
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, FEBRUARY 4, 1888.	[83.00 per Rear.

\%rientific ghmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIHIC AMERICAN.

One copy, one year.for the U. S. or Canada.......................... 8300
One copy, six months, forthe U.
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the
SCIENTIFIC AMERICN. for a little over one year, may remit $E 1$ in current Colonial bank notes. Address

The Scientific American Suppiement

is a distinct paper from the Scientific Amrricin. The supplemi int Is ispued weekly. Every yumber contains 16 octavo payes. uniform in size
with Screviric with SCIENTIFIC American. Terms of subscription for SUPplement, ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Cill mbinesed Ratese-The Scientipic ambrican and Suppiement will be sent for one year, to any address in U. S. or Canada, on receipt of
seven dollars.

rexisterer letter
Australian and New Zealand.-The Scientific Ambrican and SOPPLEMENT will be sent for a little over one year on receipt of $£ 2$ cur-
rent Colonial bank notes. rent Colonial bank notes.
Address MUN $\&$ Co., 3

NEW YORK, SATURDAY, FEBRUARY 4, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 631.

For the week Ending February 4, 1888.
Price 10 cents. For sale by all newsdealers.
ASTRONOMY.-Sun Dials.-Historical notes on sun method of laying out their divisions.-5 illustrations
The Age of the Stars.-Continuation of this hight The Age of the Stars.-Continuation of this highly interesting paper.
BIOGRAPHY.-German Physicians to the Crown Prince.-Por traits and biographical notes of the eight me
Crown Prince of Germany. -8 illustrations...
III. CHEMISTRY.-Portable Apparatus for determining Carbonic Acid in Air.-A new apparatus for effecting this important analy sis.-1 illustration.
IV. ELECTRICITY.-Magnetization of Iron.-Interesting research
on the possibleintensity of magnetic induction Mr. Case's Carbon Battery.-Mr. Case's furthe his reversible tin carbon cell.
. ENGINEERING.-The Dalrymple-Hay Curve surveying instrument, by means of which the use of tangent tables in running curves is avoided. -2 illustrations
VI. GEOLOG Y.-Glacial Epochs and their Periodicity. - By Al..................... D'Assier.-Review of the cosmical causes intluen
riods.-A clear expose of this interesting subject...
VII. METEOROLOGY.-The Meteorological Observatory at Mous Ventoux.-Description of the apparatus and appliances in use in this Alpine observatory.-7 illustrations.
vili. mechanics.-Improved Front Slide Lathe.-A recent London lathe of unique peculiarities fully described.-2 illustrations..
X. misceillaneous.-Brushing Machine for Horses.-A machine Peculiar Origin of bires.- -1 illustration
Peculiar Origin of Fires.-Curious causes of dres................... lanterns, sparks from emery wheels, and other origins
tus for testing different brands of dry plates.- 1 illustration Making Gold and Silver Salts for Photographic Use.-By H. L. S - A very useful and practical paper for amateur and professional photographers.
XI. SANITATION.-The Quarantine System of Louistana.-By Joseph Holt, M.D.-The treatment of bedding and personal ef-
fects from ships with dry and moist heat.-Continuation, of this fects from ships with dry and moist heat.-Continuation. of this
interesting article.-4 illustrations........................
XII. TECHNOLOGY.-A New Apparatus for Condensing Gases by
Contact with Liquids.-By G. LUNGE.-A valuable improvement adapted for use in chemical works, sulphuric acid factories, etc. -1 illustration .
A New New Vacuum Pan. - A pan and helix condenser for conGlass Making.-By Prof. C. HANFORD HENDERESON. - A
cecent lecture delivered before the Franklin Institute, giving tbe present state of glass manufacture, and many interesting data and details. -First installment. gent for wines and beers........................ The Development of the Mercurial Air Pump..................... VANUS P. THompson.-Conclusion of this interesting and very
fully illustrated paper.-11 illustrations..
the book publishing trades and international COPYRIGHT.
A recent inquiry set afoot by this journal discovered that the sale of cheap books throughout the country is even larger than is generally supposed, and there is not any evidence, at least we could not find any, to sustain the assertion that the taste for these cheap reprints is on the wane. Competition in their produc tion, it is true, is growing closer and closer, and con sequently profit in making and vending them has been greatly reduced of late, and is likely to suffer a still further decline. Twenty-five cent editions, once regarded as remarkably cheap, are giving way to equally good editions retailing at fifteen and ten cents, and indeed the same books are now being published in a still cheaper form, though in smaller type, selling for six and three cents, and there are those who be lieve that editions like those last mentioned will yet be had for one cent the volume.
Examining the objections advanced by those op posed to the conditions now prevailing in the pub lishing trades, the non-partisan, if familiar with the change that has come through the introduction of "cheap editions," will hardly fail to conclude that self-interest on this as well a^{\sim} on the other side of the water has much to do with the demand for international copyright, and that the objectors to the pres ent condition have not, in their haste, fairly consid ered the advantages which the general public are now and have long been enjoying because of this condition. Works of the masters of fiction, the faculty of learning, are now distributed at trifling cost among a multitude who could not hope, under the restrictions proposed, to have easy access to them. Does any one doubt that the taste of the public has been improved by this general distribution of good literature? If he does, let him compare the titles of the paper-covered books at the railway news stand and at his stationer's with.those of the "dime novels," the "penny dreadfuls," of the years agone, let him inquire into the sales of these cheap editions of the best authors, and com pare them with the demand and supply of these same works when they were published only in expensive form.
The supply of cheap literature has begotten the demand, and this has grown apace with what it fed on. What but this and the consequent taste which this has inculcated could have led to the wonderful development of the publishing trades which we see around us? Ought we to do anything to restrict this industry?
The moral point which has been thrust forward so prominently in this debate, and which some allege to be the most important point at issue, may not, because of this assumed importance, be left out in a consideration of the subject. To the average mind it will appear that if we demand no more of the foreigner than he accords to us we cannot be held, even by the sewithholding from him his due. An American book is scarcely any, if at all, more secure in England than an English one is here, for, though it is thought by some that, under British laws, prior publication in England will secure the work of an American author, the fact has by no means been established as yet, and there is a growing opinion that it will not be.
That there is a strong desire in England for a reciprocal copyright law there is no doubt, but are we morally bound to accede to it? If so, it would seem to follow that we ought to accede to the other and simi larly expressed desire of reciprocity of trade, and we do not remember that the moralist has made an issue here.
It may be said in closing that the publishers them selves are far from united upon the question of inter national copyright, and that the solicitude evinced by many of them for the native author seems almost unnecessary upon a review of the evidence recently collected by us from the entire city trade as to authors' sales. Good literary work is in large demand, and those who can furnish it, so we learn, have more orders than they can fill at remunerative prices.

Action of Sea Water upon Cast Iron.

 by carter napier draper.The results of the long continued immersion of cast iron in sea water are well known, and examples may be found in most of the books of reference. The most frequently cited instance is perhaps that related by Berzelius,* of cannon balls which were raised at Carls crona from a ship sunk for fifty years, and which had become converted through one-third of their mass into "a porous graphitic substance, which became strongly heated when exposed to the air for a quarter of an hour. The cnemical change which cast iron to consist in the removal of the greater part of the iron, the residue consisting of graphite and a graphitic substance, $\mathrm{FeC}_{\mathbf{y}}$.

I have recently been indebted to the kindness of Mr. John P. Griffith, C.E., of the Dublin Port and Docks Board, for a specimen of gray cast iron which
was broken from an old rail taken from a graving slip in the port of Dublin, and believed to have been laid in 1833. The rail was at about half tide level, and it may be therefore assumed that it was for twenty-five years immersed in sea water, and for a like period exposed to the action of the atmosphere. The fragment of iron weighed 557.31 grms., and measured 85 by 52 mm ., with a depth of 20 mm . On its lateral surfaces it was slightly incrusted with sesquioxide. The upper surface for a depth of 7 mm . had been converted into a brown gray graphitoidal substance, which was without difficulty removed with a knife, leaving the surface of the iron bright and free from any adherent coating. During the operation of removing the easily pulveru lent layer, the mass of iron became hot, not hot enough to cause inconvenience in handling, but hot enough to enable it to be very sensibly warm to the touch after he lapse of half an hour.
The quantity of altered cast iron thus removed weighed $67 \cdot 59$ grms., and was examined with the following results: It was wholly attracted by the magnet. Treated with dilute hydrochloric acid it evolved hydrogen, giving a pale green solution of ferrous chloride and a residue of graphite. The carbon was determined by the method of Weyl. The finely powdered substance, with excess of strong hydrochloric acid, was placed in a platinum dish, connected with the positive element of two Smee cells, while a platinum wire terminal from the negative dipped into the liquid. After twenty-four hours the contents of the dish were ransferred to a filter, washed, dried, and weighed $2 \cdot 66$ grms. of substance gave a carbon residue weighing $0.631 \mathrm{grm} .=23.6$ per cent of carbon. By the reaction with free iodine abundant evidence of the presence of unoxidized iron (doubtless existing as FeC_{3}) was ob tained.-Chem. News.

Invention of the Power Loom.

In view of the great importance of the power loom, it is perhaps well not to forget the name of its inven tor, so that the lapse of time may not obliterate it and his invention be contended for by a number of laimants, as is the case with so many others.
In the year 1793, a Scotchman, by the name of An drew Kinloch, who was an instrument maker by profession, with the assistance of an old watchmaker built the first two power looms that were ever constructed in his little shop, in a monastery in Glasgow. The money necessary was furnished by two merchants of the city. The actuation of the looms was effected by a common crank, and after about fifty yards of good abric had been woven on them, the experiment was considered to be successful. Kinloch at once received an order to build forty others, and the first forty-two looms were afterward operated by water power at Milton, in the vicinity of Dumbarton, Scotland. He was also appointed superintendent of the mill, and taught two pupils to become loom fixers. One of them, Walter M'Lutheon, was for many years afterward superintendent of the Wellington Mill, Hutcheston, near Glasgow, while the other, Archibald Barlay, received a similar position in the Coterine Mills, n Ayrshire. These two men were the first who used a screw wrench for regulating a power loom. The walls of the small old mill at Milton are still standing, overrun with ivy, as a hoary reminiscence of bygone days. The old wheel house still contains the water wheel of thirty-three feet diameter, used for actuating the looms. Two of the old looms had even been preserved, and were to be sent to the London world's exhibition of 1851. It happened, however, that the warehouse in which they were kept was destroyed by fire, and the looms shared the same fate.
After having been in operation for about twenty years, the mill was finally suspended in 1813 , because it was not sufficiently remunerative. The beaming and sizing machine had not yet been invented. A firm at Paisley, Scotland, bought the forty looms, and operated them for a number of years with steam power. A short time after their purchase, however, the beaming and sizing machine was introduced in Glasgow, by which power loon weaving became remunerative, and within a few years after thousands of such looms were built and operated both in England and Scotland. In 1842, Walter M'Lutheon was still superintendent of the Wellington Mills in Glasgow, and also old Mr. Kinloch was still alive. He went once on a visit to Glasgow, and the bosses, fixers, and beamers of the already numerous mills in Glasgow celebrated the occasion by tendering him a sumptuous dinner. At the close a collection was taken up for the old man, which resulted in sixty pounds. He spoke of his early trials and mishaps, and said that, in Scotland, the weavers had offered no opposition.to his invention. It had been otherwise in England, however, where the hand loom weavers had been of the opinion that they would be reduced to starvation by the introduction of the power loom. The first mill, at Staleybridge, England, which he had fitted up with one hundred looms, had been destroyed and burned during the night. It had been rebuilt shortly afterward, however, and fitted out on a larger scale than before. His life had been threatened repeatedly, for
which reason he had lived for some time in America, where he had on all sides been received with open arms, and every facility had been offered him to introduce his loom in the different parts of the country. A"few years afterward his looms had been introduced all over the continent of Europe.-Industrial Record.

Blow Holes.

The presence of blow holes in steel ingots has been accounted for by many ingenious hypotheses, and it would take several columns to relate all the theories that have been put forth to explain their formation. The latest exposition of the causes at work in producing this defect in steel castings comes from the pen of Mr. W. F. Durfee, ${ }^{*}$ and has the merit of simplicity, while it offers an explanation which appears to fit the facts better than some. It wili be remembered that in an ingot of mild steel the blow holes are not uniformly diffused through the mass, but are congregated in a band which, as seen in a cross section of the ingot, runs parallel with the sides. at a distance varying from $3 / 4 \mathrm{in}$. to 2 in . from the edges. Now, whatever may be the nature and origin of the gases which have created the cavities, it is evident that a mechanical cause must be sought to account for their symmetrical arrangement in the mass of the metal. Mr. Durfee finds an analogy to the action which takes place in pouring an ingot in the blowing apparatus called the tromp, used in furnishing the blast for the forges of Catalonia. In this instrument a vertical pipe several feet in height connects two vessels. The upper vessel is kept filled with water, while the lower, which is closed, is connected by a tube with the tuyere of the furnace. At a short distance from the top of the vertical pipe there are a number of air inlets, while the mouth of the pipe is closed by a valve. When this valve is raised the water rushes down, and by its descent it draws in air through the holes by its descent it draws in air through the holes
provided for it. The air and water descend together into the lower box, which acts as a separator ; the air at a moderate pressure rushes through a tuyere into the fire, while the water escapes through an opening which is always kept sealed. A modified form of this device is sold to supply air to the blowpipes of glass workers. This phenomenon of the enlargement of air by a descending column of water may be demonstrated by aid of a tumbler held under an ordinary water tap. When the tumbler is filled, a stream of bubbles will be seen to descend the center of the vessel along with the incoming water, and then to divide and flow up the sides. A part of the air is caught again in the eddy just before it reaches the surface of the liquid, and is again carried down, so that there are always a large number of bubbles in the water arranged in a central column and a peripheral belt. The fluidity of water is so perfect that immediately the stream is stopped the bubbles all escape, but if a quantity of mucilage or gelatine be added to the fluid to render it viscous, then the air is detained, and it is possible to study the arrangement of the bubbles at leisure. By pouring melted gelatine into an ingot-shaped mould, and then cooling it very rapidly, a honey-combed mass may be obtained_bearing a very close analogy to an ingot of steel.

It must be confessed that the pouring of an ingot is quite as capable of giving rise to air bubbles as is the running of a stream of melted gelatine. The molten steel falls through the air, and is somewhat viscous, while it rapidly begins to solidify when it meets the surface of the mould. There is, however, a striking difference between the air bubbles in steel and those in gelatine, the former being greatly the larger. This can be accounted for by the great expansion of the air caused by the heat, and by the dissociation of the water carried in the very moist air of the casting pit. Taking the temperature of the molten metal at 3,300 deg. Fahr., the air would suffer a sevenfold expansion, while the volume of the water would be increased from two to three thousand times when converted into gases at ordinary temperature and pressure. Hence a very small bubble of air may well be conceived to produce a blow hole of large size, even when compressed under a head of several feet of tluid metal, although the oxygen probably combines immediately with the steel to produce the iridescent lining usually found in the cavities, leaving behind it little.besides hydrogen and nitrogen.
The examples used to explain the presence of blow holes in steel 'suggest the means of getting rid of the cause of them. The air bubbles rise out of a glass of water the moment the stream stops, while in the case of mucilage the rate of clearing is inversely as the viscosity. Now, if the fluidity of ste ϵ be largely in creased, it is a fair inference that there would be a proportionate decrease in the number of blow holes to be found in an ingot. This extra and hitherto abnormal fluidity can be obtained by adding to the metal in its molten state one-twentieth to one-tenth of aluminum, which at once brings the steel to a condition in which it will run like water, and enter the tiniest crevices of a mould. The reason of this effect is not known, but it is not at variance with characteristics of many alloys which are known to have far lower melting points
than any of their constituents. Already aluminum is largely used in the production of iron castings made from melted scrap, and the experience gained with it shows that while it renders iron perfectly fluid at a
temperature at which it would otherwise be scarcely more than pasty, it improves the quality, and confers upon the metal an increased tenacity twenty per cent greater than that of the iron from which it has been nade.
It is to aluminum that Mr. Durfee looks for the nore or less complete abolition of blow holes in ingots. He believes that it is only necessary to render the steel sufficiently fluid for the air globules to be able to dis entangle themselves, to do away with this great de fect, which in spite of all rolling and forging detracts rom the strength of objects made from this metal No doubt an increased fluidity would improve all classes of steel castings, but if it is the air which is carried down by the falling metal which constitutes the cause of blow holes, surely a mechanical remedy could have been found for it. Moulds can be filled without letting the steel drop through the air like water from a tap, and a very easily tried experiment would show whether Mr. Durfee's hypothesis is correct or not. Whether it be or not, there appears to b great hope in the use of aluminum.-Engineering.

PHOTOGRAPHIC NOTES.

Film Negatives.-During the past year, improve ments in the production of negatives on thin trans parent gelatine and collodion films have been effected, which will eventually do away with the use of glass as a support, and thereby considerably lighten the labor of the amateur. Speaking of these prepared sensitized films, Mr. Pumphrey, in the Br. Jour. of Photo., says :
The sensitive medium is supported on a paper back but is separated from it by a special non-actinic medium, which secures three points. It prevents the light from the camera passing from one film to the next; it prevents any grain being communicated from the paper; and it holds the film during the stages of exposure, development, fixing, drying, and varnishing, and when the whole is completed and dry the film is lifted quite clear and clean from the bed which has carried it.
The film is quite strong enough in the smaller sizes to be used in any dark slide which has a rabbet all round, if a piece of thick card is placed behind it. For sizes larger than $61 / 2 \times 43 / 4$ inches a slide with one glass and a back to press against the glass is recommended. The films are as flat and manageable as plates. They only require to be placed in a dish and the developer poured over. No wetting to start with. Any developer will answer with the film, but I recommend the following :

To develop, mix equal parts of A and B, and to every half ounce of mixed solution add from half an ounce to six ounces of water, according to the taste of the operator. The more water, the slower the development and the weaker the negative. The stronger the developer, the stronger the negative.
The proportion of bromide of potassium may be increased if a stronger picture is aimed at, or reduced when softer results are desired. The film when wet is sufficiently transparent to allow of accurate attention being paid to the density if it is held close to the lamp. Fix in clean hyposulphite of soda, placing the negative face downward, as if the film rises above the surface it may be discolored. Be careful to fully remove
the bromide, as it is not quite as easy to determine as with plates; leave long enough. Pass into a saturated solution of alum to harden, and clear, for not less than five nor more than ten minutes. If left much longer than ten minutes the film becomes brittle, but on no account omit the use of the alum. Wash after the alum for not less than four or five hours, as less time will not
make a permanent negative.

To Dry.-Take the film and remove the water by draining, or with a cloth or paper, place it face downward and paste the back of the film, put the pasted each way than the film. One other precaution is needed, that is, to prevent the edges turning up as it dries. This is secured by pasting a narrow strip of paper over about three-sixteenths of the edge of the
film, and the rest on the card. Allow the film to dry, but not in a hot room. The moisture will pass through the card at the back as well as from the surface of the
surface will be a guide to when it is quite dry. A suitable paste is made by mixing one ounce of flour with six ounces of cold water, till all lumps are broken up, and then boiling.
Varnishing.-This should not be omitted, as it gives stability to the film and prevents injury in printing. Take the card and film and warm at a fire to a temperature of about 100°; apply the varnish with a brush and again warm at the fire. The film may now be lifted, but first pass a knife all round between the film and the supporting medium. It will then lift with the greatest ease. The cards can be used many times over if the wedium be removed by rubbing. The drying of the film causes the card to twist by its slight construction. In pasting a fresh film on the card always put it on the convex side.

Sensation of Warmth Produced by Carbonic
 Acid Gas.

At a recent meeting of the Physiological Society, Berlin, Dr. Goldschneider spoke on the fact, which has been known for a long time, that when carbonic acid gas is allowed to come in contact with the skin, it produces a greater sensation of warmth than air of the same temperature. He has carried out a prolonged series of experiments to determine the cause of this increased sensation of heat. He examined first the purely physical factors which might have some influence on the observed facts-namely, the moistness, specific heat, and heat absorption by the gases. When he compared the sensation of heat produced by moist air with that produced by dry air, he found that the former always seemed the greater. The difference between the two might be as much as $5^{\circ} \mathrm{C}$. to $6^{\circ} \mathrm{C}$. when the air was at a higher temperature than that of the skin. Thus, air at $35^{\circ} \mathrm{C}$. whose saturation with moisture was 80 produced the same sensation of heat as air at $41^{\circ} \mathrm{C}$. whose saturation was only 30 . When experi menting with carbonic acid gas, he found that a difference of 40 in the saturation produced a difference in the resulting sensation of heat corresponding to 2° to 3° of temperature. But even when equally moist or dry air and carbonic acid gas were allowed to act on the skin, the sensation of heat produced by the latter was always the greater. It does not seem possible to explain the greater sensation of heat with carbonic acid gas by reference to the extremely small differences of specific heat of air and this gas, still less by reference to their somewhat greater coefficients of heat absorption. He also investigated the effect of the more ready absorp tion of carbonic acid gas by fluids, by removing the epidermis with a blister on a circumscribed portion of the skin and allowing the gas to act upon this place. The carbonic acid gas was speedily absorbed by the lymph, but it still produced a sensation of greater heat even when all moisture was removed from the surface exposed by the blister. He hence considers that the purely physical properties of the gas will not suffice to explain its remarkable influence on the sensory nerve for heat. Dr. Goldschneider next investigated the physiological factors which might suffice to explain the observed phenomenon. He proved that there is no recognizable objective rise of temperature under the influence of the carbonic acid gas. It is true that he observed now and again a distinct dilatation of the blood vessels, but this was by no means constant, and not sufficient to account for the increased sensa tion of heat. He proved, however, as has been observed by many physiologists, that the carbonic acid gas has a direct effect upon the sensory nerves; but in contrast to the results of others, who attribute an anæsthetic action to this gas, he observed that at first it produces a hyperæsthesia of those nerves specially connected with the production of heat sensations, and then this makes way for an anæsthesia. The nerves connected with heat sensations were more strongly stimulated than those connected with sensations of cold. The speaker summed up the results of his extremely numerous experiments by urging that in addition to the greater absorption of heat by the carbonic acid gas and its power of producing hyperæmia of the skin, its action is to be explained chiefly by its direct chemical action on the endings of the nerves concerned in the production of sensations of heat. This, therefore, is to be regarded as the cause of the observed phenomenon, that when carbonic acid gas is brought into contact with the skin, it produces a greater sensation of heat than does the contact of equally warm and equally dry air.

The Age of Steel cautions its readers against filling a box with Babbitt metal without first washing the box with alcohol and dusting over the surface with sal ammoniac. Wherever a tinned surface is formed, cover the remaining surface of the box with clay wash to protect it against the attack of the fused metal. To solder a joint that is to be carefully united, the surfaces must be nicely fitted with a file and then cleaned thoroughly before bringing the parts together. A piece of tin foil will occupy a small space, and cover the whole surface, and when the work is heated slowly in a fire, the parts can be united so nicely that the joint will bealmost invisible.

WATER GAUGE AND WATER COLUMN COMBINED. An improved water gauge and water column combined, illustrated herewith, has been patented by \mathbf{M}. Parker and J. E. Tupper, of Rothsay, Minn. The glass is placed in a metal tube having graduated sight slots, and collars screwed to the ends, against which the packing for the glass is placed. The head pieces are tubular, having inwardly projecting flanges, against the inner surfaces of which the collars of the tube rest.
A compression sleeve is screwed into the head piece, its inner end resting on a metal washer placed over the packing of the glass, which is thus pressed against the collar and it in turn against the flange, forming a rigid connection between the head pieces, without any possible strain on the glass. The packing being within the head piece, any pressure of water or steam only tends to force it more firmly against its seat and prevent leakage. The compression sleeve has suitable perforations to allow the free circulation of water, and
PARKER \& TUPPER'S WATER GAUGE is provided at its AND WATER COLUMN COMBINED.
loaded, as shown in the sectional view, Fig. 1. The flat bottom of the lower section is securely fastened to the lower part of the upper section, or outside air space, with strong three-ply waterproof canvas, forming one completely water-tight boat, as shown in section, when loaded, in Fig. 2. 'The air spaces in the boat are divided into water-tight compartments of two feet in length each, and are of such size as to be equal to the full carrying capacity of the boat, which would not, consequently, be sunk if entirely filled with water. The pressing of the lower section down into the wate as the boat is loaded acts to ballast it, while the disposition of the air space is such that it is almost im possible for the boat to be upset. A canvas fender pre vents the lower or inside section from oscillating against the outside air space in a broadside sea, and a canvas' fender, filled with cork shavings, runs along the raii where the life lines are attached. A boat of this class, such as represented, 20 feet long, 6 feet beam, and 2 feet 9 inches deep, will weigh about 1,100 pounds

A SIMPLE AND EFFICIENT PIPE CUTTER.

A rapid working tool for cutting pipes, which can be quickly and easily adjusted for cutting pipes of different sizes, is shown in the accompanying illustration. It is adjusted from a large to a small size by pushing the hooked bar through the yoke until the wheels meet upon the pipe, after which the cutting is done by passing the device around the pipe, the cut-

a three-wheeled pipe cutter.
ting wheels being kept up to their work by turning the handle as required. To change from a small to a large sized pipe, the ratchet or pawl by which the hooked bar is held in position on the handle bar is lifted, and the hooked bar pushed out to accommodate the desired size. This device is manufactured by the Armstrong Manufacturing Company, of Bridgeport, Conn., in two sizes, No. 1, for cutting $1 / 8$ inch to $11 / 4$ inch pipe, and No. 2, for $1 / 2$ inch to $21 / 2$ inch pipe.

Martineau's New Remedy for Diabetes.

Martineau's new anti-diabetic remedy, which is now being called for by physicians and druggists, is an artificial lithıated arsenical water. Martineau claims extraordinary results from this water, recording 67 cures out of 70 cases, i. e., 96 per cent. The mode of preparing and of prescribing this remedy is as follows A siphon bottle holding about a liter (one quart) is taken ; into this is put a powder consisting of 20 centigrammes, or about three grains, of carbonate of lithia. A tablespoonful is then added of the following solution :
Take of distilled water 500 grammes (1 pint 5 drachms).
Arseniate of soda 20 centigrammes (aioout 3 grains).

M. Dissolve.

The siphon bottle is then charged with carbonic acid water from a soda fountain, and is ready for use. The patient makes this water his principal beverage, taking the whole quantity in about equally divided doses with his meals. The bottle must be freshly charged every morning. Martineau allows the patient to take with the water a little wine. The diet is not modified, except that a certain amount of reserve is enjoined in the use of starchy foods, fruits, and sugar. Martineau claims to have learned this mode of treatment from Professor Rouget twelve years agro. When the diabetes is treated by lithia alone, or by arsenic alone, the result is not the same. Many of the natural mineral waters, as Vichy, Royat, Bourbole, Pourges, St. Nectaire, and even Canterets, have a favorable action on diabetes; this is due, Martineau thinks, to the fact that they all contain lithia, and some of them, notably Vichy and Bourbole, contain arsenic.
Any physician in country practice where easy access can be nad to a soda water generator can prepare for his diabetic patient Martineau's remedy. He has only to fill an ordinary quart bottle, in which he shall have previously put a three-grain carbonate of lithia powder and a tablespoonful of the above-mentioned solution, with gaseous water from the soda fountain, and order the whole quantity to be
taken during the day after meals. As for the curative value of this prescription, there is justification' for considerable skepticism. Dujardin-Beaumetz, at the meeting of the Societe de Therapeutique where Martineau's paper was read, expressed grave doubt as to whether the 67 cases cited by Marineau were typical cases of diabetes, and was tempted to believe that Martineau had fallen upon a series of cases of alimentury diabetes, like those treated by Cantani at Naples, where abuse of pastry, sweets, and tarches had given rise to a temporary glycosuria that was not true diabetes.-Med. and Surg. Keporter.

AN IMPROVED WATER CLOSET BOX

A siphon service water closet box in which there are no valve faces to wear and cause leakage has been pa-

DAVIES' VALVELESS BOX FOR WATER CLOSETS.
tented by Mr. William Davies, and is shown in the accompanying illustration. From the arrangement of the moving cap, or piston, in the cylinder, with the reflex diaphragm in the passage between the cylinder and the cistern, it is impossible for the box to be and the cistern, it is inpossible for the box to be
emptied unless by the charging of the siphon by pressemptied unless by the charging of the siphon by press-
ing down the piston, there being no direct outlet from the cistern except that down the flushing pipe, the top of which is above the top of the cistern, and waste can not occur except by a defective ball cock, which at once shows itself by the overflow or warning pipe. The siphon being once charged, this service box is very easily worked. For further information relative to this invention, address Mr. Jos. E. Hannah, Winnipeg, Manitoba, Canada.

IMPROVED RUNNING GEAR FOR VEHICLES.

A novel construction of front running gear for vehicles, designed for both heavy and light work, is shown in the accompanying illustration, and has been patented by Messrs. Henry Warmington and Benjamin Bulger, of Virginia City, Montana Ter. 'The forward axle has fixed to it the sand board, over which the head block is arranged, metal plates being fixed to the opposing faces of the sand board and head block In one of these plates, preferably the lower or sand board plate, a projecting dovetailed tongue is formed, on a curve struck from the center of the king bolt, and the opposing or bolster plate has a corresponding dovetailed recess, into which the tongue fits snugly,

WARMINGTON \& BULGER'S RUNNING GEAR FOR
but so as to allow the head block with its plate to turn freely either way as the vehicle is turned to one side or the other. The king bolt passes through lugs fixed to the axle, the sand board, and head block, as well as the reach, so that the tongues and grooves and king bolt mutually re-enforce each other, whether the vehicle be running straight or while being turned; and should the king bolt break, the tongues and grooves will prevent disconnection of the head block and sand board. For spring wagons, this construction obviates the necessity for a fifth wheel extending back of the head blopk and axle.

Arong the almost numberless methods of removing pfficles from the eye, the following is recommended is an efficient means: Make a loop by doubling a horsehair. Raise the lid of the eye in which is the foreign particle; slip the loop over it, and placing the lid in contact with the eyeball, withdraw the loop, and the particle will be drawn out with it.

AN IMPROVED SAW GAJGE.

A saw gauge which can be readily applied to a block or board, and held firmly in place thereon to accurately guide the saw in the desired direction, is illustrated herewith, and has been patented by Mr. Edward S. Nixon, of Chattanooga, Tenn. In a flanged base plate, adapted to rest against the side or edge of any article

to be sawed, is mounted a set screw, against which rides the semicircular edge of a scale-marked and pivoted guide-holding plate, which can be fixed at any angle by the set screw. To the upright portion of the guide-holding plate is pivoted a saw guide, also held by a set screw at the desired inclination, and so that it can be lowered as the cut progresses, while the saw will be continually embraced by the parallel sides of the guide, and thus saw accurately in a plane at right angles to the edges of the board or block. In making light gauges it would not! be necessary to make the tilting joint for the upright part of the guide, which could be made integral with the other portion of the guide. The saw used is a common hand or panel saw, and the device is well adapted for cutting miters and octagon or other shapes. The metal of which this gauge is made is light, and the construction so simple that it cin be readily constructed by any good tinner.

Color Blindness a Brain Affection.

Professor Ramsay believes that the particular defect giving rise to color blindness lies, not in the eye itself, but in the brain. Certain persons, he points out, are incapable of judging which of two musical tones is the higher, even when they are more than an octave apart. Yet, as such persons hear either tone perfectly, the defect is not one of deafness. He accordingly argues that in such persons the brain is at fault, and thence proceeds to the assumption that it may be equally true that the inability to perceive certain colors is not due to a defect in the instrument of sight by the eye, but to the power of interpreting the impressions conveyed to the brain by the optic nerve. If this is the case, the problem is no longer a physical one. It falls amongthose with which the mental physiologist has to deal.-The Medical Press.

AN IMPROVED HORSESHOE PAD.

Making the pad of a horseshoe with a beveled flange projecting down inside the shoe to prevent balling, and with a division or joint at its front end, whereby the pad may be expanded to suit the size of the hoof, is a patented inven tion of Mr. William A. Taylor, of Washington, D. C., and is illustrated herewith, Fig. 1 showing a horizontal section from front to rear of the shoe. The pad is moulded of soft rubber, the exterior of the shoe fitting around the downwardly projecting flange, which extends about a quarter of an inch below the shoe. The flange serves to hold the pad in place while the shoe is being nailed through the body of the pad, and by pressing against the ground tends to prevent slipping. The rear portion of the pad is made continuous, affording a solid bearing surface, while the flaring central opening allows snow to be easily knocked out, thus preventing balling, and the division in the middle at the front allows the pad to be easily expanded to the required dimensions.

Cheap Stationery

It is a mistake to suppose that cheap stationery is a matter of economy, says the Appleton, Wis., Post. It should be borne in mind by every business man that his letter paper is his representative to many people who have never seen him, and who are likely to form their judgment of him, to a large extent, by the qualities of his proxy. A man who uses poverty-stricken ties of his proxy. A man who uses poverty-stricken
stationery stands in a bad light to those he addresses stationery stands in a bad light to those he addresses
himself to. For the sake of economizing a few cents he gratuitously prejudices himself in the opinion of many people who may be of importance to him; for good stationery is like a good suit of clothes, and so long as men continue to judge from appearances, they will find both of value to them.

AN IMPROVED CLEAT.

A cievice designed to afford a quick and secure tie, using one end of an attached string or tape only, is shown in the accompanying illustration, and has been patented by Mr. Charles P. Hawley, of No. 510 West 153d Street, New York City. It is preferably made of one piece of wire, bent to form a loop or eye, to which the tape or string is fastened, and then bent up and twisted to form a shank, with outwardly extending diverging arms integral with the shank, a guide

HAWLEY'S PORTABLE CLEAT.
bar being attached across the body at the bottom near the neck. The cleat may also be made of any size, and of one, two, or more pieces.

A COMBINATION TOILET IMPLEMENT.

A combination of a pair of scissors and nail file, wherein each is perfect in itself, making an article which can be conveniently carried in the vest pocket, is illustrated herewith, and has been patented by Mr. Charles P. Hawley, of No. 510 West 153d Street, New York City. A right-angular lug is provided on the rear of the eye of the scissors adapted to receive the thumb, forming a shoulder to which the file is hinged. The file is split horizontally to about its center, to form two portions, one portion being bent upon itself to form an eye by which the file is hinged to the shoulder, and the other portion acting as a spring against the shoulder to hold the file closed or partially or wholly opened

HAWLEY'S COMBINED SCISSORS AND FILE.

Both implements being commonly employed in dressing the nails, they are, when thus combined, at once in immediate hand for use.

The Railroad Gazette, referring to the numerous patents on car couplers, and the difficulty experienced by the railroad officials in determining the lines of the future standard Janney type coupler, quotes the sayings of a facetious master mechanic. He suggests that car coupler inventors should turn their attention to an automatic locomotive engineer-one who would never look on the cup when it is red, never lose time, never have leaky flues or a hot box, and never misread orders, have a collision, or stick in a snow bank. He says he feels sure such an invention would attract the attention of our great railroad monopolists and fulfill a long felt want, especially if it could be warranted to run 200 miles after a nickel had been inserted in the slot.
"Cheeserine" is the latest fraud in England. It has a suggestion of cheese, as American oleomargarine suggests butter.

A COMBINED WHIP AND CANE.

A construction designed to give greater strength, simplicity, and convenience than is usually obtained in a combined whip and cane
is illustrated herewith, and has been patented by Mr. Owen Godward, of Salem, Ohio. The handle is a tapering, tubular body, preferably of iron, covered by suitable wrapping, such as ordinarily used on whip stocks. When used as a cane, the handle completely incloses a tapering whip section, of whalebone or other flexible material, covered with a suitable wrapping, the whip section being adapted to be drawn outward until its inner larger end binds snugly in the smaller open end of the handle, the whip section being held firmly in place by a screw passing through a frictional block which adheres closely to the metallic tubular body. The larger end of the handle is closed by a detachable plug, the outer end of which has a socket to receive the neck of a rubber or other suitable block when the article is used as a whip, the neck of the block also fitting the smaller open end of the handle to serve as a ferrule when the article is used as a cane.

Leather Board for Shoes.

The use of leather board in
 shoe manufacture is one of the shoddy features of the business. One kind is used for tapping and for veneering taps. The material is made to look like leather and to cut like leather. A thin split of true leather makes a veneer that satisfies the demands of the buffing machine.
The best board is made of such board stock as jute, manila, and the like, and this is used for counters, or boot and shoe heel stiffenings and for box toes When properly treated and manufactured, these counters do good service. When leather board is backed with a leather split and moulded into a stiffening, the product is a union counter. Even chair seats are made from this board. It is worth five to twelve cents a pound.
A cheap leather board, worth three cents a pound, is used for inner soles, shanking, filling, and so on Steel shanks are also covered with this, and inner soles, backed with cotton duck, are made of it. This is used, not to cheapen the cost of making the shoe, it is said, but to save the time of gathering and arranging leather scraps.-Paper \dot{W} orld.

IMPROVED TONGS FOR HANDLING NAILS.

A hand implement or tool for handling nails in quantity is shown in the accompanying illustration, and has been patented by Mr. Andrew Wood, of Washington, Ky. The crossing levers or handle por-

WOOD'S NAIL TONGS

tions of the tongs are extended to form jaws composed of a number of internally notched or serrated tines, the levers being pivoted to each other in close proxim ity to the bent tine portions. By this means an easy lift and secure hold of the nails in large quantity is obtained, the leverage being proportional to the length of the handles, on which both hands may be used, while the notched or toothed construction of the tines prevents the slipping or dropping of the nails.

The Fathers of the Steam Navy.

The claim of Mr. Wm. Elliott Griffes, in the biography of the late Matthew C. Perry, that the commodore was " the father of the steam navy," has excited some comment among the older officers of the navy, and among old engineers in general. The biographer, perhaps with the best intentions, imparts the idea that Commodore Perry really designed the machinery of the Missouri and the Mississippi-a claim as unjust as it is unwarranted. These were the first great steamers the country ever had, but their success in management does not belong to Perry. They were sisterships. The former had inclined engines, according to the patent of the principal engineer of the navy (Mr. C. W. Copeland), and the latter had side lever-engines. Both engines were designed by Mr. Copeland.
Robert Fulton, in 1814, built for the navy the first war steamer ever owned by any government. She was called the Demologos, but was afterward called Fulton the First. Fulton was appointed engineer, by the Navy Department, for this purpose, and was therefore the first person who ever held that title in the navy. She was originally intended to throw hot water as well as shot. She blew up while receiving ship at Brooklyn, in 1829, killing Lieutenant Breckenridge and 47 others, and wounding as many more.
Lieutenant W. W. Hunter, who invented the Hunter submerged propeller, has also been called the "father of the steam navy." His propeller was used in the Union, Alleghany, Water Witch, and in the revenue cutter Spencer, none of which was successful. The machinery of these vessels was designed by Mr. William Ellis, engineer, at the Washington Navy Yard. The Alleghany was rebuilt as a screw steamer, and the Water Witch as a paddle wheel steamer.
Commodore Perry was a vigorous advocate of the paddle wheel ; Lieutenant Hunter urged the Hunter submerged propeller (like a paddle wheel mounted on a vertical axis, working partly in and partly out of the sides of the vessel), while Commodore Robert F. Stockton earnestly urged the advantages of the screw propeller. Stockton first induced Ericsson to come to this country. They met with but little favor at the hands of the old Board of Navy Commissioners, and
finally Stockton built the Princeton at hisown expense, finally Stockton built the Princeton athisown expense,
the machinery from the designs of Ericsson, and the hull by Lenthall. She was an eminent success.
Commodore Perry would serve in none but the paddle steamships, and disapproved of the Princeton in toto. Indeed, he once made a written report that paddie wheel steamers of the Collins line, with parts of machinery and boilers above water, "could have guns
mounted on them, and would be first-class war ships." mounted on them, and would be first-class war ships."
Perry had a great appreciation of the engineers. He "always had his ship chock full of them, generally nine to ten assistants; and when he went to Japan, about a dozen. Four would have been enough," said an old engineer in the navy. Commodore Perry would not allow any orders to be given to the engineer department of the ship except by himself. "Even when he was commodore, on board his flagship, he would himself give the orders concerning the machinery to the chief engineer." The chief engineer communicated directly with him. The commodore kept the firemen called on the engineers for all sorts of things. Some were making drawings for him, some were employed on his reports, others collected information for him. When he visited shore in a foreign port, he sometimes took the chief and half a dozen assistant engineers with him, who examined things and made notes for him. His good treatment of his engineers was not precisely of the kind to excite their affection for him, for he seemed to think he owned them, as he did his steward and his secretary. In this spirit, he would not allow any one else to give them an order. His favorite ship was the Mississippi, perhaps because she was the larg est after the destruction of the Missouri. Returning to the machinery of these two ships, it was probably the finest of its day. An able engineer recently said if it was to-day desired to build a paddle wheel engine of like power, with set condensers and the same pressure they used, it was doubtful if a single detail could be changed with any advantage whatever.
Mr. Copeland, while principal engineer of the navy, also planned the engines of the Saranac, Michigan, Susquehanna, the second engine of the San Jacinto, and the engines of the Niagara after he left the navy. The Saranac and San Jacinto were alike in hull, and were built to test the relative merits of the paddle wheel and the screw propeller. The San Jacinto's engine was designed by the engineer-in-chief, Mr. Has well, and that of the Saranac, as we said above, by Mr. Copeland. With hulls and boilers alike, the test of type of propellers and engines was considered fair. Owing to a defect in the design the San Jacinto was greatly inferior as a steamship to the Saranac, though her machinery was quite under the water, while that of the latter named ship was quite exposed. The original engine was then removed from the San.J acinto and a new one, built by Merrick \& Towne, of Philadelphia, a new one, built by Merrick \& Towne, of Philadelphia,
from the specifications and designs of Mr. Copeland, from the specifications and designs of Mr. Copeland,
was substituted. The San Jacinto then became quite
the peer of the Saranac as a steamship, with the great advantage of having her machinery masked by the water. It appears then that the spirit of steam was first infused into the navy by Fulton; that though great credit is due the dead Perry, Stockton, and Hunter, yet history should write the names of the living Ericsson and the living Copeland in letters of gold Journal.

volapuk.

For some years past, and much more frequently of late, there have been references in English and Continental journals to the Volapuk, world's speech, or universal language, and it would seem as if in some quar ters there is a growing inclination to take its pretension seriously. A small volume recently published by Messrs.
Whittaker \& Co., containing the grammar and vocabularies of this invention in an English form, enables us to acquire some idea of the design and its merits. The originator is Mr. Johann Martin Schleyer, of Litzelstet ten, Baden, Germany, and his work, which was first introduced to the world in 1880, has been translated into English by Mr. W. A. Seret, of Glasgow, who describes himself as "certificated teacher of the universal language." This gentleman tells us that Volapuk "has already gained a firm footing in Germany, Switzerland, Holland, Hungary, Italy, France, Sweden, and especially in Austria, and in Syria and Arabia, having been introduced also into Russia, South America, Asia, and the north of Africa."
We have no means of knowing what is to be understood by the "firm footing" alluded to, but it is certainly something far removed from everything approaching general adoption. But, as we said, it hasevidently approached the stage when people begin to ask about it ;
the English Philological Society has discussed it with the English Philological Society has discussed it with
something like approval ; one of those fierce Englishmen who perpetually write to the Times from Continental hotels has felt called upon to denounce it, and the leading journal itself has devoted a column of somewhat heavy banter to it. A defender of the language has since written from Paris, declaring that there are
already some half million people corresponding in or still learning Volapuk, and announcing that a congress of Volapukists is to be held in Paris in 1889.
Mr. Schleyer's object seems to have been to provide a scientific, systematic, and easily acquired language, not to supplant others, but to furnish all nations with a ready means of communication, suitable especially for commercial correspondence by letter and telegram. No one who studies his scheme can help admiring the ingenuity of many of its parts and the scrupulous rigidity
with which a rule once laid down is maintained. It with which a rule once laid down is maintained. It
seems cruel to have to add even one extra straw to the vast education which it appears is necessary nowadays for a commercial clerk who wishes to hold his own against the dreaded German; but a knowledge of Volapuk is a much more fearsome thing in sound than in reality. A few hours' study will enable any one with some philological knowledge to master its fundamental rules; and with a dictionary he could then translate either into or from Volapuk without much further difficulty.
Volapuk is based upon English, as the language most widely spoken ; but it must be admitted that the reduction of English to rigid regulationshasa compromising effect on such poetic beauty as it may have contained before. For instance, "man" is adopted for "man," "son." for "son," and "blod" for "brother ;" but the Volapuk rule for making the feminine is to prefix the masculine noun with " ji" (pronounced she); we have, therefore, $j i$-man for woman, $\overline{j i}$-son for daughter, and $j i$-blod for sister. To give another example of how words are built up in this artiticial language according to definite rules, we may quote the word gud, which is the substantive form representing goodness. The adjective is formed by adding $i k$ to the substantive, and the adverb by adding o to the adjective. Gudik, therefore, means good; gudiko, well; gudikum is better; gudikun, best; gudon, to make good; gudikumon, to make bet ter, to improve; gudikunon, to make best, or as good as possible. The verbs are subject to great inflections, and can be made to express a great deal by prefixes and suffixes. Thus, lof is the root of the verb to love; aiilofon means a loving that will have been constant lofofsok, those women love themselves. Lem is a bar gain or purchase; lemon is to buy; lemob, I buy lemobs, we buy; alemobs, we bought; elemobs, we have bought; eilemobs, we have bought constantly. Sel is a sale; selon is to sell; selob, I sell ; selobs, we sell selol, thou sellest; selols, you sell; poselols, you will
ell ; liposelols, will you sell? sell ; liposelols, will you sell?
We give these examples to show something of the system of building up words, and also to indicate how, possibly, Volapuk may prove of value for foreign telegrams. It is probable, at all events, that some commercial firms will think it worthy of further investigation.
The probability of English becoming the world's anguage is growing more rapidly year by year. It is estimated that when Shakespeare wrote, his language
was spoken and understood by only about $5,000,000$.

The best judges now calculate that at least $100,000,000$ talk and understand it, and vast populations in India, China, Japan, and elsewhere are acquiring it for business and social purposes. The race of which it is a native tongue is growing faster than any other in the world ; and with the printing and circulation of literature, the danger has departed of the language becoming broken up into various dialects, as Latin was a thousand or fifteen hundred years ago. But it is pos sible that even among ourselves, as well as in communi cation with the great countries where English is not understood, something like this scientific language may serve a useful purpose. In that view we have thought well to offer these remarks concerning it.-Chemist and Druggist.

[Sciencr.]

Some who have experimented with the Reis telephone declare that they have never been able to hear a transmitted word. Others have heard some words and sentences ; but these have always been weak and irregular, o as generally to discourage one in a short time, especially now, when through the improvements in telephones it is possible to reproduce words both loudly and regularly. Experimenters, therefore, have been impatient with Reis' apparatus, and seldom have done anything with it, except make some hasty tests for some phase of the great telephone controversy.
The inefficiency of the Reis telephone has, by a kind of common consent, been admitted to be altogetherdue to the imperfect mechanical operation of the transmitter, by which the making and breaking of the current when it is in operation is such as not to properly follow the actual vibratory movements of the diaphragm when the latter is moved by speech vibrations; that at best it can deliver to the line only the fundamental rate of the vibration, leaving out the characteristic overtones which are supposed to be necessary to the suecessful transmission of speech. This judgment as to the mode of operation of the transmitter has been derived wholly from what has been heard by one listening at the receiver; for there is to-day no known method by which it may be determined whether or not a trans mitter has the proper motions, except by listening at the receiver. That is the test. Hence it has been concluded that if speech was not properly delivered in a receiver, the trouble must be with the lack of proper movements of the transmitter. Yet it is mechanicidy possible for the transmitter to move properly, and the receiver to be so much overloaded, so to speak, that the latter fails to be heard on account of the extra disurbance.
The Page effect-the magnetic click-may be so trong in a Reis receiver, with a proper current, as to be heard a good many feet distant from it. When the receiver is held against the ear, the sound may be very loud ; so much so as to quite drown weaker sounds, if they.happen to be present. Especially when these loud sounds occur fifty or one hundred or more times per second, the effect is that of a continuous sound; and as the persistence of hearing is something like the tenth of a second, it follows, a priori, that such rates of vibration as from two hundred to a thousand per second might be present, yet too weak to be heard in the presence of such overpowering sounds that have an appreciable persistent effect. These loud magnetic clicks are heard onlf when there is a sudden break in the current
in the receiver. If, then, some way can be devised for preventing these extraneoussounds in the receiver without interfering at all with the transmitter or its " mode of operation," one may experimentally determine whether the Reis transmitter does or does not act mechanically so as to vary the current in correspondence with speech or other sound vibrations. I therefore conceived that, if there was a short shunt circuit between the terminals of the transmitter, some of the current would traverse the coil of the receiver the whole time, no matter whether the circuit through the transmitter was open or closed. The loud clicks would be suppressed without interfering in any way with the "mode of operation" of the transmitter ; and, if the latter really did follow the motions of the diaphragm, the variations in the current strength would correspond, and the speech would be heard. This I found to be truly the case : for with a transmitter thus provided with a shunt circuit of abont two ohms, which could be switched in or out with a key, it was at once possible to hear a large part of what was spoken when the shunt was in. When it was out of circuit, the sounds were generally inarticulate.
This experiment is an experimentum crucis, and proves that the inefficiency of the Reis telephone is much more due to the extraneous sounds in the recei ver than to the lack of appropriate motions of the platinum terminals of the transmitter. It proves that the transmitter does and must always have worked in the proper mechanical way, and that the current theory of its mode of operation is not correct. It proves, too, that when carbon is substituted for the platinum terminals, there is an improvement in efficiency, but not in its mode of operation.
a. E. Dolbear.

College Hill, Mass., Jan. 14.

The Western Union Telegraph office, New York. When a person goes into the basement of the Western Union Telegraph building, and desires to inform his wife at San Francisco, 3,000 miles away, that New York is a wonderful place, and deposits a dollar bill for that purpose, he little imagines the extent to which his dollar supports his averment. He little imagines what the dollar does before the message reaches the first telegraph pole out from the building on its way across the continent. None of man's conquests is more amazing than his conquest of the lightning, and none of the strange things he does with it has reached such proportions as his employment of it in the capacity of an errand boy. While this has been growing commonplace, it has all the while been growing more and more amazing, and in the central office of this king of corporations, the Western Union, the process of telegraphy has reached a development such as can be seen nowhere else in the world. The dollar that pays for the transmission of an idea from Hell Gate to the Golden Gate does many interesting things.
It goes in at the receiving window and gets registered, together with the message it represents. Then it proceeds down stairs into the cellar, where it turns the wheels of fifteen wighty engines. One of these, applied to a huge dynamo magnet, draws from it the flame of 600 incandescent lamps, and sends it gleaming through the building. Three others engage actively in the work of enlightening the world. They supply the electric current that courses 8 pand down the continent faster than light itself. They take it from fifteen little dynamo magnets, scarcely thicker than a man's thigh, arranged in rows or "gangs" of five each, and placed in a room scarcely larger than a hall bedroom. If two entire floors of the building were filled with Leyden jars, there would be, may be, 40,000 of them. But the power to be got from them all would be less than that derived from these little dynamos. Four other engines, the largest and most powerful of all, force currents of air through the most extensive underground pneumatic systems in the world. Tubes run from the building up to the branch office in Twenty-third Street, to other branch offices, and to all the principal newspaper offices. If the tubes were large enough to accommodate a man, he could be sent bowling along two miles underground in just ninety seconds with as much ease as if he were a feather.
It isppin the top of the building, however, that the movelsights are to be found. Seated in front of 700 little desks, each supplied with two or more noisy, machines that clatter incessantly from year's end to year's end, is an army of young men and girls, the brightest, quickest, cleverest operators to be secured. Everything and everybody appear to be in a grand rush. Little boys and girls tear about as if thrones depended on their being at a given point in the room at the hundredth part of a given second. The continuous musketry of the sharp, rattling machines ever and anon grows heavier and tiercer as gusts break forth on a stormy April day. The very atmosphere seems excited and in a hurry, and well it may, for the air in the room is changed every three minutes. Four huge ventilating fans, driven by a special dynamo engine, carry off 2,000 subic feet of air every second, and keep the atmosphere
in perpetual commotion. A picture of a scene so conin perpetual commotion. A picture of a scene so con-
fusing is difficult to paint. If anything would only stand still long enough to let the mental camera catch its image, there might be hope of obtaininge at least a typical impression. But the room puts on as many new phases as the crowdithat passes a Broadway corner. Placed well in its center is a little pagoda, an up-raised stand that might make a summer house were it set in a flower garden and overrun with vines. Here a group of little girls sit behind a circular table. Over their heads is gathered in a disk a hundred wires that run hither and thither all over the room, carrying little messenger cars, such as they have in the big stores running to the cashier's desk. Here there are so many of them, and they skim along in so many different directions, darting hither and thither, as if blessed with a head of their own and a perfect comprehension of their own business, which nobody can tell them better than they know it themselves, that one looks upon their intricate mechanism with amazement, and wonders why they don't come together in a general collision. If it be remarkable that they understand themselves, it is more remarkable still that these little girls, who have scarcely entered their teens, should know whence they all come,
what they all carry, and where they all go. But with what they all carry, and where they all go. But with
equal deftness and celerity, the children capture them all as they come, take out their cargoes of papers, affix to these a proper stamp, and send them whirling off again, all in the twinkling of an eye. When the messages have been received down on the basement floor, they are sucked through pneumatic tubes up into the operating room, and there seized upon by the little girls in the grand stand. Quick as a flash the addresses girls in the grand stand. Quick as a flash the addresses
are read, and then they are whirled to that part of the room in which the particular operators are seated who work the particular lines over which the message is to go.

It takes nearly a thousand operators to accomplish day's business in the Western Union. Some of this
work is in the day time and some at night, and others do nothing except relieve the regular staff, while, in relays of fifty or seventy-five, they go up-stairs for
uncheon. Thus there is no pause in the eteral luncheon. Thus there is no pause in the eternal rattle of the machines. The problem of perpetual motion is solved in that room as much as it ever can be solved. The messages that come into the office are treated pretty much in the same way as those that go out The operators who receive them write them out on blanks and send them whizzing off in a jiffy to the little girls in the grand stand. When they are stamped or identification, they are dropped down through a sliding tube to the basement floor. A mirror at the bottom enables one to see directly through six stories and catch glimpses of the pig-tails and curly bangs up in the lofty grand stand. As the messages drop they are taken out, slid through steam rollers that copy them and drop them on a revolving endless belt, that takes them off to the routing clerks and the messen gers. System is always simple, even in its most com plicated forms. That is what system means. And yet the number of things that are done to a message in
order to insure its rapid and accurate reception and delivery can but excite wonder.
Of course there are a great many secrets passing through that operating room-secrets that speculators in Wall Street would consider it well worth their while to know. Many a fact that has come over the wires from Chicago, addressed to some prince of the realm of speculation at twelve o'clock, if known an hour later to any important stock broker, would be held by him in high commercial esteem. This fact has not escaped the observation of operators who keep a business eye open, nor is the Western Union Co. blind to it. Arrangements have occasionally been made, in times of public excitement, between operators and men of speculative tendencies, for the quick transfer of mes sages designed to have important effects on public affairs. There are many occasions when the certain knowledge of an event-a presidential proclamation, a government concession to or demand upon one of the subsidized railroads, or of any such thing affeeting the values of securities-should it come to the ears of a speculator even half an hour before it was made public, would enable him to make a fortune. The secrets of the wires are the richest kind of secrets, and the greatest care is taken to keep them inviolable. This is one of several reasons why the operators are not permitted to take their lunches outside of the building. A restaurant is fitted up for them on the topmost floor, provided with an extensive bill of fare, which is sche espionage is kept upon the movements of all employes espionage is kept upon the movements of all employes.
At the door of the big room stands an old, whiteAt the door of the big room stands an old, white-
haired sentinel, whose forty years of telegraphic experience in all parts of the country has made him familiar with every one in the business. If a visitor calls he either knows him at once or knows that he is not a fellow craftsman. At all times of unusual public excitement, when Wall Street is in a fever, extraordinary vigilance is exercised over all persons who call on the operators. They are always compelled to send in cards. These are taken first to the manager or his assistants. The person called upon is notified, and if he desires to see the visitor, he goes out into the hall. The opportunities for long or private conversation here are meager. A constant succession of chief operators and other authoritative personsis passing by at momentary intervals. If secrets are being divulged, the chances are that some part of them will be overheard, or suspicion aroused by some other circumstance. In that event the visitor is followed. It is not often that important secrets have contrived to get over this wall of scrutiny and care.
To the uninitiated it is a great puzzle how the dangers of lightning are averted where there are so many conductors of electricity as in a telegraph offce Union building, and run more or less directly to the desks of the operators. Even when these electric attractions are wanting, most people confess to a certain feeling of insecurity when the elements rage and wake up terrifying flashes of forked fury. Nearly half the operators are young women, and they may be expected to share the general sentiments of their sex concerning this uncertain and wicked-looking force. But science has provided an answer to this, as well as to almost all other puzzles which stand in the way of human progress. Every wire, as it enters the building, passes through the bottom of a long narrow board, and then again through it at the top. This board is a lightning arrester. If the current is heavy, its first effect is to deprive it of much of its force. Should even this fail to deprive the current of its fatal power, and it passes on to the top of the board, it touches a spring which drops instantly and shuts off all connection with the operating room. This spring is called the plush magnet, and beyond it no overcharge of lightning, whether proceeding from a storm or from contact with other wires, can possibly go. Absolute security from outside electrical influences is thus insured. The wires proceed directly from the street to the switchboard in the ope-
tached to the machines in the room all run to this board, and connections are established there with the through lines.
There are 20,000 cities and villages in the United States to which the Western Union runs its wires, and naturally the task of making rates between each of these places and all theothers is a grave problem. Four hundred millions of rates must be made, and every agent must know them all. When the company was confined to the space between Buffalo and Chicago, the process of arranging a tariff was comparatively simple. But when a boundless continent became its domain the subject was no longer insignificant. The present method is so plain that the wayfaring man, though a fool, has no excuse for erring therein. The whole country is blocked out on a map in squares of fifty miles each, and the rate is fixed bet ween each and all of these squares, and printed in a book that is newly revised and issued every six months. The public is greatly indebted to the competition of the smaller companies which from time to time have sprung up as rivals within certain territories to the Western Union for many additional simplifications of this system.
In the East there is but one tariff rate, and between adjoining States a similar arrangement usually exists. These smaller companies have been nearly all swallowed up in the Western Union, but their usefulness to the public in compelling reductions is not slight. The average business done in the main office of this giant monopoly is about 1,400 messages. As many as 2,800 have been sent out in a single day, and as 180 other offices are open in this city; these figures tell only a small part of the story. But they serve well to show the immense development of an art and a trade that sprang into existence within the meraory of men still young, and which, were they suddenly lost to human knowledge and craft, would leave the world in strange and dismal darkness.-New York Tribune.

The milling Machine

At the recent meeting of the Society of Mechanical Engineers, a paper was read by John J. Grant, and entitled, "The Milling Machine as a Substitute for the Planer in Machine Construction.'
The author called attention to the importance of using the milling machine, and that manufacturers were coming to recognize this fact, due largely to the diminished cost of using it, as compared with that in the use of a planer. He asserted that every part of a locomotive now finished by a planer could be better done by a milling machine, and at a half to one-tenth the cost, and producing wori nearer to interchange ability. In order to settle the question in his mind, he made the following experiment. One hundred pieces of cast iron 16 in . long, large enough to finish $11 / 2 \mathrm{in}$. by 1 in ., used for lathe racks, were given to the man in charge of the milling machine, and an equal number of the same pieces to the man in charge of the planers. The cutter used on the milling machine was simply a plain spiral cutter of $21 / 4 \mathrm{in}$. diameter by 2 in . in length, costing to make in the shop, including stock, labor and shop expenses, $\$ 2.10$. This cutter was sharpened but once, and that after the completion of the job, which consisted in roughing the four sides of the 100 pieces. Two milling machines were used, one for roughing and one for finishing cuts. The cutters required grinding at the end of the job, and so were chargeable to it ; the time required to grind them was 22 minutes. The wages of the boy running the machine were 9 centsper hour. The total cost for finishing the 100 pieces on the milling machine was, including shop expenses, estimated at 35 per cent of labor, $\$ 5.09$. The cost of the same number of pieces finished on the planer was as follows :

> 4 hours 35 minutes each machine, at 25 cents per hour.. $\$ 6.03$
> Grinding and setting tool 19 times, 1 hour 21 minutes.... 0.33
> Shop expenses, 35 per cent.
> Total...

In the above test, the author claims that the planer was acting at its best and the milling machine at its worst. The latter makes its best showing in irregular work, where the planer requires the constant attendance of skilled workmen, while the milling machine can employ a much cheaper grade of attendance.
He summed up the advantages as follows: Exact duplication of work; rapidity of production, the cutting being continuous; cost of production, as several machines can be operated by one workman, and he not a skilled mechanic ; and cost of tools for producing a given amount of work.

rtificial Incubation in Egypt.

One of the oldest industries in Egypt is artificial egg hatching, prinaipally engaged in by Copts. There are said to be 700 establishments of this nature in the country, and the production of chickens from the ovens is estimated at from $10,000,000$ to $12,000,000$ annually. The season for incubating lasts through three months of the early summer. The country people bring eggs to the proprietots of the "farroogs," and give two good eggs for every newly hatched chick.

THE POUGHKEEPSIE BRIDGE.
This structure, now under process of erection by the Union Bridge Co., of this city, of importance both as a monument of engineering and as a link in the railroad system of the Eastern States, is rapidly approach ing completion. About a year ago* we illustrated it, showing the proposed elevation and some general dimensions of the work. To-day much of what we then showed has been realized, and when the present year will be half over, it is hoped and believed that the bridge may be practically completed. The rapid progress is due to the system of construction. The cantilever has been utilized as far as possible. Pin fastenings have been used in the more important truss work, and small members have been employed. Almost all the riveting was done in the shops, and the eye bolts, struts, and chords were delivered on the ground struts, and chords were delivered on the be put at once in place without delay.
ready ready to be put at once in place without delay.
All this is in contrast to the system adopted for the Forth bridge between England and Scotland. There the bridge is built on the ground. For fastenings rivets are almost entirely depended on, and immensity of size characterizes as much the individual members as it does the whole structure. The two bridges illustrate well the difference between American and English practice.
Certain limitations were imposed upon the Poughkeepsie bridge that have affected its structure. Much opposition to its erection was offered
ond truss and a third cantilever span complete the structure as far as the river is concerned. A short structure as far as the river is concerned. A short
cantilever at either end connects with the approaches. On the eastern side the approaches are very long, and

Wedges between cantilever and hanging truss.
bases that rise about 30 ft . above the water. Upon these the iron superstructure is erected, carrying the piers up 130 ft . Upon these the trusses rest.
A cantilever may be described as a gigantic bracket. bridge an opening by them, two are carried out from either side projecting over the space below. When sufficiently close they stop, and the space between is closed by an ordinary truss suspended from their ends. But a bracket is without stability unless it is held in position. To provide this holding, the anchorage spans are made to alternate with the cantilever spans.
The piers being in place, the general method of erecting the bridge may be thus described. False work or centering of timber is first erected where the truss spans are to come. This in itself is no small work, as is evident from our illustration taken from a photograph of the structure. The depth of the river and the stratum of soft mud necessitated extra long piling. The logs are spliced or fished to secure sufficient length to reach good bottom. These are well braced at their tops, and on them the trestle work is erected. Upon the false work the great anchorage trusses 525 feet long and 75 feet deep are set up. When one truss is completed, the false work is removed and stored away for future use, leaving one span completed, and standing isolated over the river. From one of its ends a cantilever is carried shoreward, while from the shore end a second cantilever is run out -

ERECTING ANCHORAGE TRUSS ON FALSE WORK.

by those interested in the navigation of the river. The |spans act by their weight and strength as anchorage great object to be attained was to obstruct the river as $\begin{aligned} & \text { spans act } \\ & \text { spans for the cantilevers. }\end{aligned}$
little as possible. To do this the four piers in the river were made very narrow. They were far too restricted in size to afford anchorage for cantilevers. A compro mise structure consisting of a combination of anchor age trusses and cantilever spans was adopted. Start ing from the shore at either end, a cantilever span is first encountered, next to this comes a truss span, fol lowed by a central cantilever span. After this a sec

The river is crossed, therefore, in five spans, involving the placing of four piers in the channel. The clear opening of the spans varies from 500 ft . to 521 ft .6 in ., with 130 and 160 ft . head room.
These piers are twenty-five feet wide at water line. Thus it will be seen that little obstruction is offered to navigation. To provide against that little the bridge company is obliged by their charter to keep a tug-boat at hand for helping vessels through, and to place lights upon the piers. The latter consist of masonry
to meet it. The shore member is a double cantilever poised at its middle on its pier like a balance beam, and anchored down by great tie rods at the inner end.
Representing, as before said, two immense brackets, the pair of cantilevers are carried out over the intervening space without any false work. The strain exerted by each is a thrust backward at the foot and a erter by each is a thrust backward at the foot and a strains are sustained by the anchor truss or by reversed cantilevers. When the two have approached within 200 ft . of each other, work begins upon the connecting or hanging truss. Member by member this is put to-
gether, and the work is carried out from the cantilevers as a base. The strains during erection, it will be clear, resolve themselves into one of tension for the upper chords and of compression for the lower chords of both truss and cantilevers. These are provided for by making the lower chord of heavy lattice and plate work adapted to resist a thrust until the central panels of the hanging truss are reached. The lower chord for these panels is composed of eye bars. The reason for this will be evident. So far the whole strain has been one of tension for the upper chord and of compression for the lower. The tension has come against wedges situated near the end of each cantilever. As soon as the members of the truss are in place, the wedge is backed out and the upper chord of the connecting truss is relieved from tension, and at once becomes a compression member, while at the same instant the lower chord of the truss ceases to be compressed and enters into tension. The only reason the lower chord is made of rigid character for the greater part of its length, enabling it to resist compression, is to make it capable of sustaining the strain of erecting. Its last chord members are put in as simple eye bars, because for the last panels the erecting strain is very light. As far as the actual bridge or truss functions are concerned, the whole chord might be of tie rods. The stiffness of the bottom chord takes the place of false work.
The wedge we have alluded to is in the upper chord. A second one is in the lower chord. The two are shown in the cut. Both are removed when the structure is joined. They are used during the last connecting to bring the parts together. By working them in or out, the projecting and meeting portions of the truss can be swung up or down and to right or left, so as to come into accurate alignment. When the last tie rods are in place and the wedges removed, the cantilever span can be distinguished as of three parts. By removal of the upper wedge the upper chord is "cut," by removal of the other the lower chord is "cut." Hence the through connection of both chords being destroyed, the truss exists as an independent structure. It is suspended structure. It is suspended end by a tie rod at each end by a tie rod
which is attached to the which is attached to the
upper and outer corners of the cantilevers and to the lower corners of the truss. As the truss and cantilever expand or contract with change of temperature, the suspending rod swings suspending rod swings
back and forth, but no back and forth, but no
effect is produced upon effect is produced upon
the cantilever, as no thrust or pull in the absence of the wedges can be exerted upon it.
To carry on the work of construction, engine houses are mounted on wheels and travel out on rails as fast as the panels of the trusses and cantilevers are constructed. These contain hoisting machinery. The iron work is brought on scows, or on the shore underneath them, and the pieces are hoisted.by steam power. As each piece comes into its place, the pins are driven in place. Where rivets are required temporary bolts are used, to be replaced by rivets in due time. Each foreman has a book giving explicit directions how to put the work together. The men, by practice, become apparently quite reckless in working at so great a height, but this is only apparent. They all wear arctics or rubber overshoes of some kind in winter, and rubber-soled shoes in summer, to be secure from danger of slipping. So far the casualties have been few.
The bridge is made of steel, of about 63,000 pounds breaking strain. The members of largest section are the lower chords of the anchorage trusses. These represent a species of box girder in exterior dimensions, 30 inches deep and 40 inches wide. The largest member weighs less than 20 tons. The largest eye bars are 8 by 2 inches in section and 49 feet long. Others are $8 \mathrm{by} 21 / 4$ inches in section and 37 feet long. The largest eye bolts or pins are those receiving the thrust of the lower chord of the cantilevers. These are 9 inches in diameter. These dimensions may be contrasted with those of the Forth bridge, whose lower cantilever chord is a plate iron hollow cylinder 9 feet in diame-

MATHEW, THE CUBAN MONKEY.

alizarine, purpurine, and pseudo-purpurine, of which the first is by far the most important, being the only madder color which may be considered fast and permanent. The artificial production of alizarine from anthracene, one of the products of the distillation of coal tar, is one of the most important and interesting applications of chemistry to the arts that has been made of late years. In 1868, Graebe and Liebermann found that when alizarine and zinc dust were distilled, the hydrocarbon anthracene was obtained, and by reversing the process they succeeded in obtaining alizaine from anthracene. The artificial coloring matter seems to possess all the properties of the alizarine of nadder. In wool dyeing the chief uses of madder, besides acting as a ferment in the indigo vat, are for he production of drabs, browns, and olives, for which its coloring matters are well adapted. The colors obtained with madder on wool are very fast and per-manent.-Indus. Record.

The Nose the Source of all our Woes.
At the last congress of German naturalists and physicians, held in Wiesbaden, Dr. Gacy reported several cases of mental disturbance characterized by an impossibility of fixing the attention on any subject, except for a very brief period, or of prolonged mental effort of any kind whatever. This condition, to which the author gave the name of aproxia, was always associated with certain lesions of the nasal mucous membrane and bstruction to the passage of air through the nasal ossm.
This is, we believe, the latest accusation which has
been brought against the sinful nose. Headache, cough, dyspnøa, earache, neuralgia, hay fever, acne, convulsions, and syncope are only a few of the many evils which this troublesome organ is accused of having inflicted upon long suffering man, and it bids fair to outstrip even the ovaries as a center for morbid reflexes. As regards aproxia, however, it is said not to be a reflex, and the mechanism of its production is assumed to be a purely physical one. The lymphatic spaces beneath the dura mater have been found to be in beneath the dura mater have been found to be in
direct communication with the mucous membrane of direct communication with the mucous membrane of
the nasal fosse, and inflammation of the latter is supposed to interfere with the elimination of the wast products resulting from cerebral activity, thus leading to mental sluggishness. But whatever may be its methods, the nasal organ is evidently responsible for many, if not most, of our ills. Clearly, the nose must go.-Medical Record.

MATHEW, THE CUBAN MONKEY

We give an engraving, from La llustracion Cubana, of an educated monkey, brought up by Messrs. Lopez \& Inelan, of Havana, where the animal enjoys a great reputation for intelligence. He will stand erect and salute all present, wrestle and fight with any dog of his size, compel a cat to be his most patient servant capture a pigeon and make it open and shut its bill like parrot, strike an attitude of the fiercest attack on signal from its master, or on a contrary signal relapse into the most submissive and inoffensive of creatures. The above is only the merest outline of a few of the many things which this remarkable animal has been taught to do. His fame having reached Madrid, he has been sent over there, where he now attracts great attention at the Retiro.

Kerosene Dil as an Antiincrusta
 Mr. Lewis F. Lyne read

 a paper before the last meeting of the American Society of Mechanical Engineers upon the use of kerosene oil for preventing incrustation in steam boilers. The experience upon which the paper was based was gained in connection with the working of the Jersey City Electric Light Company's station, where there are in operation two 100 horse power Root's boilers and one boiler of the same type developing 155 horse power. The waterlused in these boilers made a great deal of scale-so much, indeed, as to half fill with hard deposit the inch tubes of which the boilers are principally constructed. Finding that no other expedient would rectify this evil, Mr. Lyne commenced to experiment with kerosene oil ; allowing some of this kind of oil to flow into the boilers by means of an arrangement like a large steam cylinder tallow cup fixed upon the water feed pipe. When the experiment was started, there was about one-fourth inch of scale in the boiler tubes. Two quarts of kerosene were put into the boiler every alternate day for a month, when it was found that the scale was so far dissolved and loosened that a scraper would clear off most of it. Continuance of the treatment eventually cleared the boiler from scale in every part. Finally the rule was adopted of putting in one quart of keroseneoil per day for each 100 horse power boiler, and three pints per day for the 155 horse power boiler. The water is blown down two gauges every week, and the entire contents once a month. Water is never used to wash the boilers out, nor is a scraper necessary, for the mud all goes away with the water. Another thing worthy of notice is that, whereas it was impossible to keep gauge glass tubes in use more than a month or two, because they became badly corroded and grooved, and consequently broke, since kerosene has been regularly employed this corrosive action has ceased.To keep frost, etc., off plate glass windows, keep the inside air dry, or inner sash tight, so .that the air in window inclosure will be cold, and ventilated from the outside. A partial remedy is to have ventilating openings in the top of the window casing.

Thermometer Scales.
Much annoyance is caused by the great difference of thermometer scales in use in the different civilized countries. The scale of Reaumur prevails in Germany. As is well known, he divides the space between the freezing and boiling points into 80°. France uses that of Celsius, who graduated his scale on the decimal system. The most peculiar scale of all, however, is that of Fahrenheit, a renowned German physicist, who, in 1714 or 1715 , composed his scale, having ascertained that water can be cooled under the freezing point, without congealing. He therefore did not take the congealing point of water, which is uncertain, but composed a mixture of equal parts of snow and sal am-monia-about- $14^{\circ} \mathrm{R}$. This scale is preferable to both those of Reaumur and Celsius, or, as it is also called, Centigrade, because : 1. The regular temperatures of the moderate zone move within its two zeros, and can therefore be written without + or -2 . The scale is divided so finely that it is not necessary to use fractions whenever careful observations are to be made. These advantages, although drawn into question by some, have been considered sufficiently weighty that both Great Britain and America have retained the scales, while the nations of the Continent, France, Spain, etc., use the other two.
The conversion of any one of these scales into another is very simple, and easily made. To change a temperature as given by Fahrenheit's scale into the same as given by the Centigrade scale, subtract 32° from Fahrenheit's degrees, and multiply the remainder by $\frac{5}{9}$. The product will be the temperature in Centigrade degrees.
To change from Fahrenheit's to Reaumur's scale, subtract 32° from Fahrenheit's degrees, and multiply the remainder by $\frac{4}{9}$. The product will be the temperature in Reanmur's degrees.
To change a temperature as given by the Centigrade scale into the same as given by Fahrenheit, muiltiply the Centigrade degrees by $\frac{9}{5}$ and add' 32° to the product. The sum will be the temperature by Fahrenheit's scale.
To change frow Reaumur's to Fahrenheit's scale, multiply the degrees on Reaumur's scale by $\frac{9}{4}$, and add 32° to the product. The sum will be the temperature by Fahrenheit's scale.
For those who wish to save themselves the trouble we have calculated the following comparative table

c.	R.	F.	c.	R.	F.	c.	R.	F.
-30	$-24,0$	-22,0	14	11,2	57,2	58	46,4	136,4
-29	-23,2	$-20,2$ $-18,4$	${ }_{16}^{15}$	${ }_{12,0}^{12,0}$	59,0 608	59 60	${ }_{48}^{47,2}$	138,2
-27	-21,6	-16,6	17	${ }_{13,6}$	62,6	${ }_{61}$	48,8	141.8
$-^{28}$	-20,8	$-14,8$	18	14,4	64,4	${ }^{62}$	49,6	143,6
-25	-20,0	-13,0	${ }_{20}^{19}$	15,2 16.0	66,2	${ }^{63}$	50,4	145,4
23	-18,4	${ }_{-9,4}$	21	16,8	69,8	${ }_{6}^{64}$	${ }_{52,0}$	149,2 149.2
21	-17,6	-7,6	22	17,6	71,6	66	52,8	150,8
-21	$-16,8$	-5,8	23	18,4	73,4	67	53,6	152,6
-20	$-16,0$	$-4,0$	$\stackrel{24}{25}$	19,2	${ }_{77,2}^{75}$	${ }_{68}^{68}$	54,4	154,4
-19	- 15.2	- $-2,2$	$\stackrel{25}{26}$	20,0 20,8	77,0 788	69 70	55,2 56,0	156,2
-17	$-13,6$	1,4	27	21,6	80,6	71	56,8	159,8
-16	-12,8	3,2	28	22,4	82,4	72	57,6	161,6
-15	-12.0	5,0	$\stackrel{29}{30}$	23,2	84,2 86,0	73 74 7	58,4	163,4
-14 -13	- 11.2	6,8 8,6	${ }_{31}^{30}$	24.0 24.8	86,0 87,8	74 75	59,2 60,0	165,2 167,0
-12	-9,6	10,4	32	25,6	89,6	76	60,8	168,8
--11	$-8,8$	12,2	${ }^{33}$	26,4	91,4	77	61,6	170,6
-10	-8,0	14,0	34	${ }^{27,2}$	93,2	78	62,4	172,4
-9	-7,2	15,8 17,6	35 36	28,0	95,0 968	79	63,2	174,2
-7	-5,6	19,4	37	29,6	98,6	81	64,3	177,8
	-4,8	21,2	${ }^{38}$	30,4	100,4	82	65,6	179,6
$\xrightarrow{-5}$	-4,0	23,0	39 40	31,2	102,2	83 84 8	${ }_{66,4}^{66}$	181,4
${ }^{-3}$	-2,4	24,6 26,6	41	32,0 32,8	105.8	84 85 8	67,2 68,0	188,
2	-1,6	28,4	42	33,6	107, 6	$\begin{array}{r}86 \\ 87 \\ \hline 8\end{array}$	${ }^{68,9}$	186,8
1	$\xrightarrow{-0,8}$	30,2 32,0	43 44 4	34,4 35,2	109,4	87 88 8	69,6 70.4	188,6
1	0,8	33.8	45	$3{ }^{36,0}$	113,0	89	71,2	192,2
2	1,6	35,6	4_{6}^{46}	36,8	114,8	90	72,0	194,0
3	$\stackrel{2,4}{3,}$	-37.4	48	37,6	${ }_{118,6}$	${ }_{92} 9$	72,8	${ }_{195}^{195}$
4	3,2 4,0	39,2 41,0	48	38,4 39,2	118,4 120.2	${ }_{93}^{92}$	73,6 74,4	197,6
6	4,8	42,8	50	40.0	122,0	94	75,2	2012
8	5,6	44,6	51	40,8	${ }^{133,8}$	95	76,0	203,0
8	${ }_{7}^{6,4}$	-46,4	$\stackrel{52}{53}$	41.6	125,6	${ }_{97}^{96}$	78.8	204,8
$\begin{array}{r}10 \\ \hline\end{array}$	7,2 8,0	48,2 50,0	53 54	42,4 48,2	129,4	${ }_{98}^{97}$	77,6 78	${ }_{208,4}^{206,6}$
11	8,8	$\stackrel{51,8}{5}$	${ }_{56}^{55}$	44,0	131.0	99	79,2	210,2
12 13	9,6 $\mathbf{1 0 , 4}$	53,6 55,4	56 57	44,8	${ }_{134,6}^{13,8}$	100	80,0	212,0
	10,4	${ }^{55,4}$	5		134,6			

-Industrial Record.
Prehistoric Researches in Southeastern Spain.
Two Belgian engineers, Messrs. Siret, are about to
publish the important results of their extensive archpublish the important results of their extensive arch the coast from Carthagena to Almeria. The oldest remains belong to the neolithic period. There is not a trace of metal to be found in these ancient habitations. The implements consist of polished axes, perforated shells, pottery, grinding stones, chipped flints, and primitive walls of stone. In another class of sites which belong to a more recent period, remains of copper and a few bronze implements were found. The inhabitants lived in stone houses, the stones being cemented by earth. Flint implements, particularly arrow heads and knives, ornamented pets, bone points, and numerous copper celts, were found in the houses. Cremation was practiced to a considerable extent by the people of that period. Copper ores and scoriæ proved that they practiced the art of smelting.
In a later period fortified villages, with walls made of stone and mud, were built on the tops of the hills.
burnt houses, implements, remains of grain which was kept in clay pots, cloth made of broom, and handmills were found. Flint was used only for making saws. The dead were buried in natural caves, or in stone boxes under the houses or near them.
At the end of the copper period the inhabitants still lived on the tops of steep hills, in fortresses. The implements consisted of the same material, but, besides, moulds for casting copper, ivory, gold, and silver were found. Over twelve hundred graves belonging to this period were opened. All of them were situated in the houses, and consisted either of small chambers of stone, of stone boxes, or of huge clay pots with rounded bottom and wide mouth. The largest of these are over three feet long and two feet wide. The skeletons are doubled up, hands and knees being pressed against the chin. Sometimes husband and wife are found in the same urn. The study of this vast amount of material will be highly interesting. Virchow points out that part of this ancient culture is probably due to Phenician influence.-Zeitschr. fur Ethnologie, 1887, No. v; Science.

Our Lost Species.

Those species of North American birds termed "lost," and excluded from many of the lists in consequence, are at present of considerable interest to many ornithologists, both from the fact that a thorough search may, at any time, reveal the existence of some one, and that within the last few years two at least, the great auk (Plautis impennis) and the Labrador duck (Camptolaimus labradorius), are believed to have become absolutely extinct.
The first of these, P. impennis, has been written and rewritten upon so much of late, that I do not wish to say much concerning it here. "It formerly inhabited our coast from Massachusetts north nearly to the
Arctic circle. In Iceland it has been traced down to 1844, while in the American Naturalist, vol. vi., page 368, is recorded the finding of a single dead specimen in the vicinity of St. Augustine, Labrador, in November,"1870." Unfortunately, the "character, date, and disposition of this alleged individual are questionable, and it seems improbable that the species lived down to so late a period." At present it is accounted extinct, but, with all due respect to the opinions of others, there seems to me to be still a chance for its being rediscovered, and, strange as it may appear, this chance I would place solely with the Arctic exlearn that after a certain latitude has been reached, the tide of migration changes its course, and that birds as well as mammals move in a northerly direction. This is pretty sure evidence that somewhere at the far north, beyond the region of snow and ice, there is a milder climate to be found, and one undoubtedly teeming with animal life. If, in the years to come, some one succeeds in reaching the pole, and discovers this land (if existing), does it not seem reasonable to suppose that the great auk will be found among its inhabitants? which, having experienced the persecutions of man, has sought safety and retirement within its borders. This last borders somewhat upon the Utopian. I know, yet time may prove it true in part at least.
Concerning the Labrador or pied duck, there is still some chance of its being taken, as recently two instances have come under notice in which the birds in question were picked and eaten by the shooter, and afterward, when too late, thought to have been specimens of this bird. In both cases the description tallies very closely with that of a cabinet skin. In a recent number of Forest and Stream, Dr. Shufeldt gives an able article on this subject, and strongly holds forth that the bird may still be found.
Leaving these so-called extinct birds, we come to the lost species proper, or those which, through scarcity or diminutiveness, have eluded the efforts of collectors since the original specimens were taken. Four of these have not been seen since the time of Audubon and Wilson, and are known only from their works. These are: The carbonated warbler (Dendroica carbonata), blue mountain warbler (Dendroica montana), small headed warbler (Sylvania (?) (microcephala), and Cuvier's kinglet (Regulus cuvieri). The others are scarcely of more recent date, and are: Townsend's bunting (Spiza townsendii), Brewster's linnet (A canthis brewsterii), Bachman's warbler (Helminthophila bachmani), and the Cincinnati warbler (Helminthophila incinnatiens*s).
Eight species once known to science now lost !
Let us take them systematically, and try to discover the reason, and if possible the remedy, for such a tate of affairs. In the first place, we must admit that all are small, and therefore less likely to be noticed than otherwise; and, secondly, that a number were taken in territory that has never been carefully worked,
and in one or two localities little if any work has ever been done. Carbonata montana and microcephala were all taken in such region, namely, the mountains of Virginia and Kentucky, whose vast expanse cer
and when there in 1885, on the "Black Ridge" of the Cumberlands in Kentucky, I saw, among others, five of what I now and then firmly believed to have been montana, but owing to circumstances was unable to secure the birds. Concerning R. cuvieri, I can only say that the species is a supposed hybrid between R. satrapa and R. calendula, and unless exceedingly close could not be distinguished from one of these. Therefore, among the thousands upon thousands of kinglets that yearly pass the student, it is not improbable that specimens of this bird exist, and by collecting a large series one or more might be obtained and a long disputed point settled.
H. bachmani is a well tried and thoroughly estabished species, and up to within a few years was frequently taken. Several ornithologists have made trips through the localities in which it was formerly known to exist-South Carolina, Georgia, and Cuba-but nothing concerning it has of late been heard. It seems improbable that the species could have become extinct, and future explorations, perhaps in comparatively new country, may serve to bring it again to light.
Of H. cincinnatiensis, but one specimen has ever been taken, and that near Cincinnati, Ohio. It is presumably a hybrid between H. pinus (pine warbler) and Geothlypis formosa (Kentucky warbler). If such is the case it is unlikely that it will ever be taken again, and it ought hardly to have a place in this list, as it is considered more of an oddity than a species.
Brewster's linnet (A. brewsterii) and Townsend's bunting (S. townsendii) are each represented by a single specimen, and remain unique. No one knows to a certainty whether they are hybrids or representatives of distinct species. The one has not been taken since 1881; the other dates from as far back as 1833, when it was taken by Mr. J. K.Townsend, on May 11, in Chester County, Pennsylvania. It is doubtful whether either will ever be taken again, and if perchance it should, unless taken in sufficient numbers to guarantee its position, it would but confirm the opinion of its being the offspring of two distinct species. This, then, sums up the list, which, with the exception of three, still stand a chance of being rediscovered and placed' on the permanent list of North American birds. There is always something peculiarly fascinating about searching for that which is liable to turn up at any moment, and until all disputed points in our ornithology are settled, students will continue to search for the desired information.

The Decadence of the China Tea Trade.

The Chamber of Commerce of Foochow, one of the three principal centers of the export tea trade of China, has responded to the appeal of the Chinese government, through Sir Robert Hart, to suggest remedies for the serious decline in the China tea trade. The substance of the letter in which this appeal was made was published in the Times of November 14. The Foochow Chamber points out that the vital consiđeration is the duty. Heavily taxed China tea cannot compete with the duty-free tea of India, and if the taxation is not remitted, the tea trade of China is within a measurable distance of extinction. The entire crop of Indian tea in 1890 will be laid down in London at a cost of 6 d . per lb ., or under, while the average cost of the Foochow Congou this year was 9d. per lb. laid down in London, for teas inferior to those of Indian growth. "It is too late ، to recover the ground lost, but timely and vigorous measures may possibly enable China to retain a good share in this important trade.'
Other causes have contributed to the decadence of the China tea trade. Among these, the Foochow Chamber mentions negligent cultivation, imperfect firing, excessive admixture of dust and stalks, and fraudulent practices on the part of the native tea guilds. Formerly it was the practice among tea growers to trench the ground in the plantations, manure the plants, and prune them at least once a year, while every year some were replaced by new shrubs. Now, however, no trenching, manuring, or pruning is done, no new stock is planted, and the worn-out trees are so stripped that four and even five crops are taken instead of three, and the last crops are torn off with shears or bill hooks. "No wonder the teas show deterioration. No wonder the Indian leaf is preferred to such a product." Owing to want of sap in the leaf, the teas are so lightly fired that they commence to deteriorate within three or four months of packing. The dust and stalks have lost the Continental markets and those of Australia and Canada to the Foochow teas, and caused the latter to be replaced by tea from Ceylon.-London Times.

ONE of the best and simplest remedies for torpid liver or biliousness is a glass of hot water with the juice of half a lemon squeezed in it, but no sugar, night and morning. A person to whom this was recommended tried it, and found himself better almost immediately. His daily headaches, which medicine had failed to cure, left him; his appetite improved, and he gained several pounds within a few weeks. This is so simple a remedy that any person thus afflicted will do well to give it a trial, as it cannot possibly do any harm.

pascal's vase.

r. o'conor sLoAne, pHid

The law of the pressure produced by a column of water is very perfectly illustrated by the apparatus known as Pascal's vase. In the illustration is shown a method of constructing it that is far better adapted to the purposes than the usual one. Several experiment or modifications of experiments can be carried out with it that the regular apparatus does not admit of. As shown, it is very simply made, and its con struction will be within the capacity of any one of moderate mechanical ability.
For the vase, a wide-mouthed bottle is selected. This should have as true a neck as possible, as regards its lower face. The bottom is first cut off This may be executed in various ways, the most reliable, perhaps, being the time-honored method -with a hot poker. The neck has now to be ground. Some sand is placed upon a glass plate resting on a table, and is well moistened with turpentine. The bottle is held on this neck downward and rubbed around for half an hour. Care must be taken to hold it steady, so as not to rock it. In this way a flat surface is produced, which may be smoothed off with ground pumice, used like the sand. The sharp edge, where the bottom was cut off, may be removed by similar grinding or by a few strokes of a file.
If the grinding is well done, the bottle, when placed with its open neck downward and resting upon a piece of glass, can be filled with water, which it will hold with scarcely any leakage.
A wooden frame is next made to hold the bottle. A semicircular opening grasps it tightly near the shoulder, holding it a couple of inches above the base If it rocks or moves, a band of paper can be used a packing to secure it. To close its neck, a plate of per fectly flat glass is cut a little larger than the outside diameter of the neck. The plate may be square, octagon, or circular. The latter is the best shape.
A support for a balance beam is mortised or screwed fast to the base. A slot is cut in its axis, within which the balance beaw can play. For fulcra, or bearings, for the knife edges, two wood screws are driven into the top on each side of the slot, and shallow open grooves are filed in them. The beam works upon knife edges, which are thus constructed. An iron bolt, about threesixteenths inch diameter, is selected, one which has a long thread being best. Two nuts are required. One is screwed up as ficir as it will go. A hole is made through the balance beam, and the bolt is thrust through it until the nut comes against the beam. Then the other nut is screwed up so as to hold the beam in place. The projecting portions of the bolt are filed off to a straight and true knife edge, and the head of the bolt is cut off. If the threaded portion of the bolt should be too short to admit this treatment, one nut may be reamed out and passed beyond the thread upon the cylindriyond the thread upon the cylindri-
cal portion of the bolt. There it must be secured by soldering. This forms a good abutment for the beam to bear against. Care should be taken to have the bolt perpendicular to the beam. The knife edges are quite hard enough for the limited work the balance is required for.
Upon the upper surface and near the end of the bean a notch is made. Into the other end at the upper surface an iron gin is driven as near as possible to the center of the opening of the neck of the bottle when the beam is in its bearings. This pin is filed to a sharp point. A couple of lead weights are arranged to hang from the notched end of the beam. These are easily cast in paper. A sheet of paper is rolled around the end of a round stick of wood, such as a broom handle, so as to project a couple of inches beyond the wood, and tied securely with string. The paper should be eight or ten layers in thickness. Into the cylindrical cavity thus formed the lead is poured when just melted, and while still fluid the suspending loops are placed in it, and held until all is solid. Two weights of different sizes should be provided.
The apparatus is arranged as shown in the cut. The weight holds the glass plate against the bottle, only the sharp point of the pin on the balance touching its under surface. Water is now poured into the vase. If the weight is not too heavy, as soon as a certain level is reached the water will begin to run out between the glass plate and the ground surface of the neck. The level of the water where this occurs is marked by springing an India rubber band occurs is marked by springing an India rubber band
around the bottle. This illustrates the downward pres-
sure of water. The flask can never be filled any deeper. Any excess of water introduced escapes until that level
is reached. The flask may now be emptied, and a cork fitted with two small tubes of any size and shape is inserted from above into the neck. Water is now poured into these. The object of having two tubes is to permit air to escape from the space between the cork $/$ t

PASCAL'S VASE.

and plate. A single tube, if of sufficient diameter, will answer. As soon as the marked level is reached, the plate is again forced off its seat and water escapes. The tubes can only be filled to the same level as the large vase. Finally, the tubes are removed, the flask is half filled, and a solid cylinder, such as an empty bottle, is inmersed in the water so as to raise its level. Nothing happens until the mark is reached, when again the Thate is forced off its seat and water escapes.
Thus law is proved that the pressure
Thus the law is proved that the pressure exerted by a column of water on a given area varies with the height of the column of fluid producing it, and not with its volume or shape.

THE ELECTRICAL TYPE WRITER.

by F. Higeins.
This apparatus, which fulfills the functions of a type writer at any distance from the keyboard, consists of a type wheel, which contains the letters of the alphabet, numerals, and stops. The rotation of the type wheel
is effected by meansof intermittent currents transmitted
at its end, and carries an armature, which is acted upon by an electro-magnet.
The type wheel is automatically traversed horizonally after the printing of each letter, in order to take up a position for the succeeding character until the end of the line is reached, when the operator restores the wheel to the starting position by pressing the appropriate key. At the time this takes place the paper is advanced sufficiently to space between the lines, and the operator may by making successive contacts rapidly advance the paper as much as may be required, either to commence a fresh subject or to eject sufficient paper to bring the end of the message well into view.

The lateral spacing of the characters is uniform, and is determined by the printing operation. The platen frame, in falling back, rotates a screw which carries the type wheel and ink roller. The spacing between the lines and the return of the type wheel to the starting point are effected at the same time by pressing a key which corresponds to a position on the commutator and the type wheel which is not occupied by a letter. A pin projecting from the type axis at this point causes the intervention of a block which acts as a fulcrum to a lever connected to and worked by the platen, but which only comes into operation to release the type wheel when thus provided with a fulcrum, and consequently only when the act of printing takes place with the type wheel in this position. A spring returns the type whecl to zero.
Synchronizing between the receiving and transmitting apparatus is secured by means of a lever, which is geared to a type axis by friction, and is arried by the revolution of the latter inta the path of a projecting pin. Upon a print being made, this lever is reset at its starting point, but should three revolutions of the type wheel be made without a print, the wheel will be arrested at zero. By commencing a message always upon the zero or spacing key of the transmitter, the apparatus will be in unison.
Ink is supplied from an inking wheel in the usual manner.-The Electrician.

Making Pig Iron with Gas.

The American Manufacturer says that Mr. Jacoh T. Wainright, a well known metallurgical engineer of Pittsburg, Pa., has succeeded in making pig iron with natural gas as fuel. His furnace differs from the ordinary blast furnace in this, that, while dispensing with coke, it has evercome the great difficulty noted n connection with other experiments in gas furnaces by a mechanical device for supporting the burden. This device consists of a series of pipes covered with fire clay tiles, and at the same time ventilating the pipes with a current of air. A combustion chamber is also connected with the furnace, which reduces the amount of gas needed to produce the required heat, and also prevents the chilling of the furnace, which has been a great obstacle to the success of other experiments.
In the new furnace the ordinary cupola blower is used, and the gas and air are introduced in a very simple manner into the combustion chamber in a separate pipe. The current for cooling the tubes, already mentioned, is supplied from the same air blast, and from thence may be utilized in the furnace. Ordinary cupolas may be easily altered, so as to do the required work, by adding the combustion chamber and the protected tubes for supporting the burden.
The tests were made at the iron and lead works of William G. Price, on Price Street, where the inventor had the hearty co-operation of the manager, Mr. David Carlin. Mr. Sarlin says that the furnace worked rapidly, and that its success is no longer an experiment.

Transfer Paper.

Brackelsberg's multiplying paper consists of sheets of paper, each one supplied with a coloring layer, whose principal element is a violet aniline methyl. An oiled leaf serves as a hard, smooth under layer. Place a sheet of the copy paper on this, then a sheet of writing

THE ELECTRICAL TYPE WRITER

rom a commutator under the control of a pianoforte keyboard acting on propelment pallets carried by the of suspended over an electro-magnet. The number type wheel with respect to the swinging frame, which serves as a guide to the paper, and at the same time as a platen to make the impresaion. Whis frame is pivoted
paper, and write with a hard lead pencil. The back of the writing paper will give a negative of the writing in high color. Wet the copy sheet thoroughly, and from it twenty or more copies can be made, which will not roll nor show a gelatinous coating Embroidery and compass-sawing patterns are finely renderer in thin way.

ENGINEERING INVENTION.

A grip for tram cars has been patented by Mr. Daniel T. Denton, of Tower Mines, Minn. Combined with a hook secured on the bottom of the
car is a staple adapted to enage the hook, a slide carrying the staple and being secured to the cable, making a device by which a car may be attached to or detached from a wire rope without stopping.

miscellaneous inventions.

A car brake has been patented by Mr. David D. Chidester, of Hackettstown, N. J. The device
has a brake with a shoe connected to a main body, has a brake with a shoe connected to a main body,
combined with an interposed spring or springs, to precombined with an interposed spring or springs, to pre-
vent the "setting" and sliding of the wheels, and the vent the "setting" and sliding of the
consequent fiatening of their treads.

A compressor has been patented by Mr. Harry \mathbf{H}. Jones, of Lancaster, N. H. It is especially adapted for compressing dry or nearly dry powdered
substances into solid form, particularly in the making substances into solid form, particularly in the making
of what are known as compressed tablets, in combinaof what are known as compressed tablets, in combina-
tion with a novel mechanism for automatic measuring.
A walking toy has been patented by Mr. George T. Fallis, of st. Joseph, Mo. It is a mainly
 human beings or animals, whereby, when placed upon an inclined plane, it will by its own gra
cally step out and walk down the plane.
An adjustable cuff retainer has been patented by Mr. Robert L. Prath, of Tigerville, La. I It is a device wherein a cuff fastener and wristband fast-
ener are adjustable with respect to a sleeve fastener, whereby the sleeve wristband is adjusted coincidently with the cuff, so that it will not project beyond the cuff.
A wrench has been patented by Mr. Vandiver J. Van Horn, of Goff's, Kansas. It is so made that a pipe may be readily gripped and turned
thereby when lying upon the floor or close to a wall, giving a large amount of leverage with a small device which will hold firmly without slipping any sized pipe or nut within its capacity.

A harness pad has been patented by Mr. Somers Van Gilder, of Knoxville, Tenn. It is formed
with side flanges, in combination with strips stitched to he outer surface of such fianges, with an ornamen secured to the strips between their outer edges and the edges of the skirt, whereby the harness may b
highly ornamented at comparatively small cost.

A cuff holder has been patented by Mr. William J. Walters, of Prospect, N. Y. It has
three integral parts, a head, shank, and tie, the latter dapted for attachment to a piece of elastic carrying a one end any approved form of spring snap for attachment to a shirt, the whole device being simply and
cheaply constructed and of neat appearance.

A hutt has teen patented by Mr. John E. Parker, of Hamilton, Ontario, Canada. It is designed more particularly for doors hinged to swing in both directions, the outer end of the bolt which engages with bevels, and with a stop for holding the bolt in the aper ure of the plate.
A shutter worker has been patented by Mr. James K. McGukin, of Newark, N. J. This in vention covers a novel construction and combination o parts, affording means whereby a shutter may be opened
or closed, and locked in either position, with the lower window sash down, the device being simple, cheap, and fective
A child's carriage has been patented by Mr. Eugene A. Gerbracht, of New York City. This in parts, making a carriage of simple and cheap design which can be readily transformed from a carriage to cradle, or vice versa, and in which the body is peculiarl hung to give a fine spring effect.
A car pushing device has been patentd by Mr. Richard Lukins, of Randolph, Neb. Th base has depending guides on opposite sides of the rail,
and the connection of the pinch bar with a handle lever is in the rear of the pivoted connection of the lever with a swinging fulcrum, making a device of very simple construction calculated to develop great power.
A coal scoop has been patented by Mr Frederick B. Barrows, of Duluth, Minn. It is made with two body parts pivotally connected to a support-
ing frame by bars or pins fitted to the walls of the ing frame by bars or pins fitted to the walls of the
scoop sections, and passed through tubes fixed to the supporting frame, with other novel features, being designed for automatically loading, carrying, and disharging coal, grain, or other substances.
A method of and device for fitting garments has been patented by Mr. Edward Stahl, of Prescott, Arizona Ter. It consists in applying pattern
material to a bust band, forming a downfold in the material, and applying the band and material to the bust just beneath the arms, then cutting the downfold to fit over the shoulder, and cutting the material below the over the shoulder, and
band to fit the waist.
A tamping tool has been patented by Messrs. Warren B. Waldron and George C. Boller, of
Folsom City, Cal. It consists of a head formed with a Folsom City, Cal. It consists of a head formed with s
tapering dovetailed groove, and a handle with a taper ing proiection on its lower end, fitting in the groove of the head, making a tool which may be used without un
necessary stooping on the part of the operator, and in necessary stooping on the part of the operator, and in
which the head, as it decomes worn, may be renewed.

A saw mill feed device has been pa tented by Mr. W. Hampton Gibbes, Jr., of Columbia s. C. Friction disks of unequal size are fitted to slide
on the carriage feed shaft, with a lever for moving on the carriage feed shaft, with a lever for moving
them, in combination with friction disks mounted on another shaft, the two sets of disks being arranged to
engage each other to effect the reciprocations of th engage each other to effect the reciprocations of th
carriage and control their speed at will.

A tricycle has been patented by $\mathbf{M r}$ George W. Rodecap, of Middletown, Ind. This invention covers a novel construction and combination of parts in a machine in which the power is applied to the great regularity, while the tricycle may be steered in any direction, and the pivot wheel quickly turned a y angle with relation to the frame

A laryngoscope has been patented by r. Josef Leiter, of Vienna, Austria-Hungary. It has an electric lamp within a cylindrical casing, and a re flector for throwing the rays into the cavity to be ex-
amined and in line with the eye of the operator, with other novel features, making an improved surgical instrument for viewing interior parts of human and nimal bodies.

A dental matrix has been patented b Mr . John H. Reed, of Lancaster, Wis. It consists of a
hard metal yoke, with a screw, and a band of softer hard metal yoke, with a screw, and a band of softer
metal, to be attached to the yoke by tongues passin through apertures in the yoke, making a device for sup porting the filling while being inserted in a cavity in walls of the tooth cavity

A dental plugger has been patented by r. Benijah S. Byrnes, of Memphis, Tenn. The casing diminished to vary the force of the blows struck by the hammer, while the plugger may be thrown out of and into gear without stopping the revolution of the spindle and the device is not liable to injure the teeth or unduly hurt the patient.
An electric conduit has been patented y Messrs. Robert Van Buren and James J. Powers, of brooklyn, N. Y. It is formed of sections of non-conthe electrical conductors and provided with recesses o sockets at one end, being tubulated at the opposite end so that the sockets of one section will receive the pro jecting portions of the opposite section, making con
A slate grinding or dressing machin has been patented by Mr. Samuel S. Marshall, of Slat-
ington, Pa. It is for grinding school and other slates, and has a wheel with flat grinding surf ace and passage for sand and water, there being beneath the whee hollow standards supporting vertically adjustable tables
apon which plates carrying the slates are reciprocated, the pressure of the grinding wheel being increased or diminished as desired.
A wire tightener has been patented by Mr. John W. Wear, of Walker, Mo. It has tongs with jaws having guides for the wire, with interlocking strain, a drum or wheel being journaled in the tongs and a wire connected with the drum or wheel, with or taking up the slack wirès, tightering feuce wires, etc. The same invento has a further patented invention in which a straining with the wire to be strained by a rod or chain with ook, and the lever being so arranged that more or less hook, and the lever being so arra.
strain can be exerted, as desired.

NEW BOOKS AND PUBLICATIONS.

Under the Southern Cross. By Maturin M. Ballou. Boston : Ticknor \&
Co. 1888. Pp. xi, 405. This very elegantly printed volume describes the author's travels through Australia, Tasmania, New
Zealand, Samoa, and other, Pacific islands. Most of the ground covered by the work may seem old material, but the constant development and increasing civiliza on of the regions in qnestion gives a value to all re new and fresh book of travels. Mr. Ballou's graceful and graphic style imparts much vivacity to his tale. His description of the present status of the uncivilizable aborigines of Australia is of special interest in the light of the march of events, which sooner or later will sweep the interesting natives off the great continent.
The book may be unhesitatingly commended to our The book
Mandal of Pharmacy and PharmaCEUTICAL CHEMISTRY. By Charles f. Heebner, Ph.G. New York: Pub-
lished by the author. 1887 . Pp. 213 .
Price, $\$ 2$; interleaved, $\$ 2.25$ The object of this work is to supply the student of harmacy with a manual adapted for his special work At the same time, the author by his research and judiious selection of material has made much more than permanent value as a reference book for the practicing hharmacist. It treats of the chemical examination of ll leading articles of the pharmacopocia, the tests for purity, etc. The various processes of pharmacy, percolation, flitration, and the like, are first described quite exhaustively. Tnen inorganic and organic harmacy are successively treated, giving the examina-
ion of the many compounds dispensed by the pharon of the many compounds dispensed by the phar-
macist. In many cases the preparation on the large scale macist. In many cases the preparation on the larg where-
flthe prods is given, and reactions are used wher er required. The book may be had either inters an at or the owner's special notes or plain. It formse.

Manual of Practical Hygiene. By Edmund A. Parkes, M.D., F.R.S.

$\underset{\text { Eyited by F. S. B. Francois de Chau- }}{\text { By }}$
Edited by F. S. B. Francois de Chau-
mont, M.D., F.R.S. Seventh edition.
Philadelphia: P. Blater
Co. 1887. Pb.
It is quite impossible to review this comprehensive pace. It covers the subject of hygiene in all its bearngs and relations. The conditions of soil affecting health and modes of examining and preparing the site for encampments are first treated. The question of
water supply comes next. This includes the quality of water supply comes next. This includes the quality of
and other methods of puriflcation, the search after water,
etc. Next comes one of the most difficult problems in camp and city hygiene-the removal of excreta. The different methods of securing adequate sewerage by water and the dry methods are fully described. Ai nd its impurities, warming, ventilation, food and diet, under their headings. Exercise, clothing, and the hy niene of the individual Under climate, the various conditions of the air, it humidity, composition, including ozone and malaria are treated. Meteorology and the use of meteorological instruments, disinfection and deodorization statistics, and the prevention of some common diseases fill the last four chapters of Book I. The second book is of more special character and is devoted to the soldier This is largely written from the English standpoint, the ocalities of foreign service embracing the leading fields of English operations. The third book, devoted o chemical and microscopical investigations of water air, and food products in general, is of special interes and value. The book contains numerous illustration and a number of very interesting plates in microscopy A reasonably full index, the table of contents, and the generally clear and classified arrangement of the boo
add to its value and make the work of reference

SCIENTIFIC AMERICAN

BUILDIN EDITION

FEBRUARY NUMBER.

table of contents.

1. Elegant Plate in Colors showing the perspectiv g about Five Thousand Dollars each, with foo plans, sheet of details, etc.
2. Plate in Colors of a House in the Colonial style costing about Five Thousand Five Hun
3. Elevation and first story plan of a Splendid Apart ment
Perspective view and floor plans for a Suburba osting Sixteen Thousand Dollars.
lustrations consisting of plans and perspective, for a corner house to
Hundred Dollars.

Mass.
Perspective view and floor plans of a Dwelling of moderate cost.
Illustrations of a Residence at Latrobe, Pa., and residence at Pittsburg, Pa., with floor plan. Engraving of the beautiful new Cancer
New York.-C. C. Haight, architect.
Front elevation and plan of a small school …․ costing about One Thousand Eight Hurdred costing
Dollars.
11. Perspective sketch of Main Stairway and Hall of the Handsome Residen
12. Illustrations wilth floor plans of Snow Hall of Natural History, at Lawrence, Kansas.-Mr. J. G Haskell, Topeka, Kas., architect.
Engravings of the Tavern, the Casino, and Cas Grande, at Decatur, Ala., also
Anniston Inn, at Anniston, Ala.
sketch of the Birthplace of James Watt, at Green ock-on-the-Clyde.
Riverside Residence at Maidenhead.-E. H. Bour chier, architect.

five figures.

wo perspective views and floor plans of a Villa on the Square of the Bois de Boulogne, in Paris.
18. Pictures of the great Lumber Raft recently lost a

Designs for Furniture
20. Scene in the Court of Inquiry as to the Cause of the que, Paris.
Miscellaneous Contents : Plastering; how it is applied, finished, and decorated.-Brick as a Buildt Bologna.-How I Build an Ice House.-Fire proof Wood.-Flow of Water through Pipes. Classiflcation of Styles.-Recent Discoveries a Pompeii.-Pressure at which Lead Pipes Burst. New Materials and Inventions.-French Plaster.New Method of Waterproofing Brick Walls.-Build ng Prospects.-Importance of Carpentry.-Per-
meability of Building Materials.-Compost for Cuttings.-Stiffness in Girders.-The Temple of Soleb, Ethiopia.-The Architect of Rome--Worth less "Fireproof" Buildings. - Compound fo Patching Stone.-The Chair of Queen Hatasu, Heating, illustrate er.-An Agate Forest in Arizona.-Pratt's Blind Opener, illustrated.-Drawing Instruments.-The Cortright System of Metal Plate Roofing, with illusMetal Work, with illostration.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies cents. Forty large quarto pages; equal to abo olly, hundred ordinary book pages ; forming, pract cURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and llied sqbjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largest Circulatio any Architectaral pablication in the world. Sold by all newsdealers.

MUNN \& CO.. PUBLIsHERS,
P1 Broadway, New York.

The charge for Insertion under thes head is One Dollar

 a line jor each insertion; about eight words to a line. Advertisements must be received at publication office.as early as Thursday morning to appeari n next issue.

A RARE OPPORTUNITY.

Fifty thousand dollers in the hands of an upright man

 good business habits will secure one-half interest in an eart of the city of St. Paul, upon its located in the orking 150 men, doing a safe and highly legitimate usiness.Increasing business demands more capital. The right pportunity; but any one unprepared for prompt action ill please not reply. The best of references will be ad will be required. Address A. S. TALLMADGE,
Secreary Chamber of Commerce, St. Paul, Minn. Wanted-Latest and most approved machinery for The sole The sole builders of "The Improved Gre
are the Providence, \mathbf{R}. L., Steam Engine Co
For House Pumping.-For sale cheap-A $5^{\prime \prime}$ Rider
ir engine, with 1\%/'' pump. But little used. H. N. M., ir engine, with $11^{\prime \prime}{ }^{\prime \prime}$ pump. But little used. H. N. M.,
O. box 773 , New York. Manufacturers of ice and cold air machinery, send adrress to W. A. Stiles, 15 North Clinton St., Chicago, III.
Foree Bain, 76 Market St., Chicago, designer and con. anactor. Electrica Send postal to A. J. Holmes, Saratoga Sprivgs, N. Y., Belting.-A lot of good second hand belting for sale heap. Samuel Roberts, 369 Pearl St., New York. Wanted-Manufacturers of ice machines to correond with Geo. A. Noble, Anniston, Ala.
Invention to dispose of. B. Dale, Appleton, Wis.
$\$ 50,000$ worth of farms, etc., for good business or
gas machine, 600 light, with Il the appurtenances. In good order. Apply to Secretary of the Northern Liberty Market Co., Washington, Drills, $1,2,3$, and 4 spindle, driven by endless belt. Conn.
Portable grinding mills. Chas. Kaestner \& Co., Portable
Nickel Plating.-Manufacturers of pure nickel andes, pure nickel salts, polishing compositions, etc $\$ 100$ Lute Waior." A perfect Electro Plating Machine. utft for plating, etc. Hanson, Van Winkle. Co Net outft for plating, etc. Hanson, Van Winkle
Burnham's New Improved Turbine. Sold at cost of manufacturing and advertising. Address York, Pa. Perforated metals of all kinds for all purposes. The For the latest improved diamond prospecting drills,
ddress the M. C. Bullock Mfg. Co., 138 Jackson St., The Railroad Gazette, handsomely illustrated, pubished weekly, at 73 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federal ... Boston, and 3 Liberty St., New Yon, have just isproved forms of Pumping Machinery of the single and duplex, steam and power type. This catalogue will be Link
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Iron Planer, Lathe, Drill, and other machine tools of Feed gesign. New Haven Mig. Co., New Haven, Conn. Sup grinders. Chas. Kaestner \& Co., Chiago, 1 . Supplement Catalogue.-Persons in pursuit of inforiffc subject, can have engineering, mechanical. or scienNTIfic Ammerican Supplement sent to them free. he SUPPLEMENT contains lengthy articles embracing cience. Address Munn \& Co., Publishers, New York. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maNo. 11 planer and matcher. All kinds of woodworking machinery. C. B. Rogers \& Co., Norwich, Conn.
New Portable \& Stationary Centering Chucks for rapid entering. Price list free. Cushman Chuck Co., Hartford,
Conn. Steam Hammers, Improved Hydraulic Jacks, and Tube 60,000 Emerson's 1887 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen. Pa., U. S. A
Hoisting Engines. D. Frisbie \& Co., New York city.
"How to Keep Boilers Clean." Send your address "r free 8 page book. Jas. C. Hotehkiss, 120 Liberty St., N. Y.

Paint mills. Chas. Kaestner \& Co., Chicago, Ill.
Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainment. 152 page illustrated catalogue free. McAllister Manufacturing Optician, 49 Nassau St., New York. Lathes for cutting irregular forms a specialty. See Practical Working Drawings of machinery made by. K. Mansfield \& Co., 280 Broad way, N. Y. Lifeong mechanics. One formerly R. R. supt. M. P. Im-
portant references. Work guaranteed. Correspondence portant r
invited.
Patent swing cut-off saw, with patent shield for saw Slistone Machine Co., Fitchburg, Mass.
Split Pulleys at low prices, and of same strength and

hints to correspondents.

Names and Address must accompany, all lietters, or no ontention informill be maid therot.

 Oprice.
Milerred sent for examination should be distinctly
marked or labeled.
(1) J. S. asks by what means street venders of microscopes give the appearance of animal life existing in a drop of water. We have tried many
drops of stagnant water but are unable to discover the drops of stagnant water, but are unable to discover the
existence of animal life to extent shown by them on the street. A. The vender has a little sour paste at hand, water he places in the field. Sae explanation in Scies tific American of March 13, 1888 .
(2) W. H. B. asks: 1. Is there any remedy that I can use to wash the eyes that will
strengthen them and not injure them? A. Use a little ealt in water for bathing them once or twice a day. 2 . A description of a simple water motor that I can make to run a lathe? A. See Scientific American Supp
ment, Nos. 180 and 270 , for simple water motors.
(3) C. W. asks if photographer's tin type is too thick for the diaphragm of a phonograph.
What other substauce could be used in the place of tin type? A. Tin type plate, or very thin tin, answers very
well. Mica has been used for this purpose, with good
results.
(4) Bell asks: How many Law cells do Ineed to ring a small resistance electric bell 400 feet
distant?
How do you work out such problems? Is there any other open circuit cell preferable to the sal ammoniac? What is the ordinary reesistance of the com-
mon $21 / 2$ inch bell? A. Two or three would be sufficient. mon $21 / 2$ inch bell? A. Two or three would be eufiticient.
There is no way of working out such problems, as the There is no way of working out such probems, as the tery is the most popular for open sircuit, although the
Lalande-Chaperon potash battery is excellent; thefe is no standard resistance for such bells.
(5) N. J. G. asks how to make one or two batteries (to put in the same circuit with two Lee
clanche batteries) to ring a large electric bell three or
 TTFrC American, vol. 57 . No. 25, if charged with a so-
lution of sal ammoniac, may be used in circuit with Lelution of sal ammoniac, may be used in circuit with Le-
clanche batteries. The latter are, however, the best.
(6) J. L. S. asks if there is anything that can be applied to an old scar (in the face) that will take out the blue color. A. Under certain circum-
stances blisters made with croton oil have produced stances blisters made with croton oil have produced
satisfactory results, but all such experiments should be satisfactory results, but all such experiments should be
made under the guidance of a physician who is a spemade under the guidan.
cialist in skin diseases.
(7) C. L. H. asks: How to make a liquia cement for putting biil heads, letter heads, etc..,
in tablet form, thatcan be applied cold with a brush, in tablet form, thatcan be applied cold with a brush,
and also, how to color it reed, blue, or green. A. The and also, how to color it red, blue, or green. A. The
article generally used consists of a cheap glue with 5
per cent of glycerine made with a suitable composition per cent of glycerine made with a suitable composition
with some coloring material like Prusian blue, car-

any other dry pigment.

(8) M. F. B. asks : 1. Does the presence of copper tubes in steam boilers cause electrical action
to take place in the same? A. They are liable to.
 The difference of expansion and contraction between
cooper and iron, with their additional cost, is the prin cipal cause of their little use.
(9) B. P. asks how to test sugars and to detect if they contain any glucose. A. Dissolve the
sugar in water, filter through charcoal if colored, then sugar in water, filter throngh charcoal if colored, then
add Fehling's solution, and a red precipitate indicates
(10) F. A. F. writes: I have a valuable book near which a lamp upset and spilled part of
it with oill-common kerosene. How can I remove the oill, without destroying papere. or remowng the thonk ine A
Much of the oil can be removed by cautiously heating Much of the oil can be removed by cautiously heating
the book, causing the evaporation of the more volatile constituents. Kerosene can be removed by passing a
brush dipped in essential oil of turpentine, heated, over brush dipped in essential oil of turpentine, heated, over
the paper while still hot. When it is removed, dip anthe paper while still hot. When it is removed, dip an-
other brush into ether, chloroform, or benzine, and other brush into ether, chloroform, or
apply over the stain, especially the edges.
(11) L. W. M. asks (1) how to make or mix the wax for electrotyping. A. Put some com-
mon beeswax into an earthenware pot, and place it over a slow fre; and when it is all melted stir into it a little
black lead or white lead, about 1 at to black lead or white lead, about 1 oz. to the pound of
wax. This mixture tends to prevent the mould from cracking in the cooling, and from floating in the solution. The mixture ehould be remelted two or three
times before using it for the first time. 2. The remedy for concaving of the mould? A. It will not concave if made thick enough. 3. What is "Star Moulding Composition," which is something beeides beeswax?
A. It may be the composition recommended in answer A. It may be the composition recommended in answer
1 , or it may be beeswax alone, or a mixture of beeswax 1, or it may
with resin.
(12) H. P. writes: I have a spirit varnish made of juniper gum, $80 \mathrm{gr} . ;$ mastic, 100 gr .; elemi,
30 gr ; concentrated essence of turpentine, 60 c. c .;
 with dragon's blood, yellow with gamboge. What trans-
parent brown stain can I use in connection_with the
abover (It is for violin varnish.) A. Procure any
aniline color fromithe druggist, of desired shade, and aniline color fromithe druggist, of desired shade, and
dissolve it in the afcohol, incorporating it directly with dissolve it in the aftooh
the other ingredients.
(13) A. Z. asks : 1. Can you give me the
formy/a for making quinine and rum hair tonic? A. formy/a for making quinine and rum hair tonic? A.
Tb/ quinine tonic has the following composition : Yceerin, 4 oz.; alcohol, 3 oz.; water, 10 oz.; tinct cantharides, 2 drachms; sulphate of quinine, 25 grms. in of roses, 2 drops; neroli, 5 drops; tinct. cuabear
sufticient, and sulphuric acid sufficient to dissolve the quinine. The other consists of bay rum, 2 pints; alcohol, 1 pint; castor oil, 1 oz; ; carbonate of ammonia,
$1 /$ oz.; tinct. cantharides, 1 oz. Mix them well. 2 . 1 . junior only used after a person's name when the fathe is living and bears the sime names A. When a man in
business has become widely known as "Jr.", he some business has become widely known as "Jr." he some
times retains the same form after his father's death.
(14) N. U. asks: What will remove "rust " from window glass. It is something that forms
on the glass if stored in a damp place for a long time. A. Try a mix ture of 30 parts of water with 7 of hydro chloric acid and a trace of iodine. Rub the plate with
(15) S. S. G. asks: Will there be any economy in fuel by using the exhaust from the engine for heating purposes where a number of coils of 1 in.
pipe are used, and will the engine loose any power by pipe are used, and will the engine loose any power by
so choking the exhaust? A. The use of exhaust steam is not only economical to the extent of its entire value as a heating element, but is coming into almost univer-
sal use in our factory practice. The later systems of sal use in our factory practice. The later systems of
distribution relieve the engine in some cases of amy ad-
dition ditional back pressure, and where long exhaust pip
are used can be made to relieve the engine from its no mal back pressure. There are but very few places w more than from 14 to $1 / 1 \mathrm{lb}$. of back pressure will be quired to utilize the whole exhaust.
(16) C. J. M. asks : İ there any benefit derved from wetting bituminous coal before firing in an ordinary steam boiler furnace? A. None whatever,
beyond the sticking of the dust and slack together, to prevent its falling through the grate, or the dust being drawn over the bridge wall in brick set boilers, or into the tubes of locomotive boilers, without being burned.
All the water used in this way is so mueh heat wasted All the water used in this way is so much heat wasted
in converting it into steam to clog the tubes with
(fi) R. S. desires (1) a receipt for making a cheap, penetrating liniment? A. Alcohol, 1 quart; camphor gum, 2 oz;; spirits of turpentine, 2 oz.; and making olinuid due. Fill a glass jar with broke up glue.of first quality, then fill it up with acetic acid. Keep it in hot water for a few hours cntill the glue is all
melted. 3. A reeerpf for making a heap soap that will melted. 3. A receppt for making a cheap soap that will
remove grease and paint. A. Take of aqua ammonia, 2 oz.; soft water, 1 quart; saltpeter, 1 teaspoonful; shaving soap in shavings, 1 oz . Mix together; dissolve
the soap well, and it will be found to be an excellent rease eradicator.
(18) G. N. G. writes: In a 23 inch pinion driving whel, with 24 teeth, with a 9 foot spur
wheel, with 114 teeth, should the teeth be just the same wheel, with 114 teeth, should the teeth be just the same
size in both wheels to run nice, or should the teeth in the pinion wheel be a little smaller than those in the spur? The wheels are on a pair of hoisting engines. A. The pitch should be the same for both wheel and pinion,
but the sol But he orm of the teeth should vary with the relative
variation in the size of the ears in respect to each other. See Nystrom's "Mechanics," which we can
(19) J. S. asks: If I place a hollow vessel at the depth of 20 ft . deep in waterand fill it with air, say it contained 50 gallons, what amount of foot
pounds of power would it produce in its ascent to the pounds of power would it produce in its ascent to the
surface? A. The lifting power will be equal to the weight of the water displaced, with a correction for the weight of the vessel. A gallon weighs about $8: 331 \mathrm{lb}$.,
which multiplied by 50 is $4161 / 2$ pounds. Multiplying which multiplied by 50 is 41612 pounds. Multiplying
this by the distance gives the amount of foot pounds 8,330 lb., leaving out of consideration the weight of the

This should be subtracted.

(20) J. H. asks the proper way to set tuyere iron in a forge, to set mortar over the rim, or
let the rim of tuyere iron stand out over the mortar. A. Fire brick should be cut to fit snugly around the edge of the tuyere flange, a little above its face (say 144 to $1 / 2$ inch). If possible, cut the brick so that it will catch
under the flange, which will prevent the loosening of the brick in working the fire.
(21) J. O. asks (1) what can be put on A. Wiping the windows on the inside with glycerine is partial preventive of frost. Ventilation from the top or double glass is the best. 2. Will a stationary engine make a greater number of revolutions per minute with a
steam pressure at 120 lb . than with a pressure of 100 lb ., steam pressure at in
if the ordinary pressure carried is 100 lbs.? will not the A. The governor will regulate the speed of the engine with variations of work; but will not keep the regulated speed with increased steam pressure, without being itself
regulated for the increased presure.
(22) M. I. asks (1) how he can increase taynamo gibed in the Scr work 12 lights. Would it do to wind the field magnets of the dynamo described in Sciennific American SUPLLEMENT, No. 161, with No. 18 double cotton cove
ered wire? A. Do not ered wire? A. Do not depart from instructions given
for dynamo described in Sưpusmext, No. 161. To increase the capacity of the eight light dynamo, double the width of the cores of the field magnet, double the
length of the armature, using No. 19 wire on the armature, and same as in eight light on the field.
(23) S. asks in what form ammonia is used as a baking powder, and in what proportion with
other powder. A. Mis $1 / 3$ pound tartaric acid, $1 / 8$
and poond alum, 34 pound pure bicarbonate of soda.
better and simpler form of baking powder is the following: 30 ounces cream tartar, 15 ounces bicarbonate
of soda, and 5 ounces of flour. Alum is considered in of soda, a
jurious.
(24) F. B. F. asks : 1. How many 2,000 candle power electric lamps can be furnished with a
30 light dynamo? A. If the dynamo is rated for 30 arc lamps, but a few more can be supplied from it Possibly the rating is below its real power. 2. If a not the same as a greater electric force or power? A The work done by an electric current varies not ons r current at lower potential could be distributed by the ame expenditure of energy. 3. Does not each lamp added to a circuit offer additional resistance to the elec-
tric current? A. Each lamp added to a circnit in series ncreases the resistance. Arc lamps are usually used creases the resistance of the circuit. But it possesses its own definite resistance and counter electromotive force. If added to a circuit in either series or parallel, ction.
(25) C. E. G. asks: What method can
ased to clean the leaves of old books? See the ent, Nos 115 ind 124 . moved from the pages, and if so, how? A. Some inks it is almost impossible to remove without also destroy ing the paper. You migatry first washing the paper
with warm water, using a camel's hair brush, then the paper must-be wetted with a solution of oxalate of otash, or, better still, oxalic acid, in the proportion of the stained place with clean water, and dry it with lotting paper.
(26) A. M. H. asks the best way to remove burned oil from an engine, or other piece of cast
or wrought iron. A. Use a strong solution of caustic soda and water. What this will not remove, take off with a scraper. Finish bright work with fine emery
(27) J. E. W. desires directions fo anlyzing ice; that is the formula necessary to detect mpure parts in ice. A. Most of the impurities are solnelaborate analysis. Of course solid impurities can be detected by filtration, and an excellent test is to evapor-
ate a given quantity, and so determine. the total solid. acterial examination is also used.
(28) A. L. C. desires a receipt for mak ing Florida water. A. Take two drachms each of the ils of lavender, bergamot, and lemon; 1 drachm each of tincture of turmeric and oil of neroli; 30 drops oil of balul and 10 drops oil of rose; mix the above with
pints of deudorized alcohol.
(29) E. H. W. asks what cheaparticle to use to make sulphur tough. Must be something that
will dissolve under heat. A. Add resin or shellac to有 sulphur.
(30) J. K. F. asks: What will take the in of iron rust out of white marble? A. Take $1 /$ ounce butter of antimony, and 1 ounce oxalic acia, and composition to a proper consistence than, and bring the on the stained part with brush, after it has remained on ew days, wash it off, and
(31) G. C. S. asks how to clean silk lush so the surface will be as smooth and straigh
s new. Cleaning it with a liquid (as far as I know) leaves it in about the condition a drowned rat is in, fur all matted down. A. Clean it with the usual solvent, for which see table given in Scientific American
Supplement, No. 158. Then, to restore the plush, hold Supplement, No. 158. Then, to restore the plush, hold
the wrong side over steam arising from boiling water until the pile rises; or dampen lightly the wrong side of the plush, and hold it over a pretty hot oven, no ot, place upon it a wet cloth, and hold the plush ove and the steam will raise it
(32) P. G. H. asks : 1. What should be he focal distance, and distance apart of a pair of 4 inc condensing lenses for a magic lantern? A. The 4 inch placed back to back, nearly touching. 2. What should jective of medium power (achromatic)? A. The 2 inc objective for a lantern should be 6 inches focus fo each lens, plano convex; place 2 inches apart back to back. If each pair is achromatic, the details of curves
(33) B. D. F. asks concerning the use of arsenic for the complexion, in what form is it used, and if Fowler's solution of arsenic is dangerous in long
usage. If the nsage of arsenic changes the colors of the blood, or has it effect on the skin? A. We do no approve the use of arsenic in any shape for the com-
plexion, and would not indorse its employment except der the direction of a physician.
(34) E. L. H. asks : Kindly inform me chat work gives internal resistances of various sized
cells, etc. A. No such figures can be given, as every variation in the strength of solution makes the resistance
vary. For bichromate batteries without porous cells, vary. For bichromate batteries without porous cells,
Grove cell.
Daniell cell
Gravity cell
Smee cell.
$1 / 2$ ohm.
3 to 5
2 to 4
Smee cell...
(35) R. L. McI. writes : I have ten Grebatteries, each holang will they of had long without recharging? A. A 3 or 4 candle lamp fo
one or two hours
(36) W. W. B. asks: Is it a fact beyond question that plantsemit oxygen by day and carbon
for? A. Plants under the actinic influence of sunlight emit oxygen by day. At night they emit carbon dioxide gas. It cannot be acc
their other vital processes.
(37) C. C. B. asks : Will you kindly answer through your valued paper how sulphur may be
rendered plastic and melted? A. By heat; also by pouring into water while melted, and in the viscous tate. See query 29.
(38) Subscriber asks : Is there, or has here ever been, in existence any clock or other meown or diminished it is being replenished or re newed as fast as it is lost, so that, granting that the orever, without any addition to the original power? No.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for patents at home and abroad, enable us to understand the equaled facilities for procuring patents everywhere. A nopsis of the patent laws of the United States and ans
oreign countries may be had on application, and persons contemplating the securing of patents, either at home or which are low. in accordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO., office ScIENTIFIC Ambrican, 361 BroadMUNN \& CO., offic
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were Granted
January 17, 1888,

AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Air compressor, W. T. Forster....................... 376,589 Bag. See Feed bag.

 Baling press, B. J. Wilson............................ 376,461 Banana carrier, G. D. Sidway 376565 Barrel trussing machine, J. A. Seaman........... 376,487
 Barrel trussing machine, J. A. Seaman.............. 376,487 Berths, self-leveling ships', w. T. Milligan........ 376,542 Bit holder for bit stocks, H. Smiley.............. 3667 Blind stop, w. A. Stickney...... 376.686 Board. See Card board.

Boilers, preventive of incrustation of steam, C. J.
T. Burcey.. ${ }^{376,579}$
Bolt. See King bolt.
Bolt, J. E. Parker...56,54
376,673
Bolts, manufacturing, F. Mutimer................. 376,500
Book combination order, H. A. Bate...........
Book combination order, H. A. Bate.................
Box. See Cigar box. Oil press box. Pool ball
box. Toy money box. press box. Pool ball
rake. See Car brake. Electro-magnetic brake.
Locomotive brake.
Brake head and shoe, T. A. Grifin.
Brick machine, Wilson \& Wo
Brush, paint, J. McQuide....
Buckle frame. G. R. Kelsey
Buckle frame. G. R. Kelsey...
Burial process, J. T. Braund..
Button, cuff, G. B. Adams....
Button faastener, A. L. Win....
Cable grip, F. H. D. Bergmann
Calks, device for sharpening toe, J. C. \& H. C
Williems
Can opener, H. Bruckerman......................... Car brake, D. D. Chidester...
Car brake R. H. Littlefleld.
ar coupling, D. Baker....
ar coupling, S. H. Harrington..
Car coupling, A. J. MCG ehee.
Car, hand, A. K. Mansfleld.
ar heating furnace, wilson \& Noble.
ar lighting. C. R. Arnold.
Lukins.
....
Cars, apparatus for preventing fires and extin-
gars, grip for tram, D. T. Denton... 3766,698
Cardboard, playing, F. M. Penney............ 776,488
Card, sample, м. B. Church......................... 36, 37,
Carriage, child's, E. A. Gerbracht............ 37,
Carrakes, fan attachment for children's, A. Son-
nenschein............................... 376,684
Carrer. See Banana carrier
Carrier. See Banana carrier.
Cart, road, L. Burg................................ 376
Casks, apparatus for tilting, J. Hill................. 376,652
Chair rocker spring attachment, E. E. Peck....... 376,675
Check rein holder, F. T. Davis......................... 3766,640
Chimney, B. F. Hentzell...................... 376,78
Chuck, O. c. Hall...
Churn, N. Barnesley
Cigar box, E. Vallens
Cigar piercer, J. D. Carter...............................
Clamp. See Floor clamp. Rubber dam clamp.
Clamp. See Floor clam
Clamp, P. F. Corbett
Clamp, for cracked hoofs............................... 376,637
Clasp, H. W. Buckland.............................. 376.571
Cleat, portable C. P. Hawley............. 376,595
Cleat, portable, C. P. Hawley................
Closet. See Dry closet.
Cloth, machine for burring and specking, Holt

loth, machine for burring and specking, Holt \& McQuillan.
othes frame, S. F. Burgess
Collar, horse, H. W. Loads
Compressor, H. H. Jon
Coupling. See Car coupling. Pipe couplin
Crucible turnace, c. c. Carroll
Cuff holder, W. J. Walters
Cuff retainer, adjustable, R. L. Pratt.
Cut-off for engines, J. J. Tonkin
Cut-off valve gear, telescopic, C. W. Cronk
Cutter. See Fuse cutter.
Dental mandrel. C. W. F. Ho
Dental matrix, J. H. Reed.
Dental plugger, B. S. By
Desk or bnok holder, reading, Greenaw

376,452	Watch case spring, c. G. Harstrom Water heater, A. A. Pierce........
	W
	Water motor, E. F. Ranks
74	Waterproof carment, C. W. M
3i6,458	Water tube boiler, sectional, E. J. Moore
,480	Weighing apparatus for granular and powdered substances, 1H. E. Smyser......................... 376,688
376,609	Wheel. See Car wheel. Paddle wheel.
376,455	Whiffietree, F. R. Willson, Sr
,534	Wire colling machine, D. F. Stambaugh
376,543	
376,674	Winger.. 376,560
,448	Wire tightener, J. W. Wear.376,694, 376,695
376,532	Wrench, H. W. Atwater.................. 376
,536	Wrench, H. D. Cone.............................. 37.3 36,584
376,549	Wrench, V. J. Van Hor
	Ya
426	DESIGNS.
376,430	
6,466	Dish, J. Slater
8,633	Memorial tablet, F. A. Green... 18,0,
6,696	Tooth powder holder, C. L. Bartlett............... 18,0
710	
376,621	TRADE MARKS.
	Cigars, cigarettes, and ch
376,481	bacco, Pemberton \& Hill
376,561	ing Company................................... 15,111
	Cloaks, Siegel, Cooper \& Co....... 15,112
376,698	Cloths, cashmeres, velvets, socks, stockings, and 15
376,465	gloves, dress. Bloomingdale Brothers.......... 15,102
,49	Cotton, spool, A. King \& Co 15 108, 15,109
376,567	Drugs capable of trituration and of being formed
,668	into pills or pellets, A. S. Newcomb.... .-'...... 15,110
,429	Fertilizers, Bowker Fertilizer Company............ 15,103
376,501	Horse blankets, covers, and nets, saddle housings,
376,427	lap robes, and lap dusters, W. Ayres \& Sons.... 15,100
	Horse blankets, W. Ayres \& Sons................... 15,01
376,509	Liniment for internal and external use. L. Fisher.. 15,106
	dicinal preparation for use in certain named
571	diseases, J. T. Davenport............. 15,104
	Mince meat for pies, Henderson, Adams \& C
376,531	Rope for transmission of power over pulley
376,626	for hoisting purposes, Dodge Manufacturing Company.. 15,105
	Sewing machines, Williams Manufacturing Com-
3766,437	
376,431	W.oolen wearing apparel. certain, R. Slazenger..... 15,113
$\begin{array}{r} .3 i 6,678 \\ .376,592 \end{array}$	A printed copy of the specification and drawing of
	any patent in the foregoing list, also of any patent issued since 186f, will be furnished from this office for 25
${ }_{376,6}^{376}$	cents. In ordering please state the number and date
	of the patent desired, and remit to Munn \& Co., 361
	Broadway, New York. We also furnish copies of patents
376,513376,596	granted prior to 1866; but at increased cost, as the
	specifications, not being printed, must be copied by
-	hand.
376,436 376,552	Canadian Patents may now be obtained by the
	inventors for any of the inventions named in the foregoing list, provided they are simple, at a cost of $\$ 40$
376,475	each. If complicated the cost will be a little more. For
	full instructions address Munn \& Co., 361 Broadway,
	New York. Other foreign patents may also be obtai
	${ }^{3776,666}$
	OHpertisem
376,450	
376,4	Inside Page, each insertion $-:-75$ cents a inne。
376,537	
${ }^{376,555}$	words per line. This notice shows the width of the line,
	and is sett in agate type. Engravings may head adver-
376,492	tisements at the same rate per agate ine, by measure-
${ }_{376,717}^{376,611}$	received at publication office as early as Thursday morn-
$376,471$376,499	ing
	COUNTERSINK and DRILL COMBINED.
376,680	
376,541	
,459	

The Countersink following the Drill, the job is finish-
ed at one operation. siving the adjusting of toois and
work twice. Made by ed at one operation. siving the adusting of toons and
work twie. Made by mig. Co., Greenfield, Mass.
Wiley \mathbf{y} Liusell mig. FOUCAULTS CURRENTS.-A PAPER
 ures. Contained in
mENT, N. 605. Price 10 c.
and from all newsdealers.

ASPHALTUM AND THE PITCH LAKE

To Business Men.

A NEW AMERICAN BOOK

 Minempl, linies, anl lining Steam, Gas and Water Pipes, Drums, Heaters, etc.
The Beast Non-Conductor of Heat \& Cold in the World.
Send for illostrated decriptive Circular
 C E N TR I F UGAL EXTRACTORS.-BY

STEAM HEATING ENGINEER. AND

 SUNLIGHT COLORS. - A PAPER BY

 WHAT AMERICAN ZOOLOGISTS HAVE

OTTO GAS ENGINES.

OTTO GAS ENGINE WORKS, CHICAGO, PHILADELPHIA GLASS-ABSTRACTOF AN INTERESTT

RESERVOIR DAMS.-A PAPER BY

PERFECT

NEWSPAPER FILE

 MUNN \& CO.,

CONSUMPTION, throatand bronchia

 diret.ins for home treatment. Give exnress office.

PIPE COVERINGS
Absolutely Fire Proof.
braided paciing, mill board, sheathing, cement, fibre and specialties.

We build Automatic Engrnes from 2 to 920 H. P.. A Large Lot of $\mathbf{2}, \mathbf{3}$ and 4 - H . Engines B. W. PAYNE \& SONS,

 Flmira ${ }^{2}$RADII OF CURVATURE GEOMET

 LEAD SMELTING.-A FUL DESCRIP

CUTLER'S POCKET INHALER

§1,000 REWARD!

trouble e last stages of disease excepted), whith can
not
Be not be reilieved by a proper use of Dr. ©. Stone's
Bronehial Wafers sampe free Address
STONE MEDICINE CO..' Quincy, II. CASTING METALS UPON COMBUSTI

STEAM PUMIPS

 ighest efficiency. Fiilter Press Pumps. Air

ON 30 DAYS' TRIAL

COSTS IN MANUFACTURES.-A LEC-

 $\overline{\text { ALCOHOL }} \underset{\text { account of a new industry recently }}{\text { SWATAblished at the }}$ account ot a ne new industry recently established at the
Azores- that of the distillation of alcoho from raw
sweet sweet potatoes. Contained in SCIENTIFIC AMERITAN
SUPPLEMENT. No. 59. Price 10 cents. To be had at
this ofice and from all newsdealers.

PNEUMATIC DYNAMITE TURPEDO Gun-An exhaustive account of this new weapon and
of the experiments made with it; along with a descrip-
tion and illustration of a proposed dynamite cruiser
with 6 iinures. Contained in ScIETTIFIC A MEilICAN SUP:

VOLNEY W. MASON \& CO., FRICTION PULLEFS CLDTCHES and ELEVATORS

DROP OF OIL

PANAMA CANAL.-A PAPER BY DR. W. Nelson on some of the difficulties to be overcome in
the prosecution of this work. Diomming the Chage
River. Extent of the earth cutting. Ocean tides. The

THE COPYING PAD.-HOW TOMAKE

HXCELLENT BI.ACK Copies of anthing written or
arawn with any Pen (or Type Writer) by the Patent
Only equaled by
autocioplist
TELESCOPIC OBJECTIVES AND MIR-

RHEUMATIC FRER
 Wecaninadaralieviate

 for one week's steatment on receipt of eight two- cont stampa for pastage and packing GALENICAL MEDICINE CO., New Haven, Conn.

ICE \& REFRIGERATING

TABASHEER. RELATION OF TO MIN-

BEFORE YOU BUY A BICYCLE

 THE ECLIPSE OF A AGOL, WITH THE

 Not send gketming andabimg parkets, ", inches WA TrED-Price Catalogues of all kindo of Maobi-
 RAILWAY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&c.
JOHN S. URQUHART, 46 Cortlandt St., N. Y. 08 CLAR'S' NOISELESS ROBBER WHELELS No mole Splintered Floors.
Catalogue Free.
GEO. P. ClAARK, PH O TO-E N GRAVING PROCESSESS.-

PHONOCRAPHYO

Stweze
The $\int_{\text {Pubications }}^{\text {cientific }} A$ merican PUBLICATIONS FOR 1888.

Ratess by MaliL.
The scientific American (weelis) one vear

${ }^{\text {The Sgientific American, Architects and Builders }}{ }_{\text {Edition }}^{2.50}$ combined rates.
The Scientific American and Supplement, .- . $\$ 7.00$
 This includes postage, which we pay. Remit by postal
or express money order, or draft to order of

CURE ${ }^{\text {ºin }}$ DEAF

अூDertisements.

 BALTIMORE NOVEITY WORKS, 443 North Street, Baltimore, Md.

VELOCITT OFICE BOATS A COLLEQ

THE MODERN ICE YACHT. - BY

 ByDURNEW ROSHREPROESS. Send Grecostana tor Merstree Seceimens:

PATENTS.
 $\underset{\substack{\text { amine improve } \\ \text { for Inventore. }}}{ }$
 them is done with reasonabiet terms.
 A pampliet sent free of charee, on application, con- tuinnm full intormation about Patents and how io pro- enta, etc.
 patents in ail the principal countries of the errid. MUNN \& CO., Sollieltors of Patente,

THE BRIDGEPORT WOOD FINISHINE CO NewMilford, Conn Wheelers patent Wood Miler. Breinig Iht hogr siligat pinit SILEX FRMANTM FNELDSPAR PAMPHLET GIVING DIRECTIONS FOR FINISHNG HARD WOOD FREE TO ANY ADDRESS.

 dies and south America.
HAS NREER FAlLED.
 and the Hiphast Anthoritie
on Sanitation and Hydruil
Engint Engineering, inaranteed.
For Uirculars and
Aadress
HYATT PURE WATER COMPANY tribune building. new yoek
ICE-HOUSE AND COLD ROOM.-BY R

RAILS FOR STREET RAILROADS.

Proor invapaviva ©
 67 PARK PLACE .NEW YORK

ELECTRIC WELDING.-A PAPER BY

 ICE-BOATS - THEIR CONSTRUCTION

RUBBER BELTING, PACKING, HOSE VOICANMEED RUEBERER FABRICS

For Mechanical Purposea. Air Brealze IEMOse

 A Specialty.RUBBER'MATTINC
AND STAIR TREADS
NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y.

H. W. JOHNS

COVERINGS
For Furnacos, Hot-Air Pipos, otc. FIRE-PROOF. NON-CONDUCTING. 33\% of Fuel Saved. Has no Odor. not or the heat is carried to points desired and
H. W. JOHNS MrF'G CO.

87 MAIDEN LANE,
NEW YORK.
ASK YOUR STATIONER FOR THE IIIANNFABER LEAD PENPILS
THE BEST NOW MADE

JACKET KETTLES,
 614 and 616 Market st., Pbiladediphia. Pa. THE WASHBURN A

USEFUL BOOKS.

Manufacturers, Agriculturists, Chemists, Hngineers. Me
chanics, chanics, Builders, men of leisure, and professione
men, of all classes, need good books in the line men, of all classes, need good books in the line of
their respective callings. Our post office departmen permits the transmission of books through the mailo
at very small cost. A comprehensive catalogue of at very small cost. A comprehensive catalogue o useful books by different authors, on more than ifty
different subjects, has recently been published fo free circulation at the office of this paper. Subjects classifled with names of author. Persons desiring a copy, have only to
to them. Address,
to them. Address,
MUNN $\&$ CO., 361 Broadway, New York.

95 MILK ST. BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

ETRIFIED WOOD.
 Cabinet Specimens, Paper Weights, Watch Charms, etc., made of silicified

 wood from Chalcedony Park, Arizona. Drake Company, Drake Block, St. Paul, Minn.

ROWRY

Icrientific Ammicam

The Most Popular Scientific Paper in the World. Only 83.00 a Year, including Postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanies, Manuf actures,
Chemistry, Electricity Telegraphy, Photography, ArchiChemistry, 价ectricity Telegraphy, Photorapaphy, Arch1--
tecture, Agriculture. Horticulture, Natural Fistory, etc. All Classes of Readers find in the Scientific AMMEICAN a popular resume of the best sclentific in-
formation of the day; mind is the aim of the formation of the day; and it is the aim of the publishers
to present it in an attractive form, avolding as much as possible abstruse terms. To every intelligent mind, possible abstruse terms. To every inteligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Tific American will be sent for one year-5ine Scienpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
lishers; six months, $\$ 1.50$; three months $\$ 1.00$. Clubs.-One extra copy of the Scientipic AmeriAN wil be supplied gratisfor every clubof five subscribers
at $\$ 3.00$ each; additional copies at same proportionate rate.
The safest way to remit is by Postal Order. Draft, or
Express Money Order. Money carefully placed inside envelopes, securely sealed, and correctly addresed dress all letters and make all the sender's risk. Ad-
able to MrUTNIV \& CO.
361 Broadway, New York. TEIE:
Scientific American Supplement. This is a separate and distinct publioation from
THE Scientifio American, but is uniform therewith in size, every number containing sixteen large pages. THE SCIENTIPIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the principal decentrtments of em scinence writers in the Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geography, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining, eering. Steam and Railway Engineering, Mining
Ship Building, Marine Engineering, Photography echnology, Manufacturing Industries, Saritary Engineering, Agriculture, Horticulture, Domestie Econo ny, Biography, Medicine, etc. A vast amount of fresh subjects is given, the whole profusely illuatrated with , Works, Mechanisms, nd Manufactures at home and abroare arepresented nd described in the Supplement.
Canada. 85.00 a year, or one copy of United States and ERICAN and one copy of the SUPPLEMENT, both mailed or one year for froo. Address and remit by posta order. express money order, or check,
MUNN $\&$ Co.. 361 Broadway, N. Y., Publishers Scientific Amelican.

To Foreign Subscribers.-Under the facilities of the Postal Union, the SCIENTIFIC A MERICAN is now sen scribers in Great Britain. India. Australia. and all othe British colonies ; to France, Austria, Belgium, Germany Kussia.and all other European States; Japan. Brazil, and all States of Central and South A merica. Terms, when sent to foreign countries, Canade and Mexico, excepted,
84, gola, for SCiENTIFIC A MERICAN, one vear: 99, gold for both Scientific American anj Supplement fo one year. This includes pcstage, which we pay. Remit h_{p} vostal or express money order. or draft to order of
MUNN \& Co.. 361 Broadway, New York,
PRINTING INKS

