

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

HARVARD OBSERVATORY AND THE HENRY DRA. PER MEMORIAL
In 1872, Professor Henry Draper first succeeded in photographing the lines of the stellar spectrum. Having secured this triumph for America, he pursued his researches in the same: direction until his death in 1882 . His skill and ingenuity were alike remarl:able. He was not one of those observers who, leaving details to others, try merely to do the final operations. He possessed the quality of thoroughntess, and personally attended even to the mechanical details of his investigations. He ground bie own specula. It is not too much to say that the work done jy him derives a character of value and reliability from the attention to detail that only such an investigator could give it. His powers of handiwork, combined with his scientific standing, make him a model for astronomers. Had dry plate photography been at his service, his work would have taken a far wider have taken a far wider
range. But using wet plates, that can only bear gomparatively shop rt ex
posures, howwashan onshit mense cuis: interestio
labors
fellowship
is said tinat
to inis obser
her. Hence
pecnliar gract
Dráae: kecame t.

§rientific gamrican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

NEW YORK, SATURDAY, OCTOBER 15, 1887.

Contents. (Illustrated articles are marked with an asterisk.)	
${ }^{\text {a }}$ ading ${ }^{241}$	Metallurrical and mech
sifter,	ed by
	Nob
Bread, French, how made	
of Pbysicians	
	${ }_{\text {Pud }}$
Exhibition, $\begin{gathered}\text { Glasgow*........................ } 244\end{gathered}$	
Inventionss agricilutural.......... 250	ste
Inventions, index of 251	Sult
fro	

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 618

RAILROAD MEN'S BUILDING.

The new Railroad Men's Building, erected in this city by Mr. Cornelius Vanderbilt, at a cost of $\$ 100,000$, as a gift to railroad employes, was formally opened on October 3, 1887, when it was turned over to the uses of the Railroad Branch of the Young Men's Christian Association. Speeches were made by the donor, Mr. Vanderbilt, and by several others. Then they were re sponded to in an address of acceptance by Mr. Elber B. Monroe in behalf of the association to whom th building is specially dedicated. Bishop Potter wa
present, and created somewhat of a sensation by propresent, and created somewhat of a sensation by pro
posing three cheers for Mr. Vanderbilt. Mr. Chauncey Depew closed the proceedings by one of his character istic addresses.
The building is situated on Madison Avenue near the Grand Central Depot. Within it contains all the appurtenances of a well-ordered club house-lecture room, bath rooms, reading room, lunch room, etc. En tertainments by prominent lecturers are to be given there throughout the season, and there is little doubt that much pleasure and profit will be derived by the railroad employes from this gift of the railroad magnate.
The building is to be accessible to all employes of roads using the Grand Central Depot. It is not exclusively in the possession of the Young Men's Christian Association. This point was made by Mr. Vanderbilt in his speech
The building, of ornate style in brick and terra cotta, is two stories high. The roof is of glazed Spanish Akron tiles. The gymnasium and bowling alley are fitted up with the latest improvements. The bath rooms include a plunge bath, 6 feet deep and $91 / 2$ by $131 / 2$ feet in area. In the basement all the partitions are of marble, with bronze framework. Brass pipes are used for the plumbing. In the library is a collection of 6,400 volumes of general and miscellaneous reading. In the reading room 100 newspapers are kept on file. The lecture hall is 36 by 66 feet in area, and can seat 400 people. It is finished in oak, cherry, and ash. The building is wired and piped for electricity and gas. The architects were Robertson \& Potter, of this city.
For a nominal charge any of the railroad employes on the specified lines has full use of the privileges, and after being in good standing for a year becomes a life nember.

exhibition of train telegraphy.

An interesting exhibition of train telegraphy was given by the Consolidated Railway Telegraph Company, of this city on the 6th instant. A special train of six cars was run from Jersey City to Easton, carrying the apparatus for transmitting and receiving. The train contained the guests of the Consolidated Company, and the party was the outcome of an invitation extended by Mr. Charles A. Cheever, the president of the company, to the New York Electric Club. The trip occupied about five hours. During the running of the train, the operator was kept busy sending ar ceiving messages. Although the speed of $t \mathrm{~b}$
no relation to the practical working of
yet a greater measure of public appr
looked for from the fact that the cars
speed, exceeding sometimes sixty mil-
The method is a simplification in
Edison system, already very ful
The tin roofs of the cars are u
The tin roofs of the cars are
condenser that is charged and
of a "buzzer" many hundre
other leaf of a condenser is
wire strung on low poles
nearly as possible at an ev
The rapid charges and $d^{\text {; }}$
reproduced upon the lin
ing these with a key,
duced on the car, ar
line, or vice versa.
phones are used.
head against t^{r}
He then est.
car seats, r
The eas
is notic
rapid
any
f
are thus connecteu .
car connections are the acme of simplicity.
The apparatus consists of the "buzzer," trangmitting key, and induction coil. The core of the latter is the magnet of the "buzzer." These are secured to a small lap board. For battery, twelve chromic acid cells (Bunsen type) are used. A compact form of these has been adopted, and is carried in a hand case. The whole equipment for a car is carried by one man, the operator himself, and can be attached and put in working order and transmit messages or receive them in a few minutes.

The great advance over the old Edison method consists in the use of a single line wire instead of a number of parallel lines. The reduction of the quantity of pparatus and its portability are also notable.
Many well-known scientists and electricians were on the train; among others, Thos. A. Edison, Prof. Barker, Messrs. Pope, Gillilland, Phelps, Van der Weyde, and others. The opportunity was taken for sending and receiving many congratulatory messages.

MAGAZINE RIFLES

The merits and defects of the various types of magazine guns are just now attracting much attention in the European military press. L'Avenir Militaire makes serious charges against the efficiency of the German magazine gun, with which the German infantry have been supplied, and the Militar Wochenblatt replies with similar charges against the French arm. The one charge and the other do not differ essentially; neither the German soldier, with the new "Mauser," nor the Frenchman with the "Lebel," have yet got the "hang" of the magazine rifle, which, being far more complicated than the old arm, requires more careful handling. That novices at such mechanismis should be awkward is scarcely surprising, and the observer at the butts, however friendly, would see little to praise in their target practice. That skill as well as experience is required to get the real value of the wagazine gun has been clearly demonstrated during the last few months; and an excellent proof that the new arm is not altogether satisfactory is to be found in the German and French military journals, which, while indignantly denying the truth of the assertions made by hostile critics, seem unable to bring forward any facts or figures to aid them. Thus the Deutsche Heeres Zeilung, just at present much wrought up over the published observations of a correspondent of the Swiss, journal Gazette Suisse, contents itself with denying in jeneral terns the truth of his statements, and makes no attempt to go spe cifically into the charges. It :ays that the new arm has been shown, beyond peradventure, to be at least quite as efficient as any other type known; that it is simple in construction, strong in parts, accurate in fire, and in the hands of the German soldier, accustomed to handling the old Zundnadelgewehr, of which this is only an improvement, is more effective than any other. Yet the Swiss correspondent, who witnessed the work of a part of the 25 th corps at the butts, only corrobo rates other military observers when he declares that men draughted from the farming districts of Bavaria Wurtemburg, and especially the Pomeranians, West phalians, and West Prussians, cannot, because of the great size of their fingers, operate the mechanism of the Mauser magazine gun with nicety, dispatch, or safety to the parts; and that in such unskillful hands the advantages of a quick-firh throp made more prominent cartridge)
Again, like others and $+1 \quad$ っd raw levies anding this type of -. "extractor
"r" (the lev y shell and worked by worked by The conbeen armed, it has, same defects as the r being quicker and chanism, the equation is less, as are also the mprovements in this arm 1 General Tramind, com aool of St. Cyr, are very im ae arm now in use, is of eight lets, made of steel, are fired by der, which is smokeless, of tre fives little or no recoil, and, it i ne discharge is so slight that it cana distance of twenty-five yards. The cuch smaller than that now in use, as is idge, yet the trajectory is almost straight, eing hit at long range 95 times out of a posby those at all accustomed to arms of any ${ }_{a} \mathrm{n}$ some respects this new piece resembles the
dy invented Pralon rifle, but in its mechanism
aradicated the defects which that was seen to
ssess.
Recent experiences of the English with the repeating rifle have been peculiarly unsatisfactory. The Broad Arrow, quoting the Times of India, says that the exhaustive trials at Bengal have proved that both the Lee-Burton and the improved Lee are altogether unsatisfactory. It says:
"That there should be many who object to the new rifle on the grounds of the waste of ammunition involved is only natural, and to be expected, but to find the weapon itself breaking down in its strongest point, viz, rapidity of fire, is astonishing, but not incomprehensible. The report, says that the improved Lee is the better of the two, but that when any large number
of rounds have to be fired, the Martini-Henry is quicker than either. The term 'repeating rifle' is really misleading to the non-military public, and the name 'magazine rifle' is far more accurate. Many people seem to imagine that the repeating rifles fire continuously like a revolver, up to a certain number of shots, by merely pulling the trigger; but this is far from being the case. Each cartridge has to be extracted, and the breech closed as in the case of a single loader, the only time saved being that employed in taking a fresh cartridge out of the pouch and placing it in the chamber, while, when the magazine is emptied, it is necessary to refill it, cartridge by cartridge, thus wasting as much time as is occupied in loading the same number of cartridges direct into the chamber. The addition of a fixed magazine must of necessity make the rifle clumsy and awk ward to handle, while it must either make the balance unequal or depend solely on a spring for its action."

How French Bread is Made.

One summer's day we stopped to call at the stone farm house of Monsieur Duval. Ernestine, the eldest daughter, was housekeeper in her dead mother's place, and she it was who brought out the amber-colored cider, the goat's cheese, and the heavy, hard, country bread. It is an essential of French peasant hospitality to offer these things to visitors.
The loaf she took from the shelf was one of half a dozen leaning against the black wall. These loaves resembled cart wheels, and had been baked in sixquart milk pans. Ernestine cut the loaf with a small saw made for the purpose! Nothing less than such a saw, or a pirate's cuttlass, could sever that homely but wholesome pain rassis.

These loaves, we knew, were baked only once a month. Bread day in a Norman peasant family is like washing day on an American farm, in the respect that it comes at regular periods. We judged that bread day in this cottage was approaching, from the fact that only six loaves remained of the original thirty or thereabout.

After our luncheon Ernestine took us through the orchard to a picturesque stone building, where the bread was wont to be made. This building had once been part of an ancient abbey, and amid its ivy-covered ruins we could still trace fine sculpture and bits of armorial designs, but inside there was no trace of art or architecture. It was really a Norman hen house. We saw several pairs of sabots or wooden shoes hanging from the wall and looking as if they had been whitewashed.
In one corner of the place was a large space inclosed with boards. This was empty, but, like the sabots, it suggested whitewash or mortar making.
Ernestine told us that this was the family dough trough. Hither, once a month, came her father and the hired man to "set" the yeast a-rising. Flour and water were stirred together with the huge wooden spades shaped like our snow shovels which hung with the sabots upon the wall. When the mass, thoroughly beaten together, had risen and assumed a dark color and leathery consistency, then came the tug of war. The two men put on the sabots over their ordinary shoes, jumped in upon the dough, and began the kneading. Their way was to hop and prance and flourish like opera dancers, to stamp and kick like horses, exerting themselves till the perspiration streamed off them and they had no strength left. After this process the dough was put into the pans, and then baked in the huge oven at the rear of the abbatial hen house.
In all Norman towns half-clad men may of ten be seen lounging a bout bake house doors. Their legs and feet are bare and floury, and as they tread the streets we
know that they have just come from or are returning to their usual occupation of kneading bread.
"Mon Dieu!" exclaimed Ernestine when we told her that in America bread making was woman's work. "Mon Dieu! how cruel your men are! I would rather

Great Pumps.

The Lawrence Machine Company, Lawrence, Mass., have been awarded the contract for one of the largest pumping plants ever planned in America. The plant is for the city of Montreal, and consists of four centrifugal pumps, each with a discharging opening of 24 inches diameter, and capable of handling 18,000 gallons of water per minute, and four similar pumps of 15 inches discharge opening, and a capacity of 7,000 gallons per minute. Thus the four 24 inch pumps have a
combined capacity of 72,000 gallons per minute, 4,320 , combined capacity of 72,000 gallons per minute, 4,320 ,
000 gallons per hour, $103,680,000$ gallons, or 386,000 tons, of water per day of twenty-four hours; and the four 15 inch have a combined capacity of 28,000 gallons per inch have a combined capacity of 28,000 gallons per
minute, or $1,680,000$ gallons per hour. These pumps are contracted for by the Inundation Committee of Montreal, and are designed to pump the sewage of the city over the walls and dikes now in process of
erection to protect the lower portions of the city from erection to protect the lower portions of the city from
the annual inundation caused by the floods and ice gorges of the St. Lawrence River.

PHOTOGRAPHIC NOTES.

Instantaneous Photographs Made at Night.-With rapid plates of the present time, no trouble is found in taking instantaneous photographs by day light, but doing such work at night is something quite new. Messrs. Goedicke and Miethe, of Germany, recently succeeded in producing a flash of light of surpassing brilliancy and actinic force, by mixing an explosive compound of magnesium powder, chloride of potash, and sulphide of antimony.
Experiments show this compound to be rather danerous, requiring especial care in its handling.
Quite recently, Dr. H. G. Piffard, of this city, a member of the Society of Amateur Photographers, carried on a series of experiments with a view of overcoming the dangerous qualities of the potash and magnesium compounds, and finally ascertained that a similar light of great power could be easily made by mixing with seven grains of gun cotton from fourteen to twenty grains of magnesium powder. There is no danger con-
nected with this light. The gun cotton flashes innected with this light. The gun cotton flashes instantly, as soon as ignited, and combines with the magnesium to produce an intense actinic light. The lens is used with full aperture, while the light is placed about ten feet from the object.
We were shown a negative made with this light which was quite remarkable for the density of the image and the detail exhibited in the dark portions of the object. Of course a plate of high sensitiveness had to be employed.
One of the Causes of the Fading of Photographs.-
The Photographic News finds that salts of iron in cardThe Photographic News finds that salts of iron in cardboard mounts have a deleterious effect on the photograph It says: Iron, in one form or another, is present in every sample of dark-colored or buff card which we have examined, and it is with respect to the darker colored cards that we have received the bulk of complaints. In the case of some of these mounts, the iron is so loosely held that water alone will extract enough to strike a blue color with ferrocyanide of potassium ; but in other instances the iron is not extractable by water alone, but readily. comes into solution if a portion of the mount is treated with water containing a little hydrochloric acid.
The body of the buff-colored mount is generaliy made, for the sake of cheapness, of a pulp containing iron, this metal usually being in an insoluble state in the case of the individual sheets of which the card is built up; but in the process of mounting these sheets, the elements necessary to produce soluble iron compounds are introduced, as the paste or cement used almost invariably contains an appreciable portion of common salt (chloride of sodium), and, if not acid when used, generally becomes so before the sheets of cardboard are dry.
In such a case, the soluble and highly mischievous perchloride of iron is formed, and either makes the prints fade all over or works through holes in the enamel coating, and produces the spotted appearance so familiar to professional photographers. If the starch, paste, and gum for mounting the photograph become sour, the iron will be transformed into a harmful salt. Testing for Iron.-A mount may be tested for iron in the soluble state by first making an infusion, that is, cutting up portions of the mount and soaking in warm water. If a few drops of a cyanide of potassium solution be added, a blue color should at once appear, provided any iron is present. A soluble iron compound may be considered in all cases as injurious.
To test for iron in an insoluble state, but in such a condition as to readily become soluble, pour fresh water on other pieces of the same mount, and for each drachm of water add two drops of pure hydrochloric acid, allow the whole to soak for an hour or two, and then filter off and test with ferrocyanide of potassium,
as before. Iron in the condition indicated by this test as before. Iron in the condition indicated by this test may become soluble and mischievous, if the photographs are allowed to remain in a damp place, as then the paste used in making the card will probably become acid.

Very Queer Law.

If a decision just made by the Supreme Court of Connecticut is sound law, real estate on the banks of rivers with a tendency to change the course of their channels is a dangerous investment for capital. The court holds that rivers are natural boundaries, and when they alter their course their functions as boundaries are not affected by their form9r relation to lands. That no mis-
tatio may be made interpreting the meaning of the court, the decision gives a forcible illustration of a "possible result from the waywardness of the river. "If," the decision says, "after washing away the intervening lot, it should encroach upon the remoter lots, and should then begin to change its movement in the other direction, gradually restoring what it had taken from the intervening lot, the whole, by law of accretion, would belong to the remoter, but now approximate, lot.". Under this statement of the law an owner
on the river front is not only liable to see his property gradually disappear under his own eyes, but if it reappears subsequently it belongs, not to him, but to his fortunate next-door neighbor.

Oll from Grape Seeds.

In Italy oil is now made from grape seed. According o the Revue Francaise, the following is the method employed. On being removed from the wine press the mare is well dried, the seeds are separated by a fan, and afterward subjected to a cleaning process.
When perfectly clean and well dried, they are ground like wheat. The finer the flour thus obtained the greater the yield of oil. The milling requires some attention as regards the arrangement of the millstones. As soon as the first product is withdrawn, it is bolted; that which is left on the bolting cloth is again ground, and so on, care being taken to add a little water to the flour as it passes between the stones. The product from the mills is then thrown into boilers. If ten kilogrammes, for example, are to be treated, in the middle of the mass, and into a hole extending to the bottom of the vessel, three liters of water are poured. The vessel is then placed over a slow fire; the flour little by little is stirred with the hand or with a spatula, to mix it well and to prevent the formation of lumps, and it is left over the fire until the hand cannot bear the heat of the mixture. This operation is very important. The better
regulated the cooking of the flour, the greater is th regulated the cooking of the flour, the greater is the quantity of oil obtained. The flour, still hot, is placed in wrappers, and is taken to the press and treated like other oil-producing seeds. After the first pressure the nass is broken down by hand and pressed a second time. One hundred kilogrammes of well-ripened grapes give from ten to twelve kilogrammes of oil.

Sulphurous Fumications.

The Havre Congress of Hygiene have agreed to publish a set of directions for disinfecting, for the benefit of doctors or masters of infected vessels. Brimstone, broken up in small pieces, should be placed in broad and shallow earthenware or cast iron dishes, of about 1 liter capacity. The vessels should be of one piece, without solder, and, as a precaution against fire, piece, without solder, and, as a precaution against fire,
should be placed in tubs holding 2 or 3 in . of water. should be placed in tubs holding 2 or 3 in . of water.
To light the brimstone, either sprinkle it with a little alcohol or tip it with a little cotton wadding dipped in the same liquid. For each cubic meter of room, 30 grammes of sulphur are requisite, or about 1 oz . for each 40 cubic feet, all the openings being kept tightly closed for twenty-four hours. How to proceed when a large space is to be disinfected, and how to open the doors after fumigating, are described in detail, but one of the characteristic cautions given by the wise men at Havre is to avoid as much as possible, on board steamers, to let sulphur fumes get into the engine room -not that serious harm is to be apprehended, but because the vapors turn polished brass and steel an ugly red color, which greatly displeases the engineers.

The British Standing Army.

The "General Annual Return of the British Army" for the year 1886 has just been presented to Parliament. On the 1st of December, 1886, the composition of the personnel of the army was as follow :

Total
The nationalities of the non-commissioned officers and men of the army were as follows:

Oxychloride of Zinc Cement.

This cement or mastic is prepared by mixing 1 part of the finest pulverized glass with 3 parts of oxide of zinc thoroughly calcined (made from the carbonate), which is afterward kept in well-stoppered glass vials. Separately 1 part of borax is dissolved in the smallest possible quantity of water, it is mixed with a solution of chloride of zinc of $1 \cdot 5-1.6 \mathrm{sp}$. gr., and is kept in this state in well closed vials. To use this mastic, enough of the powder is mixed with some of the liquid to form a putty, which hardens readily until like stone. Under the name of Paris dental cement a similar preparation is sold in the pharmacies which has even been used for filling hollow teeth. This composition can serve excellently for many other purposes; for example, to attach to each other different parts of technical, scientifi e , or domestic appliances, where a tenacious, quickly hardening cement is required.-L'Elettricita.

AN ingenious plan to save a dying pear tree was adopted in the garden of L. M. Chase, of Boston. The mice had girdled the tree so that it seemed bound to die. Mr. Chase planted four small trees around it, and close to it, cut off the tops, pointed the ends, and, making incisions in the bark of the pear, bent the small trees, and grafted them upon the dying trunk. They all lived, and that tree draws its nourishment from the small ones. This season a bushel of handsome pears were taken from it.

VALEE GEAR FOR OSCILLATING ENGINES. We illustrate a novel and ingenious valve gear for oscillating engines devised by John William Hartley, of California Works, Stoke-on-Trent, England, and given in Engineering, from which we take the following:
This gear does away with the necessity for the use of eccentrics and permits of the expansion being varied at will up to the latest point of cut-off for which the engine is designed. We give two engravings, one showing the gear in perspective applied to an engine with the crankshaft above the cylinder, and the other illustrating an engine of the inverted type. The arrangements are practically identical, but some of the parts are more clearly shown in one view, and some in the other. The same letters of reference appear in both engravings. The cylinder, A, rocks on trunnions, B. On its upper cover it carries a bracket, E, which serves as a fulcrum for a lever, \mathbf{F}. In this lever there is a boss, through which there passes a pin, G, forming a portion of a double-armed lever, $H \mathrm{H}$, which at one end is connected to the valve spindle and at the other to a slipper block, K, sliding on a curved bar or link, L. This link is pivoted to the framing at its center by a stud, M, which is on a line drawn through the center of the crankshaft and the center of the trunnion. It can be moved and set to various positions about this stud by a reversing lever and quadrant, not shown in the engravings.
The curvature of the link is struck from the center of the trunnion, and when the link is in mid-position the slipper moves back ward and forward on it without any vertical motion, and consequently there is no movement of the valve. If the link be tilted either way, the lever, F, is made to oscillate on its fulcrum, G, as the cylinder rocks, and the valve is moved to and fro, admitting steam to drive the engine backward or forward, according to the position of the link. The motion of the valve is reversed when the cylinder attains its maximum swing in either direction, and hence it follows that the mechanism we have already described, and which by itself is not novel, is not able to give either lap or lead. To enable the steam to be used expansively, a second motion is imparted to the valve
from the piston rod. The outer end of the lever, F, is the position of the curved bar, the total travel of the connected by a link, O, to a lever, P, carried by a valve can be changed as desired. The slot in the end bracket, R, attached to the cylinder. The further end of the lever, P, permits of the slack caused by the wear of the lever, P, is coupled by a link, U, to the crosshead of the piston rod, and follows its motion. When the of pins being taken up.

Driving a spike under Water.

In mill work, especially when making repairs, it is often necessary to drive large spikes in water to the depth of two, three, and even four feet. Starting a spike by hand, and then attempting to drive it by means of a crowbar, is an unmechanical proceeding, to say the least. The Manufacturers' Gazette sàys one of the neatest and also the best ways of effecting the desired object is to get a piece of steam pipe of suffl cient size to permit the spike to drop easily through it. Place one end of this pipe upon the spot where the spike is to be driven, drop the spike into the pipe, point first, and then follow it with an iron rod just arge enough to slide easily in the pipe. By using the iron rod as a battering ram, or like a churn drill the spike can be easily and quickly driven home without spattering the person with mud and water.
An improvement on this spike-driving rig may be made by getting a cast iron ball of two, four, or six pounds weight, drilling a hole through the ball sufficient to receive the iron rod, also drilling another hole to receive a set screw. By screwing the set screw down upon the rod, the ball can be held in any desired position. This ball gives extra weight to the driving rod, and, in fact, forms a kind of hammer whereby the spike can be more quickly driven home. It will not work well if you try to drive the spike by means of the rod and a sledge hammer. It is bet er, by all means, to rig up the ball above mentioned, which will do the work well and quickly.

Radiations from Melting Platinum and Silver.

M. J. Violle has studied these radiations by means of a thermopile, one surface of which received the radiations and the other was exposed to a known souree of heat in such a manner as to bring the needle of the galvanometer to zero. It was found that the total radiation of melting platinum is fifty-four times that of melting silver.-Comptes Rendus; Amer. Jour.

AN ADJOSTABLE PITCH SCREW PROPELLER An invention providing means whereby the blades of a propeller may be changed to any desired angle or pitch required, without the stoppage of the engine, is

STEVES AND HILL'S SCREW PROPELLER.
shown in the accompanying illustration, and has been patented by Messrs. William J. Steves and Andrew J. Hill, of Mechanicsville, N. Y. A sleeve, having on its rear end a beveled gear, is mounted on the propeller shaft, and the shank of each propeller blade, projecting down through the hub, is made with an integral bevel gear to mesh with that of the sleeve. The latter has collars where it passes into the hull, and on its interior end are four integral pins, which are received in the cam slots of a second or reversing sleeve, mounted apon the shaft and upon the inner end of the first sleeve. The inner end of the reversing sleeve has a wide interior collar with a series of longitudinal grooves engaging with corresponding feathers formed longitudinally on the shaft, there being also an exterior collar in alignment with the interior one, the exterior collar being engaged by an interiorly grooved ring having trunnions on opposite sides, journaled in the U-shaped arms of a lever, whose lower ends are fulcrumed upon a pillow block fixed to the bottom of the boat. To the upwardly extending arm of this lever is pivoted a rod adapted to extend back to the engine room or other convenient place, where it may be operated by hand or steam power. While the propellers are revolving, a movement of this lever and strap will also move the in terior sleeve, and its cam slots, through the pins on the imner end of the other sleeve, will revolve the latter, with its bevel gear, to turn the flukes of the propeller to the desired angle or pitch.

AN IMPROVED HOUSEHOLD ASH SIFTER.
A convenient sifter and receptacle for ashes, whereby the partially burnt coals can be effectively separated from the ashes, and the work can be easily done at the

FALARDEAU'S COAL AND ASH SIFTER.
fireside without causing annoyance or inconvenience from the escape of dust, is shown in the accompanying illustration, and has been patented by Mr. Dennis L. Falardeau, of Cohoes, N. Y. The sifter is supported within a case or outer vessel, which has a pivotal bail
more than half its depth the sifter is made closed or mperforate, the other part being made of fine wire cloth or netting, or of perforated metal plates if desired ; but a considerable portion of this perforated part is made as a door, through which the coal and ashes to be sifted are passed, the door being hinged at one side and having a latch or lock button at the other edge. There is also a door, arranged to be buttoned or latched, in the lower portion of the sifter, through which the sifted coal or cinders may be discharged, when the sifter is lifted by its bail from the outer case. The sifter is hung on trunnions at its ends in suitable brackets fixed within the outer case, and is rotated by a crank applied to one of the trunnions, the outer case being made large enough to hold a considerable accumulation of ashes, and its close-fitting cover being left on until all the dust from sifting has settled, when the slate and clinker can be conveniently picked out, and what remains is ready to be put on the fire, the meshes of the wire cloth in the sifter being fine enough to save all the small coals. The sifter may also be made to be supported from trunnions on its opposite sides, resting in the forked upper ends of stirrups pivoted on lugs in the bottom of the case, when the sifting is done by rocking the sifter by means of a shaker bar extending through one end of the outer case. A sifter and ash receptacle of this kind can be kept and used in any room of a house, where most convenient, without scat tering dust over clothing and furniture.

AN IMPROVED SIGNALING APPARATUS.
A signaling apparatus designed for a variety of pur-
poses requiring an upwardly projected light, such as

QUATERMASS' SIGNALING APPARATUS,
illuminating the rigging and signaling on shipboard for store windows, for use on .railroad trains, etc., has been patented by Mr. Reuben Quatermass, of Moline, Kan., and is shown in the accompanying illustration A cylindrical casing, adapted to receive a lamp, is made with a perpendicular sliding door, the casing having a series of draught holes near its bottom and ledges upon its inner walls, just above the lamp flame. An inverted conical reflector surrounds the lamp, its outer edge resting upon these ledges, the light striking and being reflected upward, as shown in dotted lines. Upon a ledge in the casing, near its top, rests a glass concavoconvex shield, centrally apertured, and having a threaded colliar, to which is fitted a cowl for receiving the products of combustion and allowing them to es cape without permitting rain or snow to enter. Any water or snow deposited on this glass shield runs out through a series of holes in the casing in a line with the edge of the shield. By means of this lantern a column of light may be projected to a great height, illuminating the smoke and steam of a locomotive, so that they may be seen over the tops of embankments, trees, etc and producing a halo visible at long distances.

AN IMPROVED CUTTER HEAD.

A cutter head with which the bits are interchangeable, in such manner that both ends of the bits may be worn alike, and whieh can be readily adjusted to balance accurately, is shown herewith, and has been patented by Mr. John C. Humphreys, of Braxton Court House, West Va. The cutter bar, stock, or bit holder has a series of exterior convex surfaces, eccentric to the axis of the cutter bar, as shown in the cross sectional view, Fig. 2, and is shaped so that, looked at from opposite ends, it presents two three-leaved cams, each of which extends half the length of the cutter bar, the bits of one series being intermediate of those of the other. The bits are secured to their places by screws passing through open-ended slots and washers in the bits, the washers fitting within countersunk marginal portions of the slots, and each washer having a pocket on its inner side in which may be placed shot or other weights, for making the different portions of the cutter head occupied by the several bits of like weight. By removing or adding weights, the adjust-
ment can be very accurately effected without grinding the bits for such purpose, as has been common hitherto. The bits are arranged so that only one will cut at a time, and project atsuch tangents and are so shaped on their backs that their outer surfaces back of the cutting edges lie inside of the circle described by the cutting edges, thus cutting the wood at an angle of fifteen to twenty degrees, instead of about forty-five, as has been common heretofore. With such a cutter

HUMPHREYS' CUTTER HEAD

head and bits the latter do not drag and leave creases or ridges in the surface of the wood being dressed, but make a smooth cut, while economizing power.

To Free Iron or steel from Rust.

As often happens, a chance now occurs to note a pro cess whose value should not be underestimated. A bookbinder wishing to blacken iron places rusty iron or steel in stale beer (triple beer). Afterfive or six days the rust is perfectly dissolved from the metal, and a dark brown to black surface takes its place. Some days later the rust reappears. This affords a ready means of cleaning old or delicate iron objects from rust.-Uhland's Tech. Rund.

AN IMPROVED FIFTH WHEEL.

A fifth wheel for vehicles, so constructed that it can be readily taken apart and put together, while it has great strength and simplicity, is shown in the accompanyirg illustration, and has been patented by Mr. Edward H. Cox, of Slate Lick, Pa. Fig. 1 is a plan iew and Fig. 2 a longitudinal section, Fig. 3 showing a plan of the upper fifth wheel plate, and Fig. 4 a modified form of the lower fifth wheel, with inclined bearing arms in lieu of the base ring, for vehicles in which the front axle does not turn under. The lower fifth wheel plate, axle stock, and axle are bound together by clips passed through the usual bottom plate. The upper plate, head block, and spring arelikewise bound together by clips, and the king bolt, in front of the axle, is passed through forwardly projecting eses formed on the upper and lower fifth wheel plates and on the bottom plate. The front end of the reach abuts against the rear end of the head block, to which it is secured by the top and side stays. A reach plate of the upper fifth wheel, bolted to the under side of the reach, has a bottom extension with a downward opening slot in which the rear base ring on the lower fifth wheel is fitted to turn. An offset strap closes this slot, preventing the base ring from rattling, and the lower arm of the strap extends forward under the clip plate and receives the king bolt, on which it thus swings loosely with respect to the axle in turning. With this construction all the parts can be readily put together or taken apart, and they are not liable to quickly wear out.

COX'S FIFTH WHEEL FOR VEHICLES.
international exhibition at glasgow.
The buildings are now in course of erection for the great exhibition to be held at Glasgow next summer, and our illustration represents the main structure, which will be semi-Oriental in design, and which will be surmounted at the center by a dome 120 feet in height and 90 feet in diameter. The buildings will, in all, cover about ten and a quarter acres of ground. Everything relating to the exhibition is being attended to with much energy, and judging from the fact that Glasgow is the second largest city of Great Britain, with a population, including its suburbs, of nearly $1,500,000$ penple, and inasmuch as it is visited annually by thousands of tourists en route for the Trosachs and the Scotch lakes, there is no reason to doubt of the success of the enterprise. The executive council includes some of the leading nobility and most prominent citizens, and the chairman is Sir James King, Lord Provost of Glasgow. A guarantee fund of over $\$ 1,200,000$ has been subscribed.
The exhibits will be of a widely different character, and will include such classes as : Agriculture, including horticulture and arboriculture. Carriages, including bicycles, tricycles, and ambulance appliances. Chemistry and chemical and philosophical apparatus and instruments. Civil engineering. Cutlery, firearms, etc. Educational appliances and apparatus for physical training. Electricity, fine arts, fishery, food, furniture, gas, and other illuminants. Heating and cook. ing apparatus. Jewelry machinery. Mining and metallurgy. Musical instruments. Naval architecture and marine engineering. Paper, printing, bookbinding, and stationery. Pottery and glass. Railroad aping, and stationery. Pottery and glass. Railroad appliances. Textile
percha, clothing. percha, clothing.
Great attention
house, and passed through breakers, whence it must go to the stamp mill-perhaps several miles awayand there it must be pounded into fine mud and sand, which in turn is run over a system of sieves, jiggers, and slime tables, undergoing an elaborate process of mechanical separation of the copper from the sand, after which the copper must be taken to the smelting works, and then cast into ingots, when it is ready to be sent to market.
Few, even mining men, who are not acquainted with the details of the work at our Michigan copper mines are ready to give credence to the statements that rock which has a gross value of bat $\$ 1.65$ per ton, or less than 15 pounds of refined copper, on an average, to the ton, can be mined at a depth of more than 1,000 feet below the surface, hoisted, broken, stamped, washed and separated, smelted, and taken to market and sold, and still leave a net profit of 22 cents on every ton. Yet this was the year's result at the Atlantic mine in 1885, is equally favorable for 1886, anc the company paid a dividend of $\$ 1$ per share to the shareholders.
In order to accomplish this, 800 tons of rock were raised and stamped per day. Each year, as the price of copper has diminished, the daily production has been increased, in order to reduce the average cost. Ten years ago, when there were but 230 tons of rock mined and treated per day, the average cost was $\$ 3.90$ per ton at thismine. The cost of stamping and washing was then 88 cents per ton, while now it is but 30 cents. The total average cost per pound of copper obtained at the Atlantic mine ten years ago was 22 cents, in 1885 the same was produced for $91 / 3$ cents. The mine is no richer now than formerly, in fact, there has been, practically, no change in the quality of the rock.
The adrantage gained is due to improved facilities for
tion of such work. No copper mine in Michigan can be successfully operated otherwise than by all this necessary outlay. As soon as the deposit has been proved sufficiently to justify its permanent working, then the rock house and stamp mill must be provided for. Hundreds of thousands of dollars must be judiciously expended before the mine becomes established as a working, paying enterprise.
Iron.-Not so with an iron mine. In some of them, in their earlier stages, it is the simplest of excavating work, a mere open pit in which the ore is dug out and oaded into cars. Generally, even when the ore is thus mined from an open cut, more or less stripping must be done before the ore can be reached. But this sort of mining is only applicable to the soft ore mines-hema-tites-and to these, when true of them, only in the first year or two. There are usually difficulties met with that, to be overcome, require the exercise of skill, experience, and improved appliances to insure economical production. Still the ore only has to be mined. There is no subsequent manipulation required to render it marketable.
Thirteen years ago all the iron mines in the State, with one small exception, were wholly open to daylight, and the aggregate production was $1,000,000$ tons. Now nearly all are worked underground, and the aggregate production, annually, has mounted up to $3,000,000$ tons. Great change has taken place in the iron mines in the last few years. In the large mines, as the Cleveland, Lake Superior, Republic, Chapin, etc., the old and inadequate machinery has given place to that of the wost costly and powerful character for hoisting, for pumping, and for drilling. The wooden buildings in which the machinery was formerly held have been supplanted by stone structures with iron roofs, which are safe, substantial, spacious, and elegant. Ponderous

MAIN BUILDING OF THE INTERNATIONAL EXHIBITION TO BE HELD AT GLASGOW, SCOTLAND, IN 1888.
engineering and architecture, and a special attraction \mid mining and manipulation, to a better comprehension will be the exhibit of model boats, which will be held upon the waters of the navigable river Kelvin, which passes through a portion of the park where the exhibition is to be held.
For the benefit of American exhibitors, it may be said that special rates have been fixed for the transportation of exhibits on most of the principal transatlantic lines, and these have further agreed to carry back, free of charge, all goods that remain unsold at the close of the exhibition. All applications for space, etc., should be made before November 1. The American correspondent is Mr. A. MacCorkindale, of the Mutual Life Insurance Company, New York, who is prepared to give information concerning the requirements and to furnish blanks. It would be possible for exhibitors from this country to ship goods to Glasgow, and, after the close of the exhibition, to send their exhibits from there direct to the Paris exhibition of 1889.

Lake Superior Copper and Iron.

There has been great improvement in the ining in ustry since one year ago; this is especially true of th iron mines. The advance in the price of copper from 10 cents per pound to 12 cents, which occurred during the past year, and which price still prevailed early in the present year, caused a feeling of relief in the copper district, the outlook became far more hopeful, and increased activity prevailed. Copper miniug in Michigan has become a very uniform industry ; prices may vary, but the work at the mines goes on steadily with little apparent change. There is all the while a gradual increase in the magnitude of the operations, resulting in an increased production and a corresponding lessening of cost.
Comparatively few comprehend the scale on which all the work is carried on at our great copper mines. They do not realize the fact that the rock from which the copper is eliminated must be mined far underground at a depth of from hundreds to thousands of feet, and thence be raised to the surface, taken to the rock
mining and manipulation, to a better comprehension
of the work.
The Atlantic mine has been referred to simply for The Atlantic wine has been referred to simply for
illustration. There are others which afford an equally favorable showing, and altogether these results make apparent that no business in the land of equal magnitude is more systematically and carefully conducted than is the copper mining industry of Michigan. There is none more legitimate or that is conducted with more freedom from speculation and from those nanipulations of stock which unfortunately too frequently characterize mining.
Copper mining in this State can be made, and is made, as certainly profitable as are other undertakings requiring large expenditures of money. The mineral odes are pretty well understood; it is known, generally, what they will yield, the conditions are understood, the elements of the problem are in hand. The leading mines have demonstrated their ability to meet all the cond-itions, and to conduct their operations so that an annual profit shall accrue with assured regularity. Mining, like other enterprises, can be carried on with such recklessness and extravagance that utter ruin must result, and if there are conspicuous instances of failure in the recent history of the copper country, the unfortunate results may be traced to causes that were readily foreseen. The final outcome could have been predicted in advance with all reasonable certainty while good management in all instances, when the conditious were favorable, has been attended with success. The progress which has characterized the copper mining industry has also, in an equal degree, entered into the work in the leading iron mines. Copper min The work cannot be successfully prosecuted otherwise. The rock, after it is mined, unless it is mass copper, must be crushed and stamped to great fineness, washed to separate the copper from the rock, and the copper finally smelted before it can be sold. All these successive manipulations require mechanical appliances that are elaborate and costly. Great skill and experienc are essential on the part of those who have the direc
steam engines, air compressors, and immense winding drums are the order of the day in all our great iron mines. The use of electric lighting and electric bells is becoming general. - At the Chapin, Ludington, Vulcan, Lake Angeline, Lake Superior, Hematite, and Barnum mines, which have vertical shafts, cages are used instead of the skips ordinarily employed, thus securing important advantages.
The best steel wire rope is used, and catches which hold the cage should the rope break. The men are taken down into the mine or brought up from it nine at a time, without loss of time and without labor.

A New Secondary Battery.

The Societe Industrielle of Brussels has constructed a new accumulator, the invention of M. Tamine, a civil engineer. The element is composed of a number of connected plates for a positive and a thin sheet of lead, 1 mm . ($\frac{1}{26}$ inch) in thickness, for negative. The following is the composition of the liquid :

> Saturated solution of zinc sulphate
> Sulphuric acid, 10°.
> Ammonium sulphate
> $\begin{array}{cc}\text { 1,000 parts. } \\ 500 & \text { " } \\ 50 & " \\ 50 & "\end{array}$

The solution of mercury and ammonium sulphates are first prepared. It is poured into the acid, and the zinc sulphate is afterward added. The electro-motive force is 2.3 volts. The element is formed in an acid bath. It is then slowly discharged in the liquid just described. The negative becomes covered with oxide. The discharge on open circuit is prevented by the presence of awmonium.-Bull. International de l'Elec.

Balloon Views of the Polar Regions.
A correspondent suggests the possibility of attaining view of the polar regions, far beyond actual travel, by means of a photographic magnetically directed and electrically regulated (opened and closed) balloon, sent up under favorable conditions, a mile or more. It can surely be done. Of course there might be lenses on all sides of it, so as to give the view all around.

How stoves are Put Up.
bis being the season of the year when multitudes of people are adjusting their heating apparatus, preparing for cold weather, some will recognize their own experience in the following annusing description from the American Artisan of the way it is sometimes done:
In the first place, the man puts on an old and very ragged coat. Then he puts his hands inside the place where the pipe ought to go, and blackens his fingers, and then studiously makes a black mark down the side of his nose. Having got his nose properly frescoed, the man grasps one side of the bottom of the stove, and his wife and the hired girl take hold of the other side, and in this way the stove is started from the woodshed to the parlor. In passing through the door, the man carefully swings his side of the stove around and jams his thumb nail against the door post. At last the stove is set down in the proper place, and the man and his wife and the hired girl set out in a triangular search after the stove legs. Two are finally found inside the stove, where they have remained since spring, and the two others are found hidden under four tons of coal. Then the old man holds up one side of the stove, while his wife puts two of the legs in place; then he holds up the other side while the other two are being adjusted, and one of the first pair is displaced. The trick of getting the four legs into their proper place is practiced with varying and indifferent results for some ten minutes, and by this time the man gets excited and reckless, and throws off his coat, regardless of the consequences.
Then the man goes for the stovepipe and gets a cinder in his eye. The stove was put up in first-class shape last year by the stove man, but this year the pipe proved to be a little too long. So the man jams his hat down over his eyes, takes a piece of pipe under each arm, and starts for the tin shop to have it fixed. Then .arm, and starts for the tin shop to have it fixed. Then best parlor chairs to see if the pipe will fit, when his wife makes him come down. In the act of descending he plants his foot square down on the hollow of the cat's back, and cones within an ace of trampling the baby under foot. Then the man gets an old chair from the kitchen and climbs up to the chimney opening again, and makes the startling discovery that in cutting off the end of the pipe, the tinner had made the pipe too large to enter the hole in the chimney. So the man goes into the back yard and splits one side of the end of the pipe with an old ax, and squeezes it between his hands until he makes it smaller.
Then the man gets the pipe into shape only to find that the stove does not stand true. Then the man and his wife and the hired girl move the stove to the left, and the legs fall out again. The legs are replaced and the stove moved to the right, and there is another seance with the legs. Then the elbow is found not to be even with the hole in the chimney, and the man goes into the woodshed after some little blocks. Then the man and his wife and the hired girl essay to put the blocks under the legs, and the pipe comes out of the chimney. The pipe is replaced in the chimney hole, when the elbow commences to topple over. The man's when the elbow commences to topple over. The man's
wife is visibly agitated, and the man gets the dining table out of the kitchen and balances an old chair on it, and makes his wife hold the chair while he performs acrobatic feats on the grand combine, in an effort to drive some nails into the ceiling, during which performance the man drops the hammer down upon his -wife's devoted head, and she surprises him with a yell worthy the emulation of a Comanche Indian.
Finally the man completes the grand act of driving the nails, constructs a wire swing to hold the elbow in position, hammers the pipe a little on one side and then a little on the other, pulls one joint a little here and pushes another length a little there, gives vocal expression to a series of deprecatory and mildly profane adjectives, takes a long breath, breathes a deep-drawn sigh of relief, and proudly announces that the job is finished.

Fine Threads.

The production of extremely fine threads of glass, quartz, and other materials has been brought to a high degree of perfection by Mr. C. V. Boys. The method which he found most satisfactory in its results was the following: A fragment of drawn-out glass was attached by sealing wax to the tail of an arrow made of a piece of straw a few inches in length; the glass was heated to a high temperature in the middle, and while the end was held in the fingers, the arrow was projected by a cross bow of pine held in a vise and with a trigger that could be pulled by the foot. With every successful shot the thread was continuous from the piece held in the hand to the arrow 90 feet off, a glass thread 90 feet long and robo inch in diameter
being obtained. The diameter was alnost perfectly being obtained. The diameter was alnost perfectly
uniform for the greater part of the length. Instead of uniform for the greater part of the length. Instead of
holding the glass tail in the hand, a little bead of glass may be fused on the end, and, when the arrow is shot, the inertia of the bead is sufficient to draw out the thread in the same way.
The anthor has also experimented upon a number of minerals, and foond that while some behave like inlase,
others will not draw at all, being either perfectly fluid like water or when cooler perfectly rigid. Thus corundum, hornblende, zircon, rutile, cyanite, fluorite will notdraw at all ; on the other hand, emerald and almandine will draw, but care is needed to obtain the proper temperature. Orthoclase draws readily, but quartz, though troublesome and requiring wore force, yields remarkably successful threads of extreme minutenèss, in some cases tapering down to a size beyond the power of the microscope to resolve. These minute threads have some peculiar properties which the author proposes to investigate; they are highly elastic, and it is suggested that they may be advantageously used for torsion threads. They may also be preferable to spider lines for the cross wires in the eye pieces of microscopes and other instruments.-Phil. Mag.

A New steel.

Prof. W. F. Barrett lately read a paper before the British Association on the physical properties of a nearly non-magnetizable steel. At the Aberdeen meeting Mr. J. T. Bottomley draw attention to a new steel recently manufactured by Messrs. Hadfield \& Co., of Sheffield, which contained some 13 per cent of manganese, and was almost wholly unmagnetizable. Mr. Bottomley's experiments showed that the intensity of magnetization that could be imparted to it was some 6,000 times less than that which could be given to steel. Hence it was evident that manganese steel is a remarkable body. The author had, through the kindness of Messrs. Hadfield, and after some diffictilty, succeeded in obtaining this steel drawn into wire.
One of the most curious properties of the steel is that it is annealed in the opposite way to ordinary steel, which is hardened by being suddenly cooled, whereas manganese steel is softened by this process. The modulus of elasticity of manganese steel determined by Prof. Barrett was $1,680 \times 10 \cdot 6$ grammes per square cen-timeter-a singularly low value, lower than iron. The tenacity of the substance is, however, greater than ordi-
nary steel. The breaking strain of a No. 19 wire of nary steel. The breaking strain of a No. 19 wire of per square inch, nearly double that of ordinary steel wire, and only exceeded by the finest and hardest pianoforte steel wire. The resistance of manganese steel wire was found to be very high, about six times that of iron and three times that of German silver. Its change of resistance for temperature was also determined and found to be much less than iron. The comparison of its magnetic power with that of iron was examined, and in an intensely powerful wagnetic field the ratio of magnetism induced in iron and manganese teel was about 1,000 to 3 .
In conclusion, the author showed that manganese steel wire did not exhibit the anomalous expansion in cooling nor afterglow which is found in ordinary iron and steel wires, and thus a new connection between molecular condition and the magnetic state was revealed. Many uses of this remarkable material suggest themselves, among others the construction of iron ships with no compass error, the bed plates of dyn

A New Gas Process.

The American Light and Heat Company's new process for making fuel gas was recently tried at Darby, Pa. Four retorts are used, making 50,000 cubic feet of gas every twenty-four hours. The gas is manufactured by direct process, and delivered to the holder after a simple washing. It is of 22 candle power ; and there is said to be absolutely no deposit from the gas flame.
The process 'requires oil, the diffusion of which is effected by superheated dry steam. For illuminating purposes, and on a large scale, 5 gallons of oil are stated to make 1,000 feet of gas ; although 6 gallons are required at Darby. The cost is, therefore, about 30 cents per 1,000 cubic feet for 22 candle power gas. This gas has a heating capacity, it is claimed, exceeding considerably that of coal gas made in the ordinary way. At Darby it is taken a distance of 50 to 70 feet to a floor set with suitable furnaces for metallurgical purposes;
and there it is used for melting steel, and for forging, and there it is used for melting steel, and for forging,
welding, shaping, and manipulating iron and steel in every way. It gives a quick heat of the highest degree, $2,000^{\circ}$ to $2,500^{\circ}$, cutting down every form of bar iron or bar steel placed in an opening of any one of the furnaces; and this without the use of any solid fuel. The method of developing the heat is accomplished, says a contemporary, "by using an air blast of about 6 ounce pressure, delivered into a combustion chamber feom opposite sides. The illuuinating gas is delivered through a one-half inch pipe, at right angles to the air pipe, and within a few inches of the outer wall of the furnace. At this point the gas and the air blast mingle, forming an explosive mixture; thecombustion and evolution of heat being instantaneous. This inistant production of a high degree of heat without other fuel than one volume of illuminating gas with fifteen volumes of cold air is the great characteristic. A perfect heat for melting steel ($2,500^{\circ}$) was ar.tained in this instance in 2 hours and 27 minutes by the use of 1,400 cubic feet of gas, as measured by the meter. The crucible on this cooasion contained 100 pounds of scrapsteel."

Dedication of the Now Bullding or the College or
Phy
The new buildings of the above college, the gift of the late Mr. Wm. H. Vanderbilt, with the building enthe late Mr. Wm. H. Vanderbilt, with the building en-
titled the Vanderbilt Clinic, the gift of his sons as a titled the Vanderbilt Clinic, the gift of his sons as a
memorial to their father, and the Sloane Maternity Hospital, the gift of Mr. William D. Sloane, were dedicated September 29, 1887. The three buildings, situated on 10th A venue and 59th and 60th Streets, in this city, represent a total expenditure of more than double the original endowment of $\$ 500,000$. The main college building, modeled in the general style of the old structure on the corner of 23d St. and 4th Avenue, is devoted to cabinets, lecture rooms, dissecting rooms, and chemical and biological laboratories, all of the most advanced type. The dissecting room will accommodate 36 tables, so that 180 students can work at once in it. It is lighted by skylights, and incandescent electric lamps are supplied for all the tables, so that work can be done in it by night as well as by day. The lecture rooms are large enough to accommodate 450 students each at one time. The clinic intended for demonstrations by actual operationsincludes the necessary rooms and the amphitheater to be the scene of many conflicts with accident and disease. The Maternity Hospital, severely finished in its interior with white marble, contains 30 beds free in perpetuity. The exterior of the buildings is of brownstone and brick. In the dedication, the leading members of the medical profession and many leading citizens participated.

The Nesting Spider.

Dr. M'Cook gave, before the British Association, the esult of observations on the nesting habits of atypus niger, a Florida spider. Referring to the original description of the black atypus of Florida, made by Hentz in his "Spiders of the United States," Dr. M"Cook said that a good drawing of the species had been made by an Englishman, Mr. John Abbott, as early as 1792. Mr. Abbott quite happily described the creature as the "purse web spider," and made a brief and correct note of its habits. The nests of the black Atypus are silken tubes of close texture, and various lengths and sizes, which are spun against the bark of trees, nearly equal portions being above and below ground. Some of the tubes are 12 inches to 14 inches long, and one-half inch to three-fourths inch in diameter. Others, the nests of the young, are a few inches long and thethickness of a pipe stem. The inside of the nests is quite white and clean, the outside is weather-stained and covered with sand. The mode of spinning these was described in the paper. The work is done in sections, the length of the tube being accomplished by adding to the original section until the desired length is attained. The newmade tubes were found covered on the outside with sand. The spiders were not seen in the act of sanding their nests, but a similar habit in Atypus piceus of England has been well observed and freely described by Mr. F. Enock, who made the interesting discovery that the sand is forced through the texture of the web from the inside.
The close relations were pointed out between the nesting tubes of Atypus niger and Atypus piceus. The chief differences seemed to be that the former suspends the exterior part of its tube against the trunk of a tree, attaching it thereto by threads, while the latter suspends it to stocks of grass and weeds, or trails it along the ground awong the herbage. It was, said Dr. M'Cook, interesting to compare the nests of the group of spiders known as the tunnel weavers, to which Atypus belongs. Beginning with the great hairy spider, tarantula, the giant of the order, we have a simple burrow, whose opening is sometimes covering a patch of spinning work. Second in the series may be placed Oyrtochenius elongatus, whose nest is a silk-lined burrow, the lining of which is carried above the earth in the form of a funnel-shaped tube. In the nest of Atypus piceus this funnel appears at times as a long tube of nearly uniform size, extending horizontally along the ground. Next comes the nest of Atypus niger, already described, and then the trap-door spiders of various American and European genera.
After further tracing the tube-making habit, Dr. M'Cook mentioned a fossil spider which he had seen in the British Museum. This fossil was taken from the Eocene tertiary at GarnetBay, Isle of Wight, and might be the distant progenitor of the present British species. It was evident that the genus has undergone little or o change since this, its first apparition.

The Soda Engine.

Referring to repeated recent statements that "soda" locomotives had been adopted for use in the streets of Minneapolis, Minn., Wood and Iron, of that city, says: During last winter and early spring some experiments were made with a so called soda engine, and the "soda engine" did make a few trips with a steam engine in attendance to help it out of difficulties. These "soda" engines were abandoned several months ago, after an expenditure of more than $\$ 50,000$ in a vain attempt to make them successful. We do not believe that the failure was due to the use of soda, but to poor management, bad designs, and worse workmanship.

MACHINES FOR MAKING PACKING BOXES.

The new and curious machines that we are about to describe are of American origin, and are designed for the manufacture of packing boxes.
The wood, in the form of boards, after being sawed into pieces of the proper dimensions to form the sides of the box, is planed by powerful machine tools, which, while making it even and smooth, regulate its thickness. The pieces are next printed with characters in black in a rotary machine analogous to a newspaper press. This operation is performed very quickly. In

Fig. 1.- MACHINE FOR PRINTING ON WOOD.
addition to its being printed with an indelible ink, the inscription is stamped in the wood, thus making it in effaceable.
The machine that does this (Fig. 1) consists of a table, an ink block with its inking rollers, and two cylinders, the whole actuated by gearings and pulleys.

The workman places a pile of the prepared wood on the table, and a tappet actuated by a rod beneath the table shoves out the bottom piece from the pile, and this is caught between the cylinders, which carry it along and print an inscription on its upper surface, as shown in the engraving. Immediately, and at every revolution, one of the pieces is printed and put upon the pile in front of the machine. Above the upper cylinder is placed an ink block, which, through an arrangement that is as simple as ingenious, deposits the necessary quantity of ink on the type.
The printed wood is next passed to the nailing machine (Figs. 2 and 3), which is actuated by a belt running over a pulley driven by a-line of shafting. The workman, standing in front of the machine, places his foot upon a pedal which acts upon a coupling box that throws the ruachine into gear. In a single revolution, the pieces to be united are assembled and fastened to each other by a series of nails, varying in size according to circumstances, and brought under the hammers by vertical tubes.
A boy, standing upon a platform, places the nails in buckets attached to the links of a chain belonging to the machine. The nail is put head downward into each bucket, then every revolution of the machine moves the chain forward by one line of links and empties the nails, point downward, into the tubes, A (Fig. 3). In order to facilitate the entrance of the nails, the tubes are provided with a hopper at the top. Beneath, the nails enter the hammer boxes obliquely. When the machine moves, the hammer rods rise, the
nail slides into the lower part
of the box, which presses against the wood to be nailed. The hammer at once falls and drives the nail into the wood by pressure, and without a blow. The motion of the machine is at once arrested, and the wood being set free, the workman reverses it or replaces it, and then, pressing the pedal again, drives in another series of nails at the placespresented. The nails are driven very regularly, and are very firmly embedded in the wood. Each machine daily drives, on an average
more than 24,000 nails, weighing altogether about 285 lb. Each box consists of from 18 to 20 pieces of wood, all sawed out mechanically to fixed dimensions, and which pass successively through twenty or twenty-five hands.-La Nature.

Action of Magnets on Liquids.

Some weeks ago, one of my students, Mr. J. C. Child, and myself were working with a diamagnetic instrument, simply repeating well-known experiments. Plucker's method of observing the diamagnetism of liquids having failed in our hands to give satisfactory results, we hit upon a method which was new to us, and which was very satisfactory. Into a glass tube of about four or five millimeters internal diameter a small quantity of liquid was introduced, forming a short cylinder. This tube was placed horizontally at right angles to the line joining the poles of the magnet, with the liquid nearly between the poles. When the current was turned on, the liquid was very evidently repelled. Water was repelled through a distance of about half a centimeter; wood spirit through a greater distance. By moving the tube in the direction of its length, the wood spirit could be pushed any distance through the tube. The amount of motion is of course a function of the resistances due to adhesion and friction as well as of the repulsive force. The attraction of liquids is easily shown by the same method.

A single modification of the above plan of proceeding is to inclint the tube slightly, so as to make the liquid flow toward the poles. If the required velocity be not too great, the magnet acts as a break to stop the motion. It is well to bend the tube up a little at each end to prevent the liquids from flowing out. This method is well adapted for projection so as to be seen by large audiences. S. T. Morehead. Washington and Lee University,

Lexington, Va., May 9, 1887.
-American Journal of Science.

Subsidence of the Earth over Salt Mines.

Mr. Thomas Ward read a paper before the British Association entitled "The History and Cause of the Subsidences at Northwich and its Neighborhood in the Salt Districts of Cheshire." He said :
Northwich overlies extensive beds of salt, occupying about three square miles. The first or "top" rock salt lies at a depth of about 50 yards from the surface, and is covered by Keuper marls, and these by the drift sands and marls. Between the two beds of salt there are 30 feet of indurated Keuper marl. The second or " bottom "rock salt is over 30 yards in thickness. These beds of salt occupy the lowest portion of an old triassic salt lake. The first bed of rock salt was discovered in 1670 , the second in 1781. The falling in of a rock salt mine is a very rare occurrence, and subsidences of this kind do not give rise to the reports which are met with in the newspapers.
The first reported destruction of a mine was in 1750 ,
gone on very rapidly, and much destruction of property has resulted. Large lakes, or "flashes," one of more than 100 acres in area, and of all depths up to 45 feet have been and are being formed. The brine pumps set up a circulation of the salt water, or brine, lying on the rock salt, which flows to the pumping center. The brine thus removed is replaced by fresh water, which on its passage to the pump saturates itself, taking up sufficient salt to make a solution containing about 26 per cent of salt. This continual removal of salt from the surface of the rock salt lowers it, and the overlying earths either follow the diminishing surface continuously or else, after remaining suspended for a time, suddenly fall into the cavity from which the water has extracted the salt. The brine currents, on their way to the pumping centers, form deep valleys or troughs, and the surface of the ground overlying forms a fac-

Fig. 3.-details of a nailing machine.
simile of these hollows. The property on the sloping sides of the valley is pulled to pieces and destroyed; the windows and doors all get out of form, owing to the unequal sinking of the various portions of the house. When, owing to the different nature of the marls and the abundance of sand overlying them, a sudden sinking takes place, the hole extends to the surface and swallows up anything upon the surface-as a horse in a stable, barrels of beer in a cellar, or water butts and other utensils in a yard. The damage done to property is enormous, but thus far no human life has been lost.

Treatment of Sciatica by Refrigeration of the Sound Limb.
Some time ago, M. Debove announced that he had been able to afford marked relief in a case of obstinate sciatica by means of a spray of chloride of methyl applied along the course of the sciatic nerve in the unaffected member. At a recent meeting of the Societe de At a recent meeting of the societe de Biologie (Le Concours Medical, August 6, 1887), M. Ray-
mond reported that he had obtained favorable results by a similar method in three cases. He found, however, that the effect was the same even when the spray was di-. rected to any part of the limb, and not necessarily along the course of the sciatic nerve. This would seem to prove that the relief of the pain was due to an impression made upon the spinal centers by refrigeration of the peripheral nerve terminations, rather than to a direct influence exerted upon the trunk of the affected nerve itself, or of its fellow in the opposite limb.

ON the occasion of the new issue of coins in England in the Queen's jubilee year, the iron dies from which the coins were struck were made by electrolysis. The plaster moulds of the originals first received a coating of copper, and on the template thus formed the iron was deposited. According to Prof. C. Roberts-
Fig. 2.-NAILING MACHINES IN OPERATION.
two or three years a mine collapsed. In the present century, at considerable intervals of time, collapses of mines have occurred; but these, with scarcely an exception, were old, abandoned "top" inines. The subidences. which are so destructive in the town of Northwich and the neighborhood are entirely caused by the pumping of brine for the nuanufacture of white salt. It was only about 1770, or shortly afterward, that the first sinking was noticed. Since that date subsidence has

Austen, Chemist of the Royal Mint, London, the iron was of excellent quality. A current of 0.089 ampere from two Smee elements was used. The solution consisted of sulphate of iron and sulphate of magnesia of specific gravity 1,153 , in equivalent proportions. This solution was almost neutralized with carbonate of magnesia until it gave a very feeble acid reaction with litmus. In Russia, plates of iron thus obtained are used for printing bank bills.-Ann. Industrielles.

HARVARD OBSERVATORY AND THE HEARY DRAPER GEMORIAL.
(Continued from first page.)
constitute the principal working portion of the observatory. The most important work done is of the photographic class, and it is this division that we particularly describe. Prof. Pickering, however, is also engaged on another investigation, which we can only allude to-the photometry of stars. This is executed by himself personally, with an assistant. A polariza-

HUYGHENIAN MOTION.

tion photometer is employed. The results are of much practical value for use in connection with astronomical work, and when completed are destined to form a most important standard of reference.

In a recent article on the Alvan Clark establishment, where the great telescopic objectives of the world have been ground, reference was made to photographic objectives. The photographic objectives used by the Harvard observatory owe their excellence to the Clarks. Such glasses have to be ground with a special view to focusing the actinic rays. A perfect photographic lens would be quite useless for visual work. In testing them, therefore, recourse is had to photography. Photographs are taken of a star, generally Polaris or the pole star, on both sides of the chemical focus. If the lens is such as to bring all the actinic rays to a focus, the effect of photographing the star as described will be to produce a series of images, varying from a disk to a mere point, and then increasing in size again to a disk. The disks will be given by photographs out of focus, the point representing the focused view. If the lens is perfectly ground, these disks will appear all as evenly illuminated images upon development of the plate. If the lens is out of adjustment, one portion of the disk will develop darker than the rest. We illustrate a series of representations of such test photographs, of the precise size of the originals. They were taken on the same plate of glass exactly as shown. One of the disks on the side showed a spot in the center, indicating a faulty shape, which had to be remedied by the manual skill of the Clark brothers, from whom the plate shown was procured. The spectrum test is illustrated also. In this a spectrum of a bright spot is pho-

ENLARGING APPARATUS.

of spectra. In front of the objective a battery of two prisms is carried. At the other end of the tube a sensitive plate occupies the position of the focus. By this extremely simple method, first suggested by Fraunhofer, the spectra of numerous stars are obtained upon a single plate.
For driving it the Huyghenian motion is used. The peculiarity of this system is that it can be rewound without affecting the running of the apparatus. The wheel furnished with a ratchet wheel and pawl is the

PHOTOGRAPHIC TESTS OF OBJECTIVE.
winding axle. When this is turned, the large driving weight is raised and the small weight descends. But during the winding the driving wheel, the one to the extreme right, is continually urged to rotate just as when the winding ceases. The driving weight never ceases to exert its pull upon this wheel, which represents the drum of the ordinary gravity train. The original work done by this telescope was purely tance equal to one-half its length. The mounting of the telescope is also peculiar. A steel tube is carried by trunnions in the end of a
large fork. Into large fork. Into
this tube the brass tube containing the lenses is screwed. The polar axis is in prolongation of this fork. Hence, if the glass is directed to a given star, and rotated on the axis with sidereal time, the star will occupy the same position ine same position view.
As a simplification of the usual methods of mounting, the plan is of interest. The telescope is carried symmetrically, so that no counterweights are needed. This saves weight. With|photographic. Under the Bache appropriation, the it any star can be followed uninterruptedly from rising investigation took the direction of stellar photography. to setting. Polar stars are as easily kept in the field Under the Draper memorial fund, the work of stellar as any others. It does not seem well adapted for visual work, as the fork mounting would interfere with the observer in the case of polar stars.
The lens is a Voightlander photographic objective of 8 inches aperture, and about 45 inches focus (exactly 114.6 centimeters). To adapt it for stellar work, two of the faces had to be reground. This brought it into perfect condition. With it much work was done in stellar photography under an appropriation from the Bache fund of the National Academy of Sciences, awarded in 1885. It is now devoted to photography

Under the Draper memorial fund, the work of stellar
spectroscopy was taken up. The work is now carried on in the following manner.
The prisms are set with their edges horizontal, so that the spectra are vertical. By five or six trials the adjustment for focus is secured, and this lasts for an indefinite period. If now a photographic dry plate is exposed while the instrument rotates by sidereal time, the spectra of all the stars in the field will fall upon the sensitive plate. However long exposed the plate was, assuming all to be in accurate adjustment, the spectra will appear as very fine lines. Their width in general terms is equal to the diameter of the ima'ges that would be photographed were the prisms removed and the telescope directed upon them. The largest of the stars would give only a thread-like line to represent its spectrum. The width of this has to be increased for the spectrum to be visible. While this might be done by magnifying the image, a very ingenious application of the principle of "trailing" is used to partially effect the desired result. If the telescope were kept immovable, the stars by the rotation of the earth would sweep across the field of the instrument. This motion with the prisms in place would affect the spectra in the same way. They would be widened into bands. Except in the case of stars near the poles, the motion of the stars across the field would be far too rapid to sufficiently affect the sensitive film, were the telescope kept motionless. Hence in practice it is rotated, but at a rate slightly less than the angular motion of the earth. This slowly widens the spectra, butallows them to act for a long enough time upon the plates to produce a good actinic effect. The exposures under present practice are in the neighborhood of one hour's duration. In this way, instead of narrow, line-like spectra, bands a sixteenth of an inch wide or more are produced. In a subsequent issue we will show how these spectra thus produced appear.
The relative action of the different parts of the apparatus is now clear. The light from the stars strikes the faces of the prisms, and passes through them. The pencil of light from each star is thus refracted, and produces a spectrum with vertical axis and horizontal lines. This falls upon the photographic objective, and is
brought thereby to a focus at the lower end of the tube. There it is received upon the sensitive plate, while the telescope by its motion, slightly slower than that of the earth, draws the image out so as to increase its horizontal dimensions and amplify the breadth of the spectrum.
After a sufficient exposure, the plate is taken from the telescope to the dark room and is developed. From the negative thus produced a greatly enlarged positive is produced by the use of the apparatus shown in the cut. The negative is set on edge in a box with ground glass, and by two brass strips and dark paper it is completely covered, except the narrow area containing the spectrum. Next to this a concave cylindrical lens is placed. Owing, it may be, to irregularities in the motion of the telescope or to changes in the transparency of the air, the spectra always contain a number of longitudinal streaks. The cylindrical lens, by its dislongitudinal streaks. The cylindrical lens, by its dis-
persive effect, destroys this imperfection. A photopersive effect, destroys this imperfection. A photo-
graphic lens receives the light transmitted through the negative and cylindrical lens, and brings the image to a focus where the image falls upon a sensitive plate. The horizontal streaking is not the only defect of the original spectra. Owing, probably, to variations in the refractive power of the atmosphere, the lines or bars are not perpendicular to the axis of the spectrum. The cylindrical lens is mounted so as to be susceptible of rotation. It is for each spectrum so turned that its axis shall be perpendicular to the inclination of the bars.
The general process is the familiar one of photographic enlargement. Its most characteristic feature is the use of the cylindrical lens and of the metal strips and screen. Great care has to be exercised in this part of the operation to keep the edges of the metal strips clean. Little particles of dust might otherwise appear on the magnified image as spectral lines.

The plate, after due exposure, which is executed by daylight, is developed, and gives a spectrum that may be several inches wide and proportionately long. The bars still appear as crossing it at an angle. To produce a straight spectrum, a portion is marked out, giving the lines at right angles to the axis. Thus the faint light of the stars is re-enforced by the daylight, which produces the enlargement and which acts like a telegraphic relay.
Such is a brief summary of the methods as now used. The work is still in development. A great many of the spectra are photographed with a large glass and with prisms of higher dispersive power. Neither can the full scope be understood or the progress of the last few years be grasped without an inspection of the different final photographs and of the successive stages in their production. This and other points will be reserved as the subject of a second article on the Harvard observatory.

Metallurgical and Mechanical Progrese.

In a paper lately read before the Iron and Steel Institute, by Thomas Ashbury, the author gave a rapid survey of the various exhibits in the machinery and metallurgical sections of the Munchester Exhibition, from which we abstract the following :
The method of manufacturing rollers for spinning machinery was examined in connection with Messrs. Joseph Webb \& Son's exhibit. The iron for these rollers must be, said the author, of a very close-grained and sound quality. The bars are first cut to length and calendered or straightened, after which each piece is put into a lathe, ended up, and centered at one end. By means of a Ryder's forging machine, a square end and neck is formed, after which a hole $1 / 1$ in. diam. and 8 in . long is put in at the end of the roller opposite to the forged end. The next operation is that of punching, and by means of a number of square punches forced quickly, one after the other, into the round forced quickly, one after the other, into the round
hole, it is squared up to the exact size. As this operation is performed on the iron while cold, it is, of course, a very severe test, and unless the iron is of good quality it will split. After punching, the square end is centered and ended, and the roller is stretched very straight and true. The square end is now machined exact to size, to fit the punched hole, so that no filing is required when coupled up. After this the opposite end of the roller with the square hole is ended up to the exact dead length to special gauges, so that when seventy or eighty rollers are coupled together in one line they tit the machine exactly, without the slightest variation in length. After coupling, marking, turning, and stretching, the rollers are fluted on a máchine which will flute forty-eight at once. There are usually from forty-three to fifty-five flutes to the inch, the dif ferent kinds being suited for spinning long or short staple cotton, and varying according to the number o counts required. The rollers are then carefully exam ined, and the defective ones rejected, after which al joints are eased and tested so as to be of one uniform tightness. Seventy or eighty rollers are now coupled, and run in ove line to be quite sure they are true They are then polished and packed. Steel has recent ly bein tried for rollers, but, although it is clean and
toigh, it in tiore costly to turn and flute, and in conse
quence of the necks wearing so rapidly, the life of a steel roller is much shorter than that of an iron one. An iron roller will last from ten to fifteen years, while a steel one only lasts from one to three years. The steel roller is thus of little use except it be casehardened, and to do this entails considerable extra expense, for besides the cost of casehardening, the rollers have to be again straightened, and this is no small task, as they are very crooked when they come out of the hardening furnace. They have also to be repolished and carefully examined. The endurance of a casehardened steel roller has not yet been ascertained.
In reference to the exhibit of the Steel Company of Scotland, Limited, the author described it as being built in the form of a trophy, the corner columns being formed of bars of angle, bulb, and T sections, with rails of various sections. The entablature is framed in plates and channels ornamented with sections of smaller angle, girder, rail, and bar steel. A marine boiler, the front plate of which is shown with flanged openings for furnaces, spans the top. Under the canopy, castings and heavy girder types of tramway rails are shown.
In connection with the exhibit of Messrs. Sir Joseph Whitworth \& Co., the author said that in the Whitworth system of forging hollow steel shafts, among the many advantages claimed, may be named the facility with which, in the initial stages, defects of any kind can be discovered. By the absence of the central core, a thorough, uniform heat is obtained, unequal strains are avoided, and an absolute uniformity of the material is insured. And by the steel being worked thoroughly from theinner as well as the outer surface, there is se cured a regular and even amount of work on all por tions of the forging, with the advantage of the material not being unequally strained, as in forging under a steam hammer; but a perfectly uniform consolidation of all the portions of the forging is attained, with a gain of strength by a better disposition of the material, so that with a reduction of strains, and much greater elasticity, there is less liability to fracture. The propeller shaft shown by the firm is 55 ft . long and $18 \frac{1}{4}$ in. diam., with a collar at one end 34 in . diam. by $51 / 2 \mathrm{in}$. wide, a hole 10 in . diam. being left the full length of the shaft. This hole is just as it was left in the forging, and has not been bored. The truth of the shaft is remarkable, as will be seen from the short lengths turned, not more than $\frac{1}{18}$ in. difference being noticeable between the forged outside diameter and the finished turned-up diameter. Another exhibit is a portion of a Whitehead torpedo, being the section of the torpedo which contains the compressed air for supplying the propeller engines. This shell or casing is about 14 in . diam, with a thickness of metal ranging from $1 / 4 \mathrm{in}$. to $1 / 3 \mathrm{in}$. These torpedo air receivers are tested by Admiralty officials up to $1,500 \mathrm{lb}$. per square inch, while tests up to as high as $3,350 \mathrm{lb}$. per square inch have failed to
rupture or damage the shell. In the year 1881 the Brazilian government ordered in this country an ironclad man-of-war, called the Riachuelo, and part of her armament was four guns of 20 tons each, for which the specification and tender of Sir Joseph Whitworth \& Co. was accepted. One of the results guaranteed by the firm was that in a trial the gun should send a 400 lb . projectile through a solid iron armor plate 18 in . thick -an achievement that had never before been either promised or accomplished. On the completion of the first gin, it was subjected to a trial on the sands at Birkdale, Southport, to ascertain whether the stipuBirkdale, Southport, to ascertain whether the stipu-
lated conditions had been fulflled. For testing penetration, a target was made as follows:
A solid wrought iron armor plate, 18 in. thick, as made by Messrs. Johin Brown \& Co., Limited, was supported by a steel cylinder 37 in . long, with a bore of 23 in., filled with wet sand, and rammed quite hard. Supporting this was a steel plate $21 / 4 \mathrm{in}$. thick, stiffened and supported by 6 in . \mathbf{T} pieces, and filled up solid by a series of oak balks 7 in. thick. A further support was given by a large cast iron bed plate 20 ft . long, 5 ft . wide, and $141 / 2 \mathrm{in}$. thick, which was put on the flat, across the center of the target, and arranged to form a powerful stay, or strut, to support the target backing. The outer end rested on timber at the floor level, and abutted against some piles. These were further supported by large balks of timber laid longitudinally, the ends of which were buttressed by another row of piles, behind which, and covering the whole structure, was a heap of wet sand, well rammed, about 7 ft . thick. The gun was placed 90 ft . from the target, and a charge of 197 lb . of black prismatic powder was used. The weight of the shell was 403 lb . It was made of Whitworth metal. The velocity was about $2,000 \mathrm{ft}$. per second. The shell, when fired, hit the center of the 18 in . armor plate, and completely penetrated it, giving to the hole nade by its passage a twist corresponding to the twist of the shell. It also completely passed through the 37 in . of hard rammed wet sand, and burst in two pieces the heavy steel hoop containing the sand. It then passed clean through the $21 / 4$ in. steel plate, the hell finally hit fair on end the center of the heavy cast iron plate, smashed it up eompletely, and the debris
the solid earth, 17 ft .6 in . away from the target. The Brazilian government officials, who witnessed the test reported that the force expended, after passing through the 18 in solid iron armor plate, was equal to having made a total penetration through an iron armor plate 23 in. thick. The 9 in. shell exhibited is the actual one which went through the 18 in . armor plate, on which it now rests in very much the same condition as when dug out of the earth, and the only punishment shown by the shell is that the nipple is slightly compressed and a slight twist given to it.

The Lucigen.

A very successful demonstration of its great lighting powers was recently given at the Crystal Palace. The method of producing this light consists in forming an intimate mixture of air and minutely divided oil particles, resulting, when ignited, in a continuous, steady lame of great brightness. The mechanism, which is very simple, is worked by a small supply of compressed air, and the flame is under perfect control by merely turning a tap. As the light is produced by the com bustion of crude and waste oils, its cost is, by actual measurement by the official gas analyst for Glasgow, found to be from one-tenth to one-twelfth the cost of gas, and about one-twentieth that of electric light of the same actual candle power. It is stated that an area of half a square mile can be flooded with ligh equal to daylight at an expenditure of one shilling and threepence per hour. As shown at the Crystal Palace, the lucigen illustrated very perfectly the great volume of light it is capable of giving out. It was found that ordinary manuscript could be read at a distance of 150 paces from a jet which was stated to cost 3d. per hour. The great value of this light lies in its diffusiveness, which adapts it so admirably for use on works or where any outdoor operations have to be carried on at night. The true principles of useful lighting, it would seem, are only now beginning to be understood. It has always been overlooked that the eye is the first factor in determining the success of illumination, as it is by the aid given to accurate sight that work is to be done. Now, the amount of light the eye will receive depends on the size of the pupil, and this latter depends on the intensity of the source of light, and not on the amount of light given out. Should the intensity be great, the pupil closes so as to protect the delicate retina from injury, and hence the eye receives little of the light reflected from surrounding articles, and the illumination appears very bad. Should the intensity be low, then the pupil does not close nearly so much, and surrounding articles seem much better illuminated. Hence a naked are lamp in a room is so blinding that work cannot be done; but when an opalescent globe is placed over it, so as to reduce the intensity, the eye sees details in the room much better, although the opalescent globe has cut off three quarters of the light. Looked at in the light of these explanations, the effect of the lucigen may be imagined, as it is said to produce a flame of 3,000 actual candle power, or equal to six large arc lamps, while its radiative surface is about 350 square inches, as against one square inch for the arc lamp. The result is that the lucigen gives a light of a quality highly effective for working purposes.
The lucigen marks the latest advance in the history of the production of light from carbonaceous substances, as not only does it raise the carbon particles to the most intense white heat, but the form of the flame is such as to retain them in that condition for the longest period. The lucigen has been adopted at a large number of works in this country, including those of the Forth Bridge, and it is also in use by the French goverument for military operations. - Iron.

Changes in milk Produced by Freezing.

Two samples were experimented with. One was frozen slowly, the other quickly, and afterward partially thawed. In the former case, the ice contained the greater part of the fat and the fluid portion most of the casein, milk sugar, and salts. In the quickly frozen and partially thawed sample, the fat was equally distributed between the solid and fiuid portions. The author explains this by the fat globules rising to the top when the process of freezing is gradual. They thus become embedded in the flakes of ice; while in quickly frozen samples this cannot take place, and the fat is more evenly distributed. If a dealer whose milk has been frozen pours off the clear fluid which underlies the ice, he is liable to the suspicion of adulteration on the one hand or will deliver milk above the standard on the other. Milk which has been frozen should be well thawed and shaken up, and not sold while any ice is visible.-Bied. Centr., from Jour. Chem. Soc.

The Silver Molecule.

In an exhaustive paper upon methods of measuring thin films, Otto Wiener makes certain measures of the thickness of a film of silver which can just be perceived by the eye, and arrives at the conclusion that 0.2 millionths of a millimeter is an upper limit of the diamelionths of a millimeter is

the regal walstut hotil.

One of the largest and rarest of our native moths is illustrated by the accompanying cut, in which the inago and caterpillar of the Ceratocampa regalis or regal walnut moth are represented. This beautiful insect, in the winged state, flies during the nights of June and July, and can be found at rest with closed wings on fences or old trees during the day. The moth, when expanded, measures from five to six inches across the wings, and its fore wings have an olive-colored ground ornamented by several yellow spots and heavy red reins, while the hind wings are orange red, and each one has two irregularly shaped yellow patches and a row of wedge-shaped olive-colored spots. The head and body of the moth are colored orange and red like the hind wings, and the head is also adorned with two prominentfeathered feelers. The thorax is yellow, with the edge of the collar and the shoulder covers of orange red. A large orange red spot is also found on top.
The females of this species of moth lay their eggs on the black walnut or hickory trees in July, and the caterpillitrs make their appearance about the beginning of August. The caterpillars feed on the leaves of black walnut and hickory trees, on which the eggs are hatched, and when fully grown attain the size represented in our engrav. ing, measuring from five to six inches in length and nearly an inch in diameter.

The ground color of the caterpillar is green, with a pale blue band on each ring, and a large blue black spot is found on each side of the third ring. The most remarkable and attractive teatures of this caterpillar are its two rows of long, thorny horns or spines on the second and third rings of its body. The horns extend upward and are gracefully curved backward, being of an orange color, with black, pointed ends, and similarly colored minute thorns or projections throughout their length. The smaller black spines are formed on each ring. The great size of this insect and its long horns give it a wonderfully fine appearance when at rest, but when it is in motion, crawling along the twig of a tree and shaking its head and horns from side to side or moving them up and down, it becowes really frightful to behold, although it is perfectly harmlessand cannot wound or sting with its horns or spines.

When through feeding, the caterpillar leaves the lofty branches of the tree and crawls down the trunk to the ground, and there searches for a convenient place to change into a chrysalis. In this restless state it is frequently found crawling along a roadway or board walk. As soon as it finds a convenient location, it goes into the ground to the depth of about six inches, and there builds a sort of nest or abode having a level bottom and an arched ceiling, both being nicely cemented with a secretion emitted by the caterpillar, so that the nest has walls which are impenetrable to other insects and to moisture. After this grave is built it strips off its skin, horns, jaws, and legs; and thus changes into a short, thick chrysalis, having a tolerably hard, black shell. In this state it apparently slumbers throughout the winter, and about the middle of June it opens its shell and softens the cemented ceiling, and then erawls through the ground to the surface. When it reaches the latter, its wings are closely folded to its body andare in a moist, soft state, so that it looks more like a grub than a butterfly. In fifteen or twenty minutes, however, the wingsareloosened froin close contact with the body, and slowly expand until all the veins are extended. They then become tightly stretched and hardened, and the full imago is then ready to rise and fly in the coming night to investigate the flowers and trees in the woods and fields and to hunt for a genial companion of its own species.
Liquid Shoe Poush.-Take of gum shellac $1 / 2$ pound and alcohol 5 quarts. Dissolve, and add camphor $11 / 2$ ounces and lamp black 2 ounces.
turn produce, not eggs, but living young, which in ten or eleven days produce others, and so on, so that the original female in one summer may be the ancestor of twelve generations, and have one quintillion descendants.

There are also insects that suck the life from the roots of trees, and borers that penetrate their hearts, besides any quantity of things with queer Latin names that in similar ways make life miserable for Professor South wick and the trees in Central Park.
The usual method of treatment is to remove the insects by a wash and a scraping. Various washes have been tried, but a patent preparation, with, it is said, petroleum as a base, is now the only one used. After the tree has had a good wash with this it is scraped with stiff brushes of bristles, and sometimes of steel, until every trace of the inserts is removed. Fine trees receive a precautionary wash frequently during the summer, even when they show no injuries from insect pests.
The fine shade trees at the Fifty-ninth Street and Fifth Avenue entrance to the park are a source of esFifth Avenue entrance to the park are a source of es-
pecial trouble. They have received a thorough washpecial trouble. They have received a thorough wash

The past summer has been one in which the caterpillar and a great variety of bugs and parasites have fflicted both the forest and fruit trees to an unusua xtent in this part of the country, and our city parks vigilance is employed to destroy the pests on their first appearance.
The work of protecting the trees in Central Park regular dapares of insects has been forge prof. E. B. Southwick, the entomologist. The N. Y. Sun, from which we copy, says that he keeps at work a force of fram two to a dozen men, according to the season, and says that encouraging progress is being made in driving out of the park the various insects that have been preying upon vegetation there, and have ruined down ine trees. Scores of infested trees have been the insects from getting foothold in the newer growth The caterpillars, worms, and such conspicuous pests are dealt with with comparative ease, but the most real dannage is done by more insidious insects, such as

THE REGAL WALNUT MOTH.

these, but in general they are a tiny, alnost invisible insect, that pasture upon fresh twigs, and, penetrating the young bark, suck the sap. As they do this an exudation from their bodies builds up over them a hard shell, beneath which they continue to live, and propagate so rapidly that in a short time whole branches are covered with them, the hard shells lying together so thickly and irregularly that they seem the real bark of the tree, which actually is hidden beneath them. Once hey are fastened on a limb, these lice cannot move, and to the naked eye show no signs of life, even when they are scraped off with a knife. They quickly kill the branch they are on, however, and eventually the The oyster unless they are removed.
The oyster shell bark louse is a common variety, and curious in that each separate insect, when scraped off, is a tiny gray scale, shaped and ribbed somewhat like an dyster shell. Nearly every sort of tree has a different sort of bark louse to prey upon it. The cochineal insect is one kind of bark louse, but it does not grow in Central Park.
The scale is another insect of many species that infests shrubs and trees in the park. Its appearance and manner of work resembles that of the bark louse.
Plant lice are other pests of vegetation. The manner in which these insects multiply is marvelous. The original eggs are laid by the females in the autumn. They hatch in the spring foto wingless forms that in

Through the country at large the extent of the damage done by insect parasites to trees and vegetation is not generally understood. One entomological sharp, who is spokon of as good authority, estimates the annual loss in the United States from this source at $\$ 300,000,000$. There is no portion of a plant or tree, from the root to the blossom, that has not its own peculiar pests. There are seventy-five different kinds of insects that prey on the apple trees, and nearly as many on the plum, peach, and cherry trees, while the grape vine has to withstand the attacks of fifty insect foes. The same number infest the oak. The elin has twenty, the walnut seventy, while the unfortunate pine has nearly a hundred. These are the figures of Dr. Packard, the standard authority on American insects. Prof. J. A. Lintner, New York State Entomologist, does much better for number. He has listed 176 different species that affect the apple tree alone.

Manuring cannot be overdone.

The venerable Peter Henderson thinks manuring cannot be overdone, and says: It is a great blunder to attempt to grow vegetable crops without the use of manures of the various kinds. I never yet saw soils of any kind that had borne a crop of vegetables that would produce as good a crop the next season without the use of manure, no matter how rich the soil may be thought to be. An illustration of this came under my observation last season. One of my neighbors, a market gardener of twenty years' experience, and whose grounds have always been a perfect model of productiveness, had it in prospect to run a sixty foot street through his grounds. Thinking his land suffciently rich to carry through a crop of cabbages without manure, he thought it useless to waste money by using guano on that portion on which the street was to be, but on each side he sowed guano at the rate of $12,0{ }^{0} 0$ pounds to the acre, and planted the whole with early cabbages. The effect was the most marked I ever saw. That portion on which the guano had been used sold off readily at $\$ 12$ per hundred, or about $\$ 1,400$ per acre, both price and crop being more than the a verage; but the portion from which the guano had been withheld hardly averaged $\$ 3$ per hundred. The street occupied fully an acre of ground, so that my friend actually lost over $\$ 1,050$ in crop by withholding $\$ 00$ for manure. Another neighbor, with a lease only one yearto run, also unwisely concluded it would be foolish to waste manure on his last crop, and so planted and. sowed all without. The result was, as his experience should have taught him, a. crop of inferior quality in: every article grown and loss on his eight acres of prol ably $\$ 2,000$ for that season.-National Stockeman.

ExGIEEBRLIG IFVERTIONS.

A car door fastener has been patented by Mr. Engene F. Hardin, of Lincoln, Neb. It consists essentially of a catch, in connection with which is arranged a sealing attachment and a retaining block,
the device being one which can be quickly applied, is heap and durable, and will prevent any accidental pening of durable,

A car coupling has been patented by Mr. John Harding, Jr., of Wellington, Kanias. The rangement of a hinge plate on top of the drawbar, and weighted drop hinged to or near the front end of the late and bearing a coupling pin, all combined with th ar the device making an automatic coupling
A steam trap has been patented by Mr. Samuel Bonser, of Dover, N. H. The head plate as a central aperture, above which a filter is held, and here is a divided cylinder having an annular chamber and an outlet, with tubular spindle, spindle cap, cylindric tube and connecting tube, with other novel water of condensation from steam heating or othe team apparatue.
A device for preventing the explosion of boilers has been patented by Mr. Bendix Meyer, of cover held on a packing surrounding the outlet steam pipe, a weighted rod or stem holding the cover or
plate on the packing, while a stop prevents the plate or plate on the packing, while a stop prevents the plate or cover seating itself on the outlet pipe after the packing is removed or

A gas furnace has been patented by r. William W. Waplington, of West Middlesex, Pa The invention is an improvement on a former patented invention of the same inventor, and provides for using practically all the internal surfaces of the fiues for re
generative purposes, with a simple and inexpensive form of gas and air valves, being adapted for both atural and artifcial gas, and providing special means for atilizing the heat asually wasted in the ash pit of gas producers.

AGRICULTURAL INVENTION

A cultivator attachment has been pa ented by Messrs. Edward Harriss and John N. Tiger of Waverly, Neb. Combined with graduated and ad ing adjustable carved knives, making a simple attach ment for either a riding or walking cultivator, whereb listed corn, corn in rows, or any vegetable planted in rows, may be expeditiously and effectively worked.

MTSGELLANEOUS INVENTIONS

A combined pencil holder and cigar cutter has been patented by Mr. Paul E. Gonon, or New York City. It consists of a tube with an aperture o slide over the apert a semide over the aperture, with spring held therein, an
A toy blow gun has been patented by Mr. Baward L. Evatt, of La Grangeville, N. Y. The be used as a child's toy, or as a blow gun for shooting dart at a targe
An animal power, or tread machine, has been patented by Mr. Eli B. Studebaker, of Freconstruction and the combination of parts in a machine which may be readily adjusted to accommodate the strength of the animals working it and the desired power and speed of the machinery to be driven.
A process of refining gold and silver has . Ryan, of Brooklyn, N. Y. It consists in placing the alloy of base and precious metals in a cupel, meltin the alloy, and covering the surface with pulverized as well as the waste of refining will be decreased.
An improved bin has been patented by Mr. Holger C. E. Petersen, of New York City. is desigued to be of ornamental appearance, with
compact and substantially dnat proot frame, from which the bin may be readily removed and cleaned, and wherein the easily turned upon its axis.
A combined saw jointer, saw set, and gauge has been patented by Mr. John H. Sodee, of seatile, Washington Ter. It embraces a rame with sliding jaw and cam for operating it, the invention tions of the same.
A door attachment has been patented by Mr. William W. Allen, of East Pepperell, Mass, branch chain connected with the onter end of the ex tension, a main chain fastened at both ends and hel in an angular position by the branch chain, with othe
novel features, whereby a door can be held locked open position
A coat adjuster has been patented by Mr. David H. Parvee, of Waddington, N. Y. It is to gnabee aged, infirm, or sick people toeasily put on over
coats or other garments without help, and consists of garment holder with a vertically movable clamp and lock, with a relatively stationary trip or releasing de vice to release the lock when the clamp and lock ar
moved upwardly.
A riding saddle has been patented by Mr. Peter J. Pefiey, of Boise City, Idaho Ter. Com-
bined with the tree is a front strap having bifarcated ende, the cantle jockey having reduced ende and lipg with other novel featares, whereby one or two girthe
may be ueed to accarately ft the heing adapted to any shape horse and the change being quickly mado.

A carpet-stretching machine has been tented by Mr. Leonard Hinke, of Kenton, Ohio. has a toothed drawbar, with a head having an opening
fitted over the bar, the lower part of the opening hav ing a pawl-llike edge to engage the lower teeth of the drawbar, with other novel features, making a atretche which can be operated by
will not injure the carpet.
A device for handling cans and bottle As been patented by Mr. David D. Brown, of Brooklyn, Fring-hed etc., and other novel featroe whereby cans, bottlee and similar goods may be readily and safely removed from shelves above the operator's head and as safel

A cotton gin rib attachment has been atented by Mr. John E. Keily, of Marshallyille, Ga is an efflcient device for repairing the worn parts of in ribs, thus saving the expense of new ones, and has hrough, which underneath the rib, that the saws pase be generated, but cards the coton and improves the

A nut lock has been patented by Mr Aliam Adair, of Lecsvilie, Ohio. By this inventio he plate itself is made the locking device, the nuts an he openings in the plate being so made that the latte cks the nuts when they are turned slightly backwar on their bolts, the nuts being cut away at their inne corners, and the
orm and size.
A waterproofing compound has been atented by Mr. Ferdinand Kreatzer, of New York rity. It is for use on leather and fabrics, and intended rencer them soft and durable withont injury to the Loreed oil, zinc vitriol, and fat soap, in specified pro portions, and combined and cleared atter a eppecia escribed manner
A bale tie has been patented by Mr. rederick T. Warburton, of Newport News, Va. Corn Nlel upper and lower sides are band sections having enlarged ends, the slot being wider than the combine hickness of the body of the band and one of its thick
nds, bat narrower than the combined thickness o oth the ends.
An apparatus for wiping metal-coated ire has been patented by Mr. Charles E. Matteson, of Easton, Pa. A circular pipe is held a short distance above a casing throagh which the wire passes, in com-
bination with inwardly and downwardly projecting ination with inwardly and downwardly projecting
pipes, with other novel features, for wiping wire to remove the surplus metal and give it a smooth sarface ter it leaves the bath.
A thill coupling has been patented by Mr. John Wr. Yous, of Mound City, Mo. The thill or pole iron has side lags or trunnione arranged to enter
horizontal recess extending forward from the main ertical recess of the axle clip, the parts being held to gether by a spring-carrying wedge, thus dispeneing ith the uee of bolts and the ordinary form of rabbe anti-rattler.
A neck yoke has been patented by Mr. rred F. Wheeler, of Ocheyedan, Iowa. It is so made be sild of the pole by the forward motion of the horses, while it will revolve free horizontally or laterally apon he pole, yet action in the direction of the longitudinal
axis of the pole will be limited by the forward or ais of the pole will be

A process of producing designs upon cellaioid has been patented by Mr. Albert Le Roy, Paris, France. It consists in first printing the desig pon any suitable material, then damping and apply gapon a celluloid sheet and sabjecting both to pres. the design permanently yapon thecellnaloid by the simul ons influence of heat, pressure, and steam.
An automatic fan has been patented y Mr. Charles E. Pierce, of New York City. An os egmental gear of an eacapement, the motor being egmental gear or a an echt, and the the motor belt vibrating arm to which a fan is attached, making onvenient device for driving away files, cooling room

A clamp has been patented by Mr. Frederick F. Houston, of Chicago, ill. The clamp head has a thrast block and follower with opposing ween them, with means for drawing one of the wedge locks toward the other, with a cam lever ftted to the hrast block adapted to bind the latter to a timber, the evice being specielly adepted for holding wh ning or otherwise joining the parta.
A cow milker has been patented by Mr. Philip M. Hobbs, of Wymore, Neb. It consists of two hand levers somewhat in the form of a pair of
scissors, one of the levers being adapted to be recked in a vertical plane, one having a teat-receiving recees and the other a projection to fit therein, two of the milkers being need at the same time, one grasped by
each hand, and two teats being operated apon by each hevice.
A saw gummer has been patented by Mr . ran J. Grant, or Lamont, Mich. It comprises a ack combined with a handele having a head with bearing on the under side of the die frame, and an arm secured to the die block and having its lower end connected to
a pin secured eccentrically in the head, with other novel Peatures, the device being very handy, and alwaysready
for use.
A grain car door has been patented by Mr. William T. Spillane, of Casselton, Dakota Ter.
The door-sapporting frame is mounted apon a hori The door-sapporting frame is mounted apon a hori
zontal way, and a vertically adjustable door is carried by the frame, the parts being so arranged that the doo
and door moved to one side to clear the doorway, the device being
grain doors.
A glass beveling machine has been pa ated by Mr. Thomas F. Gilroy, of New York City combined with a grinding wheel having a swinging rame is a revolving shaft mounted therein carrying the lass disk to be beved, and a scow-hread spinde agaging with a gear wheel not actuated bith and oel for rases, making a simple durable, and effective

A sash fastener has been patented by Ir. William R. Abrams, of Ellensburg, Washington er. The invenion covers a novel construction an ournaled in the casing, whereby the edge of the window will be engaged at any point, and effectually preven he upper sash from being drawn down or the lowe ash from being raised, and not interfere with the oper on of either sash in an opposite position.
An automatic chuck for all kinds of rass work, such as steam, water, clock, and watch works, has been patented by Mr. Patrick J. Cahill, of Leeds, Mass. It is to take the place of spring chucks, without friction, being very economical. It has a slidgh chuck head operated by hand or treadle, with prings for opening and closing the jaws, and four of of the Haydenville Manufacturing Co., Haydenville, Mass.
A dress guard for vehicles has been pa ted by Mr. Charles L. B. Martin, of Montclair, N. J. ortion of the wheel which may be placed over tha iable to drag in getting in or out of a carriage, and ia in the form of two circular troughs, formed of back and side pieces, preferably of leather, nnited by links and with a hook which may be udjusted to bear agains he rear face of one of the spokes and hold the shield in place. This shield prevents the soiling of the gar ments on the wheel, and

SCIENTIFIC AMERICAN

bUILDING EDITION

october number.

table of contents.

 tails, etc.
3. Dasigg of of one-story Southern Residence, with Perspective and fioor plans for Dwelling for ${ }^{\text {a }}$
narrow lot. Cost, Thirty narra
Mustration of a two-story and attic Doplling
 design.
A Twelve Hundred and Fifty Dollar twostor
attic House. Perspective and toor plass

View of the nem United States Court House
and Post offce at San Antono, Texas.
10. Handsome design of a new Dry Goods Stor
erected at Winona, Minn.
i. Mustrations of smal sea.gide Cotages at Lion

Pago engraving sowing Main Entrance Gate,
Viewsof of Cuurch at La capelle, France. M.
Charles Garnier, Arobiteot.
14. New Church at Stratton, in Hampshire, Eng

15. Design of a Sideboard in Walnut.

16. New Exhibition Building of glass and iron, at
Madrid. Half page engraving.
17. Villa St. George's, at Saint Lo. Half page en-

A City Residence in Mannheim. Werle \& Hart
mann, Architects.
19. Miseollanous Contans: Coat of Rrike and

The Scientific American Arohitects and Builders

MONN \& CO. PUBLIBEERS,

$\mathfrak{P B u s i n e s s}$ and Personal.

The charge for Insertion under thrs head is One Dollar

 a line jor each insertion; about eight words to a line. Advertisements must be received at publication officeas early as Thursday morning to appear in next issue.

Magic Lanterns and Stereopticons of all kinds and

 rices. Views illustrating every subject for public exbitions, Sunday schools, colleges, and home entertainManufacturing Optician, 49 Nassau St., New York. No. 11 planer and matcher. All kinds of woodworking achinery. C. B. Rogers \& Co., Norwich, Conn.I want my patent, 314,351 , on hobby horse, manufacIred and brought in market. State best terms, and
orking model will be sent. Wm. Spitznass, New vorking mo
Athens, ll .
Steam jacket feed water boiler and purifier. New cataogue free
For the latest improved diamond prospecting drills, ddress the
hicago, III. The Railroad Gazette, handsomely illustrated, pub-
lished weekly, at 73 Broadway, New York. Specimen
copies free. Send for catalogue of railroad bonks. The Knowles Steam Pump Works, 113 Federal ed a new catalogue, in which New York, have just isroved forms of Pumping Machinery of thew and ind uplex, steam and power type. This catalogue will be ailed freof charge on applica
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses a Dies. Ferracute Mach. Co., Bridgeton, N.J. Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, eta $\$ 100$ ole manufacturers of the new Dip Lacquer Kristaline. omplete outflt for plating, etc. Hanson, Van Winkle \& Iron Planer, Lathe, Drill, and other machine tools of Supplement Catalogue.-Persons in pursuit of inforSupple of ation of infor tiflc subject, can have catalogue of contents of the ScIINTIPIC AmRRICAN SUPPLEMENT sent to them free.
The SUPPLEmENT contains lengthy articles embracing The SUPPLEment contains lengthy articles embracing whole range of engineering, mechanics, and physical
ance. Address Munn \& Co.. Publishers, New York. For best leather belting and lace leather, including Curtis Pressure Regulator and Steam Trap. See p. 157. Iron, Steel, and Copper Drop Forgings of every deNew Portable \& Stationary Centering Chucks for rapid entering. Price list free. Cushman Chuck Co., Hartford, Steam Hammers, Improved Hydraulic Jacks, and Tabe
xpanders. R. Dudgeon, 24 Columbia St., New York. 60,000 Emerson's 1887 Book of superior saws, with ddress Emerson, Smith \& Co., Limited, Beaver Fills, a., U. S. A.

Safety Elevators, steam and belt power ; quick and "How to Keep Boilers Clean." Send your address for fre
N. F.
The

He Holly Manufacturing Co., of Lockport, N. Y., rill send their pamphlet, describing water works maDurrell's imp. nut tapper. Taps $1 / 2$ to 2 in. New imp. Patent ${ }^{2}$, Pacent Rights for Sale. Apparatus for building ights, ${ }_{20} 500$. See descriptive notice in Sci. American, omery St., San Francisco, Cal.
Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia. Pa.
Send for new and complete catalogue of Scientific Books for sale by Munn \& Co., 361 Broadway, N. Y. Free Books for sale
on application

NEW BOOKS AND POBLICATIONS

Scientific Horseshoeing. By Wil-
liam Russell.
Cincinnati : Robert Clarke \& Co. Pp. xxv., 211. This book intelligently considers, anatomically and
practically, the question of the proper shoeing of orses, and affords a great deal of information which it would be well for all owners of horses to be possessed of. The author has for many years had a high reputation as a successful horseshoer, and in this book ng is done by those ignorant of their business or care less in its performance, and the great evils which result herefrom. The book has numerous illustrations ex planatory of the structure and functions of the horse'
foot, and showing the effects of good and bad shoeing Wilson's Quarter Century in Pho $\begin{array}{ll}\text { TOGRAPHy. } & \text { By Edward L. Wilson. } \\ \text { New York. } & \text { 1887. Edward L. Wil }\end{array}$ son. Pp. 528.
In this work we have au admirable body of photoraphic information. From notes published at varions mes by some three hundred leading authorities, ama omposed. Above these, and serving as the basis for their imparted character of commentary, comes the ext, rather less in extent than the notes. The whole
orms an exceedingly attractive olla-podrida of notes and observations. Illastrations of all sorts of device profusion. Thes in photography are given in libera reatise by itself. The notes are made up of selection from the Philadelphia Photographer. The anthor and editor of the werk speaks of it as an anniversary pab lication for himself, he, twenty-five years ago, having entered a photographic establishment as employe. Thie volume commemorates his devotion of a quarter of a
century to his art. From what has been eaid of the
sible. 'To get at the full. scope, the book itself should sible. ro get at the full. scope, the book itself should
be consulted, and we recommend it to all photographers upon its merits.
Poor's ManUal of Railroads, 1887. Twentieth annual number.
York : H. V. $\&$ H.
W. Poor.
Pp. York : H. V.
xliii., 1053.
$\$ 6$.
To any one interested to understand the details of the sailroad business of the United States, the financial po perties, this book is simply invaluable. During the twenty years since the first edition was published, each successive volume has represented a larger and larger
mass of more carefully compiled statistics, much being fom the sworn statements of railway officials, giving he work a high standing as an authoritative record in field in which thas no competitors. From the sum there are now employed by all the railroads 26,415 locomotives, 19,252 passenger cars, 6,325 baggage and mail ars, and 845,914 freight cars, and that of a total of 168,047 miles of track, 105,723 miles are now laid with steel rails. The net earnings on all the capital in-
vested is placed at not quite $31 / 2$ per cent for the last

Poor's Directory of Railway Offi-
Cials. New York: H. V
Poor. Pp. xliii., $372 . \quad \$ 2$.
This is properly a supplement to the Manuai, bringcials desirable to know, for business purposes, to the number of some 30,000 , including the names of officers of street and lumber railways as well a s steam railways, express and sleeping
The Curio is the title of a new illus trated magazine, commenced by R. W. Wright, of No 6 Astor Place, New York. It is in quarto form, hand-
somely printed, and intended to satisfy the tastes and somely printed, and intended to satisfy the tastes and
set forth the possessions of collectors of the rare and curious in the departments of genealogy and biography heraldry and book plates, coins and autographs, rar ther colonial relics. The first number is handsomel ether colonial relics. The first number
The Machinery of Small Boats for Ships of War, etc., a paper read before the Institution o
British Naval Architects, by A. Spyer, presented on application by Fred. M. Wheeler, 95 Liberty Street,
N. Y.

HINTS TO CORFESPONDENTS.
Names and Address must accompany. all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information, and not for publication.
Rererences to former articles or answers should
givedateo paper and prae or number of question.
Inquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that some answers require not a little research, and
though we endeavor to reply to all, either by lette or in this department, each must take his turn.
personal rite rather than germanition on matters
pial interest cannot be pexponal rather than general in
eientille withoutremuneration.

minerain sent for examination should be distinctly
marked or labeled.
(1) A. F. M. desires a recipe for making a good thin shellac varnish. A. Break the gum into small pieces and macerate in a stoppered bottle with
ether. After swelling up sufficiently, the excess of ethe ether. After swelling up sufficiently, the excess of ethe in alcohol.
(2) H. S. W. desires a receipt for the cure of warts, one that will remove them permanently.
Also please give me the cause of warts. A. Their cause Also please give me the cause of warts. A. Their caus ness. Their removal is easiest effected by
caustics, such as silver nitrate, nitric acid, or
(3) A. F. S. asks (1) a good receipt for making hektograph ink, both purple, blue, and black A. Take 1 part aniline of desired color, dissolve in
about 7 parts water and add 1 part glycerine. 2. The cause of the glass plates cracking in the Wimshurst electric machine? A. The trouble may be in the clamp-ing-the fianges may not fit, or may not be properly
packed. For electrical supplies, address any of the makers of or dealers in such goods advertising in our columns.
(4) G. F. D. writes: I have been thou bled of late with what is generally termed sour stomach, and have been taking a third of a teaspoon of saleratu or thereabout, to overcome the acidity. Is that
proper corrective? A. You had better take a cup o proper corrective? A. You had better take a cup of
clear warm water an hour before meals, and occasion ally a bottle of citrate of maguesia to clear the stomach, with good habits and plenty of exercise. See and cure, in Scientific American Suppiement, Nos. 323, 129, 215 .
(5) H. G. asks a recipe for a good paint or stain for patterns for castings. A. Shellac var
nish alone or with lampblack or vermilion is in ordinary use for varnishing patterns. Methylic or wood alcohol is the best solvent of shellac for making the varnish. Shellac varnish may also be purchased through the paint trade.
(6) J. McD. asks: 1 . Is there really a fourth state of matter, known as radiant matter? A
The question is yetundec.ded. It is safest to conclude that there is probably no fourth state of matter. 2 Does.all ice maintain a fixed temperature or degree o cold In other words, woald ice frozen at or near
north pole and brought to North Carolina be of same
can be of all degrees of temperature below 32° Fah. The fixed point of temperatnre is its melting point. This is always 32 . Fah.
(7) P. H., Jr., asks : 1. Will a siphon raw water throngh 2,400 feet of $11 / 4$ inch pipe with rise of 20 feet and a fall of 80 feet? A. Yes; but equires care in filling or charging, to free every par rom air, and an air chamber at the apex to prevent reak in the fiow by accumulation of air which is libe ated by the partial vacuum. Lower end should be im ersed or turned up to prevent air drawing into the nd, if the slope is steep. 2. A receipt for roof pain
or corrugated iron roofing. A. Use pulverized oxides firon, as yellow and red iron ochers, or brown hemaite iron ores finely ground, and simply mixed with nseed oil and a drier.
(8) F. H. S. asks : What is the best batiny for run How is shall electric turntable for sho attery of ten cells carbon and zinc plates in electro oion fluid. Would this be suitable to run the above or small electric lamp, or would it soon run out? A. For he above purposes a Bunsen battery is perhaps the best. For description of this and other forms, see our Supplement, Nos. 157, 158, and 159. The plunge bat-
tery, however, is very serviceable.
(9) G. A. M.-Rule for surface of oblate pheroid: Square their diameters, and multiply square oot of half thelr sum by $3 \cdot 1416$ and this product by the
transverse diameter, or

$\sqrt{\frac{\overline{d^{2}+d^{\prime 2}}}{2} \times 3 \cdot 1416 \times d^{\prime}}$

For prolate spheroid: As above by inserting conjugate diameter in place of transverse. The other formulx asked for involve conditions in ma
(10) J. W. D. L.-The expenditures of he German government last year, including cost of
rmy and navy and ordinary expenses of the empire, ere $\$ 174,153,877$. The general cost of the United pates governmeut was $\$ 242,48,3,138$. Any such com-
parison, however, would be greatly misleading without counting the expenses of the several States, which in Germany have to support their army contingents, wich is not the case here. Prussia, for instance, has a otal expenditure of $\$ 324,868,000$, Bavaria $\$ 60,000,000$, Baden $\$ 11,000,000$, etc. Our State governments are exensive, but paying for a large special army contingent
(11) P. L. asks: What is the proper composition of the metal in a safety plug for a boiler,
and at what temperature does it melt? A. We have no record of the composition used by various parties advertising the sale of fusible plugs. The following wioys, with their corresponding melting points, together be found useful:

$\operatorname{lin}_{5}^{6}$	$\text { Lead }{ }_{1}^{1}$		${ }_{378^{\circ}}^{381{ }^{\circ}} \mathrm{F}$		宫
" 4	" 1		365°	120 lb .	50
" 3			$356^{\text {² }}$	105 lb .	341°
" 2			340°	90 lb .	$331{ }^{\circ}$
1/2	" 1		334°	75 lb .	320°
" 4	" 4	4 Bismuth 1	320°	60 lb .	307°
" 3	" 3	3	310°	45 lb .	282°
*	" 2	2	$232 \cdot$	30 lb .	$274{ }^{\circ}$
" 1	" 1	1 " 1	2548	15 lb .	$250{ }^{\circ}$

lloy is made, the purity of its ore way in which an changing conditions to which a fusible plug is subjected hat it is very doubtful whether they should ever be (12) Jones asks how
aking Jones asks how to use glucose in er for making pop corn balls than molasses boiled ntil stringy and then rolling the corn in it. Glucose aly inferior.
G. S. asks the best way to mix ne whitewash for outside work. A. Take a clean,
water-tight barrel and put into it $1 / /$ bushel lime. Slake it by pouring boiling water over it and in sufficient quantity to cover it 5 inches deep, stirring it briskly
till thoroughly slaked. When slaking has been effected, dissolve in water and add 2 pounds sulphate of zinc and one of common salt.
(14) W. L. F.-There are several receipts for making the black color on brass: 1.5 drachms ni-
trate of iron, 1 pint water. 2.5 drachms perchloride of on, 1 pint of water.

tinum in water.
(15) R. K.B.-The curvature of the orth is such thata straight line a mile in length would le 204 inches from the surface at either end. If the
line were two miles long, either end would be 8.004 inches from the surface. The measures are found by determin
(16) J. E. N.-The cultivation of the tree that yields annotto would not prove profitable, a chiefly for coloring butter and cheese. Messrs. W. H. Schieffelin \& Co., 170 William Street, New York, and all other large drug houses import it in quantities such as to suit the demands of their trade.-The address of
our Consul-General in Brazil is H. C. Armstrong, Rio
(17) J. S. asks if there is any simple and reliable method of testing a 12 horse power boiler
at 100 pounds water pressure. The said boiler is situated in a part of India where no government test is procura apparatusis necessary for the purpose? A. We know of no safe way of testing the boiler except by improvising a pump, no matter how small. A common plumber's force pump is sufficient. Fill the boiler full of water by any convenient means, through the safety valve or otherwise. Use the pressure gauge attached
to the boiler, if you think it is correct. Also set the safety valve weight at 100 pounds by its mark. Then

Iitle water to run the gange up to 100 pounds after the
boiler has been filled. If you have a steam pump at tached to the boiler, a lever may be arranged to work
the pump a few strokes for the required pressure. The engine in the; absence of all pumping appliances ma be made to put pressure upon the boiler by pulling it
backward and pouring water into the exhaust, but this backward and pouring water into the exhaust, but th the following method may be used. Fill the boile with water, leaving absolutely no air space. It must be solid water. Then by slowly firing, the pressure can b run up to any desired amount. The instant the pressure reuld only be done by an experienced engineer.
(18) A. M. H. asks directions for makin paint to paint pipes and radiators for steam heating A. A little clear japan varnish mixed with ordinray The regular japan varnishes in colors are used for fine work. This requires to be baked in an oven at 250° colors in oil are used. When dry, varnish with copal. (19) B. F. B.-Hard solder is generally razed For of a lower grade the commercial bresa use the same kind of brass, melting in a crucible and adding 20 per cent of zinc. For brazing iron, use copor or ordinary brass. Flux with borax.
(20) P. A. asks : Which is the best-a iston or a rotary fire engine? A. Both are manufa and
(21) J. H. L.-Fulminate of gold expodes by slight increase in heat caused by compression,
but is exceedingly uncertain and dangerous. Ful minate of platinum is next safer and explodes at a tem perature of $400^{\circ} \mathrm{Fah}$. Both the above are very violen of mercury is very quickly and easily exploded. It it mixed with potassium nitrate or chlorate to moderat its violence, when used for charging gun caps.
(22) J. M. C. writes : In "Haswell," issue of 1884, on page 480 , he says, the evaporative power of resh wound of anthracite coal is 7.05 to 9.05 pounds sapposed to be raised? A. The note referred to in "Haswell" is only an average or generalization of vaporative effect from mean temperature or 60°. The is $14 \cdot 9$ pounds from water at the best coal, less the ash out pressure. When tests are made under pressure, the evaporative effect is reduced to and from 2129 tempera doing low duty coal, and even higher than this is claimed with regene ative furnaces. The quality of coal varies greatly, well as the condition of boilers. You will also find in "Haswell" interesting tables of the effective value o different kinds of coal. A large percentage of boilers in
use are evaporating 5 pounds and under per pound o coal. Incrustation, dirty fiues or tubes and overwor
(23) R. B. says : I an going
(23) R. B. says : I ann going to build what is the rule in plain figures to get at the power? A For small engines of uncertain cut off multiply the area of the cylinder by four-fifths the steam pressure and this product by the travel of the piston in feet per minute. Divide last product by 33,000 for the hors power. 2. What size boiler shall I need to get one-hal horse power from this engine? A. Your boiler should contain for a half horse power 8 square feet of surface
exposed to the fire. 3 . What size boiler should I need to rnn it at its fullest capacity? A. Your engine is equ pounds steam pressure. For this you will need a horse power boiler or one containing 70 square fee of fire surface. 4. What is the rule to get at the powe
of inclosed water wheels or turbine? A. Turbines giv of inclosed water wheels or turbine? A. Turbines give
from 75 to 80 per cent of the value of the water flow The value of the water flow is the volume falling 1 foo per minute multiplied by the weight of a cubic foot. For
(24) M. asks the best method of gluin emery on wheeis and belts. A. Use the best emery and rather thick and follow the brush at once with the emery from the hand or a small piece of wire cloth soldered to the edge of a small shovel, so as to distribut the emery readily. Use the fiat hand to press the emery
close. A small fiat piece of wood may also be used to
(25) A. L. G. asks : 1 . What is the best for polishing bright iron work, such as cyliuder head and guides? A. Polish bright iron work with rotten tone and oil, if it is running machinery. Work no be polished with emery cloth or flour emery and oil, it is a quick way. You may polish the cylinder head with emery, but not the slides of an-engine. Tripoli and oil makes a high finish after the emery. What is best for polishing Ruzsia iron? A. Russia iron should only be wiped clean with oil. The black sur ace will come off if polished whi abrading material
Minerals, ETC.-Specimens have been received from the following corres
been examined with results stated.
A.D. G.-The material sent is sand containing iron ore, and is of value only if in sufficient quantity and
purity to smelt economically, which is very seldom

TO INVENTORS.
An experience of forty years, and the preparation of more than one hundred thousand applications for patents at home and abroad, enable us to understand the equaled facilities for procuring patentseverywhere. synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, which are low. in accordance with the times and our extensive facilities for conducting the business. Addres mUNN \& CO...office Scientific American, 881 Broad-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

September 27, 1887,

and eagh bearing that date.

Adinng machine, S. E. Austin.... djustable wrench, C. M. Brown 370,719 370,447
 for, Lochne

\& Oester.. 370,549
307,366
370,529 Air purifer and evaporator,
Alarm. See Burglar alarm. Alarm. See Burglar alarm. Alarm lock, U. V. Jaeggi.
Animal power, E. B. Stud
 rea, floor, roof, and sidewalk construction, P. 370.667
370,450
370.59
37,700
370,533 Area, noor, roo
Jax, J. Bans.... 370,625
370,56
37029
Axle box, car, G. M. Brill... 370,722 3741
Axxe box, car, J. W. Cloud...........
Bag. See Tobacco bag.
Bags, machine for makink satchel bottom square bottom, W. Liddell..................... Bace tie, p. T. Warburton..

Baling press, J. G. But | 370,548 |
| :--- |
| 370,789 |
| 370,508 | Baling press, J. G. Buchanan. Baling press, J. A. Hampt Baling sawdust, machine for, C. E. Mitchell. Ball grounds and tennis courts, device for layin

off base, off base, B. E. Allen. Balling slivers, machine for, G. 370,593
Banker's sariety express box, C. R. Arnold...... 370,544 Banker's saiety express box, C. R. Arnold......... 370,671
Bar. See Yoke bar.

Board. See Drawing board. Game board.
Boiler. See Steam boiler.
Boilers, device for preventing the exp!osion of, B Meyer.........
Bolt, J. M. Case.
Book attachment, A. Bieber....
Boor or shoe heel, H. A. He 370,641
370.722
370,525
370,621

Boor or shoe heel, H. A. Hen
 ... 370,498

Boots or shoes, device for inking the soles of, W.
W. Crooker...450
Bottles, machine for cleaning, S. L. Gillett...... 370,645
Box. See Axle box. Banker's safety express
box. Cake and bread box. Journal box. Pa-
box. Cake and bread box. Journal
per box. Water closet service box.
Bracket. See Fence bracket.
Breastpin, H. P. Pruinu
Brick handler, G. W. Soule...
Brick mould sanding mind
Brick mould sanding machine, H. \& G. Martin.
Bridge gate, swing, M. Wheeler
Bridge gate, swing, M. Wheeler
Bridge guard, w. C. Newman.
Brush, C. E. Thompson...
Brush band, S. A. Verbry
Bucket ${ }^{\text {S. }}$.
Buckle, J. C. Hyde 370,737, 370,679
Buckle, suspender, D. L. Smith
Burglar alarm, electric, Yeakle \& Steuart........... sio,439
Burner. See Lamp burner. Vapor and steam
burner.
Bust form. E. Case....
Button, W. Applet.
Button, W. Appleto
Button, N. Mitchell
Button for dress trimmings, C . Seel
Cab, hansom, J. H. Hannay.
Cable road curve, D. Devlin.
370,375
370,44
370,489

Cake or bread box, C. Forster............................ 3in0,69
Camera plate holder for holding negative paper,
T. H. Blair
Can. See Sheet metal can.
Candle, lamp, F. F. Schmitt........................... s70,562
Car, R. H. Burdge........................... 370,44
Car brake, J. D. Stovall.............................. 370,50
Car, coal carryink, W. R. Jenkins, Jr............ 370,626
Car coupling, H. Hadden.
Car coupling, H. Hadden.. 370,695
Car coupling, Stovall \& Whittington.................... 370,492
Car door, T. Z. Reraback......................7.
Car door fastener, E. F. Hardin.
Car door, treight, f. G. Susemih................................ 370,690
Car, dumping, F . Peteler....
Car retracker, w. H. Murdoch.
Car seat, J. A. Brill....
Car, skip, A. E. Brown
970,631
370,720
370,402

Cars, gong or bell for street railway, J. A. Brill.... 370,602
Cars, metallic rooflig for railway, Caldwell \&
Peterson
 370,680
300,606
370,389
Carbon dioxide, apparatus for obtaining liquid,
D. D. Johnson............. 370,703
370,384
Carrier. See Cash carrie
Case. See Ticket case
Cash carrier, D. Kahnweiler

Caster, furniture, c. A. Bertsch.
Catamenial bandage, w. B. Robinson................. $370,370,41$
370,69
Celluloid, producing designs upon, A.
Centerboard wells, calking the seams of, A. F.
Stubbs..................................... 370,603

Chair. See Child's chair. | 370,455 |
| :---: |
| sin |
| 10,50 |

Chimney thimble, P. D. Sexton........
Chopper. See Stalk or weed chopper.
Chronometers, thermometer attachment for
shins', T. C. McLean
Cigar mould press, H. K. Weaver 370,72 37
E. Thomson...

Clamp. See Miter clamp.
Clamp, F. F. Houston............................... 970,51
Clay, apparatus for
leaner. See Pen cleaner
Coal, etc., apparatus for splittink, K. R. Von Wal-
cher-Uysdal.................................. 8 80,7e

INVESTMENT

A Dictionary

A Gazetteer of the World

 A Biographical Dictionary All in One Book．3000 more Words and nearly 2000 more Illustra－
tions than any other American Dictionary． G．\＆C．MERRIAM \＆CO．，Pub＇rs，Springfield，Mas．

HISTORY OF THE ELECTRICAL ART

䢒

COMPRESSION OF AIR．－DESCRIP．

BABBIT and ANTI－FRICTION METALS

E．A．C．DUPLAINE，

发㸚 Nein

 mumonain eman babobit

NEWSPAPER FILE

RUBBER BELTING，PACKING，HOSE VULCANIZED RUBBER FABRICS

 AND STAIR TREADS．
NEW YORK BELTING \＆PACKING CO．， 15 PARK ROW，N．Y JoHN H．CHEEVER，Treas．，
J．D．CHEEVER，Dep＇y Treas．

ICE \＆REFRIGERATING

The Safe Fountain Pen will write fuently for
nonth without refilling．（Guaranteed for one year．） Cheap，Useful，and Durable．
 SAFE FOUNTAIN PEN COMPANY， 37 Frankfort St．，NEW YORK

FOR SALE．A patent，reapectively the icense for

AMMPD

ROCK BREAKERS AND ORE CRUSHERS

 ORNAMENTAL DESIGN，PRINCI
 trations．Contained in SCIENTIFIC AMERTAN SUPPLEE－
MENT，No．58．
and from all newsdealers． 1 ．
 Stationary Engines

CARBOLICACID．－AN INTERESTING

House Bult Fre gim eisy

CAPILLARY TUBES，SPONTANEOUS Motion in－A A Aper by C．Decharme upon the applica－
Mion of electricity to the study of the spontaneous a

® New Catalogue of Valuable Papers contained in Scirntific Ampricar Supplement，sen
freeof charge to any address．
MUNN $\&$ Co．． 361 Broadway，N．

 and inotember，isid．

ActinoHN Secreary of the Nery．

 Send Greer，Stamp tor Mestipe Secimens． THE GREAT TOWER AT PARISS

SCIENTIFIC BOOK
 CATALOQUE，

 TECHNICAL TRAINING CONSIDERED

 MPORTANT PATENT DECISION on sightfeed lubricators．
䢒

 The Seibert Cylinder Oil Cup Co．， 2 and 94 Liberty street，New york．

OTTO GAS ENGINES．

Hor zontal．．．．．．．．Oto．．．．．．．Gas Engines

OTTO GAS ENGINE WORK，
cheago．＿＿phladelpha． A SYNOPSIS OF ALL THE KNOWN

To Business Men．

 $\underset{\substack{\text { rrars } \\ \text { fras } \\ \text { ra }}}{ }$

MUN \＆© Co
361 1Brondway，New Yors
 CONSUMPTION，troatand broncchial

[^0]

THE COPYING PAD.-HOW TO MAKE

USEFUL BOOKS.

anufacturers, Agriculturists, Chemists, Engineers, Mo
chanics, Builderc, men
men, of all classess, men, of all classes, need good books in the line of
their respective callings. Our post office department permits the transmission of books through the mails
at very small cost. A comprehensive catalogue of at very small cost. A comprehensive catalogue of
useful books by different authors, on more than fifty aseful books by different authors, on more than iffty
different subjects, has just been pubished for free circulation at the office of this paper. Subjeets classited with names of author. Persons desiring a hem. Address,

Steam! Steam!

We build Automatic Engines from 2 to 200 H. P. A Iarge Lot of 2,3 and 4-H. Engines

B. W. PAYNE \& SONS,

 Box 15,ALCOHOL, SWEET POTATO. - AN

ELECTRIC CONVEYORS.-DESCRIP-

VOLNEY W. MASON \& CO.,
FRICTION PULLEYS CLOTCHES and ELEVATORS $\underset{\text { Tork City.-Leng thy and very complete account or the }}{\text { AREA }}$

STEAM PUMPS

CEO. W. MARBLE, sole manu- P禀 The best made, all steel. and warrated 8 s sizes.

PATENTS

 amine ilimporve
or Inventors.
In this line of busmess they have had forty-one evars

 reasomabione erms
ta pamphlet sent free of charea, on application. con-

 MUUNN \& CO., Solicitors of Patents,

(4)

FIRE-PROOF
गुHIS is the perfected form of portable Roofing, manufactured by us for the past twenty-seven years, and is now in use upon roofs of Dry-Kilns, Lumber Sheds, Factories, Foundries, Cotton Gins, Chemical Works, Railroad Bridges, Cars, Steamboat Decks, etc., in all parts of the world.
Supplied ready for use, in rolls containing 200 square feet, and weighs with Asbestos Roof Coating, about 85 pounds to 100 square feet.
Is adapted for all climates and can be readily applied by unskilled workmen. Samples and Descriptive Price List free by mail.
H. W. JOHNS MANUFACTURINC CO.,
H. W. Johns' Fire-Proof Paints, Liquid Paints, Fire and Water-Proof

Asbestos Sheathing, Building Felt, Asbestos Steam Paokings, Boiler Coverings, etc.

EPDARENITE ${ }^{2}$ LIMEUDOUE

 LEO XIII. BIOGRAPHICAL SKETCE

HENDON SEWAGE WORKS. DESCRIP-

(ivis PAACKETATENT KETTLES,

GAS ENGINEERING, RECENT PRO

 - WORK $\operatorname{spEGALĀTY.~}$

CLARK'S NOISELESS RUBBER WHEELS
Different Styes. Catalogue Free
GEO. P. ClARK.
Box L. GEO. P. CliARK:

HEBESTOS

PIPE COVERINGS
Absolutely Fire Proof.
braided packing, mill board, sheathing, cement, fibre and sphcialties,

DYNAMO - ELECTRIC MACHINES.-A
 An
Ae had at at Shis oftce and from aill newdealers.

SEVERN AND MERSEY TUNNELS.

The Original Onrulcaized Packing CALI,ED THE STANDARD-Asit isthe Pack ing by which
 Shafting and Gearing, Textile Machinery, mags. woon wito

THE AMVRTCAN BEHM THETHHONE CDO
 95 MILK ST. BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

GRATEFUL-COMFORTING.
COCOA
TUNNEL FOR FOOT PASSENGERS IN Stockbolm--Deseription of adimicuit piece of tunneling.
in which the freezing metho 1 was applied with sulceass:

ฐ́rientific Gurcricam

The Most Popalar Scientific Paper in the World. Only 83.00 a Year, including lostage. Weekly. This widely circulated and splendidly illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery
Vew Inventions, Novelties in Mechañics, Manufactures, New Inventions, Novelties in Mechañics, Ma nuf actures, lecture, Agriculture, Horticulture, Natural Mistory, etc. All Classes of lleaders find in the Scientific
American a popular resume of the best scientific inAMERICAN a popular resume of the best scientifle in-
ormation of the day; and it is the aim of the publishers o present it in an attractive form, avoiding as mueb as

possible abstruse terins. To every tntelligent mind, this journal affords a constant supply of instractive | reading. It is promotive ot tino $\begin{array}{l}\text { Hibded } \\ \text { every and progress't }\end{array}$ |
| :--- | Tery community where it circulates.

Terms of subscription.-One copy of the Scienpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
 Clubs.-One extria copy of the ScIeNTIFIC Ameri-
CAN wil be supplied gratisfor everyclubof five subscribers at $\$ 3.00$ each; additional copies at same proportionate The safest way to remit is by Postal Order. Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed. of envelopes, securely sealed, and correctly addressed;
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, dratts, etc., pay-

MIUININ \& CO.,
361 Broadway, New York. TEEE
Scientific American Supplement. This is a separate and distinct publication from
THi SCIENTIFIC AMERICAN, but is unfform therewith in size, every number containing sixteen large pages. The Sclentific American Supplemicnt is publighed weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the principal departments of eminent writers in
science and the Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geography, A rchæology. Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical EngiChemistry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Engineering, Mining neering. Steam and Railway Engineering,
Ship Building, Marine Engineering, Photogriphy,
 gineering, Agriculture, Horticulture, Domp.stic Economy, Blography, Medicion pertaining to these and allied
and engravings. The most important Enjineering Works, Mechanisms,
and Manufactures at home and abroad are represented and described in the SUPPIEMENT.
and
Price for the SUPPIEMENT for the United States and Canada. 55.00 a year, or one copy of the SCIENTIFIC AKfor one year for $\$$ i.00. Address and remit by postal

MUNN \& Co.. 361 Broadway, N. Y.,
To Horeign Subscribers.-Under the facilities of he Postal Union, the sciestrpic AMrican is now sent seribers in Great Britain India. Australia. and ád all other British colonies ; to France, Austria, Belgium, Germany Russia, and all other European States; Japan. Brazil Mexico, and all States of Central and South America. 54, gola, for Scientific Amvirican, one year; s9, gold or both Scientific American ani Supplement fo ir year. This Includes pcstage, which we pay. Remit

PRTNHNTNE TNEE
T ER "Scientific American"; is printed with CHAS

[^0]: CUREF열IDEAF

