuse have been pushed, until now the builders have arrived at the second stage of construction. At the two forks of the river, to wit, at Namur and Liege, there have been erected enormous works with steel facings bristling with guns.

It seems that most of the war material for these fortifications was long since ordered from the Krupp company, at Essen, Germany, and, as the prevailing sentiment of Belgium is with the French, this has been the subject of protest. Recently it was discovered that the enterprising Krupp company were subletting a portion of their contract to Belgian foundries, and now the Independence Belge and La Defense Nationale are demanding to know if it would not be cheaper in the end to contract directly with home manufacturers than thus to order material from Belgium by way of Germany?

Rather severe criticisms on our navy are appearing in the English journals. The critics admit we have as good naval officers as any, but say that what ships we have are manned by Englishmen, Irishmen, Germans, Scandinavians, and negroes. This is true in time of peace; for first-rate American sailor men can make more than $\$ 21.50$ a month ashore. But once the signal of war comes, and the promise of prize money and adventure, and there would belittle room for much of the poor material now manning the yards. The great fleet that Farragut led past the Mississippi forts was manned with Gloucester fishermen-men who, unlike the average blue jacket, combine a keen intelligence with strength and daring. The day of the "square-rigger" is gone by, for the modern war ship has no sails, and a quick hand at the gun sight and block, tackle, and gearing is more in demand than one that can hand, reef, and steer. Indeed, it is a curious study to watch how, in the war ship of to-day, the sailor is declining and the engineer and machinist advancing. Perhaps in the future the crew of a war ship will be composed of three classes only : scientists, engineers, and coal heavers or oil feeders.

The recent publication of the Austro-Prussian agreement, and the action of Russia in massing troops on her frontier, have so convinced the Italian press that war is imminent, that it is demanding the recall of the expeditionary corps sent last autumn against King John of Abyssinia. This corps, composed of between 600 and 700 of the best officers of the Italian army and nearly 20,000 picked troops, has not as yet shown any inclination to go after the black king, but, on the contrary, has remained cooped up in the fortified town of Masso wah, on the coast, apparently waiting for him to seek them out and. attack them while they are behind their works.

The Italian fleet is•being got ready for immediate service, and in the arsenals at Naples and Spezia work is going on night and day, preparing material for repairs to the ships. The principal rendezvous of the fleet is at Madalena, a splendid anchorage protected by a group of small islands.

The military preparations of Russia still furnish the European journals with cause for alarm. The Deutsche Heeres Zeitung thus describes the arrangements Russia is making to feed an army on her frontier : Large quantities of provisions for man and beast are being sent forward. At Rovńo, in Volhynia, there is already 120,000 hectoliters [a hectoliter is $23 / 4$ busphels] and more is arriving all the time. Rovno is situated not far from the Galician frontier and upon the great trunk railway stretching from Kiew to Varsovie. At other points the construction of new storehouses is being
rapidly pushed. From another source it is learned that infantry camps are being established at various
points of the railway, a hundred or two miles from points of the railway, a hundred or the miles "rom they say, and ready at a moment's notice for the alarm of war. Since Bismarck's recent admission that Rusia has certain rights in Bulgaria, under the Berlin treaty, it would look as if these preparations meant ittle more than a determination on the part of Russia not to be caught napping again, even if the unexpected should happen.

Death of W. WP Corcoran.

On February 24, at 6 A. M., William Wilson Corcoran, eminent as a financier and public benefactor, breathed his last. He was born in Georgetown, D. C., December 27,1798 , thus having passed his eighty-ninth year. His father emigrated from Ireland in 1793. After various vicissitudes he acquired a fortune from the establishment by himself and George W. Riggs of the banking house of Riggs \& Co., of Washington. In 1854 he was able to retire from business with an independent fortune. The University of Virginia, the Virginia Military Institute, the Columbian University of Washington, D. C., William and Mary College, and the Washington and Lee University, were all the recip ients of gifts from him. Many other benefactions caused him to acquire the name of the Peabody of Washington. His greatest gift to the public is the Corcoran Art Gallery. The well known building on Pennsylvania Avenue in that city containing the col lection cost, it is said, $\$ 250,000$; the collection of pictures and statuary was estimated at the beginning at $\$ 100$, 000 ; and a permanent endowment of $\$ 900,000$ assures the maintenance of the benefaction. It is said to be the largest gift ever made to art by a private person. His uneral took place on the 27th, and his body was in place, as he had while living endowed the cemetery.

Opening of the Loomis Laboratory.

The Loomis Laboratory, the last accession to the medical department of the University of the City of New York, was formally opened on February 27. It pital It in East 26th Street, opposite Bellevue Hos named in honor of Dr. Alfred L. Loomis. It was to a named in honor of Dr. Alfred L. Loomis. It was to a
great extent under his guidance that the donation was thus applied. The building is a fireproof five story structure. The separate floors are respectively devoted to physics and materia medica, chemistry physiology and histology, pathology, and the last and highest floor to bacteriology. The opening was at tended by a large gathering of professional and other epresentative guests. The erection of the building and the choice of its uses indicates the broadening of the physician's education that is slowly but inevitably taking place. The old rigid code of ethics and desire to make instruction practical have operated to restrain innovation and have exercised a conservative influence upon the training of medical students that has had its bad as well as good effects. In the devotion of more time to allied branches of science, such as physics and chemistry, a most beneficial effect may be looked for. The Loomis Laboratory provides for these branches and, with the new establishment of the College of Phy sicians and Surgeons, will operate to increase the im portance of New York as a center of instruction and investigation in the medical world.

Who is Never Crazy?

There are many firm believers in the theory that most people are crazy at times, and facts seem to support their belief. The following, from a source unknown to the writer, will likely remind a number of our readers of some incident in their experience, which at the time of its occurrence seemed to them most unaccountable:
"A wise man will step backward off a porch or into a mud puddle, a great philosopher will hunt for the specks that are in his hand or on his forehead, a hunter will sometimes shoot himself or his dog. A working girl had been feeding a great clothing knife for ten years. One day she watched the knife come down slowly upon her hand. Too late she woke out of her stupor with one hand gone. For a few seconds her mind had failed, and she sat by her machine a temporary lunatic and had watched the knife approach her own hand. A distinguished professor was teaching near a canal. Walking along one evening in summer he walked as deliberately into the canal as he had been walking along the path a second before. He was brought to his senses by the water and mud and the absurdity of the situation. He had on a new suit of clothes and a new silk hat, but though the damage was thus great, he still laughs over the adventure. Our mail collectors find in the iron boxes along the streets all sorts of papers and articles which have been put in by some hand from whose motions the mind has become detached for a second. A glove, a pair of spec tacles, a deed, a mortgage, a theater ticket, goes in, and on goes the person, holding on to the regular letter which should have been deposited. This is called absent-mindedness, but is a brief lunacy."

A. Solid Life Insurance Company.

The figures of the last annual report of the New York Life Insurance Company, just issued, present a record of almost unexampled success in the conduct of the business of that old and strong company for the past year. The number of policies issued during the year 1887 was 28,522 , and the total number in force January 1,1888 , was 113,323 . The assets of the company on the 1st of last January amounted to more then eighty-three million dollars. It goes without the saying that this great company does its insurance business on strictly business principles, its officers and trustees being among the most responsible business men in the city. This company recognizes the policy holder's right to paid-up nsurance in case of a discontinuance of payment of premiums, and its policies are notably free from restrictions as to occupation, residence, and travel. The company issues a great variety of policies, thus adapting its contracts to the wants of almost every one having present means from which a small percentage can be spared for the benefit of themselves or those dependent upon them at a future date.

The Technology Architectural Review.

We have received the first nuftiber of this most attractive publication. It is published under the auspices of the Massachusetts Institute of Technology. It aims to be little more than a collection of plates illustrating the "mentioned" designs made at that institute. This rule the editors propose departing from only when outside material of unusual interest presents itself. Thus, in the present number, is riven a reproduction of drawings of "Cori Fragments," made by Mr. Emmanuel Brune while a pensionnaive of the Mr. Emmanuel Brune while a pensionnaire of the
French Academy in Rome. The drawings were exFrench Academy in Rome. The drawings were ex
hibited in Paris in 1866 or ther abouts as Envois de Rome. They are contributed to the Review by Prof. William R. Ware, of Columbia College. The other plates include designs for a fountain in a public park, for a casino, and a life study of a man from the Cowles Art School, of Boston. The elegance of th make-up Art School, of Boston. The elegance of th make-up
leaves nothing to be desired. The plates are executed leaves nothing to be desired. The plates are executed
by the gelatine process, and are printed in tinted ink. by the gelatine process, and are printed in tinted ink.
In the text, which is altogether subsidiary, are given the requirements for the designs, the awards, names of "mentioned" men, and criticisms of each design. The names of the jury of award and of the critic also appear. The Review is issued monthly during the school year of eight months, under the management school year of eight months, under the management
of Messrs. Henry D. Bates and Thomas R. Kimball, at of Messrs. Hen
Boston, Mass.

What Lard is Made of.

A bill has been introduced in the Senate at Washington providing for the stamping of all packages containing any preparations of lard. The testimony given before the Senate Committee on Agriculture by parties who have examined various preparations of lard now on the market has added materially to the stock of public information on this point. A chemical examination of several prominent brands of "family lard" has shown them to be variously constituted. One sample examined seems to have been totally innocent of any trace of hog lard, and to have been made up chiefly of beef fat and cottonseed oil. Other brands of lard have contained varying percentages of the above articles, with the addition of hog lard and stearine. One brand in particular contained 60 per cent pure lard, 20 per cent cottonseed oil, and 20 per cent stearine.
A prominent lard manufacturer testified at the inquiry that seven-eighths of the lard of commerce was made up of various portions of the bodies of hogs added to cottonseed and stearine. Testimony was adduced tending to show that the lard constituted as above was more popular than the pure lard itself. An example of this was shown in the case of a manufacturer who was at one time unable to supply the demand for the adulterated article, and furnished his customers with pure lard instead. The result of this effort to supply the demands was the receipt of large numbers of letters complaining of the bad quality of pure product thus furnished. Another feature of the inquiry is the attitude taken by several leading Southern newspapers, commercial exchanges, and legslatures, who declare that the bill is really aimed at and designed to injure one of the most important Southern industries-the manufacture of cottonseed oil.-Bradstreet's.

The Northwestern Miller of February 24 makes the following statement in respect to the enormous production of flour in the West : The Minneapolis mills made 114,100 barrels of flour last week, and exported 55,000 barrels. The market is steady, but not active. The St. Louis mills made 68,700 barrels last week. The market has been more active, and the output will be larger this week. Thirty-nine Northwestern mills outside of Minneapolis made 359,694 barrels of flour in Jaitery, as against 338,576 barrels for the same month witis87. 0,808 barrels in that month barrels in

A Telegraph Circuit of over Ten Thousand Miles.
Operators at the office of the Postal Telegraph Co., on State Street, Albany, lately witnessed a conversation carried on by wire over the largest circuit ever worked, and was the greatest telegraphic feat yet accomplished. As explained to the Albany Express reporter, who dropped into the neat and business-like office while the experiment was going on, the trial was a most interesting one. It appears that Special Commissioner Henry Norman, who is making a tour of the British colonies, having arrived at Vancouver, carried on a conversation with London, England, over the Canadian Pacific and Commercial Co.'s wires. At one end of the line was Mr. Hearst, of the San Francisco Fxaminer, and at the other end Mr. Stead, of the Pall Mall Gazette, London.
'There was an unbroken telegraph circuit from San Francisco to New York, 4,600 miles, the distance from New York to London, via Canso, N. S., being 3,500, or curious flight. Iron tells its readers that the instru-
hours. Mr. Norman said, among other things, "I can see the Pacific, and in a few days start on a 4,000 mile voyage in another English ship the Parthia over another ocean; yet I am able to report myself to you and talk as quickly and easily as if we were speaking through a tube. The wire which unites us is a most striking symbol of our imperial unity, and of the unfailing federation which will one day girdle the globe, Is not the click of this key, heard in two hemispheres, more eloquent than all the arguments of empire ever penned $?$

The Mysteryं of the Boomerang.
An exhibition of boomerang throwing was recently given by a party of Australian natives at Munster, before some German scientific men, who are endeavoring to discover the cause of the boomerang's

ENGINES OF THE STEAMSHIP COURIER.

We give views of the engines of the high speed steamship Courier, which has been built to the order of Messrs. Huddart, Parker \& Co., of Melbourne. The vessel has been built by Messrs. Swan \& Hunter, of Wallsend, and is 220 feet long by 30 feet beam and draws 11 feet of water. Owing to the comparatively small dimen sions of the boat, Messrs. R. and W. Hawthorn, Leslie \& Co., Limited, the builders of the machinery, had a somewhat difficult task to execute in driving the vessel at a speed of $171 / 2$ knots, and it became necessary to adopt special means of producing the great power re quired, without unduly increasing the weight of the machinery or the space occupied by it. Forced draught and machinery of the high speed type were therefore adopted, and in the latter cast steel and gun metal have been largely employed.
The illustrations represent the engines as erected in

TRIPLE EXPANSION ENGINES OF STEAMSHIP COURIER.

8,100 miles in all. The telegraph lines making up this circuit ran from San Francisco to New York, via Vancouver, B. C., Montreal, and Albany, connecting at New York with the Mackay-Bennett Postal Cable Co. Telegrams exchanged between San Francisco and London were therefore only repeated at New York, Canso, and Bristol, England, the latter point being the landing place of the Mackay-Bennett cable. The object of this experiment was to demonstrate the fact that London and Vancouver were practically within " speaking distance" of each other. These unbroken lines demonstrate the fact that their system can be successfully inaintained during the most rigorous season of the year.
At 1:12 P. M. Mr. Norman, at Vancouver, asked Mr. Stead, at London, a question, receiving a reply in five minutes. Mr. Stead then asked, "How far off are you from London?" In four minutes reply flashed back, "Nine thousand six hundred miles," which, with the 1,200 miles to San Francisco added, makes a grand total of 10,800 miles. Conversation was kept up for two $\left.\right|_{\text {circular. }}$
ments used were of two sizes, the larger being a slender
crescent about 2 feet long, $21 /$ inches wide, and $1 / 4$ inch thick, made of an exceptionally heavy Australianironwood. This boomerang was jerked up into the air about a hundred yards, when it flew straight away, then turned to the left, and returned in a curved line back to the thrower, whirling around constantly and whizzing unpleasantly. One badly directed projectile passed through a spectator's hat, and with a cut as clean as that of a razor. We have not heard what onclusions the German scientists have come to, or whether they have satisfactorily solved the problem,
but, according to a German manufacturer, who has but, according to a German manufacturer, who has
made some 11,000 toy boomerangs, the mystery of the movement lies in the shape, the boomerang having a sharper curvature in the middle, with unequal length of the two arms, which must be made of equal weight hold.
by unequal thickness. The peculiarity of motion is The trial trip took place on October 28, 1887, the vessaid to be due to the difference in the length of the sel running two double runs on the Admiralty course arms, which diverges the curve of rotation from the
the shop. They are of the triple expansion type, and are fitted with Marshall's patent valve gear. The bed plates and main pillars are of cast steel. The condenser, which has 5,000 square feet of cooling surface, is separate from the engines, and is of gun metal. The cylinders are $30 \mathrm{in} ., 46 \mathrm{in}$., and 73 in . in diameter respectively, by 36 in . stroke. Steam at a working pressure of 150 lb. per square inch is supplied from two multitubular boilers, 15 ft . 3 in . in diameter and 11 ft . long, each of which has four corrugated furnaces, 3 ft .2 in . inside diameter. The total heating surface provided is 5,110 square feet, and the grate area is 158 square feet.
The forced draught is supplied by two double-sided fans, each driven by a high speed compound engine, and capable of producing in ordinary work an air pressure of 2 inches on the water gauge in the stoke running two double runs on the Admiralty course of 9.6 knots between Cullercoats and Newbiggin, off the mouth of the Tyne, when an average speed of
17.548 knots was obtained. The engines ran smoothly and well, indicating 2,979 horse power, the revolutions being 124 per minute and the vacuum 26.5 inches.Engineering.

How to Abolish Beggary.

A correspondent of one of our contemporaries recently asked United States Senator Stanford, of California, what could be done in this country to abolish beggary. The answer of the philanthropic millionaire was as follows :
There is only one way. Dry up the source-abolish the conditions that make beggars. To try to cure poverty by street charity is like trying to stop a hole in your roof by mopping up the puddles that gather on your floor. Nobody is worse off because the Vanderbilts are worth $\$ 200,000,000$. If they had not the wealth it would not exist at all. It is only in those communities where millionaires are possible that the average citizen has enough to eat. Now, what causes poverty? 1. Ignorance of how to save money. I found beggars in California in 1850, when any man could go_ out with a tin pan and earn $\$ 5$ before breakfast. When by working three hours a day a man could make his board and clothes, there were always shiftless creatures around whom the rest had to support. It is the same way now. The soil is wonderfully fruitful there. Merely 20,000 men produce all the wheat of the State and ex́port $1,000,000$ tons of it every year, and yet there are beggars. We can cut, thrash, and sack wheat at an expense of one and a half cents per 100 pounds, potatoes cost only a half a cent a pound, and flour is only $\$ 4$ a barrel, and yet there is want. An important cause is unthrift. People do not understand economy or practice it as almost every rich man has had to some time in his life. I really believe that there would be beggars in the world before night if $\$ 20$ gold pieces were to be sown broadcast every morning, and so distributed that every man, woman, and child were certain to get some.
2. The sale and use of liquor. As long as there are ten times as many saloons in this country as there are of both churches and schools, and they are mainly supported by the very poor, the sources of misery are pretty obvious. 3. A lack of manual training. This last need is most serious. If so many people could be taught trades that the entire product of this country were doubled next year, the wages would be doubled, either in increase
of money received or in the of money received or in the smaller cost of the necessities of life to be bought.
More capable, skilled hands-that is More capable, skilled hands-that is one of our greatest needs. My.great hope is in my university, which I wish to build so tall and deep and broad that the rudiments of every trade and occupation may be taught. When everybody knows how to do some difficult and useful thing, poverty will rapidly diminish.

Bursting of a Great Gun.

An Armstrong breechloading gun recently burst at the Royal Arsenal. The officials represent the occurrence as merely one of a small percentage of failures which are always expected in the course of the proof trials; but the great size of the weapon, which was a 10 inch gun of about 38 tons weight, gives prominence to the accident, and the fact of several rounds having been fired before the burst took place points to some cause beyond a mere flaw in the material, which the first test ought to have revealed. The chase or barrel of the gun was blown clean out of the chamber end, and fell in one piece to the ground.

Calcimine and Its Varied Tints.

The season for renovating the interior of our dwelling houses is near at hand, and some of our rezders may wish to prepare their own calcimine. We give the following rules for the purpose of enabling them to do so Soak one pound of white glue over night ; then disolve it in boiling water and add twenty pounds o Paris white, diluting with water until the mixture is of the consistency of rich milk. To this any tint can be given that is desired.
Lilac.-Add to the calcimine two parts of Prussian blue and one of vermilion, stirring the mixture tho roughly, and taking care to avoid too high a color. Brown.-Burnt umber.
Gray.-Raw umber, with a trifling amount of lamp black.
Rose.-Three parts of vermilion and one of red lead

TRIPLE EXPANSION ENGINES OF STEAMSHIP COURIER.

Timber Fcrests in Siam.

The Hon. Carter Harrison, ex-mayor of Chicago, is giving some attention to the timber interests during his tour around the world. In a recent letter from Bangkok, Siam, copied in the Lumberman, he says : "A large amount of logs are floated down the Menam and sawed at Bangkok. But so difficult is the getting of logs to the river, there being absolutely no kind of roads, that the timber sells here at about 60 cents a cubic foot. And yet I am assured there are vast quan tities of this timber rotting in the forests within com paratively short distances from the streams. The peo ple are so utterly lazy that their labor can never be depended upon to build roads or in any way to de velop the resources of the land. Foreign energy and capital must be called into requisition. The great teak and ebony forests are several hundred miles from th hundred miles from the that the superintendent of the constraction of tele graph, Mr. Fritz-an American-consumed two or three months in cutting a way for a line through a forest of sixty-five miles. There was an advance party of some five hundred natives cutting the trail, and a second party of one hundred and seventy put ting up the poles and wire. Elephants were used for all carrying. So terrible was the jungle fever, that in that one jungle some two hundred and fifty natives died within two months. If a dose of twen y grains of quinine failed o break the fever, death almost immediately en sued."

Cloud Indications.

M. Camille Flammarion has recently published a little book on meteorological observations, from which La Genie Civil makes some interesting extracts, on the subject, mor particularly, of weather predictions. Most people know that a fall in the ba rometer indicates the ap proach of a storm, and a high barometer indicate fair weather; but more than this may, according to M. Flammarion, be learned from the mercury column. When, he says, clouds are to be seen mov ing in a long line, what ever may be the height of the barometer, it may be taken as certain that a depression or storm center exists in a direction which may be readily ascertained by facing in the direction in which the clouds are moving, and extending the left hand. On land, the position of the storm center is of no great import ance, except, perhaps, as showing whether it will cross a given locality, but at sea it is often possible or a captain, after finding in what direction the most added in very small quantities until a delicate shade is violent part of a storm lies to steer away from it and

produced.

Lavender.-Make a light blue and tint it slightly with vermilion.
Straw.-Chrome yellow, with a touch of Spanish brown.
Buff.-Two parts of spruce, or Indian yellow, and one part of burnt sienna.
Blue.-A small quantity of Prussian blue will give a soft azure tint. Dark blue is never desirable.
Delicate tints in the foregoing varieties of colors are always agreeable and tasteful, and so great care must be taken that they are not too vivid. The tints will always appear brighter than in the calcimine pot, and the workman or workwoman must keep this fact in mind when adding the coloring powders. It is a good idea to give the ceiling a calcimine two or three shades lighter than that of the walls, so that it may seem merely a delicate reflection of their deeper tones. The ceiling can be calcimined with the lighter tint, and then more coloring added for the walls.
violent part of a storm lies, to steer away from it, and soon bring his ship into pleasant weather. As to the
distance and seriousness of the storm, something may be learned from the velocity with which the procession of clouds move; a severe and near storm being always indicated by a swift cloud movement and a high barometer.-American Architect.

The Sinking of the Cordillera of the Andes.
The Cordillera of the Andes has for some time been exhibiting a curious phenomenon. It results from observations made upon the altitudes of the most important points, that their height is gradually diminish ing. Quito, which in 1745 was 9,596 feet above the level of the sea, was only 9,570 feet in $1803,9,567$ in 1834 , and scarcely 9,520 in 1867 . The altitude of Quito has, therefore, diminished by 76 feet in the space of 122 years. Another peak, the Pichincha, has diminished by 218 feet during the same period, and its crater has descended 425 feet in the last 25 years. That of Antisana has sunk 165 feet in 64 years.-LIa Gazette Geographique.

A DEFECTIVE CEILING IN THE CAPITOL BUILDING ALBANY, N. Y.
Probably the most expensive and gorgeous State Capitol building in this country is that at Albany, N. Y., upon which almost fifteen millions of dollars have already been spent, and it is not yet finished. It is a magnificent structure of noble design. But there are evidences of bad work, poor engineering skill, and lack of proper supervision during the construction of some portions of the edifice.
The Assembly chamber is one of the noblest auditoriums, grand in general appearance. Its ceiling of stone is supported on groined arches. An unfortunate settlement of the adjacent walls, which has for some time been going on, has of late made such further progress as to endanger, as was believed, the lives of the members of the Assembly when in session. The ceiling was regarded as liable to fall at any moment.
Immediately upon the assembling of the Legislature, early in January, the members began to be annoyed at the renewed reports in regard to the unsafety of the ceiling. Their fears continued to grow upon them until finally they moved into the Assembly parlor and voted an appropriation to allow the temporary "shoring up" of the vault by the Capitol Commissioner, Mr. Perry.
The Assembly chamber has extreme dimensions of 140 by 84 feet. It is, to use the terms of Gothic architecture, a nave of five bays with an aisled transept. The extreme length is shown in the gallery floor and at the ends of the nave. Each of these extreme spaces is a public gallery. What would be the last bays of the aisles on either side of them are walled out of the room altogether. The spaces under them are vaulted lobbies. The squares at the corners of the central space are also separated from the main room on the first floor, at the Speaker's end by a solid wall, and at the entrance end by columns carrying a stone screen, and each contains a giallery. The Assembly chamber proper is thus confined to the central transept, including the bays at either end, in one of which the Speaker's desk, shown in our engraving, is placed. The space bounded by the columns is 45 by 55 feet, nearly, and the keystone of the vault over it, the highest point of the room is 62 feet from the floor. The ridges of the vaults are not horizontal, but have a rise in the central vault of three or four feet in the center. There are no ridge ribs and no wall ribs, the coping abutting directly upon the walls. The shafts of the four colums which support the central vault are four feet in diameter, composed each of three drums of red Connecticut granite, polished. The capitals and bases are of Westches ter marble. The walls and cells of the vaults are of Ohio sandstone, with ribs and arches of Dorchester stone. The nook shafts of the windows are of brown stone from New Jersey, with capitals and bases of Ohio stone. The hood moulds of the windows are of brownstone, the voussoirs of Ohio stone, the archivolts within them, and the impost mouldings, of Dorchester stone. The moulding of the arches and ribs of the vault, and of the jambs, wall arches, and other features, is bold and simple in character, rather than delicate or complicated, and the decorative carving is throughout highly conventionalized from natural types in design.
The carved enrichment of the Assembly chamber is abundant, and incised arabesques are freely introduced, as well as modeled carving. The color decoration is everywhere a part of the carved decoration. Each groin of the ceiling bears two belts of decoration, one almost at the ridge, the other not far from the springing, which follow the line of the courses. The orna ment in the upper belt, fifty feet from the spectator, is very bold in design and cut; the lower belt subordinate in all respects. The stone is excavated to the
two feet from the floor. In 1875 the Legislature abol ished the Board of Capitol Commissioners and placed the work in the hands of the lieutenant governor, the attorney general, and the auditor of the canal department. When it was proposed to change the entire form of the Assembly chamber and load the weight of the ceiling upon the
 ight ribs are all dotted. c. Heavier ribs.

How bolted (cross section).
P. Trowbridge, Chas. Babcock, and George B. Post, who reported that the workmanship of the building was, as a general thing, very thorough; but in the Assembly chamber they found that the four great col umns were loaded to the extreme limit of safety; that the stone of which the ribs were constructed was not uniform in quality or strength; that the side vaults had a tendency to rise; and that the main arches were in good condition, although the transverse thrusts had been taken up by iron rods at points above the crowns of the main arches. Therefore the commissioners being uncertain as to whether the columns had settled as much as they would, recommended that the stone vaulting be removed and be replaced with wood, the stone ribs still remaining. Mr. Eidlitz asked that he might repair the broken ribs at his own expense, and nothing more was done, except to all ow himto do so. Examinations at that time showed very large cracks through which the room below could be seen. The Assembly, therefore, was obliged to meet in the room beneath, for a few weeks in the early part of the year 1883. When these repairs were.concluded, the Assembly men sat under the ceiling for four years without anything more than an occasional attempt to have some one investigate and report upon the alleged danger. By 1887, however, there was alarm. An engineer was employed to make a thorough examination. He re ported there were many new fissures in the ribs, and the ceiling must come down and be replaced with a lighter one of wood. This report was not made until the end of the legislative session. Hence nothing was done during that year.
The commissioners appointed to make a preliminary examination, early in last January, were John Bogart, state engineer, Richard Upjohn, architect, and Thomas C. Clark. Early in February they made a report which contained, among others, the following statements "We went up to the top of the ceiling, and found there had been many serious movements of the stones of the groined vaults, owing to the vaults and ribs not acting together. This has caused cracks at the joints, in some cases of considerable length. In one place, at the apex of the ceiling, the Assembly floor can be seen through the crack.
We found the main vault in two places had settled three inches below its original level. All the main ribs which support the central vault were found to be cracked and shattered near the circular keystone. In one of the ribs we found a stone three feet long split from end to end in strips. By the side of another rib was a spall, split by pressure, $101 / 2$ inches long, 7 wide, and $31 / 2$ thick. Its defect was not due to the material. There is clear evidence of sound sandstone split by a pressure many times what it had been calculated to sustain. The whole ceiling is in a dangerous condition, more or less cracked, showing signs of anexpected pressure. As the ribs originally were none too large to resist pressure, in their present reducing condition they are still less able to do their work. A time must come, and that we believe very soon, when without warning one or more of these overtaxed rib stones must give way. When that happens, the whole ceiling will fall." A more thorough examination established the fact that the ceiling is not in a state of equilibrium, that is to say, the excess of pressure in one part, as at the base

SECTION OF THE FAST", WEST MRI IS.
a. Two of the great columns. b. The cross walls, north and south. c. The tie rods. d. The granit arch (hidden by a veneering of sandstone) holding the anchorage of the tie rods and receiving the thrust of the main arch. e. Extra tie rod in north and south walls.

nilion or ultramarine, the ornament edged with geld The furniture of the room is mahogany. On the north and south walls of the chamber are the famous frescoes "FThe Discoverer" and the " Flight of Night," by William M. Hunt.
The chamber, as described above, is not the one that was originally designed. The ceiling of that one was to consist of panels of cast iron at a height of forty-
four great columns, the original architect, Mr. Thomas Eidlitz and the late Mr. Richardson in charge of the work. Mr. Edlitz proceeded to construct the Assembly chamber as it was finally built.
There appeared to be no feeling of insecurity until 1881, when a resolution asking for an investigation was defeated in the Senate. In 1882 a report was made to Gov. Cornell by a special commission consisting of \mathbf{W}
surmounted by walls that reach a level of five feet above the respective keystones. The walls are carried beyond the columns into solid walls beyond. Just above each of the four great arches that connect the columns (and embedded in the solid masonry) there run strags of iron $\overline{\bar{z}}$ inches broad and $11 / 2$ inches thick. Four of these straps are laid side by side, thus forming tie rods, which are anchored in the solid wall beyond. Thus each of the four columns is crossed at right angles by tie rods some distance above its capital. This will be shown more clearly by the accompanying section of the two east and west walls. The dotted lines at d show the hidden granite arch that receives the thrust from the main arch and keeps the four great columns from being pushed outward. As the tie rods expand in the summer, the arches drop a trifle. When they contract with colder weather, the arches will not rise, but spalls will chip off. This process has been going on for years, and it has beena source of great danger. These spalls which fall to the floor almost invariably appear when there is a considerable change in the temperature outside-in October and November. The staging that is in place now enables the visitor to examine closely the under surface of the ceiling. The dropping of the central keystone has pulled the ashlars away from the west walls, and has left great gaps, which were filled four or five years ago. At the same time many defective places caused by the dropping of spalls were pointed, so as not to appear from the floor. A oloser examination shows that the ridges along the main vault are so thoroughly crushed that it is a wonder the broken stone did not fall long ago. The diagonal ribs of the great vault show many cracks, which prove they were made of too light material. The fact is, they should not only have been made of better material, but they should also have been three or four times as large.
The Capitol Commissioner, Mr. Perry, saw at once that these diagonal ribs must be supported. In this he did not agree with some who had thought that the ribs connecting the four great columns should be strengthened. Mr. Perry's first movement was to cut through the floor in four places near the center of the room, so that he might strike two columns in the floor below; and, for his other two foundations, go to the solid bases one story lower. Thus he had a parallelogram 18 feet one way and 12 feet the other. He placed on the corners sticks of Georgia pine 12 inches square as the uprights for the trestle. These sticks were reenforced by sticks of the same size placed edge for enforced by sticks of the same size placed edge for
edge toward the interior of the parallelogram-the two edge toward the interior of the parallelogram-the two
being bolted by straps of iron. The trestle was continued all the way to the keystone. Excavations were made aboat the bases of the four great columns and heavy foundations of wood were laid, on which two uprights (each 12×12) were placed, with the inclination toward the great trestle in the center. When these uprights had passed above the capitals of the columns, they were met at right angles by great tie beams, which braced them into the central trestle. Having thus prepared a strong framework, it was a comparatively easy matter to construct four trusses running from the top of each column upright to the nearest corner of the central trestle. In the placing of the trusses, a chord was first run in a straight line. Then a rib, in very small sections, was built along in the curve about 6 in . for the stone rib of the ceiling above. The last of the work was to connect the ribs and the chords by the struts, or cross pieces.
The whole work has been an undertaking of great difficulty. It supports the ceiling so that there is no possible danger, and, at the same time, the support is so permanent that it can be used when the ceiling is finally removed. The chances are that it will be succeeded by one of wood or of iron. In either case it is probable that the pointed Gothic arches will not be repeated; but that Romanesque arches will be used, in harmony with the windows and doors, thus lowering the height of the room from 12 to 15 ft ., and much improving its acoustic properties.

A New Treatment for Boils and Carbuncles.
In a communication to the French Academy of Medicine, at a recent meeting, M. Verneuil says :
The topical applications (prominent among which stand the carbolated and borated solutions) employed in a certain way, and particularly in the form of powder used repeatedly and for a long time, are of remarkable efficacy, and at the same time are absolutely harmless and easy of application.

These applications of powder quickly abort, with very few exceptions, boils and carbuncles. They arrest the progress of the disease in the gravest cases, ordinarily cause the pains to quickly cease, reduce the fever, disinfect the purulent and gangrenous centers, hasten resolution, and promote the formation of healthy granulations.
This treatment is suitable for all regions, and for all forms and periods of the disease. It is never harmful, and leads to a cure in a large number of cases. It assists surgical interference when that is necessary.

Finally, it tends to prevent auto-inoculation and general infection.

AN IMPROVED CAR COUPLING.

A car coupling in which a lever operated by a foot lever on top of the cars carries the coupling pin, a guide lever being connected with this lever, and a spring catch for holding it in place, is illustrated herewith, and has been patented by Mr. William H. Dawson, of Harlan, Iowa.
The manner in which the lever is fulcrumed to hold the coupling pin is plainly shown in the sectional view, the inner end of the lever being formed with a catch to engage a spring by which it is held in a locked outward position, and there being secured to the lever, in front of its fulcrum, a link connected with the rear end of a guide lever fulcrumed on the drawhead, and also moving in the vertical slot in which the coup-

dawsons car coupling.
ling pin slides. The front end of this guide lever has a shoulder adapted to engage the inner end of the coupling link, to guide it to place when entering the other drawhead. When the fronts of the two drawheads come together, the catch is disengaged from the lever holding the coupling pin in the open drawhead, and as the cars are coupled the shoulder of the guide lever engages the top of the coupling link, locking it in place. To uncouple the cars, it is only necessary to press with the foot on the inner end of the foot lever on top of the car.

an Improved weighing scale.

A device to facilitate the convenient weighing of a wide variety of articles, and which has but few parts and can be economically constructed, is shown in the accompanying illustration, and has been patented by Mr. Waddy C. Thomson, of Lancaster, S. C.
The scale beam is arranged to slide in a suspended piece or box, so that at every sliding or shifting one end of the beam will project more and the other end less from the point of suspension. The weight is a constant, permanently fastened to the sliding beam, there being

THOMSON'S WEIGHING SCALE.

a larger weight attached to one end and a smaller one at the other end, both weights and beam adding to the capacity of the scale. Removable weights are not required, with their liability to being mislaid or dropped on one's feet. The top buffer, with the hanger, limits the swing of the beam, showing down or up weight. A fixed stop or buffer on the under side of the beam limits the sliding of the beam to the left, and protects the fingers from being mashed when the stop comes against a projection from the bottom of the box, the scale then being in equilibrium when no object is being weighed. To this projection is attached a pointer, indicating the weight on the graduated beam as it is moved in or out,
the scale balancing with the weights. The weights cannot be tampered with without the scale indicating it. This invention is applicable to a variety of scales.

The Care of the Eyes.

At the sanitary convention held at Ann Arbor, Mich., not long ago, Dr. C. J. Lundy, of Detroit, read a paper on "Hygiene in Relation to the Eye," which should have the widest circulation ${ }_{r}$ especially among teachers and school officers. A fruitful source of eye troubles is shown to be the excessive strain upon the muscles and nerves of the eyes due to faulty educational methods, the ill planned and insufficient lighting of school rooms, poor ink and fine print in school books, and other causes which education might cor rect.
In conclusion, Dr. Lundy lays down the following rules for the better care of the eyes :

1. Avoid reading and study by poor light.
2. Light should come from the side, and not from the back or from the front.
3. Do not read or study while suffering great bodily fatigue or during recovery from illness.
4. Do not read while lying down.
5. Do not read while lying down.
6. Do not use the eyes too long at a time for nea 5. Do not use the eyes too long at a time fo
work, butgive them occasional periods of rest.
7. Reading and study should be done systematically.
8. During study avoid the stooping position, or whatver tends to produce congestion of the head and face.
9. Select well printed books.
10. Correct errors of refraction with proper glasses.
11. Avoid bad hygienic conditions and the use of alohol and tobacco.
12. Take sufficient exercise in the open air.
13. Let the physical keep pace with the mental culture, for asthenopia is most usually observed in those who are lacking in physical development.

A Mammoth Aphengescope.
A Mammoth Aphengescope.
The English Mechanic describes what it calls a mammoth aphengescope which has just been devised and constructed by Mr. W. C. Hughes, of Mortimer Road, Kingsland, for Princeton College, New Jersey. The object of the apparatus is to show diagrams, solid objects, such as machinery, the human face, and anatomical and other subjects occupying a large space, on a larger scale than has ever yet been attempted. The idea of an opaque lantern is, of course, not new, but hitherto the loss of light reflected has been an insuperable difficulty, which Mr. Hughes has overcome by constructing condensing lenses of larger diameter and special curvature, the object lens being of a very special character, being 8 inches diameter, and therefore very costly. In days gone by, the size of the largest object that could be shown was that of a carte-de-visite or watch face, but with this new instrument an object occupying 24 to 30 inches square can be shown on a disk of from 12 to 18 feet. To obtain these results the expenditure of no inconsiderable amount of money and numberless experiments have been necessary, extending over a period of more than eighteen months. After all this labor it is gratifying to find that the invention is a complete success, many scientists having expressed their approbation and approval, among others Mr. William L. Carpenter, B.A., who was commissioned to test the capabilities of the instrument, and whose verdict is that he has never seen so fine a result from reflected light.

Waxing Hard Wood Floors.

Take a pound of the best beeswax, cut it up into very small pieces, and let it thoroughly dissolve in three pints of turpentine, stirring occasionally if necessary. The mixture should be only a trifle thicker than the clear turpentine. Apply it with a rag to the surface of the floor, which should be smooth and perfectly clean. This is the difficult part of the work, for if you put on either too much or too little, a good polish will be impossible. The right amount varies, less being re quired for hard, close grained wood, and more if the wood is soft and open grained. Even professional wood is soft and open grained. Even professional
"waxers" are sometimes obliged to experiment, and "waxers" are sometimes obliged to experiment, and novices should always try a square foot or two first.
Put on what you think will be enough, and leave th place untouched and unstepped on for twenty-four hours, or longer if needful. When it is thoroughly dry, rub it with a hard brush until it shines. If it polishes well, repeat the process over the entire floor. If it does not, remove the wax with fine sandpaper and try again, using more or less than before, as may be necessary, and continue your experimenting until you secure the desired result. If the mixture is slow in drying, add a little of the common "driers" sold by paint dealers, japan, for instance, in the proportion of one part of the drier to six parts of turpentine. When the floor is a arge one, you may vary the tedious work of polishing by strapping a brush to each foot and skating over it.

WE are glad to know that our correspondent $W m$ R. Brooks, of Red House Observatory, Phelps, N. Y. has just been elected a Fellow of the Royal Astronomical Society of England, in recognition of his astronom ical discoveries.

Trade Mark Dinitulties.
The new English trade mark law makes it incumbent on the customs authorities to stop the import and also the export of any goods which they think bear wrongful trade marks. The officials have been carrying out their duties with such a high hand as to occasion loss and inconvenience to merchants. A large public meeting was lately held in London with a view to measure for the amendment of the act. All sorts of well known names, it appears, are registered in England as trade marks, and consequently almost any species of goods made by outsiders is liable to be seized by the customs for infringement.
Several amusing instances were cited of goods being stopped by the customs, including a consignment of bacon from America, "because the boxes, though bearing the name of the town whence they came, were branded " mild cured;" a package of albums, because the word "album" (it was said) was English; and a case of thermometers, because they were marked "Fahrenheit." The following amendment was proposed by Mr. Platnauer and seconded by Mr. Moenich :
"That steps be taken by the Chamber of Commerce to influence the treasury to permanently remove the petty restriction placed by the custom house officials in the way of the equitable operation of the act, without in any way interfering with the trade marks or the resemblance to those marks such as would lead the public to suppose that they were articles of Eng lish manufacture."

A family at Versailles, France, consisting of the parents and two children, were poisoned with coni um, which had been used instead of parsley in a dish of vegetables. The patients, being dangerously sick, were taken to the hospital for treatment, and recovered. A variety of conium much resembling parsley grows in all the back yards and gardens in Versailles.

M. HANIN'S PERSPECTIVE OF THE GREAT TOWER.
of the great one thousand foot tower, from Le Monde and other journals.
M. Georges Berger, the Director-General of the Paris Exhibition of 1889 , has issued an official block plan of the buildings and grounds, together with some general information intended especially for the use of foreign exhibitors. Annexed is a copy of the plan referred to, from which it will be seen that the exhibition is contained within one continu ous inclosure, comprising :

1. On the left side of the

Seine: The Champ de Mars and the river quays and banks; the Esplanade of the Invalides and that part of the Quai d'Orsay between the Esplanade and the Champ de Mars.
2. On the right bank of the Seine: The park and certain available portions of the Trocadero Palace. The Pont de Jena, connecting the Trocadero and the Champ de Mars is also included. The exhibition will be divided into four principal parts and nine groups, as follows :
Part I.-The Champ de Mars. (A.) Section I. The Fine Art Buildings: Group 1. Sculpture, paintings, etc. This building will be divided into galleries and groups of galleries, corre sponding to the various national exhibits.
Section II. (B.) Liberal Arts: Group 2. Education; materials and processes connected with the libera arts. This building will comprise a great central nave and galleries, and the space will be divided into two parts, distributed by classes, one for French, the other for foreign exhibits. Section III. (C.) Gallery of miscellaneous industrial products, comprising: Group 3. Furniture and accessories. Group 4. Fabrics, clothing, and accessories. Group 5. Extractive industries; raw and manufactured products. The area of this galleryabout 100,000 square yards -will be divided into three parts, one being allotted to each group. Each part will be subdivided into two, of which one, reserved for French exhibits, will be divided into

classes, and the other for foreign exhibitors into nationalities.
Section IV. (D.) Machine Galleries : Group 6. Machines and processes connected with mechanical industries; electricity, This building will be divided into classified sections, in each of which the similar exhibits of different nationalities will be arranged, as far as the available motive power will permit.

Part IV.-The Trocadero. (K.) International exhibition of horticulture and agriculture, comprised in Group 9, horticulture.
The available spaces allotted to the respective groups for French and foreign exhibitors have been estimated from the statistics of previous great exhibitions. Those of 1867 and 1878, held in Paris, had for their principal
feature the construction in the Champ de Mars of a
the great number of exhibits rendered it impossible. By the system adopted for 1889 a methodical order of division has been substituted for the old plan.
The following information will be useful to foreign exhibitors. The administration makes no charge for space, but exhibitors will incur the cost for subdivid. ing such space with the necessary partitions, for floor-
ing, finishing and decorating their allotments, accord-

THE FRENCH EXHIBITION OF 1889-THE INCLINED BASE COLUMNS OF THE GREAT TOWER.

THE FRENCH EXHIBITION OF 1889-PRESENT APPEARANCE OF THE TOWER.

Part II.-The Quaid'Orsay. (E.) Section I. Group 7. Food products. These will be arranged in a building of more than one story, the international exhibits being classified collectively.
Section II. (G.) Agricultural exhibits. Group 8 Agriculture, vine culture, and pisciculture.
Part III.-Esplanade des Invalides. This area wi be devoted to the exhibition of trees, etc., and will form an annex to Group 8. Also to miscellaneous exhibits from French colonies, to special exhibits of the French ministries, to social economy, hygiene, etc.
palace, the galleries of which, arranged either circularly ing to general plans furnished by the administration, or in straight lines, permitted the French and foreign and of course for installing their exhibits, and also for exhibits to be so arranged that visitors could inspect at |the service of cleaning and special watchmen. French will all the objects in the same group coming from and foreign contractors will be invited to tender for different nationalities, or all the products of each furnishing the motive power required to drive the madifferent nationalities, or all the products of each
nationality. This scheme involved for each country
chinery in motion. The conditions under which such nationality. This scheme involved for each country
the allotment of a special and well defined space. It in motion. The conditions under which such
tenders must be made are already formulated. Arwas very successful in 1867 , although the relegation of lenders must be made are already formulated. ArFrench and foreign agricultural exhibits to a separate companies, the Compagnie Generale Transatlantique, building was a departure from the ruling idea. In and the Compagnie des Messageries Maritimes, by 1878 it was intended to follow the practice of 1867 , but which the cost of transport on all objects for exhibi-
tion (except works of art and articles of special value) shall be reduced 50 per cent. So far as is possible and under the most economical conditions, the administration will place at the disposal of exhibitors men and appliances for unloading and unpacking cases, as well as for repacking at the close of the exhibition. The exhibition will as usual serve as a bonded warehouse so that goods exhibited will not be subjected to octro or other dues, unless they are sold. A general and comprehensive French catalogue will be published, but sectional catalogues may be issued for the exhibits and in the language of each nation taking part in the exhibition.
M. Hanin sends to La Construction Moderne the accompanying drawing, as he thinks it will appear, of the great tower, which is to form one of the remark able objects of the exposition of 1889
M. Hanin says: "This perspective is taken from the quay at Passy, the spectator being $1,000 \mathrm{ft}$. from the axis of the tower
"I have not drawn it in the ordinary manner (intersection of the visual lines on a vertical plan), which has the fault of preserving the geometrical proportions of the height; but I have determined the relative dimen sions of the different parts by the usual angle in which they are included, so as to realize as exactly as possi ble the proportions and aspect which the tower will present to a spectator located as above mentioned.
"The view of the palace of the exposition is dete mined in the same manner. The scale of my drawing 0.005 millimeter to a degree, and for my geometrical dimensions 1 took as a basis the autography of 0.002 per meter as recently published.
"In general, the various perspectives I have seen up to the present time are absolutely false, and certainly tend to form a bad opinion of this work, which I believe, on the contrary, will be very interesting. However, I consider the struc ture as badly located, for the palace of exposition will be assuredly dwarfed by the presence of this enormous tower in the foreground. I should have preferred to place it on the background, near the Ecole Militaire. The palace of the exposition in the foreground would have been less eclipsed.'

How to Utilize a Cypress Swamp.
The readers of the Lumberman have been made aware that R. G. Peters, of Manistee, and Horace Butters, of Ludington, Mich., were interested in North Carolina cypress, having purchased 100,000 acres of land largely timbered with that kind of wood. Their holdings are in Robeson County, N. C., and to some extent in that part of South Carolina contiguous. The lands are situated west of Lumber River, which runs southward, and enters the sea at Georgetown. The town of Lumberton lies north of the tract. In Robeson County the holdings of the Michigan men are in the Big Swamp, or Great Swamp, as it is locally called, a portion of their property lying in Ashpole Swamp, over the line in South Carolina. Lumber River is a floatable stream, on which logs or lumber can be sent to Georgetown, and thus reach a point of shipment by sea. A railroad coming from the northwest crosses Lumber River and runs to Wilmington, N. C., another seaport. Thus there are two outlets to the sea, one by water and another by rail. Hence it can be seen that the astute Peters did not select this cypress property without reference to facilities for marketing lumber. The timber is described as growing tall and clean, many of the trunks being 80 feet long, without a branch. The trees also stand thickly on the ground. The swamp is not as wet as many on the lower Mississippi

The owners have devised a great scheme for getting their cypress to mill and market. It is said that the land was acquired for the purpose of employing Butters' steam skidder. However that may be, this appliance for swinging logs from stump to rollway, car, or boat is to be the chief means for placing this North Carolina cypress where it will do the most good.
When the Michigan men had made their purchase, and began to talk about putting in a mill and manufacturing lumber, lthe natives proceeded to give their advice; which was mainly as to how not to do it. Those nice hospitable people down that way are great on conjuring up difficulties. When Peters and Butters proposed to cut a canal from Lumber River into the swamp by means of dredges, they were informed by the local oracles that it could not be done, for the reason that a dreage could not be got into the swamp. But that a dredge could not be got into the swamp. But
the thing was done just the same, and now two of these
huge steam shovels are spudding their way through the alluvium, amid cypress trees and stumps, at a mighty rate, and it is proposed to thus dig a channel six miles long to start with. A mill of 150,000 feet capacity will be erected at the point where the Wilming. ton Railroad crosses Lumber River, 1 the logs to be floated to this mill by means of the canal. It is probable that the output will be railed to Wilmington for shipment to Baltimore, Philadelphia, New York, Bos on, or whatever market may be most available.
By means of the steam skidder, placed on barges, ogs can be gathered in for a distance of 600 feet each side of the canal. When the timber shall be exhausted along the main ditch, spur canals will be dredged out, and thus more cypress reached. This process will go on until the timber is all cut, and the entire swamp con verted from noisome, malarious ooze into cultivable land of the richest kind. Now that the inhabitants are beholding what the Northerners are accomplishing, they are highly pleased, though the results will hav gone back on their judginent and prognostications.
If Butters and Peters' enterprise shall prove a complete success, it will be an example of how to get out cypress timber. The great drawback to the cypress in dustry, when contemplated by Northern men, has been the difficulty of getting logs from the swamps. Such areas are covered with water a large portion of the year, and though overflows have hitherto been the means of floating cypress to the mills, the method is an uncertain one, and renders the mill operator whol is

Doubling on her track, she eluded the dogs, returned to her cubs, and either carried or induced them to fol low her into the deeper recesses of the cavern, beyond the dangers of digging and chasing. . I have often thought that little piece of strategy a masterly piece of generalship. What could be more natural than to desire to draw away from her young ones the threatening dogs and men? Seeming to know that her own barking would have the desired effect of diverting their ttention to larger game in an open!field, she ventured o draw their attack upon herself, and succeeded in saving the lives both of herself and her young ones.

Communicability of Disease from Animals to Man.
The transmission from the cow to man of scarlet ever and tuberculosis was the subject of the opening address of Prof. Hamilton at Marischal College, Aberdeen, in which the lecturer gave an excellent account of the investigations conducted by Mr. Power and Dr. Klein into the relation of a cow malady to scarlet fever in man. He referred also to the observations of Cop and, who believed that both the dog and the horse could suffer from the latter affection, and stated that a ebrile condition of some kind can be communicated to animals by inoculating them with the blood of persons who are the subjects of scarlet fever. He further expressed the opinion that tubercle could be conveyed to man by means of milk from tuberculous cows. While the possibility of such occurrence cannot be denied, it must be borne in mind that Klein has pointed out that there are certain important differ ences between bovine and human tuberculosis; and again, Creighton has shown that man occasionally suffers from a form of this disease which resembles the bovine malady, making it probable that by far the greater number of cases are not of bovine origin. Nevertheless, the subject deserves much greater investigation, and certainly every ef fort should be made toprevent the distribution of milk from tuberculous cows.-Lancet.

A Pneumatic Dynamite Gun for
 the Italian Government.

Messrs. Wm. H. Cramp \& Sons, who are now engaged in building the dynamite cruiser, have received a contract from the Italian govern ment for the construction of a forty foot pneumatic gun. It is to be in three sections and is to throw a 600 lb. shell. It is to be shipped to Spezia for sea coast defense. It is regarded as an experimental order by the Italian authorities. In its construction a number of large tubes are used for storage and firing reservoirs. The tubes were made up of Paxton iron by the American Tube and Iron Co., who were con sidered as entitled to the work from their success in the construction of the Fort Hamilton plant: Mean while, work on the dynamite cruiser dependent on the caprice of the weather and the will |is actively progressing also at the Messrs. Cramp's of the darkies who venture into the swamps to cut yard, and America for a time at least will be the pos timber. A Northern operator cannot brook such doubtful conditions. When he goes for logs, he wants to know that there is a reasonable prospect of getting them. Having invested his money in a mill plant, he wants to turn out a certain amount of lumber every year in order to keep business moving. The canal and steam skidder scheme seems to be the one that will.solve the cypress problem. It will also be of vast benefit in draining the swamps of the South. Thus the two Michigan gentlemen who have initiated the North Carolina enterprise will be an instrument in the hand of Providence for lifting large areas of the opulent soil of the South out of the slimy waters that have covered them for ages. The process will bring health and wealth to extensive districts that have lain waste breeding ground for reptiles, malaria, and death. Northwestern Lumberman.

Cunning of the Fox.

Dr. J. F. Landrey, in Popular Science News, relates the following, showing the wonderful sagacity of the fox:
On the Lower Wabash a company of hunters from Tippecanoe County encamped for the night among the cavernous limestone hills occasionally found in those regions. The hounds soon traced up the retreat of an old gray fox and her family in one of those narrow crevices that probably led into a more open cavern further in. The whining of the young foxes was very distinct, and led to louder bayings of the hounds. The mother, however, was "not at home." But it was not long till her barking was heard beyond the camp, on a small hill in another direction. The dogs soon took the
essor of a unique engine of marine warfare. The order from the Italian government proves that Lieut. Zalinski's work is watched by the foreign powers, and is appreciated by them.

Glass and China Manufactories.

The advance made in the manufacture of glass and fine china in this country during the last few years is most phenomenal. At Trenton, N. J., and at Pittsburg and its vicinity, and in Ohio, some of the handsomest ware and largest sizes of plate glass sold in this city are the product of our own manufactories. The Age of Steel, published at Pittsburg, Pa., says: 'There are already two large plate glass works in this country each of which has a capacity of 225,000 feet of glass per month. These are located at Creighton and Tarentum respectively, and obtain their supply of natural gas from wells in the vicinity, owned by the company. A third plant of the same kind is being erected by Capt. Ford, who is interested in the first named works, near Kittanning, in the adjoining county of Armstrong. This plant will have a monthly capacity of 500,000 feet r more than twice the capacity of both the othe works. A large plate glass factory was also complet ed a few months ago at Butler, in the adjoining county of that name. It is said that natural gas en ables these companies to make plate glass of a quality superior to any made abroad. It may also be added here that there are some seventy other glass factories in his city and vicinity, which make window glass, table are, lamps, bar goods, and numberless other varietie glass goods. Some of these goods are of the fines and most ornate description, and might well be taken for the productions of Bohemia.

The Origin of Petroleum.

Professor Medelejef has advanced the theory that petroleum is of mineral origin, and that its production is going on and may continue almost indefinitely. He has succeeded in making it artificially by a similar process to that which he believes is going on in the earth; and experts find it impossible to distinguish between the natural and the manufactured article. His hypothesis is that water finds its way below the crust of the earth, and then meets with carbides of metals (particularly of iron) in a glowing state. The water is decomposed into its constituent gases. The oxygen unites with the iron, while the hydrogen takes up the carbon and ascends to a higher region, where part of it is condensed into mineral oil, and part remains as natural gas, to escape where it can find an outlet, or to remain stored at great pressure until a borehole is put down to provide it a passage to the surface. Oil-bearing strata occur in the vicinity of mountain ranges; and it is supposed that the upheaval of the hills has sufficiently dislocated the strata below to give the water access to depths from which it is ordinarily shut out.

PALLAS' NORTHERN SEA EAGLE. (Thalassaetus pelagicus.)

This noble bird is found in Kamschatka, and during Dr. F. H. H. Guillemard's cruise in the Marchesa he Dr. F. H. H. Guillemard's cruise in the Marchesa he
made drawings of the same. Our engraving is from his made drawings of the same. Our engraving
book, and is therefore authentic. - It is a magnificent bird, and is especially conspicuous from the large white shoulder patches and tail. It is very shy and difficult of approach.

Natural History Notes.
A Steel Bird's Nest.-In the city of Soleure, Switzerland, there are quite a number of watch manufactories. According to Isis, Mr. Rueder, the owner of one of them, recently discovered on a tree in his garden a wagtail's nest constructed entirely of steel springs, and measuring nearly five inches in springs, and measuring nearly five inches in
length. This nest, which was constructed length. This nest, which was constructed
with admirable skill, has been deposited in the cabinet of natural history of Soleure.
The Importance of Stomata in the circulation of the gases exchanged during respiration and the chlorophyl function is still disputed. The researches of Ungar, Sachs, Merget, and others have shown, it is true, that gases easily circulate through the stomata; but Mr. Boussingault, on the contrary, in his classical memoir on leaves, has established that the intensity of the chloro phyl phenomenon is independent of the stomata. We do not know, then, in what measure these orifices concur in causing the gases indispensable to respiration and to the chlorophyl function to enter the tissues Mr. M. Mangin, in a note to the Academy of Sciences, presents the results of a certain number of experiments on this subject, and the following are his conclusions: The stomata are indispensable to the circulation of gases in aerial plants, and the closing of these orifices causes a more or less marked diminution in the respiratory gaseous ex changes, and a very great one in the chlorophyl gaseous exchanges.
The Locking of Birds' Wings.-In a paper read before the National Academy of Sciences, Prof. W. P. Trowbridge gave an account of a discovery that had lately been made by his son. This discovery is that birds of ${ }^{9}$ prey, and some others, have the power to lock securely together those parts of the wing holding the extended feathers, and corresponding to the human hand. The action of the air on the wing in this condition extends the elbow, which is prevented from opening too far by a cartilage, and the wings may keep this position for an indefinite length of time with no muscular action whatever on the part of the bird. While resting in this way, the bird cannotrise in a still atmosphere; but if there be a horizontal current it may allow itself to be carried along by it, with a slight tendency downward, and so gain a momentum by which, with a slight change of direction, it may rise to some extent, still without muscular action of the wings. Prof. Trowbridge also believed it possible for a bird to sleep on the wing.
Effect of Electric Light on Vegetation.-The electric lighting of the Winter Palace at St. Petersburg appears to have given rise to some unexpected and undesirable results. According to the Electrician, the sudden change from the sunless days of the northern winter to the blinding light of the banqueting halls, aided probably by the artificially heated and drier atmosphere of the rooms, causes the leaves of the plants used as ornaments to turn yellow, dry up, and fall off after being exposed to the light for a single night. The rapidity of the injurious action and its amount is in direct proportion to the intensity of the illumination, since plants partially shaded from the light, or in niches or similar places, were found to remain uninjured.

Preserving Plants for the Herbarium.-An excellent method of preserving the colors of flowers is given in the Annals of Botany by S. Schonland. It consists practically in a process of deoxidation by means of sulphurous acid. A saturated solution of sulphurous acid with water is mixed with methylated spirit in the proportion of three parts of the former to one of the latter. Plants with thick leaves are left for twelve or eighteen hours in this liquid, but delicate flowers only from five minutes to half an hour. After removal they are allowed to dry by exposure to the sun orto artificial heat and are then at once placed between sheets of drying paper in the usual way. If enough sheets are used, it is rarely necessary to ${ }^{\text {a }}$ change the paper. The above treatment not only preserves the color, but hastens the drying, so that sempervivums can be dried in two day and orchids and arums in one day. Plants which usually turn black in drying, such as Melampyrum and Lathrcea, retain their natural color. In a few cases in which the color of the petals disappears, it returns when the plant is dry. - The only difficulty attending the process is that of laying out delicate blossoms after treatment with the solution
Habits of Ants.-On Thursday, December 1, Sir John Lubbock read a paper zefore the Linnean Society, in continuation of his previous memoirs, on "The Habits of Ants, Bees, and Wasps." He said it was generally of Ants, Bees, and Wasps." He said it was generally
stated that the English slave-making ant (Formica
friends, he repeated some previous experiments with the same results. He took some pupæ from one of his nests (A) and placed these under charge of some ants from another nest (B) of the same species. After they had come to maturity, he placed some in nest A and some in nest B. Those placed in their own nest were received amicably, those in the nests of their nurses were attacked and driven out. This showed that the recognition is not by the means of a sign or password. for in that case they would have been recognized in nest B and not in nest A. Dr. Warsmann had confirmed his observations in opposition to the statement of Lespis, that white ants are enemies to those of an other nest, even belonging to the same species. The domestic animals, on the other hand, can be transferred from one nest to another, and will be amicably received. In conclusion, he discussed the respective functions of the eyes and oceili, and referred to several other observations on various interesting points in the economy of the social Hymenoptera.
Function of Raphides.-Dr. E. Stahl suggests that raphides, or needle-like crystals of oxalate of calcium, are not, as is usually taught, mere products of excretion in plants; but that they serve a useful function to the plant in protecting it from the attacks of herbivorous animals. He finds that snails will reject such parts of the plant as contain these crystals, and that they con sume only those that do not. The poisonous properties attributed to Arum maculatum, and the burning taste of the leaves, are due solely to the enormous quantity of crystals of oxalate of calcium stored up in them.
Absorption of Water by Mosses.-Mr. J. Reynolds Vaizey, in a paper on the absorption of water by mosses, shows by a series of experiments made on Polytrichum commune and P. formosum that water can pass readily through the external cell walls of the leaf although it will not do so through the sur face of the fruit stalk. This he shows to be due to the fact that in the leaf there is no layer of cuticle present, and that the external walls of the cell have undergone some change, so that water is easily absorbed by them The seta or fruit stalk, however, presents this structure at the base only; the surface of the seta, apophysis and sporangium is smooth and glistening, and not capable of absorbing water, in consequence of being strongly cuticularized, although water readily passes up the interior of the seta.
Fecundity of Fishes.-Fishes produce so many eggs that if vast numbers of the latter and of the fishes themselves were not con tinually destroyed, these animals would finally fill up all the waters. For example, man annually takes $60,000,000$ or $70,000,000$ codfish from the sea around the shores of Newfoundland. But even that quantity seems small when we consider that each cod yields about $45,000,000$ eggs each season, and that even $8,000,000$ have been found in the roe of a single,cod. Were the $60,000,000$ cod taken on the coast of Newfoundland left to breed, the $30,000,000$ females producing $5,000,000$ eggs every year, it would give a yearly addition of $150,000,000,000,000$ young codfish. Other fish, though not equaling the cod, are wonderfully productive. A herring weighing six or seven ounces is pro vided with about 30,000 eggs. After making all reasonable allowances for the destruction of eggs and the young, it has been calculated that in three years a single pair of herrings would produce $154,000,000$. Buffon calculated that if a pair of herrings could be left to breed and multiply undisturbed, for a period of twenty years, they would yield an amount of fish equal twenty years, they would yield an amo
in bulk to the globe on which we live.

International Geological Congress.

The fourth session of this congress will be held in London from September 17 to 25 inclusive. Previous meetings were held in Paris in 1878, Bologna in 1881, and Berlin in 1885, at each of which a large number of and Berlin in 1885, at each of which a large number of Paris 21 countries were represented, in Bologna 17, and in Berlin 18. A circular has just been issued by the organizing committee of the London meeting, giving particulars of the congress and stating the general ar rangements. A large and influential committee has been formed, including the chancellors of the chief universities, the presidents of the more important scientific societies and of those societies especially devot ing themselves to geology, mining, etc., the Lord Mayor of London, and many of the chief government scientific officials. The honorary president of the congress is Professor Huxley, the president Professor Prestwich and the vice-presidents are the president of the Geological Society, the Director-General of the Geological Survey, and Professor T. M'R. Hughes. Mr. F. W. Rudler is treasurer, Mr. T. W. Hulke and Mr. W. Topley are the general secretaries. To the last named all communications respecting the congress should be ad dressed at 28 Jermyn Street, London, S. W.

engineering inventions.

A railroad switch has been patented by Mr. John J. Peetz, of Galveston, Texas. It is car to open or close the switch, and without injury to the rails or actuating mechanism, or danger of derailthe ratis or actuating mechanism, or danger of deravi-
ing ing the cars, the invention cove
details and combinations of parts.
A car coupling has been patented by Mr. James F. Thornton, of Nicholas Court House, West Va. Combined with a drawhead having a link mortise
and a vertical slide bar with a crosshead is a coupling pin, so arranged that the pin may be elevated for the
insertion of the link by the contact of the crosshead pingertion of the link by the contact of the crosshead
with grapple hooks or bars, and cars may be coupled or with grapple hooks or bars, and cars may be coupled or
uncoupled without the operator going between them.

AGRICULTURAL INVENTIONS.

A corn planter has been patented by Mr. Andersin Bussey, of Columbia County, Ark
Combined with a frame, plow, and covering shovel is Combined with a frame, plow, and covering shovel is
a corn-dropping box rotating on a shaft held on the a corn-dropping box rotating on a shaft held on the
frame, the box haviug supplemental boxes communicating with openings in the sides of the dropping box of the dropping box
A check row corn planter has been patented by Mr. August F. Tiede, of Deep Creek, Iowa.
It is designed to drop hills of seed in accurate check It is designed to drop hills of seed in accurate check while the seed-dropping mechanism may be set independently of the mechanism which drives it, to correct irregular dropping and toj assure proper starting of the
machine at the end of a field. machine at the end of a field.

miscellaneous inventions.

An inkstand has been patented by Mr. Frederick Mitchell, of Brooklyn, N. Y. It is double, he parts being detachable, so that they may be used singly.
A rafter gauge has been patented by Mr. John N. Cruson, of Elizabethtown, Ill. It has adfor aiding in determining the length and bevels of hip nd jack rafter
A weather strip has been patented by Mr. Franklin P. Burcaw, of Hazleton, Pa. This inven-
tion covers a novel construction and arrangement of parts and details, including flanged strips fitting into channels in moulding all around the door, whereby all

A sign has been patented by Mr . Andrew F. Foans, of New York City. The letters are each attached to a bent and counterweighted rod jour-
naled in a board or other support, so that the motion or naled in a board or other support, so that the motion or
jar of a car, stage, or other conveyance will set the jar of a car, stage, or other conveyance
letters in motion to attract public attention.
folding coop has been patented by Mr. William E. Tate, of Weatherford, Tex. The side, end, and top sections and partition are formed of wire or metal frames, with wire netting, making a coop
which is strong and rigid in use, and which may be hich is strong and rigid in use, and which may be folded ing.

A churn cover has been patented by Mr. Anderson B. Cosby, of Richmond, Va. The top edge of the churn body has a marginal metal ring, with
upwardly projecting hook-shaped lugs cast upon it its nner edge being slightly raised to form a bead upo which a wooden cover fits and makes a tight joint, the invention covering various other novel features.
A trotting harness has been patented by Mr. John H. Whitaker, of Davenport, Iowa. It has a shackle strap or collar inclosing the hind leg above
the hock, with a yielding connection between the colla and the shaft, which will not impede the travel of the animal, but will act as a restraint causing him to trave with his hind legs wide apart.
A sash fastener has been patented by Mr. Jerome B. Kester, of Clarksburg, West Va. It
consists of a gravitating latch pivoted to the sash and
adapted to a notch or detent at the window frame, proadapted to a notch or detent at the window frame, pro-
vided at its pendent part with a shoulder, a gravitating lock being pivoted to the window sash and adapted to A display box for neckties has been patented by Mr. John W. M. Uhrig, of New York City It has side walls provided with longitudinally and in wardly extending wings, designed to support bow portions of the neckties for display, and permit a dis position of the tying stri
view and also from dust.

A gate hinge has been patented by Mr. Oscar M. Hawley, of Church's Corners, Mich. It i an improvement in that class of hinges in which th
gate may be slid back in the hinge, and the gate may be slid back in the hinge, and the hinge
turned upon its vertical axis, carrying the gate with it the device being equally adapted to rail, picket, or wire gates.

A hospital transfer bed has been patented by Elizabeth D. Staples, of West New Brighton and Hugh E. Ashcraft, of Goshen, N. T. It consist
essentially of an endless carrier belt or mattress mounted on drums or rollers journaled in the bed
frame, for easily transferring patients from one cot or frume, for easily
bed to another
A bridle bit has been patented by Mr. Oscar R. Gleason, of New York City. It has a mouth piece square in cross section, and side rings with down-
wardly projecting arms, these rings having upwardly projecting loops or eyes, the latter serving for use with
a curb strap passing under the jaw for vicious or unruly

A hay carrier has been patented by Messrs. Lindley and Ellwood Clark, of Cuba, Ohio
The invention covers a novel construction and arrange
ment of parts in an inexpensive device for carrying ha into hay mows and over the tops of hay stacks, and
depositing it in any desired point within the range e apparatus.
A trace detacher has been patented by Mr. John D. Blakeman, of Smith's Grove, K The whiffletree has a projecting stud, on which loosel fits a collar with a gaard arm and an inwardly project ing arm and loosely pivoted lever, which may b operated by the driver to detach the trace
accident or if the animal should run away
A horse detacher has been patented by Mr. Noah Crim, of Galton, III. On each end of th and passage for trace-holding bolt spindle, from whic flexible connections are guided to a common point, and by drawing upon which all the bolt spindles will be thdrawn at the same time and the traces released.
A grading and ditching machine has been patented by Mr. John C. Sage, of Atlanta, Ga.
Combined with a main frame carrying plows is an ad justably connected conveyor to receive the earth from the plows, with power wheels and pulleys, and othe novel features, the machine being adapt
ted by hand power or a traction engine.
A hay press has been patented by Mr. George Ertel, of Quincy, Ill. The invention covers im
provements on a former patented invention of the sam provements on a former patented invention of the same
inventor, whereby the cost of the press is reduced and its length and weight materially lessened, for increase facility in drawing over rough roads, and time and labor are saved in pressing the bales.
A mould for casting loose pulleys has been patented by Mr. John McCaffrey, of Lawrence, internal disk core an exsersin the combination one of such parts, in external ring core, with lugs is formed in one piece, provided with a central oil chamber, radial ribs, and lateral op
of oil to the central opening.
A fastener or holder for paper or othe ayette Mo. It patented by Mr. Cecil M. Durnil, to form a spring clamping arm, having an inner bent front holding-end portion and rear stiffening coil, the latter terminating beneath the clamping arm in a forwardly extending arm, to be attached to a board ther surface for clamping or holding articles.
A sweat pad fastener has been patent d by Mr. Albert Hobt, of Wellston, Ohio. Combined with the collar and collar:pad is a cotter-shaped fastening of malleable metal passed through the pad and rough the hames crease of the collar, and folded dow within the crease ithin the crease,
ecurely together
A seat or back fastening for furniture as been patented byjMr. John M. Sander, of Blooms-
burg, Pa. This invention relates especially to fasten ings adapted to secure seats or backs of school furniture to the arms or irons connecting them to the seat arms or standards, dispensing with key or wedge fastenings, and covering novel features of construction and A heans of parts.
A head rest for coffins has been patentd by Mr. John McGrath, of New York City. It conants of a base to which is attached a longitudinally arved plate adapted tothe contour of the neck or head, curved plate, with means for vertically adjusting the mained plates ove
A spark arrester has been patented by hn and Jerome Raum, of Fort and graduated parallel screens and retaining of spaced with outwardly projecting upper ends and knobs, to prevent sparks and cinders passing from the chimney lack, and throw them downward to the base of the himney or stack.
A telephone receiver has been patented by Mr. Alonzo W. Brown, of Evanston, Wyoming Ter. A box is secured between the poles of a permanent
magnet, and in the extremities of the magnet are magnet, and in the extremities of the magnet are
threaded holes into which are screwed inwardly extending polar extensions, the usual diaphragm being replaced by a tongue arranged to vibrate between these A safety appliance for elevators has been patented by Mr. Augusto Stigler, of Milan, Italy. the floor of the cage, and having hook levers, in connection with levers pivoted beneath the end beams of the floor of the cage, with other novel features, whereby, when the elevator descends too rapidly, or the attend-
ant loses control of it, the cage, will be automatically ant loses control of
retarded or stopped.

NEW BOOKS AND PUBLICATIONS

Journal and Proceedings of. The ROYAL SOCIETY OF NEW SOUTH Potter. 1887.
1886. Sydney
Pp. liii, 396.
Mineralogy, meteorology, language, anthropology, and fying to the wide range of the society's work. The book is well printed, and is a valuable record of the sci ntific life of the antipodes.
The American An'riropologist. Pubhropological
thropological
Vol. I., Nociety of Washington.
January, 1888. Pp. 96. In this very elegantly printed pnblication, variou We welcome the ang are treated by diferentessayists wish it every success in its important field.
New Approvfd Method of Zinc EtchING OR Photo-Zinc ENGRAVING.
By John Gast, 297
Adelphi Street, Brooklyn, N. Y. \quad Price $\$ 1$.
In a few pages this little work gives practical in
structions how to make zinc relief plates. The metho
is said to be especially adapted for half tone reproduc ions or photo-nature engraving. It give
A Practical Manual of Minerals, Mines, and Mining. Comprising suggestions as to the localities and full descriptions of the most effective methods for both the qualitative and quantitative analyses of these min perations of mining, including ar chitecture and construction. By Professor H. S. Osborn, LL.D.,
author of the "Metallurgy of Iron and Steel.; Illustrated by 171 en gratings. 8 vo. Pp. 367. Philadel-
phia : Henry Carey Baird \& Co., 810 free of postage, to any address in the free of
We have here notonly a very handsomety u , American technical literature. It covers a wide field,
and covers it well. It not only contains a large amount of information in reference to the localities and associa tions of the useful minerals, especially in the United taates, but is replete with very condensed information practical mining, illustrated with great detall and if of any size, which gives so many and such happy i ustrations of the miner's practical work. It is calculated to prove a useful handbook to prospectors, analy and miners. Like all of.fthe publications of this house end of the matter of coch ists, which haustive index, which together render every subject of mportance in the volume easy of access.
Any of the above books may be purchased throug this office. Send for new catalogue just publishe
Address MUNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

buIldina EDITION
MARCH NUMBER.-(No. 29.) TABLE OF CONTENTS.

1. Elegant plate in colors, showing perspective elevations and floor plans of a cottage of moderate cost, together
etc., etc.
Plate in colors of a handsome suburban residence costing about Twelve Thousand Five Hundred Dollars, with floor plans, specifications, sheet of details, etc
2. Elevations and floor plans of two dwellings of mod erate cost.
Perspective view and floor plans of a house for Six
Thousand Dollars. Thousand Dollars
3. Floor plans and elevations of a substantial resi dence at Tuxedo Park.-James Brown Lord, archi
tect. tect.

Perspective and moderate cost

Plans and perspective of a double house, costin about Six Thousand Five Hundred Dollars. Elevation and pla
on Long Island.
Sketch of a one story residence erected at Birming ham, Ala., at a
dred Dollars.
loor plans and perspective view of a neat cotta for Seventeen Hundred and Fifty Dollars.

1. Plans of an English country house.
2. Sketch of a handsome double house at Clevelan Ohio. Cost, complete, Six Thousard Dollars. Dollars. Four Thousand Dollars each
Elevation and floor plans of brick residence at Newark, N. J. Cost, complete, Seven Thousand Six Hundred and Seventy-five Dollars.
Sketch of the hall and stairway of a luxurious Eng lish dwelling.
Design for a carriage house and stable. Cost, Fif teen Hundred Dollars.
lan of an old plaster ceiling, South Quay, Yar mouth.
Cluny.-A Stairway in Rouen.
Miscellaneous Contents : Ancient Water Works. Making the House Water-Tight.-Mahogany.-Vi-
bration of Buildings.-Building Accidents.-The Column Vendome, Paris.-Learning to Desig Buildings.-Non-Inflammable Wood.-Large Red wood Boards.-An Experiment on the Expansion of Iron in Buildings.-Ornamental Hedges.-The Painting. -Right and Left in lLandscape Painting. Furniture Woods.-Range Boiler Explosion, with illustrations.-Plastering of Walls, Westminster illustrations.-Plastering of Walls, Westminster
Hall. - Notes on Bricks. - Mineral wool.- The Jackson Ventilating Grate, illustrated.-The Spencer Hot Water Heat
Furnace, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages; equal to about 25 cents. Forty large quarto pages; equal to about
two hundred ordinary book pages; forming, practically, u large and splendid Magazine of Architecre richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by any Architectu

MUNN \& CO.. Publerana

Special.

"OBSTINATE."

This lady was not obstinate, but the disease which oxed her was. For ten years she had a weary and es, among which were heart palpitation and stomach disorders, accompanied with great pain in the head. Her
irst report after beginning to take Compound Oxygen howed but little imprinning to but Compound oxygen and hopefully until steady gain rewarded her patient efforts. A month later she noted the temporary disap-
pearance of most of her symptoms. For a while they pearance or most of her symptoms. For a while they
troubled her by occasional return. In a few weeks she wrote: "The most obstinate symptom is the head trouble. Other symptoms not so severe." Again: "I am
now on the third treatment. My stomach and pain in he heart have not troubled me at all since the first three or four days of using it. 1 am steadily increasing in flesh and strength. You cannot imagine how mach
improved in my looks." Thus do the most obstinate
maladies yield to to Compound Oxygen treatment; and ffferers who have hardly dared hope
This is a dished with vigor and vitality.
This is a deeply interesting subject. Would you learn
nore about it? Write to Drs. Starkey \& Palen, 1529 Arch treet, Philadelphia, Pa., for books, which will be sent ree, and will tell all you ask to know.

$\mathfrak{W u s s i n e s s}$ and $\mathfrak{P e r s o n a l}^{2}$

The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

A Perfect Engine-Syracuse water motor, for driving ht mach'y. Tuerk Water Meter Co., Syracuse, N. Y. A reliable firm of good business ability, with capital, ants New York State agency for some good patented
rticle. Murgenoride Bros., room 14, 223 Broadwas, N. Y. For best forges, blowers, exhausters, hand and power
rills address Buffalo Forge Co., Buffalo, N. Y.

For Sale Cheap-Valuable patent for measuring pockcalipers. Winegister an wrameters accuately. Ad-

Wanted- $10^{\prime \prime}$ and $15^{\prime \prime}$ shapers universal miller, $30^{\prime \prime}$ year cutter, $966^{\prime \prime}$ and $36^{\prime \prime}$ pulley borers, $60^{\prime \prime}$ pulley lathe, ition, and lowest price, Henry G. Adams, 94 Liberty St. dition, and
For Sale-One-half interest in Leightham's steam Burnham's turbine wheel is sold at net price to mill

The Dieble Manufg. Co., Philadelphia, Pa., manufacturers of the Challenge Emery Grinding and Polish-
ing Machinery, invite correspondence with all needing this class of machinery. Catalogues and prices on ap. Wanted-A practical tool maker. An experienced mechanic, capable of managing that department in a Hardware," P. O. box 773 , New York.
Patent button fastener, No. 376,497, for sale, or placed Di A d Propecting Co W.
The Diamond Prospecting Co., 22 W . Lake St.
Chicago, Ill., general agents for the Sullivan diamond ancago, m., general
prospecting drills.
Foree Bain, 76 Market St., Chicago, designer and con structor. Ele
chinery, etc.
Nickel Plating.-Manufacturers of pure nickel anittle Little Wonder." A perfect Electro Plating Machine.
Agents of the new Dip Lacquer Kristaline. Complete gents of the new tip Lacquer K Wink. Complete ark, N. J., and 92 and 94 Liberty St., New York.
Perforated metals of all kinds for all purposes. The For the latest impor address the M. C. Bullock Mfg. Co., 138 Jackson St., Chicago, Ill.
The Railroad Gazette, handsomely illustrated, pubished weekly, at 73 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federai st.. Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be walled free of charge on a
Link Belting and Wheels. Link Belt M. Co., Chicago. Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mifg. Co., New Haven, Conn Supplement Catalogue.-Persons in pursuit of inforation of any special engineering, mechanical, or scien-
tiftc subject, can have catalogue of contents of the ScIintific american Supplement sent to them free The SUPPLEMENT contains lengthy articles embracing cience. Address Munn \& Co, Publishers, New York. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works machinery, and containing reports of tests, on application
Lathes for cutting irregular forms a specialty. Se Lathes
ad. p. 62.
We are sole manufacturers of the Fibrous Asbesto Removable Pipe and Boiler Coverings. We make pure 419 and 425 East 8th Street, New York.
Curtis Pressure Regulator and Steam Trap. See p. 77 The Improved Hydraulic Jacks, Punches, and Tube Dudgeon. 24 Columbia St., New York. Drills, $1,2,3$, and 4 spindle, driven by endless belt Cone.
Safety Elevators, steam and belt power; quick and D. Fisbie \& Co., 12 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 28 . The sole builders of "The Improved Greene Engine

Catarrh Cured.
A clergyman, after years of suffering from that loath-
some disease, catarry, and vainly trying every known Ame disease, catarrh, and vainly trying every known emedy, at last found a prescription which completely
cured and saved him from death. Any sufferer from this d readful disease sending a self-addressed stamped
envelope to Prof. J. A. Liawrence, 212 East $9 t h$ St., New ork. will
Pazent Rights for Sale. Apparatus for building
Concrete Buildings and Walls: County rights Concrete Buildings and Walls. County rights, 850 . State
rights, $\$ 500$. See descriptive notice in Sct. A MERICAN ights, \& $_{2000 \text {. See descriptive notice in Sci. American, }}$ May 22,1886 . Send for circulars. Ransome, 402 Mont May 22,1886 . Send for circula
Hodges' universal angle union makes pipe connection t any angle. Rollstone Machine Co., Fitchburg, Mass. Send for new and complete catalogue of Scientific Books for sale
on application.

HINTS TO CORRESPONDENTS.

n.

(1) G. C. asks: 1. Is there any way to fnd the length of belt by figuring? A. You can only compute the length of belts by knowing the distance of lap for both-pulleys. When both are alike, add $3 \cdot 141$ imes.the duameter of one pulley. If they are unlike, add to twice the distance of centers $1 \cdot 57$ of the diathan to take the measure around the course of the belt with a tope ine. 2. How to calculate speed of planer revolutions of main shaft given, to find pulleys to make planer run any required number of feet per minute. A For computing speeds of machines, multiply the dia meter of the driving pulley in feet and decimals of a oot by its speed in revolutions per minute, and divide the product by the diameter of the driven pulley in feet and decimals of a foot, and so on to the last pulley or pinion, which will give the speed in feet per minute. 3 .
How to divide a given diameter and a given circumfer ence into any number of equal parts in the lathe. A. By making a scratch on the edge of the large cone pulley and dividing the circle, with a pair of dividers, into and number of parts desired. 4. How to mark and chip
the key seat in pulley true with face, the hub not being
faced off. A. Lay a straight edge across the rim of the faced off. A. Lay a straight edge across the rim of the pulley, and square the key seat from the straight edge If the hub is higher than the rim, place two blocks of
exactly equal thickness on opposite sides of rim, upon exactly equal thickness on oppos
which the straight edge can rest.
(2) B. A. H. asks: 1. Is there any method of cutting and polishing petrified wood? A.
Petrified wood and minerals can be cut and polished in the manner of lapidary work. See answers in back numbers notes and queries, No. 4, May 28, 1887; No. 22,
September 3, 1887; No. 17, March 12, 1887. 2. Has the September 3, 1887; No. 17, March 12, 1887. 2. Has the
power obtained in a hydrostatic press been used to propower obtained in a hydrostatic press been used to propel machines? A. Hydrostatic power is used in various
ways through accumulators for saving time in running hydraulic presses. Such power may be also distributed to any number of hydraulic jacks, and 18 so used in India rubber works for raising large bedplates for pressing belting. 3. Can it be used in the place of jack draulic jacks can be so used.
(3) G. S.-A solder made of equal parts of tin and lead melts at 368° Fah. You can burn the vapor of gasoline by saturating air with the vapor and passing it through a Bunsen burner. The arrange machines for lighting so much in vogue where there ar no gas works. Unless you are familiar with gasoline and its explosive nature, when mixed with air, we do not recommend you to play with it. A good kerosene
lamp will do all that you can accomplish with the gasolamp will do all that you can accomplish with the gaso-
line. You will find samples of the kerosene stoves in the trade, which you can utilize or copy with a safer esult.
(4) J. V. D. asks : How many cells of carbon battery, small size, will be required to light one
Edison 6 candle power light? A. About 27 cells, arEdison 6 candle power light? A.
ranged 9 in series and 3 in parallel.
(5) W. L. asks (1) how to remove the apparent greasiness on a wood blackboard. I have tried soap and hot water several times without any effect A. Make a strong lye of pearl ashes and soft water, and
add as much unslaked lime as it will take up. Stir it toadd as much unslaked lime as it will take up. Stir it to
gether and let it settle a few minutes, bottle it and stopgether and let it settle a few minutes, bottle it and stop-
per close. Have ready some water to dilute it when used. per close. Have ready some water to dilute it when reain
and scour the part with it. The liquor must not remain long on the board, as it will draw the color with it, Hence use it with care and expedition. 2. How can remove old ink spots from the floor? A. By scouring
with water and oxalic acid mixed. Then rinse with (6) Old Reader asks: Please give thoroughly 630 grains of the finest Bermuda arrowrot with 375 grains of cold water in a capsule with a spoon or brush, then add $103 / 2$ ounces of water and 60 grafin of gelatine in fine shreds. Boil with stirring for 5 min
utes, or until the liquid becomes quite clear, and whyn
cold, stir in well 375 grains of alcohol and 5 or 6 drops
of pure carbolic acid. Keep in well closed vessels, and, before using it, work up a portion with a brush in dish.
(7) H. M.-The money made at the various mints goes into circulation on the order of the United States Treasurer, as called for by the different banks and financial institutions, in settlement of bal-
ances, the Treasurer filling orders for different coin ac cording to the quantities being coined, and with regard so to date of application.
(8) J. D. M. asks: 1. Why did the moon during the late eclipse have a brown or smoky look rather than a black? A. We do not know that the
moon ever looked black during its total eclipse. It is illuminated by diffused light. 2. Having reason to suspec sewer gas in a cellar, what will be simplest method of proving its presence? A. For the detection of sewe
gas we know of nothing better than the sense of gas we know of nothing better than the sense of
smell. There are valuable articles in Scientific
american Supplement, Nos. 67 and 418 , on sewer gas
(9) S. R. T. asks a composition of a ement which will join glass plates to brass, and whic will not be soluble in bisulphide of carbon. A. Use
(10) S. D. W. asks : 1. If gold was as heaply obtained and as plentiful as brass, which, for its commercial and mechanical uses, would be of the
greater value? A. The less oxidizable metal-gold. 2 . We have a steam launch whose best speed is only four miles per hour in eddy water. If we desired to ascend a river, the current of which fiows at the rate of five
miles, could it be done with this launch? A. The boat miles, could it be done with this launch? A. The boat
would not ascend, but would descend at the rate of a would not asce
mile an hour.
(11) J. H. K. asks: 1. What is the best ethod of filling and darkening ash and oak for antique inish? A. Spons' "Workshop Receipts," first series, which we can furnish for $\$ 2$, gives very full informaon on the staining and finishing of woodwork. 2. Exlusive of burnishing, what is the best method and hat materials should be employed for giving the high-
at possible to finish to brass? A. For brass work, the possible to finish to brass? A. For brass work, the iving a high polish. The materials are pulverized pumice, tripoii, and rouge. The last finish may be made with a cotton wheel and rouge wet with alcohol. Any dealer in jewelers' supplies in your city should give you the details with the materials. 3. What is the est lacquer for ornamental brasswork-one that will ot alter the natural color of the metal? A. The best acquer is pure shellac dissolved in 95 per cent alcohol. e pure tincture. Use but $1 / 1$ ounce shellac to 1 pint ere wine. Thin, if required, by adding alcohol. Thin lacuer makes the best finish.
(12) W. W. asks the distance from the enter span of the Forth bridge to the shore, in Engnith. A. There are two central spans,of 1,00 feet each, in the middle of the Forth. There are 2200 feet of viaduct and bridge from the South Queensferry shore in England to the main pier from which the 1,700 foot pan springs.
(13) R.-For articles on curved ball in ball playing see Scientific American Supplement,
Nos. $410,423,410$.
(14) W. W. has a petroleum engine, and wants to know how to burn off soot on the fiues. A. It the plate, and scrape or brush off the soot. Catch it in nderneath
(15) N. S. C.-Hard water is not always resting same chemical element. You will find an interesting article on the Softening of W
(16) H. W. W. writes : I have trouble in brazing my band resaws. I use brass and borax as a lux, but the heat required is so great that it burns out
my irons and damages the saws. What I wish to learn , is there a grade of brass that will melt at a temperaure anywhere near that of silver and still have tenacity nough to answer for brazing the saws? A. The best material to braze with is the silver solder used by jewers. Small coin will answer if you cannot get the ther. If the saw is not too large, use a blowpipe and il or alcohol lamp, the same as jewelers use, or a Bunmall wire Bnd the scarfed ends together with pumice stone, rubbed down flat on one side, with a de pression under the place to be brazed to let the flame pass under freely ; apply borax ground to a cream in water, place the solder at the edge of the scarf, and throw the blue point of the flame strongly upon the in melts. This will make a clean joint, and heat no ore than is necessary to accomplish the work.
(17) D. L. desires a cement for amber . Two surfaces of amber may be united by smearing hem with boiled linseed oil, pressing them strongly
ogether, and heating them over a clear charcoal fire. To keep the parts in firm contact, it may be well to tie hem with soft iron wire.
(18) A. C. C. J. writes: I upset a jug of nk (the blackest copying ink, at that) on the end of a rosed volume of Blackstone. Of course the ink ran it. It didn't, however, touch the printing, but has disigured the book completely. How can I remove the nk? A. Yon might try dipping it in a warm solution of dilute oxalic acid and then washing the acid away uickly, but at best the job is a difficult one
(19) Bath Tub writes : I want to paint a inc bath tub white. Can it be painted so it will hold pared? I am informed there are no prepared paints for such purpose. A. Brush the zinc over with the follow-
ing: 1 part copper nitrate, 1 part copper chloride, 1 part
ammonium chloride, dissolved in 64 parts of water to which 1 part of commercial hydrochloric acid is added. When the zinc dries, in the course of 12 to 24 hours, coat of any oil color will
gray surface of the zinc.

TO INVENTORS

An experience of forty years, and the preparation of
nore than one hundred thousand applications for pa ents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un
oqualed facilities for procuring patents everywhere. ynopsis of the patent laws of the United States and all contemplating the may be had on application, and person abroad, are invited to write to this office for prices, ensive facilities for conducting the business. Addres
UUNN $\&$ CO.. office Scientipic Ammrican, 861 Broad MUNN \& CO.. off
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

February 21, 1888,
AND EACH BEARING THAT DATE.
[See noteat end of list about copies of these patents.]

Brick drier, W. E. Cole...................................... 378,236,
Bridle bit, o. R. Gleason
Brush bodies, machine for boring,
Brush making machine J. Brushes, etc.. apparatus for inserting and fixin the bristles of, J. V. Ga
Bustle, M. B. Hammond... Bustle, M. B. Hammond
Buste, S. S. Williamson
Button and fastener, A. Storc..............................
Buttonhole stitching and barring machine, J.
Reed...378,217,
Cam, dwell, J. Thomson..................
Can opener, w. B. \& G. H. Williamson
can opener, W. B. \&
Cant hook, L. I. Cook
Car coupling, H. L. A rnold....
Car coupling, Cowher \& Numer
Car coupling, w. H. Dawson..
Car coupling, I. Hazelton...
Car coupling, C. R. King et a
Car coupling, D. schofeld..
Car coupling, J. F. Thornton..........
Car coupling, Thurston \& Butterfel
Car, dumping, Hughes \& Williams
Car heaters, brakes, etc., coupling and cut-orf for
Car spring. C. T. Schoen.
$\&$ Sobinski......................
card exhibitor, w. D. Valentine.
Card exhibitor, W. D. Valentine...
Card exhibitor, valentine \& Bailey
Card exhibitor, Valentine \& Bailey........
Carpet in rolls, device for securing the ends of
Carriage wheel, s. D. Forbes.
Carrier. See Hay carr
Cartridge for frearms, J. P. Lee.
Cartridge implement, H. A. Lson
Chain, drive. B. A. Legg
Crain, drive, B. Oborn..
Crain, drive, B. Oborn...........
Chain for conveyers, B. A. Legg.
Chain making machine, J
Cikar holder, J. H. Nobl
Clasp. D. F. Dalton......
Closet. See Water close
Clutch, 1. . M. Foote

Coat hook, W. H. Jacoby
Cofee pot, L. Ehrlich....
Coffee pot. W. Ehr
Confin. E. Bangs..
offins, head rest for, J. McGrath
Comb. See Weaver's comb.
Cotton gin, A. G. Jennings..
Coupling. See Car coupling. Pipe coupling. Pipe
well coupling. Thill coupling.

Coupling and brake, eombined, A.
Cradle, Duffy \& Reling............
Crate, berry or fruit, s. R. Krafer Cuff holder, E. R. Horton.........
Cultivator, Glidden \& Vaughan. Cultivator, E. P. Lynch...............
Cutivator, Schermerhorn \&ury.
Current transformer, alternating Current transformer, alternating, R. Kennedy.
Curtain pole, adjustable or extension, Field......................................
Curtain pole covering, A. Field....
Curtain pole, upholstered, A. D. Field. Curtain pole, upholstered, A. D. Field...... Decoy duck , W. D. Trimble
Dental engine W.
 Door, L. S. Enos.......
Door mat, S. IL Coher

M. Johnson...ting
 achine, chained yarn,

Drier. See Brick drier.
Egg preserver, Ford \& Delbridge................... 378,
Electric lights, manutacture of incandescent,
Mace ... 378,258
Electric machines, core for! dynamo, W. C. Rech-
niewski................................
Electric energy, transformation and distribution
of, R Kennedy

End gate, P. Bartzen............................
Engine. See Dental engine. Power engine.
Engine dash pot, steam, F. Phillips...
Excavating bucket, T. \& J. J.
Excavator, J. S. Whitcomb..
Feed cutter, E. W. Rider.
Fence, o. D. Hearn.............
Fence machine. T. J. Smith.
Fifter. See Horse rake fender.
Fifth wheel, vehicle, P. Doersom.
Filtering beer, H. Stockheim.....
Fire alarm systems, conductor.for electric..........
Barnes...
Firearm sight, J. Manton.
Fire and burglar alarm, B
Fire escape, T. P. Holt............
Fire extinguisher, w. G. Browne
Holding mosquito. net, tarlatan, and other 378,285
goods, I. E. Palmer................................. 388.212
Forges, driving mechanism for, E. E. Webb..... 378,273
frame.
Fuel composition, E. Henn.......................... 378.249
Furnace. See Hot air furnace. Smoke consum-
Furnace. See Hot air furnace. Smoke consum-
ing furnace.
Furniture, seat or back fastening for, J. M. Sau-
der 37
der
Gauge. See Rafter gauge.
Galvanic battery, II. Walter
Galvanic battery, II. Walter......................... 378,121
Gangway, stock, H. T. Keenan.... 378,319
Garment stay, E. C. Bowling....... 378,080
Garment supporter, C. A. Preston.....................38, sif8, si,148
aas, apparatus for the manfacture of. A.c...................................88,095
phreys.......
Gas mains, means for detecting leakage from, s .

Gate. W. R. White... 38,1
Gate spring, T. Clough...........
Glass holder. C. W. Fox.............................. 388,361
Goods, stand for displaying, R. H. Maxson....... 378,206
Goverror, steam engine, J. s. Marshall......... 388.170
Goversor, steam engine, J. S. Marshall............. 378.170
Grading and ditching machine, J. C. Sage......... 378,400
Grain binder, McCormick, Jr., \& Pridmore 378,401

Grain binder, McCormick, Jr.. \& Pridmore 388,401
Grain brinder, , B. Withington.........38,225 to 388,27
Grate bar, I. N. Dickinson...................... 388,195

Hay unloader and stacker, O. Hoyt.................
Heating retorts and muffes, apparatus for, A.
Kloone............................... 378,097
Heel forming and attaching machine, F. F. Ray-
mond, 2d... 388,216
378,199

Holder. See Cigar holder. CuIf holder. Glass holder. Pen holder. Pillow sham holder.

 Tas holder.Hook. See Cant hook. Coat hook.
 nstrument, combination, F. Me.
Iron. See Tailor's charcoal iron.
Jack. See Lasting jack.
Jack spool, L. sarks........17.
Key. See Pulley key. Telegraph key.
Knife handles, machine for making hollow metal-
lic, Chadwick \& Boutwell.................. 378,287
lic, Chadwick \& Boutwell........................ 378,287
Lamp fixture, incandescent electric, H. M. Dou--
bleday..................................378,538
Lating jack,. . D. Tr. pp..................................... 3188, 38,18
Lathe for turning irregular forms, P. Kettenring. 788,329
Lathe for turning irregular forms, P. Kettenring. 378,322
Leather splitting machine. W. E. Adams ...38,157, $388,1,18$
I.eather splitting machine. S. Ross, Jr.......... 378,171
Leather splitting machine, G. L. Tyler.............. 38.185 , Letter box, alarm, G. F. Girvan....
Lever power engine, E. T. Wheet..
 Locomotive exhaust apparatus, J. Y. Smith 378,340
Lubricating composition, D. L. McKitrick........
Mail matter, machine for marking, M. V. B. Ethridge.. 378,
Mailing machine, J. G. Hardie, Jr................ 388, Mat. See Door mat. Rubber mat. Wire mat.
Metallic bodies, die for forming hollow orn Metallic bodies, die for forming hollow orna-
mental, J. Burkhard....................... 378,413
Metals with aluminum, combining, W. A. Bald-
min

Movement, device for imparting combined rotary and reciprocating,
Mower L. Erpelding...

Music box, A. L'Epee Neckties, display box for, J. W. M. Uhrig

Neckties, display befing cotton seed, G. W. Scollay............... Oil tank indicator, F . S. Mason.......................
Oils, refining Canadian and similar petroleum, H .

Frasch.. Ordnance,

Ordnance. operating, A. Noble...........
Ordnance, etc., trunion bearing for, R. T. Branks-
Ore feeder, E. C. Loftus............
Overshoe, rubber, E. Forb
Pad. See Shoulder pad.
Paper drying machine, A.
Peanut roaster, T. Lee..
Peat, treating, s. Heiman
Pen holder, L. L. To
Pencil, J. F. Dodd.
Pencil sharpener, lead, T. H. Stafford
Pencil sharpener, leaa, , H. Stafio
Pencil sharpener, slate, , J. Manni
Petroleum motor, List \& Kosakoff.
Pillow sham holder, Hemmenway \& Stratton......
Pin. See Safety"pin.
Pipe connection, roo
rick.........................
Pipe well coupling, M. T. Chapman
Planers, friction feed
Planers, friction feed mechanism for iron, F

Planter, corn, A. Bussey.
Planter, corn, J. De Butts
Planter, cotton seea, cultivator, B. Pritchett.
bined, corn and cotton, J. W. Carley.
Planter, seed, A. Barker.
Pot. See Coffee pot. Ennine dash pot.
Power mechanism, G. Cottrell
Press. See Hay press.
Pressure regulator and cut-off, W. D. Thomas.
Pressure regulator, fluid, W. S. Clarkson...........
Printing machines, gripper for platen,'H. F. Bech
man...
Printing presses, inking apparatus for, G. W

Protector. See Stamp protec
Pulley key, \mathbf{P}. McDermott....
Pump, force, A. D. Shelnu
Punch, metal, W. Snee...
Radiator, J. Hopson, Jr
Rafter gauge, J. N. Cruson.
Rails, apparatus for toughening steel, J. Coffin........ Railway switch, J. J. Peetz.
Railway tie, J. M. Giberson.
Railway tie and fastening therefor, metallic, F
Railways, automatic block signal system for, F. S
Guerber
Railways, track scraper for street, G. W. Davis...
Refrigerator, G. M. Lee.............................
ture regulator.
Revolver, A. Greth............
Roaster. See Peanut roaster.
Rolling flangeless center bearing rails, roll for, A
Rolling girder rails, roll for. A. J. J. Mox...........,20,
Rotary motor operated by fluid pressure,
Popp........................... v
mer, D. Harkins.
Rubber mat for store cases and counters, C. S
H ser....
ting, Snyder \& Roht
Ruler and section liner parale................................
accharine solutions, treating, P. Casamajor
Safety pin. J. Jenkins...
Sand sifting machine, J.
Sash fastener and holder, combined, J. D. Ax tell..............
Saw, L. Lohman
Suw sharpening device, G. W
Scaffold, builder's, E. S. Moss
Scale, automatic grain, J. Gudinger Scale, weighing, A. Turnbull..............................
Screen. See Window screen. Wire screen Screen. See Window screen. Wire screen.
Screens, grates, and panels, construction of, J.
Burkhardt... Secondary batteries, system of electrical distri bution by, J. S. Sellon....
Sewing machine, E. E. Angel
Sewing machine, E. E. Angell
Sewing machine embroidering attachment, J. W
Von Pittler Von Pittler..
Sewing machine looper, R. Fryer...
Shade fixture, window, R. J. Betts
Shoes, polishing compound for the soles of, C .
Leonard.......................
Shutter bower, A. A. Wheelock
Shutter worker,
Sign, A. F. Foans
Smoke consuming furnace, J. Keane
Snow scraper, J. W. Haines....
Spark arrester, Bruhn \& Raum.
Spark arrester, J. Haish.

Spheroidal bodies from sheet metal tubes, form-

spring.
Stamp protector
Stitching horse, H. Doering
Stone dressing tool, M. P. Higgins
Stopper. See Bottle stopper.
stove, G. R. Prowse
stove, cooking, A. Anderso
Stove cover, adjustable, S. Wate
Stove or furnace, G Stoves, oven for vapor, H. Flynt
Studs or pillars, forming ornamental, J. Burk-.... Supporter. See Garment supporter
Surgical bandages, making, W. B. \& E. Robing
Sweat pad fastener, E. Q.
Switch. See Railway switch. Telephone switch
Table attachment, card, Drude \& St. Arnauld,
Tag holder and hasp lock, combined, $\stackrel{378}{\mathbf{3 7}, 241} \mathbf{W}$ Greene....................................... Tap, collapsing, J. T. Hayden.
37834
$\left\lvert\, \begin{aligned} & \text { Tap, collapsing, B. B. Switzer....................... 378,380 } \\ & \text { Tapping mains, device for, C. H. Simmons........ } 378,116 \\ & \text { Then }\end{aligned}\right.$ Tapping mains, device for, C. H. Simmons......... 378,116
Telegraph cable. W. R. Patteron............. 37, 175
Telegraph kes and instrument, W. A Melbourne. 378332

Telegraphy, multiple, C. Selden
Telephone, mechanical, Stubblefield \&iHolcomb Telephone receiver, A. W. Brown.
Telephone switch, J. R. H. Hinton
Telephone switch, J. R. H. Hinton....
Telephonic transmitter, M. G. Farmer
Temperature regulator, automatic, J. T. Haw
kins..
son...
Thill cou
Thie. See Railway tie
Time, temperature, and burglar alarm and call
Tonic, alterative, W. Whitney.
J. Leschorn.......

Truck, stove, G. Hess
Uncoupler, automotic, W. R. Funk.
Valve plugs, seats, etc., machine for truing. D. F. Dunn.
Vapor burner, generating, J.
Vehicle spring, J. England.
Vehicle spring, A. C. Fish.
Vehicle, spring, H. W. Pell..
Vehicle, spring, A. Schubert
Vehicle, two-wheeled, D. S. Pembroke..
Velocipede, E. G. Latta
Velecipede, E. G. Latta............................. Vise, B. R. Clark.
Wagon bed and brake J. Goodrich
Wagon brake lever, W.A. Westbrook......
Wagon, dumping, D. S. Watson.
Washer. See Dish washer.
Washer. See Dish washer.
Washing machine, w. C. Edward
Washing machine, J.F. Kuhlman
Watches, display stand for non-magnetic, A.c. C.
Smith.
Water clos
Water closet cist.......,
Water closet flushing apparatus
Water closet, pump, W. Bishop.
Water closets, device for closing the lids of, A
Chainay...
Chainay...
Water closets,
Water closets,
Wubbard.
Weaver's comb, P. Rooney.
Weights, device for raisin
Weaver's comb, P. Rooney.....
Wavis...... Davis..........
Wheel. See Carri
peller wheel.
Windmill, M. T. \& M. C. Chapman
Window screen, H. H. Greenman
Wire joining machine, Pond \& Pro
Wire mat, W. R. Pitt...................
Wire screen, et.c., J.
Wrench, J. L. Finch.
TRADE MARKS.
Alloys and articles made therefrom, Phosphor
Bronze Smelting Company
Alloys and articles made therefrom, metallic, Phosphor Bronze Smelting Company
Ball goods and outftts, base, R. F. Fenno Ball goods and outfts, base, R. F. Fenno.
Beverage, non-alcoholic, C.H. Sagar.....
Biscuits, crackers, wafers, and similar articles,
Holmes \& Coutts......................15,203,
Holmes \& Coutts..............
Boots and shoes, T. Miles' Sons.
Corn, ensilage, D. H. Burrell \& Co
Draughtsmen and engineers. certain supplies and
instruments for, E. G. Soltmann.................
Earthenware and glazed tiles, printed, white,
Earthenware and glazed tiles, printed,
granite, general, T. \& R. Boote
Embroideries, Hamburg, L. Levy \& Bros
Emollient, W. W. Scott...............
Fertilizers, ground bone, H. S. Miller \& Co
Flour, S. W. Weidler.
Garters, G. Frost \& Co........
Gum, chewing, Adams \& Sons
Hair cleanser, Smith Br
Hosiery, E. B. Sudbury.
Hosiery and gloves, E. B. Sudbury. Laundry blue, R. F. S. Heath.
 Company... Perfumery, Ladd \& Coffin
\qquad chanan, Bromley \& Co...
Plows, furrow, Universal Plo

Safe. Alpine Safe Co..
Salve, L. A. Canterbury................................ 15,19
Shirts, coats, jackets, and overals, Galt 8
Tablew ware constructed of silver or of other metals Tableware constructed of siver or of ond
and then plated or tinned, G. I. Mix \& Co...
Tin and terne plates, Merchant \& Co.
Tin plates, Merchant \& Co..........................
Tonic beverage, Phillid Best Brewing Company
Tonic beverage, Phillio Best Brewing Com D
Toy musical instrument. A. Schoenhut \& Co
Valves, rubber, Revere Rubber Company
Valves, rubber, Revere Rubber Company..........
Wines, whiskies, brandies, and other distilled
spirits, Fischer \& Heinrichs....

DESIGNS

Bottle stopper, S. S. Newton..
Buckle, G. F. Eberhard...
Calendar. F. Brackett.
Carpet, J. I. Folsom...
Carpet. I. E. Meag
Dynamos, frame for, D. J. Hauss.
Paper weight, D. Ball................
Skirts, ornamentation of, A. HiJdt.
Stove, cooking. Keep \& Wivfier..
A Printed copy of the specification any patent in the foregoing list will be furnished from this office for 25 cents. In ordering please state the name and number of the patent desired, and remit to Munn \&
Co., 361 Broadway, New York.
Canadian Patents may now be obtained by the
nventors for a y of the inventions named in the fore going. list, provided they are simple, at a cost of $\$ 40$ each. If complicated, the cost will be a little more. For
fuh instructions address Munn \& Co., 361 Broadway,

ELECTRIC WELDING.-A PAPER BY

FORTY-THIRD ANNUAL REPORT

 NEW YORK LIFE INSURANCE COMPANYOffice: Nos. 346 \& 348 Broadway, New York.
JANUARY 1, 1888.
Amount of Net Assets, January 1, 1887..................................... \$71,819,623.48
REVENUE ACCOUNT.

DISBURSEMENT ACCOUNT.

ASSETS.

Temporary Loans (market value of securities held as collateral, $2,440,8533$,

TOTAL ASSETS, JANUARY 1, 1888,
$\$ 83,079,845.85$
Appropriated as follows:

taking effect Dece
1,592,08.00-70,389,710.00
Reserved for contingent liabiilties to Tontine Dividend Fund January 1,
1887, over and above $a 4$ per cent R Reserve on existing poicies of that
Addition tö tö̀e Fuñ düring is isit.
REDUCT-

5. $9.15,2728.88$

Divisible Surplus (Company's New Standard).
$\$ 76,428,265.74$
\$83,079,845.85
Surplus by the present New York State Standard, i. e. 4 per oent. Actaaries', including
the Tontine Fund)..
the Tontine Fand).
. $11,846,793.06$
From the undivided surplus as as above, the Board of Trustees has declared a Reversionary dividaend to partici-
pating policies in proportion to their contribution to surpus, avaliable on settlement of next annual prempum.
Number of Policies issued during the year, 28,522. Risks assumed, \$106,749,295.
Total number of policies in foree Dec. 31, 1887, 113,323. Amount at Risk, $\$ 358,935,536$.

TRUSTEES:

WILLIAM H. BEERS, President.
A. HUNTINGTON, M.D., Medical Director.

AROHIBALD H. WELOH, 2d Vice-President. RUFUS W. WEEES, Actuary.

SCIENTIFIC BOOK
CATALOCUED

 THE NEW CROTON AQUEDUCT.-

© New Catalogue of Valuable Papers

ELECTRIC LCHT AND ROW ER

ARGHITECTURLL BOOCS.

Useful, Beautiful, and Cheap.

New and Valuable Books
Genderson. New and greatily enlarged edition. A A guide o the amateur in the Fruit. Vegetable, and Flower Gar-
den. Fully illustratea, cloth, 12mo. Price, postpaid, $\$ 2.00$

Hlustrated Catalogue sent free on applicatio
O. JUPD CiO.,

THE MORRIS TYPE WRITER. Price $\$ 15$.

The Hoggson \& Pettis Mfg. Co., New Iaren, Conn. ICE-BOATS - THEIR CONSTRUCTION

 MENT, . The same number also contains the rules and
regulations for the formation or oc-boat clubs, the salh
ng and management of ice-boats. Price 10 cents.
DELAFIELD'S PAT. SAW CLAMP

Notice to Minine Biliders.

ARTESIAN

 catalogue
Pierce wellexcavatorCo
New York. FERTILIZER MACHINERY-Mila, Muxers, Digest

Telegraph and Electrical SUPPI IPS;

ELECTRIC CONVEYORS.-DESCRIP-

NEWSPEAPER FILE

 SCIRNTIFIC AMERICAN, in
Gilt. None
Address

MONW \& CO.,

EMERT WEEELS WELLINGTON MILLS EMERY.
SUPERIOR TOALL OTHERS.
 RUINE WFT OT DRT. OUTS COO1, and FREE. New York Belting \& Packing Co.,
\qquad Warehouse: 15 Park Row, New York,

The "ALLAARD" SPIRAL SCREW DRIVER. FOR LIGHT AND RAPID WORK FOr Ma chinists, Gun and Lock
Smits. Cabine Maker and
others. The greatest labor
onvin to
saving tool ertant. Savesits
costina rery short time. Best quality of material. Superior workmanghip. No tiresome turning of the hand and
twisting of the wrist. The Alford \& Berkele Co., Sole Agents, $\boldsymbol{y y}$

Williams \& Orton Mfg. Co. P. O. Box 148. STERLING, ILL COSTS IN MANUFACTURES.-A LEC

GUILD \& GARRISON
 Boil'er Foed Pumps,

The CUSHMIAN Patent 3 Pinion Geared Acrol Patent Cucks With their latest improvements are unexcelled

 from 2x iscelied. Made in in ind inch sizesandiameter,
and are sold by the trade all over
the world. Manufactured by
Hartiord, Chuck
Honn

 STEAM ENGINES Horizontal and vertical.
 York Mfg Ooo, York, Pa. U. S.A
 Bort Plain or Colored Magic Lantern SJides.
L. J. MARCY, 1604 Chestnut St., Philadelphia.
 GAS GNGINGE:
Rest in principipe, workmanship, and materials.

 ECONOMIC GAS ENGINE COMPANY,

ROCK BREAKRRS AND ORE CRUSERRS.

1ROOKS' NATIONAL DETECTION

A Air Brush.

BARREL
$\underset{\text { mandiver }}{\text { mat }}$

FORETONTRADE.

\$1,000 REWARD !

\section*{BRASS WORK watasy
 FAST
 LIGHTNING CONDUCTORS.-DESCRIP

 engravinss. Contained in SCIENT
PLEMENS No. 5.6 . Price 10 cen

office and from ail newsdealers.
 2nd
 | |
| :---: |
| | |

THE COPYINGPAD.-HOW TO MAKE

PULLEYS, HANGERS, PROGRESS MAOHINE WORKS,
FRICTION CLUTCHES, 4A Parix BROGO, MN, 工.

ICE \& REFRIGERATING

 NAVAL ARCHITECTURE.-AN IN-
 ad at this offce and from ell newsdealers. sued Brich Marhimey Juiguy de Mang

 GAS ENGINEERING, RECENT PRO-

RARE CHANCE FOR DEALERS:

WA NTED-Foundry Foreman for peneral jobbing and

 FOR SALE, Aninterest in Patent for thas

To Business Men.

The value of the SCIENTIFIC AMERICAN as an adver- tising medium canot bee verestimated. Its circulaton many times greater thav that of any similiar journal

 for the reason toat tne agent gets a larger commission
from the ppers havin
ed on smalicirculation then is SCIENTIFIC AMERCAN. Mess MUN \& CO.. Publishers, ASPHALTUM AND THE PITCH LAKE of Trinidad.-By W. O. Crosby. Orrigin of bitumens, As-
phatum,
How the whe The Scientific American Publcations for 1888.

The prices of the different publications are as follows:
RATES BY MAIL.
The Scientific Americań (weekly), one year
The Scientific American Supplement (weekly), one

The Scientific American, Architects and Builders
Edition (monthly), one year,
OMBINED RATES.
The Scientific American and Supplement, $\quad \underset{\text { Scientific American and Architects and Build- } \$ 7.00}{\$.00}$ ers Edition, ${ }^{0} 500$ The Scientiff A A merican, Supplement, and Archi- 9.00
tects and Builders Edition, Proportionate Rates for Six Months.
cludes postage, which wo pay. Remit by posta MUNN \& CO., 361 Broadway, New York.

2fdvertisements

These Hack Saws will cut Iron and Steel be Iron working mechanics everywhere mustand Will use them. They do the work of files at one-
tenth the cost, and in one-tenth the time. One
Patent Nickel-plated Steel frame, and one dozen 8 inch Blades, sent by mail, prepaid, on receipt at the same price. All saws marked with a st

MILLERS FALLS CO.

DHDP FDFGINGS

ICE-H O USE AND REFRIGERATOR Directions and Dimensions for construction, with on
lustration of cold house for preserving friit from
season to season. The airis kept dryen and pure through

New Gas Engine "The Baldwin"

 Otis Brothers \& Co., Elevators and Hoisting Machinery, RESERVOIR DAMS.-A PAPER BY

THE MODERN 1CE YACHT. - BY aeo. . Polk. A new and valuable paper, containing
ulipractical directions and specifeations for the con
truction of the fastest and best kinds of tor the struction of the fastest and best kinds of fice Yach Yats o
the litest, most approved forms. Illustrated with en
graving drawn to scale showing the form wosition

PANAMA CANAL--A PAPER BY DR

PATENTS.

MESSRS, MUNN $\&$ CO. in connection with the publi ${ }_{\substack{\text { amine improv } \\ \text { for Inventors. } \\ \hline}}^{\text {and }}$

Barnes Patent Foot Power Machinery,
Workers of Wood or Metal

ICE-HOUSE AND COLD ROOM.-BY R.

H. W. JOHNS LIQUID PAINTS.

Steam Packings, Boiler Coverings Samples and Descriptive Price Lists Free H. W. JOHNS MF'G CO., 87 MAIDEN LANE, N. Y

MACIC LANTERNS.

 WATCHMAKERS

 SEVERN AND MERSEY TUNNELSS

The Original Unrulagizaed Packing

DRY AIR REFRIGERATING MACHINE.

S AWS Wanted 50,000 Sumyers and SAW S

जARCC

\qquad

HYPNOTISM
 $\xrightarrow{\text { anden }}$

Scientific Americam

 EsTablisised 1846.The Most Popular Selentific Paper in the World. Onls 53.00 a Yent, includin Prostange. Weekils.
This widely circullnted and splendidy ylystrated
paper is publisted weekly. Every number contains si een pages of useful information and a large number of teen pages of useful information and a arge number of
origina engraving one nemventiond disoceries.
representing Enginering Works, steam Machinery, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manuftuctures, Chemistry, Electricity', Telegraphy, Photography, ArchiComplete List of Patents each week.
Termes of Subscription-- One copy of the ScienTHFIC A, MEREACAN will be sent for one evear- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid. to any subscriber in the United States
or Canada, on receipt of thee dollirsw by the pub.
lishers. Clubs.-- - pecial rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully pliced inside of envelopes, securely sealed, and correctily addressed
 dress all letters and make all orders, drafts, et
able to

361 Broadway, New York. H IET
Scientific American Supplement.
This is a separate and distinct publication from
THE ScIENTIPIC AMLRICAN, but is uniform therewith in size, every number containing sixteen large pages full papers, and accompanied with translated descriptions The Scientific American Supplemicnt is published week 1 , and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the prinsipal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, Archæology. Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Kechnology, Manufacturing Industries, Saritary En-
gineering, Agriculture, Horticulture, Domestic Econo my, Biography, Medicine, etc. A vast amount of fresh and valuable information obtainable in no other pubThe most important Enjineering Works, Mechanisms. and described in the Supplement.
Price for the SUPPLEMENT for the United States and
Canada. $\$ 5.00$ a year, or one copy of the ScIENTIFIC AMELICAN and one copy of the SUPPLEMENT, both mailed
Cor one year for $\$ 7.00$. Single copies 10 cents. Address or one year for a..... Single copies 10 cents. Address MUNN \& Co., 361 Broadway, N. Y.,

Builders Edition.

The scientific American architects' and SUILDERS conies, 25 cents. Forty large quarto pages, equal to about two bundred ordinary brok pages; forming a large and splendid Magazine ot A rchitecture, rich-
ly adorned with elegQnt plates in colors, and with other ine engravings; illustrating the most interesting examples of modern Architectural Construction and
allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private resiof a variety of the latest and best plans for private resi-
dences. city ard country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Specifications, Sheets of Details, Estimates, etc. have won for it the Largest Circulation of any Architectural publication in the world. Sold by all MUNN \& CO., Publishers,

361 Broadway, New York
PRINTING INKS.

