

lifting bridge at tarante.

The bridge of which we give a view crosses the canal that forms a communication between the socalled great and little seas of Tarante, and joins the new town with the old one. This fine work, which was carried out by the Impresa Industriale Italiana di Construzioni Metalliche, directed by Mr. A. Cottrau, was opened for traffic with much ceremony on May 23 last, and is undoubtedly the finest example of its class in Italy. The original scheme is due to ViceAdmiral Acton, who, with the intention of putting it into execution during his tenure of office as Minis ter of Marine, put out the work to competition among the various Italian constructors. A large number of firms responded to this proposal, and the project that was accepted was the one submitted by the Impresa Cottrau of Naples, on account partly of the very great economy of the design, and partly because of the elegance it displayed, and the simplicity of the hydraulic mechanism employed for opening and closing the bridge.
The following are some of the principal data of the work :

Distance bet ween the axes of rotation.
Clear distance between abutments.
Width between handrails.
Rise in center.
Clear headway
Total length of ironwork
Weight of iron work....
$219 \mathrm{ft} .9 \cdot 8 \mathrm{in}$.
188 ".
3.9 " $\begin{array}{cc}188 \text { "" } \\ 22 & 3 \\ 12\end{array}$ 22 ""
12 ". $1 \cdot 6$ "
41 " 41 ""
292 "
${ }_{532}^{526}$ tons.
minutes. The two turbines are driven from a large reservoir holding about 20,000 cubic feet of water, and placed at a height of 62 feet above the mean sea level The rotating movement which has to be given to each arm to allow passage for the large ironclads is obtained from two large wheels mounted on Vignoles rails and placed at the end of the abutment, where they are controlled by a system of gearing worked by the turbines. The rising and falling movements are obtained by four nuts worked from an endless screw and by gearing driven from the turbines. Before the bridge was open ed for traffic it was tested with a uniformly distributed load of 280 tons, which was kept on the platform for twenty-four hours. The maximum deflection that took place under this load was 3.35 in., or exactly half the amount allowed in the conditions of the government scheme. On the load being removed, this deflection wholly disappeared.-Engineering.

Artesian Wells in Dakota.

A correspondent who is traveling in Dakota writes as follows from the town of Artesian, Sanborn County : This town, as its name indicates, is the center of an artesian well district that extends about ten miles in every direction. It seems to be a sort of a natural artesian well section, where by drilling 60 to 139 feet in depth they get a moderate flow of water, with pressure sufficient to carry it up in a 3 inch pipe about 15 to 20 feet above the surface of the ground, costing the farmer (and nearly every farmer has one) about $\$ 100$ for well, pipe, etc., included--an invaluable adjunct to a farm. The water just here, in the village, is very hard and impregnated with iron, but some of the wells yield fairly soft water. The water varies from extremely hard to nearly soft.
The district was first discovered when the Chicago, Milwaukee \& St. Paul Railway, at this point thre years ago, for railway purposes, commenced a well which was dug 10 feet diameter, 50 feet deep, without success. A drill was then introduced 56 feet further,

6 inches diameter, when, suddenly, it sank 4 feet into a chamber, and the well immediately flowed 10,000 gallons per hour.
The surplus water of all the various wells gives no trouble, finding its way to slough and lake bottoms. Some farmers, as well as the railway company, now run rams with the surplus water that pumps it up 30 feet high, as the pressure is not as great as when first discovered.
I am told that at Aberdeen, 100 miles north of this place, where they have an artesian well 1,100 feet deep, it throws up live fish
It would seem feasible to arrange a system of sprink ers over a section of land, whereby water might be turned on to the wheat or other crops in case of drought.
Gcod beef steers sell here now for 2 cents per pound ive weight, and farmers kick at the low price. Hogs are worth 4 cents, which is thought to be an excellent price. Corn sells at 20 cents per bushel, or say $\$ 5.75$ per ton, allowing 70 pounds to the bushel-very cheap. Some talk of burning it for fuel, as it is considered fully as cheap as Pennsylvania hard coal, present price of which is $\$ 11.50$ per ton. Corn on the ear is said to make first class fuel by those who have used it.

The Returi of the waters.
A recent phenomenon in Central Illinois puzzles scientific and other people. After weeks of drought, the streams and wells becoming exhausted, abundant water suddenly appeared, without rain or other visible source of supply. Water flowed freely in the streams, and even the shallowest wells were replenished. Where this water came from and the cause of its sudden appearance are mysteries which no man can find out. Some religious people believe it was an answer to prayer. It is probable that the effect was produced by a subterranean disturbance similar to that of an earthquake shock.-Chicago Journal.

The bridge consists of two half-ares meeting accurately in the center when closed. Each leaf is subjected to two movements, a rising and a rotating motion, effected by mechanism that is actuated by two turbines of 14 horse power, working at a speed of 240 revolutions per minute, or by hand power, where 36 men are required at each half of the bridge to work the capstans provided for the purpose. Thetime required for opening or closing the bridge by hand is 17 minutes. With the turbines the complete operation is effected in 5

ssinutifir gegmeriam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMEIRICAN.

One copy, one year, for the U. S. or Canada.
One copy, six months, for the U . S . or Canada
 MUNN \& CO

The Scientific American Supplement is a distinct paper from the SCLENTIFIC AM FRICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size
 ing to the Portal Uning.
throughout the country.
will be sent for one year, to any address in U.S. or Canada, on receipt of seven dollars.
reghe satest
restered lett
Australia and New Zaland-The Scifntific American and
SUPPLEEMENT will be sent for a little over one year on receipt of en current Colonial bank notes.

Scientific American Export Edition.

NEW YORK, SATURDAY, DECEMBER 10, 1887.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 623.
For the Week Ending December 10, 188%.
Price 10 cents. For sale by all newsdealers.
I. ARCHITECTURE.-Notes on the Construction of a Distillery
 11. Astronomy. The Yale College Measurement of the Pleiades.-

V. ELEETRRICITY.-An Electrical Governor--A new apparatus for

MISCELLANEOUS.-A Group of Hampshire Downs.-A typical

IX. SANIT ATION-FTrench Disinfecting A pparatus-A Rortable ap- paratus for disinfecting clothes and similar objects. -1 illustration. 9
X. TECHNOLOGY.-The Manufacture of Cocaine.-The extraction

THE ILLUMINATING POWER OF aRC LAMPS

 Within the last year some discussion has arisen con cerning the true candle power of arc lamps. In the majority of contracts for street lighting entered into with electric light companies, the contract specifies 2,000 candle power lamps. For many years it has been understood that the lamps seen lighted upon th streets purported to be of this power. But it has been equally obvious to those who were at all experienced in photometry that they did not give anything like such a light. Their actual candle power is slightly in excess of one-third the nominal amount. The stated candle power has no more direct reference to their actual than the nominal horse power of a boiler has to its real capacity.The subject was recently treated in a report by a well known scientist, who took the ground that, in stat ing electric illuminating power, two thousand nomina was to be taken as a synonym for about eight hundred actual candle power. Although this seems a rather broad generalization, it expresses the true state of
affairs pretty accurately. The arc lamps are always affairs pretty accurately. The arc lamps are alway greatly overrated.
As for the cause of the discrepancy, some engineer were uncharitable enough to ascribe it to a new system of stating the observed results. If a lamp were pho tometered in four directions at once, as on the cros photometer, and the results added together, then it was claimed the fictitious result given to the public would result. This would indicate a statement of a candle power four times greater than the real.
One of the leading authorities on the subject of electric lighting has recently assigned a cause for the anomaly. At the present time the ends of the car bons in arc lamps are maintained opposite to each other, and the two carbons are kept accurately in line Hence an equal or nearly equal light is given in al directions. The first use of the are lanp was for purposes of projection. For this purpose the carbons wer kept slightly out of line with each other, so as to con centrate the light in a determined direction. Th crater on in that line wost of the light was emitted At the back of the lamp the light was far less. If the same carbons were placed in alignment, a more even distribution of light would result, but it would be far less, in the ratio of 288 to 1 , than it was in the forme which, with the old arrangement of carbons, would project a light of 2,000 candles in one direction, with the same carbons aligned would only give $\frac{-2000}{2} \frac{0}{83}$, or a little over seven hundred candles. The old type of lamps were photometered in the most favorable dire tion.
It would seem advisable that the nominal method should be changed, and that new contracts should specify lamps of so many actual candle power. This would put the whole question of supply upon a basis of fact, and would benefit both the electric l
panies and the consumers who use arc lamps.

a newly patented mode of preserving live

An interesting and curious invention has been lately patented, which bids fair to be useful and importan in the transportation of live fish. It was discovered by Mr. Walter G. Murphy, of New York City, the pat entee, that fish could be kept alive for some consider able time without change of air or water by placing them in a receptacle partly filled with water, and her metically sealing the same. To test the invention, ex periments were carried on, some of them by the favo of Professor Blackford, of the New York Fish Com mission, at Fulton Market, New York City. In order to make the test as thorough as possible, young fish and fish as delicate as could be obtained were used These were striped bass. The latter to the number of about two dozen were placed in a glass jar, filled nearly to the top with water, and the jar was hermeti cally sealed. The fish were kept for several weeks in the jar without opening it, and did not appreciably suffer. Upon opening the jar and placing them in fresh water, they appeared as lively and well as before being placed in the jar. Another similar experiment being made, it was found after several weeks' confine ment, the time being extended beyond that of the former experiment, that the deep black lines in the bass began to fade and disappear and a white fungu made its appearance on the fish, which was speedily followed by their death. Experiment with the ja wholly filled with water showed that the fish quickly died. Another experiment with the fish as in the first mentioned case was made, and a second jar the same as the first, with a like number of fish, and similarly filled with water, was placed beside the sealed jar. The second jar was left uncovered and the water wa unchanged. The fish in the closed jar were apparently as well as ever at the end of three weeks. The fish in the open jar all died within forty-eight hours While changes of temperature were known to be a serious question as affecting the conditions of keep ing fish alive, and while the changes of heat and cold, to which the jar and contents were unavoidably sub-
jected, could not be well regulated, yet the flsh in the closed jar were not affected thereby. Experiment were also tried in which the air in the jar containing the water and fish was compressed, and it was found that the fish were benefited thereby, It would ap pear from the above mentioned experiments that grown fish and hardy fish could be transported from one distant locality to another with little trouble and expense, and that in the case of deep-sea fish compres ion of the air would aid in effecting the result. The dvantage to sportsmen in carrying live bait would seem to be great, and the value to the U. S. Fish Com mission to be inestimable almost, in view of the grea expense now incurred in building special cars and apparatus to transport and keep fish alive. The scientific reason for the result of this invention has not been ex plained. The late Professor Baird, of the United State Fish Commission, when the invention was brought to his attentign, suggested that by reason of hermetically sealing the jar, water did not undergo the rapid change that took place when the jar was left open and which bred a parasite which destroyed the fish. Whatever be the reason, it would seem that the inven tion was one of great benefit and value, and that while the fish so treated will eventually die if not taken ou after a certain time, yet practically, for the purpose o transporting fish alive, the result attained is a complete success.

SURVEY OF THE ROUTE FOR THE NICARAGUA CANAL
On Wednesday, November 30, the steamer Hondo sailed for Greytown, Nicaragua, carrying with her a party of engineers who are to make the surveys for the Nicaragua canal. They were accompanied down the bay by an excursion steamer, carrying many well known representatives of the two countries.
In 1884 an attempt was made to negotiate a treaty with the United States government for the construc tion of the canal, but it fell through. The Nicaraguan government then opened negotiations with Mr. A. G Menocal as representative of the Nicaragua Canal As sociation of New York. The result of the negotiations was the formation of a contract between the two parties. Nicaragua confers upon the canal association the exclusive right of way and other privileges In addition to these concessions, the present contrac required on the part of the American company the ful filment of certain pecuniary obligations within sixty days of its signing. This placed the contract at once on a business basis. The obligations were duly met and the present company of engineers are to execut the first field work and perform the final survey.
The chief engineer of the company is Mr. A. G. Men ocal, Civil Engineer, U. S. A. The party that sailed on the Hondo is under command of Mr. R. E.. Peary, C E., the chief assistant. It includes eighteen engineer and an equal number of assistants and a surgeon. The party are to locate the route definitely, and it is ex pected that they will execute the final surveys. A large body of workmen are to accompany them.
The country has already been pretty thoroughly ex plored by the officers of the U. S. navy. Based upon the knowledge already possessed, a long letter of in structions was prepared for the guidance of the survey Two general plans are to be examined. Both are iden tical for the greater part of the route, utilizing the Lake of Nicaragua and San Juan River. The diverg ence occurs between the lake and the northern shore Both routes follow the San Juan River until within about fifty miles of the coast. From this point one ronte goes in a nearly straight line to Greytown, whil the other diverging follows a line about eleven mile greater in length. The short or so-called upper route will be awarded the preference in the surveys, although the capabilities of both will be determined.
The production of a good harbor at Greytown is considered one of the most important engineering works in connection with the enterprise. On reach ing Nicaragua, a hydrographic survey is to be at once commenced, to determine the capabilities of the har bor and the best way of dealing with the sand bars Owing to the tides, to wave action, and possibly to river sediment, the harbor has of late years becom much deteriorated. The principal cause is considered to be the transportation of sand from east to west by the waves striking the coast obliquely. To determine the extent of the deposits made in a given time, two hydrographic surveys are to be executed, one at the beginning and the other at the end of operations The changes in the bottom in the interval will dis close the amount of drift and deposit in a given time A southward littoral current has been reported, and this is to be carefully investigated, to ascertain if it cannot be utilized as a factor in preserving the harbor The San Juan River is to be gauged, and the inne harbor is to be sounded. All these data will indicate the amount of dredging to be done and the genera system of jetties or breakwaters that may be needed o secure an available harbor on the Atlantic side
The land surveying parties, in five divisions, are to arefully survey the ground and determine the axis of the canal. Then an exact survey of the canal line, in cluding cross sections, level points, location of slope
lines, etc., is to be completed. This is designed, as far as possible, to give a correct idea of the amount of excavation required.
The examination and survey of the port of Brito, on the Pacific coast, is also provided for, and is to be performed toward the end of the season's work.

A dispute as to the boundary line between Costa Rica and Nicaragua is now in the hands of President Cleveland for arbitration. This affects the canal quite seriously, as Costa Rica claims some rights in territory through which the canal, near its northern end, would normally pass. Recognizing the importance of having its whole length included within the one republic, a third deviation, bringing it all within the undisputed territory of Nicaragua, is to be one object of survey. This third route very probably will not be used, but it is to be located so as to provide for any contingency that may arise, owing to the international dispute.
The total length by the shorter line is calculated at 169.8 miles. Lake Nicaragua is the summit level, and is 110 feet above tide water. On each side of the lake a number of locks will be required to overcome this difference. The canal is to vary in bottom width from 80 to 120 feet, and in upper width from 80 to 288 feet. Its depth is to vary from 28 to 30 feet. Of the route, 120 miles are included in the river San Juan and in the lake, and will be available for rapid navigation. The total cost is estimated at $\$ 64,036,197$. For tonnage dues, at $\$ 2.50$ per ton (the Suez Canal rate), a total of over sixteen millions of dollars for the year 1892 is assumed as possible:
The latter date marks the possible era of completion. At present Mr. Menocal is still in this country, but during the winter he will go to the field of operations.

the celestial world.

saturn and the cluster presepe.
The constellation Cancer, through which Saturn is now traveling, contains a cluster of stars called Præsepe. It is visible to the naked eye on a clear, moonless night as a nebulous mass of light resembling the nucleus of a comet, for which it has sometimes been mistaken. A small telescope will resolve it into stars, the largest of which are of the seventh or eighth magnitude. This cluster lies about two degrees west of Delta and Gamma Cancri, two conspicuous stars of the fourth magnitude.
During the month of November, Saturn passed less than a degree south of Præsepe, and, on November 17, was very near Delta Cancri, moving at that time eastward or in a direct course. At that point in his apparent path, he remained stationary for a few days, parent path, he remained stationary for a few days,
and then, making a curve, began to move backward or retrograde, his returning path lying north of his advancing one. This retrograde movement will bring him within the precincts of the cluster, and during the first half of December he will be found traversing the southern border of Præsepe. This aspect of Saturn will repay telescopic observation. A good instrument will reveal the wonder of our planetary system surrounded by his belts and moons, and will also separate the cluster into tirty stars through which the planet of peerless beauty slowly makes his way.
Saturn rises soon after 7 o'clock, about the middle of the month, and may be readily recognized, as there are no bright stars in his vicinity, and also from his position southeast of the twin stars, Castor and Pollux.
the approach of venus and jupiter.
The most interesting planetary observation of the month is the approach of Venus and Jupiter on the celestial pathway. The morning sky will be made brilliant with their presence among the stars that twinkle in the east, and observers who command a view of the southeastern sky, and are willing to waken early from their slumbers, will be rewarded for their pains when they behold the beauty of the spectacle. The reason for the approach of the two planets may be easily explained. Venus, on the 2 d , reached her greatest western elongation, or greatest distance west of the sun. She then arrived at her western limit, and began to retrace her steps toward the sun, moving eastward. Jupiter is receding from the sun, and traveling westward. If Venus is moving east and Jupiter is moving west, on the same side of the sun, the approach between them is inevitable. The student of the stars will see this for himself, and will not fail to pay a tribute of admiration to the exceeding beauty of the starlit December sky, among whose glittering hosts the two peerless planets of the sun's family of worlds wend their shining way. On the 1st, Jupiter rises about two hours and a half after Venus. On the 31st, he rises only thirteen minutes after his fair rival.

the total solar eclipse of august 19.

There were a few bright spots in the clouds of disappointment that overshadowed the observers of the last total solar eclipse.
In Irkoutsk, Eastern Siberia, the sky was cloudless and the atmosphere serene through the whole day. An observer succeeded in getting three good photographs of the sun during the eclipse, one taken toward its
commencement at $11 \mathrm{~h} .10 \mathrm{~m} . \mathrm{A}$. M.; the second, dur-
ing totality, at $0 \mathrm{~h} .25 \mathrm{~m} . \mathrm{P} . \mathrm{M} . ;$ and the third, toward the end, at $0 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
the inferior conjunction of venus.
The inferior conjunction of Venus occurred on September 21, at 11 o'clock in the morning. She then passed between the sun and the earth. If under these conditions she is at her node, she passes directly between the sun and the earth, and makes a transit over the sun's face, as in 1882. If she is in her ascending node, she passes above the sun, and if she is in her descending node, she passes below him. At the last inferior conjunction she was 8° below the sun, being then in her descending node. Although invisible to the naked eye at that time, her entire course was followed by several observers with the aid of a small telescope. In Paris, M. Flammarion used a small telescope, following closely the course of the crescent as it grew more and more slender until on the 21st the middle of the crescent measured $1^{\prime \prime}$. The points were very fine and did not extend beyond the semicircle. The crescent
was regular in its whole extent. At Marseilles, M. was regular in its whole extent. At Marseilles, M. terruption from the 17 th to the 23 d . At Rouen M. Gully, and at Soissons M. Guiot, followed the planet Gully, and at Soissons
during the same period.
venus visible in daylight.
This peerless planet was seen as evening star in daylight for an unusual length of time during the past year. M. Bruguiere at Marseilles observed her during the day, with the naked eye, from March 26 to September 16. M. Guiot, at Soissons, observed her in full daylight and with the naked eye from April 2 to
August 18. She has been equally observable as mornAugust 18. She has been equally observable as morn-
ing star, under the same conditions, being visible in full daylight to the unaided eye through October and November.

Cholera and cold Weather.
In a letter te the editor of the New York Medical Record, Dr. Reginald H. Sayre, of New York, quotes a number of instances to show that cholera is one of those scourges whose march is not stopped by heat or cold, high or low altitude, dryness or dampness, or any other condition of the weather. He says:
"In 1830 the cholera appeared in Moscow in the month of October, and continued its ravages until the end of December, in spite of the severities of a Russian
winter, and caused the death of 8,130 persons out of a population of 250,000 , or about 1 in 30 . From Moscow it went north to Yarasy, thence to Rybinsk, sixty leagues north of Moscow, where it appeared on March 19, 1831, in spite of the ice and snow which covered the ground.
"In October, 1831, the cholera appeared in Great Britain, and continued there until March, 1832, doing most of its destruction in December. About one-third of the people affected died.
"On March 27, 1832, the disease appeared in Paris, and the ruortality was so frightful that 861 people died in ten days.

In 1848 the emigrant ship New York left Havre on the 9th of November, having no sickness on board, and no cholera being then in Havre. During the voyage
the weather became bitterly cold. There were some German emigrants on board, from a town where cholera had prevailed, who had a trunk which had belonged to a man who had died of cholera. They opened the trunk, took out the clothing, and wore it. On November 22 a child died of cholera, and seven persons in all succumbed to it before reaching New York harbor. They
were strictly quarantined, and the disease limited to those who died on Staten Island in the quarantine.
"About this same time another vessel from Havre, bound for New Orleans, developed the cholera on the antine regulations, the disease spread rapidly through the town soon after the arrival of the vessel, there being then no other cases in the United States except those in the quarantine on Staten Island. From New Orleans the disease traveled to Memphis, appearing there toward the end of December, and at St. Louis in places in week of January, 1849. Toward March several then gradually the diseasé moved east through Chicago, which it reached in May, to New York, which became infected then, and not till then, although the disease had been imported to the city six months previously, but had not been allowed to land; and the city in this way kept free from infection until the cholera effected a flank wovement, by the way of New Orleans, and attacked her in the rear, having made its progress in spite of the winter, and having attacked the cities through which it passed in the cold weather.
"These facts in regard to the prevalence of cholera in spite of cold, and the well-known futility of a quarantine on land, make any attempt to lull the medical profession into a false sense of security fraught with
great danger to the country, and I have therefore wished to call attention to the fact that cholera is not stopped by cold, and that to be quarantined effectively it must be arrested in our ports, which can only be done by having a general quarantine under the direction of the federal government."
decisions relating to patents.
U. S. Circuit Court.-Southern District of New York. Montross v. Mabie. implied license to use.
Brown, J.:
The extent of an implied license to make and sell patented articles is to be construed according to the presumed intent of the parties, as inferred from the circumstances.
A firm having been largely engaged during several years in manufacturing and selling stoves upon designs patented by one of the partners, and accounts between them having been repeatedly settled embracing such sales and the profits thereon, as firm business, held, without regard to the question whether the patent was equitably the exclusive property of the patentee, (1) that a license by the patentee to the firm to make the stoves and to sell those manufactured was implied ; (2) that such license, by necessary implication, was co-extensive with the business of the firm, and continued until the copartnership affairs were wound up by any a wful agencies for that purpose ; (3) that, consequently the copartner of the patentee had the same authority after dissolution as before to sell for the benefit of the firm the stoves manufactured for sale before dissolution ; and (4) that a receiver of the partnership efferts, appointed by a State court in a suit brought for windng up the affairs of the partnership, had a similar authority to sell the stoves remaining on hand, both as the representative of the parties and as a lawful agency for closing up the partnership business, and was by necessary implication included in the implied license. An application for an injunction to restrain him from selling was therefore refused.

U. S. Circuit Court.-Northern District of Illinois.
 Toepfer v. Goetz et al.

malt kiln patent.
Blodgett, J.:
This was a bill in equity to restrain the alleged inringement of a patent granted April 27, 1880, to the complainant, Wenzel Toepfer, for a malt kiln.
It is wholly irrelevant to inquire whether the patentee was obliged to limit himself by the ruling of the Patent Office. It is enough to say that he did so limit himself.
Although the patent may show features which were patentable and which, if properly patented, would render the defendants liable as infringers, such matters are abandoned to the public by the act of the patentee in accepting a claim which fails to comprehend the Roune.
Round rock shafts in tilting malt kiln trays are old and now common property, and it is an old expedient to tilt frames by square rock shafts; but where the patentee sees fit to limit his clain to a square rock shaft, the defendants who use a round shaft cannot be held liable. Also, while a patent may cover a new hook, it cannot prevent the use of an old door latch.
U. S. Circuit Court.-Eastern District of Pennsylvania.

Good v. Bailey et al.

Butler, J.:
hemp combing machine.
Letters Patent No. 95,462, granted to John Good, dated October 5,1869 , for improvements in machinery for drawing and combing flax, construed strictly.
Where all the elements employed in forming the combination are old, and the combination alone is new, and this differs but slightly from that of machines previously manufactured or described, the claim for it can only be sustained in connection with the special merhanical devices employed in forming it.
The employment of other devices, though a combinaion of the same general character, yet producing a more perfect combination, one better adapted to the contemplated use, is not infringement.

Insect Remedies.

The report on entomology made by W. B. Alwood to the Columbus Horticultural Society, last winter, states that many remedies were employed on the two described cabbage worms, consisting of alum water of different degrees of strength, tansy water, tomato water, benzine, coal oil emulsions of different strengths, Hammond's slug shot, Cayenne pepper, half a dozen remedies from England, several preparations of tobacco soap and pyrethrum. None proved of any value except the tobacco soaps and pyrethrum. The tobacco soaps prepared with potash were quite efficient, the value of which was ascribed to the potash. Pyrethrum is recommended as the best remedy, being perfectly safe, easy of application, and more deadly on the worms than any remedy used. Powder of good quality, mixed with three times its bulk of flour, was found perfectly effective, applied with a dusting bellows. One pound, costing fifty cents, was enough to cover an acre if properly handled.

AN IMPROVED ANCHOR FOR POSTS.
A simply constructed anchor for hitching, fence and other posts, whereby great stability is obtained, is shown in the accompanying illustration, and has been patented by Mr. William P. Logan, of No. 726 Second Street, Trenton, N. J. The anchor is formed of a single metal casting, in the form of a circular plate with a

LOGAN'S POST ANCHOR.
central hole to receive the post, a hub surrounding the hole on the upper face of the plate, with a set screw for adjusting it on the post, and a series of rigid wings projecting from the upper and lower faces and radiating from the central hole. A detail view of the anchor is shown in the small figure, and two of them are applied to the hitching post, one secured to the lower end of the post and the other only a few inches below the surface of the ground, this setting giving great stability.

AN IMPROVED SEPARABLE BUTTON OR STUD.
A button or stud which may be readily attached to and detached from an article of dress, and which, when attached, will be firmly held until removed by hand, is shown herewith, and has been patented by Mr. Simon B. Simon, of No. 76 East Eighty-first Street, New York City. The ,body of the button, shown in Fig.

1, has an integral neck with threaded aperture, and the shank is exteriorly threaded and made integral with the cap, which has in its center a rectangular recess, adapted to receive the square stem of a key. In inserting the button, the shank is passed through an opening in the cloth until the cap is brought in contact with the under side, when the body is screwed upon te shank and the cap and body firmly united by use of the key. In the button illustrated in Fig. 2, the cap is provided with two spaced apertures or re cesses at each side of the center, adapted to receive the key, which is made in this instance with a bifurcated shank.

A SIMPLE COVER FASTENING FOR JARS.
A cover fastening for jars which is simple and durable in construction, and holds the cover very securely

PALMER'S COVER FASTENING FOR JARS.
to the jar or casing, is shown herewith, and has been patented by Mr. F. H. Palmer, of Long Island City, N. Y. It consists of a metallic casing having on two or more opposite sides, near the top, wedge shaped lugs or projections, each with a vertical groove on its outer face. The cover has in its center on top a post to which are secured metallic springs, extending at their outer ends to the side of the casing, where they are bent down and inward to form catches, the ends of the springs being in line with the grooves of the lugs. The post elevates the springs sufficiently to prevent them from coming in contact with the cover, and upon pressing the ends of the springs down until the ends of the catches pass under the lower ends of the lugs, the cover or lid is held firmly in place on the mouth of the casing.

Progress of the Natural Gas Industry.

"Few people outside of the natural gas region," said a large owner of gas wells in Washington County, Pa., "have any idea what enormous proportions the gas business has grown to. It may be said to be only about two years old in Western Pennsylvania, and more than 200,000 acres of land in Washington and adjoining counties have been drilled with gas wells. Nearly 150,000 tons of iron have been used in manufacturing the pipes through which the $500,000,000$ cubic feet of gas that flow from the region daily are conveyed to the places using it. Over $\$ 25,000,000$ is in vested in the business by the fourteen organized companies that produce the bulk of the gas. The land and wells represent an outlay of $\$ 17,000,000$. The wells now producing are capable of doubling the quantity now demanded for light and heat. Nearly 2,000 miles of mains are required for conducting the supply to consumers. It is estimated that the use of natural gas has displaced 25,000 tons of coal daily in Western Pennsylvania and Eastern Ohio alone. Besides the wells controlled by the great gas-producing companies, individual owners have wells for the supply of the smaller towns, and every village and hamlet in the region has enough natural gas running to waste every day to abundantly supply the same number of towns of 10,000 inhabitants each with light and fuel."

AN IMPROVED TOASTER.

A simple and effective device to facilitate the making of toast over gasoline and similar stoves, preventing the gases from the flame from injuriously affecting the bread, is shown herewith, and has been patented by Mrs. Julia A. Downey, of Oberlin, Ohio. The toasting plate is preferably made of steel, of a size to fit the opening in the top of the stove, and has an upturned rear end provided with a suitable handle. A wire frame is hinged to the upturned rear end of the plate, the frame being hinged by rings that encircle the rear wire of the frame and pass through apertures in the upturned end. A catch at the front of the plate serves to hold the frame down thereon, the bread to be toasted being placed on the wire, when it is not burned by contact with the plate nor affected by the gases from the flame. This device has been thoroughly tested, and can be used on vapor or oil stoves, or those of a general character, or with open fires, as well as on gasoline stoves.

Etching on Glass.

A clean glass plate is coated, without being warmed, with a solution of gum dammar in ether. The exact strefigth of the varnish is immaterial, though it should not be too weak. When the ether has evaporated, we can light up our smoke factory-the benzoline lampand hold the glass, film downward, in the flame, moving it about with a circular motion to prevent the heat being concentrated in one part, which would probably crack the plate. The center of the flame consists of vapor of benzoline, which softens the dammar to such an extent that the soot is absorbed by the film as fast as it settles thereon. If this simple operation is properly done, a quarter or half plate sized glass can be smoked to opacity and will have a smooth, bright surface, which is in excellent condition for being etched, and is quite hard enough to form its own protectionthat is, it does not require varnishing.-Br. Jour. of Photo.

A PROTECTOR FOR TRUNK CORNERS,

A device adapted for attachınent to the corners of a trunk, to protect the trunk from being injured by rough usage in transportation, is shown herewith, and has been patented by Mr. Francisco Garcia, of No. 57 Beaver Street, New York City. A triangular base plate is provided, with inclined outer face, a central triangular recess, and a series of apertures adapted to receive screws. Within the recess is inserted a pyramidal cap, with a flange coming in contact with the inner surface of the base plate, thus limiting the outward movement of the cap, yet admitting of a movement inward. A rubber block with angular recess, adapted to fit snugly the trunk corner, is placed in the pyramidal cap, which is entered in the recess of the base plate, and, after the rubber has been brought into engagement with the trunk corners, the base plate is
securely screwed to the sides of the trunk adjacent to the corners, as shown in section in Fig. 2. In the form of corner shown in Fig. 3, a triangular or pyramidal plate is held against the rubber cushion on the corner by a threaded rod made integral with the plate, and passing through the cushion and an aperture in

GARCIA'S TRUNK CORNER.

the trunk corner, the end of the rod within the trunk being provided with a nut, and the nut and rod being adapted to have play within a corner compartment formed in the trunk. In both cases an elastic block comes between the iron corner piece and the trunk, and allowance is made for the expansion and contraction of the block.

AN IMPROVED VEHICLE BODY SUPPORT.

A method of attaching the panels of vehicles to their pillars or supports, whereby the panels will be securely and rigidly held in position and the inner faces of the panels will remain unbroken, is shown in the accompanying illustration, and has been patented by Mr. Fredrick M. Renner. One of the views represents a sec-

DOWNEY'S TOASTER.
tion of a panel with the support partly broken away, the other figures giving transverse sectional and longitudinal views and a perspective view. The face of the panel adapted for engagement with the supports is provided with aligning recesses extending through about half the thickness of the panel, a slot with undercut portion extending from each recess. Into each recess the head of a screw bolt is entered, the body of the bolt projecting out through the slot, suitable countersunk apertures being made in the pillars or supports to receive the bolts, by which the panels and supports are drawn to close and firm contact. The bolts, where they engage the slots, are preferably made square, to prevent turning, making a secure and rigid fastening.
For further particulars relative to this invention address Mr. Joseph Cabus, Jr., No. 206 West Eighteenth Street, New York City.

RENNER'S VEHICLE BODY SUPPORT,

AN IMPROVED DISCOUNT MEASURING GLASS AND BANK NOTE EXAMINER.
A combination implement, especially applicable in examining bank notes, has been patented by Mr. Albert C. McMicken, of Winnipeg, Manitoba, Canada, and is shown herewith, as in use, in its case, and in section through the lens. It consists of a glass square at one end and semicircular at the other, and provided along the edges for the full length of a bank vided along the edges for the full length of a bank
note with a scale that is marked or etched, for meas-

McMICKEN'S MEASURING GLASS AND MAGNIFIER.
uring notes and parts of a note, or ascertaining the exact size and length of signatures and numbering, for purposes of comparison. Along the edge of the semicircular end is also a scale, adapted to measure parts of circles, vignettes, curves, etc., and at this end is a magnifying lens of sufficient power to expose the fineness or coarseness of the fiber of the paper, and detect imperfections, the rim of the setting of the lens also having a scale. Upon the main body of the glass is marked the exact size of a bank note, this figure being subdivided into fifths and tenths, so that any approximate portion lost from a note may be quickly ascertained.

A Mill Engine Stands Fire.

A very singular incident was noted in connection with a recent mill fire in Carlton, Mich. The building was burning fiercely, but the big engine which drove the machinery continued to run all through the blaze, and by that means was saved from destruction, though there was not a wall standing on any side of it when the fire had finished.
The pumps were also running, and kept the boiler supplied, so that there could be no explosion. It was a peculiar spectacle to see the engine driving away at a slashing speed in the midst of the flames, but the motion somehow saved it from fire. All the rest of the machinery was a total loss.

AN IMPROVED CARPET STRETCHER.

A simple carpet stretoher, easily operated by a single individual, and which ${ }_{\lambda}$ can be readily adjusted for use in various sized rooms, is illustrated herewith, and has been patented by Mr. Charles T. Manter, of Bismarck, Mo. A lever is adjustably pivoted near the forward end of a slot in a light rectangular frame, which can be closed up when not in use, as shown in one of the small views. This lever at its forward end has a slot in which is pivoted the shank of a stretcher head provided with a toothed plate. An auxiliary extension arm is provided to lengthen the body of the stretcher, having journaled therein rollers to prevent the binding

MANTER'S CARPET STRETCHER.

of the carpet to the floor by the thrust of the stretcher, thus allowing the carpet to stretch evenly and smoothly clear across the room. In operation, one end of the auxiliary arm is placed against the base board, the other end being drawn out the approximate distance
and placed in contact with the inner end of the stretcher, which has been adjusted to reach nearly across the room. The lever of the stretcher is then raised nearly upright, to engage its toothed head with the carpet, a slight bearing down on the lever causing edge of the carpet is readily carried forward by further bearing on the lever, and thus held ready for nailing.

Exercise in the Treatment of Heart Disease.
For generations the main idea in the treatment of organic heart disease has been physical rest to diminish the labor of the damaged organ. We have been in the habit of prohibiting all forms of active labor to the sufferers from cardiac disease, and the principle of our treatment has been the unexpressed but ever present idea, accepted as a self-evident axiom, that perfect rest was the best means of securing muscular compensation. Professor Oertel's experiments and results have come with startling surprise upon those who forgot to distinguish between a useful principle who the exceptions which the multiformity of disease renders it imperative to recognize. As is well known, he treats a considerable proportion of cases of organic heart disease by regulated exercise, especially graduated ascents of mountains, and his results place the value of his method beyond reasonable dispute. There is nothing really surprising either in his treatment or the success which has attended it. A little reflection will suffice to convince us that, while rest is often useful, and indeed quite indispensable, in heart disease, there are yet many cases in which well regulated exercise will improve the nutrition of the cardiac muscle, as of the rest of the muscular system, and hence tend to the promotion of circulatory vigor. Medical Record.

SECURING PICTURES TO TOMBSTONES.

A frame or casing adapted to hold pictures on tombstones in such way that the pictures will be fully protected from injury by the air, rain, etc., is illustrated herewith, and has been patented by Mr. Solomon R Miller, of Mount Union, Huntingdon County, 'Pa. A metallic casing, with lugs by which to secure it to the tombstone or monument, has a recess in which fits a second casing, preferably of rubber or other waterproof elastic material, and in this second cas

MILLER'S TOMBSTONE PICTURE ATTACHMENT

ing is placed the picture, the glass plate covering it being forced into the sides of the inner casing, so that a part of each side projects over the top edge of the glass. The lid or cover is fulcrumed on a screw secured to the casing, and fits firmly over the outer edge of the sides of the rubber casing The cover may be provided with a suitable inscription, and the frames are preferably made of white metal or bronze, silver plated, or of pure silver or gold, and let into the marble or other material of the tombstone.

Trial of New Weapons.

Nine preliminary rounds for a range trial of the new 12 inch breech loading mortar were fired at Sandy Hook, November 15, in the presence of General Benet, Chief of Ordnance, Captain Smith, and the Testing Board. With the mortar placed at 45 degrees elevation and with a charge of 65 pounds of powder and shell weighing 265 pounds, the following results were obtained : Initial velocity, 1,037 feet; pressure, 2,700 pounds; range, 9,385 yards, or $51 / 3$ miles. Although the preliminary test was not made to demonstrate the accuracy of fire of the mortar, the ordnance officers are well satisfied, from an examination of the shot after firing and other observations, that they were not wrong in believing the breech loader to be superior in this regard to the muzzle loader. Further experiments to test endurance, accuracy of fire, and range will be carried on during the present and coming month. The 8 inch breech loading steel rifle was also subjected to a range trial, November 15, and very satisfactory results obtained. With a charge of 95 pounds of powder, which is 15 pounds less than the usual charge, a 289 pound projectile, and the gun placed at $171 / 2$ degrees elevation, the shot was fired a distance of six miles and 138 yards. The muzzle velocity recorded was 1,800 . With the regular charge of powder and weight of projectile it is figured by the officials at Washington that a range of $61 / 2$ miles should be reached.-Army and Navy Journal.

AN IMPROVED FENCE POST

A simple, light, and durable post, which can be easily and cheaply made and set up, to afford a strong support for the wire or other longitudinal stringers or rails of a fence, is shown herewith, and has been patented by Mr. Louis Turnberger. The post is a metal tube or pipe, with slots dividing its lower end into parts or tongues, which, when the post is driven into the ground, spread outward and form prongs to firmly anchor the

TURNBERGER'S FENCE POṠT

post. The ground plate has a raised central portion, with prongs on the bottom to hold it in position, and around its center are segmental slots, corresponding with the number of prongs of the post, and made flar ing downward and outward from the top of the plate, thereby providing at the center of the plate a core of general conical form. This ground plate is first fixed in position by its prongs, being partially bedded in the ground, if necessary, when the post, with its slotted lower ends placed in the downward flaring slots of the plate, is driven down, forming spreading prongs, which give a good hold on the ground. The wire stringers of the fence are entered into transverse notches made in the post, where they may be held by a vertical wire having slight bends, and an ornamental cap is screwed or driven on the top. The post is equally adapted for use with other forms of fence-making materials, the fastenings being made in any approved way.
For further information relative to this invention address Mr. John P. Mern, of No. 80 Schaeffer Street, Brooklyn, E. D., N. Y.

A HEATER FOR GIANT POWDER AND OTHER EXPLOSIVES.

An apparatus designed to promote convenience, economy, and safety in heating and thawing giant powder and other explosives usually put up in sticks or packages is represented in the accompanying illustration, and has been patented by Messrs. Thomas and Alfred J. Rundle, of Iron Mountain, Mich. It consists of an open topped tank having a series of open ended tubes, with a slip cover or hood adapted to close the tank and the ends of the tubes, there being an apartment below the tank proper to hold a lamp or other means of heating the water in the tank, the flre being so inclosed as to protect the explosives from possible contact therewith. Each tube is of sufficient ca-

THE RUNDLE HEATER FOR GIANT POWDER, ETC.
pacity to hold an ordinary stick or package of explosive, which may be inserted or removed from either end, or, if liable to break or stick in the tube, a package can be readily pushed through, and the heater thus kept clear of all remaining powder or explosives.

Dangers Incident to the Use of Oil upon the waves. According to the Gazette Geographique, this method of calming the waves has been long known by fishermen upon the northern coasts of France, and is still sometimes practiced there. But it should be a subject of fear to smaller boats that follow in the wake of the vessel that has used the oil ; because to the absolute calm suddenly succeeds a still more violent agitation of the waves, and this constitutes a great danger, from which the vessel caught in it often cannot escape. This last fact possesses some importance, and seems hardly yet to have been awarded sufficient consideration. The following incident proves the reality of this danger. On the 20th of last September a lifeboat from Calais went out on the sea to make some studies on the use of oil as a means of quickly calming the violence of the waves. It was once more proved that oil poured upon the water around a ship suppressed radically the largest waves. Within a relatively restricted area a ship was no more troubled; but outside of the circle of action the waves became more furious, they tooi in a certain sense their revenge, and if another boat were near, it would have been exposed to great danger. These troubles were felt by the lifeboat. Having gone outside of the protecting zone, and no more oil being thrown on the water, one of the sailors was caught by a wave (coup de mer). His oar was snatched off him, it caught him around the waist and threw him in the water. Fortunately he was rescued. As we have said, this way of calming the sea is not new. In 1847, when mail service was tried at Boulogne, it was used in embarking from the dock in boats, yet did not always prevent ac cidents.-Revue Scientifique.

A Furnace and Rolling Nill.

A person who has never witnessed the process of converting ore into iron, and then rolling the metal into bars, will be interested in the impression made upon a reporter who witnessed the process, as related by him in the Philadelphia Record:

To trace a lump of crude pig iron through the processes that refine and shape it for use is an interesting experience, and darkness adds to the strangeness and weird aspect of the scene. This is the way it looks to an uninitiated observer. The process begins with the puddling furnaces. Ranged about the sides of the great building are a score of furnaces of peculiar construction. These furnaces, which are low and flat, are charged with some hundreds of pounds of broken pig charged with some hundreds of pounds of broken pig
iron, which is fused by the intense heat until it becomes iron, which is fused by the intense heat unti it becomes
semi fluid. Then comes the hard work of puddling, which is simply kneading the half molten iron. Before the furnace the puddler stands, and, thrusting a heavy iron bar through a small hole in the door, he works and turns the pasty mass, forming it into huge balls, which must be carefully kept separate from each other, else they fuse together into a mass which cannot be removed unless the furnace be taken apart. At night the scene in the puddling mill is weird and picturesque in the extreme. Here and there in the darkness glow the fiery eyes of the furnaces flashing a bright light upon the swarthy and half-nude forms of the workmen as they tug and pull on the molten metal with long iron bars. The roaring of the fires, the hiss of escaping steam, and the clang of iron bars add to the wildness of the scene. For about an hour and a half the kneading process continues before the metal is to be withdrawn. This means incessant labor by the puddler, and labor of the hardest and hottest kind. With no clothing but a pair of overalls, and working in a temperature of 160 degrees, the men perspire so freely that streams of water run from their bodies.

As long as the perspiration continues freely they are safe, and to insure its continuance they drink freely of water, gulping down three or four gallons in a day without any injurious results. But if the perspiration should stop and the men continue to work, prostration would soon follow. The heat is so intense and the work so enervating that the puddlers, after standing before the furnace for an hour and a half, rest three-quarters of an hour before resuming operations.

An hour and a half of puddling and the iron is ready to be drawn. Up goes the door of the furnace, showing a mass of flame too dazzling to look upon with the naked eye. With a big pair of tongs a lump of glowing iron is picked out of the flames and swung along to the "squeezer." This is a circular revolving machine that takes the misshapen mass of iron and rolls it over and over, crushing it into a rough block of solid iron. The "squeezer" is suggestive of a pair of monster jaws crunching and crushing the molten food which is thrust into it, while the melted cinder trickles out between its huge tecth. After leaving the "squeezer" the lump of iron is ready to be rolled into shape, and this furnishes the most interesting of the processes. Away across the iron floor upon an iron truck goes the lump from the furnace.
A huge engine, with its cylinder high in the air, turns the rolls, and as the lump of iron is thrust between the rolls, there is a trembling of the ground as it is caught and pulled through. Back it comes through another part of the roll, more regular in
shape and much longer than whenitstarted.. Back and forward it goes and comes through the rolls, faster and faster until it comes from the last roll and rushes across the floor in a serpentine path, looking a veritable reptile of hideous appearance. A workman clutches the glowing snake by the tail with a pair of tongs and drags it aside. Another man thrusts it before a swiftly revolving saw, there is a deafening noise and a shower of sparks, and the iron bar is nearly cut in two pieces. of sparks, and the iron bar is nearly cut in two pieces.
A few blows from a huge wooden mallet to straighten the red hot bars, and they are dragged aside to cool To one unaccustomed to such sights a rolling mill ap pears to be a place of wild confusion and disorder The rumble of the rolls, the rattle and clash of the tongs and chains, the crash of the huge saws as they cut the red hot bars asunder, and the ever-flying showers of sparks, make pandemonium for a nervous person. Even a steady man is apt to be startled by a sudden yell by one of the hurrying laborers, or by an explosion like that of a cannon close by his side. A stream of water constantly plays upon the rolls, and as it occasionaily gets into the cracks in the red hot iron passing through the rolls, there is an explosion that echoes far up the hill across the river.

an Improved cotton planter.

A machine which is designed to pulverize the ground, make the furrow, plant the seed at regular intervals, and cover them, has been patented by Mr. Nathanie R. Rodgers, of Red Fork, Ark. Apertured segmenta plates attached to the front end of the frame have aligning apertures, in which are fixed harrow teeth,

RODGERS' COTTON PLANTER.

triangular in cross section below the plate and circular above, as shown in one of the small figures, the teeth being calculated to pulverize the earth, but being so secured that they will turn in their sockets should any hard obstruction be met. Diagonally inward, between the plates and the front beam of the frame, is fixed the shank of a vertically adjustable plow, as shown in another of the small views. Hinged to the front part of the main frame is an auxiliary frame, in whose side bars are journaled a transverse shaft, on which is a polygonal-faced seed carrier, supported by drive wheels. The seed carrier has apertures centrally at the angles of its face which align with the plow, so that the carrier, in its onward movement, drops the seed at regular spaces in the furrow. Rearwardly extending spring arms carry a covering board, with a V-shaped slot cut centrally in its bottom edge, this board throwing the soil upon the seed and forming a ridge over the furrow when the row has been planted.

Deep Wells.

The deepest well drilled in the United States is that of George Westinghouse, at Homewood, near the city of Pittsburg, which, on December 1, 1886, had reached a depth of 4,618 feet, when the tools were lost and drilling ceased. The Buchanan farm well, of the Niagara Oil Company, drilled by Fred. Crocker, in Hopewel Township, Washington County, is 4,303 feet deep. The Rush well, of the Niagara Oil Company, in Washing ton County, was abandoned at 3,300 feet. The deep well of Jonathan Watson, near Titusville, was drilled about 3,500 feet. J. M. Guffey \& Co.'s well, on the Walz farm, at West Newton, Westmoreland County, was drilled to a depth of 3,500 feet. The well of Isaac Willets, at Sargent's Mills, near Sycamore, in Greene County, was abandoned at 3,008 feet.
The deepest bore hole in Europe is at Schladebach, near Kotschau Station, on the railway between Cor betha and Leipzig, and was undertaken by the Prussian government in search for coal. The apparatus used is a diamond drill, down the hollow shaft of which water is forced, rising again to the surface outside the shaft of the drill and inside the tube in which the drill works. By this method cores of about fifty feet in
length have been obtained. The average length bored
in twenty-four hours is from twenty to thirty-three feet, but under favorable circumstances as much as 180 feet has been bored in that time. Other deep holes are as follows:

```
Domnitz, near Wettin...
perenberg, near Zossen
perenberg, near Zossen.
Lieth-Elmshorn, Holstein
``` \begin{tabular}{l} 
Feet. \\
3,287 \\
3 \\
\hline
\end{tabular}

Schladebach..
The dimensions of the bore hole at Schladebach are s follows;
\begin{tabular}{ccc}
Depth from & Each Size Bore. & Diameter. \\
Surface. & Feet. & Inches. \\
\(189 \cdot 5\) & \(189 \cdot 6\) & \(11 \cdot 0\) \\
\(605 \cdot 7\) & \(416 \cdot 1\) & \(9 \cdot 0\) \\
6618 & \(56 \cdot 1\) & \(7 \cdot 3\) \\
\(1,906 \cdot 5\) & \(1,244 \cdot 7\) & \(4 \cdot 7\) \\
\(2,259 \cdot 8\) & \(353 \cdot 3\) & \(3 \cdot 6\) \\
\(3,543 \cdot 4\) & \(1,283 \cdot 6\) & \(2 \cdot 8\) \\
\(4,069 \cdot 9\) & \(56 \cdot 5\) & \(1 \cdot 97\) \\
\(4,514 \cdot 6\) & \(444 \cdot 7\) & \(1 \cdot 88\)
\end{tabular}

The various strata passed through are as follows :
\begin{tabular}{|c|c|}
\hline & Feet. \\
\hline Soil and sand, about. & 16 \\
\hline Clay & 66 \\
\hline Sandstone (Bunter). & 459 \\
\hline Anhydrite.. & 59 \\
\hline Brine spring. & \\
\hline Magnesian limestone (Zechstein). & 144 \\
\hline Gypsum.. & 36 \\
\hline Anhydrite. & 295 \\
\hline Marl slate (Kupfersheifer). & 3 \\
\hline Sandstone (Kothliegendes). & 3,435 \\
\hline
\end{tabular}

The bore họle, which in January, 1885, had reached a depth of 4,560 feet, was commenced in June, 1880, but eft after a year's work ; recommenced at the end of 1882, and is still progressing. The cost up to January, 1885, was about \(\$ 25,000\).-Prog. Age.

\section*{A New Hektograph.}

The latest issue of the Papier Zeitung gives the following instructions for making a cheap and handy hektograph: Soak 4 parts of best white glue in a mixture of 5 parts pure water and 3 parts ammonia, until the glue is thoroughly softened. Warm it until the glue is dissolved, and add 3 parts of granulated sugar and 8 parts of glycerine, stirring well and letting it come to the boiling point. While hot, paint it upon clean white blotting paper, with a broad copying brush, until the blotting paper is thoroughly soaked and a thin coating remains on the surface. Allow it to diry for two or three days and it is then ready for use. The writing or drawing to be copied is done with ordinary hektograph or aniline ink upon writing paper. Before transferring to the blotting paper, wet the latter with a sponge or copying brush and clean water and allow it to stand one or two minutes. Place the written side down and stroke out any air bubbles and submit the whole to gentle pressure for a few moments, remove the written paper, and a number of impressions can then be taken in the ordinary way. When the impressions begin to grow weak, wet the surface of the hektograph again. This hektograph does not require washing off, but simply laying away for 24 to 36 hours, when the surface will be ready for a new impression.

\section*{New Envelope Machinery Wanted.}

The manufacturers of envelopes have lately united to form a trust, and have advanced the prices of envelopes. It is expected that if any new concern were to commence business independently of the trust, the latter would be able temporarily to undersell and destroy the new comer. In this land of liberty there is no protection against such combinations except the ingenuity of the inventor. What is now wanted is improved machinery for making envelopes, by which greater rapidity and economy may be secured. An opposition to the trust which could command any genune improvements in the direction indicated would enjoy a bonanza in the line of business. The problem suggested is a very difficult one. Some of the envelope machines now belonging to the trust are marvels of ingenuity and perfection. To beat them is no easy task. A first class envelope machine now costs two thousand dollars.

\section*{Perpetual Motion Inventors.}

George Stephenson, England's great engineer, began his experiences as an inventor with the perpetual motion problem, for which he constructed a machine. His biographer describes it as consisting of a "wooden wheel, the periphery of which was furnished with glass tubes filled with quicksilver; and as the wheel rotated, the quicksilver poured itself doyn into the lower tubes, and thus a sort of self-acting motion was kept up in the apparatus, which, however, did not prove to be perpetual."
Indeed, not a year passes but some new enthusiast lodges at the Patent Office the specifications of some machine for perpetual motion. This is not in itself considered evidence of insanity, but it is unquestionably regarded by some as proof of mechanical ab-
erration.

\section*{©orresponidence.}

\section*{Self-Mending Insects.}

To the Editor of the Scientific American:
One of your correspondents asks for a scientific reason or for an explanation of this most marvelous operation of the self-mending snake and the earwig ; and whether any other living objects do the same.
In the extract below, taken from the Encyclopædia Britannica, he will find a statement of as marvelous operations and of still more marvelous reasons or ex planations (so called scientific explanations):
' The spontaneity of certain polyps under injury is a good example of the indwelling power of all the cells and tissues to return to the established order, to the order and harmony which had been slowly acquired, and of which the memory is vividly retained. Trembla cut a hydra longitudinally, and 'in an hour or less,' says Paget, 'each half had rolled itself, and seamed up its cut edges so as to be a perfect hydra.' He splịt them into four ; he quartered them; he cut them in as many pieces as he could; and nearly every piece became a perfect hydra. He slit one in seven pieces, leaving them all connected by the tail, and the hydra became sevenheaded, and he saw all the seven heads eating at the same time.
"This spontaneity resides in every living thing, and its efforts are directed by the memory of what the species had come through in reaching its place in the scale of organization. It is able, indeed, to make persat reparation for injuries or losses only where the cells are little differentiated into tissues, or where the tissues are little specialized for diverse functions. In all animals, and most notably in the higher, this spontaneity is most effective for repair in the periods of development or growth."
So much from the Britannica. It is a pity that the learned pathologist has not stated where the memories are located, or how many such memories belong to each organism. Perhaps each cell contains one for itself, or each organism the sum of all the memories of its ancestry.
R. O. Gercke, M.D.

Augusta, Ga.

\section*{The Mineral Wealth of siberia.}

Referring to the resources of coal and iron in Siberia, a writer in one of our English exchanges says
It is one of the finest undeveloped countries in the world, and it is really difficult to exaggerate the enormous wealth of this gigantic region. The soil is of almost inexhaustible wealth and the crops magnificent. There is almost no limit to the production of the land. The Russians themselves have but an imperfect idea of the immensity of their natural wealth, and other people outside Russia cannot realize it at all. Siberia, so far from being a region of desolation and of death, is a northern Australia, with larger rivers, more extensive forests, and mineral wealth not inferior to that of the island continent. In a very few years Siberia will be bridged from end to end with railways, and in this matter the Russian government is showing a large and wise policy. The magnificent water communications -for it is irrigated from end to end with some of the largest rivers in the world, navigable for thousands of miles through fertile and richly wooded lands destined to be the home of millions of colonists-and a canal is now being made between the Obi and the Yenisei, which will enable goods to be conveyed by water the whole way from Tiumen to beyond Lake Baikal. At Tiumen there is a railway which passes through the Ural mountains to Ekaterineburg and Perm, through the heart of the richest mining district in western Siberia.

\section*{The Manufacture of Japan Soy.}

At a recent meeting of German chemists a Mr. Erich communicated a paper on the preparation of Japan soy, a product of which the details of manufacture are
as yet imperfectly known. Soy has been manufactured as yet imperfectly known. Soy has been manufactured
in Japan for over a thousand years, and forms a very considerable article of consumption in that country and throughout the East. There are many factories of the condiment in the country, one of the largest being at condiment in the country, one of the largest being at specially prepared for export every year. The principal ingredients known to be used in the manufacture of soy are a very hard long-awned variety of barley, common salt, soya beans (Dolichos soya), a specially prepared ferment, and water. The soy beans are roasted like coffee, the barley is partly roasted and partly malted.
The roasted parts of the barley and the beans are soaked The roasted parts of the barley and the beans are soaked
in cold water, cooled, and preserved by the addition of a liberal dose of common salt. To this are added first a diastase solution, and afterward a specially prepared ferment, which causes an extremely slow fermentation, but without any considerable formation of carbonic dioxide or alcohol. The degree of strength of the soy depends upon the time used in the process of manufacture, which varies from one to three years. If kept cool and out of the light, soy can be kept good for a very long time, but the act
of air cause fermentation.

\section*{PHOTOGRAPHIC NOTES.}

Illuminating Negatives by Artificial Light for Copy-ing.-In an article giving an account of the variou methods of illuminatingnegatives by oil, gas, electric, or the oxyhydrogen light the Br. Jour. of Photo. describes a simple method, which consists in the use of magnesium ribbon. It says:
Since magnesium has at last come down to so modeSince magnesium has at last come down to so mode-
rate a price, there remains no valid reason why a cheap, convenient, and highly powerful light should not be available for the purpose we indicate wherever lantern slides or enlargements are made.
The simplest mode of using it scarcely requires any apparatus or preparation, all that is necessary being to ignite it at a sufficient distance from the negative, with or without the intervention of a translucent screen; or the light may be allowed to fall upon a white sheet and passed, by reflection, through the negative to the camera, in which case the perfection of uniformity is secured. But though these makeshift methods may answer very well for lantern slide purposes where the sensitive
plate is exposed in the camera, and thus protected from extraneous light, for enlarging they are wholly useless, since the sensitive surface is usually freely exposed, and it therefore becomes necessary to inclose the light in a suitable lantern. This is not a difficult task, and as, with the aid of magnesium, it removes all the difficulty of equal distribution of the light without inconveniently lengthening the exposure, no doubt many amateurs, in
addition to those who have addressed us on the subaddition to those who have addressed us on the subon the lines of the one we shall describe.
This consists, roughly, of a wooden body with ground glass front, and acts at the same time as lantern and glass front, and acts at the same time as lantern and
reflector combined, the ground glass intercepting the whole of the light, both direct and reflected, and becoming converted into a powerfully actinic radiant suitable for either enlarging or reducing purposes and for negatives of any size. The details of construction are so simple as to scarcely require a diagram, so we shall endeavor, by means of a verbal description, to make the arrangement clear.
We may premise that though the instrument we describe is constructed for use with negatives up to \(12 \times\) 10 , and is equally available for quarter plates, it might be made of any smaller dimensions if preferred, though, as nothing is lost in the larger size, and little added to the cost, we should strongly recomimend the .12 inch square front to be adhered to.
The shape of the lantern, or reflector, is a hollow pyramid, the base of which is 12 inches square, clear, and the sides slope at an angle of sixty degrees, which will make the height of the pyramid, roughly, between 10 and 11 inches. Such are the interior shape and dimensions ; but for convenience in construction, as well as in use, the structure may be butilt up in the following manner:
Cut two pieces of wood accurately to the shape and internal dimensions of the side of the reflector, and cut also two rectangular pieces of such size that, when placed together to form a \(V\)-shaped trough, the two triangular pieces will fit in at the proper angle to complete the reflector. The square ends of the two rect-
angular sides will then serve as feet, upon which the angular sides will then serve as feet, upon which the fastening the sides together, mark on each a line parallel with, and 6 or 7 inches from, the front or base edge, and nail or glue on four fillets of wood to form a rabbet or projection against which to fix a square of glass. In each of the triangular pieces which will form the top and bottom of the lantern when in use cut a hole an inch and a half or two inches in diameter, for ventilating purposes, the upper one to be fitted with an external chimney to carry off the smoke.
When the frame is put together, let it be lined with white paper or painted dead white. Fit a square of clear glass into the rabbet formed by the fillets already mentioned, and in the center of this cement a disk of opal glass about an inch in diameter. The clear glass will convert the back portion into a separate lantern, and by reducing the space assist in carrying off the smoke, while the opal disk softens the intense brilliancy of the burning magnesium, and helps to equalize the illumination. The front of the arrangement is provided with a frame, into which a sheet of ground glass slides, with a second groove at a distance of about an inch, into which carriers to hold different sized negatives
can be inserted. So far as the lantern is concerned, nocan be inserted. So far as the lantern is concerned, no-
thing now remains but to supply the illuminating arrangement.
This of the simplest. Procure two narrow brass tubes, 5 or 6 inches in length and an eighth of an inch in internal diameter. Saw off the apex of the pyramid and replace it with a flat piece of wood, through which the two tubes are passed, one a quarter of an inch above, the other a quarter of an inch below the center, and reaching to an inch or so of the clear glass screen, or 8 inches from the ground glass front. The upper tube serves as a guide for the magnesium wire. The lower tube carries a strand of cotton wick, kept saturated with spirit, and serves to light the magnesium as it is passed through the upper tube. If the outside lend of the wick tube be bent at a right angle, it may
be passed through a cork into a small bottle of methylated spirit, and so converted into a permanent spirit lamp. A small aperture cut in one of the sides and glazed with blue glass will enable the operator to watch and regulate the supply of magnesium during use.
When required for work, all that is necessary is to light the spirit lamp by passing a taper through the air inlet at the bottom and to allow that to burn continuously. When an exposure is to be made, a strand of_magnesium ribbon is passed slowly, but regularly, through the upper tube, and being ignited by the spirit flame, continues to burn as long as the supply is kept up. If the reflector be constructed of the shape and angle given, and the light arranged at a distance of 8 inches from the front glass, the illumination over a surface of a foot square will be brilliant and uniform in the highest degree.
Not the least recommendation of this apparatus beyond its efficiency is its economy. It may be made by any one who can use tools at all, for a few shillings, and will serve a variety of purposes.
While the above described arrangement is well adapted to the burning of ribbon, we can suggest a more simple plan, which consists of inserting a metal sheet on the bottom of the box, then placing upon it the new magnesium powder and gun cotton compound, and igniting and flashing it by means of a wax taper inserted through a small hole in the back of the box, or by a platinum wire made red with an electric current.
Chromo-Collotype Process.-One of the latest inventions patented in this country is the chromo-collotype or chromo lichtdruck of F. L. Hosch, of Munich. As many of the readers will probably remember, the late Jos. Albert, of Munich, many years ago invented a similar process. He photographed a painting three times. The first negative was taken through a red colored glass plate, the next through a blue glass plate. and the last through a yellow glass plate. In this way he obtained three negatives, all of the same size, but in taking of which respectively the rays of the three primary colors-red, blue, and yellow-had been absorbed. From these neg atives he secured three lichtdruck plates, one from each, the first of which he printed in red, the second in blue, the third in yellow, one over the"other, and thereby he obtained more perfect pictures than could posisibly be got by any other method. The Hosch process, though being also based on photography, is a different one. In this process a painting is photographed, and behind the resulting negative is exposed a lichtdruck plate. From this plate as many prints as color plates are required for the finished picture are taken on well sized paper. The prints, or off-sets, are fixed to card board or to glass plates, and with specially prepared oil colors painted gray on gray, then they are all photographed again. In the negatives thus obtained, the highest lights, and also the margins of the picture, which should print perfectly white, are backed, then lichtdruck plates are exposed behind the prepared negatives, which are washed, etched, and respectively printed in the colors yellow, red, flesh tint, and blue, one over the other. 'The advantages of this process are that a considerably smaller number of color plates are sufficient for the reproduction of a painting than in the case of chromo-lithography, and that the finished pic tures are much more perfect and of a greater softness than chromo-lithographic prints. On the other hand, more time is occupied by this process, and the printing and plates are more expensive.
Sresniewski's Gelatino Emulsion.-Professor Eder, in reviewing a new handbook of photography, written by a Russian dry plate manufacturer, M. Wiatcheslaus Sresniewski, describes a new method of preparing gelatine emulsion. It is a modification of Mr. Henderson's process, and consists in the following:

First add No. 2 to No. 1, then mix it slowly, and well shaking, with No. 3. The emulsion is kept for eight to ten hours in a room of the usual temperature. At last add a warm solution of-

Gelatine.
Water....
18 grammes.
and finish by precipitating with alcohol, or by setting and washing with water.-Hermann E. Gunther, in Photo. News.

The Klamath Indians have built up a considerable carrying trade along the Pacific coast. In their large canoes, hewn out of the solid trunks of immense trees, they carry dairy and farm products for the settlers and they carry dairy and farm products for the
return with groceries and other supplies.

\section*{SEparating the manila fiber.}

In our paper for September 17 we published a letter from a correspondent in Madrid, calling attention to the need for a new mechanical invention to facilitate the separation of the fibers of the abaca plant, this being the plant from which the well known manila ropes and other goods are made. At the interesting exhibition now in progress at Ma now in progress at Ma-
drid, of the products drid, of the products
of the Philippine Islands, machines such as are now used at Manila and dependencies are shown in operation. We give an engraving of one of these ma chines. As will be seen it is a rough and primi tive affair, worked by hand, slow and tedious but the entire product of this class of fibers, vast in extent, is sepa rated by this means. There is clearly room for an improvement.

\section*{FRENCH DISINFECTING}

\section*{apparatus.}

The preparatory labors of the International Congress of Hygiene, which met at Vienna, September 26, permit us to assert that France to day possesses a stock of disinfecting apparatus much superior to that of other nations, for the reports published by the hygienists of various countries well show that the French apparatus are the only ones capable of assuring the application of \(\mid\) Maritime Exhibition. The dimensions of a boat of this this measure within the shortest time, with the lowest kind vary between 65 and 90 feet in length and 20 and 25 pressure, and at the lowest temperature. It is a question, be it understood, of the destruction of pathogenetic micro-organisms in linen, clothing, bedding, rags, etc. As for the disinfection of rooms and furniture, that has to be done with the aid of chemicals, gaseous or liquid; but thesecannot penetrate the aforementioned objects quickly enough, and without injury.

The two new apparatus that we desire to make known are a disinfection boat and a movable disinfection stove.

Professors Brouardel and Proust and Dr. Rochard, French delegates to the International Sanitary Conference at Rome, in 1885, dwelt at that time upon the correlation that necessarily exists between the guarantees given to public health by the measures of disinfection and those of quarantine; so much so that the sanitary administration might, without inconvenience, diminish the duration of the quarantine by reason of the guarantees given by the rigor of the disinfection. The con ference approved of this, but it is only the French govern ment that has as yet put the idea in practice. The French sanitary administration, in fact, has resolutely entered upon this course, and is trying to bring in the ship compa nies. Steam stoves are now in operation upon several ships, and the services that they have rendered here permitted the vessels to pass quarantine upon their arrival. The congress at Havre, like the French sanitary administration, has, moreover, declared itself favorable solely to disinfection by steam under pressure, to the exclusion of all other applications of air or steam, and this, too, after numerous researches of hygienists, engineers, and physiologists
All the French lazarettos are now provided with stoves of this kind. In ports where
there are no lazarettos, when a suspected or infected ship comes in, the maritime sanitary administration is obliged to send it to the nearest lazaretto. In order to remedy this difficulty, which costs much time and money, it was thought that in most cases it would prove advantageous to have a means of doing the disinfecting alongside the vessel. Ko Messrs. Geneste \& Herscher were 'charged by the

NEW DISINFECTING BOAT CONSTRUCTED BY THE COMMITTEE ON HYGIENIC SERVICE, FRANCE.
by chemicals, of leather, skin, or \({ }^{\text {f.- }}\) objects that will not withstand the high temperature of the steam stove. This apparatus consists of a rectangular chamber, situated in one of the corners, and provided with two doors, one of which opens in one compartment and the other in the second. The sides of this chamber are covered with a protecting coating. The doors are hermetically closed by means of strips of silicated cloth, which the valves compress when they are closed. In the interior are supports, from which the objects to be disinfected are suspend-ed.-La Nature.

\section*{Solidification of Petro} leum.
The problem of solidifying petroleum has been taken up in Rus sia by Dr. Kauffmann who, it is said, has ob tained the best results by heating the oil with 1 to 3 per cent of its weight of common soap for about half an hour At the end of this time the soap is entirely dis solved, and the whe mass is at once convert ed into a solid material of the consistence of tal low. Cut into pieces in the shape of bricks, the petroleum thus solidified ignites only with difficulty; but, once lighted, it burns slowly, without smoke, leaving about 2 per cent of mbustion would be one-third as rapid, it in width.
The boat is divided into three compartments by two iron plate partitions. The first of these constitutes the crew's quarters. It is reached through a sliding hood and a wooden ladder, and is lighted by two ports. The second compartment, which extends for half the length of the boat, constitutes the store room, and contains in the rear end a fresh water reservoir of 800 gallons capacity. The third compartment constitutes the coal bunker, and is reached by means of an iron ladder. The hull of the barge \(\$\) entirely of iron, and is protected with a girdle of wood. There is a cabin on the deck for the reception of the disinfecting apparatus. This cabin is provided with six windows and two sliding doors, and contains a steam disinfecting stove of the hospital or lazaretto type. Near the stove, and in one corner of the cabin, there is an upright boiler for furnishing steam under pressure to the stove. 'There is,
likewise, a galvanized iron tank, which is provided with an injector for supplying water to the boiler and to a power pump, whose suction pipe enters the reservoir. The cabin is divided into two compartments by an iron plate partition, so placed that the doors of the stove are on each side of it. The boiler and stove compartment also contain an apparatus for the disinfection,
rapidly disappears. Under the influence of this treatment, says M. Garcin, the attacks of coughing diminish in frequency, the expectoration changes in character and diminishes, the appetite improves, and night sweats disappear. As to the bacilli, they are found to decrease every day, and eventually disappear from the secretions.-Revue Scientifique.

BIRDS. IN THE ZOOLOGICAL GARDEN AT BERLIN. When in the late autumn the red and yellow leaves fall and the first night frosts come, there is a peculiar restlessness among the feathered inhabitants of the Zoological Garden. The migratory birds are very much excited by the call of passing birds of their species, and forget that their ability to fly has been taken from them by the injury which their wing have sustained. So they try to rise, only to fall head long on the grass or in the water. The first cranes gather in groups and answer with deafening cries the call of the wild cranes which form themselves into re gular triangles or parallel lines high in the air as they pass southward. The birds with stilt-like legs, from hot countries, such as the flamingoes and many species of storks and cranes, evidently suffer when the temperature sinks at the beginning of winter. With bristling feathers and shivering legs, they stand close together in groups or run up and down flapping their wings, trying to warm themselves. Remarkable groups can often be seen, whose conduct shows plainly that temperature causes them discomfort.
Our cut shows such a group. Here we see a whole
brilliant conversationalist, and, with glasses which hide his completely closed eyes, one would scarcely cognize him as a blind man. For the last twenty years he has seldom used an escort, except when in great haste, and when going on territory entirely strange to him. Many people who have observed the facility with which he moves from place to place doubt that he is totally blind, but he has been put under the se verest tests, and those who have made the investigations are convinced that he cannot see.
Describing his habits to the reporter, he said ' When in a train at full speed, I can distinguish and count the telegraph poles easily, and of ten do it as a pastime, or to determine our speed. Of course I do not see them, but I perceive them. It is perception. Of course my perceptive qualities are not in the least impaired on account of my blindness. I am not able to explain it, but I am never in total darkness. It is the same at midnight as at midday. There is alway a bright glow of light surrounding me."
A practical test was made. A thick, heavy cloth was thrown over his head as he sat in his chair. This
netic characters, he tells the characters, and interprets them. What might be termed a "crucial test" of this was given the Herald reporter.
Mr. Hendrickson further said : "I'm a very good skater, and can, when gliding over the ice swiftly, see every particle on the ice, every crack and rough spot, no matter how small and indistinct. The faster I go, the plainer I can see. Well, I don't mean that I can see, but I perceive, or something. It is light to me, and I discern everything."

\section*{The Locomotive Cab.}

Mr. W. W. Boyington, in an interesting article in the N. W. Architect on the "Architecture of the Present Time as compared with that of Fifty Years Ago," gives the following incidental reminiscence :

We must not forget the very crude construction of railroads. First the wood stringer with iron strap rails, more familiarly known as the 'snake head' rail. On these rails the engines were constructed to run without tenders or covers of any kind to protect the en gineer or fireman. They used to stand on the open platform, exposed to the severity of the weather and

BIRDS IN THE ZOOLOGICAL GARDEN AT BERLIN.
deputation of the long-legged fellows who seem to have sought the old philosopher, the marabou, for advice and help in their trying position. He, however, seems not to be in the mood for giving counsel, and apparently feels like venting his anger in some such words as these: "I cannothelp you. You must stay here. Go to your stalls, and do not bother me." Illustrirte Zeitung.

\section*{How a Blind Man Sees.}

Many instances have been related showing that defection in any one or more of the human senses often results in developing the corresponding inner sense. This has been more frequently observed in persons afflicted with loss of sight and hearing. One of the kind is interestingly described in a late issue of the Chicago Herald, which can be safely taken as one of the most remarkable on record.
Mr. Henry Hendrickson, born in Norway forty-three years ago, but who has lived in this country forty years, was deprived of sight when six months old. He was educated at the institution for the blind in Janesville, Wis., and is the author of a book entitled "Out of the Darkness," somewhat in explanation of the mediumship with which he is becoming endowed, although unable to account for it in any manner satisfactory to himself or conformable to the known law of physical science.
The ! narrative states that he is .well educated,
er for one to see through it. Then before him or behind him, it mattered not, an ordinary walking cane was held up in various positions, and in answer to the inquiry, "In what position am I holding it?" he mistake, sometimes describing acute or oblique angles.
"I have never," he said, "by the ordinary sense of sight seen an object in my life, not the faintest glimmer of one. My sight or discernment. does not come in that way. This will prove the idea to you: Take me into a strange room, one that I have never been into, and never heard about, and no matter how dark it is, I can tell you the dimensions of the room very closely. I do not feel the walls; I will touch nothing; but there is communicated to me by some strange law of perception the size and configuration of the room." He then related that being in New York in 1871, he walked from Union Square to a friend's house on Fortyfirst Street, a long distance, with several turns, and did not make a miss. He said: "I knew the house when I came to it. I did not see it, and yet I did. I am studying shorthand, and as my hearing is very good, I expect to become an expert. I had a little rouble with my writing at first, but am now able to write very well."
Another remarkable illustration of his power to see withouteyes is this: If one make motions in the air like beating the time for a choir, but describing pho-
torms. It was in the year \(1^{\text {s }} 30\), I think, that I was called upon by the master mechanic and general su: perintendent of the Boston \& Albany Railroad ta see if I could not devise some kind of protection at least to partially cover the engineer and fireman, and have it sufficiently open not to obstruct their view. I examined an engine and reported that I could construct a cover. I was at once employed to make the necessary drawings and superintend the construction of the first cab over an engine in this or in any other country. The result was a perfect success, upon which there has not been any material improvement, as it was almost identical with the cab now in use. I need hardly inform you that its use was immediately adopted throughout this country. Had I had forethought enough to have secured a patent for the device, I probably wọuld not have been called upon to prepare this paper. I trust you will forgive me for diverging so far from the subject given me. The mention of these somewhat kindred subjects has been prompted by the incidents in my early life that were fastened so strongly in my mind in connection with my studies and practice in arcnitecture."

\section*{Meteorites.}

Probably the largest private collection of meteorites is that of Mr. George F. Kunz, the well known mineralogist of this city. The collection contains over one hundred specimens, one-third of which are unbroken.

\section*{What is Hydroquinone?}

The above question having been put to us by a number of our friends, we thought it would not be uninteresting to give our readers a brief review of the chemistry of this new developing agent and some statement of its general properties.
A few words may not be out of place here in exple nation of the method of spelling the word as given above. Some writers in English use the term "hydrokinone;" but in looking into the matter we find this is simply an adoption of the German word without much change; whereas the correct Euglish word used by the best scientific authorities is "hydroquinone." The reason for the latter method of spelling appears to us to be a good one. It is because the body under discussion was formerly obtained from quinic acid, one of the substances associated with quinine in Peruvian bark. We therefore prefer the word hydroquinone rather than hydrokinone, and for like reasons we reject the word hydrochinone, also used by some authorities.
Hydroquinone belongs to a class of organic bodies that the chemist calls diphenols, and hence it is sometimes called quinol; but the former name is that more commonly used. It was first obtained by Caventou and Pelletier, about the year 1820, as a product of the dry distillation of quinic acid, a compound found in Peruvian bark and a by-product in the manufacture of the well known alkaloid quinine. The above chemists did not make a thorough examination of the body, and called it pyroquinic acid, because they obtained it by heating quinic acid. Some time afterward Wohler found that he could obtain the same body by combining hydrogen and quinone (a product of the oxidation of quinic acid with manganese dioxide and sulphuric acid), and gave it the name it now bears, hydroquinone. He further found that hydroquinone could be best prepared by passing sulphurous acid gas through a warm saturated solution of quinone which has some of the undissolved substance suspended in it.
It is very interesting to note how the researches which had for their object the artificial production of the alkaloid quinine have also given us a long list of new chemical compounds that are gradually becoming useful to man as their properties are studied. Hydroquinone is one of these bodies, and although we cannot make quinine from it, yet there appears to be a great field for it in its applications to photography.
After hydroquinone as a product of the dry distillation of quinic acid had been studied, it was found to be obtainable from other sources. The leaves of the bearberry (Arbutus uva ursi) contain it combined with gluFrom both these sources it can be obtained by boiling the aqueous extract with dilute acids. But further study showed it to be related to benzol, the product of coal tar, and a process was soon devised to manufacture it from aniline, which is a derivative of benzol and the source of so many interesting organic compounds. The method of procedure is as follows :
One part of aniline is dissolved in eight parts of sulphuric acid and thirty parts of water, and to the cooled solution two and a half parts of potassium bichromate dissolved in water are gradually added. To the brown fluid thus obtained potassium sulphite is added, and the whole mixture is finally shaken with ether. The ether is allowed to rise and the fluid below is drawn off and rejected. By distilling the ether solution a residue is obtained which is dissolved in the smallest quantity of hot water. Sulphurous acid and animal charcoal are then added, and the solution is boiled and filtered. On standing, the hydroquinone separates out in hexagonal rhombohedral prisms.
The substance thus obtained sublimes in monoclinic plates, which, on solution in water, again gives the crystals mentioned above. It has a slightly sweet taste, and melts at \(169^{\circ}\) Celsius. It is readily soluble in hot water, alcohol, and ether (at \(60^{\circ} \mathrm{F}\). one part takes seventeen parts of water for solution). It reduces silver nitrate solution, and also alkaline solution of copper sulphate. It forms a compound with sulphurous acid gas, which may account for the fact that it works better in a developer which contains sodium sulphite. It may possibly be still further improved by adding sulphurous acid to this solution of sulphite and hydroquinone. The result of its oxidation is quinone, the product mentioned above, which is also obtainable from aniline by oxidation.
We have given our readers a brief review of the principal chemical properties of this exceedingly interesting developing agent. It is not as energetic as pyrogallol in its reducing power, but the results obtained are softer and the negatives are less liable to be stained. Furthermore, the fact that the reducing action of the developer is less energetic allows of its better preservation, and the same solution can be used for the production of a great many more negatives than a similar solution with pyrogallol as the active agent. At present the price of hydroquinone is considerably higher than pyrogallol, but should there be a demand for this new agent, it will be manufactured cheaply, and the reduction in price will be similar to that which took place when pyrogallol became a popular developer.
We recommend all our readers to try this new develop-
ing agent, and even at the present prices the advan tages and comfort obtained in its use fully compensate
for the extra expense incurred in using it.-Anthony's for the extra
Bulletin.

\section*{Leather, Board.}

According to the Shoe and Leather Reporter, the name leather board is something of a misnomer. In the best grades of it no leather is used at all. Essen tially, leather board is a paper. It is manufactured by paper processes and on paper machinery. The raw materials are beaten up in a pulp engine, run off on what is known as a wet machine, and pressed between rollers. Then it is dried out of doors in summer, under cover in winter, after which it is calendered until finished. It is marketed in sheets. These are put up in bundles of fifty pounds each. The varying thickness of these sheets is expressed by the number of sheets in a bundle. Leather board so thick that five sheets make a 50 pound bundle is No. 5 board that so thin that 45 sheets make a 50 pound bundle
No. 45 board. These two numbers are the extremes. Of leather board there is a wide range of qualities. The poorest sells at about 3 cents, the best at 12 cents per pound. All grades of it are used more or less in nost medium and low priced shoes. It is a shoddy, and yet in some of its uses, such as in "filling," where otherwise only small scraps of leather would be worked in, it answers the purpose even better than the latter Leather board may be divided, according to its uses, into three kinds : 1. That used for inner soling, shanking, filling, and the like. Materials used in the manufacture of this grade vary more than those in any other. They are all cheap, but must be supplied with a good deal of fiber, for it is a requisite that the product be both tough and solid. Thousands of pairs of shanks are made of this every year. Then, too, steel shanks are covered with it. Backed with cotton duck, inner soles are made of it. Manufacturers use it for filling between the outer and irner sole, not to cheapen, but to save the time of gathering and arranging leather scraps. Board of this quality sells at about 3 cents per pound.
2. For tapping and veneering. This is in truth shoddy. It is made to imitate leather in appearance and to cut as near like leather as possible. When cut it must present a surface that finishes like leather, and the toughness of the product is in some measure sacrificed to secure these appearances. Scraps of leather are used in its manufacture, but these also are worked in pulp.form. Veneered with a thin split of leather, just enough to satisfy the demands of the buffing machine, many outsoles are made of this board, while it is freely used for taps and heel lifts. It sells at \(31 / 4\) to 4 cents per pound.
3. Counter board. Leather board and union heel stiffenings are or ought to be made of the best board, and this is manufactured of what is known as hard stock manila, jute, and the like. When up to the highest standard, this product is rich with tough, fibrous material, will stand a great deal of wrinkling before it breaks, and may be made approximately waterproof. Boot and shoe heel stiffenings or counters of all kinds, and box toes, are made of this. When properly treated
and inanufactured of good stock, the counters are serand manufactured of good stock, the counters are serviceable. When leather board is backed with a leather split and moulded into a stiffening, the product is a union counter. On this kind of board prices range union counter. On this kind of board prices range
from 5 to 12 cents per pound. One company, which manufactures leather board, makes a chair seat cut from this material.

\section*{The American Physique.}

Last spring I received a letter from an English gentleman who is interested in anthropology and biology, asking me if there were any facts to sustain the impression abroad that the white man is deteriorating in size, weight, and condition in the United States. I had no positive information of my own to give, and I could only refer my correspondent to the data of the measurement of soldiers and to some other investigations of less far the gre. It occurred to me, however, that since by in ready-made cl thing, the experience of the clothiers might be valuable, and that from their figures of the average sizes of the garments prepared by them for men's use very clear deductions could be made as to the average size of the American man. I therefore sent a letter to two clothiers in Boston who have been long in the business, one in Chicago, one in New York, one in Batimore, one in Detroit, one in Texas, and one in
Montreal. The information received in return is to this effect :
In any given thousand garments, the average of all the returns is as follows: Chest measure, 38 inches; waist, \(331 / 2\) inches; length of leg inside, \(321 / 2\) inches ; average height, ranging from 5 feet \(81 / 2\) to 5 feet 9 in New England up to 5 feet 10 for the average at the South and West. A few deductions of weight are given, between 155 and 160 peunds. These measures cover the average of the assorted sizes of garments which are the average of the assorted sizes of garments which are
made up by the thousand. There are a few small men
who buy "youths' sizes," so called, and a few larger The remarks mad ines.
The remarks made in some of these letters are interesting. My correspondent in Chicago states that "so far as relates to the assertion that the race in this country deteriorates, our experience teaches us that the contrary is the case. We are now, and have for several years past been, obliged to adopt a larger scale of sizes and many more extra sizes in width, as well as length, than were required ten years ago. I find that occupaion and residence have a great deal to do with the dif ference in sizes, the average of sizes required for the cities and larger towns being much less than that required for the country. Again, different sections vary very much in those requirements. For instance, an experienced stock clerk will pick out for South and Southwestern trade coats and vests, breast measure 35 to 40 , pants always one or two sizes smaller around the belly than the length of the leg inside; for Western and Northern trade, coats and vests, breast measure 37 to 42 , pants 33 to 40 around the belly, 30 to 34 length of leg inside."
My correspondent in Texas gives the average 38 inches chest, 33 to 34 inches waist, \(321 / 2\) leg measure, 5 feet 10 inches height, adding: "We find that the waist measure has increased from an average of 32 to 33 inches during the past five years, and we think our people are becoming stouter built."
My correspondent in Baltimore had previously made the same statement, to wit: "Since the late war we
have noticed that the average sized suit for our Southern trade has increased fully one inch around the chest and waist, while there has been no apparent change in the length of pants." I asked this firm if the change could be due to the fact that the colored people had become buyers of ready-made clothing, but have for reply that the fact that the negroes are buying more ready-made clothing now than previous to the war ac counts in only a small degree for the increase of the
size, but is due almost entirely to the increased physical activity on the part of the whites. The experience of this firm covers thirty-five years.
My correspondent in New York states that "for the ast thirty years our clothing, numbering at least 750,000 garments yearly, has been exclusively sold in the Southern States. We find the average man to measure 37 inches around the chest, 32 to 33 around the waist, \(\$ 8\) to 34 inches length of legs inside, average height 5 feet 10 inches. The Southerner measures more in the leg than around the waist-a peculiarity in direct contrast to the Western man, who measures more around the waist than in the leg."
My correspondent in Canada gives the following deails; experience covers twenty years, about 300,000 carments a year

The information about the weight I got from a cus tom tailor of some years' experience, and cannot, of urse, vouch for its correctness."
My correspondent in Detroit says: "We notice warked peculiarities in regions where dwell people of one nationality. The Germans need large waists and short legs; the French, small waists and legs; the Yankees, small waists and long legs; the Jews, medium waists and short legs. We have found a decided demand for larger sizes than we formerly used."
This subject is foreign to my customary work. I give these statements as a matter of general interest, and perhaps some of the students who are engaged in this branch of investigation may take a hint from this method and extend it still further. Possibly the average size for a woman could be deduced from the data of the manufacturers of knit goods. From what I know of the business of the clothiers to whom I made application, I should infer that the figures which I have sub mitted above would cover more than one hundred mil lion garments; and I know of no better method of coming at a rough-and ready conclusion regarding the size of men than the one which I have adopted. The subject has interested me from the standpoint of better nutrition. It will be observed that the American man is decidedly gaining in size and weight. Cannot some one obtain data for comparison with these sizes from the statistics of military recruits and conscripts in Europe or from the contractors for army clothing?Edward Atkinson, in Science.

\section*{Liquid Cement or Gum.}

To make one gallon of the gum, about one and a half gallons of water, 3 pounds of glue, 4 ounces of borax, and 2 ounces of carbonate of soda, or an equiva lent of any other alkali, are taken. The glue and alka line salts are dissolved in the water by heat, and the solution is kept at a temperature a few degrees below boiling point for 5 or 6 hours. The continued application of heat renders the gum permanently liquid at the ordinary temperature. After allowing the sediment to settle, the clear liquid is evaporated to the

\section*{JOSIAH PARSONS COOKE.}

\section*{BY. M . .}

Allusion has been made in earlier sketches of this series of distinguished American scientists to the remarkable influence exerted by the elder Silliman on those who were fortunate enough to come under his instruction. Of this class may be mentioned Josiah Parsons Cooke, the subject of this sketch. He was born in Boston, Mass., on October 12, 1827. His father was a distinguished lawyer, and for some years the oldest member of the Suffolk County Bar. Of his early fondness for science, the story has been best told in his own words. In 1859, before the Lowell Institute, in Boston, he said: "With one exception, the only course of lectures on chemistry before this Institute, previous to the one just concluded, were delivered by Professor Silliman, of New Haven, in the years 1839-43. At those lectures I was an attentive listener. Although a mere boy-one of the youngest of those present-I then acquired my taste for the science which has since become the business of my life. Returning, after so short an interval, to occupy the place of him who was thus unconsciously my instructor-I might add, my only instructor in chemistry-I know of no way in which I can pay a higher tribute to his worth, or to the usefulness of this noble charity, of which he was only the almoner, than by a simple statement of these facts."*
Prof. Cooke's father fitted up for him in the wood shed a small laboratory, and there he passed his holidays in making experiments.

Three great chemical inventions, that greatly interested him, occurred during these years, and he himself, referring to the first of these, says: "I remember distinctly the old tinder box, and a card of the first friction matches was one of my earliest toys." Soon after the first daguerreo types, brought from Paris, were exbibited on Tremont Row, in Boston, and these, too, greatly excited his interest. Amateur photo graphy was not so decided a craze then as it is now. Nevertheless, he soon acquired a knowledge of this new chemical art, and some of the earliest talbottypes taken in the United States were made by him, and he still retains the negatives of buildings on State Street long since replaced by others. In 1845, Schonbein announced his discovery of gun cotton, and when the news of this event reached Boston, young Cooke began his experiments with modern explosives.
He then entered Harvard College, from where he was graduated with high rank in 1848. At that time no practical instruction in science was given to the undergraduates, and chemistry was dismissed with a few lectures. He received no systematic instruction in this science, but having, as has been shown, acquired a fondness for it, continued its study at home.
The year following his graduation he spent in travel in Europe, and while there was appointed tutor of mathematics in Harvard. He entered on the duties of this place in August, 1849, and during the second term of this acade mic year he was asked to give a course of experimental lectures on chemistry to one of the college classes. There was no laboratory at that time in Cambridge, and no chemical apparatus; so that all of the illustrations given in these lectures were made with the material that he collected in the little laboratory at home.
At the close of the course, he was appointed instructor in chemistry, and in December, 1850, at the age of twenty-three, he became the Erving Professor of Chemistry and Mineralogy in Harvard College, a chair that he has since continued to hold. Although selftaught in that science which has since become his profession, still he has done more than almost any other one man to give to chemistry its proper status in the collegiate curriculum as a valuable disciplinary study entitled to a leading place in an effective system of liberal education.

After being appointed to this chair, he was given permission to spend six months in Europe for the purpose of study. This time he devoted chiefly to visiting chemical laboratories, in making himself familiar with the methods of instruction and in collecting apparatus.

In the autumn of 1851, a lecture room was assigned to him in the north end of University Hall, and in the cellar beneath he fitted up a laboratory, in which the first practical instruction, in chemistry was given to undergraduate students in an American college.
Only a limited election of studies was permitted at that time in Harvard, and students were only allowed to choose qualitative analysis as an extra course to their regular work. Still, a number of young men availed themselves of the privilege, among whom were Charles W. Eliot, now president of Harvard University Alexander Agassiz, Theodore Lyman, and Frank H. Storer, professor of agricultural chemistry at the Bussey Institute; but, as the interest developed, the col-
lege authorities, recognizing the value of the study of practical chemistry, soon permitted the undergraduates to elect that subject for one year in place of French.
From these small beginnings the department has steadily grown, until it now off er the undergraduates as broad and thorough instruction in the various departments of chemistry, including mineralogy, as any similar institution in the country.
In 1857, the present laboratory in Boylston Hall was built with funds partly bequeathed by Nicholas Boylston and partly raised through the individual efforts of Professor Cooke among friends of the university in Boston.
The laboratory was enlarged in 1870, and at present, in 1887, there are over three hundred students working at its tables. Thirteen distinct courses of instruction are given, including every branch of chemical science, and three professors, one instructor, and three assist ants are employed in teaching.
Although teaching has been the principal duty of Professor Cooke's life, still he has found time to devote himself continuously to original investigation. His best work has been in the direction of pure chemistry. Among the earliest of his papers was one "On the Re lation between the Atomic Weights of the Chemical Elements," * in which it was first shown that when the elementary substances are classified in natural groups, their atomic weights and other physical qualities are related by regular differences, thus indicating the classification since more elaborately worked out by John
made itself felt by his able essays on this subject, and most practically by his pamphlet entitled "The Fundamental Principles of Chemistry" (Cambridge, 1884), in which he sets forth a new system of instruc tion in elementary chemistry.
The teaching of elementary chemistry, even when connected with laboratory instruction, has been hitherto chiefly limited to a mass of details in regard to the properties and the chemical elements with their compounds. In this new system he has confined the elementary instruction to the general laws and principles of the science, thus making the subject a more serious study and a better training in the principles of the inductive philosophy than it ever was before.
This manual, thus briefly described, was prepared in order to indicate the nature of the requisition in chemistry which may be offered to candidates for ad nission to the college, together with a certain amount of mathematics and physics in place of Greek.
In 1882 Professor Cooke received the degree of LL.D. from the University of Cambridge, England. He is a member of the leading scientific societies in the United States, and in 1872 was elected to the National Academy of Sciences. In 1876 he was elected an honorary fellow of the London Chemical Society, a distinction which in the United States is held by but one other chemist. He was eiected Corresponding Secretary of the American Academy of Arts and Sciences in 1873, and since that time has edited fourteen volumes of their "Proceedings" and one volume of " Memoirs." He has likewise long been an associate editor of the American Journal of Science.

Professor Cooke's publications in book form include "Chemical Problems and Reactions" (Cambridge, 1857); "Elements of Chemical Physics" (Boston, 1860), which, to quote Pro fessor Silliman, "is an elaborate treatise in ad vance of anything before attempted in this country, or, in fact, in our language ; " "First Principles of Chemical Philosophy" (1868, re vised edition 1882) ; and the "New Chemistry" (New York, 1872 ; revised edition, 1884). The latter, originally delivered as a series of lectures before the Lowell Institute and subsequently published in the "International Scientific Series,". was the earliest consistent exposition of a uniform system of molecular mechanics, and its philosophy has been widely accepted, both in England and in Germany ; and has been translated into most of the languages of Europe. His contributions to chemical science have been collected in a single volume entitled " Chemical and Physical Researches "(Boston, 1881). The course of lectures delivered on Sun dayevenings in Brooklyn, in which he aimed to show that the argument for design is not invalidated by the theories of evolution, was published as "Religion and Chemistry; or Proof of God's Plan in the Atmosphere and its Elements" (New York, 1864, revised edition 1880); and several of his graceful addresses have been collected as "Scientific Culture and Othe Essays" (NewYork, 1881; with new edition 1885)

\section*{Ink Formulx.}

The following formulæ are taken from Dieterich's Manual :

Red Copying Ink.--Dissolve 50 parts of extract of logwood in a mortar in 750 parts of distilled wate without the aid of heat; add 2 parts of chromate of potassium and set aside. After twenty-four hours add a solution of 3 parts of oxalic acid, 20 parts of oxalate of ammonium, and 40 parts of sulphate of aluminum in 200 parts of distilled water, and again set aside for twenty-four hours. Now raise it once to boiling in a bright copper kettle, add 50 parts of vinegar, and, after cooling, fill into bottles and cork. After a fortnight decant. This ink is red in thin layers, writes red, gives. excellent copies in brownish color, and turns blackish brown upon the paper.
Violet Copyi,ig Ink.-Dissolve 40 parts of extract of logwood, 5 of oxalic acid, and 30 parts of sulphate of aluminum, without heat, in 800 parts of distilled water and 10 parts of glycerine; let stand twenty-four hours ; then add a solution of 5 parts of bichromate of potassium in 100 parts of distilled water, and again set aside for twenty-four hours. Now raise the mix ture once to boiling in a bright copper boiler, mix with it, while hot, 50 parts of wood vinegar, and, when cold, put into bottles. After a fortnight decant it from the sediment. In thin layers, this ink is red dish violet; it writes dark violet, and furnishes bluish violet copies.

The deepest well in this country is at Northampton, Mass., sunk by Belding Bros. \& Co., silk manu facturers. It is 3,700 feet deep and 8 inches diameter. At a depth of 150 feet from the surface a sediment ary sandstone was struck, which continued the whole depth, and water was never obtained. At St. Louis there is a well 3,180 feet deep, which yields an abundthere is a well 3,180 fee
ance of sulphur water.

\section*{ENGINEERING INVENTION.}

A steam generator has been patented by Mr. Alfred Musil, of Steyr, Austria-Hungary. It is a rotatory generator, in which the water is subjected to
the action of the heat in comparatively thinlayers within receptacles presenting extended heating surfaces, here being but few joints requirg parts being such tight, and the configuration of

\section*{AGRICULTURAL , INVENTION}

A fender has been patented by Messrs. Walter McCoy and James McArthur, of Miltonvale Kansas. It is an improved fender for corn, comprising a draught bar and a shield loosely connected therewith, a chain or similar support sustaining the weight of the
draught bar and relieving the shield of the pressure, efficiently protecting the plants over which the shield or fender passes.

\section*{MISCELLANEOUS INVENTIONS.}

A staple driver has been patented by Mr. Willis W. Bloodworth, of Molino, Fla. The in vention covers a novel construction and arrangement of parts in a device for driving staples when building wire
fences, the wire being held in position while the staples are driven over it

A grinding and polishing material has been patented by Mr. Charles M. Lindsey, of Pittsburg Pa. This invention covers a process of making such to a high temperature, then immersed in a bath of water, salt, and soda, and the crystals subsequently

A toggle fastening for buttons, etc. has been patented by Mr. Charles. V. Richards, of as to not only form a slotted and crooked fastening but also to puncture and make its own passage through article to its place.
A process of making pyrosulphates has een patented by Mr. Heinrich Baum, of Mannheim, Germany. It consists in heating the acid sulphates of temperatures below brown heat, or between \(200^{\circ}\) and \(400^{\circ} \mathrm{C}\)., it being feasible to perform the operation in

A bow resining attachment for violins has been patented by Messrs. Edwin M. and Ernest S resin dust hos Cascade Valley, N. Y. It consists in a resin dust box supported near the strings of the violin so that its vibrations when in use will cause the resin
to fly on to the strings and bow, and make the usual esining by hand unnecessary.
A bobbin catch for spinning machines has been patented by Mr. Isaac L. Allen, of Brooklyn,
N. Y. It is a thimble-like catch inserted within or N. Y. It is a thimble-like catch inserted within o through the head of the bobbin, and having an interior of the button and its catch, while the catch or thimble may be turned in its seat to change the weaving sur faces.

A carpet stretcher has been patented by Mr. Andrew McFarland, of Thomaston, Me. Com-
bined with a lever and brace having a longitudinal slot with a guide bar mounted to ride in the slot, is a spring. actuated clamp with an eye embracing the guide bar a shoe and slip ring, with other novel features, whereby tainable.

A gauge attachment for scroll sawing machines has been patented by Mr. Frank R. Schloer cordance with a novel construction above the wor passage or support, and adapted for use in sawing cir
cular and irregular forms, being calculated to save tim cular and irregular forms, being calculated to save time work.
A. tapered nail has been patented by Mr. John Hyslop, Jr., of Abington, Mass. This inven nail having the longer dimension of its parallel with the longer dimension of the upper part or head prtion of the nail, so the nail can be drive and well.
An oil vapor heater has been patented by Mr. William W. Batchelder, Jr., of Boston, Mass It is of that class in which a wick draws up the oil, at the wick by a small initial flam proper, the device preventing the escape of bad odor increasing the heating capacity, and regulating the vaporization of the oil.
An elevator hatchway has been patented by Mr. Edwin Spencer, of Brooklyn, N. Y. This invention provides a series of plates or platform close the hatchway at each story as the car ascends, an a second sertes of plates carrid by the car, independent of the first series, adapted to
each story as the car descends.

A thill coupling has been patented by Mr. Frank L. Burton, of Erie, Pa. It has an anti rattler and pivot-holding device of an elastic plate or plates placed between the coupling clip or axle and the thill iron eye and forcing the eye to the pivot, a flange end and side of the pivot to prevent erdwise displace ment and rotary motion thereof.

A thill coupling has been patented by Meвsin. Hin and John Knupp, of Warren, Pa. Com bined with a pivoted thill iron and anti-rattler place
next \({ }_{\text {the }}\) thereto are opposite plates clasping the ant rattler, one of the plates having a lug overlying the head of the thill iron pivot, the device obviating rattling bility of the entire coupling.

A bailer has been patented by Mr. David F. Brown, of Washington, Pa. This invention lower end of which has a valve-seated opening, a valve for closing the opening, and a dart or stem fixed to the valve and extended out of the tube or body, being especially designed for bailing the sediment out of oil and artesian wells.
A drag saw machine has been patented by Mr. Cornelius W. Wright, of Democracy, having a pin one device havinga orted by hinged legs at the other end, an operating lever being pivotally supported in the hinged legs, and tandards pivotally connected to the beam supporting

A machine for making paper tubes has been patented by Mr. Thomas Granger, of New
York City. Combined with a mandrel having one end unsupported and an endless belt arranged in connection erewith are fixed rollers and rollers carried by swingg arms, one pair of the arms having extensions carry the machine being of simple construction and designed to make paper tubes quickly.
A clock has been patented by Mr . Henry A. Russell, of Boyne City, Mich. The invention earing, whereby clocks made to carry multiplying earing, whereby clocks made to run only a short
period can be readily made, at but slight expense, to run for a much longer time without winding up, as, for instance, a thirty-hour clock can be made into an ight-day clock, or longer, and the attachment can be

SCIENTIFIC AMERICAN
bulldina edition.

\section*{DECEMBER NUMBER.}

\section*{TABLE OF CONTENTS .}

Elegant Plate in Colors of a Suburban Dwelling
costing about Nine Thousand Two Hundred
and Fifty Dollars, with floor plans, specificacosting about Nine Thous
and Fifty Dollars, with flo
tions, sheet of details, etc.
Plate in Colors of a Dwelling erected near
Wareham, Mass., at a cost of Twenty-eight
Hundred Dollars, with full specifications, floor
3. The Shakespeare Memorial at Stratford-upon-
4. Perspective view and floor plans of a Residence
to cost Eight Thousand Dollars. Engravings of Five Tasteful Residences recenty erected at Glenridge, N. J., varying in cost
from Four Thousand to Six Thousand Five
Hundred Dollars.
Perspective view, detail drawings, specifica-
tions, roof, and floor plans of a Two Thousand
Five Hundred Dollar California House.
Engravings showing interior and front view of
Chateau of Castelnaudary. M. Aubry, Archi-
8. Lea Hurst, Derbisshire, the home of Miss Flo-
rence Nightingale.
9. Elevations and floor plans of Homes of Factory
Operatives at Willimantic, Conn.

Bathing House and Saloon at Vittel. Built by
Charlies Garnier, Architect, of Paris.
Floor plans and perspective sketch for a Cot-
tage costing about Five Thousand Five Hun-
dred Dollars.
Perspective view and floor plans of a Cottage
costing Four Thousand Two Hundred Dollars.
Front and rear perspectives, with plans, for a
Handsome Stable being erected in Brouklyn,
N. Yso Cost, Five Thousand Five Hundred
4. Perspective view and floor plat.
for Five Thousand Dollars.

Perspective view and plans of a Neat Dwelling
costing Four Thousand Two Hundred Dol-
lars. lars
Half page engraving of the John Crouse Memo-
rial College for Women, Syracuse University,
Syracuse, New York.
Plans for a French Cottage, Hotel de Peintre,
Meudon.

The Scientific American Architects and Builders
Edition is issued monthly. \(\$ 2.50\) a year. Single

Business and Personal.

\section*{The charge for Insertion under thes head is one Doluar} a line for each insertion, about eight words to a line Advertisements must be received at publication offic

For Sale-U. S. and Canadian patent. Cost to manfg 30 cents per gross. Sells on sight at \(\$ 3.25\) per gross. Re tails at 5
burg, Pa .
Portable grinding mills. Chas. Kaestner \& Co. To Inventors, Patentees, and Manufacturers.-Gene seo Business Men's Association will aid the establish
ment of manufactures in Geneseo, ill. Desires to ment of manufactures in Geneseo, , lin. Desires to corre--
spond with parties who have a good thing and wish a good
 intendent or foreman of iron foundry. References given Wanted-New invention or novelty for the Englis market by a first-class London house, having a large con nection among shippers, warehousemen, drapers, etc.
Address "Everclean." 100 Wood St., London, England. Lacquers.-Zapon, Brilliantine, Brassoline, Opaline, hard, durable. Send for catalogue. The Fred'k Crane
Chemical Co., Short Hills, N. J. N. Y. agent, Horace Chemical Co., Short Hills, N. J. N. Y. agent, Horace
Van Sands, 733 Broadway. Perforated metals of all kinds for all purposes. Th
Robert Aitchison Perforated Metal Co Robert Aitchison Perforated Metal Co., Chicafo, ill.
For the latest improved diamond prospecting drills address the M. C. Bullock Mfg. Co., 138 Jackson St
The Railroad Gazette, handsomely illustrated, pub-
lished weekly, at 73 Broadway, New York. Specimen lished weekly. at 73 Broadway, New York. Speci
copies free. Send for catalogue of railroad bonks.
The Knowles Steam Pump Works, 113 Federa St.. Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and
duplex duplex, steam and power type. This
mailed free of charge on application.
Feed grinders. Chas. Kaestner \& Co., Chicago, ill. Link Belting and Wheels. Link Belt M. Co., Chicago Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J Nickel Plating.-Sole manufacturers cast nickel an-
des, pure nickel salts, polishing compositions, etc. \(\$ 100\) odes, pure nickel salts, polishing compositions, etc. 1 . 100
"Little Wonder." A perfect Electro Plating Machine. Complete outftr for plating, etc. Hanson, Van Winkle Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven, Conn Supplement Catal mation of any special engineering, mechanical. or scien tifl subject, can have catalogue of contents of the Sct-
ENTIFIC AMRRICAN SUPPIEMENT sent to them free The SUPPLEMENT contains lengthy articles embracin the whole range of engineering, mechanics, and physica The Holly Manufacturing Co... of Lockport, N. Y will send their pamphlet, describing water works ma Lathes for cutting irregular forms a specialty. Se d. p. 349.

Iron, Steel, and Copper Drop Forgings of every d Cription. Bilings \& Spencer Co., Hartford, Conn.
Curtis Pressure Regulator and Steam Trap. See p. 364 Steam Hammers, Improved Hydraulic Jacks, and Tub Expanders. R. Dudgeon, 24 Columbia St., New York. 60,000 Emerson's 1887 Book of superior saws, with Address Emerson, Smith \& Co., Limited, Beaver Falls,

Hoisting Engines, Friction Clutch Pulleys, Cut-off
 How to Keep Boilers Clean." Send your address
free 88 page book. Jas. C. Hotchkiss, 120 Liberty St
Paint mills. Chas. Kaestner \& Co., Chicago, Ill.
Magic Lanterns and Stereopticons of all kinds and
prices. Views illustrating every subject for public exprices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainment. 152 page illustrated catalogue free. McAllister,
Manufacturing Optician, 49 Nassau St,. New York
Practical Working Drawings of machinery made by A. K. Mansfield \& Co., 280 Broadway, N. Y. Life-
lonk mechanics. One formerly R. R. supt. M. P. Important r
invited.
For best leather belting and lace leather, including Hercules, see Page Belting Co.'s adv., p. 366.
Pedestal tenoner. All kinds wood
Talcott's belt hooks. Best made. Split Pulleys at low prices, and of same strength and pperks, Drinker St., Philadelphia, Pa.
Engines and boilers. Chas. Kaestner \& Co., Chicago,
Send for new and complete catalogue of Scientific Books for sale b
on application.

NEW BOOKS AND PUBLICATIONS.
Twelve Times Twelve. By Miss M.
A. Lathbur
Price, \(\$ 1.75\).

This consists of illustrations of child life in facsimile water color prints. The drawings are accompanied whell selected verses from the best poets.
Canada Statistical Abstract and RECORD FOR THE YEAR 1886. Pub ture. Ottawa. 1887. Pp. 467 .
In this work, compiled by Mr. Sydney D. Ropes, a very full statement of data referring to the Dominion is products, and many other topics are treated. To those interested in our neighbor, the work will be of great value. The cheerful statement of her net public debt-
\(\$ 223,159,107\) on June 30,1886 , making an increase of
\(\$ 22,751,415\) since June 30, 1885-offers an argument that take possession of so encumbered an estate. The fisheries for 1885 are put at a produce value of \(\$ 17,722,973\), and for \(1886, \$ 18,679,288\). The full statement of fish produce is given in great detail. These figures show
that Canada has a very big bone of contention for her that Canada has a very big bone of contention for her
interests to be settled by Mr. Chamberlain and his conreres.
atural Law in the Business World.
By Henry Wood. Boston: Lee \&
Shepard; New York: Charles T.
Dillingham. 1887. Pp. 222. Price 30 Dillingh
cents.
This is a cheap reprint of what has proved a very popular book. The author deals with questions of ecoomic science, and treats them largely from the conirculation that appears on the cover makes it clear hat it was designed for a special purpose-the confntation of some of the theories that have within the last few years been offered to the world. The work lis aceptable, and well worthy the perusal of all interes
the maintenance of the present order of things.
A History of Photography. By W. Jerome Harrison, F.G.S. New York :
Scovil Manufacturing Company. 1887. Pp. 136.
This interesting work deals with the history of the photographic art from the earliest times. The dry plate
nd the many efforts at the production of a dry plate process receive much attention. The work done in color photography, and the probable outcome for the future, are fully treated by the author. Paper negatives and built-up prints from several negatives are described. The subject of orthochromatic photography ard the more recent achievements in composite portraiture and in instantaneous work, involving the systematic study o be outside of the author's scheme, and little or nothing is said of them. It is a work which every intelligent worker should possess and study. It has as rontispiece a characteristic portrait of the autho reproduced by Moss type from a negative by Harold Baker, of Birmingham, England.
The Children of Silence; or, The A. Seiss, D.D., LL D. Philadelphia This little work is a succinct account of the world of the deaf and dumb. The census of the deaf mute population of different countries discloses who are the dventitio the treatise. The causes, condition of those thus affected is eloquently depicted The labors of the early instructors in this field are sum marily given, from the 13th century down. Modern in titutions are catalogued in tabular form; their size, method of teaching, and other particulars are given, and Spon's Household Manual. A Treasury of Domestic Receipts and Guide
Spon, London and New York. 1887. Spon, vii, 988
The title of this work pretty well indicates its scope The dwelling and its surroundings, water supply, sanicoration, are fully treated, Thieves and fire the larder cooking and preserving food, the management of the nursery, and all imaginable home topics, are all among its subjects. Home recreations and medicine, games, he playground, workroom, library, and laundry, re eive attention, while in out of door operations the armyard and garden are included. A chapter on do cc., is calculated more for the Elish horizont c.,. is calculaty wore for English horizon than and the book may safely be recommended to all house and the
keepers.
Hisk (4unis
CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information information, and not for publication.
Ref erences to former articles or answers should Rererences to former articles or answers should
give date of paper and pape or number of question.
Inquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a litte resarh, and
though we endeavor to reply to all either by lette
or in this department, each must take his turn. or in this department, each must take his turn.
Speciat WW riten Information on matters o
personal rather than general interest cannot b expected without remuneration.
Scentific American Su puplements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of Books referred to promptly supplied on receipt o
price.
Ninerals sent for examination should be distinctly
marked or labeled.
(1) F. T. asks: What is the best and most simple method of lining brass bozes (such as ca journal bearings) with lead or a low grade of Babbitt
metal, without the aid of grooves or holes in the brass, metal, without the aid of grooves or holes in the brass,
so that the lead, etc., will adhere firmly to the box? A. There is no way known to us of lining a brass journal box, except by tinning or employing the grooves and
holes as suggested by you, nor do we see the value of building up a car journal box with anything but the best Babbitt, which will hold by flushing with tin.
(2) S. asks how window glass is measared in the box. A. A box of window glass
0 square feet of glass without regard to size.
(3) A. L. F.-Gas and electric light fix tures can only be brightened by taking apart and dip nish. Wash in hot water, then dip in strong nitric nish. Wash in hot water, then dip in strong nitric
acid for.a few seconds, wash in boiling water, dry in
sawdust, and burnish the parts required to be bright;
after which, the surface can be lacquered with clear after which, the surface can be lacquered with clear
shellac varnish. We do not recommend this for amateur practice. It requires some experience to bring out the work clear
(4) B. A. asks for directions for making the composition for self inking pad for rubber stamps. A. The usual composition consists of, 2 to 4
drachms aniline, of desired shade. 15 ounces alcohol drachms aniline, of desired shade. 15 ounces alcohol
and 15 ounces glycerine. The solution is poured on the art water, 6 partaglycerine ncludes 1 part gelatine, 1 par
(5) W. M. asks (1) how to make a good oot beer, similar to Hier's. A. Take 10 gallons water heat to \(60^{\circ}\) Fah., then add 3 gallons molasses, let it
stand two hours, pour it into a bowl and add powdered or bruised sassafras and wintergreen bark, of each 2 pounds, yeast 1 pint, bruised sarsaparilla root \(1 / 2\) pound, add water enough to make 25 gallons in all. Ferment for twelve hours. then bottle. 2. How to make a cherry fioor stain. A. Take rain water 3 quarts, annatto 4 ounces, boil in a copper kettle till the annotto is dissolved, then put in a piece of potash, the size of a wal nut, keep it on the fire for half an hour longer, then thle for use.
(6) L. P. asks (1) how prepared gypsum for calcimining and whitening is manufactured. What is the best and cheapest way to pulverize the gypsum
formaking plaster of Paris, also the best way for calcining it? A. It is ground between burr stones until it is reduced to a fine powder. This is calcined by being heated in kettles or stills, the escaping water producing a movement like ebullition. 2. How can I test lime rock to tell whether it will make hydraulic lime or not? A. By testing for silica. To be a good hydraulic cement, it must contain at least 10 per cent of silica. A. 3. hround fine? A. Any coolored foxide mited with paint if ground fine? A. Any colored oxide mixed with linseed
oil can be used used as a paint, but if it requires too much oil, then it is practically valueless. Pipe clay can be used for the cheaper grades of pottery
(7) F. B. desires a good receipt for stopping a crack or small hole in a large sink. A. dry powder. Make into a putty with linseed oil.
(8) W. C. V. asks a recipe for a good liquid blueing for laundry work. A. Take 1 ounce of 1 guart of clear rain water, and add \(1 / 4\) ounce of oxalic acid. A teaspoonful of this is sufficient for a large acid. \(A\).
washing.
(9) R. S. S. H. asks: What can be done to renovate and brighten the gilt frames of pictnres
and mirrors that have become rusty and dingy? You may improve them by simply washing them with a small sponge moistened with spirits of wine, or oil of turpentine,the sponge only to be sufficiently wet to take off the dirt and fiy marks. They should not be wiped
(10) H. C. D. writes : Can you give me a recipe for a laundry marking ink which will not wash ow freely from the pen, and will not need any prepara ion for setting it in either heat or chemical, but will be indelible from the minute it is put on the goods? A. Dissolve with the assistance of heat, 20 parts of brown
shellac in a solution of 30 parts of borax in 300 to 400 parts of water, and filter the solution while hot. Then add to the filtrate a solution of 10 parts of aniline black soluble in water, three-tenths parts of tannin, one-tenth part of picric acid, 15 parts of spirit of sal ammoniac, and one-quarter ounce of water. To purify water see
the "Purification of Drinking Water by Alum," con-
tained in Scientific American Suprlement, No. 491.
tained in Scientific American Supplement, No. 491.
(11) H. L. H. asks if there is anything which will positively remove large moth patches or freckles from the face, without injuring the skin. A.
There is probably nothing known that will positively eradicate freckles. Among the many cures recom mended, the following has the merit of being harmless:
Dissolve three grains of borax in 5 drachms of each, Dissolve three grains of borax in 5
rose water and orange fiower water
(12) W. V. B. writes : I have quite a little silver dissolved in a solution of cyanide of potas sium, which has been used for electroplating. How can
I obtain the silver either as a nitrate or chloride, and will I obtain the silver either as a nitrate or chloride, and will
it be pure enough for photographic purposes? A. Pre cipitate with the battery and dissolve in nitric acid.
(13) F. K.-Asphaltum is the only gum (14) E. H. S. \& Sons ask how glass is silvered. A. For this purpose a large, perfectly fiat tone table is provided. Upon it is evenly spread a sheet of tin foil without a crack or fiaw. This is covered uni
formly to the depth of \(1 /\) inch with clean mercury The formly to the depth of \(1 / 1\) inch with clean mercury. The
plate of glass, perfectly cleansed from all grease and impurity, is fioated on to the mercury carefully, so as o exclude all air bubbles. It is then pressed down by loading it with weights, in order to press out all the mercury whlch remains fiuid, which is then received in a gutter around the stone. After about twenty-hours it
is raised gently on its edge, and in a few weeks it is ready to fram
(15) L. T. S. asks for a liquid glue containing no acid. A. Liquid glue may be made by dissolving glue in nitric ether. The following formula is tated to be very good: 1 part sugar is dissolved in warm water, \(1 / 4\) part slaked lime is added, it is kept at \(145^{\circ}-165^{\circ}\) Fah. for some days, with occasional shaking,
and is then decanted. 1 part of glue is dissolved in 4 and is then decanted. 1 part of glue is dissolved in 4
or 5 of above clear solution, to which 2 to 3 per cent of glycerine and a few drops of lavender oil are to be of glyce
added.
\({ }^{\prime}(16)\) W. A. P. asks the cheapest, simfurnace to melt from 5 to 10 pounds of brass for cast ing. A. You can easily melt 5 to 10 pounds of brass in a blacksmith's forge. Use a blacklead crucible of the proper size. Build a fire chamber around the tnyere
\(21 / 2\) times the diameter of the cracible, with fire brick, or common brick if yon have no fire brick. Use no
mortar. Bank around the outside with forge ashes or
cinder. Set the crucible 4 or 5 inches above the tuyere on the fire and fill in all , round, and cover with a large piece of charcoal. Put in the metal after the fire is
started. Keep the crucible lifted to its proper place as the fire settles. Do not blow too hard, nor heat th a little powdered chailt, which makes, is spongy. Us while melting, to keep it from oxidizing. Blow the charcoal off with a hand bellows when ready to pour.
(17) A. M. M. has a quantity of spoiled ary plates, and asks how to save the silver in the films A. To recover the reduced silver, first get off the gela hydrofluoric acid and water dropping each film, as it is easily pulled off the glass, into a deep porcelain evaporating basin. Cover the films with hot water, then add a few crystals of common washing soda sufficient to make the solution alkaline, bring it to a boil, and stir well until the gelatine in the films is dissolved. No change of color will be observed until a small quantity of sugar is added. Then the solution first turns gray brown, and fnally black, continue the boiling for 15 tract a little of the black sediment in the bottom ex test its solubility in nitric acid. If it does not dissolve completely, continue the boiling for half an hour, adding a little more washing soda. When it is found to readily dissolve in nitric acid, then pour off the brown colored supernatant fuid, and replace with water. Stir up the sediment so it may be well washed, and allow the sediment to settle. Continue washing in this way two o three times until the supernatant water is quite clear Then the mass of silver sediment is converted into ni acid. If the same is added too rapidly the frothing up of the mixture is liable to cause loss of silver. When the sediment is all dissolved, we have a solution of nitrate of silver, which should be evaporated to drynes over a sand or water bath. Afterward the crystals may be redissolved for use in making silver solutions. While useful, more especially for emulsions, this process may
be used for films. 2. Why do ferrotype plates have a blube used for films. 2. Why do ferrotype plates have a blu h color when taken out of the sensitizing silver bath A. A bluish film is due to a bath too strong for the it is a new bath ."sufficiently iodized. A single solu tion for developing dry plates that will keep may be made as follows: Sulphite sodium (chem. pure) cry
tals 4 oz., warm distilled or melted ice water 6 oz . when cooled to \(70^{\circ}\) add sulphurous acid water (strongest strength obtainable) \(3 \mathrm{oz}\). ., pyrogallol 1 oz ., carbonate
of potash (chem. pure) 114 oz . The weights are avoir dupois, or 437 grains to the ounce. Place one and half drachms of the above solution in a graduate, an
fill with water up to two ounces the fill with water up to two ounces, then pour the de in less than a minute. In case the plate is underes posed, add half a drachm of the solution at a time
until the development proceeds faster. If the image fiashes out quickly from overexposure, dilute the developer at once with a large quantity of water. The developer may be used on three or four plates in succes sion, and should then be thrown away. Keep the bottle
of mixed developer well corked. The solution will of mixed developer well corked. The solution
work welf as long as it is not thick and muddy.
(18) G. P. S. says : May we ask you to ate in yoar paper the greatest distance which a pro jectile has been thrown from any gun-cannon-now ained has been by means of the De Bange cannon miles
(19) J. F. M. asks if an iron or steel ushing one-eighth of an inch thick, made to drive in brass hole, would have a tendency to get loose by be used in an iron hole? A. The bushing will not re main tight after heating. The brass expands more tha the iron, as. 3 to 2 . If the brass is inside the iron, it will it will be moderately tight after heating, because the brass expands away from the iron by heating and re tact by cooling.
(20) A. S. asks what material is used in A. The simplest preparation consists of the following Pour a pint of boiling water upon 2 ounces of gum arabic, cover it, and let_it stand overnight. Use a table spoonful of this.
(21) A. M. desires (1) a receipt for a good heap liquid stove polish. A. See answer to query preparation that will remove moss dirt and disco rations from marble. A. Mix quicklime with strong ye, so as to form a mixture having the consistency of cream. Apply it immediately with a brush and allow to remain for a day or two, and then wash off with soap
(22) J. S. K. asks : 1. What is the composition of the enamel which is applied to bicycles? A. It is japan varnish. 2. A liquid to apply to a rubber
coat which has been so damaged by heat that it is not waterproof? A. Coat it with a solution of rubber dissolved in carbon disulphide. See the article on this subject in Scientific American Supplement, No.
251.
(23) R. M. D. asks a receipt for making harness grease. A. Try the following: 1 quart neat's
oot oil, 4 ounces beef's tallow, and 3 tablespoonfuls lampblack; add 4 ounces beeswax for use in summer
weather.
(24) O. J.-See Notes and Queries, No , May 28, 1887, and No. 17, March 12, 1887, about (25) J. A. G. asks how to manufacture metallic paint from magnetic iron ore. A. The ore
(26) J. B. R. wishes (1) a receipt for a cement for pating a leather facing on an iron wheel nothing better for gluing leather to iron than good
pint. The pulley or rim should be made perfectly free
from oil and dirt and the face thoroughly scratched over
with a file. Then treat with nitric acid 1 part, water 1 part, for a few minutes, to deaden the surface. Wash with hot water to free the surface from acid. Scarf one nd of the leather band; glue and draw tightly around he rim, lap the thick end over the scarf and clamp cement for putting a wood veneer face on an iron saw table. A. The same kind of glue is the best for veneer n iron, but nothing will withstand the ultimate shrink ing of wood on iron, it is too rigid; better make the saw table facing thick enough to put on with fiat head
(27) D. \& H. ask the process and how to ake solution used to color bronze hinges, locks, etc. a rich brown, the color of confectioner's chocolate. A For a dipping brown, use to 1 pint of water 5 drachm erchloride of iron. The articles must be made per ectly clean and dipped in the hot solution until the re quired color is obtained; then dipped in clean ho quired, use clear shellac varnish colored with dragon' ood, gum, and burnt umber
(28) G. V.-For painting tin roofs use ed oxide of iron (Prince's metallic paint) mixed with oiled linseed oil. Temper the color with lampblack if ighter color. If necessary to facilitate spreading with the brush, add a little spirits turpentine. This paint is tough, holds well, and if neatly done looks well. Coa tar paints are sometimes used, but are liable to chip in cold weather.

\section*{TO INVENTORS.}

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad. enable us to understand the aws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be had on application, and person contemplating the securing of patents, either at home or which are low. in accordance with the times and our ex ensive facilities for conducting the business. Addres
MUNN \& CO.. office ScIENTIFIC AMERICAN, 361 Broad way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the nited States were Granted November 22, 1887,
AND EACH BEARING THAT DATE.
(See note at end of list

\section*{Johnson..}

Ammunition equipment, soldier's, \(\mathbf{8}\)..................
Animal releasing device, Braham \& Jackson.
Axle box. car, W. S. Sharpneck. Bag. See Mail barg.
Baling press, A. Sim
Bar.
Bar. See Core bar.
Barrerep. See Galvanic battery.
Bearing, anti-friction, H. A.
Bearing, anti-friction, H. A. King.
Bed bottom, spring, J. E. Benja
Bed, folding, B. F. \& E. L. Owen
Bed, sofa, F. A. Decker
Bed, sofa, E. Yeoman.
Bed, spring, E. Oberndorfer.......................
Beds, invalid attachment for, J. H. Lawton.
Beds, invalid at
Bell, G. W. Goff
Feathers........... .
Board. See Game and adv
Boiler. See Steam boiler.
Boiler cleaner, automatic
way... gated headers for wat
Book clasp. G. Klaproth.

Bottle cap, A. L. Bernardin....
Box. See Axle box. Journal......
Box fastener, Sumner \& Moser
Brace. See Shoulder brace.
Brake. See Car brake. Locomotive driver brake.
Wagon brake.
Bran duster, C. M. Gilbert
Bread, A. Schrid.
Bread, A. Schrader.........
Bridle blinder, A. N. Woolston.
Brooch pin, J. H. Purdy...
Broom clamp, w. H. Putna
Bronm holder. C. W. Love
Bronm holder. C. W. Love.................................
Buckle or fastening for suspenders, etc., A.J.
Bung, M. R. Maher...........
Bung, vent, C. Morrill
Bung, vent, C. Morrill.
Bustles, hinge and tip for twin wire sta..............68,
O. Sch,
Butter, making a compound resembling, w.
Skiff.......................
Button and fastener holder, J.
r, J. F. Thayer...
Button, stud. locket, or other article of jewe
L. B. Byrne.................
Buttons, making parts of, L. B............
Car brake, E. D. Doughe
Car coupling. G. J. Selk..
Car brake and starter, Vereker \& Yeate
Car heating appliance, J. W. Post
Car, motor, G. M. \& J. A. Brill.
Car, railway, J. A. Brill.
Car, safety, J. J. Pratt.
Car starter, D. L. Brow
Car wheels, machine for making rims of,
ar window screen, W. T. Nesbitt
ing, H. M. Yo structures, apparatus for heat- \({ }^{373,474}\)
Cars, apparatus for heating and ventilating, M. \({ }^{373,575}\)
Cars, dust preventing apparatus for railway, \(\mathbf{c}\).
Turner...................
Cars, heating device for railway,
Carpet stretcher, C. T. Manter,..
Carpet stretcher, A. McFarland.
Cart, road, M. Barnes.............
Cartridge shell, I W. Lombard..
.
\(.373,622\)
\(.37,359\)
373,598
373,595
373,633

Schreidt......................................\(~\) . \({ }^{773,612}\),

Crriages, parasol holder for baby, G. W. Pearce........................33,
Case. See Violin case. Watch case.
Casting machine, c. o. Yale.
Casting machine, C. O. Yale................................. 373,629
Casting pipes, mould for, J. A. Brinell........... 3731
Cattle horn tip, P. Johnson........
attle horn tip, P. Johnson......................................373,776
373,577
Chain, drive, J. Seibel
Chain wrench, M. Quinlan
Chair, S. M. Fist, B. J. Bucke.......
heck, draught, or money order, E. Goodall
igar bun
gar bunching machine,
Cigar cutter, F. B. Brock
Clamp. See Broom
lamp. See Broom clamp. Rope clamp.
Clasp. See Book clasp. Suspender clasp.
Cleaner. See Boiler cleaner. Flue cleane
Clock, W. D. Chase...............
Clock, pendulum, H. O. Deuss.
Clock striking mechanism, Ethridge \& Waite.
Clutches, safety lever for, J. Gould.
Cock, injector feed, G. w. Wiswell..
Coffee roaster, F. Maassen.......
Concentrator, S. W. Parmelee.. 3737,3878
cooler. See Milk cooler. .. H. Fones 373,651
Cop tube machine, Moss \& Cook............... 373,566
Copying press, B. A. Dolan......................... 373,769
Cord and rope, machine for making, T. B. Dooley. 373,800
Core bar, collapible
Corkscrew, E. Becker..373,512
Corset stiffening, E. B. Cady

\section*{Coupling. See Car coupling. Electric coupling.
Shaft coupling. Thill coupling.}

Discount measuring घlass and bank note examin-
er, combined, A. C. McMicken \({ }^{373,597}\)

Drilling machines, feed mechanism for, W. S.
Rogers.33,755
Electric coupling, G. W. Taylor.................359
Electric machine, dynamo, T. A. Edison............. 373,3594
Electric motors and generators, prevention of
sparking in, \(\mathbf{D}\). Higham.... 373, ,39
levator. See Hay or straw elevator. Perat...... 3із,587
elevator.
levator and fire escape, c. Haas................
Engine. See Steam esgine.
Expansion joint, G. H. Benjamin.............................. 373,432
Extractor. See Tent pin extractor.
Fabric. See Woven pile fabric.
Fatty substances by electricity, apparatus for
purifying and separating, H. F. D. Schwahn...

Fence post, metallic, , ,. Turnberger.................... 373,621
Fence, wire and picket, W. H. McGrew \(373,59 \mathrm{t}\)
Fence wire twisting and spooling machine, spur
Fence wire twisting and spooling machine, spur
wheel, c. C. Hill.............................. 373,457
Fences, strip for metal, G. . Fisher, .r......... 373,772
Fencing, machine for making spur wheel, c. C.

Fire escape and water tower, M. J. Hart............. 373,658
Fire extinguisner, L. S. Lewis.................... 373,563
Fire extinguisher for railway cars, automatic.
Fire extinguisher for railway cars, automatic,
Matlock \& Fritz...44.
374.465

Flue cleaner, E. L. Mansfield......................... 373.747
Fluid heating and cooling apparatus, A. G.
Meeze.................................... 373.564
Folding machines, paster attachment for, F.
Wuelfing... 333,547
Foot power, J. H. Purdy
Frame hanger, adjustable, A. J. Wiegand.
373701
Frame hanger, adjustable, A. J. Wiegand............. 373,70r
Fuel, process of and apparatus for producing and
consuming gaseous, J. W. Mitchell.............. 373,468
Furnace. See Smoke consuming furnace.
Furnaces, attachment for boiler, Harris \& Kafer.. 373,55i
Gauge. See Micrometer pauge. Pressure gauge.
Galvanic battery, H. J. Brewer...................... 37,435
J. A. Le Seur.............................. 373,745
as heater water back, J. T. \& E. E. Phillips..... 373,602
ate. See Railway gate. Swinging and folding

Gate. See Railway gate. Swinging and folding
gate.
enerator. See Steam generator.
Generator.
Glass, apparatus for cutting bevels, etc., on, L .
De Coster.................................768
Glass bending and annealing furnace, C. H.

Glove, D. S. Morrison....... \(37,{ }^{373,470}\)
Glove fastener. D. A. Carpenter.............. 3777797
Governor, steam and gas, T. Shaw............... 373,616
Grain binder, E. A. Peck... 373,601

Grain polisher, J. Paul......
Grain register, f. Stanton.
Grain register, F . Stanton....

Grates, fuel cut-off for, N. Ruger
Guns, apparatus for opening and closing the
breech of heavy, C. H. Murray Guns, center pivoted mounting for, Guns, manufacture of, II. S. Maxim
Hanger. See Frame hanger.
Harness for rapid hit ching, D. G. Sheridan.
Harrow, W. H. Wilson...
Harvester, self-binder for, G. Hatchwas, elevator, E. Spencer...... Hatchway for elevators, F. L. Darrach Hay press, F. W. Flato.
vapor heater. Water. Feed water heater. Oil \& A.J. Rundle
Heating apparatus, J. Shackleto
Hinge, Scheidemann \& Bender
Holder. See Broom holder. Button and fastener
holder. Cuff holder. Lantern holder. Rein lath holder. Tool holder.
Hook. See Baak band hook. Snap hook.
Horse blanket at tachment, G. R. Ayres... Horse cover support, T. A. Long et al. Insulating joint or pipe coupling, E. F. Gennert...
Jack. See Track jack. Wayon jack Joint. See Expansion joint. Fishing rod joint.
Journal box, anti-friction, W. S. Sharpneck Key and key seat cutter, M. Morton.. Knife. See Pocket knife.
Knife blades and bolsters,
Havell.......................... Knob, door, J. Bardsley...
Knobs, means for making door, G. Van Winikle.. Mahon.
Lautern holder, adjustable, J. \& A. F. Moser. Lantern, magic, w. H. Ridding. Latch, N. Clark..
Legyin, M. M. Sweeny..... Leveling instrument, Wickham \& Roach..
Lock. See Nut lock. Oar lock. Whip lock. Locomotive driver brake, G. Westinghouse, Jr... \(\begin{array}{r}\text { Muench. } \\ \text { Mail bag, } \mathrm{C} . \\ \hline\end{array}\)
Mail bag fastening, A. J. Morrison.
Matcling machine, wave edge, C. F. Ritchel.
Mattress, spring, J. H. Ackley.
Measuring vessel, G. H. Smith
Measuring vessel, G. H. Smith \(\&\) Bowers
Metal, device for clamping plates or sheets of, S
McCarter................................ meter.
Micrometer gauge, J. P. B. Wells.
Microscope, invertible, E. Bausch
Milk cooler, T. W. B. Kirkpatrick.
Mill. See Roller reducing mill.
Mill rolls, feeder for, G. W. Combs
Mower, lawn, Trump \& Scott...
Mowing machine, C. A. Greene.
Mucilage receptacle and brush
Underwood.........
Music recording attachm
ments, J. Carpentier.
Nail. See Wire nail.
Nut lock, D. Steiner.
Nut lock. C. F. Whis
Nut lock. C. F. Whisle
Oil press, Moss \& Littell
Organ, reed, A. Bardell.
Pad. See Collar pad.
Pail, dinner, Bord \& Ennis
Paper pulp digester, S. R. Wagg. Schmidt.
Pattern, G E. Frost.
Ph, Photorrapher's scenery,
Pin. See Brooch pin.
Pipe.
Pistonmeter, W. A. Sylveste
Planing curved surfaces, device for, C. F. Geyer.
Plate or dish and adjustable cover for the same

\section*{Plate or dish and
w. Haddock...}

\section*{Plow, J. F. Sentene
Plow, G. B. St. John}

\section*{Plow brake pin attuchment, Friburk \& Borer}

Plows, manure scraper for,
Pocket knife, E. M. Boynto
Polishing wheel, H. E. F'owle
Post. See Fence post.
Press. See Baling press. Copying press. Hay Presses, bridge spring action for oscillating platen Pressure gauge, Meady \& Dodze Printing machine, P. Y. Auguste-Godchau Printing machine, rotary, W. Sco
Printing press, J. F. W. Dorman. Propelling vessels, mechanism for, T. J. Simp Pulley, Wilcox \& Borton Pump valves, means for relieving, J. H. Pendle Pumps, means for relieving disc
double-acting, J. H. Pendletor Pyrometer, E. H. Keiser....
Quiting machine, K. Zallud Radiator, portable, H. M. Young Railway clamp plate, T. J. Bush Railway, elevated, D. D. Railway rail, F. Lightfoot Railway tie, Hall \& Barnett Rattan article, F. H. Conan
mond.
machine for making, A. H. Ham Register. See Grain registe
Rein holder, F. D . Roaster. See Coff Behrens Roller reducing mill, Doelfel \& Spiess
olling machine, skelp, J. M. Price................
Rope clamp and tag holder, combined, P. Werum Rails, means for reefing, F. F. Martin Patr
 sh holder, C. W. Cook....... Sash holder, J. F. Hambitze Saw, E. M. Boynton
Saw, A. Boynton....
 Saw swaging machine, G. M. Hinkley \begin{tabular}{l}
373,481 \\
373,506 \\
\hline
\end{tabular}
w
w
w
w

adtomatic counting machine,

 asphaltum and the pitch lake

School houses.

 PSTS ARTESIAN

 NAVAL ARCHITECTURE.-AN IN-

 Stationary Engines

VOLNEY W. MASON \& CO
FRICTION PULLEFS CLUTCHES and ELEVATORS DCE-HOUSE AND REFRIGERATOR.

\section*{SCIENTIFIC BOOK} CATALOGUEE,

\section*{}

200,000th CDPY JUST ISSUED.

\section*{minn}

COMPRESSION OF AIR.-DESCRIPtion of Messrs. Dubois \& Francois' improved air com-
pressing machine, devised for the use of the harger in-
dustries and for mining purnoses. With 8 figures. 1 uns

Ned
ter, Oleomargarine, etc., and on Lu-
bricants, and Ozokerite.
The most Complete and Valuable Treatise in the
 and Oils, and Lubricants, etc.

Two-Horse Power Engine. \$75.

\(\$ 10.00\) to \(\$ 50.00\)

TO AMERICAN MANUFACTURERS

WELLS BROS, \& CO., OREENEEELD,

PERFECT'

\section*{NEWSPAPER FILE}

MUNN \& CO.
32 SECRETS including one to develop any part of the

\section*{CURE TM DEAF}

ICE \& REFRIGERATING

HOW TO MAKE AN INCUBATOR.-
Full directions.
tions tor oprated with ? fruures. Alsodirec
operating the apparatus. Contained in

ON 30 DAYS' TRIAL:
 Machines.
tent. York
CO., York,
Pa.

 . Hewfubuvin bidders can be obtained hy regular dealers ins.ortial manu
facturersof, the articles required, ona application to th
Commandant of said Navy Yard. Proposals must be
 The Srincipal tools which the dealer orfers to turnish.
any or all bids, in the Navy reservesthe right to reject
ne or the or in part. as in iht judgment, FORELGN PATENTS. Their Cost Reduced.
The expenses attending the procuring of patents in duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inven-CANADA.-The cost of a patent in Canada is even less than the cost of a United States patent, and the
former ncludes the Provinces of Ontaric, Quebec, New
Brunswick, Nova Scotia, British Columbia, and ManiThe number of our patentees who avail themselves of
The cheap and easy method now offered for obtaining ing.
ENGLAND.-The new English law, which went into
torce on Jan. 1st. 1885, enab es parties to secure patents in Great Britain on rery moderate terms. ABritish paChannel Islands. Great Britain is the acknowiedged inaitial and commercial center of the world. and her
goods are sent to every quarter of the globe. A good in Entland as bis United States patent produces for
him at hrme. and the small cost now renders it possible or almost every patentee in this country to secure a pajected as in the United States.
OTHER COUNTRIES. - Patents are also obtained on very reasonable terms in France, Belpium, Germany
Austria, Russia. Italy. Spuin (the latter includes Cuba And all the other spanish Colonies), Brazil, British ludia An experience of FORTY years has enabled the
publishers of THE SCIENTIFIC AMEIICAN to establish
competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to iy done and their interescs faithfully guarded.
of pamphict containing a synopsis of the patent aws
of all countries, including the cost for each, and othe
information useful to persons contemplathg the pro-
this office. \(\operatorname{MUN}\) E CO.. Editors and Proprietors of THe Scl ENTIFIC AmERICAN, cordially invite all persons desiring
any information re ative to patents, or the registry of trade-marks, in the country or abroad, the call at their
offices. 361 Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly

Address, MUNN \& CO.,
Branch Offices: No. 622 and 624 F Street, Pacific
- ST

\(\$ 75\) nuorr \(\qquad\)
autocoprist:
New Catalogue of Valuable Papers
SAWS Hom to strighton, and Gam all kind THE COPYING PAD.-HOW TO MAKE

To Business Men.

 CO., Publishers,
361 Broadway, New York.

 E KEEP YOUR BELTS FROM SLIPPING

Phoverisements.

 received at publication onffice
ing to appear in next issue.

W. L. DOUGLAS \$3 SHOE. Leament

\section*{USEFUL BOOKS.}
anufacturers, Agriculturists, Chemists, Engineers, Me-
chanics, Builders, men of leisure, and professional
men, of all classes, need good books in the line of men, of all classes, need good books in the line of
their respective callings. Our post office department permits the transmission of books through the mails
at very small cost. A comprehensive catalogue of at very small cost. A comprehensive catalogue of
useful books by different authors, on more than fifty different subjects, has recently been published for
free circulation at the office of this paper. Subjects classified with names of author. Persons desiring a copy, have only to ask for it, and it will be mailed
to them. Address, MUNN \& CO., 361 Broadway, New Yorko (un) ICE-BOATS - THEIR CONSTRUCTION and management. With working drawings, detaiks, and
directions in fuli. Four
congravavings. showing mode of

\section*{ES'I'ABLISHED HALF A CENTURY}

Marvin's SAFIS
HAVE MANY PATENTED PATENIMDRQVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION By Those whi THE BEST SAFE MARVIN SAFECO.

\section*{NEW YORK, PHILADELPH}

\section*{PATENTS}

MMESRS. MUNN \& CO. in connectinn with the publi-
catton of the SCIENTIFIC AMERICAN continue to ex
amine im provements. and to act as Solicitors of Patents

 on Intringeements
them is done with
reasonable terms
A paphlet sent free of charge, on application, con-
taining full information about Patents and how to pro
cure them directions conternat cure them; directions concerinng Labels, Copyrigro, signgen, Patents, Rejected Cases, Hints on the Sale of Pa
tente, etc. We also send, Tree of charge, a Synops1s of Foreign Pa
tent LLaws, showing the cost an method of securing
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents,

The Original Unrulcanized Packing

\section*{Steam! Steam!}

We build Automatic Engines from 2 to \(200 \mathrm{H} . \mathrm{P}\) A Jarge Lot of 2,3 and 4-H. Engines With or without boilers, low for cash
B. W. PAYNE \& SONS, Box 15,

\section*{DHoto fragraving © 86 Park place, new york} TCEROUSE AND COLD ROOM.-BY

\section*{}
© BYOURNEW Messtine Process en Send Greer Stamp tor MersTipe Specinens:

\section*{TABASHEER RELATION OF TO MIN-}

RUBBER BELTING, PACEING, HOSE

\section*{RUBBEB GOOD,}

MECHANICAL and MANUFACTURING PURPOSES, THE GUTTA PERCHA AND RUBBER MFG. CO.

dJacker Plain or Porcelain Lined. Tested to 100 lb
pressure. Sead for Lists.
614 HAND, BURE \& \& Co., LIGHTNING CONDUCTORS.-DESCRIP-

BARREL, KEG, Hogshead,
STTVE MID er Sy arieties mannE. \& Facturea by

\section*{G7 GOLD MEDAL, PARIS, 1878,}

W. BAKER \& Co., Dorchester, Mass.

VELOCITY OFICE BOATS. ACOLLEC

\section*{pman man mixis} mamm inars and wisi
County Rights, \(\$ 50\). State Rights, \(\$ 500\).
See descriptive notice in ScI. AMERIC

\section*{MALLEABLEROMERyy}

RUBBER BELTING, PACKING, HOSE VULCANIVED RUBRERR FARRICS

Aim FBMelzo IBIOEO RUBBER A Specialty.

RUBBER MATTINC
AND STAIR TREADS.
NEW YORK BELTIUG \& PACKING CO., 15 PARK ROW, N. Y

\section*{mamamimane.}

95 MILK ST. BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7 th, 1876 , No. 174,465 , and January 30 th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

\section*{H. W. JOHNS'}

COERING
For Furnaces, Hot-Air Pipes, etc.
FIRE-PRDOF. Hot-Air Pipes,
NONDUCTING.
33\% of Fuel Saved. Has no Odor.
All of the heat is carried to points desired and
not wasted in cellars and flues.
H. W. JOHNS M'F'G CO.,

87 MAIDEN LANE, NEW YORK.

\section*{}

\section*{Scrientific Americam}

FOR 1888.
The Most Popalar Scientific Paper in the World. Onls 83.00 a Year, including Postage. Weekly. This widely circulated and splendidly illustrated
paper is publisted weekly. Every number contains sixpaper is publisted weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery. New Inventions, Novelties in Mechanics, Manufactures.
Chemistry, Electricity Telegraphy, Photography, Archihemistry, Electricity Telegraphy, Photography, ArchiAll Glasses of R eaders find in the ScIENTIFIC AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers formation of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as mucch as
possible abstruse ter possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive oft knowledge and progress in
every community where it circulates. every community where it circulates.
Terins of Subscription.-One copy of the ScIenpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
lishers; six months \(\$ 1.50\); tree lishers; six months, \$1.50; three months, \$1.00.
Clubs.-One extra cony of the Scienticic Ame Clubs.- One extra copy of the SCIENT1FIC AMERI-
CAN wil be supplied gratis for every club of five subscribers at \(\$ 3.00\) each; additional copies at same proportionate
The safest way to remit is by Postal Order. Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, dratts, etc., pay-
\[
\text { able to } M \text { IUINIV \& } C \circ .
\]

361 Broadway, New York. Tince
Scientific American Supplement. This is a separate and distinct publication from
THic SCIENTIFIC AMIGICAN, but is uniform therewith in size, every number containing sixteen large pages.
THE SCIINTIFIC AMERICAN SUPPLIMIINT is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all rhe principal departments of science and the all the principal departments of science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy
Natural History. Geography, Archæology, Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining,
Ship Building, Marine Engineering, Photography, Ship Building, Marine Engineering, Photography,
'echnology, Manufacturing Industries, Saritary Engineering, Agriculture, Horticulture, Domestic Econo-
my , Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied
subjects is given, the whole profusely illustrated with subjects is
engravings.
The most important Enjineering Works, Mechanisms, and described in the SUPPIEMENT.
Price.for the Suppicment for the United States and Canada. \(\$ 5.00\) a year, or one copy of the SCIENTIFIC AM
EIICAN and one copy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLEMENTT, both mailed
tor one year for \(\$\) t.00. Address and remit by postal order. express money order, or check,
MUNN \(\& \mathbf{C o}\).. \(\mathbf{3 6 1}\) Broadway; \(\mathbf{N} . \mathbf{Y}_{\text {., }}\), amelican

To Foreign Subscribers.-Under the facilities of the Postal Union, the ScIENTIFIC Amidicicai is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain. India. Australia. and all other British colonies; to France, Austria, Belgium, Germany Russia. and all other European States; Japan, Brazil, and
all States of Central and South America. Terms when sent to foreign countries, Canade and Mexieo, excepted, \$4, gold, for SCIENTIFIC Amirican, one year; \(\% 9\), gold
for both Scientific Ambrican ani Supplement for one year. This includes pcstage, which we pay. Remitt hr dostal or express money order, or draft to order of
MUNN \& Co... 361 Broud way, New York
PRINTING INES:
```

