a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures.

	NEW	YORK, OCTOBER 1, 1887.	[$\$ 3.00$ per Year.

PRACTICAL EXPERIMENTS WITH THE PNEUMATIC DYNAMITE GUN.-BLOWING UP A VESSEL IN NEW YORK HARBOR.-[See p. 214.]

grinutifir chmerian.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

MUNN \& CO., 3il Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Sccientriprican Ampupan. THE SUPPLLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size

 rent Colonial bank notes. Scientific American Export Edition.

The SCIENTIPIC AMEBICAN Export Edition is a large and splendid peri- Odical, issued onee a month Each number containg about one hundred large quarto pages, profusely illustrated embracing:

NEW YORK, SATURDAY, OCTOBER 1, 1887.
Contents.
(Illustrated articles are marked

table of contents of SCIENTIFIC AMERICAN SUPPLEMENT No. 618

\qquad
on the 1st at $12 \mathrm{~h} .21 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. ; on the 31st, he rises at 10 h .31 m. P. M. His diameter on the 1 st is $16 \cdot 6^{\prime \prime}$, and he is in the constellation Cancer.

MARS
is morning star. He is near the bright star Regulus on the 10th, and may be readily seen in the small hours of the morning of that day as a small, ruddy star north of his brighter companion. Mars rises on the 1st at 1 h . $50 \mathrm{~m} . \mathrm{A}$. M.; on the 31 st , he rises at $1 \mathrm{~h} .24 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. His diameter on the 1 st is $4 \cdot 8^{n}$, and he is in the constellation Leo.

NEPTUNE

is morning star. He is near opposition, near his least distance from the earth, and in excellent position for telescopic observation. He may be found about 5° south of the Pleiades. Neptune rises on the 1st at 7 h. $51 \mathrm{~m} . \mathrm{P}$. M.; on the 31st, he rises at $5 \mathrm{~h} .49 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. His diameter on the 1st is $2 \cdot 6$, and he is in the constellation Taurus.

URANUS

is evening star until the 6 th, and then morning star. He is in conjunction with the sun on the 6th, rising and setting with the sun at that time, and being at his greatest distance from the earth. Uranus sets on the 1 st at $5 \mathrm{~h} .41 \mathrm{~m} . \mathrm{P}$. M.; on the 31st, he rises at 4 h .20 m . A. M. His diameter on the 1 st is $3 \cdot 4^{n}$, and he is in the constellation Virgo.

JUPITER
is evening star, and sets so soon after the sun that he will soon become invisible. He makes a close conjunction with Alpha Libræ on the 26th, at $1 \mathrm{~h} . \mathrm{A}$. M., being 34^{\prime} north of the star. Jupiter sets on the 1st at 6 h. 44 $\mathrm{m} . \mathrm{P} . \mathrm{M}$.; on the 31st, he sets at $5 \mathrm{~h} .3 \mathrm{~m} . \dot{\mathrm{P}} . \mathrm{M}$. His diameter on the 1 st is $30^{\prime \prime}$, and he is in the constellation Libra.

MERCURY
is evening star. He reaches his greatest eastern eiongation on the 27 th at 3 h . A. M., and is $23^{\circ} 58^{\prime}$ east of the sun. He is far enough from the sun at that time to be visible to the naked eye, but his southern declination will make him a difficult object to find. Mercury sets on the 1st at $6 \mathrm{~h} . \mathrm{P} . \mathrm{M}$.; on the 31st, he sets at 5 h .34 m . P. M. The diameter of Mercury on the 1st is $5^{\prime \prime}$, and he is in the constellation Virgo.

An Arrival of Cholera at New York.

On Sept. 23 the steamship Alesia arrived at New York from the Mediterranean with four passengers sick with Asiatic cholera, there having been eight deaths on board from the disease during the voyage. The ship sailed from Marseilles Aug. 29, and stopped at Genoa, Leghorn, Naples, and Palermo, taking on 561 Italian emigrants, and having aboard in all 609 persons. After the vessel had arrived at the regular quarantine station, which is some six miles below the lower end of New York City, no time was lost in turning her back to the Lower Bay, and putting the passengers and crew under the strictest rules to cut off all possibility of the epidemic being communicated from the ship. The sick were landed on one of the small quarantine islands there, and put in a hospital for contagious and infectious diseases, and the others were placed in an observation hospital, to be detained from ten to twenty days, or until all danger is supposed to be over.
'Ihe ship has been thoroughly washed and fumigated, and the cargo and baggage put through a special process of cleaning by sulphurous acid gas, in much the same way as rags are disinfected. The cholera has prevailed for many weeks past at Genoa, Naples, and Palermo, there being many new cases daily at Naples, of which 70 per cent were proving fatal, but the New York health authorities have no apprehension that the disease will ohtain a foothold here, so prompt and thorough has been the action of the department, while President Baylies, of the Health Department, is of the opinion that cholera in New York City is not as bad as diphtheria. There were cholera epidemics in New York city in $1832,1834,1849,1854$, and 1866 . Deaths from the disease in those years are as follows: 1832, 3,513; 1834,$971 ; 1849,5,071 ; 1854,2,509 ; 1866,1,137$. Most of the deaths were in tenement houses, and the disease obtained its strongest hold in the vicinity of bone-boiling and fat-rendering places. In other parts of the city it yielded readily enough to sanitary measures.

An Electric Whistle.

M. Zigang has devised a trumpet worked by electricity and designed to warn or signal vessels, trains, or tram cars. It consists of a trumpet tube and a sounding plate which is vibrated by the electric current passing through an electro-magnet having its poles close to a soft iron armature carried by the plate. A regulating screw contact, with a platinum point, rests against the iron armature and serves to interrupt the current of two Leclanche elements as the plate vibrates, thus keeping up the sound as long as desired. The apparatus is simple in construction and can be used also as a Morse sounder in receiving telegraphic messages, the current being sent through. the electro-magnet.

The New Commissioner of Patents.
The N. Y. Tribune concludes that the new Commissioner of Patents, Benton J. Hall, of Iowa, is about as hard-working an officeholder as any this administration has discovered. He climbs up the Patent Office steps every morning as the clock strikes nine, and often stays until long after four o'clock. The slippery chairs and sofas which adorn the commissioner's office are held down continually by attorneys, waiting to transact their business with the office, in place of the former crowds of reform congressmen with Democratic principles and good-looking young women whom they wanted to get into office. The commissioner has made some effort-though not so strenuous as might be-to cut the deadwood out of the examining and clerical forces left him as a legacy by his predecessor. In brief, he seems to recognize the fact that the Patent Office is not a political office, that it is supported by the money of a particular class, the inventors. So well supported, in short, that a yearly dividend of twenty per cent is realized from the fees paid in, while there is an accumulated surplus of $\$ 3,000,000$ in the Treasury. Every week's issue of the Official Gazette contains from one to three of the commissioner's decisions on points of office practice, tending to bring about uniformity in the same among the different divisions. If the stories told by the attorneys are to be believed, something of that kind is badly needed. The office is slowly catching up with the work, but no great gain can be expected, I am told, with the present force. While the number of laborers in the patent vineyard remains stationary, the crop of applications is growing heavier every day. The coming Congress ought to do something to remedy the existing state of things.
And the editor might have added that a great injustice has been done inventors and others transacting business with the Patent Office, owing to the indifference of congressmen in past sessions of legislation. The encomium of the Tribune upon Commissioner Hall is just, and reminds one of the Patent Office administration under the commissionership of Judge Mason and Judge Holt, which was a good while ago, but whom a few of us live to remember with satisfaction.

Chilled Armor for Land Defenses.

The Gruson Works of Buckau-Magdeburg have recently published a book of some size, written by Engineer Von Schuetz, in which the system of construction of chilled cast iron armor for use in the protection of earthworks and in the making of turrets for land batteries, as devised by Dr. H. Gruson, some years ago, is described at length, and an account is given of the results of the experiments which have been made, from time to time, by several Europearı governments, to determine its efficiency in resisting the impact of the heaviest modern ordnance. This work has been translated into English by Commander Grenfell, R.N., and we are indebted to the courtesy of Captain Piorkowski, Dr. Gruson's representative in this country, for an early copy. The subject and the matter of the work are of exceedingly great importance to a nation which, as is the case with our own, is destitute of the most ordinary means of defense in the event of a foreign attack either by land or sea. So serious is our case that, as remarked in a private letter from the admiral of the navy, just received and lying under the hand of the writer, if we desire to learn what advances have occurred during the last twenty years, we must go to England, Franoe, Germany, Russia, and even to Constantinople, to study those of the scientific and mechanical departments of the military and naval establishments, and not to our own army or navy. This work of Dr. Gruson would seem to illustrate such advances in the defense of coasts.
Dr. Gruson's armor is simply a chilled cast iron shield of which the body is a strong normal iron, while the surfaces on the exposed side are chilled like the "tread" of an American car wheel. Such enormous masses are handled, in this case, however, that correspondingly enormous chills are needed, and the manufacture of these plates becomes a matter of extraordinary difficulty and cost. All the resources of a great establishment are drawn upon, and all the in genuity, knowledge, and experience of an able staff are called out in the prosecution of the work. Chilling, as is well known, probably, to most of our readers, consists in the casting of a peculiar quality of cast iron, known as "chilling iron," in contact with a large mass of cold iron forming that part of the mould which is to form the surface to be chilled. The sudden abstraction of heat prevents the isolation of the carbon in graphitic form, as would otherwise occur in the slow process of cooling naturally, and insures its retention in the combined form, producing a steel layer of considerable depth. The depth so secured is dependent upon the quality of the iron and the efficiency of the "chill," as the iron mould is called. The latter must have great thickness and good conducting power to give best results in these applications. Successfully carried out, this process gives a surface harder than
tempered steel over a strong and massive interior, the best possible combination, apparently, for an armor Drate.
Dr
Dr. Gruson constructs large fixed turrets and land batteries of such plates, and the results of trial indi cate them to be more reliable defenses than any wrought metal, whether iron or steel, or "compounded," yet introduced. The weight of these shield is too great for use in naval construction. The first trials were made in 1869, at the Tegel range, and it was found that all shots fired against the chilled plates broke into fragments, and that the plates bore the hammering with remarkable success. The experimental committee-reported that the chilled armor was well adapted for its use. Later trials confirmed this opinion, and the Prussian government at once gave directions for its adoption in important lines of frontier defenses, and Austria, Italy, and Holland followed its xample. In all these trials the chilled iron shot were found superior, if well made, to any steel shot, except in one or two cases in which makers like Krupp and the Ternitz company had either succeeded in secur ing an exceptional quality of steel or had found remarkably effective methods of tempering. Plates were tested of from $13 \cdot 77$ to $49 \cdot 21$ inches thickness, and were attacked by guns varying from 6 to $1 \dot{7}$ inches caliber hrowing shot weighing from 61 to 2,205 pounds. The hickness of plate was usually not far from three times the diameter of the bore of the gun to be resisted. The energy of impact was, in the case of the largest gun, over 47,000 foot-tons, which was only obtained, however, by firing at short range- 150 yards. In all such cases, the shield is subjected to more severe trial than would be likely to be met in actual battle. In trials last year at Spezia, with the 100 ton gun, the shot weighed a ton and the powder charge 327 pounds, the velocity of impact being over 1,700 feet per second. The maximum penetration was four inches, the plates inally breaking up under repeated blows.
The method of proportioning is to give the plates a maximum thickness in inches equal to from onefourth to one-third the fourth root of the energy of the attacking shot measured in foot-tons. The total weight of each plate of which the armor is composed is not far from the weight of the gun expected to be used in the attack.
The system of defensive armor here described is one in which we have a peculiar interest. We have in the United States, in the "Salisbury," and "Hanging Rock," and other brands, the best chilling irons in the world, and it would seem very possible that this may prove to be the best system for our purpose yet devised. It is especially one which we may hope to obtain permanent advantage from, as it seems probable that its advantages over other forms are not likely to be soon lost.-R. H. Thurston, in Science.

How to Get Rich.

In answer to a request of the Boston Herald to write some practical hints for young men on the acquirement of wealth, Gen. Benj: F. Butler responds as follows:
A difficult task is set me, as circumstances under which young men commence life are so widely varied. But I think that more young men fail in the investment of what they earn or receive than in any other way to acquire property. The temptations to speculate are so great, and the desire to become suddenly rich so strong, that I believe eight out of ten, if not more, of young men are wrecked at the very beginning.
If a young man is earning something more than the expense of his living, and has no object in view, he is likely either to increase those expenses carelessly or to loan his money to his friends, and in so doing in the majority of cases he will lose both friends and money. So that the best thing that he can do is to have an object, gather up his money, and to have a call for it which shall be a profitable one. He makes no investment because he says, "I have got so little money that it won't come to anything. I will wait until I get more;" and in waiting, generally, what he has goes.
When a young man has a very little money, let him buy some property, preferably a piece, however small, according to his means, of improved real estate that is paying rent. He had better buy it when sold at auction, under a judicial sale, paying in cash what he can, giving his notes for the balance in small sums coming due at frequently recurring intervals, secured by a mortgage on the property, and then use all his extra income in paying up those notes. It is always safe to discount your own note, and if the notes come a little too fast, as soon as he gets anything paid his friends will aid him when he is putting his money where it cannot be lost, and where the property is taking care of the interest, and in a very short time he will find that he has got a very considerable investment. He will become interested in it, save his money to meet his notes, and he will directly come into a considerable possession of property, and hardly know how it came to him. That is, he will have had a motive for saving, and will get the result of that sav-

Nothing is so safe for an investment as improved real estate. Nothing is likely to grow in value faster. In the last 50 years 90 per cent of all the merchants and raders in Boston have failed. In the last 50 years 90 per cent of all the business corporations have failed or gone out of business, so that their stock has been wiped out. In the last 50 years all the improved real estate on the average has paid its interest and taxes and quadrupled in value. If a young man's father can give him anything to start him in the world, he had better invest it in that way and let it accumulate and earn his living, and he will be richer than if he had gone into business. Jay Gould is said to have started from a mouse trap seller to become a millionaire. Assuming that to be rue, he is only one of $60,000,000$ of people ; and if any young man thinks that he is going to imitate Jay Gould, there are $60,000,000$ chances to one that he won't ucceed.
The rule I would lay down for a young man is, never do a mean thing for money. Be prudent and saving of your money. Be careful to have no interest account running against you, unless you have an equal or great er interest account running in your favor. Work diligently, and you are sure of a competency in your old age ; and as early as possible, if you can, find a saving, prudent girl who has been brought up by a mother who knows how to take care of a house, and make a wife of her. She will aid, and not hinder you.
I claim no originality in this advice, and will relate you an incident in my own experience to illustrate it : In my earliest practice in my profession I was quite successful in earning money, and I had a small balance in the Lowell Bank, at the head of which was Mr. James G. Carney. The bank was directly across the hall from my office. I stepped into the bank to deposit a ittle money on one occasion, and Mr. Carney said to me " Why don't you invest your money?" "Invest," said I; "I have nothing to invest." "Oh, yes," he says; "you have quite a little sum of money, and I see that your young friends come with your checks occasionally, evidently borrowing it. Now you had better invest it." "How can I invest it?" "Invest it in real estate." 'I know nothing about real estate." "Go to the first auction and buy the property. You cannot be much cheated in that, because you will have to give very little more than somebody else will be willing to pay for it. Give your notes for it, save your money, collect your fees, pay your notes as they become due See that the property is improved property, so that the rent will keep down your interest account, and when you get any other money, invest it in the same way and if your notes press upon you a little faster than you can pay them, why we will, when we find that is what you are doing with your money, discount your note and give you a little more time, so that you can pay it up. This will necessitate the prompt collection of your bills, for I know that you would rather work and earn a hundred dollars than dun a man for it, unless you have a pressing need for it. You have not even asked for a little bill that we owe you in the bank, which shows me that you do not promptly collect your dues." I followed the advice and bought a number o pieces of property in that manner, and I never did ex actly know how they were paid for, but they were, and in a few years I owned some twenty different pieces of property in Lowell that came to me in that way. I can only say that I wish I had been wise enough to have continued this course through life.
I do not think that I need to extend these sugges tions any further, because if a young man won't mind these, he won't any others, and I cannot suggest any better ones.

I am, yours truly,
Benjamin F. Butler.

Farming by Gaslight.

Howard Coanty farmers residing in the vicinity of the great Shrader gas well, near Kokomo, Indiana, go on record as harvesting the first wheat by natural gaslight. A dozen self-binders and men shocking wheat was truly a novel scene, which was witnessed by hundreds of people, who surrounded the fields of grain in carriages. The constant roar of the Shrader well can be distinctly heard eight miles away, while the light can be plainly seen at Burlington, fifteen
miles west of here. The estimated flow of gas from miles west of here. The estimated flow of gas from
this well is $15,000,000$ cubic feet every twenty-four hours.-Indianapolis Journal.

Steam Pipe for Heating Purposes.

The Master Steam Fitter gives the following rule for finding the superficial feet of steam pipe required to heat any building with steam : One superficial foot of steam pipe to six superficial feet of glass in the windows, or one superficial foot of steam pipe for every hundred square feet of wall, roof, or ceiling, or one square foot of steam pipe to eighty cubic feet of space. One cubic foot of boiler is required for every fifteen hundred cubic feet of space to be warmed. One horse power boiler is sufficient for forty thousand cubic feet of space. Five cubic feet of steam, at seventy-five pounds pressure to the square inch, weighs one pound avoirdupois.

an improved potato digger.

A machine designed to be drawn by two horses, and to dig the potatoes in a row, irrespective of the contour of the ground, deli vering them at the rear, separated from weeds and dirt, is shown in the accompanying illustration, and has been patented by Mr. Asa C. Collins, of Driftwood, Cameron County, Pa. A rearwardly extending frame which supports a cage-like struc ture is carried on the main axle by side arms, through blocks which ride in segmental grooves, the front ride in segmental grooves, the front
ends of these side arms being fulends of these side arms being ful-
crumed upon bell crank levers, connected to a cross shaft. The main axle also carries a gear, readily thrown into and out of engagement, which works a shaft carried by the side arms, with a bevel gear that operates a rearwardly extending horizontal shaft, carrying two screw flánges or spiral blades, to the edges of which the cage is secured, and other internal and smaller flanges which extend outward and at right angles from the larger flanges. To the lower forward end of the cage is connected a scoop, and the lower half of the cage at the rear is covered by a semicircular curtain connected to the main frame. The tongue is hinged to the first of two cross he generated by a microphone or by another telephone $^{\text {for }}$ bars of a forwardly extending frame carried by the actuated by singing or speaking, not a trace of a main axle, and is provided with a bracket through which there passes a crank shaft mounted upon a forward cross bar of this frame, an operating lever being connected to the shaft, and a rack arranged in connection tberewith, whereby the tongue may be raised or lowered. Bell crank levers carried by the main shaft, and connected to the shaft which operates the cage with spiral blades, are connected by rods to the bell crank levers carried by a shatt on the forward end of the frame, and a vertical lever is rigidly connected to this shaft, by the moving of which backward or forward the scoop is raised or lowered, its proper inclination being given by raising or lowering the tongue. Steel clearers are arranged to bear against the edges of the spiral blades, to cut off weeds and blades, to cut off weeds and
tops. As the blades are revolved, the loos tops. As the blades are revolved, the loose
earth is sifted through the openings in the cage, and the potatoes, being held from falling back ward by the internal outwardly ex tending flanges, are delivered over the rear cross bar to any proper receptacle connected to the back of the machine.

vertical plate bending rolls

We illustrate, from Engineering, a set of vertical plate bending rolls manufactured by Messrs. Smith Brothers \& Co., Kingston Engine Works, Glasgow. These weigh over 40 tons, and are intended for rolling steel plates cold, 11 ft . wide by $11 / 2 \mathrm{in}$. thick. The three rollers are made solid of forged steel the front one being 21 in . in diameter and the two back ones being each 16 in ., these latter being well supported by friction rollers.
The machine has two different speeds of gear, to suit light and heavy plates, and the rollers are driven by a pair of vertical engines through powerful triple gear by means of a large wheel keyed on each end of the rollers. The front roller can be drawn up between the arms of the large wheel after a complete circle has been rolled.

Action or the Telephone.
The following is an abstract of a paper in the Elektrotechnische Zeitschrift: "The mechanical movement of the diaphragm of the telephone, if actuated by powerful currents, can be shown by the nodal lines formed
the musical notes or vocalization which results from the action of the diaphragm itself. For the most accurate examination of the movement of the telephonic diaphragm the author has adopted Konig's method of dancing flames analyzed by a rotating $t \left\lvert\, \begin{aligned} & \text { method of dancing flames analyzed by a rotating } \\ & \text { mirror }\end{aligned}\right.$ the vowel sounds as sent and received, revealed by this method, are given. The effect of the introduction of electrical resistance, capacity or self-induction in the circuit, as regards the alteration and interconfusion of the different vowels or consonants, is thereby clearly revealed, and is due not so much to reduction of the intensity of the sound as to the rounding off of the current waves. The permanent record of these flames could not be photographically produced with ordinary gas; but a certain degree of success followed the use of bisulphide of carbon vapor burning in nitrous oxide gas, as by this means the maxima or ridges of the flames were clearly developed, though the minima or furrows were somewhat indistinct. The author proposes the application of this method for testing dynamo machines, as by it can be seen the actual progress of the phase in the alternating current, or the impulse at the passage of the brush over each commutator plate mirror, howe is produced. By and circumfer- In the continuous current. It could also be convenience of the diaphragm, and reflecting therefrom a beam of light on to a distant seale or telescope, its motion can be detected; but for a lecture demonstration the best method for exhibiting this motion is to fasten a stretched wire to a projection on the center of the diaphragm, and fix a mirror longitudinally on the wire between a loop and a node, by which means a movement of 18 in . or so can be given to the spot of given to the spot of
light on the scale. The form of the vibration is, of course, not reproduced in this latter instance. If mirrors be fixed to both the actuating and receiving instruments, the beam, after reflection from
both, being thrown on a screen, as in Lissajous' method, the figures observed afford a most simple means of illustrating the deformation of
ently applied for chronographic measurements, e. g., the velocity of projectiles in the gun tube. Let the shot contain an iron bar, and the gun be surrounded by a series of coils which are in connection with a telephone and some source of electric current; then the time of the passage across the plane of each coil can be actually recorded on the photographic plate, the great advantage of this method lying in the fact that the gun tube need not be tampered with, and that one or two sets of coils would suffice for guns of any caliber."

Electro-plating with Aluminum.

Herman Reinbold, in the Jewelers' Journal, says : The solution of the plating bath is as follows : 50 parts of alum, $\mathrm{AlK}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$ are dissolved in 300 parts of water, and to this 10 parts of chloride of alumina $\left(\mathrm{Al}_{2} \mathrm{Cl}_{8}\right)$ are added, heated to 200° and cooled, whereupon 39 parts of cyanide of potassium are added. The object to be plated has to be cleaned, and to beabsolutely free from grease in any form, whereupon it is suspended in the bath over the electro-positive electrode, the plate of metallic aluminum to be suspended on the negative pole. The electric current ought to be weak.
The plating when polished will be found to be equal to the best silver plating, having the advantage of not being oxidized or getting black when brought into contact with sulphurous vapors, which would make it especially valuable for plating spoons and tableware.

AN IMPROVED OIL CAN HOLDER.

A device to facilitate the lubricating of machinery, where the parts are not ordinarily within reach or easily accessible, is shown in the accompanying illustration, and has been patented by Mr. Edgar G. Bru ner, of West Point, Neb. The device consists of a cup

BRUNER'S OIL CAN HOLDER.
of suitable size and shape to hold an oil can, and provided with an elongated handle, and rods for holding and adjusting the cup in the desired position, the cup having retaining springs in its interior for holding the oil can in place when the cup is canted or even completely reversed. The handle is attached to the cup by a yoke, and a rod secured to the bottom of the cup affords bearings for another yoke secured to a slide bar which passes through staples in the handle. Another slide rod, passing through staples in the handle, is connected to the cup by an eye at the rear of its rim, and by the aid of these rods, which have free lateral play along the handle, the cup can readily be tilted and held in any position desired.

AN IMPROVED SEAL LOCK.

A seal lock which may be operated without the use of pinchers or pliers, adapted to receive a sealing strip, and especially designed for use on freight car doors, is shown in the accompanying illustrations, and has been patented by Frank W. Richey and Sumner M. Robbins, of Armstrong, Wyandotte County, Kansas. The end of the locking bolt which enters the lock case is provided with a spring tongue, the extreme end of which is bent outward, while the extreme end of the bolt proper, opposite the end of this spring tongue, is cut away, as shown in the sectional view, Fig. 2. Just back of this cut-away end of the bolt is a shoulder, so that there is a space behind this shoulder between the tongue and the bolt, in which the sealing strip rests, there being also an aperture in the spring tongue to register with another aperture in the recess in the bolt. A plunger

with a punch point is mounted in a housing that extends outwardly from the lock case, and is held in normal position by a spring coiled about the plunger stem. The seals consist of strips of metal in which are formed projections, as shown in Fig. 3, in side and front views. Before the insertion of the bolt, one of these sealing strips is passed through the lock case, and so adjusted that its projections will be upon either side of the bolt cavity. Then, as the bolt is
forced inward, the plunger being held back, the sealing strip will be borne upon by either the out-turned edge of the spring tongue or by the cut-away end of the bolt, and will enter the space back of the shoulder in the bolt, when the plunger is permitted to enter and rest in the slot in the spring tongue, and the lock is sealed. The sealing strip cannot be drawn out of the lock case, owing to the formation of its projections on either side of the bolt, nor can the bolt be withdrawn, as its shoulder would strike against the sealing strip. To open the car door, a slight tap is made upon the outer end of the plunger, when its punch point is foited inward and severs the sealing strip, as indicated in dotted lines in Fig. 3, after which the ends of the severed strip may be removed from the lock case and the bolt withdrawn.

Wood Fibers Capable of Being Spun.
Boards as free from knots as possible, of any desired width, and about $3 / 8$ of an inch thick, are cut in a direction parallel with the fiber, preferably from pine or fir wood or from the softer part of larch, and are boiled in a solution of sulphurous acid or a bisulphite, whereby the disintegration of the wood is effected. No chopping is required, and before boiling the wood is steamed at $212^{\circ} \mathrm{Fah}$. for a long time. After boiling the mass is partly dried on a wooden frame and then passed through rollers having "deep ribs" in the di rection of their length, the projections on one roller fitting in the corrugations of the other, whereby the fibers will be separated from each other, and may be combed in an apparatus similar to that for combing flax, etc.-By Alex. Mitscherlich, Freiburg.

AN IMPROVED METALLIC SHINGLE

A metallic shingle which is easily applied to the roofs or sides of buildings, which is storm proof and cannot be easily stripped off by winds, while being inexpensive and durable, is shown in the accompanying illus tration, and has been patented by Mr. Henry Smeeton,

SMEETON'S METALLIC SHINGLE.
of Ottawa. Ill. It is made of a single piece of metal so bent and doubled at its edges as to form locking joints on all four of its sides, Figs. 2 and 3 showing sections of the vertical and horizontal joints. The faces of the shingles may be made flat or plain, although shown with a raised diamond-shaped design, and they may be trampled upon without injury or starting joints or seams, as they are not nailed through at the side edges, but held by clips, arfd will yield somewhat to expansion and contraction. In laying the first course on a roof, the center of the overlapped top portion of each shingle is secured to the roofing boards by a nail, and its right hand side by one or more clips, this side then affording a lip for hooking the left-hand side of the next shingle to it, and so on for the course, the first shingle at the left-hand side having been fastened at the edge in any proper way. Dependence may be placed entirely on the clips to hold the shingles to the roofing boards, but the use of clips at the sides and a nail on the top is preferred.

Keep the Traps Filled.

A medical correspondent, writing to the daily press, calls attention to the risks to householders resulting from the evaporation of water from traps, occurring during a period when the house is unoccupied, and states that it has fallen to his lot to see more than one outbreak of sore throat, which he believes is caused by this circumstance. It may be hoped that the usual house cleaning, which necessitates the occupation of the house immediately before the return of its owners, is for them a safeguard; but the subject is well worth the attention of householders, in the interest of caretakers as well as of themselves, and the careful charging necessary wherever they have been left uninhabited during any period of time.

AN IMPROVED GLOVE FASTENER

A simple and efficient fastener for gloves, by which they may be easily and quickly fastened and unfasten ed, and which can be readily applied to the glove, is shown in the accompanying illustration, and has been patented by Mr. George Geary, of Johnstown, N. Y. A spring socket is attached to one side of the slit of the glove, and an arm attached to the glove at the opposite ide of the slit is provided with a ball adapted to fit in the spring socket. The latter is a concave metal plate with ears which are also concave and incline toward

GEARY'S GLOVE FASTENER.
each other, there being a notch in the side adjoining the slit and another notch in the opposite side, together with a central hole by which the socket is secured to the glove by a rivet. The arm carrying the ball adapted to fit into the spring socket is turned over the top and made into a knob, for convenience in springing the ball into the socket and removing it in fastening and unfastening gloves.

Products from Essence of Birch Bark.

E. Mourlot, Paris, obtains from essence of birch bark, by rectification, an essential oil, which possesses among other properties that of being fatal to "insect life," and an electrically insulating tarry substance. These two products are so treated and combined with other substances as to produce an anti-oxidizing material and an insulating substance capable of the same applications as ebonite. Among the other ingredients employed, in addition to the products from the essence of birch bark, are caoutchouc, sulphur, chalk, talc, litharge, antimony sulphide, kaolin, zinc white, and red ocher.

A DEVICE TO RETAIN KEYS IN LOCKS.

A simple attachment within a lock case, which pre vents the key, when left in the lock, from working or being thrown out, is shown in the accompanying illustration, and has been patented by Mr. Stephen H. Paulmier, of Madison, N. J. It consists of a movable guard, in the form of a pendent weight, pivoted within the lock case directly below the key hole, the guard having two upwardly extending arms or wings, between which the bit of the key passes when entering the lock. This guard, when the key is not in the lock, naturally adjusts itself, according to its center of gravity, so that the arms or wings will stand at either side of the keyhole, and the key is freely ad-

PAULMIER'S KEY FASTENER.
mitted; but when the key has been turned sufficiently to pass these wings, as in throwing the bolt, and is allowed to come to rest, the guards prevent it from turning down, so that its bit will lie in the line of the key hole, as frequently occurs in the shutting or slamming of doors, although it can be so turned by hand with perfect facility when desired. This guard can be readily attached to almost any lock, and does not ne cessitate any special construction of the key.

The Millers, and Rakers, International Exhibition at mulau, Italy, 1887.
This exhibition was opened by the King of Italy, on May 19; its object being the improvement of corn grinding, bread making, and baking ; and with some considerable amount of elasticity, the committee has confined the exhibits to such machinery and articles as may be in some way connected with one or other of these trades.
The milling industry in Italy employs about 170,000 horse power, of which only about 15,000 would be water power, and about 70,000 hands are engaged in it. Up to 1883 about 600 pairs of rolling cylinders were in use, but since then a great addition has been made to them. The small mills are gradually disappearing.
The exhibition occupies a space of about 26 acres, of which six are built over, the remainder being laid out in gardens. The exhibition is considered a financial success.
The total number of exhibitors is 386 , of whom four tenths are from abroad, principally from Germany; tenths are from abroad, principally from Gerinany;
about 20 are from England, about 30 from Switzerland, and 15 from France.
The gallery of machinery in motion, in which mills, complete with all the necessary machinery for wheat cleaning and grinding on the gradual process system, are being exhibited at actual work, is interesting.
The wheat cleaning and flour dressing and elevating machinery are principally copies of English and American machines, but they are well made. Messrs. Ganz, from Budapest, who have a branch house in Milan, are large exhibitors of their roller mills, of which they informed me they had sold some 15,000 in all parts ; about 800 only in Italy.
The motive power is supplied to the mills at work by two horizontal compound condensing engines of 100 horse power each, fitted with the automatic expansion and instantaneous cut-off valves.
There are four ovens kept in continuous work baking bread and biscuits; but the only one apparently using mechanical means in connection with the oven is by Signor Candelo, which has a revolving iron plate of about 10 feet diameter, turned by hand by means of gearing, the bread being placed upon this plate, and the heat communicated by flues to both above and below the plate; 4,500 pounds of bread can be baked in this oven in 24 hours, with a consumption of about 220 pounds of coal. The other ovens differ from each other simply in the manner of diffusing the heat.
The cominittee, with a view of making this department practically instructive, has arranged with the different benefit societies of bakers, in various parts of Italy, to send a certain number of selected workmen to visit the exhibition and make experiments ex tending over say a week; making bread, and using alternately the different systems of machines and ovens,
so that on returning to their homes they can speak so that on returning to their homes they can speak
with authority as to the advantages of the mechanical over the hand process of making bread, which is still generally in use in Italy.
In the grounds of the exhibition there are sevesal pavilions. One pavilion is devoted to rice cleáning machinery, exhibited by Signor Giuseppe Locarni, of Vercelli, who, by making this his specialty, has arrived at a certain perfection. The machinery is shown at work, and includes the whole process of cleaning, brightening, and pearling the rice.
There is a very interesting pavilion devoted to electric lighting machinery. There are 28 exhibitors in this class, of whom 14 are Italian, 6 English, 8 German, Swiss, and 2 French.
Another pavilion contains the seven large boilers for supplying steam to the different engines. Five of these boilers were constructed in Italy, one is from England, and one from Germany. Forming part of this exhibition, but under the control of a committee appointed by the government, there is an annex of machines entered for the international prize competition of grain driers. The premiums offered by the government amount to $£ 200$ sterling for the machines that will most rapidly and economically dry Indian corn and rice, so as not to injure their food, storing, or seed properties.
Indian corn, when ground and converted into polento, forms the principal item of the laborer's food in North Italy, and as this is often harvested at a time of the year when dry weather cannot be depended upon, it is stored in a damp state, producing mouldy or damaged flour; and it is the large consumption of this anong the peasants which produces the disease called "pellagra," and which nearly decimates them
in North Italy.-From Consul Whitmore's Report.

The Blacksmith and Wheelwright says that a very good way to anneal a small piece of tool steel is to heat it up in a forge as slowly as possible, and then take two fire boards and lay the hot steel between them and screw them up in a vise. As the steel is hot it sinks into the pieces of wood and is firmly embedded in an almost air-tight charcoal bed, and when taken out cold will be found to be nice and soft. To re peat this will make it as soft as could be wished.

Detection of Counterfoits by Photography.
Photography has long been considered the faithful confederate and trusty ally of counterfeiters and orgers, but it cannot be looked upon in that light any longer, as M. Gobert, of the Banque de France, has
succeeded in converting this art into a most efficient detective agent. His process consists of taking a greatly magnified photograph of the suspected coin or document, on which any erasure or defect can then easily be detected. An interesting example of the success which can be obtained in this way is given in La Nature, from which we abstract the following account: Some time ago a check for 1,106 fraícs, drawn in favor of a Mr. Rochu, was presented for payment at a Parisian bank, and was to all appearance perfectly genuine, the signature being undoubtedly correct, and no erasures or alterations in the amount could be detected. The suspicions of the bank manager were, however, aroused, and the check was forwarded to M. Gobert for examination, who made a r hotographic reproduction of it as explained above. It was then discovered tion of it as explained above. It was then discovered
that the check had originally been drawn in favor of that the check had originally been drawn in favor of
a Mr. Suller, and for 110 francs, the name and amount being easily readable under the new writing. Probably equally good results could have been obtained by chemical means, but photography has the advantage of not injuring the fabric of the check. False coins are detected in much the same way, an enlarged photograph of both a genuine coin and the suspected one graph of both a genuine coin and the suan
being made, and the two then compared.

Chemical Substitution.

Dumas, in 1834, by his law of substitution threw light upon a whole series of singular and unexplained phenomena by showing that an exchange can take place between the constituent atoms in a molecule. Laurent indeed went farther, and assumed that a chlorine atom, for example, took up the position vacated by an atom of hydrogen and played the part of its displaced rival, so that the chemical and physical properties of the substitution product were thought to remain substantially the same as those of the original body. A singular story is connected with this discovery. At a soiree in the Tuileries in the time of Charles \mathbf{X}. the guests were almost suffocated by acrid vapors which were
evidently emitted by the burning wax candles, and the great chemist Dumas was called in to examine into the cause of the annoyarce. He found that the wax of which the candles were made had been bleached by chlorine, that a replacement of some of the hydrogen atoms of the wax by chlorine had occurred, and that the suffocating vapors consisted of hydrochloric acid given off during the combustion. The wax was as white and as odorless as before, and the fact of the substitution of chlorine for hydrogen could only be recognized when the candles were destroyed by burning. This incident induced Dumas to investigate more closely this class of phenomena, and the results of this investigation are embodied in his law of substitution.

The Landes and Dunes of Gascony.

When Major F. Bailey, R.E., last year visited Gascony for the purpose of examining the pines of the country, he also paid special attention to the construction of the works for their protection against the sand, which, unless proper precautions were taken to prevent its advance, would have overwhelmed them, and we again acknowledge our indebtedness to his able description of these.
The dunes are formed by the combined action of the mud and sea. Each ebb tide leaves a quantity of sand, a portion of which dries before it is covered by the next flow, and it is then liable to be blown away by the wind. Thus sand hills or dunes are formed, which rise sometimes to a height of from 200 to 250 feet, the
line of their crests being generally perpendicular to the direction of the prevailing wind.
The sand hills themselves are kept moving slowly landward by the wind, which drives the upper layer of sand from the gently sloping outer face up to the summit, whence it falls down the steep slope on the landward side, and thus the dunes are rolled inland by slow degrees. The average annual rate of the ad
sand is said to be about fourteen feet per year.
As the source of the evil lies at the sea beach, and since, as regards the dunes already formed, the movement at any particular time is confined to the sand then at the surface, if this sand can be fixed during the time necessary to make a crop of herbs, shrubs, and young trees to be raised upon it, the movement of the entire mass will have been arrested.
The works for this purpose are commenced as fol lows: At a distance of about 165 yards from high water mark, a wattled fence forty inches high is erected. This seems to arrest the sand which is heaped up on the seaward side, a portion of it filtering through the wattles. After a time the fence is overtopped, and
the sand, blown up the outer fence, forms a steep slope on the other side. A second wattled fence is then erected about $61 / 2$ feet behind the first, and the space
between the two becoming filled up, and a mound rising over it, the sand which falls over stands at a high angle against the reverse side of the second wattle.

In the center of the mound a palisade of plank, forty inches above and twenty inches below ground, is erected, these planks, which are seven and eight inches wide and 115 inches thick, being placed threequarters of an inch apart. When the sand drifts up against them, a portion falls through at intervals, thus affording support on the other side, and when they have become nearly covered, they are raised about two feet out of the ground by means of a hand lever and chains. This is repeated from time to time until the carrier has attained a height of about twenty five feet, when a third wattle fence is constructed, at a distance of from five to six and a half feet behind the inner slope, and the top of the barrier is strengthened by means of a line of small fagots, which are half buried vertically in the sand. The fagots, each of which weighs about forty-five pounds, are placed at distances of four and a half feet from center to center.
During the time that elapses before the last fence is overtopped the palisade is not raised, so that the width of the base is increased and the top becomes broader and rounded. When the palisade, which is now moved back a short distance, is overtopped, it is raised as be fore, an additional wattle being placed in the rear of the work; and the building up of the mound by the action of the wind is continued in this manner until it has attained its maximum height of from forty to forty five feet, when its breadth is allowed to increase, until it stands on a base about 330 feet broad. The foet of the outer slope is then about 100 feet distant from high water mark, the top being at least 165 feet broad and the slopes standing at thirty-five or forty degrees.
This result is usually attained in from fifteen to eighteen years. The surface of the mound is consolidated by faggots twelve to fourteen inches in circum ference and fourteen to sixteen inches apart, buried vertically to a depth of sixteen inches in the sand and projecting eight to sixteen inches above the ground. it is also sown with gourbet (Arundo arenaria), about It is also sown with gourbet (Arundo arenaria),
thirteen pounds of seed being used to the acre.
An artificial dune, constructed in the manner above described, now extends along the coast for a distance of 125 miles, from the Gironde to the Adour.
As soon as the further inportation of sand over the country has been arrested by the palisade, a mixture, consisting of eleven pounds of pine seed, seven pounds of broom seed, and five pound ${ }^{2}$ of gourbet per acre, is then sown on it broadcast, a palisade being erected at its inner limits, so as to prevent the seed from becom. ing buried under sand carried over it by land breezes. This structure is moved back as the work progresses, so as to serve for the protection of other belts. The seeds are covered with branches and brushwood, laid like tiles, with their butt ends toward the sea, and kept down by means of sand thrown upon them. The cost of the entire work is said to be about forty dollars per aere.-Lumber Trade Jour.

Wronght Iron Chalus without welds.
Rolling out iron chains from the solid bar without welding is one of the recent mechanical operations that have attracted attention. The principle of forming the rollers and the process of rolling out a chain is similar in some respects to the method employed in casting the links and having them come out together in a chain from a mould. In the latter operation the flask is made to part equally in four ways, and the chain moulded while the links are separated so as to divide the spaces equally between them, giving as little clearance as possible, which will not change their appearance perceptibly. The flask is divided, the chain removed, and one is cast in the mould. Similarly, a removed, and one is cast in the mould. Similarly, a
piece of chain is swedged out of a bar of iron in an analogous manner by means of four converging dies. To produce a continuous chain in this way the dies are made continuous by having them formed on the circumference of four rollers, arranged with the dies distributed in equal divisions, and the rollers driven by gear wheels, so that the four parts of a link will meet accurately in place. Proper clearance is given to the dies, so as to allow the material to leave the matrix freely as the roll revolves. As the blank is carried for: ward between the rollers, the dies partially press or swedge out the links at right angles to each other, breaking the fin or feather edge that is left on the inside of the links, which, after a thorough shuffing in a tumble barrel, come out highly finished and polished for the market.

Coffer acts upon the brain as a stimulant, inciting it to increased activity and producing sleeplessness; hence it is of great value as an antidote to narcotic poisons. It is also supposed to prevent too rapid waste in the tissues of the body, and in that way enables it to support life on less food. These effects are due to the volatile oil and also to a peculiar crystallizable itrogenous principle, termed caffeine. The leaves of the plant likewise contain the same principle, and the inhabitants of the island of Sumatra prefer an infusion of the leaves to that of the berries. Its essential qualities are also greatly changed, the heat causing the development of the volatile oil and peculiar acid which gives aroma and flavor.

Gorrespondence.

The Chicago $181 / 2$ Inch Telescope-A
in obituary of Alvan Clark.
To the Editor of the Scientific American:
My attention has just been called to your article on
"Alvan Clark" in the Scientific American of Sept.
3. The $181 / 2 \mathrm{in}$. telescope lens finished by Mr. Clark in 1862 was for the University of Mississippi, instead of the University of Michigan. The order was given by my predecessor, Dr. F. A. P. Barnard. The completed instrument was sold to the Astronomical Society of Chicago, as Mr. Clark had undertaken the work entirely at his own risk, and the war rendered its acceptance impracticable.
Our pier and dome built for this equatorial are still extant.
R. B. Fulton,

Prof. of Physics and Astronomy.
University of Mississippi, Miss.
The Firat Railroad in America.
To the Editor of the Scientific A merican:
In your issue Aug. 20 last, you state that the first American railroad was built in 1825-26, and was used for the purpose of transporting granite from the quarries near Quincy, Mass., to tide water. Will you allow me to claim for my father, George Magers, a Maryme to claim for my father, George Magers, a Mary-
lander, the honor of designing and directing the conlander, the honor of designing and directing the con-
struction of the first railroad built in this country, struction of the flrst railroad built in this country,
between the years 1814 and 1816, at Falling Waters, near the town of Manchester, in Chesterfield County, Va., on the south side of the James River and a few miles from the city of Richmond? This I believe antedates the building of the Quincy road nine or ten years. He was engaged at the time in superintending a powder manufactory located at Falling Waters, and partially supplying the government's demand for powder during the war of 1812 with England. The road was built for the purpose of conveying the powder from the mill to a magazine located a couple of miles distant, in order to secure greater safety, and to prevent large destruction in case of fire or explosion. It was regularly operated by means of horse power through a number of yearsand until my father's death, which occurred in 1818. There is still living, in Baltimore, a gentleman of advanced life, Prof. George more, a gentleman of advanced life, Prof. George
Elliott, of ballooning fame, who lived with his father at the seat of the mill, and who frequently rode in the carriages used upon the railway, and can verify the truth of the foregoing statement.
G. W. Magers.

Baltimore, September 12, 1887.
Adhenive Gum for Labels, etc.
The following mixture is stated by M. Eliel (Reoue Photog.) to form a strongly adhesive gum, which will really make paper or parchment paper stick to any surfaces on which it may be applied, such as wood, glass, stone, or metal of any kind. It is therefore adinirably adapted for use in the pharmaceutical laboratory, and indeed, with certain modifications introduced by our selves, will be welcome among merchants and manufacturers generally. It is made thus :
Gum acacia.
_ tragaca
Glycerine..
Thymol....
Thymol

120 grammes or parts. 30 "" " 120 cubic centimeters or parts. 2.5 grammes or parts.

Soak the gums the tragacanth is fully swelled, beat it up, and when sistence of a thick homogeneous mucilage, and mix this with that of the gum acacia, and pass the whole through a piece of fine linen or "tammy." Add to this the glycerine, in which the thymol has previously been shaken up, and lastly make the whole up to a thousand parts, or one liter by measure, and store in suitable well-corked bottles ready for use.
For the $21 / 2$ grammes of thymol we ourselves prefer to substitute 2 grammes of eucalyptol or about $31 / 4$ grammes or parts of Australian eucalyptus oil. With this gum labels or circulars can be made to adhere firmly to tins or metallic drums, etc., and if written or printed with the boracic "label ink," and afterward washed over with "water varnish," such labels, etc., will be very durable, and will remain unaffected by ordinary chemical solutions or dilute acids.

Weeds.
"Weeds," says a writer, in Social Science," are plants in the wrong place. They all probably have their right places and their uses somewhere in nature's
economy, though these are sometimes hard to appreciate. The most of them may serve to keep some desolate spot from being entirely bare, and the decay of their repeated generations furnishes would to the ground, and may in time make it fit to bear something better. They all, too, have elements of beauty, and these will reveal themselves to every one who diligent ly searches for them. Even the most forbidding are revealed under microscopic inspection as objects of rare beauty. Many of them, if they were not weeds would be prized

Artificial Rubies.

M. Fremy has returned to his old experiments on the manufacture of rubies. It will be remembered, says Engineєring, that a few years ago he succeeded in forming small ruby crystals by a chemical or physical process in his laboratory. These crystals were too tiny to seriously compete with the natural stone. He now quality and larger size than the natural stones in use This result has been obtained by a new process. The This result has been obtained by a new process. The
older processes of 1877 , employed by M. Fremy and M. Feil, consisted in heating to a white heat in an earthen crucible a mixture of aluminum and minium. The red coloration was produced by bichromate of potash. The operation was often made with 20 to 30 kilogrammes of mixture, and gave several kilogrammes of rubies.
Another method was to heat to a high temperature a mixture in equal parts of aluminum and fluoride of barium with traces of bichromate of potash. The crystals thus obtained were remarkable for their neat form, but they were apt to be lamellar. In his recent experiments M. Fremy had the assistance of a talented young chemist, M. Verneuil, attached to his laboratory at the museum. Their flrst work was to find whether the earthenware crucible of the early experiments influenced the reactions, and they found it did not. Next they found that almost all the fluorides when mixed with alumina produced corundum by calcination at white heat. Fluoride of barium, fluoride of calcium, and cryolite were used by thew. Crucibles of platinum were also employed. In the course of the experiments they found that a fluoride, such as fluoride of calcium, exercises on alumina an enormous power of mineralization. Thus they could crystallize power of mineralization. Thus they could crystallize
all the alumina contained in a mixture of 1 part of fluoride of calcium and 12 parts of alumina. In order to investigate this fact further, they placed at the bottom of the platinum crucible some natural fluoride of calcium, white and transparent, and of great purity. It was covered carefully by a plate of platinum perforated with very fine holes. On the plate was puta layer of alumina obtained by calcination of pure ammoniacal alum. Thus charged, the crucible was heated for several hours at red heat in an earthenware crucible, and it was found that the fluoride of calciun had almost completely transformed the alumina into crystals of ruby remarkable for their neat form and their rose color. Thus altmina without being in contact with fluoride of calcium, and simply affected by the emanations of the fluoride, calcined in the air, is mineralized, losing its amorphous state and changing into a crystalline mass. This discovery is important in the science of mineralogy. It shows how such bodies as the fluorides, heated in contact with moist air, produce emanations which can crystallize amorphous bodies such as aluminum. Hydrofluoric acid, acting in a very high temperature, may play a considerable role in the reaction.

Effects of Lightning on Railway Signals.
The effect of lightning on electrical apparatus of all sorts is a subject on which accurate data seem rather scarce, and its effect on railroad signals especially is a point on which more light is needed. A cardinal principle in signals which are in any degree automatic is that they shall show danger in the event of any derangement, and numberless ingenious devices have been invented to provide against the possibility of a signal standing at safety when it has not been intelligently put in that position; but lightning is such a lawless element and may influence electrical apparatus in so many different ways that the counteracting of the harm it may do is not an easy task. It may make a ground connection, and thus allow a circuit to appear all right when it is not, being closed at one end and open (without battery) at the other. It may melt fixtures so as to permanently hold a signal in the position it is in at the moment ; and again it may charge a wire with a current that will actuate the electro-magnets and work the signals when the signal man has taken no action whatever. While the chances of a signal being held any length of time in the safety position from the effects of lightning alone are very small, and while it is probable that nearly or quite all danger in this respect can be guarded against by cautionary instructions to the attendants, it is nevertheless well to make note of all peculiarities noticed, that experience may be compared. In a recent thunder storm at Palmer, Mass., the electric locks on the interlocking machine at the crossing of the Boston \& Albany and New London Northern were alternately locked and unlocked several times by atmospheric electricity in the rails at and near the crossing. The storm also showed one of the disadvantages of underground wires. A lightning shock generally runs along a wire until it encounters more
than ordinary resistance and then melts the conductor. An underground wire is more likely to have unequally corroded sections than an aerial one, and so furnishes orst-class opportunities for the lightning to fuse and part it, where, in the case of a wire hung in the air, the resistance and damage would more likely occur in
the electric locks of the Union Signal Company's interlocking machines areso arranged that the circuit, through the rails, when closed, holds the armature away from its slot, and thus leaves the lever unlocked, so that any breaking of a connection by lightning or otherwise will lock the lever; which is in the direction of safety. But anything which should connect the two parts of the circuit so as to leave it normal with the rails excluded would leave the levers perinanently unlocked.-Railroad Gazette.

The Fur-Bearing Animals in Central Park.
The Fur Trade Review, of this city, in an article on the fur-bearing animals at the menagerie in our Central Park, laments that so few species are represented, and that better specimens of the few kinds are not procured. It is not creditable to the city of New York, which the editor claims is the headquarters of the American fur trade in the United States. He believes, also, the nembers of the fur tradc are sufficiently public-spirited to accomplish the object, if they will, and suggests that they make an earnest effort to remedy the defect, by securing domestic fur-bearing animals from all sections of the country for presentation to the Park authorities He claims there need be no very great expense attached to such an enterprise. If the leading fur dealers will request collectors, trappers, and other out of town ac quaintances, in a position to comply, to forward such animals as they may secure, there would, he thinks, be a generous and a general response.
The editor of the Review suggests the appointment of Mr. Jules Weil, of 123 Mercer Street, a committee of one to receive and duly present to the Central Park all animals received, in the name of the fur trade of New York or the United States, and it is hoped a ready response may be had to the appeal.

The Cascade Switchback Railway.

The completion of the main line of the Northern Pacific Railroad by the switchback over the Cascades is said to be the most marvelous piece of railroad engineering in the country. Its extent is but thirteen miles, and the cost $\$ 350,000$. The cost of the Cascade division of the Northern Pacific will reach $\$ 8,000,000$. The maximum grade on the "switchback" is two hundred and ninety-six feet to the mile. Two decapod engines, weighing one hundred and twenty-five tons each, are used on each train, one on each end of six cars. One of these is ample to draw the train, but two are used for fear of an accident by the uncoupling of the train or otherwise. It has been said that it is impracticable for the Northern to operate a freight traffic over the "switchback," but this is not true, and it has been so proved by a practical test. It is estimated that from thirty-five to fifty freight cars can be handled each way over the "switchback" in twenty-four hours. At this rate, each car holding ten tons, from three hundred and fifty thousand to five hundred thousand bushels of wheat can be sent to the Sound ports in twenty-four hours. There will be no trouble about the Northern Pacific not handling all the freight it can receive. Its management is too far-seeing to cripple its business by a short-sighted policy and deficient modes of transportation. The Stampede tunnel will be finished within eleven months by Nelson Bennett, the widely known contractor.-Tacoma (W. T.) Ledger.

Speed of Cutters.

The Iron Industry Gazette gives the following concerning the average speed of cutters on soft cast iron surfaces, making allowance for changes in condition rately of feed per revg work, the speed of cutter and anount the computation is as follows: Multiply the number of revolutions of cutter a minute by the length of feed of one revolution, and the product is inches a minute that can be milled. Allowing about 40 feet a minute for surface speed of cutter, a $1 / 2$ inch cutter should run at 300 revolutions a minute, with a speed ${ }_{160}$ inch to a revolution, giving a result of 2 inches of light milling a minute. A 1 inch cutter would make 150 revolutions a minute, with a feed of $\frac{1}{10}$ inch on a moderately heavy cut, allowing $11 / 2$ inch of milling a minute. A 3 inch cutter would run fifty revolutions a minute, with a feed of $\frac{1}{80}$ inch on heavy work, giving a result of 1 inch of milling a minute. The above are examples selected from observed results in practical shop usage."

Salt and Gas in Kansas.

At Ellsworth, Ellsworth County, Kansas, as a matter purely of speculation, some persons recently made up a fund to drill the earth to see what they could find. They were told by individuals learned in the geology of the region that the work would be fruitless, and advised not to waste the money, as there were no favorable indications. But the speculators went ahead with the drilling, and at a depth of 740 feet they struck a bed of pure salt, 160 feet thick, after which shale was encountered for $\mathbf{2 0 0}$ feet, and then, at a depth of $\mathbf{1 , 1 0 0}$ feet, a vein of natural gas was struck which promises to yield fuel in unknown quantities.

practical trial of the pneumatic dynamite

 GUN.On Tuesday, Sept. 20, the pueumatic dynamite torpedo gun was tried in practical work. The object of the trial was to show the United States naval of the trial was to show the United States naval
authorities decisively the powers of the new weapon. The Secretary of the Navy had placed at the disposal of the company the old coast survey schooner Silliman. The proposed programme was the destruction of this vessel by two or three projectiles.
The eight inch gun already described and illustrated in this paper* was used in these trials. It occupied its old position, on the south of Fort Lafayette, its muzzle pointing toward Norton's Point, the extremity of Coney Island. Gravesend Bay lies between these two places. Two thousand yards from the fort the schooner was anchored, being moored head and stern, so as to float with her stern pointing directly toward the firing point. Her two lower masts and bowsprit were left in place with some of the standing rigging. Otherwise she was pretty thoroughly dismantled.

A number of steamers carried spectators. The Dispatch, U. S. N., with Secretary Whitney and members of the Advisory Board, went to a point about half a mile from the mark and anchored. The revenue cutter Grant, police boat Patrol, navy yard launch, several private yachts and small launches were present, the whole forming quite a fleet. Lieutenant E. L. Zalinski had charge of the piece.

Two range shots were first fired with blank shells. They descended quite near the mark. Next the gun was loaded with a charged shell, containing 55 lb . of explosive gelatine. Before each shot flag signals were exchanged with observers on shore, who triangulated the range. By watching these flags the spectators on the steamers could tell when to look out for the shot. As each discharge took place there was a report much like that of a cannon, followed by a very peculiar whistling sound as the shell passed through its trajectory.
The design of Lieut. Zalinski with the third shell was to injure the schooner, but not to destroy her. This work he reserved for two succeeding shots. When the third one was discharged, it came whistling ominously through the air and fell into the water a short distance astern of the schooner, descended a few feet, and exploded. It threw up a superb fountain of water, two or three hundred feet high, masking the after part of the vessel, and when the water fell back the schooner's mainmast was gone. The head was left swinging at the end of a stay attached to the foremast head, which was broken and sprung backward.
The schooner was boarded by the crews of two launches, and found to be badly injured. Her stern was severely shaken and she was leaking, so that the shot, though it had not touched her, had done much damage. This proved one of the claims of the advocates of the gun, that a shell falling near a vessel will do effectual work

After the two launches had taken their crews on board and steamed away a fourth shot, also a 55 lb .shell, was fired. The third shell had fallen directly in the line of the two masts, and was a perfect line shot. One of the effects of the explosion had been to slew the stern of the schooner around so that she had her after quarter toward the gun. Under these circumstances, when the fourth shell was discharged, it fell very near the hull and penetrated the water until it was directly beneath her, as nearly as possible under the steps of the mainmast, when it exploded. The column of spray that it threw up was greater than before, owing to the overlying vessel. It completely hid the after part, and when itjdescended the schooner was blown to pieces. Her fragments settled back into their old place, nearly level with into surface of the water. Above the wreckage the step of her mainmast and her iron water tank could be seen. Everything else was nearly level with the water. The foremast still stood over the sunken bow. An instantaneous photograph taken just as the explosion was felt by the vessel shows the hull lifted up a few feet above its normal position, and the spray and water rising in the air. The view is of interest as illustrating this lifting action.
Thus the target was destroyed in two shots with a total amount of a little over one hundred pounds of gelatine. It showed what terrific power would be possessed by the six hundred pound shells which the new cruiser will be able to discharge.
 SUPTURKENT, No. 593

EPISODES OF THE TRIAL.

1. The Silliman before the trial. 2. The first explosion. 3. The second explosion. 4. The third explosion in the air. 5. The wreck of the Silliman after the second shot. 6. The fourth explosion.

The foremast was still standing, and some dismantled by the shell as it passes through the air is followed by rigging swung from its top. A fifth shell was now fired. This contained the same weight of gelatine, and ranged rather high. Its percussion fuse probably struck some of the floating wreck, for when directly over the vessel, almost level with the water, it exploded with a bright fiash of flame. This shot illustrated what would be
the explosion. To an observer half a mile off the latter is seen before it is heard, and while the whistling of the shell is still audible. Thus, when the shell has exploded, the ear still places it in the air and hears the whistling produced some seconds before. The shell after it has exploded seems still to be on its journey after it has exploded seems still to be on its journey
until finally the noise of the explosion is heard. Some of the observers could see it, but exceedingly good eyes were requisite for this, as the steamers were situated.
The initial velocity of the projectile is considerably more than 600 feet per second, or about one-third that of the shells of heavy ordnance. It should be compared, in justice, not with guns, but with torpedoes. Yet by its remarkable accuracy at a mile range it showed that it is comparable with cannon. In actual war the latter, where exact firing is necessary, are used at ranges well within the reach of the pneumatic gun. The power to accurately place a torpedo charged with a high explosive within a range of two miles will be a factor of great account in future wars of offense and defense. A table of the data of this gun has already been published in the paper already alluded to, and may be consulted with interest after this practical demonstration. It may be mentioned here that although an hour was occupied in the last trials, yet four shots have been fired by Lieut. Zalinski inside of ten minutes without any effort at hurrying and without skilled men.

Inventive Genius Developing in Streaks.
One of the leading authors of the present day has remarked that "genius comes in shoals." There is a depth of truth in the remark, says a contemporary, which must at once be patent to all who are familiar with the history of our country, and in no field of inquiry does the fact stand out so prominently as in the great outbreak of prominently as in the great outbreak of
inventive genius by which our country is distinguished. The Elizabethan age was characterized by a shoal of dramatists, next we have a shoal of essayists with the amiable Addison at their head, and down through the years until what Carlyle has called " the mechanical age" set in. The birthday of the manufacturing supremacy of England was undoubtedly the 5th of January, 1769, when James Watt announced his patent "for a method of lessening the consumption of steam and fuel in fire engines." This was the source and sustaining power of mechanical energy whose action quickly aerial explosion of several hundred pounds of gelatine |changed the face of the world.
directly over the deck of a vessel would probably render most of her crew hors de combat. The experiment of course is an untried one as regards its effects upon life, but it seems probable that much injury might be done in this way.
Finally a one hundred pound shell was fired at the wreck. This also went rather too far, but exploded about ten feet under water very near the vessel. Had she been afioat and not level with the water, it would probably have struck her and done as great damage as the first.
This concluded the exhibition and demonstrated conclusively the powers for destruction of the weapon. The new cruiser that is to carry several of these guns will be an interesting subject of trial. The design is to

The inventive minds fulled in a shoal, and before half a century elapsed England was in possession of the most perfect mechanical appliances. Since the commencement of the "mechanical age" the aspect of the country has been entirely changed. In districts like the "Black Country," where nothing formerly appeared but rural scenery, great manufacturing establishments have been erected, towns raised, and the roar of furnaces, the noise of machinery, the buzz of reels, and ceaseless-activity now diversify the scene where nothing was formerly heard but the purling steam or the howling of the tempest. Not only do the inventive minds come in shoals, but shoals of inventors who concentrate their united energy on some special branch of mechanics or science are every now have her carry the guns in her hold. They will be of and then springing up, and invention follows invention with surprising rapidity. These inventions are always shifting; at one time there is a run for improved furnaces, at another improved modes of constructing ships; then comes a change to machinery, or some matter of great public interest, like the rivalry in the improving of the different systems of electric lighting. Not only do inventions shift from one branch of science and mechanics to another, but at times a lull comes over one country, and a great outbreak of inventive genius breaks out in another country.

Care of Carriages.

A dry house, free from dust and the
constant elevation, and the trajectory will be varied by |sun, and away from the stables, is of first importregulating the quantity of air admitted. The pointing and aiming will be executed by maneuvering the vessel.
Several points of interest are brought out by the new piece. The high trajectory that is often objected to has its good feature in a ship, as the range will be less disturbed by pitching under the action of the waves. A practice resembling mortar practice may be tried, it has been suggested, in dropping shells upon a vessel's deck. Two or three falling on a ship would doubtless work their way through her-bottom. The sound made ance. If you keep your buggy near the stables, the ammonia will kill the varnish in a very short time. Never, under any circumstances, rub oil over your carriage to brighten it up. It \cdot is sure to ruin the paint. Use a good sponge and a clean chamois, with plenty of clear, cold water to wash the mud off with. Never use a duster or broom on varnished work. Never allow water to be thrown inside the body. It is sure to affect the glue and swell the timbers, so as to break the joints. Mud allowed to dry on a carriage is of no benefit. Frequent oiling of axles does no harm.

BIRDS OF PARADISE.

Dr. F. H. H. Guillemard, in his interesting natural history work entitled "The Cruise of the Marchesa," gives the following account of some of these birds which he obtained in New Guinea:
Our first ramble on shore was attended with but little success. We searched in vain in one of the lesser bays for a patch of beach on which to disembark, but the mangroves, which in these regions obliterate utterly all boundary between sea and land, met us at every turn, and ultimately scrambling over their slimy roots, and struggling up to our knees in liquid ooze, we had to reach terra firma as best we could. The land rose steeply from the sea, and the jungle, dripping wet from the heavy rain which we had almost constantly experienced since our arrival in New Guinea, rendered our progress anything but comfortable. Forest rambles such as these, it must be confessed, are somewhat trying to the temper. Wet through with perspiration, each yard makes the already streaming traveler, if possible, still wetter, for every leaf encountered pours a little bucket of water upon him as he struggles through the mass of creepers that bar his path. Shooting and walking cannot be combined under such conditions, and almost the only method for the naturalist to ob tain specimens is to post himself under some tree in fruit, and to wait patiently until the birds that are feeding upon its summit happen to come within range of his gun.

We returned rather disappointed to the yacht, and found that some of the hunters had already got back. They had shot nothing of any particular interest. Presently however, Usman and his compagnon de chasse appeared, triumphant, carefully carrying a prize that we had hoped but hardly expected to obtain-the curious and exquisitely lovely little Diphyllodes wilsoni, smallest of all the birds of paradise. Behind the head a ruff of canary colored feathers stands erect above the scarlet back and wings. The breast is covered by a shield of glossy green plumes, which toward the throat are marked with metallic green and violet spots of extraordinary brilliancy. The two center feathers of the tail, prolonged for five or six inches beyond the others, cross one another, and are curved into complete circle of bright steely purple. But the chief peculiarity of the bird is in the head, which is bald from the vertex backward, the bare skin being of the brightest imaginable cobalt blue. The bizarre effect thus produced is still further heightened by t,wo fine lines of feathers which, running lengthways and from side to side, form a dark cross upon the brilliant azure background. I could hardly make up my mind to skin this little ornithological rainbow, whose exquisite plumage it seemed almost a sacrilege to disarrange, but the climate of New Guinea allows of but little delay in this operation, and I set about my task at once. The bird had been scarcely injured by the shot, and I succeeded in making a perfect skin of it. We also added a hen bird of the same species to our collection. Its plumage is of a sober brown, as is the case with the females of all the Paradiseidæ, but, like the male, the bare head is blue, although not nearly of so bright a color.
Wilson's bird of paradise, which we had thus been the first Englishmen to obtain, the naturalists Beccari and Bernstein being the only others who have been fortunate enough to meet with it in its native haunts, is entirely confined to Batanta and Waigiou Islands; but though we afterward shot it in the latter, it would seem to be much rarer there, and during Mr. Wallace's two months' visit he failed to obtain it.

We found it frequenting trees of no great height at an altitude of seven or eight hundred feet above the sea, and there is no doubt that, like many of the family to which it belongs, it is very local in its distribution. This localization is not necessarily permanent, but seems to be dependent rather on the abundance in certain spots of the fruit in season, for most of the birds of paradise are in the main frugivorous, although occasionally varying their diet with insects.
The paradise birds attract attention less by the brilliancy than by the extraordinary development of their plumes. From the Arfak range we had obtained several species, which at a little distance look a uniform black. Two of these-Lophorhina and Parotia-are

WILSON'S BIRD OF PARADISE. (DIPHYLLODES WILSONI.)
in the engraving, or depressed flat against the skull, where it forms a triangle of regular shape with the apex forward.

How Mirrors A re Made.

One of the factories in Chicago employs some 150 men and boys, and its spacious four floors present an interesting series of sights to the visitors whose nerves are steel and tympani proof against splitting. On the first floor he will see huge stacks and piles of glass in assorted sizes, ranging from 16 feet by 7 feet squares down to the smallest ovals for mirrors. These are all polished, some being run over huge felt covered wheels kept powdered with rouge, and the larger sheets scrubbed by sweating toilers with hand blocks covered with felt like a printer's proof planer in rouge. After the glass is thoroughly polished it is taken up to the next floor, where it is laid on tables the next floor, where it is laid on tables
and cut into the sizes ordered. It then and cut into the sizes ordered. It then
passes into the hands of the bevelers, who, with sand and water and large grindstones, artistically finish the edges of the glass. It takes a trip upward again, to another floor, and is once more put through a polishing process to remove any scratches or blemishes that may be on the glass. After every spot or scratch, no matter how minute, has been removed, careful hands convey the now beautiful and sparkling glass to the room where it goes through the final process, the silvering. Huge tables of cast iron or stone, made like billiard tables, with raised edges, are used in the silvering room. These tables are of great strength and solidity, and all around the edge is a drain, for the superfluous mercury is poured over the tables in quantities sufficient to float the glass, which, after being tinfoiled, is gently and carefully pushed across the table containing the mercury. Great care must be used to prevent blemishes, the least speck of dust being ruinous to the mirror. Mercury, like molten lead, is always covered with a dirty-looking scum which cannot be removed by skimming. The least bit of this scum would spoil the mirror, so the difficulty is obviated by shoving the scum along with the edge of the glass. After successfully floating the glass on the mercury, a woolen cloth is spread of metallic green, and a shield of the same color and over the whole surface and square iron weights are ap-
nature, but of a still brighter shade, adorns the breast. The rest of the body is dull black. Any further ornament or color would be out of place, and one feels that the superb creature fully deserves its appellation of the superb bird of paradise.

Almost more beautiful still is Parotia sexpennis, the six-shafted bird of paradise, which Signor D'Albertis was the first European to observe in its native jungle. The curious plumes which give the bird its specific name lie so close to the neck in the dried skin as to be almost invisible. They consist of three slender filaments springing from each side of the head and terminated by a spatulate expansion. A bar of vivid steely green across the vertex, and a peculiar puff of metallic silver at the base of the beak-a color, which, so far as

SIX-PLUMED BIRD OF Paradise. (Parotia sexpennis.) plied until the whole presents a compact mass of iron, two or three pounds to the square inch. After this pressure has been confined for ten or twelve hours, the weights are removed and the glass placed upon another table of wood with a slightly inclined top. The inclination is gradually increased until the unamalgamated quicksilver has drained away and only the perfect amalgam remains, coating the glass and perfectly, adherent. This ends the process, and the erstwhile rough piece of plate glass emerges from the silvering room a gorgeous mirror.-Western Manufacturer.

The Work Done by Machinery.
That locality and circumstance alone are true magicians in respect to their effects on the value of human labor is well known. ;In a manual by Mr. Alexander Wylie, entitled "Labor, Luxury, and Leisure," it is stated that on the vast farms of Dakota, the equivalent of one man's work, supposing the crop amount to 20 bushels to the acre, is 5,500 bushels of wheat. Now, keeping back enough for seed, we have here sufficient to produce 1,000 barrels of flour. This mass of food stuff can be carried through the flour mill and put into barrels, including the labor of making the latter, at the equivalent of one other man's labor for a year. Again, it has been worked out that at the ratio of the work accomplished by each man emI know, is unique in the bird world-completes the ployed on the New York Central Railroad, the wheat head decoration. Like Lophorhina, the rest of the plumage is almost entirely black, except at the upper part of the breast, which is furnished with a collar of green and bronze feathers. The tuft of silvery feathers on the forehead can be either erected, as represented

* The impossibility of giving all the features of this curious bird in a ingle illustration has led to its representation in a position which is
quite possibly incorrect. As far as could be gathered from the natives, the enormous crest as it appears displayed during the courtship of the female is spread more widely, in the shape of a.fan opened out to its fullest extent, and the pectoral shield being expandedin a similar manner,
the head of the bird forms the center of an irregular circle of feathers of the head of the bird forms the center of an irregular circle of feathers of
velvety black and emerald, which completely hides the rest of the body velvety black and emerald, w
when viewed from in front.
can be transported to the flour mill and the thousand barrels of flour removed to New York, and all the machinery of the farm, the mill, and the road be kept in full "going order," for an equivalent to the whole labor of two more men. It comes, then, to this : that one thousand barrels of flour, the annual ration of one thousand persons, can be placed in New York from a point 2,000 miles away with the exertions of only four men working one year in producing, milling, and transporting the wheat. Further, this staple food can be baked and distributed by the endeavors of three more persons. It follows, then, that just seven persons can supply one thousand with the staff of life.

KRUPP'S GREAT GUN FOR THE ITALIAN NAVY. The great Gerinan manufacturer of steel and of the most powerful artillery, Herr Alfred Krupp, who died on July 14, had in hand at Essen, for two years past, a gun constructed for the Italian Navy which is the largest hitherto produced. We give an illustration of this huge piece of ordnance, as it appeared when placed on a special railway wagon for conveyance to Antwerp, where it was puton board ship to becarried round into the Mediterranean, consigned to the Italian nava arsenal at Spezia.
The railway truck, built expressly for this purpose, was 75 ft . long, with thirty-two wheels and sixteen axles; but its length could form bendings, at six points, to pass round curves on the line of rails; this carriage, without its load, weighed ninety-six tons. The gun, which weighs a hundred and eighteen tons, is 45 ft . long, and its internal caliber is nearly sixteen inches, rifled with ninety-two spiral turns. It throws a steel projectile weighing nearly one ton, with a charge of six cwt. of brown prisinatic powder, having an initial velocity of 614 yards in a second and a range of nearly eight miles. The shot can penetrate a steel armor plate thirty-six inches thick immediately at the mouth of the gun, and a plate twenty-nine inches
hood in dealing with disputes for the benefit of other labor organizations, some of whose members may be here to-day. I. want to speak of our policy, and let them judge if it is not the best one. On all well regulated roads we have what we call a grievance com mittee. My advice is to select as members of that committee men of judgment, cool heads and clear brains, men who have been in the service of the com pany for years, and who are known to the officers of the road. I am sorry to say that my advice is not al ways followed. To that committee are referred the grievances of the men. After they have exhausted their own efforts to effect an adjustment with the company the committee waits upon the officials of the road in rotation, beginning at the lowest grade. this policy we have settled every case except that of the Brooklyn Elevated.
"The officer of the brotherhood second in authority exhausted every honorable effort, but General Manager Martin refused to meet the men, and discharged the grievance committee. I hold, notwithstanding his legal right to do that, he insulted the entire brother hood. All that was left for the men to do was to quietly submit or leave the service of the company, or in other words, 'strike,' if that suits you better. Th
work suffered great havoc. Ninety feet of the steeple had to be taken down entirely, while great and expen sive repairs were required for the rest. Many years afterward the steeple was again struck, and although a lightning conductor had in the interval been erected, it was so faulty in construction that at various points the church was once more damaged. In the storm which occurred at midday on July 15 last, St. Bride's a third time proved an irresistible attrac tion to the electricity of the heavens. Fortunately, upon this occasion the church itself was uninjured. The conductor conveyed the current to earth, but the contact was insufficient. There was a bad joint just below the spot where the rod entered the ground, and, as the dissipation could not take place with sufficient rapidity, a number of flagstones and a portion of the earth was torn up and sent flying to some distance At least three churches in the metropolitan districtChrist Church, Endell Street, Long Acre; St. John's, Walham Green ; and Holy Trinity, Tulse Hill-were struck and dannaged recently, and a large number of buildings of various kinds, in London and the proinces, were set on fire by the lightning.
From the circumstances related it will be seen that even in this age of advanced acquaintance with phy-

KRUPP'S LATEST GREAT GUN, PLACED ON THE RAILWAY FOR CONVEYANCE TO THE ITALIAN NAVAL ARSENAL AT SPEZIA
thick, it is estimated, at the distance of a mile or more It is believed that no armor-plated ship in the world can endure the fire of such powerful guns. Krupp's factory, however, is now engaged in making two of still larger dimensions.-Mlustrated London News.

Brotherhood of Locomotive Engineers.
A public meeting of the brotherhood was held at Boston, Sept. 18, at which there were 3,500 people present. This organization meets the approval of the railway officials, and is conducted in a sensible, businesslike manner, conducive of benefit to its members and harmony and good will between the employer and employed. The State and Boston city governments were represented, and interesting addresses were made by Lieutenant-Governor Brackett, Grand Chief Engi neer Arthur, Railroad Commissioner Kinsley, Congress nan P. A. Collins, and others. During the course of his remarks Mr. Arthur stated that since the benefit association was established $\$ 2,159,000$ had been paid to the widows and orphans of deceased members of the brotherhood.
The Railroad Gazette gives the following extracts from Chief Engineer Arthur's address :
" It has been my privilege to meet nearly all the railway managers on this continent, and I want to say here that I have not met one within the past ten years who has not indorsed our brotherhood and approved of our course. . . . It takes time to acquire friends

I want to speak of the policy of the brother
men struck and were whipped. These are the facts. sical forces, knowledge is singularly confined and its When a general manager refuses to treat with his men practical application in a most beneficent direction and recognize their rights, he takes a position which is limited to a degree that is lamentable. In the face untenable, and he ought not to be sustained or retained in any position of authority upon a railroad. The solution of difficulties between employer and employed is in bringing the two parties together and having them sit down and talk the matter over."

Mghtning Rods.

Many accidents are upon the record which have been due to the bad construction of lightning conductors, churches being the most notable sufferers from this cause. The history of St. Bride's Church, in Fleet Street, London, affords a curiously complete illustration of the need of lightning conductors for lofty buildings and of the need also that those conductors shall be good ones. On a Sunday afternoon in June, 1764, fourteen years after Franklin's discovery of the identity of lightning with electricity, but several years before St. Paul's Cathedral, the first public building in England to be so protected, was surmounted by a pointed lightning conductor, an intensely vivid flash of lightning struck St. Bride's beautiful steeple. The metallic weather vane and the iron bars by which it was supported safely conducted the current some distance down the steeple, but at the spot where the bars terminated a number of huge stones were shattered into fragments. Other metal work afforded a broken path for the current, but the intervening stone-
of the rate at which our great buildings, of private as well as of public character, are multiplying, the apathy which prevails in regard to their safety from lightning is remarkable, but possibly it is accounted for by the fact that thunderstorms are of short duration and occur only at long intervals.-Elec. Review.

The Ship Canal between Manchester and Liverpool. The Manchester Ship Canal Company lately held their fourth half yearly meeting at Manchester. The directors reported that the contract for the work had been allotted to Mr. T. Walker, for $5,750,000 \mathrm{l}$., and that the purchase of the Bridgewater Canal and Mersey and Irwell navigations had been completed. It was stated that the works would very shortly be commenced, and it is hoped that either the Queen or Prince of Wales will lay the stone of one of the docks.

Sulphate of Iron for Moss.

Dr. A. B. Griffths, F.R.S., has shown that iron sulphate completely destroys moss in grass lands without destroying the grass. According to M. MargueriteDelacharlonny, of Paris, 250 to 350 kilogrammes of FeSo_{4} for every hectare suffices. Dr. Griffiths also finds that the ferrous sulphate will also destroy parasitic fungi ; and experiments are in progress to testita value as a manure for vines.

A Furnace Patent Decision.

Judge Blatchford, of the United States Circuit Court for the Northern District of New York, has recently rendered a decision in a suit involving a certain construction of hot air turnaces which is of much importance to the trade. From a report in the Utica Observer, we learn that it was a test case, and would, had the decision been the other way, involve several of the largest furnace manufacturing concerns in the country.
The Palace King furnace is manufactured under what is known as the Goodenow \& Owen patent by Russell Wheeler Son \& Co of Utica. In October by Russell Wheeler, Son \& Co., of Utica. In October las this company brougt an Circuit Court for the Northern District of New York against the firm of H . Gilbert Hart \& Co, which firm is composed of H. Gilbert Hart, Frank T. Budlong and Milton K. Merwin, manufacturers of a furnace known as the Royal hot air furnace. The complaint in the action alleged that the Royal hot air furnace was an infringement on the Palace furnace, and an in junction was asked restraining its manufacture and sale. The action also involved a demand that the manufacturers of the Royal furnace pay over to the complainants all profits derived from its manufacture and sale.
The action was thoroughly prosecuted, over four weeks being consumed in taking proofs, covering 500 pages of printed matter, or about 2,000 folios. The case came on for argument at the June terin of the United States Circuit Court, held in Canandaigua before Judge Blatchford, of the United States Court. August 22, he filed his decision in the United States clerk's office in Utica, holding that defendants' furnace was not an infringement upon the Palace furnace manufactured by Wheeler \& Co., and dismissing the complaint with costs.

The claim in the Goodenow \& Owen patent upon which the suit was brought was as follows :
"A furnace having secured thereto a detachable radiator, which is provided with one or more horizontal flues opening from a dome leading from the furnace, and a circular or elliptical hot air chamber, having air passages leading from the horizontal flues to the smoke nozzle or exit pipes, substantially as and for the purpose set forth."
The text of Justice Blatchford's decision is follows:
"The words of claim one of the Goodenow \& Owen patent, ' a furnace having secured thereto a detachable radiator,' 'substantially as and for the purpose set forth,' requires, by reference to the description part of the specification, that the radiator shall not only be detachable, but shall be secured by the flange, N the slots, N, and the lugs, O, which, as the specification says, securely lock it in position, it being made detachable by bringing the lugs opposite to the slots. The state of the art also requires this interpretation of the clait. As the defendants' furnace contains no such means of securing the radiator in position, there is no infringement, and the bill must be dismissed with costs."

The Hop Louse.

Professor Riley, the entomologist of the Department of Agriculture, has made public the result of an exhaustive personal investigation into the habits of the Phorodon humili, or hop louse. His discoveries are expected to prove of great value to hop growers, as he has succeeded in learning the habitation of this plant pest during the winter months, and tracing it through the varying stages of insect life. Before the investigation, it was not known how or where the insect survived the winter. As a result of his inquiries, Professor Riley has satisfied himself that the eggs laid by the female at the close of the summer are deposited in plum trees, where the insect hatches in the spring, and resides until the third generation. This third brood, unlike its predecessors, is winged, and immediately after development abandons the plum tree and attacks the hop vine. In the autumn a counter migration from the hop vine to the plum tree occurs, the winter eggs are deposited, and the cycle of life goes on in the same way.
It is a notable fact that in regions where the cultivation of hop vines is a new industry, the growers have had complete immunity for a while from the pest. In California to-day they are not troubled by it. Professor Riley believes that the Phorodon humili has been brought to this country from Europe on plum stock; and there is reason to believe that the Phylloxera, the dreaded grape pest, was carried from this country to Europe on grape vine cuttings. Therefore California hop growers are warned to beware of importing plum stock from eastern hop regions. These discoveries render it possible to check the ravage of the hop louse either by the use of insecticides in the spring time, before the insect has reached the winged state, or by the destruction of the sheltering plum trees. The experiments will be continued with a view to protecting the hop vines after they have become infected.-Science.

fine belaian metal work.

In the accompanying illustration is represented a specimen of beautiful work in bronze gilt, executed in Liege, Belgium. Its rich and elaborate ornamentation and brilliant gilding make it a most conspicuous feature even in such gorgeous salons as are to be found in French and Belgian palaces. Unlike our practice in the use of gas, this has been designed to be provided with

A BRONZE-GILT LOUIS XVI. CHANDELIER.
candles and the French mechanical lamps so much in use in Europe. This practice of illuminating salons being the alnost universal custom in foreign countries, owing to the belief that the yellow light emitted is more becoming to the complexion than the more dazzling glare of gas or the electric light.

ARTISTIC WORK IN SILVER AND BRONZE
The excellence of much of the work now executed by the leading American silversimiths is such that their productions unquestionably compare favorably with the best samples of foreign workmanship, while in all lines of plated goods our decided superiority over the manufactures of other countries will be readily a

LAMP IN SILVER AND BRONZE-ADAPTATION OF ORIENTAL DESIGN.
mitted. Although every device is adopted whereby hand labor may be abbreviated, in the production of staple goods, expense is lavishly incurred in the getting out of new désigns, and in the making of the most perfect steel dies for stampine, when the goods are thus formed, while in such articles as aro cast such care is taken with the mould that ticuy generally come out sharp and clean, and with an almost perfect finish.
An ornamental lamr after a somewhat Oriental design, which presents no sinall difficulties in its execution, is shown in the accompanying illustration, and is the work of one of the best known of our manufactur-
ing silversmiths. The dragon which forms the stand is of bronze, its serpentine body being wound around the horn, which forms the reservoir, and its crested head and wings, coming under the portion of the lamp bearing the greatest weight, give a proper sense of solidity, its claws furnishing the feet. The horn is of hammered silver, or of copper plated, oxidizing the silver making a most effective contrast and affording an article which will be very serviceable while needing but little care. The finish of this piece, and of a great variety of work of similar character, leaves nothing to be desired. In all such work the American public has the opportunity of obtaining goods of real artistic merit in a wider variety of design than they can be found anywhere abroad, and at a moderate cost.

Albuquerque, New Mexico

The geographical location of this region of the Rocky Mountains is such as to exclude the possibility of the presence of moisture from either ocean or any other large body of water. The air is so pure and clear that our perception of distance seems to be almost annihilated, the mountains, some twenty miles to the east
appearing only two or three wiles distant. The bodies of animals dying on the plains dry up, be coming mummified. May we not have here the ideal long sought for by every surgeon-a pure aseptic atmosphere, entirely free from germs Bright, sunny skies, some portion of the day, is the rule even during the rainy season; two or three pleasant days often intervening between the showers. The winters are extremely mild. The ground was not covered with snow a single day during the past winter. During the past seven months there were only four entirely cloudy days -a land of almost perpetual sunshine, it even being extremely comfortable, throughout the winter months, to sit outdoors many hours of the day and enjoy the luxury of a mid-winter sun bath.-Dr. T. J. Cummins, in Medical Recorll.

The New United States Steamer Boston.
The new war cruiser Boston made a successful trial trip on the first instant, over the waters of Long Island Sound. $4,264 \mathrm{~h}$. p. was developed and a speed of about 16 miles an hour attained. This is one of the ships built by the late John Roach. The substantial construction of the vessel and the supe rior character of her machinery were conspicuously shown on this trial, and do credit to the memory of her builder.

Alum for Bad Water.

The use of alum to clear muddy water has long been known, but Professor Leeds, in the course of an inves tigation on an outbreak of typhoid fever at Mount Holly, discovered another value in the use of alum, which, if his observation proves correct, may be very mportant. He found that the water which was sup plied to the inhabitants of Mount Holly was swarming with bacteria, about fifteen drops being capable of forming 8,100 colonies of these microscopic vegetal germs when spread upon a suitable surface. He tried the experiment of adding a minute amount of alum to this water in the proportion of only half a grain to a gallon, and found that not only was the dirt and coloring matter precipitated, but that instead of the same quantity of water containing 8,100 colonies of bacteria, it contained only 80 , and these were all of a large form.
On filtering the water through two thicknesses of filtering paper, he found that the filtered water contained no bacteria, but was " as sterile as if it had been subject to prolonged boiling." This amount of alum is too small to be evident to the taste, and is not harmful to health. If his observations shall remain unrefuted, they may form a valuable method of purifying polluted drinking water. Of course it does not follow that, because bacteria are removed, therefore the ob scure cause of diseases due to impure drinking water is also removed; but bacteria and these diseases appear to be coincident, even if not linked almost as cause and effect, according to modern theories, and it is not too much to hope that, if the bacteria are removed, the virus of these diseases will be removed with them.-Public Ledger.

Adulteration of flour by means of potato flour

 may be detected by means of acids. Take a spoonful and pour upon it a little nitric acid; if the flour be of wheat, it will be changed to an orange yellow; if wholly of potato flour, the color would not be altered but the flour formed into a tenacious jelly; if there fore the flour be adulterated with potato flour, it will not be difficult to decide. Again, take a spoonful of the flour, and pour upon it a little muriatic acid; if the flour be of pure wheat, it will be changed to a deep violet color, without odor; but if potato flour be mixed in it, it will then have an odor like that of rushes.
Sneezing.

At a recent meeting of the Physiological Society, Berlin, Dr. Sandmann spoke on respiratory reflexes originating in the nasal mucous membrane. In order to study the possible connection between asthma and diseases of the nose, which has been so often supposed to exist, the speaker has made experiments on the respiration in rabbits and cats whose nasal openings had been completely occluded. In addition to confirming the phenomena which had been already described by earlier observers, he found that the changes in volume of the thorax were the same as in normal animals, whereas the intra-thoracic pressure was considerably increased when breathing was carried on entirely by the mouth ; similarly, the respiratory undulations of the blood pressure tracing were increased in amplitude. He next investigated more closely the respiratude. He next investigated more closely the respira-
tory reflexes which originate in the nasal mucous tory reflexes which originate in the nasal mucous
membrane; of these three are known, namely, inhibition of respiration, sneezing, and coughing, as a result of stimulation of the nose. Inhibition of respiration was observed to occur, according to the strength of the stimulation, either in the phase of expiration or of inspiration, or merely as a more pronounced expiration. Sneezing was brought about by tickling the piration. Sneezing was brought about by tickling the
nasal mucous membrane, and was found to consist of nasal mucous membrane, and was found to consist of
a deep inspiration with simultaneous closing up of the pharynx and mouth by the application of the tongue to the palate, followed by an explosive expiration. When the stimulation is slight, only the deep inspiration is produced; if the stimulation is strong, the deep inspiration is followed by a somewhat lengthy inhibition of the same, which is frequently accompanied by slight expiratory movements; when the stimulation is of moderate strength, an ordinary sneeze is the result. After section of the phrenic nerves the deep inspirations were no longer observed. Dr. Sandmann, by section and removal of the mucous membrane in rabbits, has further examined the various regional areas of the same, and found that sneezing can only be produced by tickling a limited area of the mucous membrane. On the rabbit this area is found in the entrance to the nose on the anterior surface of the lowest nasal muscle; but in addition to this place, the same reflexes may be produced by stimulation of the front part of the septum and roof of the nasal cavity. Sneezing cannot be produced by stimulation of any other portion of the nasal mucous membrane. In man the region of the posterior nasal openings is also connected with the reflexes involved in sneezing in addition to the regions mentioned above. An anatomidition to the regions mentioned above. An anatomi-
cal investigation of the areas whose stimulation leads cal investigation of the areas whose stimulation leads
to sneezing showed that they are supplied entirely by the ethmoid nerve. Stimulation of this nerve in the orbit was followed regularly by sneezing, which could therefore be produced to a certainty by stimulating the trunk of the nerve. The third kind of respiratory reflex -namely, coughing as the result of nasal stimulationcould not be experimentally produced in the cats and could not be experimentally produ
rabbits used in these experiments.

How to Teach a Pacer to Trot.
Boots are applied, and there is little doubt that the improvement in the trotters of the present day is greatly owing to the more intelligent use of these adjuncts. Still it is manifest that boots and hoofs of the hind feet, extending above the coronet, on the pasterns, ankles, and shins, must, more or less, hamper the animal wearing them, and if the difficulty can be obviated by a change of shoeing, it will be a superior method of overcoming it. But if this change in the shoeing should give a wrong bearing, an unnatural set of the feet or limbs, the remedy would eventually be worse than the disease. The use of tips presents a better opportunity to modulate the action than is possible to accomplish with shoes without endangering the feet and limbs. An illustration, and one which has struck me with the greatest force, is the change in the action of the colt when first shod. He has been broken and driven some before anything is placed upon his feet, and his trainer will tell you that there will be a favorable change whenever he has the iron fastened to his hoofs. In ninety-nine cases in a hundred the result will be as predicted, and the shoes, weighing in the neighborhood of a pound each, will increase his speed
by several seconds. I have found a tip of not more by several seconds. I have found a tip of not more
than six ounces to have the same effect. Again, a tendency to pace is overcome by a heavier shoe or the resort to something else which has been found to have an analogous effect.
One of the most successful trainers I ever knew in converting the pacer to a fast trotter informed me that to run the horse with feet weighted until he became too tired either to run or pace was the most effectual method he had ever found to overcome the propensity for the lateral manner of progression. This proves that a heavy shoe or heavy toe weight is inimical to the trotting gait, and the horse finding he can get the trotting gait, and the horse finding he can get relieve himself by adopting the action suitable to the changed condition, and that which, tired beyond en-
durance in the other paces, can be sustained at the trot. This is also further proved by the other methods which trainers employ to change the pace into the trot. The old plan was to strew the road with rails and ride the animal over it; another, to practice the horse through loose sand or deep snow ; and lately, in Texas, a very fast trotter was converted by driving him on the beach when the water reached his knees. The latter method is evidently a very effectual one to cause the horse to bend his knees, and the theory of the effect of weight on the action and the practice coincide. It is manifest that the knees must be bent more to enable the horse to get through the water easily, for if the leg were pushed along, the resistance of the fluid would be
great, consequently the horse soon learns to pick his great, consequently the horse soon learns to pick his foot up as nearly perpendicular as he can, and thrust well forward. The most approved theory is that the weight influences the action more strongly where the heaviest weight is placed, and with shoes made much heavier on the inner quarter, the striking of the knee will be more likely to follow, and a horse which hits his knee with an equal shoe will avoid it when the outside is made the heaviest. It will necessarily follow the adoption of this hypothesis that weight on the toe will have a greater influence on the action than the same amount distributed over the whole foot; and though the present form of the weight was invented to obviate the bruising of the heels from the older-fashioned kind, it was based on the scientific principle of the correlation of forces. Thus, a bullet with one hemisphere cast of a denser material than the other will fly in a curve, the shorter radius being on the light side. The lighter the side the greater will be the effect, and if the power could be applied so as to overcome the attraction of gravitation, such a ball would describe a horizontal circle.-Live Stock News.

Quicksilver Ores.

Speaking on the character of quicksilver deposits, Prof. S. B. Cristie, of the University of California, in his testimony in a recent case-in San Francisco, says : Quicksilver deposits, as a general rule, are very different from those of the ores of other metals. Many other metals occur in well-defined fissure veins, so that there is no difficulty in following the ore, and in many cases of calculating beforehand the amount of ore in sight; but with the exception of the deposit at the Old Almaden in Spain, and to some extent the deposit at the Idria in Austria, the quicksilver deposits, particularly those of California, are characterized by a great and persistent irregularity, so that it makes the mining of these ores much more difficult than that of other metals. New Almaden is a striking example of this irregularity. It has often occurred in the history of the mine that there was none or scarcely any ore in sight, and it has often looked as though the mines must of necessity be shut down, and it has only been by the most careful and painstaking prospecting or dead work that it has been possible to keep up the production of the mine. Very frequently large bodies of ore will almost completely run out, and there will be visible in the face of the works only a slight coloration in the vein matter, which indicates that there is ore left in that particular place, and by following out this little spring of ore carefully it may lead into a large deposit. As a result of this, the workings of the mine are necessarily very irregular, and it requires the greatest skill on the part of the engineer in charge of greatest skill on the part of the engineer in charge of
the works to keep up a regular and steady output of ore. the works to keep up a regular and steady output of ore.
Many times in the past history of the mine, the prospecting work has not been carried on on a sufficient scale, and this largely accounts for some of the irregu-
larities of the production of the mine in former times.

How to Increase the Adhesion of Locomotive

wheels.

At the recent meeting of the American Association for the Advancement of Science, in New York, Mr. Elias E. Ries read a paper describing some experiments made by him with a view of determining whether the increased traction observed on the Daft Electric Railway in Baltimore and Hampden was due to the passage of the current from the rails to the wheels. In these experiments he came to the conclusion that it was possible to increase the tractive force sion that it was possible to increase the tractive force
from 50 to 100 per cent by suitable arrangements, and he showed a model car in which the two front wheels were insulated from the axle, and the two hind wheels metallically connected with their axle and the body of the car. He employed alternating currents of low potential obtained from a transformer. The current was led by a rubbing contact into the right front wheel; from there it passed into the rail, going then wheel; from there it passed into the rail, going then
into the right rear wheel, and by the left rear wheel into the second rail, passing along the latter into the left front wheel, where, by means of another rubbing contact, it was led back to the transformer. The author attributes the increase of friction between the tires of the wheels and the rails to a change of molecular structure and to the development of heat at the points in contact, both of which effects are dependent on the strength of the current. He proposes to increase the traction of locomotives by mounting a small
alternate current dynamo and transformer, the transformer being necessary in order to produce currents of very great strength and low tension, which could not be economically done direct from the dynamo. The low tension current would be sent through the wheels and rails, a rheostat being inserted in the circuit, by which the amount of current and the increase of friction could be regulated. He suggests that this system ways.
of the Manufacture of Tin
Plate.
Mr. P. W. Fowler Neath, at a recent meeting of the Iron and Steel Institute, gave some interesting information in regard to the history of the tin plate industry. Historic documents show that tin plate was known at the time of the wars of Alexander the Great in the Indies. Herodotus, 450 years before Christ, Diodorus Siculus, Aristotle, and Pliny all speak of tin and the use of it for preserving iron. The tin was extracted from the mines of Setis and St. Michael's Mount, and from the mines of Setis and St. Michael's Mount, and
brought to the shores of the Channel to be carried through Gaul to Massilia (Marseilles).
At the beginning of the 17th century, the manufacure of tin plate was in a flourishing condition in Bohemia. In 1620, the Duke of Saxony established this industry in his states, and in 1665 it was in full prosperit
ton.

The plates were hammered by hand, and then picked in sour barley water, for want of acid. This ope ration took several days, while with sulphuric acid it can be performed in a few minutes. The tin plate were packed in casks weighing 140 Prague pounds, and carried on the backs of animals over the mountains to Leipzig, or transported down the Elbe on sleds in winter.
From 1650 to 1680, at the instigation of Colbert aided by Mr. Reaumur, who, like Yarranton, had visit ed Germany, an effort, which proved unsuccessful, was made to introduce the industry into France. Yarran ton states that the iron trade was depressed in England in 1665. The importations from Sweden, Germany, and France lay heavy on the market, and the same was the case with Welsh tin, and so he conceived the idea of endowing his country with the tin plate industry, which he had seen so prosperous in Saxony. A syndicate was formed, but nothing was done until 1720, when Major John Hanbury established the first factory at Ponty pool.
The following are the improvements that have been introduced into the industry since then:
In 1728, the plates began to be rolled at Pontypool, instead of being hammered as before. In 1745, a vessel filled with melted grease was used for heating and preparing the iron before tinning it. In 1770, coal was applied to the manufacture of the iron. In 1806 , sulphuric acid was substituted for sour barley water for pickling the plate. In 1829, Mr. Thomas Morgan reheated the plates in closed cast iron boxes, instead of bringing them intocontact with flames. In 1866, Messrs. Morewood \& Sanders took out a patent for rolling tin plates as they came from the tinning crucible. In 1874 pickling apparatus were introduced. In 1875, the Mar tin-Siemens soft steel was substituted for Swedish iron In 1883, appeared the Thomas soft steel.
The tin plate industry is now consuming 460,000 tons of English iron and steel a year that would be useless for the same purposes if it were not coated with tin.
In 1885, there were 96 tin plate works, with 320 rolling machines, and the mean production of each machine was 96 barrels per day. During this same year the production was $7,130,000$ barrels, $5,230,000$ of which were for exportation.
The manufacture of fruit and meat cans is enormous. Three million barrels give $875,000,000$ of these. It is due to them that the entire world receives from the far West salmon from the Oregon, mutton from the plains of Australia, fruits of all sorts from California, lobsters from Massachusetts and Nova Scotia, oysters and peaches from Baltimore, sardines and green peas from France, pineapples from the Mauritius Islands, apricots from Lisbon, milk from Switzerland, preserves from Tasmania, and a host of products from foreign climes. These boxes have become a necessity to modern civilization.-Revue Industrielle.

The Sense of Temperature.

Dr. Goldschneider lately presented and explained to the Berlin Physiological Society plates illustrating the topography of the sense of temperature. The sense of heat and cold was determined for the whole surface of the body, and arranged in a series corresponding to twelve degrees of intensity. As a general result, it
was found that the sense of cold is more extended than that of heat; that both senses are more developed on the trunk than on the extremities; that the sense of temperature is less acute in the median line of the body; that the distribution of this sense over the surface of the body is quite different from that of the sense of touch; and that the points of exit of the nerves possess little or no sense of temperature.

ENGINEERING INVENTIONS.

A stuffing box has been patented by Mr. Erastus G. Medrick, of Middletown, N. Y. It has wedge-shaped packing rings held in a gland and oper-
ated on by a piston fitting steam tight, a ring surroundated on by a piston fitting steam tight, a ring surround
ing the wedge-shaped packing rings, the invention being ing the wedge-shaped packing rings, the invention being
especially adapted for steam cylinders and steam chests.
A safety water gauge has been paented by Mr. Peter Barclay, of Winthrop, Mass. This invention covers a construction whereby the valves
connecting a boiler with the glass sight tube will cose automatically, and prevent glass sight tube will of steam and water, in case the sight tube shouid be accidentally broken.
A railroad rail has been patented by Mr. Samuel M. Jacobs, of New York City. It i made with a lengthwise groove, and with lower o bottom recesses at intervals into which the groove opens, forming a guide to peripherally toothed or
flanged car wheels, and being practically self-clearing flanged car wheels, and being practically self-clearing

A car brake has been patented by Mr. Edward B. Warren, of Plankinton, Dakota Ter. Combined with the brake levers is a swinging gearplate, a gear plate in and out of gear, and other nove features the brake being controllable from the locomotive, and being efficient when the train is moving forward o backward, in a straight line or on curves. The paten claims.

AGRICULTURAL INVENTION.

A combined plow and harrow has been patented by Mr. William P. Clark, of Elberton, Ga he invention covers an implement having interchangeV han a mat or V harro

MISCELLANEOUS INVENTIONS

A button has been patented by Mr . ierre A. Raymond, of Grenoble, France. It is the invention covering an improved construction of similar button formerly patented by the same inventor A perfumed artificial flower has been patented by Mr. Solon Palmer, of New York City. I ing powder and concealed within the petals of the lower, the stem of the flower extending into the mouth of the receptacle.
A galvanic battery has been patented by Mr. Horatio J. Brewer, of New York City. The in vention consists of a method of filling and packing
the electro-negative material in a bag tightly around the carbon electrode, and maintaining a firm contact be
A pendulum level has been patented by Mr. Oscar B. Fuller, of Burlington, Kansas. This invention relates to angle-measuring implements wherein a pendulous bob determines the vertical line, and affords a simple and improved construction, to increase
their sensitiveness and accuracy and to render them more convenient in use
A churn dasher has been patented by Mr. Lewis D. Bunce, of Salt Lake City, Utah Ter The dasher blades are secured on a vertical dashe shaft by means of radial wings projecting from the
shaft, the wings being formed on the shaft at a small cost, and forming a simple and efficient means of securing the blades thereto.
An inhaler has been patented by Messrs. Edgar S. Werner, of New York City, and Joh inhaling and exhaling tubes, and provided upon the inside with a coiled wire for holding sponges out of contact with the interior of the casing, in combination contact with the interior of the casing, in combination
with mouth and nostril tubes connected to the casing. A pavement has been patented by-Mr. Elwin A. Snow, of Jacksonville, N. Y. It is preferably blocks, with supporting bars on their under surface, with means for locking the plates together, making a pave ment which can be readily and quickly laid, and will be durable and self-supporting over nneven ground
ditches, etc.
A machine for printing oil cloths, etc., has been patented by Mr. George Davison, Jr., of
Brooklyn, N. Y. The invention covers a novel construction and combination of parts for a machine width cloth, and in which the print rollers are an wiath cloth, and in which the print rollers are mad adjusted to the width of the cloth.
A documental file has been patented by Mr. John M. Willis, of New York City. It has able backs of variable widths for connecting and holding the flaps at different distances apart, rendering being particularly adapted to receive and preserve legal documents.
A magnetic register connection for water meters has been patented by Messrs. Albert \mathbf{S}.
Dietzman and George Cressey, of Louisville, Ky. This invention utilizes a permanent magnet moving in the water with themechanism of the meter, and influencing,
through the walls of the case, an armature with contacts controlling an electric circuit outside of the mete case

A lumber assorter has been patented by Messrs. Horace B. Phillips and William M. Whaley of Suffolk, Va. The machine comprises a series of guideways with receiving ends near the trimming sawe, gaideways having actuated rollers at the bottom, upon
which the Iumber rests and is moved away, in connection with various novel features.
A water heater has been patented by Mr. Henry Stutsman, of East Portland, Oregon. It is for use in connection with stoves, ranges, etc., and
combines with a reservoir a cylinder connected at top and bottom therewith, the cylinder having radial tubes, etc., to provide for heating a large quantity of water, and give a good circulation thereto, without any extra penditure of heat.
A wagon end gate has been patented by Messrs. Robert R. Tichenor and Philetus Walker, of Henning, Minn. The side boards of the wagon have apertured plates, with flanges on their rear edges, and the bottom of the wagon, and there are other novel Peatures, so that the end gate may be readily removed nd replaced, and will securely bind the ends of the de boards of the box.
A cactus singer has been patented by Mr. Ernest W. Vacher, of Derby, Texas. It is an aparatus which can be conveniently carried, and has an just sufficient oil is supplied for each occasion of use he flame being forced out through a narrow opening of he burner to a height of two feet if desired, the device eing inexpensive, and one which can be used without anger.
A
A machine for forming veneer drums has been patented by Messrs. Wilson Godfrey and
George W. Halstead, of Brooklyn, N. Y. The invenion consists of the combination with a forming cylinround it, means for lifting the forming cylinder, which round it, means for lifting the forming cylinder, which mechanism for binding the lapped edges of the veneer with other novel features.
A cloth-cutting machine has been paanted by Mr. Thomas W. Parshall, of Brooklyn, N. Y. consists of a very thin endless belt knife mounted in by a light belt. from a flexible shaft or otherwise, the pposite sides of the belt blade running close together on opposite directions, and the base being made of conenient shape to be slipped readily under a pile of cloth o be cut, the edges of which are thus brought agai
he two opposite moving edges of the belt knife.
A gas regulator has been patented by M. Cary Pattrell, of Derrick City, Pa. Combin ith a T coupling, having a valve seat to one side is inlet opening, is an expansible casing connected ing opposite the valve seat, a stuting box in alignment with the valve seat, and a screw stem passing through the stuffing box and casing into the coupling, with other novel features, for automatically regulating the uantity and pressure of the gas.

23usiness and Wersonal.
The charge for Insertion under thes head is One Dollar
a linefor each insertion; about eight words to a lin Advertisemunts insertion; about eight woras as early as Thursday morning to appear in next issue.
"The book has been prepared for young members of o elucidate in plain English a few important elementary principles which the savants have enveloped in such a aze of mystery as to render pursuit hopeless to any but
confirmed mathematician."-From preface to first confrmed mathematician."-From
edition of Trautwine's " Pocket Book."
Payswell on Small Investment.-Stereopticons, Magic xhibitions. Lanterns for colleges, Sunday schools, and home amusements. 152 page illustrated catalogue free. All Books, App.,etc. cheap. School of Electricity, N.Y.
Wanted-Scientific American, vol. 50, Nos. 4, 16 ad 18. Address C. A. M., Scientific american Office, Steam jacketfeed water boiler and purifiër. New catague free. Wm. Baragwanath \& Son, 40 W . Division St Pedestal tenoner. All kinds wood
c. B. Rogers \& Co., Norwich, Conn.
Stationary and boat engines, boilers. Best and cheopst. 1 to 10 H. P. Washburn Engine Co., Medina, Ohio For the latest improved diamond prospecting drills, ddress the
The Railroad Aazette, handsomely illustrated, published weekly, at 73 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federal t... Boston, and 93 Liberty St., New York, have just is-
ued a new catalogue, in which are many new and imroved forms of Pumping Machinery of new and imuplex, steam and power type. This catalogue will be位
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Maeh. Co., Bridgeton, N.J Woodworking Machinery of all kinds. The Bentel \& Narkedant Co., 116 Fourth St., Hamilton,
Nickel Plating.-Sole manufacturers cast nickel anLittle Wonder." A parfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline.
Complete outat for plating, etc. Hanson, Van Winkle \& Co., Newark, N. J., and 92 and 94 Liberty St., New York. Supplement Catalogue.-Persons in pursuit of inforation of any special engineering, mechanical, or scienuffc subject, can have catalogue of contents of the ScrThific American Supplement sent to them free. he SUPPLEMENT contains lengthy articles emoracing cience. Address Munn \& Co.. Publishers, New York. Iron Planer, Lathe, Drill, and other machine tools of Iron, Steel, and Copper Drop Forgings of every decription. Billings \& Spencer Co., Hartford, Conn.
60,000 Emerson's 1887 Book of superior saws, with ddress Emerson, Smith \& Co., Limited, Beaver Falls,

Pat. Geared Scroll Chucks, with 3 pinions, sold at sam prices as com
ford, Conn.
Steam Hammers, Improved Hydraulic Jacks, and Tab The best Dynamos for Light, for Nickel Plating, Ele Hy ectric Co., New York. Send for catalogue.
Hoisting Engines, Friction Clutch Pulleys, Cut-of "How to Keep Boilers Clean." Send your addres 88 Page Jos. C. Hotalise 120 Liberty St N. Y .
The

The Holly Manufacturing Co., of Lockport, N. Y will send their pamphlet, describing water works maDurrell's imp. nut tapper. Taps $1 / 2$ to 2 in . New imp. olt cutter. Howard Bros., Iron Works, Fredonia, N. Y. For best leather belting and lace leather, including
Hercules, see Page Belting Co.'s adv., p. 173. Double boring machines. Double spindle shapin chines. Rollstone Machine Co., Fitchburg. Mass. Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Send for new and complete catalogue of Scientific Books for sule b
on application.

SCIENTIFIC AMERICAN

buIldina EDITION

 SEPTEMBER NUMBER.
TABLE OF CONTENTS.

Elegant Plate in Colors of a Twelve Hundred
Dollar Cottage, with floor plans; specifications beet of details,
2. Plate in Colors, with specifications, estimate,
and bill of materials, for a Southern Residence of moderate cost. An elegant design.
3. Handsome design for a Library Building. 4. Perspective view, with floor plans, fo
ing costing Five Thousand Dollars.
5. Drawing in perspective, with floor plans, for
Cottage costing Thirty-five Hundred Dollars.
6. Floor plans and perspective for a Country
Store costing Two Thousand Dollars.
7. Perspective view and floor plans for a Resi-
8. A handsome Dwelling costing Four Thousand
Two Hundred Dollars. Perspective and floor
9. Perspective and floor plans for an Eighteen 10. Perspective view and floor plans of Grace Me
morial House Mrovidence, h. I., a School
House, and Nursery. Cost, Four Thousand
11. Suggestions in Decorative Art. 12. Sketch for a Seashore or Beach Dwelling. 13. Illustrations of Tenement Houses of moderate
14. Examples of Suburban Houses at Hamilton
Heights, Fort Hamilton, N. Y.
15. Floor plans, elevations, and perspective view of
an Eight-room Ohio Dwelling, costing about
Five Thousand Dollars.
16. Elegant design for a Bank Building at Knox-
ville, Tenn.
17. Design of the Yankee Cottage now at the
American Exhibition, London.
18. Design for Elegant Residence of C. C. Bloom-
fleld, Esq., Jackson, Mich. TWo half page drawings, showing view in stair hall, perspect-
ive, and thoor plans.
19. Interior view of Stable with horizontal floor
and hygienic drainage. Three illustrations. 20. Design for Grant Monument, Riverside Park,
New York. By H. A. Male. 21. Examples of Small City Houses at Paris.

The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single

Circilation of any Architectural
the world. Sold hy all newsdealers.
MUNN \& CO., Publishers,
361 Broadway, New York.

TO INVENTORS.

An experience of forty years, and the preparation of nore than one hundred thousand applications for patents at home and abroad, enable us to understand the
laws and practice on both continents, and to possess unlaws and practice on both continents, and to possess un
equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices,
which are low, in accordance with the times and our extensive facilities for conducting the business. Address GunN \& CO., offic

INDEX OF INVENTIONS

For which Letters Patent of the

September 13, 1887,

AND EACH BEARING THAT DATE.

See noteat end of list about copies of these patenta.

 Advertisements and transparencies, frame for, F.
B. Ras Air or gas gauge....................................... pressure,
Gordon, Jr., \& Lowdon.......................... 30,932 Annunciator call system, electrical., F.............. J. Patten. 369,9810
Atomizer and syringe, combined, s . w . Beall...... 399,767 Atmospheric brake, A. B. Murray. 3699,855
Axle box, car, F. Peteler.................. 3693

Bag. See Traveling bag.
Bag lock, W. T. Milliken..70,867
Ball trap, C. F. Stock (r)............................... 10,867
Bar. See Draw bar.
Battery. See Galvanic battery.
 Bell rope, M. Riley........... 3399,738
Binders, tension for twine, E. K. Hill.......... 369,710 Biscuits, etc., machinery for piping or decorating,
E. Herisse.....................................399,789
Blasting powder, K. J. Sundstrom 370,025 Basting powder, K. J. Sundstrom................... 370,022
Boad. See. Harvester butting board. Organ
socket board.
Boiler. See Steam boiler.
Bolt threading machine, C. . . Roberts............. 869,963
Box. See Axle box. Miter box. Stuffing box.
Box. See Axle box. Miter box. Stuffing box.
Box, J. P. Buckingham......................... 699,688
Boxes, frames, and like structures, joint for cor-
ners of, W. A. Eddy
noxes, frames,
ners of, W. A. Eddy 369,927
Bottle mouths, tool for forming grooves in, B.

Brake. See Atmospheric brake. Car brake.
Wakon brake.
Brake shoe and head, J. P. Race 389,786
Bread sponge raising device, J. Conway......... 369,776

Button, P. A. Raymond............................... 369
Button or stud, H. H. Curtis................. 369
Buttons, machine for manufacturing, G. Heid-

Car wheel, w. B. Swart wout..................... ... 369,752
Cars, buffer brake for railway, H. s. Richard..... 369,814
graves..369,743
Carbons, apparatus for making, J. T. Lister (r) .
arriage bows, die for forming stump joints for,
Davis $\&$ Casey............................ 369,778

Case. See Watch case.
Celluloid or analogous material, die for moulding
hollow articles of, J. A. Furman................. 399,784
Chair. See Folding chair. Reclining chair.
Chairs, head rest for, J. Hogan...................... 369
Check rower and drill combined, wheel, I. H.
Ward................................... 369

Churr, cream testing, F. B. Fargo..........
Cigar and cigar mould, H. T. Ofterdinger
Cigar and cigar mould, H. T. Ofterdinger
Cleaner. See Chimney cleaner. Moss cleaner.

M. Palen Mard and orchard plows, adjustable,

Clutch, preumatic, J. P. Noyes............................... 369
Coal hod, J. Ringen............................... 369
heim... 369,764
Concrete, apparatus for the preparation of, E.

Cotton gin attachment, R. M. Blackwelder......... say,9\%8
Coupling. See Car coupling. Thill coupling.

Coupling tool, A. Nutting..... 369,731
Crane for coal carts, T. M. Hackett........... 370,014

Crusher. See Ore crusher.

Cut off valve, rocking, Mathias \& Mendenhal
Cutter. See Meat cutter. Vegetable cutter.
Cutter. Seee Meat cutter. Vleasota...........................399,785
F. E. B
Cuting
atting tool gauge, L. Blair.
Diffusing apparatus, M. L. E. Duval................. 30
Difusing apparatus, mechanical device for shut-
ting the doors of, M. L. E. Duval.
Display frame, E. A. Tracy........
Ditching machine, R. H. Kersey.
389,973
309,948

Draught equalizer, e. c. C. Currey
Draw bar and bumper, F. Petele
Dredger, H. B. Angell
Drill. See Seed drill.
Dumb waiter stop, W. M. Seaward.
Dust collector, O. M. Morse............................ 37000,
Dyeing, apparatus for, Sampson \& Jealous... Dyeing, apparatus for, Sampson \& Egg tray machine, G. I. Jaeger........... Electric machine, or motor, dynamo.................
Electric motors. regulation of, S. S. Wheeler... Electrical motors, regulation of, Sut, N. F. Stoddard
Electro-magnetic brake circuits, governor for, G
Electrotypes, apparatus for backing, R. Gnich-
witz \ldots..
Elevator. See Hydradic elevator. Safety ele
Embroidery machine, T. Keith.
End rate, wagon, J. T. Snoddy............
End gate, wagon, Tichenor \& Walker
reed water hosette engine. Steam engin
Feed water heater and puriffer, J. J. Hoppes,
Fen water, heating,
Fence, J. W. Trinkle....
Fibers post, J. W. Davy........................
and
grating, H. Blackman.
and apparatus fordisintegrating, H. Blackman File cutting machines, chisel holder for,

File, documental, J. M. Willi

Filter, cement, J. W. Hyatt.
Filter, coffee, L. W. Buxton...
Filtering medium, J. W. Hyatt
Filtering substance, J. W. Hyat
Fire escape, R. Bemish
Fireproof partition, T. Bailey
lower, perfumed artififial, S. Palmer
Folding chair, J. P. Gage.
racture apparatus, H. H. Clark
wool packing
Fruit press, R. M. Hunter
Fur blowing machine, T. F. Fay
Gauge. See Air or gas gauge. Cutting tool gauge.
Siding gauge. Water gauge.
alvanic battery, H. J. Brewer
Garment or cuff holder, s. P. Babcock
Gas burner regulator, H. W. Rappleye....
ate. See End gate
Gate, J. W. McAhister........
Gate, J. Sisung, Jr.......
Gearing, frictional, D. Wi
Gearing, frictional, D. Wilde...
Gik tree and attachments, c. o. Gre
Glove tastener, G. Geary...........
Glove fastener, W. J. Thompson.
Gold leaf, production of sh
apparatus, J.
Gun, breech-loading, C. Rostel..................... $\underset{A}{\&}$ Smith.
Handle. See Shovel handle. Vessel handle
Hanger. See Faves trough hanger.
Harness attachment, W. H. Du Bose.
Harness chafe and loop, F. W. R. Bradford..
Harrow, \boldsymbol{G}. M. Powell...............
Garrow, G. M. Powell.
Harvester butting board, C. H. Salzman. Hat holder, J. M. Harrison

nelly...
Heater. See Feed water heater. Water heater.
Heating and ventilating prisons or other build ings, \mathbf{c}. E. Felton.............
Heating furnace, E. \mathbf{C}
Hoisting and conveying mac
Hoisting bucket, M.
Hoisting bucket, M. Delory.
Hoisting bucket, L. G. Ladd.
Holder. See Copying. pad holder. Garment or
cuif holder. Hat holder. Oil can holder. Pa-
per holder. Pencil holder. Picture title
Hook. See Wardrobe hook.
Horseshoe, J. B. White.................
Houses, warming and ventilating, E. s. Wicklin. Hub, vehicle, J. M. Sweet......
Hydraulic elevator, W. T. Fox Hydraulic Jack, R. H. Dudzeon (r)
Hydraulic jack, \mathbf{O},
Incubator,
F. Biven
Inhaler, Werner \& Giffor
Ink, composition for softening printers', G. M. Stanchfield...
Insulated electri

J.T. Jaques........ lron. See Smoothing iro
 Joint. See Hy

Knob, E. J. Blackham.
Land roller, J. F. Packer....
Lemon squeezer, J. T. Hodson.
Level, pendulum, B. Fuller.
Level, plumb, A. Sprange
I.ever, reversing, J. Player.................................
Lighting, etc., apparatus for supplying hydrocar
bon and other liquids for, Mitchell \& Warren..
Lightning conductor, \mathbf{W}. Brown....................
lock.
Locomotive whistles, device for automatically
blowing, C. Hess............
Loom shuttle spisdle, I. A. Blood.
Looms. dobby for, J. Hollingworth
Mangle, clothes, J. \& W. Addison.
Meat cutter. A. Shepard....76,74, Metal workibg machine, compound, Olsen $\&$ Milk, teatina, ©. De Le Laval.
Mill. See Sawmill.
Miter box, Bxemster \& Williams.
Mortising machine, H. M. Darling

 Switch mechanism, F. H. T
Table. See Folding table. Table. See Folding table.
Tank. See Water closet flushing tank.
Tea or coffee infue, Tea or coffee infuser, W. F. Schutte.
Telegraph, railwar, L. J. Phclps... Telegraph, railway, L. J. Phclps. Terret, roller, M. Werkheis
Thill coupling, S . Burdsall Thill coupling, S. Burdsall
Tie. See Railway cross tie. Tili, machine for laying drain, H. F. Fisk Tire tightener, R. Jennings.
Tobacco dressing machine
Track cleaner, T. A. Frase
Trap. See Ball trap.
Trap lock, J. F. Wolle
Traveling baa, valise, etc., F. S. Joline. Truck, J. Coup
Truss, Horick \& Storrs.
Tuyere, P. Simon
 $\begin{gathered}\text { spacing mechanism for elec } \\ \text { chanical, J. F. McLaughlin.... } \\ \text { Umbrella support. w. D. Stillman }\end{gathered}$ Umbrella support. w. D. Stillman. Valve, automatic sprinkler, E. T. Copeland. Valve controller, electric, w. H. Markland.
Valve controller, elevator, T. W. Heermans. Valve, steam. K. Knott.
Valing for controlling elevator,
Heermans......................
Vegetable cutter, w. I. Hinsch
Vehicle, two-whee ad, W. M. Graham
Vehicles, runner attachment for McCray
Velocipede, G. W. Mallette.......................
Velocipedes, watch bracket for, J. Foley, Jr. Vessel handle, F. C. Kasch. Wagon brake, T. Rood...
Wagon jack, C. O. Kelley
Walls and other purposes, manufacture of dec Wardrobe hook, Jayne \& Crosby
Wash stand, N. O. Bond....
Washing machine, A. Ber
Washing machine, A. Berdan..
Washing machine, J. L. Wilber
Watch balances, machin for turning and polish
ing the rims of. E. A.
Watch case, C. F. Morrill.
Water closet flushing tank, J. \& G. Douglas. Water gauge, safety, P. Barclay.
Water heater, H. Stutsman.......
Water in reservoirs, aeration of, J. W. Hyatt. Well boring, jar for, E. Lloyd. Wheel. See Car wheel.
Wheel, F . H. Herrin Wheel, F. H. Harris.
Wheel, J. F. Packer. Wheel, J. F. Packer...........
Wheels for the insertion of ar
porting, J. T. Kenworthy.
porting, J. T. Kenworthy.........
Wire and winding the same upon a cylinder, ma chine for cutting teeth in, D. B. Haselton.
Wire twisting machine, \mathbf{W}. Wire twisting machine, T. M. A.
Wool packing frame, T . Fisasser. DESIGNS.

Carpet, \mathbf{E}. Fisher
 Carpet,

Carpet, H. Horan....
Carpet, w. L. Jacobs

Carpet, W. L. Jacobs. Carpet, O. Righter. \qquad

Fan, A. L. Brainard
Hat, C.J. Heller...
Hat, C. J. Heller
Hub, wheel, J.
Hicture hanger, W. M. Brinkerhoff.
Picture hanger, W.
Railing, J. W. Bessell
Shoe, J. Elderken...
Shoe, J. Elderken...............
Stove, heatin, Kahn \& Thiem
Stove, heatiu, J,
Stove, heatiug, J. A. Price..............
Type, font of printing, W. Barnhart
TRADE MARKS

Carpe Robertson............ Champagne.H. M. Black

cultural purposes, dog and sheep washes, and
preparations for destroying parasites, disinfec-
tants, and antiseptics, J. Ascough...
Cigars, Schnbmehl, Pratt \& Co
Cosmetic, K. R. Hennesses.................................
Cotton and wonlen fabrics and yarns, National
Manufacturing Company..........................
crean
Crackers, biscuits, wafers, cakes, and kindred
Crackers, biscuits, wafers, cakes,
articles, F. A. Kennedy Company
Dyestuffs, and colors and other chemicals, Fab-
riques de Produits Chemiques
riques de Pr
Mulhouse...
ucalyptus for a boiler scale er.......................
tion of, Downie Boiler Incrustation Preventive

Company...... Gelatine, \mathbf{R} Cox.

Harness and saddles, L. D. Stone \& Co
Laundry blue, detergents, and starch, J. Ascough.
Leather, shoe and harness, F. Turner...................
Medicinal preparation for externa
use, fuid, Radway \& Company...
Mediclnal remedide
Medicinal remedies, certain, I. A. Detchon........
ruthers............................
Toilet preparations and articles, certain, J. \& E. Atkinson....14,748 to
Toilet preparations, medicated, Potter Drug and
Chemical Chemical Co..

A printed copy of the specifcation and drawing of any patent in the foregoing list, also of any patent
issued since 1866 , will be furnished from this office for 25 issued since 1866, will be furnished from this offce for
cents. In ordering please state the number and date Broadway, New York. We also furnish copiesof paten
granted prior to 1866; but at increased cost, as the
 and.
Canadinn Patents may now be obtained by the
inveutors for any of the inventions named in the forekoing list, provided they are simple, at a cost of $\$ 40$
each. If complicated the cost will be a little more. For full instructions address Mann \& Co., 361 Broad way,

Whovertisements.

International Exhibition

INDUSTRY SCIENCE, and ART,
Eelvingrove Park, Glasgow, 1888 Patron Her Most Gracious Majesty the Queen. Honorary President His Royal Highness the
Prince of Wales, K. K. T. T. President, Sir Archibald C. Campbell of Blytheqwood,
Baronet, M. Pi. Chairman of Cxecutive Council. The
Honorable Sir James King ot Campsie, LL.D. Lord ProHonorable. Sir James inan ot Campsie, LL.D. Lord Pro-
Host ot llagow Seeretry, Wm. M. Cunningham; General Manager. H. A. Hedley.
The classitication include Agriculture, Horticulture,
and Arboriculure, Mining. ivil Enginerng Nval.
chitecture and Engineering, Machinery of all kinds, Rail-
 and Water free.
The builing grouds coner sixt acres. Applica-
tion for space must be made belore November 1, 1887 .
 Arrankements have been made with the State Steam-
ship Company.the Ancor Lite, the A Alan Line and the
Cunard Line for the carriage of exhibits at special terms
to and from Glasgow.

aйтосорरist:

AST Widic:
4ivid

 ELTING, PACKINC, HOSE ULCANIZED RUBBER FABRICSAir Bralze Fiose RUBBER MATS,

RUBBER MATTINC AND STAIR TREADS
NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y.

MOTNTOSE, SHYMOUR \& CO. AUBURN, N. Y.
Automatic Cut-off Engines.
conouy in Fuel Gonsumpion,

 mam mimess and wich

CAPILLARY TUBES. SPONTANEOUS

RAILWAY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. II SCREW JACKS, STUBTEVANT BLOWERS, \&c. John s. urquhart, 46 Cortlandt St., N. y.

TMAGC:

THE IRON AND COAL DDSTRICTS

COMPOUND ENGINES

PIPE COVERINGS

Absolutely Fire Proof. braided packing, hill board, sheathing, cement, fibre and splcialties,
GRAND GIFT Toi introdue our wonder-

W.

THE NEW CROTON AQUEDUCT.

THE CURTIS

 RETURNFTPRARI TRAP
 or waste. Marufactured bout loss
THE CUTTIS REGULATUR CO., BosTON, MASs.
Send for Clrcular No. 18. PERFECT
A SYNOPSIS OF ALL THE KNOWN

To Business Men.

BEFORE YOU BUY A BICYCLE

CARBOLICACID--AN INTERESTING

VOLNEY W. MASON \& CO.
FRICTION PULLETS CLUTCHES and ELEVATORS

¿̀ New Catalogue of Valuable Papers

ROCK BREAKERS AND ORE CRUSHERS.

ICE \& REFRIGERATING

 BYDURNEW IT Send Green,Stamn torMorsipe Strecimens:
SCIENTIFIC BOOK CATALOCUE,
 MUNN 8 COM

BABBIT and ANTI-FRICTION METALS E. A. C. DU PLAINE,

 Adabriciting Babbit (Absorbst the oil well).
 iutico babbits.
 prices. Thes requare metals canot bitile be excelle of or the
 Special Rubber Mould Work. festimates THE GREAT AQUEDUCT OF NEW

CATARRH | positively curedby thegreat German |
| :---: |
| Remedy. |
| sample pkge.and book for | fcts.h intamps. E. H. MEDICAL Co., , ast Hampton, Conn. CONSUMPTION, troatand bronchia

Deafness Cured. By usink theinvention of a d DEAF MAN by which he

CURE Firild AF

ELEETRICAL. Md ward P. Thompan, Sonceltor

Əゆdvertisements.

Steam! Steam!

We build Automatic Engines from 2 to 200 H. P A Large Lot of 2, 3 and 4-H. Engines B. W. PAYNE \& SONS, Box 15,

tigh * 4

THECOPYING PAD--HOW TO MAKE

USEFUL BOOKS.

$\$ 10.00$ to $\$ 50000$ Rendidit

WTrTIERBRT, RUGGQ \& RICHARDSON Manufacturers
of Patent

1

 PATENTS.
 In this line of business they have had forty-one verars
experience. and now nave un equaled faciutites for the

 them is done with

 MINNN \& CO., Solicitors of Patents,

OTTO GAS ENGINES.
 OTTO GAS ENGINE WORKS, chicago. -_ Philadelphia.

EPPS'S
 COCOA

SHIELDS \& BROWN

For BOILERS and STEAM PIPES FORGGASAND W ATMER PIPES
 143 Worth Street, Now York. $\begin{aligned} & 78 \text { and } 80 \text { Lake Street, Chleago. }\end{aligned}$

N
JACKET KETTLES, Plain or Poreelain LLined. Tested to 100 lb.
pressure. Shend
Sor Bits The Oricinal Unvalcanized Packing CALLED THE STANDARD-As it is the Packing bywhich ATocept mo. paeking as JENFINS PACKING unle

 The best made, als steel, and warranted. s sizes. 2 to 32 south Canal Street, Chicago, U.

STEAM PUMPS for Ho ir cold Fres

 BuIIt BY GUILD \& GARRISON, Brooklyn, N. Y. TELESCOPIC OBJECTIVES AND MIR-

W. BAKER \& CO., Dorchester, Mass.

BARREL, KEG, STAVE MAND MINERY ove by rarieties manuE. $\underset{\text { BUFFA B. Holmes }}{\boldsymbol{\&}}$. H. $\overline{\text { account ot a ne }{ }^{2} \text { industry recently established at the }}$
 GOLD MEDAL, PARIS, 1878 BTBdKfidt GOCON.

Warranted absolutely pure
Oicoa, from which the exceso of
Oil has been removed Cocoa, from which the excees of
Oil has been removed. It has thrree
times the strength of Cocoa mixed times the strength of Cocoo mizeed
with Starch, Afrowroot or Sugar, and is therefore farm more o economi-
cal, costing less than one cent a cal, costing less than one cent a
cupp it is delicious, nourishing,
strengthening, easilly digested , Btrengthening, easily digested, and
admirably adapted for invaldd an admirably adapted for invalids as
well as for persons in health. old by Grocers everywhere

mamamain mame.

 95 MILK ST. BOSTON, MASSThis Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or itslicensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor. TUNNEL FOR FOOT PASSENGERS IN

 ELECTRIC CONVEYORS.-DESCRIP-

R(0)pud

§rientific Amrexicam

The Most Popular Scientific Paper in the World. Only 83.00 a Year, including Postage. Weekly. This widely ci culalatiand splendidly Illustrated een pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery Vew Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Archi-
tecture, Agriculture. Horticulture, Naturall History, etc All Classes of Readers find in the Sclentific AMIRRICAN a popular resume of the best scientific inormation of the day; and it is the aim of the publishers possible abstruse terms. To every intelligent mind, possible abstruse terms. To every inteligent mind,
this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of the ScIENpostage prepaid, to any subscriber in the United States or Canada, on recelpt of three dollars by the pubishers; six months, 81.50 ; three months, 81.00 .
Clubs.-One extra copy of the SCIENTIFIC AMERT-
CAN will be supplied gratis for everyclubof five subscribers at $\$ 3.00$ each ; additional copies at same proportionate The safest way to remit is by Postal Order. Draft, or Express Money Order. Money carefully placed inside seldom goes astray, but is at the sender's risk. Address all letters and make all orders, draits, etc., pay

MIUNTN \& CO.
361 Broadway, New York.
Scientific American Supplement. This is a separate and distinct publication from
THe Scientific American, but is uniform therewith in size, every number containing sixteen large pages. The Scientific American SUPplemignt is published
weekily, and includes a very wide range of contents. It presents the most recent papers by eminent writers in Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geography, A rchæology, Astronomy, neertng, Stea an Ship Building, Marine Engineering, Photography gineering, Agriculture, Horticulture, Domeatic Economy, Biography, Medicine, etc. A vast amount of fres subjects is given, the whole profisely illuatrated with engravings.
The most i
The most important Ensineering Works, Mechanisms, and Manufactures at home and abroad are represented
and described in the SUPPIEMENT Price for the Sup Suppiement Canada. 85.00 a year, or one copy of the ScIENTIEIC an Elican and one copy of the SUPPLEMENT, both mailed for one year for $\$ \pi .00$. Address and remit by postal

MUNN \& Co.. 361 Broadway, N. Y

To Foreign Subscribers.-Under the facilities of the Postal Union, the SCIENTIFIC AMERCAN S now sen by post direct from New York, with regularity, to sub-
scribers in Great Britain. India, Australia. and all other British colonies; to France, Austria, Belgium, Germany Russia, and all other European States; Japan. Brazi, Mexico, and all States of Central and South Ameriea Terms, when sent to foreign countries, Canada excepted.
\$4, gold, for ScIEvTIFIC AMERICAN, one year ; $\$ 9$, gold for both Scientific amprican and Supplement fo one year. This includes postage, which we pay. Remit hr dostal or express money order, or draft to order of
MUNN \& CO., 361 Broudway, New York.
PRINTING INKS.

