

A GREAT BRONZE CASTING

The steps in the naturalization of a foreign industry in this country are always of interest. For many years monumental bronze casting was peculiarly a foreign art. Munich or Paris was called upon when statues of generals or other distinguished men were to be produced. Within a few years several bronze foundries have been started in this country. One of the most recent is illustrated here. It is of interest, as being in New York City, and as having recently been the scene of the heaviest bronze casting yet made in America.
The Union Pacific Railroad decided to place a bronze buffalo's head over the eastern portal of their new bridge at Omaha. The design was most fitting, as the crossing of the Missouri River signalizes the trav alare antrance into tho suld huffale rances now unfortunately deserted, and deprived by death and flight of their former tenants. Mr. Edward Kemys $\boldsymbol{s}_{\mathbf{j}} \mathbf{J r}_{\mathbf{r}}$, of this city, was the artist selected for the work. His model, executed with great vigor and depth of cutting, repre sented the well-known bison's head, adapted by its sented the well-known bison's head, adapted by its at. It is about nine feet high. Mr. Etienne Favy was se lected as the founder. His foundry, also in this city, is probably the best arranged in the country. He undertook the task of casting the great head in one

Abstract

piece, with the exception of the horns. These were cast separately. To obtain some idea of the intricacy of the mould and core, the illustration of the great head should be consulted; the bold contour, with deeply sunken eyes and nostrils, and the surface of the head completely covered with curling hair, involving a great amount of undercut work. The mould was made under the direct supervision of Mr. Favy. Two men's labor for three months was devoted.to it. Probably as many as 1,200 pieces en tered into the composition of the mould. Each piece had its own separate frame or backing of iron rods, forged to suitable shape and outline. When finished, it was taken to pieces and removed from the model, and again set up. It was next used for forming the core. This was made within it. Then niece hy niono tho intrionto mould was again taken apart and withdrawn, leaving the solid core, itself a model of the head. This had to ully reducing it by paring off its surface. The object fully reducing it by paring of its surface. The object was to execute this work so as to leave inch thickness for the metal to run in. The mould with the core within it, leaving the space alluded to, was set up. The drying of the two parts was executed, not in the usual drying oven, but in the fitted for heavy work, as, in addition to several crucible furnaces, it has a reverberatory furnace, on whose hearth several thousand pounds of metal can be fused in one heat. Directly in front of this furnace, the casting pit was arranged. It was deep enough to receive the mould, with three feet or more to spare. Near its bottom several large grates were placed, and on them the fires were started to dry the mould and core. Flues led the products of combustion away core. the pit. For ten days the fires were kept up. After this period, they were allowed to die out. As the object was so large and intricate, it was decided to adopt the process of bottom casting. As will be obvious from the description, this secures the purest metal. A large, deep flasly was prepared with clay linpounds of metal. In its bottom two holes were made, which could be closed by plugs of iron. The plugs rose above the top of the flask and terminated in eyes, so hat they could be simultaneously extracted. The two apertures corresponded in distance apart with two openings in the top of the mould. From the latter a number of diverging gates or channels for the metal ran to all parts of the head. The idea was to place the metal reservoir solidly on top of the mould, to set the (Continued on page 148.)

Šrientific ${ }^{\text {ghmericam. }}$

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN One copy, one year, for the U. S. or Canada.
One copy, six months, for the U. S. or Canada
One copy, one year,
One copy, one year, to any foreign country be
Remit by postal or express money order.
Australia and new Zealand.-Those who desire to receive the colonial bank notes. Address
MUNN

The Scientific American Supplemen

is a distinct paper from the SCIENTIFIC Amfrican. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages. uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT,
$\$ 5.00$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belong5.00 a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belong
ng to the Postal Union. Single copies, 10 cents. Sold by all newsdealer
throughout the country.
throughout the country. will be sent fo
seven dollars.

seven dollars. The safest

registered letter.
Cupplement will be sent for a littld.-The Scientific American and rent Colonial bank notes.

> Scientific American Export Edition.

The Scientific american Export Edition is a large and splendid peri odical, issued once a month. Each number contains about one hundred arge quarto pages, profusely illustrated, embracing: (1) Most of the plate CAN. with its splendid engravings and valuable information. (2) Comercial, trade, and manufacturing announcements of leading houses erms for Export Edition. 85.00 a year, sent prepaid to any part of th
orld. Single copies, 50 cents. Manufacturers and others who desir to secure foreign trade may have large and handsomely displayed an
nouncements published in this edition at a very moderate cost. ouncements published in this edition at a very moderate cost

NEW YORK, SATURDAY, SEPTEMBER 3, 1887.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 609
For the Week Ending September 3, 188y.
Price 10 cents. For sale by all newsdealers.
I. ASTRONOMY.-Some Curiosities of Refection.-By Gmorae o. Willisms, M.D.-A curious experimental investigation
a clew to the nature of cometary bodies. -11 illustrations.
iI. BIOLOG Y. - What A merican Zoologists Have Done for Evolution. address.
II. ENGINEERING.-A Large Siphon.-A great siphon recently erected at Fritzoe, Norway....................
Electro-Magnetic Machine Tools.-By F. J. Rowan, of Glasgow. - A recent departure in engineering.-The application of elect
to riveting, drilling, and tapping machines.- 10 illustrations.
Method of Method of Maiking a Cable.-The method used by the Western
Telegraph Company in manufacturing underground cables. 7 it Telegraph
New Experiments upon the Thrust of Sand.-Elaborate investigation by newly devised apparatus of this engineering factor.-7 il-
V. HYGIENE.-Goflo: Food and Physique.-By C. Fayette TayLOR, M.D.-The natives of the Canary Islands and their character-
istic food:-Fine qualities of the race.-A suggestion for adoption istic foodi-Fine quaities of
of one article of their dietary.
V. ORDNANCE.-Rapid Fire Guns at the Newcastle Exhibition.VI. NAVALENGINEERING AND TACTICS.-A Novel Raft Boat. - An entirely new method of towing. -1 illustration. - Anips at the queen's Naval Reviéw.- A descripti war ships at the review at Spithead. -2 illustrations. The Jublee Naval Review.-The general aspect and order of the gris naval pageant; the torpedo fleet; the display of flreworks and ilThe Necessity of Further Investigation into the Action of the
Rudder upon 'Steam and Sailing Vessels.- ${ }^{\text {By }}$ GIE Rudder upon steam and Sailing Vessels.--By Gilbert R. Friti. - An ingenious investigation, suggesting the casuse of some coi-
II. TECHNOLOGY

Pollen.-A recent Society of Arts lecture, John Hungerford of manufacture of colored glass and its treatment by the artist and artisan in making vases and other objects.
The Florentine Straw In

Isthrmian ship transit.

The interesting question as to a means of ship transit across the American isthmus was discussed at the recent meeting of the American Association at Columbia College, this city. The most important paper on the subject was by Commander Taylor, U. S. Navy, who expressed himself strongly in favor of a canal at Nicaragua, which locality he has visited. His remarks upon the proposed ship railway at Tehuantepec show him to be less familiar with this project; his opinion thereon being directly opposed to that of experienced engineers who have devoted time and thought to the matter. He says the ship railway project at Tehuantepec promises to be as disastrous in its ending as that at Panama. Most engineers and ship builders, he says, doubt the practicability of the project, and fear the sinking of embankments and the racking of hulls of heavily loaded ships. He fears that the earnest belief in this project held by its promoter, the late Mr. Eads, and his past successes, would cause credulous persons to enter into the visionary project.
If Commander Taylor, or any other who may have similar doubts as to the practicability of the ship railway project, will take the trouble to inquire into its details, they will not discover any grounds for their fears. The principal objection to the ship railway scheme would seem to be its novelty. There was a like objection to the employment of a jetty system at the mouths of the Mississippi. The dredge had been used so long on this river that the engineering world had come to
never accomplished anything of lasting advantage, other means of clearing channelways, if not based upon dredging, were regarded as hazardous and visionary. Mr. Eads constructed his jetties on his own responsibility, and showed popular expert opinion to be founded in error by permanently deepening the channelways of the passes and making New Orleans once more a sea port.
Commander Taylor's objections to the ship railway scheme may be classed under two general heads: 1st, because of the method of handling ships while in transitu; and 2d, because, in his own words, "the cost of a railroad nobody can tell." Now, Commander Taylor, who is a skillful navigator, would not hesitate to put his ship into a floating dry dock, and would look on with complacency while the water was being pumped out of the pontoons and the structure, gradually rising out of the water, lifted her high and dry. He has forced his ship through driving seas without a qualm, as every other experienced sailor has, No one knows better than he that a well constructed ship is practically a girder, specially adapted to bear severe strain. A big steamer in a heavy seaway often rests upon two waves, one under her bows and the other under her stern, while the 'midship section has practically no support from the water ; and, again, her bows will be almost out of water and her screw " racing." Her constructors prepared for this, and in putting her parts together they got unity out of multiety. It does not require a knowledge of navigation, neither of mathematics, to discover that a ship laboring in a heavy seaway is called upon to bear a far greater strain than she would be while being lifted out of water in a dry dock, into a cradle, and then wheeled over a level railway. This is so obvious as not to require any mathematical demonstration.
If there be any who do not think so, let them resort to figures. It is not enough to say a thing cannot be done or is impracticable. There ought to be some specific reason, some data or figures, to sustain the as sertion. The big irgn steamer Amerique ran up on to the New Jersey coast at Seabright some years ago, and after pounding her loaded hull on these sands for a fortnight, lay exposed to the buffeting of winter gales for nearly three months. The wooden ship Lornty, sunk in New York Bay, withstood all the wrenching of the chains passed around her bottom by the wreckers, and was finally brought to the surface unscathed, while the iron steamer Welles City, sunk in the North River, underwent similar treatment in a wrenching tideway, unharmed.
So far as the cost of the ship railway is concerned, i seems surprising that so well-informed a man as Commander Taylor should assert that a ship canal, which must be constructed, for at least a part of its way, through a river filled with rapids and falls, in a country annually visited by floods, may be estimated with more certainty than a railway. Ship canal construc tion is rare the world over, but so much has been done in the way of railroad building, that it has virtually become a science, and once a careful survey is made of a proposed line, a first-rate engineer will compute the amount of cutting and filling and ballasting and the cost of rails and rail laying with something approaching exactness. Commander Taylor very reasonably looks upon the geographical position of Nicaragua as superior to that of Panama, because ships following the most frequented tracks would save hundreds of miles by crossing the isthmus at the former. For the ame reason, Tehuantepec is vastly more convenient north indeed it is at hundreds of miles furthe
isthmus, while Nicaragua is not far distant from the lower end. Panama, he truly remarks, is in the zone of calms, in the doldrums, and Nicaragua in the "trades." So is Tehuantepec.
The question of harbors must take a principal part in any discussion of isthmian routes; and though Nicaragua once had a fine harbor at Greytown, it has filled up, and will cost millions to recover even in part, whereas the roadsteads of Tehuantepec call for no unusual skill, no extraordinary outlays, to make safe for ships to ride in.

DUPLICATION OF GOVERNMENT SCIENTIFIC WORK.

It appears that the government is now employing three different scientific corps to investigate and report on one and the same matter, namely, the characteristics of genuine butter and its imitations.
In the first instance, we have the division of microscopy of the agricultural department, represented by Dr. Thomas Taylor and his assistants; then we have the division of chemistry of the same department, represented by H. W. Wiley and his assistants ; and lastly the office of commissioner of internal revenue, represented by a chemist and a microscopist, each lately appointed under the oleomargarine law, whose salaries amount to $\$ 5,000$ a year, the two last being specially appointed for this special work.
Thus we find three distinct and separate corps of scientists, each with costly scientific apparatus, all employed on the same work, and each putting the costing thousands of dohlars.
Professor Wiley the chemist is first in the field with a printed report. It is bulletin No. 13 of the agricultural department, division of chemistry, and constitutes a book of 130 pages, and has 12 pages of photogravure illustrations. It is not our purpose now to pass it in critical review, but we may say that it substantially states that the chemical test is the only practical one for distinguishing butter from its imitations, but it admits that the microscope is useful as an adjunct in making the investigations, but he takes pains to belittle Dr. Taylor's microscopical work, by quoting authorities which state that "little dependence can be placed on any microscopical test;" and on the subject of the crystals formed by "the melting and slow cooling of butter," which was Dr. Taylor's discovery, and forms the groundwork of all Dr. Taylor's work, Professor Wंiley says, "I consider it a much less valuable indication than the simple observation."
If Professor Wiley is correct in this statement, then all Dr. Taylor's work is void and his reports so mach waste paper. And yet the government has in the press a costly printed report of Dr. Taylor's work, the Moss Engraving Company having just printed two million pages of photogravure plates to accompany the report, the edition being, we believe, over 400,000 copies. All this report is devoted to the microscopical aspect of the question, upon which, as we have shown, one official of the same department claims "little dependence can be placed," and all based on a discovery which Professor Wiley says is " not valuable."

Such being the estimation of the work of Dr. Taylor by the chemical division, the public may be curious to know what the microscopical division think of Professor Wiley's report and scientific work.
Dr. Thomas Taylor says he "thinks it would be nore creditable in the eyes of the public if Professor Wiley would stick to his own business. The bulletin, in my estimation, is of no especial value in its microscopical aspect, because Professor Wiley has not been careful to select types nor observed uniformity in his treatment of the fats."
So here we have two reports on the same subject issued from the same government department utterly at variance with each other, while both are condemned as worthless by the department which has ordered the work and the publication of the reports. We have offered no opinion on the merits of the two conflicting reports, but will endeavor to do so on another occasion. One of them must be false and deceptive, and we can only regret that many thousands of dollars have been wasted on their preparation and publication.
We have yet to hear from the chemist and microcopist of the internal revenue office. We presume that we may look to them for a report of their work on this subject. We hear informally that they are not working in the best of harmony, and that the microscopist first appointed resigned, and was replaced by another; but we trust they are doing good original work, and will arrive at some solution of the question which will be satisfactory to the public and those specially interested. At the recent meeting of the American Association for the Advancement of Science, Dr. Taylor exhibited, in four large frames, the original photo-micrographs of the crystals of butter and fats, copies of which will appear in the annual report of the Department of Agriculture, now in the press. The crystals of the various fats examined are over a hundred in number, comprising butter derived from various breeds of cattle, under many kinds of feeds. The crystals of fats show specimens taken from many animals, birds, and even the human subject, both in health and disease. It is cer
tainly a most creditable exhibit of intelligent work, and will be a decided advance in our knowledge of this subject. It also shows what can be done with the microscope in the hands of one capable of using it to the best advantage.

the celestial world.

the star of bethlehem.

"Where can the Star of Bethlehem be found ?" is the oft-repeated question that comes from many quarters. The fact is, no such star is visible in any part of the heavens. An observer with a vivid imagination fancied he had discovered this long-looked-forstar, and announced its return in some journal of the day. The paragraph was widely copied throughout the country. The idea pleased the popular fancy, was received with almost unquestioning faith, and the sky was eagerly scanned for a glimpse of the star that once shone over the humble dwelling that enshrined the Redeemer of mankind. Even the peerless Venus was impressed into service, and was firmly believed to be the sacred star once more shining upon the earth after wandering for ages in the star depths.
The history of the so-called Star of Bethlehem is briefly this: Tycho Brahe, a Danish astronomer, discovered, in the year 1572, an apparently new star near Caph in Cassiopea. When first seen, in November, it had attained the first magnitude. It increased rapidly in brilliancy, until it rivaled Venus, and was visible at noonday. It began to diminish in brightness in De May, when it disappeared from view. Forty years later, when the tel
Forty years later, when the telescope was invented, a swall telescopic star was found close to the spot where the wonderful star was seen. It is still there, and is probably the same. It is now classed among variable stars, and is, therefore, liable to blaze forth at any time in the same extraordinary manner. After classifying the star as a variable, the next thing to be done was to find out itsperiod of variability. Astronomical records were searched, and it was ascertained that about the years 1263 and 956 bright stars suddenly appeared near the same quarter of the heavens. It was, therefore, classified as a variable, with a period of about 309 years. Counting back three periods from 956, the exact period being uncertain, the star may have appeared near the time of the Christian era. Some imaginative observer, for this reason, christened it the Star of Bethlehem, and with scarce the shadow of a foundation the name has adhered to it ever since. It is also known as the Pilgrim Star, and among astronomers as the star of 1572 .
If the star be a variable, with a period approximating to 303 years, it is now due, and liable to burst forth into sudden brilliancy at any time. No celestial event would be more welcome to astronomers. The scientific world would be wild with excitement over the sub stantiation of an ingenious theory and the confirma tion of its hopes. Itsfirst appearance, its exact position in the heavens, its changes from day to day, would be telegraphed all over the country, and minutely described in the journals of the day. The advent of a comet, spanning the sky from the zenith to the horizon, would be of no account in comparison with the blazing star! Meantime the telescopic star near Caph in Cas siopea shows no signs of any coming disturbance, and observers must wait patiently for developments, re membering that the outburst will be sudden, if it come.
It is generally considered that the extraordinary changes of light in stars like that of 1572 are caused by sudden outbursts of glowing hydrogen gas, which by its own light and by heating up the whole surface of the star causes the immense-increase in brilliancy. The pots, faculæ, and rosy protuberances on the sun give some idea, on a small scale, of what may begoing on in
other suns on a much larger scale. Fortunately, the new or temporary stars observed by terrestrial astronomers number only about twenty-four, an infinitesimal number when compared with the boundless millions of stars that shine with nearly unchanging brightness. The probability is, therefore, small that our sun will be added to the list of blazing stars. He will probably shine for millions of years to come, as he has shone for millions of years in the past, and if observed from other suns and systems will be classed as a variable, with a
period of about eleven years, corresponding to the cycle of sun spots.

the great sun spot of last june.

The solar surface should, according to the sun spot theory, be approaching its most quiescent condition, for it is passing through the stage known as the minimum of sun spots. The condition of the fiery orb, however, does not always conform to the laws laid down The sun has a way of his own that sets all theories at
defiance. An immense spot appeared on his surface on the 7th of June. - It was carefully observed by Euro pean astronomers during its whole passage across the solar disk. When first seen it was situated a little south of the equator, and its greatest diameter measured 50°. and continued to be visible until the 17th, when it dis
appeared on the sun's border. The appearance of this enormous sun spot, denoting great activity of the solar
force, is specially remarkable as occurring at a time force, is specially remarkable as occurring at a time
when the sun is passing through the minimum of the eleven-year cycle of sun spots.

Alvan Clark

One of the great masters of the mechanical arts has passed away. Alvan Clark, the most eminent manufacturer of telescopic lenses in the world, died a little after 3 o'clock on the morning of August 19, 1887. His advanced age had so weakened him that he succumbed to an indisposition that had only affected him for a few days. At the present period, when the subject of manual training is exciting so much attention in edu cational circles, the lesson of Mr. Clark's life is peculiarly interesting. By his extraordinary technical skill, industry, and patience, he won for himself a fame that was world-wide. In spite of the peculiar field of his work, his fame was not confined to astronomical circles. His name had become a household word.
He was born in Ashfield, Mass., on March 8, 1804. He came of the old Mayflower or Puritan stock. His father was a farmer, and young Alvan received only a public school education. He showed artistic tastes early in life, and possessed a great aptitude for sketching. In 1826 he obtained a position in Lowell, Mass., as designer and engraver for the calico printers in one of the mills. For nine years he kept to this occupation. In 1835 he removed to Boston, and opened a studio on Tremont Street for painting miniatures. His home he pursued the profession of artist. He had married on March 26, 1826, his wife being Miss Maria Pease, of Conway, Mass. Their son, Alvan G. Clark, about the year 1844 was a student at Andover, following the course in engineering. The father became interested in the son's scientific studies, and it was at this period that Mr. Clark began the work of his life. According to his own recital, he was thus led to study technical optics:
"My son, Alvan G. Clark, was at Andover, studying to be an engineer. His young mind seemed to be absorbed in telescopes. I was a portrait painter then, and I began to study mechanics and astronomy so as to instruct my boy. We experimented together, and succeeded in making a reflecting telescope. One of the Cambridge professors was much pleased with some instruments we made, and when we suggested to him that we would like to manufacture improved instruments, he gave us great encouragement, and we went ahead."
After succeeding with a speculum, lenses were the next object on which they were to try their ability. The result of their work was so good that, giving up all other pursuits, the father and son devoted themselves to malking telescopes. Their reputation grew, and gradually reached England. The Rev. W. R. Dawes, a and ordered a glass. It reached him in the fall of 1853 This telescope did such fine work that it made their reputation abroad, and many foreign orders were at once received. They began by making six-inch objectives, and their telescopes furnished with these were of wonderfully fine quality. But they gradually increased the size of their work, and in 1860 received an order for a lens of 18 inches diameter. It was in this year
also that their present factory was built Up to that also that their present factory was built. Up to that period 15 inches was the diameter of the largest lens in the world. The new order came from the University
of Michigan. The civil war prevented its acceptance of Michigan. The civil war prevented its acceptance
by the university, and it was sold to the Astronomical Society of Chicago, Ill. By its use, on the night of January 31, 1862, he and his son, Mr. Alvan G. Clark, discovered the companion of Sirius. In consequence of
this discovery, the Lalande medal was awarded by the French Academy of Sciences. When in its final position, in which it was placed in 1862, this great glass showed twenty stars hitherto unseen in the nebula of Orion.
During the war the firm were kept busy making binocular field glasses for the use of the Federal officers. In 1870 a contract with them was authorized by the United States Congress for a telescope tor the Naval Observatory at Washington. Work was begun upon it in January, 1871. In 1872 the glass was tested with most remarkable results, yet more work. was put upon it, and it was only in 1873 that it was mounted. It is considered almost perfect. A duplicate of this glass was ordered by and made for Mr. J. S. McCormick, of Chicago, to be presented to the Washington and Lee University of Virginia. About the same period they began to make a yet larger lens for the Russian ob
ervatory at Pulkowa. This instrument cost the Russian government $\$ 33,000$. It has a clear aperture of 30 inches, a focal distance of 45 feet, and a magnifying power of 2,000 diameters. The general increase in diameter of the firm's lenses may now be thus suminarized in inches: 6, 814, 91, 12. 151/2 (Astronomical Society of Chicago), 181/2, 23 (Princeton College), 26 (Naval Ob-
servatory and J. S. McCormick), and 30 (Pulkowa Observatory and J. S. McCormick), and 30 (Pulkowa Ob demy of Science gave a vote of thanks, and the Czar of Russia a gold medal.

The great telescope of 36 inches diameter, for the Lick Observatory of the University of California, is greatest triumph. The price was placed at $\$ 50,000$ The main portions of the lens were completed about a year ago. The photographic lens is still unmade. It was nearly completed with the others, when, during an experiment, it was destroyed. Mr. Alvan G. Clark is now in Europe to secure a new disk for another at tempt.
It is said that Alvan Clark had never seen a lens ground. All his skill heacquired in hisown workshop. He was extremely modest, preferring to talk of his artist life rather than of his optical triumphs. To those who visited his shop he used to exhibit with pride his miniatures. These were very fine, and had he continued as an artist, there is little doubt that renown would have been acquired by his brush. Later in life he returned to portrait painting as a recreation. Up to a recent period he was in daily attendance at his shop.

Amherst College in 1854, Princeton in 1865, and Har vard in 1874 gave him the degree of A.M. His wife and two sons, Alvan G. and George B. Clark, survive him. Last year the sixtieth anniversary of his wedding wa celebrated.
He made several scientific discoveries of importance inventing a double eye piece and devising a very valuable and accurate method of measuring small celestial arcs. It is a matter of congratulation that his sons have so long been associated with him, as the ex tinguishment of the Clark establishment would be a

Metallic Thermometers for Hot Drying Chambers.
The object of this instrument, says the Bulletin de la Scciete Industrielle de Mulhousé, devised by Mr. H Grosheintz, is to indicate the average temperature of a hot flue or drying chamber, in which it is necessary for success in the drying of delicate fabrics that the process of drying should take place very regularly and at an exact temperature.
The thermometer consists of a brass wire, the expan sion and contraction of which supply the indications of temperature, and a system of levers outside the drying chamber, by means of which the range of action is multiplied. Thus the variations in temperature may be read more plainly. The apparatus is at work in the establishment of Messrs. Scheurer, Rott \& Co., in a drying chamber 74 feet long, between walls. The wire is one twenty-fifth inch or one millimeter in thickness, and is 79 feet in length, stretched from outside to outside of the walls, passing through openings in them. One end is fastened to the outside of one wall, and the other end is connected to a system of levers outside the other wall, by means of which the variations in the length of the wire are multiplied sixteen times.
Taking the expansion of brass wire at 0.18 per cent of the length, between the temperatures 32° and 212° F., the extension on 79 feet of length is $79 \times 100 \div 0.18$ $=1.685$ inches, and $1.685 \times 16=27$ inches is the range of the pointer between the given extremes. The scale is graduated in accordance with a mercurial thermometer, placed within the chamber at about the middle of the wire. The metallic thermometer is very sensitive. For instance, when the two thermometers, metallic and mercurial, read $60^{\circ} \mathrm{C}$., or $140^{\circ} \mathrm{F}$., at the beginning of an operation, before the pieces to be dried can be passed in, the metallic thermometer falls 9° or 10°, while the mercurial remains stationary. The metallic thermometer has been at work for three years continuously, and gives great satisfaction.

Manufacture of Glucose with Nitric Acid.

The originators of this process, A. Seyberlich and A. Trampedach, use nitric acid for the saccharification of starchy or amylaceous matter. To eliminate, then, the nitric acid from the solution of glucose thus obtained, water saturated with sulphurous acid is added in such quantity that the sirup smells of this gas. The mixture, heated rapidly, brings about the decomposition of the nitric acid. At the expense of the oxygen contained in this acid the sulphurous acid is rapidly converted into sulphuric acid, and nitric oxide is evolved. The reaction is so perfect that no trace of nitric acid can be found with Schönbein's reagent. On heating to boiling, the excess of sulphurous acid is expelled from the saccharine solution. This last operation must be conducted rapidly, and with an abundant supply of steam, so that the saccharine solution shall not remain long in contact with the sulphuric acid formed, as otherwise the sugar would be liable to decomposition. The solution of glucose obtained is neutralized with carbonate of lime, and made alkaline with alkaline carbonates evaporated and crystallized. The crystalline mass contains only a small quantity of sulphate of sodium, and can be at once washed.-Zeitschrift fur die Chem. Indust.

Four kittens, born at Narragansett Hotel, in New London, were bound together like the Siamese twins by a ligature at the abdomen. The cords were in the form of two triangles joined at the apex, the four ends con-

A CONVENIENT DEvice in sharpening saws.
The illustration herewith shows a novel file attach ment, for which a patent has recently been allowed. In filing saws by hand it is very difficult, even after years of practice, to so hold the file that after sharpening the saw the cutting edges of all the teeth will be in parallel lines, because the angle at which the file is held to the teeth is likely to be slightly varied in

COOR'S SAW FILING ATTACHMENT.

different portions of the work. This invention affords a means of overcoming such difficulty by providing an attachment, to be connected with the file point, carrying a graduated plate having a gravity pointer. The graduated plate is bent slightly backward, so that its index is always in plain sight of the operator, and, at whatever angle it is desired to sharpen the teeth, the pointer indicates the corresponding inclination at which the file is held, and the workman has only to follow this guide to be sure that the cutting edges of the saw teeth will all be filed to the same angle. A thumb piece just back of the graduated plate affords a means of holding and bearing on the end of the file, which greatly facilitates the labor, and cannot fail to be highly appreciated by all who have much of such work to do.
For further information relative to this invention, address Mr. Paul D. Reed, 'P. O. Box 1507, New York City.

IMPROVED MORTAR ATTACHMENTS

Those who in the chemist's or druggist's laboratory have had to pulverize substances in glass, Wedgwood, porcelain, or iron mortars, recognize very forcibly the defects of the implement. In the use of the porcelain, glass, or Wedgwood mortar, where rubbing friction is mostly employed, or in that of the metallic mortar, where percussion is the triturating force, the shifting about of the vessel is a constant annoyance. So much so is this the case that sometimes two operators work at the one instrument, one holding the mortar and the other working the pestle, the positions being at intervals reversed. These troubles are disposed of by the very ingenious arrangements patented by Mr. E. G. Purdy, of Ballston Spa, N. Y. They are illustrated in the cuts accompanying this article. If a porcelain, glass, or Wedgwood mortar is to be used, it is provided with lugs or projections near its base. To the table, by screws, an annular frame is secured, that forms a socket for the lower part of the mortar. In the uppe surface of the frame or socket recesses are formed that
correspond to the lugs upon the body of the vessel. Dropped into this receptacle, the mortar cannot shift about, and cannot rotate or twist on its vertical axis. The operations of pulverization can be conducted with far greater rapidity and comfort than when the
has to be embraced by one arm, or at the least held by one hand of the operator. For the metallic mortar a similar socket is provided This is made in segments that are fastened together by bolts passing through lugs. The segments are secured to the table by bolt with thumb nut, working in a strip of iron provided with a slot, the strip of iron being screwed to the counter, table, or other support. The mortar is provided with lugs fitting into notches in each segment. As these notches weaken the segments, the holding-down ears, through which the bolts already alluded to pass, are placed opposite to the notches, so as to act as a re-enforcement. The circle of segments can be screwed up so as to embrace the bottom of the mortar with great rigidity, and the socket thus constituted affords an admirable basis to resist the shocks of the pestle. The lugs upon the mortar prevent it effectually from turning. The adjustable socket will operate with glass, Wedgwood, or porcelain mortars equally as well as with iron or metallic mortars, and the " annular frame" is likewise adapted for iron or metallic mortars, as well as for glass, porcelain, or Wedgwood, and vice versa. patent.

AN IMPROVED CULTIVATOR

A cultivator which provides for the employment of a good many plow shovels, and in which the distance between the plows may be regulated or adjusted at will by very simple means, is illustrated herewith, and has been patented by Mr. James M. Sutton, of Bryan, Brazos County, Texas. The front bar of the triangular

SUTTON'S CULTIVATOR.

frame of the cultivator has at each end several vertical apertures, through which and aligned apertures in plates on the front ends of the side bars are passed bolts, thus extending or diminishing the distance apart of the end plow standards. Each of the side bars is also provided with vertical apertures for the insertion of additional plow shovels. When it is desired to use the machine merely to lay off the rows for sowing, all the plows except those attached to the front standard are removed, and a wheel or roller is attached to the rear end of the machine, of which Fig. 3 gives a detailed section, showing the attachment of the braces to support the handle bar, Fig. 2 showing the forward end of one of the side bars. With this cultivator, the plows may be easily adjusted to plow close to or far from the rows, as desired. No singletree is required, but the draught animal may be hitched to hooks in clevises that are connected to the ends of the front bar, this also making the cultivator very easy to lift around when plowing, as most of the weight will be on the draught animal.

A FOLDING CENTER BOARD FOR SMALL BOATS.

A center board which can be readily fixed in the bottom of a boat, folds into a very small space, and can be easily manipulated, is shown in the accompanying illustration, and has been patented by Mr. Thomas R. Brough, of Gananoque, Ont., Canada. The casing is of galvanized iron, 27 inches long, 4 inches high, and $5 / 8$ inch thick, with a flange around the base perforated every
\qquad
two inches for screws, with which the case is secured to the keel or keelson, a strip of soft rubber pack ing rendering the joint water-tight. Inside the box, on a loose sleeve, are swung five blades, the lower one double and hollow, closed front and bottom, and 1

BROUGH'S CENTER BOARD FOR VESSELS.

partially at the rear. When the board is extended, this hullur thete otays me ormers, arrd when closed incases them, discharging any floating dirt through the opening in the rear. Through an upward extension of the casing passes a rock shaft, with a central squared portion, to which is fitted a forked arm extending down in the case. The blades, swinging on a common pivot, have slots through which passes a roller carried by the forked arm, the slots varying in their angle of inclination in such way that the blades are opened out like a fan, or folded, by turning the rock shaft which operates the forked arm, the slots being so made that when the board is fully returned to place it will be locked there, as the roller has passed over a center. A specially devised wrench for operating this rock shaft is shown in Fig. 1. It is about 18 inches long, with a cog wheel having a square in the center to fit on the shaft, and a double pointed pawl pivoted in the rear to engage at the operator's will with either point, whereby the board can be expanded or contracted by a very slight motion of the wrench. When sailing with the board extended, if any obstruction is encountered, the board will close into the case without motion being imparted to the wrench, which will act as a stop to prevent the board from dropping more than half way, but nothing more, except in the hands of the operator. Quite a number of these center boards have already been for some months in use, and their convenience and efficiency are highly spoken of.

A SIMPLE AND INEXPENSIVE HAT HOOR.

A quickly applied and neat little attach. ment by which hats may be readily suspended from the back of a chair or other support is shown in the accompanying illustration, and has been patented by Dr. Augustus H. R. Guiley, of No. 413 Center Street, South Easton, Pa. The device consists of a hook of brass wire, which may also be readily made into a loop by catching its open end into a smaller loop, the latter being attached to a ribbon or cord, which has on its other end a little piece of wire bent in the form of a staple, for conve-
niently attaching it to the hat. This little wire staple is passed between the hat body and the sweat band, and the two side parts of the staple are then bent outward, so as to lie next the stitching which connects the sweat band to the hat body. It is thus concealed from view and where it cannot hurt the head of the wearer. In adapting the device to ladies' hats the crown lin-

GUILEY'S HAT HOOK. ing may serve to place the hook be hind instead of the sweat band, or a piece of ribbon sewed to the hat to form a slip pocket for the hook.

FACE Powder.-Wheat starch 12 lb ., powdered orris 2 lb . Mix together, and add attar of lemons $1 / 2$ ounce, attar of bergamont and cloves each 2 drachms.

an Improved canopy-supporting frame.

 A cheap and durable frame for supporting canopies, mosquito netting, etc., and which may also be used for shelter tents and awnings, is shown in the accompanying illustration, and has been patented by Messrs. Andrew F. Tracy and James Winchell, of 405 Grand Avenue, New Haven, Conn. To the end standards

are pivotally connected folding arms, these arms having end straps to adapt them to fold together, as shown in Fig. 2, and the upper ends of the standards and of the folding arıns are recessed to receive a ridge pole and longitudinal strips, connected together by tapes or straps, and this frame, extended as shown in the illustration, is in position to support the netting. The frame may be readily taken apart for snug stowage, or the arms upon one side may be folded up when it is desired to make or dress the bed. For use as a shelter tent or field awning the lower ends of the posts or end standards should be sharpened, that they may be easily driven into the ground.
an improved finder for photographic cameras
The wonderful advance in the sensitiveness of the photographic film, now so generally furnished in what is known as the gelatine dry plate, has caused the art and practice of instantaneous exposure to be largely followed. For its more successful practice a new auxi liary, termed a finder, is found to be very convenient. The camera having been directed so that the passing object shall traverse its field, the finder is placed upon or affixed to the instrument so that its field is in register with that of the camera. The ground glass of the camera is then removed and the plate holder with plate inserted and the slide of holder withdrawn. Of course there can be no further vision through camera. In this finder, however, all is seen, and that, too, exactly as present in camera on the uncovering of lens; and as the position of the moving body becomes that which is wanted, exposure is made with a certainty of like po sition on camera plate.
Among the qualities desirable in a finder, aside from its correctness, are, first, that it be of such dimensions that the size of field is sufficiently large for easy observation; second, that for convenience of carriage it is no larger than necessary. The form used, when the

HIGGINS' FINDER FOR PHOTOGRAPHIC CAMERAS.

camera is stationary or tripod, is that in which the screen of the finder in the same plane with that of the carnera, viz., perpendicular or upright.
Where the camera is held in the hand, or on the lap, or under the arm, as for the so-ealled detective, and other rapid exposures, it is needful that the screen of the finder should be in a horizontal plane at a right angle to that of the camera, and that the view be
thrown upward upon it, by a mirror or other reflecting surface or prism. Such arrangement enables the operator to look down conveniently upon it, and the delineation, moreover, is now seen non-reversed. In the finder we illustrate we have one that is practical and serviceable. It has been patented by Dr. J. J. Higgins, of New York City. Its size, while fully sufficient, is such that it can be placed inside the camera when closed, or carried in the pocket.

AN IMPROVED ADJUSTABLE BOOK HOLDER.

A book holder, designed to accommodate books of varying dimensions, and to hold them to suit various positions of the reader, and which, when not in use, can be folded up into small compass, is shown in the accompanying illustration, and has been patented by Mr. Peter A. Drake, of Shell Lake, Wis. The U-shaped base clamp is provided with tubular sockets whereby the main holding rod is held upright from either a vertical or horizontal support, each of the sockets having catches, allowing the rod to be turned when desired. This rod is mainly tubular, and in it is mounted a square ratchet bar, forming an extensible post, which can be adjusted and held at any length by means of a pawl. On the upper end of this ratchet bar is an elbow adapted to receive a tubular rod, within which is a square sliding rod, connected with the outer end of which is the folding skeleton frame of a book rack. Connected with the frame are attachments to hold the leaves open in place, or which mayb be sim-
the attachments being easily adjustable independently of each other to suit the opposite parts of the book

when open. In our illustration, Fig. 2 is a sectional view of the book rack with a book held open, and Fig. 3 shows the adjusting device for preventing the arm supported by the main holding rod from turning. With this holder a book can be securely held to suit the convenience of the reader in almost any situation, even when lying in a recumbent position.

The Panama Canal

The project of damming up the Chagres with $26,000,000$ cubic meters of earthwork, accompanied by a culvert large enough to admit the issue of a stream gauging 400 cubic meters per second, and needing for its course a cutting nearly as wide and deep as that required for navigation, depends, among other things, for its accomplishment on the forebearance of earthquakes. One tremor of the ground would bring down the whole mighty structure. Altogether, M. De Lesseps and his shareholders are in a terribly awkward plight. They cannot very well abandon works which have cost over fifty millions of money, and yet they cannot with prudence go forward. They have two alternatives, and only two, before them. One of them is to sell the whole thing for, say, twenty millions to the Americans-who are quite willing to buy the concernand the other is to suspend M. De Lesseps, and to put in somebody who will personally superintend the works. Who that somebody ought to be we have, we confess, no idea.-British Trade Journal.
To restore faded ink on parchment, etc., the Bod leian Library, at Oxford, has long employed hydrosulphide of ammonia, a solution of which is spread in a pencil.

AN IMPROVED AXLE GAUGE.

A gauge which will answer the requirements of a great variety of work in axle setting, and in which the number of adjustments is reduced to a minimum, is shown in the accompanying illustration. A "dish" rule, graduated in parallel lines an eighth of an inch apart, is attached to the main bar, and the "spoke" rule is graduated in inches and fractions thereof. On the spoke rule is a notch, or mark, to which, when adjusted, the pointer must point. Near by is an oversprung plate, on which is a center or normal line, also a left and right gather mark, to one of which a brass pin on pointer must point when setting for "gather." The automatic head throws out the ques-

MoQUARRY's AXLE GAJGE.

tions of size and taper altogether, and actuates the pointer merely by the weight of the gauge. Only two measurements are required to set for "plumb spoke," namely, length of spoke and amount of "dish." All down forw central portions are an with this gauge, with a saving of time and avoidance of error, if the workman follows the very simple directions.
This invention has been patented in the United States and Canada by Mr. H. McQuarry, Allandale, Ontario, Canada.

Drson S. Fowler.

On Thursday, August 18, after a short illness, the well-known advocate of and lecturer and writer on phrenology died at his home near Sharon Springs, N. Y. He was born in Cohocton, Steuben County, N. Y., on October 11, 1809. He worked his way through Amherst College. There he was a classmate with Henry Ward Beecher, and it is said that a book given him by the great preacher turned his attention to phrenology, in which he was destined to do his lifework. In 1838 he started the Phrenological Journal. In 1843 the deceased, who had been associated in business with his brother and Dr. Nathan Allen, of Lowell, Mass., added to the firm Mr. Samuel R. Wells. The firm name now became Fowler \& Wells, which still flourishes. It has acquired great fame for the publication of phrenological literature. In 1865 Mr . Fowler left the firm and entered the lecture field, and traveled all over the country descanting on his theme. He was one of the notabilities of the city, and the author of a number of books on phrenology and allied subjects.

AN IMPROVED MOP ATTACHMENT.

A simple and readily applied mop attachment has been invented by Mr. Calef Mansbarger, of Albany, N. Y., and is shown in the accompanying illustration, a patent for the device having recently been allowed. The body of the attachment is preferably constructed of a single piece of wire, bent at the upper end to form a coil adapted to be slid over the mop handle. The attachment, thus encircling the mop handle, detachably engages its head and clamps the free end of a

MANSBARGER'S MOP ATTACHMENT.

cloth held in the mop head, whereby the cloth may be wrung while held in a flexible horizontal position, or drawn up over the mop head parallel with the handle. The cloth may also be drawn tightly over the mop head to facilitate cleaning in corners, one of the figures showing the mop with the attachment ready for ordinary use, and the other while the water is being wrung out without applying the hands to the cloth.

areat bronze casting

(Continued from first page.)
plugs in position, to fill it with melted bronze, and by withdrawing the plugs to allow the metal to run down through the gates into the space between mould and core.
This plan was carried out. The flask, lined with clay, was lowered upon the mould. Its lining, before the casting took place, was heated by a charcoal fire to avoid chilling the metal. Then, when the plugs were solidly in place and all seemed ready, the reverberatory furnace was tapped and the melted bronze allowed to run into the reservoir. Three crucibles full of additional metal were added to the bath. These were plum bago or graphite crucibles, holding nearly four hun dred pounds apiece. This gave a total of six thousand pounds of the finest bronze. The plugs were then withdrawn, and in seventeen seconds the white hot bronze had disappeared in the recesses of the mould. The entire operation of filling the reservoir and casting only occupied fifteen minutes. On that short period the success of the four months of labor depended.
For over ten days the casting was left undisturbed so as to cool perfectly. It was then withdrawn from the pit, and cleaned with scratch brushes and washed over with ammonia. The horns were dropped into their sockets and screwed fast. The seam marking their junction with the head was calked or hammered, so as to be imperceptible, and the head was ready for its destination.
 ally required to meet the exigencies of the differen shapes, the skill requires to fill the profession of a bronze founder can be realized. It is said that the prac tice of fifteen years is needed to train a man so that he an execute all kinds of work. A failure is irreparable Suall holes can be filled, but if any large part fails in casting, the work must be begun again: This illasirates the responsibility involved in ceating so large a piece When cleaned it represents some four thousand pounds of metal, an excess of two thousand having been pro vided in the bath. In building and bracing the mould nd in all the appurtenances of the casting, metal nould, etc., about sixty thousand pounds of material were used.
The casting was executed at the Favy Foundry, Forsyth Street, New York, on August 9, 1837.

The American Institute of Christian

This society, which has just held its ixth anniversary and its tenth summer school of science and philosophy, should be better understood and appreciated by the public. The Institute was originated by a number of prominent American scientists at the suggestion of the Earl of Shaftesbury. It is designed to accom plish in this country results analogous to hose achieved abroad by the Victoria Institute of Great Britain. Its president from the fir'st, has been Rev. Charles F Deems, D.D., the accomplished pastor of he Church of the Strangers, in New York City. Among its vice-presidents may be named Bishop Bedell, ex-president Noah Porter, of Yale University, Hon T Rev. Joseph Cook, of Boston Professor Bayard, and the closing address by Thomas Hill, ex-presiden der Winchell, of Ann Arbor, and other men of ${ }^{2}$ nark. The secretary is the noted botanist, Professor C. M. Davis, of Bloomfield, N. J., and the treasurer is William Harmon Brown, of New York City. The gift of fifty dollars makes the donor a member for life while annual members pay but five dollars a year for the privileges of the Institute, namely, the use of the library, tickets to the lectures given under its auspices, and copies of all official publications. The entire membership at present is exactly 484, including members from the United States and Canada, representing all of the various branches of scientific investigation, all of the learned professions, and every phase of religious belief.
The Institute must not be regarded as in any sense sectarian or exclusive; nor is it a school of theology On the contrary, theological discussions are expressly interdicted as foreign to the legitimate aims of the society. These aims, as set forth in the constitution are as follows : To promote the full and impartial in vestigation of all scientific or philosophical questions especially in their relation to religion ; the association of men of science, in order to consider the mutual relation of the several branches into which science is divided; the examination of seeming contradictions and conflicting hypotheses, with reference to fina causes and the fundamental principles of philosophy and of faith ; and finally, the publication of lecture and addresses for the promotion of scientific and re ligious culture. This latter work is done by means o Christian Thought," a bi-monthly magazine pubished in New York City
Monthly meetings of the Institute are held in thi
city. The annual meetings and the summer schools of science and philosophy are usually held at some place of summer resort. This year the place of meeting was at Key East, near Ocean Grove, N. J. An invitation has been received to meet next year at Round Lake, N. Y. The interest taken by those who attend these meetings is deep and earnest, although there is not as large an attendance as might be inferred from the long list of members.
The following papers were read and discussed during the summer session of 1887, from August 17 to 25 : "Certain Aspects of Modern Skepticism," by' Lyman Abbott, of New York; "History, a Demonstration under the Moral Law," by James F. Riggs, of Bergen Point, N. J.; "Paul's Psychology," by Isaac F. Hopkins, president of Emory College, Oxford, Ga.; "Physical Theories of the Mind," by J. T. Bixbee, of Yonkers, N. Y. ; " Bishop Berkeley's Philosophy," by C. F. Deems, of New York; "Subterranean Scenery," by H. C. Hovey, of Bridgeport, Conn.; "History and Philosophy ot Sunday Legislation," by A. H. Lewis, of Plainfield, N. J. ; "Some Aspects of Theistic Logic," by Professor A. T. Ormond, of Princeton, N. J. "Christian Evolutionism and its Influence on Religious Thought," by Professor D. S. Martin, of New York
water being at about ninety pounds pressure. At the recent experiments a large fire was made on the middle of the stage, that being the least likely point at which a fire would occur. The flames rose some twentyfive feet high, when the signal was given to the fireman at the stage door, who instantly opened the valves and admitted water to the sprinklers. The result was that the fire was quickly extinguished, the sprinklers being set at an angle which commands the whole of the stage as well as the flies. There will be forty-five sprinklers in all, and thus, while the auditorium is fireproof, it was shown that the stage and flies could be deluged with a perfect cloud of water at few moments' notice. The exhibition was witnessed by various notable persons and by Captain Shaw of the London Fire Brigade. It will be observed, says Fire and Water, that the device is simply the application to a theater of the automatic sprinklers so well known in this country. We have often wondered why they were not adopted in theaters, hotels, and other places where crowds of persons assemble, for they would certainly give confidence to all who knew of their presence, and in an emergency many lives might be saved at the cost of merely a severe drenching. An unexpected shower bath would certainly be preferable to roasting alive in a burning building
[In the above case, we observe the sprinklers are not automatic, but it would be better if they were. We think the time has come when laws should be passed requiring all owners of tenement, manufacturing, and
 the taxes on such buildings be increased.]

Origin of the Letter X in Mathematics.
The letter x, used to designate the unknown in equations, has been explained as a modification of the letter s used by the Arabs; but Government Engineer Ritter, in a note to La Nature, shows that such is not the case. He says :
"In writing the as yet unpublished biography of the immortal inventor of modern algebra, Francois Viete, Maitre des Requêtes of the King's Palace, Counselor of State, and personal friend of Henri IV., and in translating his mathematical works, I have necessarily had to extend my researches in algebra. I am, therefore, able to explain to your readers the origin of the letter x in equations. Aucient algebra, before Francois Viete ('1 $1 \rho \imath 9 \mu \eta \tau \imath \kappa \alpha$ ' of Diophantus, Aljebr wáhmukabalah of the Arabs, Ars magna of Cardan, and Ars rei or Ars cossica of the Italians), was reduced to the solution of numerical equations. In Diophantus, the unknown (' $\alpha \rho \imath 9 \mu \circ 5$, 'number') is represented by the letter ς^{\prime} with the numeral index ('). In the Arabian authors that I have been able to consult, the calculations are always written in all letters, and the unknown is designated by an Arabic word that has been translated as res, cosa. the 'thing.' And, says the learned Dr. Nesselmann, the Arabs are so consistent in the application of this rhetorical method that they do not once ploy a numeral sign in their texts.
"Francois Viete, in his introduction to arithmetic by symbols, substituted the literal for the numerical equation, and he thus succeeded in establishing modern algebra and in discovering the relations that exist between the given and the unknown in equations of different degrees. He represented the former by the capital consonants of the Latin alphabet (B, C, D, etc.), and the latter by the first small letters of the alphabet (a, b, c, etc.) Later on, Descartes changed this notation, and designated the known quantities by the first small letters of the alphabet (a, b, c, etc.), and the unknown by the last (x, y, z). . . As in France, especially, the history of mathematics is not much known, it will certainly be for the first time that most of the readers of La Nature will read the name of one of the greatest geniuses that have rendered our country illustrious, and whose place is in the same rank with illustrious, and whose place is in the same rank with
that assigned by posterity to Archimedes, Descartes, and Newton."

An Exhibition of Postage Stamps:

An international exhibition of postage stamps is now in progress at Anvers, says a foreign exchange. One exhibitor, a Mr. De Beer, has alone sent thither a million stamps. Among the varieties to be seen at the exhibition is the oldest postage stamp in existence, belonging to the 18th century, and a postal card that made the tour of the world in 9 days. The latter belongs to a Haarlem schoolmaster, who would not part with it at any price
It seems that there are no less than 600,000 postage stamp collectors in the world, 375,000 of whom are Americans, 200,000 are Europeans, and 25,000 belong to Americans, 200,000 are E
other parts of the world.

THE FLOATING BALANCE

 i. oconor alone pHid

 i. oconor alone pHid}An interesting example of the laws of the equilibrium of floating bodies combined with a well-known illustration of the specific gravity of gases is afforded by the apparatus illustrated in the cut. It is essentially a balance in which the ordinary fulcrum is suppressed and replaced by a floating cylinder. As the resistance offered by water to the slow movement through it of a offered by water to the slow movement through it of a
floating body is almost nothing, it follows that a very sensitive balance may be thus constructed. The experiment in which it is represented as employed is the weighing of carbonic acid gas.
The balance beam is made of a thin strip of wood. A piece of printer's "furniture," used in setting up pages, is a good material for this purpose. It is set into a short pin, also of wood, which is driven into a into a short pin, also of wood, which is driven into a
wooden cylinder. The latter should be an inch in diawooden cylinder. The latter should be an inch in dia-
meter and three or four inches long. The pin should meter and three or four inches long. The pin should
be inserted half way between the ends. Into the cylinder directly opposite the pin a wood screw is inserted. A disk of lead is soldered to its head. This acts as a handle by which to turn it, and also as additional counterpoise. It is for the end of maintaining a sensitive but at the same time stable equilibrium that the weighted screw is used.
At each end of the beam, hooks are arranged as shown for attachment of the pans or other receptacles. They are made of iron or brass wire; and are firmly secured to the beam. They are carried downward so as to bring them in line with a point
For the weights, a scale pan of mica may be used. If carbonic acid or nitrous oxide gas is to be weighed, a light paper box, three or four inches on each edge, takes the place of a second pan. Thread is used to suspend them.
A tin reservoir of the shape indicated has a socket soldered to its bottom. By this it is held on a standard as shown. The upright piece should also pull out of the base, so as to make the whole portable. For weights or counterpoises, portable. For weights or counterpoises,
little bits of wire, tin, and tinfoil may be little bits of
employed.

The cylinder is introduced into the empty reservoir and water is poured in until the cylinder floats up near the level of the upper edge. The entire surface of the cylinder should be well moistened. The balance now has to be brought into equilibrium. This is done by hanging equilibrium. This is done by hanging
the pans in place, and by using weights the pans in place, and by using weights
or the counterpoises we have mentioned. When in equilibrium, it is examined as to its stability. If it is sensitive to oneseventh grain (10 milligrammes), it is good enough. If not, the screw under the water must be screwed further in.
By repeated trials the sensitiveness can be accurately adjusted. To allow the beam sufficient motion, it is well to cut out two pieces on each side of the ?cylinder. As it is very important that it should be rigid, these notches must not be made too deep. When to be used in weighing a gas, the box is carefully counterpoised, and the balance is made as sensitive as possible. If now the box is filled with carbonic acid or nitrous oxide gas, that end of the balance immediately descends, although nothing is visible.
Another form of the balance beam is shown lying at the foot of the apparatus. For wooden beam and supporting pin a bent wire is substituted of the form indicated. By careful bending and sliding, the two panhooks can be brought to the proper level, and the experiment performed with quite as good satisfaction as in the other form.
Carbonic acid gas may be made by pouring vinegar upon baking soda. A pickle bottle or preserve jar answers for the operation, and in a few seconds it can be filled with the gas. By careful manipulation this can be poured out like water into the box suspended on the balance beam. Nitrous oxide, or laughing gas, is made by heating nitrate of ammonia. A great deal of water is evolved along with it. If to be used in the experiment, it must be caught by displacement of air, as it dissolves in water, thus precluding the use of the as it dissolves in w
hydraulic trough.
Finally, a very ready source of carbonic acid gas is suggested in the illustration. After a mineral or soda water siphon has been exhausted of its liquid contents, it still contains a considerable quantity of gas. By inclining the siphon to one side, so as to keep all water away from the end of the glass tube, the gas may be drawn off by opening the valve. The best plan is to fill a pickle jar or other bottle from the siphon, and thence to pour the gas into the counterpoised box. If the siphon is used directly, the force of the escaping gas will tend to agitate the balance unless the cock is opened with extreme care. In all cases the experimenter must be on his guard, and allow no water to
enter the box.

the floating balance.
of the air, he found that in August the number of micro-organisms exceeded 100, while in January there were but 5 . There was a gradual rise in numbers from May to August, after which the fall in number was much more sudden. In the country the number of atmospheric micro-organisms was very appreciably smaller ; and the more remote the place of observation is from houses, and from the frequented thoroughfares of traffic, the dust of which is always rich in refuse or ganic matter, the freer does the air become from suspended microbes.
In reading Dr. Frankland's paper one cannot but be struck with the remarkable concomitant variation between the number of micro-organisms and the unwholesomeness or wholesomeness of the places investigated. Every medical man knows the value of mountain air and of a sea voyage, and it is only in these places that the atmosphere can be said to be free from micro-organisms. The interiors of railway carriages are, as we all know, apt to become foul, but Dr. Frankland's estima tion that more than 3,000 organisms were found to be falling on the square foot in one minute while the train was passing half way between Cambridge and London, one window of the compartment being shut and the other only open four inches at the top, gives a mathematical expression to the fact, which, if any were matical expression to the fact, which, if any were
wanted, is sufficient explanation of the fatigue of a wanted, is sufficient explanation of the fatigue of a
journey, without invoking the aid of the theory of nerve vibration to account for the prostration which many suffer after a prolonged ride in the train. In point of numbers, however, the atmo sphere of a harn where flail thrashind
was in operation puts the rail way compartment in the shade, for there were no less than 8,000 organisms falling on the square foot in one minute. The injurious effect of theaters and crowded places of amusement would find a sufficient explanation in the yield of micro-organisms without taking any account of the dim inution of oxygen or the increase of car bonic acid. At a conversazione at Bur lington House the number of organisms reached 432 per ten liters of air.-Lancet.

A Sea Telephone

A dispatch from Cincinnati, Ohio, says : At Fernbank, ten miles from this city, are the workshop and laboratory of Har vey B. Cox, a young electrician, who, though known to but few here, is attracting the attention of scientists and electricians in this country and Europe by his inventions, in which he is as prolific and ingenious as Edison. His latest device is a trumpet to be used for tele-
exclusion would be practically impossible. Undoubtedly, many of the germs in the air we breathe are for the most part harmless in their nature, though it is probable that even the innocuous varieties may require a slight expenditure of energy on the part of the human organism to neutralize the effect of their activities, since it is hardly likely that the act of destruction of a bacterium is unattended with the employment of some kind of force, and we know that the active protoplasm of living bodies is capable of destroying bacteria. Indecd, the theory implied in these considerations may be expanded.
We may conceive, for example, that deterioration of health by a general weakening of the whole body might be the cause of many diseases, not so much by the agency of the mere debility as by the circumstance that the deterioration afforded the opportunity for the growth and development of organisms which, under the ordinary circumstances of good health, would have been quickly destroyed by the inherent vitality of sound tissues. The experiments of Pasteur and Tyndall, and the observations of Miguel and Frankland, bear abundant testimony to the existence of a law which may not be expressible in such definite terms as that the number of microbes in the atmosphere varies inversely as the square of the distance from human habitations, but-which, nevertheless, forcibly reminds one of this physical law. Pasteur exposed twenty flasks containing putrescible substance in the open country of Arbois, and found that eight became turbid or contaminated with microbes. Of twenty exposed in the ower heights of the Jura Mountains, only five became affected, while of twenty others exposed at the Montanvert, close to the Mer de Glace, at a height of 6,000 feet, only one flask developeả microbes. Miguel, by observations made at Montsouris, in different seasons of the year, has shown how the distribution of microbes is dependent on the surroundings.
Frankland, employing a more recent and more accurate method, has shown very clearly that the maximum number of micro-organisms is to be found in the hot test months of the year. Thus, in a volume of air equal to about two gallons (ten liters) collected on the top of the Science and Art Department buildings at South Kensington, at a height, therefore, of some 70 feet from the ground, and so removed from any local disturbance
phoning at sea, on which he has been working for some months. The invention is the outgrowth of his discovery of the great distance an echoed or reverberated sound will carry and the discovery that speaking trumpets, if made to give the same fundamental note, would vibrate and produce the phenomenon known in acoustics as "sympathy." With this trumpet, conversation in an ordinary tone of voiçe was carried on between persons four and a quarter miles apart. People siting at their windows or on their porches a mile away conversing in an ordinary tone could be distinctly heard, and in a couple of instances they were told the nature of their conversation and admitted that such had taken place. By listening to the whistle of a train, and tracing it to and beyond Fernbank to Lawrenceburg, Ind., it was found that the instrument has a well-defined range of twentysix miles; that is, a loud sound like a locomotive whistle or the rumbling of a train can be distinctly heard at a distance of thirteen miles in every direction. Conversation was readily carried on between two gentlemen on high hills on opposite sides of the Ohio River, about four and one-half miles apart. Tests made on the water showed that the trumpet was even more available than on land. The instrument will be patented as soon as perfected. A name has not yet been chosen for it. Mr. Cox has a great many other curious and valuable devices, both electrical and mechanical, but none as curious as his sea telephone.

Carbonic Acid Gas as a Fire Extinguisher.

The fiery, untamed soda-water tank, which has chiefly distinguished itself since the advent of hot weather this year by bursting and killing or maiming itsattendants, has made a new departure, says Fire and Water, and now appears in the role of a most efficient extinguisher of fire. Some days ago at Louisville, Ky., a boy carried a lighted candle into the cellar of a drug store, and in some unexplained way set fire to a vessel full of varnish, which blazed up through a grating in front of the building as high as the second floor. Before, however, the flames could gain headway in the building, the heat had melted the lead pipe connected with the newly charged soda fountain, and the flames were instantly extinguished.

THE FIRE APPARATUS OF PARIS

When a house takes tire, it frequently happens that the exits that would permit of the surprised inhabitants' escape are rendered inaccessible by smoke or fire. We then, as in the case of the burning of the Opera Comique at Paris, see unfortunate persons making frantic appeals from the high windows of the edifice, while others, who have taken refuge on the roof, would not fail to lose their lives were it not for life-saving ladders. There are several styles of these ladders. The one most used in the regi ment of Paris firemen is Bayley's, and is the one that is here illustrated.
This ladder is not only designed for saving life, but also for supporting the hose when it becomes necessary to throw wate into the upper parts of a burning building.
In the saving of life the ladder is used either as a means of descent or mere ly to allow the firemen and their apparatus to reach the upper stories. The height reached by this lad der is 88 feet, which about corresponds to the eighth story, When it is upright the third story
The Bayley ladder, which has been used for several years by the Paris fire department, is kept at the engine house upon a truck that is always ready to hàve horses harnessed to it and to start with its men at the first signal The truck, which is a two horse one (Fig. 1), consists of a fore and hind carriage a movable pole, fou wheels, two cheeks of wood a seat, and two rack brakes The ladder is maneuvered through ropes and pulleys It is made of wood, and consists of three sections which slide within one an other. Each section con sists of two uprights, each strengthened internally by an iron cable, and provided with twenty-eight rounds twenty-seven of them of wood and one of iron Each section is provided with two iron cables, with stretchers designed to prevent flexion.
The first section is held by two stretchers fixed to the upper part on the one hand and to the back of the frame on the other. Two rollers fixed at the upper part of the third section facilitate the sliding of the end of the ladder against the wall.
The sliding sections are maneuvered through winches fixed to the extremities of a windlass. The accessories kept in a box in the track comprise thre 100 footropes for steadying the ladder during high winds, a rope used in tilt ing the ladder, keys for tightening nuts, etc
The truck, with its ladder and its set of eleven men, weighs $9,250 \mathrm{lb}$. The truck alone weighs 4,488 lb ., and the ladder 3,070 .
The ladder is maneuver ed by a sergeant, a cor poral, and eight firemen
metropolis it. may be considered as indispensable The water tower is a portable standpipe which, for convenience of carriage, is in four sections. The lowe section, fourteen feet and six inches long and nine inches in diameter at the base, is fixed upon a heavy iron platform mounted on a four-wheel carriage. This section, when not in use, lies horizontally on a frame work, and in that position looks like a long mounted cannon. Two other sections of the pipe, twelve and c
mounting from one story to another through the wi dows.-La VNature.

The Portable Water Tower
Among the modern devices brought into use for the important purpose of conquering large fires is the movable water tower. In construction it is simply an upright tube by means of which the streams from three
al, and elght firen.
Fig. 2 represents the ladder standing upright, and Fig. 3 shows it drawn out to its full length
Among the other ladders that are most used by the Paris fire department, we may cite the Shand-Mason one, which is of rolled and hammered iron, and the Lieb one, which is in four sections. In addition to these large ladders, we may mention the ordinary hook one, which is provided with but a dozen rounds, which is maneuvered by hand, and which can ba used for

Fig. 1.-bAyley's fire ladder on its trock

Fig. 8-THE LADDER UPRIGHT.

Fig. 3.-THE LADDER EXTENDED.

PARISIAN FIRE LADDERS.

- nineteen feet respectively are carried in racks at th side of the platform. These gradually diminish in size, and the fourth section is a pipe in immediate connec tion with the nozzle. The sections are joined together by large couplings similar to hose couplings. The entire length is fifty feet When less than this is re quired, but a part of the sections are mounted. The nozzles in use are six in number, and range from $12 / 3$ to $22 / 3$ inches, the $13 / 4$ being that most frequently in service.
When the tower is to be used, on a special call or third alarm, it is placed in rontof ble broming toulla ing, and on account of the exposure to danger in that position, the horses are immediately removed. The platform is made level by jackscrews. The sections are firmly put together. An elevation of thirty feet is secured by coupling the twelve-foot section to the lower one, and this is sufficient when the building is not more than fifty feet in height. When the situation so requires, the entire length of all the sections is brought into use. The nozzle having been screwed on, and the swivel guy ropes adjusted, the tower is raised with a hand wheel, and made secure in a perpendicular position. All this is done in about fifteen minutes. The water connection is then made. To the four inlets in the suction pipe can be attached the discharge pipes of four different engines, although generally but three are used. The water from the several engines is concentrated into one volume in the tower, and forced in a solid, rushing stream into the center of the fire. Through the mechanism employed, the nozzle is under perfect and easy management. The stream of water can be thrown into any part of the building, and places are thus reached to which access would otherwise be impossible. By means of the swivel pipe attachment, invented by Assistant Chief Bonner, of New York, the power is doubled. The water tower works well for all heights up to 75 feet. When buildings exceed this height, the fire department sees good reasons for insisting that the upper stories should be made absolutely fire proof. The Insurance Critic says: For the materials embodied in this account embodied in this account ble height, and poured in a miniature deluge upon of a useful and valuable invention for extinguishing the very focus of the flames. It has been in use in the large fires, acknowledgment is due to the Fireman's New York Fire Department about nine years. Its in- Herald of New Fork, which adds the further informaventor, Abner Greenleaf, of Baltimore, had spent tion that the New York Fire Department has three many years previously in perfecting his plan. The ma- water towers, two of which are in active service while chine has now passed beyond the stage of experiment, the other is kept as a reserve. On a corner building and its value as an auxiliary force in the conflict with two towers are sometimes used. Illustrations of this fires in great warehouses has, in the estimation of all, become fully established. For the needs of the CAN of August 9, 1884.

AN ALLEGED PERPETUAL MOTION.

Perpetual motion is, to many inventors, what the " wilt o' the wisp" is to the traveler. It is always in sight, but never quite within reach. One of the favorite schemes for securing the desired end involves the use of permanent magnets, and the only impediment to the realization of a machine for creating power is an insulator of magnetism. With inventors of this class of machines it has always been a great "if ;" but now, if we are to believe certain reports, the great "if" has been annihilated, and the force of permanent magnets has been rendered available by the discovery of an insulator of magnetism, which, as we are told, consists of "chemical and mineral substances," but regarding the nature of these substances we are uninformed.
We have secured a picture of the machine, in which an insulating septum of the "substances" is employed to cut off the attraction of a permanent magnet, and thus secure the rotation of a wheel arranged within the field of force of a permanent magnet. This machine is the invention of Mr. H. S. Pullwan, of Rockville, Conn., who has exhibited it in the city of Hartford to crowds who have been enabled to witness the wonderful performances of the wachine at the expense of ten cents per head.
The simple fact of the machine being exhibited under such circumstances would seem to cast a shadow on its genuineness, for, if it is really a power-creating machine, the inventor might realize mintrons trom patento for hion vention where he receives only mills in the dime show business; however, the machine has the credit of moving apparently by power created within itself. It has been seen in motion by Mr. W. H. Goldsmith, city editor of the Hartford Iimes, to whom we are indebted for several points in regard to it; and Prof. Luther, of Trinity College, was promised the opportunity of testing the machine, but the inventor, with his machine, like the Arab, "folded his tent, and as silently stole away."
The machine is a wonderfully solid-looking aff air for the amount of power produced by it, the thickness of the base and the diameter of the columns supporting the main wheel being apparently altogether out of proportion to the other parts. To an incredulous person these features might be suggestive of a spring motor contained in the base, and mechanism for conveying the power from the base through one of the columns to the motor wheel ; and, further, one of the most salient features of the apparent deception is the legend upon the base, which is also suggestive of hidden parts.
To the base are secured two standards provided with centers, upon which are mounted the main shaft of the machine, carrying the motor wheel, A. The wheel is made of sheet iron, with teeth formed in its periphery, and bent alternately in opposite directions. Upon the shaft are also mounted a star wheel and a propeller wheel. The star wheel is arranged to tilt a lever, which carries at its extremity a plate, B , of brass coated with the "chemical and mineral substances" which make it an insulator of magnetism. The perma nent magnet is supported by a U-shaped bar, with its poles near the wheel, A, and opposite the path of the insulating plate, B. The propeller wheel, turning in a cup of water, serves to equalize the motion, and thus prevent the machine from running away with itself and committing self-destruction.
We have never seen, nor have we before heard, of an insulator of ; magnetism, but, sup posing it to be an entity, the ma chine illustrated seems to be poorly adapted for its application.
Wheu one of the projections of the motor wheel approaches the horseshoe magnet, the insulating plate, B, is pushed up between the magnet and the wheel by the action of the star wheel, and as soon as th projection passes the magnet, the ever slips off from one of the points of the star wheel, allowing the insulator to drop, when the magnet will attract the next projection in order, and when near the magnet the insulator will be pushed up as before, and again dropped down, and thus the rotation of the wheel, A , is supposed to continue forever.

In breaking the ground in a place near Kincardine, Ont., the other day, a skeleton, which to all appearance is that of a wild boar, wa found. All the bones, including the tusks and teeth; were in splen did condition, though it is thought they have been lying there for one or two hundzed years.

BPENCER FULLERTON BAIRD.

bi marous benjamin.
The high rank among living naturalists so long held by the distinguished secretary of the Smithsonian Institution makes it eminently proper that he should receive a place in our gallery of American scientists, and at present the time is most opportune, for within a few days the news of his death has flashed through the country.
Spencer F. Baird was born in Reading, Pa., on February 3, 1823. He was sent, at the age of eleven, to a Quaker boarding school in Port Deposit, Md., and a

1848.from the Philadelphia Medical College. In 1845 he returned to Dickinson College as professor of natural history, and a few years later became also professor of chemistry. His lectures included physiology to the seniors, geometry to the sophomores, and zoology to the freshmen.
He accepted the appointment of Assistant Secretary of the Smithsonian Institution in July, 1850, on the urgent recommendation of George P. Marsh, and thenceforth continued as its principal executive officer, becoming in May, 1878, on the death of Joseph Henry, its.secretary and official head.

His duties in this connection were exceedingly arduous, and nearly all of the scientific development of the Institution was under his immediate charge. Indeed, his genius for organization made itself apparent from the outset.

The Department of Exploration was placed under his authority from the beginning, and his annual reports constitute the only systematic record of the government explorations ever prepared. During the decade of 1850-60 he devoted much time to enlisting the sympathies of the leaders of government expeditions in the objects of the Institution, supplying them with all the appliances for collecting, as well as with instructions for their use. In many instances he organized the natural history parties, named the collectors, employed and supervised the artists in preparing the plates, and frequently editing the zoological portions. to Washington were intrusted to his care. These with his own collection and those of the Wilkes exploring expedition, brought to the Smithsonian in 1842, formed the beginning of the National Museum, now the finest in this country.
It has been no slight tąsk to organize a museum such as that now in existence in Washington, and the brain that planned its details was that of Professor Baird.
According to G. Brown Goode, its assistant director, and since January 1, 1887, in full charge of the museum, "there have been three periods in the history of the museum. At first, it was a cabinet of the results of research. When, in 1857, the Smithsonian assumed its custody, it became also a museum of records. Since 18:6, the idea of public education has been predominant."* Besides the usual routine work incidental to the office of assistant secretary, Professor Baird organized the system of international exchanges which has since become one of the leading features of the Institution.
The most conspicuous, and perhaps the most valuable, of Professor Baird's scientific work dates from his appointment in 1871, by President Grant, as Commissioner of Fish and Fisheries. The duties of this office, as originally defined by Congress, were " to prosecute investigations on the subject, i. e., of the diminution of valuable fishes, with the view of ascertaining whether any and what diminution in the number of the food fishes of the coast and lakes of the United States had taken place, and, if so, to what causes the same is due; and also whether any and what protective, prohibitory, or precautionary measures should be adopted in the premises, and to report upon the same to Congress." But the undertaking expanded as the work progressed, until it is now tenfold more extensive and useful than at first. At present, it includes: 1. The systematic investigation of the waters of the United States, and the biological and physical problems which they present. 2. The investigation of the method of fisheries, past and present, and the statistics of production and commerce of fishery products. 3. The introduction and multiplication of useful food-fishes throughout the country, especially in waters under the jurisdiction of the general government, or those common to several States, none of which might feel willing to make expenditures for the benefit of others.

His work in this department has received universal recognition. At the request of the United States government, he was present as advisory counsel at the Halifax Fishery Commission, held in 1877, and at that time prepared an essay on fish culture, into which he threw all of the wealth of his vast knowledge and experience on this subject. The munuscript has recently been put in the printer's hands; and is now in course of preparation for publication.
*The story has been well told by Ernest Ingersoll, in the Century for January, 1885,
under title of "The Making of a Museum."

In 1878 he received the silver medal of the Acclima tization Society of Melbourne, in 1879 the gold medal of the Societe d'Acclimation of France, and in 1880 the first honor prize of the International Fish Exhibi tion, held in Berlin, it being the special gift of the Em peror of Germany. He also received, in 1875 , the de coration of Knight of the Royal Norwegian Order of Saint Olaf, from the King of Norway and Sweden.
Professor Baird received the degree of Doctor of Physical Science in 1856 from Dickinson College, and that of Doctor of Laws in 1875 from Columbian Uni versity, being for many years a trustee of the latter in stitution. Since 1878 he was a trustee of the Corcoran Gallery of Art, and was the president of the Cosmos Club.
He was one of the government Board of Commission ers to the Word's Fair held in Philadelphia in $1: 76$ and member of the international jury on Fish and Fish Products.
He was permanent secretary of the American As sociation for the Advancement of Science in 1850-51 editing the proceedings of the fourth, fifth, and sixth meetings, and was one of the early members of the National Academy of Sciences, serving as a member of its council almost since its organization
Besides being a member of the leading scientific so cieties in the United States, he held foreign or honorary nembership in many of the prominent scientific so cieties in Europe and in the British colonies.
The nomenclature of zoology contains many memo rials of his connection with its history. Professor The and over twenty-five species of inammals, birds, fishes, mollusks, and other forms of life bear his name, together with seve ral fossil or extinct forms of life.
Professor Baird's literary work was something enormous. It included down to January 1, 1882, 1,063 titles.* Of this number, 775 are brief notices and critical eviews contributed to the "American Record of Science and Industry" while under his editorial charge, 31 are reports relating to the work of the Smithsonian Institution, 7 are reports upon the Ameri can fisheries, 25 are schedules and circu lars officially issued, 25 are volumes or papers edited, while of the remaining 200 the majority are formal contributions to scientific literature
Dr. Goode states further that, "of the total number of papers enumerated in the list, 73 relate to mammals, 43 to reptiles, 431 to fishes, 61 to invertebrates, 16 to plants, 88 to geographical distribution, 46 to geology, mineralogy, and paleontology, 45 to anthropology, 31 to industry and art, and 109 to exploration and travel."
From 1870 till 1878 he was the scientific editor of Harper \& Brothers' periodicals, and likewise the annual volumes of the "Record of Science and Industry" from 1871 till 1879 were edited by him, " with the assistance of eminent men of science." The various reports and annual volumes of the United States Commission of Fish and Fisheries were prepared by him, and also the annual "Reports of the Board of Regents of the Smithsonian Institution."
His other works include the translating and editing of the "Iconographic Encyclopedia" (4 vols.; New York, 1852) ; "Catalogue of North American Reptiles Washington, 1853) ; "Mammals of North America" (Philadelphia, 1859) ; "The Birds of North America," with John Cassin (Philadelphia, 1860); "Review of American Birds in the Museum of the Smithsonian Institution" (Washington, 1864-66) ; and "The Distribu tion and Migrations of North American Birds" (1866) More recently he has been engaged upon a."History of North American Birds," in collaboration with Thomas M. Brewer and Robert Ridgeway (5 vols., Boston, 1874-84). The results of his latest ornithological studies were recently placed by him in the hands of Dr. Ridgeway, and they are now in course of preparation for publication.
In June last, Professor Baird went to Wood's Holl, Mass., the suinmer headquarters of the U. S. Fish Commission, in greatly impaired health, the result of overwork and anxiety, but it was hoped that, with rest, he would soon be restored to health. For some time he grew better, but.early in. August he had a serious relapse, from which he rallied with sudden rapidity, and was able to spend part of his time in the laboratory, and even go out of doors. This continued until the day before his death, but on August 19, after a restless night, he became unconscious, and died.

His body was at once taken to Washington and deposited in the receiving vault of the Oak Hill Cemetery, where it will remain until the public funeral, which will occur during the autumn.
It is an unfortupate comment upon the present administration that a partisan clerk was permitted to so
*See "The Published Wrtings of Spencer Fuiierton Baird, 1843-1882," by George Brown Goode, * Bulletin of the U. S. National Museum,
No. 20."
"investigate" the office of the U. S. Coast and Geo
detic Survey that its superintendent, who had devoted orty years of his lifetime to its work, resigned from his place under threat of exposure of charges, never proved and generally believed incapable of being sustained. Likewise the life of the late secretary of the Smithsonian Institution was "perceptibly shortened," after thirty-seven years of faithful duty, by the careless imputation of the same officer. Although these charges were shown to be without foundation by a Congressiona committee, still Professor Baird, "who was extremely sensitive, and who never before heard any imputation against the integrity of his adminstration, never recovered in spirit from the shock the charges gave him."* Professor Baird's successor will undoubtedly be the present senior assistant secretary of the Smithsonian Institution, Professor Samuel P. Langley, a sketch of whom appeared in the Scientific American of August 20, as the president of the American Association or the Advancement of Science during its recent meet ing held in New York. The present appointment o Professor Langley was made in January, 1887, at the request of the late secretary, who thus virtually de signated him as his successor, and the regents of the Smithsonian Institution, of whom Chief-Justice Waite is chancellor, appointed Professor Langley with that understanding.

THE SNAKE LIZARD, GLASS SNAKE, OR JOINT SNAKE

Ophisaurus ventralis.)
by c. few seiss.
the plane of the septum, and when such lizards are acized by the tail, that appendage is pretty certain to part at one of these weak points." The muscles of the tail do not passover these joints, so that the parting of the tail does not cause a tearing apart of the muscular fibers, but simply a separation of one muscular plate rom another.
It has been asked, "Why is the tail of certain lizards so brittle?"-a question that cannot be answered satisfactorily, inasmuch as the vertebræ of the tails of some species of lizards are as strongly bound together as in the serpents. To the snake lizard the fragile tail is a benefit rather than a misfortune, for when the defenseless reptile is seized by a rapacious animal it snaps off its tail into several writhing pieces, which it leaves in the possession of its astonished enemy, while the head and body, the vital parts, wriggle away into the grass and escape. But the snake lizard is not doomed after such a misfortune to pass the remainder of its life without a tail, for it has the power to replace the lost nember, not by pasting or cementing together the old broken portions, but by rapidly growing a new one. When the tail has once been broken, it is hardly necessary to say that it is impossible for the reptile to collect and reunite the pieces.
A certain man declares that he beat a "joint snake" into a dozen or more pieces, and left it for over an hour, and when he returned to the spot he found that "the parts of the snake had come together again and crawled away." He would not be convinced that some animal had carried away or devoured it during his

A traveler who frequently met with the "glass snake" during his botanical rambles, says: "It is as innocent and harmless as an earthworm. When full grown it is about two and a half feet in length, and three-fourths of an inch in thickness. The abdomen or body part is remarkably short, and it seems to be all tail, which, though long, gradually attenuates to its extremity. The color and texture of the whole animal is much like bluish-green glass, which, together with its fragility, almost persuades a stranger that it is in reality that brittle substance. Though quick and nimble in twisting about, yet it cannot run with much ra. pidity, but quickly secretes itself in the grass or under leaves." He of course contradicts the "vulgar fable" that it is able to repair itself after being broken into pieces.
In life, the head of the snake lizard is mottled black and green, yellowish about the jaws. The body and tail above are -marked with lines of black, green, and yellow, corresponding to the position of
the Scifntific Amprican. "I wish you could give us some information through your paper upon the socalled 'joint snake.' I have been permitted to see and kill several of them. They were about two to two and a half feet in length, and were quite pretty, being striped in brown and silver. I once threw a smal loamy clod of earth upon one of them, which broke it into eight or ten pieces. Each piece was comparatively square at the ends, and the pieces were all about the same size. I have heard that the broken portions will reunite if left alone, should the head be uninjured. Have I been misinformed?"
The snake lizard, or "joint snake" as it is called in some localities, is a peculiar reptile, and has seemingly puzzled the earlier naturalists as to its proper classification, some placing it among the serpents (ophidia) and others with the lizards (lacertilia). It is serpent like in form, being destitute of limbs, but a mere glance at its anatomy proves it to be a true lizard The lower jaw bone is not disjointed as in the snakes, and the eyes of the snake lizard have movable lids, and its ears are visible externally-characters which never appear in serpents. Its tongue is not slender, forked and sheathed as in the serpents, but is somewhat arrow-shaped, notched in front and covered before with granular, and posteriorily with filiform papillæ. The scales are quadrangular in shape, arranged in transverse rows, and a fold of skin runs along each side of the body, separating the upper from the lower parts. The tail of a snake or lizard is always considered that portion posterior to the anal opening or vent The portion anterior to the vent is the body proper as it contains all of the vital organs, while the tail contains nothing important. In the snake lizard the vent is situated far forward, and the tail is often twice the length of the head and body together. When the reptile is struck lightly, the portion which seemingly is voluntarily broken to pieces is always the tail, never the body or that portion anterior to the anal opening. "In many of the lizards the caudal vertebræ have a very singular structure, the middle of each being tra versed by a thin, unossified transverse septum. The vertebra naturally breaks with great readiness through
the scales. The under surface of the whole animal is yellow, most brilliant along the abdomen. Several color varieties have been described from discolored alcoholic specimens, but in the living animal the color is always as given above, varying only in depth and brilliancy.
It has been found in all of the Southern States from Southern Virginia to Texas inclusive ; and in the West its range extends as far north as Wisconsin and Iowa. It seems to prefer open fields and dry or sandy locali, ties, and is.frequently met with in sweet potato fields in the South. It is said to feed mainly upon insects.

To Color Copper and Nickel Plated objects.
The Journal des Applications Electriques says that eleven different colors may be communicated to well cleaned copper, and eight to nickel plated objects, by means of the following bath :

Acetate of lead.
. .300 grains.
Hyposulphite of soda. \qquad
After the salts are dissolved, the solution is heated to ebullition, and the metal is afterward immersed therein. At first, a gray color is obtained, and this, n the immersions being continued, passes to violet, and successively to maroon, red, etc., and finally to blue, which is the last color.
As the substances that enter into the composition of the solution cost but a few cents, the process is a cheap one. It is especially applicable in the manufac ture of buttons

Home-made Ice.

Take a cylindrical earthen vessel and pour $3 \frac{1}{3}$ ounces of commercial sulphuric acid and $1 \frac{3}{4}$ ounces of water in to it and then add 1 ounce of powdered sulphate of soda In the center of this mixture, place a smaller vesse containing the water to be frozen; then cover the vessel, and, if possible, revolve the whole with a gentle motion. In a few minutes, the water in the small vessel will be converted into ice. The same mixture can be used a second or third time for making a block of ice. 'The operation should, if possible, be performed in a cool place, in a cellar, for example.-La science en Famille.

COMPOSITION OF VIBRATIONS.

by aeo. m. норкins.

The optical method of studying sonorous vibrations has the advantage over other methods in being of interest, not only to the student of acoustics, but also to those who care only for beautiful effects, and have no regard for the lessons they teach.
As incidental to scientitic work, the effect of beauti ful experiments on the latter class may be worth a little consideration, as it not infrequently happens that the mere on-looker is lured into the paths of science by such means.
Among physical experiments, none are more attractive or instructive than those connected with the sub ject of sound. The experiments of M. Lissajous are particularly interesting, but when the figures are pro duced by the apparatus employed by Lissajous, a costly set of instru ments will be required.
In the annexed engraving are shown two pieces of apparatus for producing these figures; that shown in Fig. 1 being quite inexpensive, that shown in Fig. 2 being a little more costly, and, at the same time more efficient in its performance.
The device shown in Fig. 1 con sists essentially of two plane mirrors, supported by torsional bands of ribbon, one being supported so as to vihrate in a vertical olane, the other in a horizontal plane, the mirrors being arranged with respec to each other so that the light re ceived by one mirror will be reflect ed upon the face of the other mir ror, by which it will in turn be projected through the double convex hand glass, to be finally received on the wall or screen
The mirrors employed in the construction of this instrument are the small, inexpensive circular pocket mirrors sold on the street corners. They are about $11 / 2$ inches in diameter To adapt them for use, a strip of tin, having its ends curled up to form hooks, is secured to the back of each mirror by means of sealing wax.
A base board provided with three standards sup ports the mirrors in the position of use. In one of the posts near the top are inserted two ordinary wire hooks, and near the bottom are inserted two similar hooks. Rubber bands received in these hooks are inserted in the hooked ends of the strip of tin attached to the back of the mirror. Several wire nails are driven into the face of the standard, for convenience in increasing or diminishing the tension of the rubber bands, the bands being drawn forward between the hooks and slipped over one or the other of the nails to in crease the tension.
The mirror thus mounted on the vertical rubber bands will, when struck lightly, vibrate in a horizontal plane. To change the rate of vibration, a weight is attached to the back of the mirror by means of beeswax. In the present case the weight consists of a piece of wire about 6 inches long. By vary ing position of the wire on the mirror, i. e., by placing it at different angles with the rubber bands that support the mirror, the rate of vi bration may be greatly varied.
The second mirror is mounted in substantially the same way, the only difference being that the rubber band are arranced hor tally, and supported by two posts instead of one. This mirror vibrates in a vertical plane, and its rate of vibration is changed in the manner above de

th scribed. A candle or other source of light is arranged so that the light from it will fall on one mirror and be re flected to the other mirror, which in turn will project it through the lens to the wall. When the mirrors are set in vibration, a figure of more or less complicated character will be produced upon the wall. If the two mirrors vibrate in unison, a straight line, or an ellipse, or a circle will be produced. If one mirror vibrates twice as fast as the other the figure will have the form of figure 8. The figures may be varied to an almost unlimited extent by changing the tension of the rubber $|$| required |
| ---: | :--- |

bands, and by shifting the wire weights. As the various figures which may be produced are illustrated in most works on physics and on sound, it will be unnecessary to illustrate them here.
The apparatus shown in Fig. 2 will now be under stood with little explanation, as the principle on which it operates is the same as that of the more simple form. The mirrors are each supported by two parallel steel wires, which are really but the ends of the same wire. The extremities of the wire are securely fastened in the T-shaped head of a bolt, which in the case of the horizontal wires extends through one of the posts, and receives a milled nut, by which the tension of the wires may be varied.
The wire at its mid-length passes around a smal
The wire at its mid-length passes around a smal

Paper.
To properly mix fibers we must know the way they combine to produce paper and the qualities which they should possess to that end. It was a generally accepted idea until very lately that the fibers of the paper sheet close or lock together in the same way as animal hair in felt: At the beginning of this work even, paper is described as a felted sheet. Dr. Wurster sent us at the beginning of the present year the following communication, from which it would appear that paper is not felt in the hitherto acceptation of the word, but simply "a confused mass of fiber." Here is what Dr. Wurster says:
However great progress may have been made in telling what paper is, we have yet no correct explanation of the origin and nature of the paper sheet. It has become a matter of course to consider paper as a felt of fibers, although at the beginning of the century the discoverer of the nature of the; felting of animal fibers objected most decidedly to calling paper a felt. The peculiar clinging together occasioned by the animal scales in wool or hair felt, and the intertwining the hair more together by pressure and motion, making the felt thicker and smaller in its dimensions, are lacking in paper fibers.
Merely placing dry paper fibers sheet of paper, as can be easily seen by using dry rag fiber or lint. Neither will short cut-wool or silk filaments make a sheet of any strength. The capacity for producing a consistent sheet of paper be longs solely to those fibers which lose their elasticity in water as they become softer, but recover that quality again in drying. In the
the tension of its two branches will be equalized. The vertical wires are supported in the same way by studs projecting from the central post-the lower stud being provided with a sheave for receiving the wire, the upper stud being mortised for receiving the tension screw.
The mirrors are attached by small clamps which embrace both wires, and the arms supporting the adjustable weights are pivoted to the clamps. The weights may be swung in the plane of the mirror, and they are made adjustable on their supporting arms.
The best illumination aside from sunlight is that of a small parallel beam from an oxyhydrogen or electric lantern. The apparatus may be coarsely adjusted by turning the weighted arms on their pivots, and a finer adjustment may be secured by increasing or diminishing the tension of the wires.

Antiseptic Mouthwash.-One of the greatest living

Fig. 2.-APPARATUS FOR COMPOUNDING RECTANGULAR vibrations. of paper when dry.
moistened state the ductile fibers, aided by the shakmoistened state the ductile fibers, aided by the shak-
ing, settle down in all directions and form a confused fiber mixture. In drying, every fiber gradually recovers it original form and elasticity, and theindividual fibers exert a certain pressure on each other. The longer the fibers, and the more intricate the mixture of the fibers when wet, the stronger will be the sheet

When wet, or when its fibershavelost their elasticity by heat, paper cannot be drawn in every way like felt, in which each hair is, so to say, anchored to another by its scales. A sheet of paper must no longer, therefore, be designated as a felted, but as a confused, mixture of such fibers as are soft and pliable when moist, but hard and elastic when dry. The greater the shaking together of the wet fibers in both directions of the wire, the firmer and stronger will be the sheet. The wire, the the fill they beome with water as in the case of ground wood, and the less will be the pressure which individual fibers exert on each other, and the more brittle will the paper sheet turn out.
Every strange material mixed with the fibers and then placed be tween them in the formation of the sheet prevents them from lying close together, thus lessening the solidity of the paper. We shall speak of the results of experiments in this line with sizing, mineral loading, and ground wood in future issues.Praktisches Handbuch.

An English Salt Mine. The exploration for salt at the Imperial Iron Works, South Bank near Middlesbrough; for Mr. Coulthard, of London, has just been completed. One bed of salt,
authorities upon buccal bacteriology, Dr. Miller, finds that hy using the following mixture he could complete ly sterilize the mouth, cavities in carious teeth, etc. Thymol, 4 grains; benzoic acid, 45 grains; tincture of eucalyptus, $31 / 2$ fluid drachms; water, 25 fluid ounces. The mouth is to be well rinsed with this mixture, es pecially before going to bed. For retail, a mixture of water and spirit is required for a presentable preparation, and it should be made much stronger, say five ounces instead of twenty-five ounces, and diluted when required.

82 feet thick, was pene-
trated, and a parting of anhydrous gypsum bored through into ansther bed of salt, 14 feet thick. As the bottom of the salt measures has not been reached there is the possibility of other beds of salt existing The total depth of the brine well is 1,692 feet.

Texas is well off in dogs, or badly off, rather, for, according to the Galveston New.s, they cost the State $\$ 50,000,000$. There are $2,500,000$ of them. They cost their owners 5 cents a day, or $\$ 45,000,000$, and they cost sheep owners $\$ 5,000,000$ more.

154

\%rientifir American.
[September 3, 1887.

ENGINEERING INVENTIONS

A steam engine governor has been patented by Mr. Eliphalet L. Arnold, of Montgomery Texias. It is epecially adapted for engines operating saiw mills and similar machinery, in which the load is suddenly changed, and provides an attachment which
permits of operating the engine to its full capacity permits of operating the engine to its full capacity
A car coupling has been patented by Meesrs. Joseph Y. Burwell, of Chico, and Frankie Mammel, of Roxbury. Kansas. The ends of the link
are made arrow shaped, snd thers is a small slot in are made arrow shaped, snd there is a smail slot in
them, to adapt them to spring into and be held by clamps that are spring-held in the open mouth of the drawhead, with other novel features.
A steam generator has been patented by Mr. John Webster, of Brooklyn, N. Y. The invention covers novel features of construction and the com-
bination of bination of parts in a generator designed to admit
water only as fast as it is flashed into steam, and constrncted to cut off the hot gases of the furnace should the feed water supply fail or the pressure become the feet
cessive

agricultural invention.

A hay tedder has been patented by Mr. Curtis Gates, of Lyndon, Vt. The frame, supported on drive wheels, carries a crank shaft with a series of
oppositely arranged cranks, forks being connected with the cranks and arranged to slide through oscillating guides pivoted in spring-preseed supports, the machine lifting hay from the ground and throwing it into the a for the parpose of separating it.

MISCELLANEOUS inventions.

A pencil horder for slate tràmē̃ ha been patented by Mr. Robert Holbon, of Alpena, Mich. A. receptacle for the pencil is bored in the wooden frame at one side, and a metalic spring is pivoted oo cover the
opening, the pencil being readily dropped out when the spring is turned to one side
A scarf holder has been patented by Mr. William P. Clarke, of Winnipeg, Manitoba, Canada. It is made of a plate of metal having hooks on it for engacing the lower edge of the collar and a loop for receiving the collar button, all of the parts being formed
integrally of thin sheet metal.
A heating stove has been patented by Mr: David J. Rogere, of Bardstown, Ky. It has a base which extends out from the body or bowl of the stove,
with a removable ashpan forming the sides of the base in place of the usual casting, and various other novel features.
A halter has been patented by Mr. Robert D. Whittemore, of Chippewa Falls, Wis. The the varions portions of a halter may be speedily and readily adjusted to snugly fit any sizehorse, and be held in such adjustment.
A buckle and strap fastening has been patented by Mr. Robert W. Chapman, of Newark, N.J. to the frame of a bag or satchel, with means for securing the strap to the buckle, making a fastening specially adapted for traveling bags, satchelis, and other articles.
A lock has been patented by Mr. Benjannin Delvalle, of New York City. It is so constructed that the boit, ,its projecting and retracting shoulders, disks, are all out of reach of the key, so that it is impossible to pick the lock or open it with a false key.
A thill coupling has been patented by Mr. William E. Tibbits, of Crab Orchard, Neb. It consists of a clip having perforated lyags with a pendent
stirrap connecting their ents, and other novel features, surrap connecting their entrs, and oner no the bolt that
dispensing with the use of a screw nut on secures the thills, and also preventing rattling.
A twine holder and lifter has been patented by Mr. Thomas Porter, of Philadelphia, Pa. This invention includes several novel features, including a
revolving twine holder having the rod which lifts the revoving twine holder having the rod which lifts the
slack fixedly attached to it in distinction to a stationary twine holder and separately moving lifting rod.
A device for controlling runa way horses has been patented by Mr. Iavie Grumbach, of Galveston,
Texas. It consists of pads supported by lever armi Texas. It consists of pads supported by lever arms
pivotally connected to the bit, and means whereby the pads may be moved toward each other, so that they may apply a pressure to close the nostrils.
A portable fence has been patented by Mr. Davis C. Hapenny, of New Brunswick, N. J. It consitst of posts and a series of panels hinged thereto,
the build of the sections and the manner in which they the buila of the sections and the manner in which they
are attached to the posts allowing of hard usage with
but atitle wear the object being to produce a fence but cititle wear, the obect
specilly adapted as a toy.
An improvement in velocipedes has been patented by Mr. James R. Trigwell, of Brixton
Rise London, England. In ball bearing steering joints, Rise, London, England. In ball bearing steering joints,
this invention provides a retaining device for conffing the anti-friction balls to their seats when the neck and head are disconnected, whereby the balls can be conveniently introduced or removed at will.
A device for operating awnings has Ill. The invention covers a novel construction and combination of partis whereby an awning may be readily ralied and lowered, and wherein the awning, when
ratied, will be expedtiously and neatly folded up raited, will be exped
against the building.

A road digger and scraper has been
 conerved yocripert blade is aloo arranged, with an angular point at one end aud a gradual taper at the other, both barrs betag controlled by independent levers, to quickly
fowitivif thape the contour of a rood.

A nut lock has been patented by Mr. A nut lock has been patented by and having a cavity for receiving a spring holder, is spring bolder fitted to the cavity and a spring supported by the
nuts.
A picture frame has been patented by Mr. William Schumacher, of Brooklyn, N. Y. The noulding is formed with a recess and beads at the edgees
n combination with an ornamental facing strip of fabric and a plastic backing embossed with figures and
secured in the recess as a separate and independent acing.
A rope coupling or socket has been patented by Mr. Alfred Clark, of Warren, Pa. It is or to coupling lengthe of rope together, and, by this device, the connection is so arranged between the ocket and the rope that the latter may be readil
moved from the socket without being injured.
A tablet press has been patented by Mr. M. Fairchilds Doud, of Kansas City, Mo. The invention covers novel features of constraction and the combination of parts in a press for use in the manufacsimple in construction and easily operated by persons of ordinary kkill.
A back stay fastening for carriage tops has been patented by Mr. Henry E. Horn, of Denver the carriage seat on each side and fastened by means of screws, the plate having a number of lugs on the inner side with threaded openings for the reception of screw buttons.
A hand power for sewing machines Con, Ga. A bracket. is connected with the table or
some portion of the sewing machine frame, and a hand ever is pivoted on the bracket, connected by a link with the treadle, or with the pitman of the machine
A combined shovel and hoe has been patented by Mr. Anton Schad, of Louisville, Ky. This venion provides a simple and inexpensive implement a hoe, having locking devices, whereby the blade may be rigidly fixed in line with the handle or be set at ngle thereto.
A regenerative gas lamp has been pa tented by Mr. Chariles E. Bell, of Greenfeld. Ohio. The nvention covers a combination of tubes with flaring
ends, a concaved disk connected with one of the tubes an apertured ring between the disk and one of the faring ends, together with a novel arrangement of

An edging and joint plate for con
An edging and joint plate for conHoyt, of Sedalia, Mo. The invention includes the special construction of the jo nt plates and their fastis placed and hardens, making an easiily laid, cheap, and substantial walk adapted alike for private grounds

A blinder attachment for bridles has been patented by Mr. Charles H. Adams, of New York City. The invention consists in providing the blinds
with pulleys, and cords passing through them, to united overthe neckand operated with the reins, where by a horse may be effectually and quickly prevented or from a vehicle.
An apparatus for moulding perforated blocks has been patented by Mr. Peter McIntyre, of New York City. It is for use with clay, asphaltum, o
similar material, and provides a reciprocating followe simiar. Material, and provides a reciprocating follower
carrying several penetrating points arranged to be thrust through a moulding box provided with aper
tures, and adapted to be secured to the frame in lin with the penetrating points.
A rounding jack for hat brims has been patented by Mr. Michael Hild, of Philadelphia,
Pa. The main frame has a sliding knife stock and sliding adjusting rod attached to the knife stock, in combination with a set screw for locking the edjusting
rod, with a guard formed with a tongue in combination with the main frame, and there are various other

A baling press has been patented by Mr. David L. Hannay, of Greenville, N. Y. The pres case has two baling boxes or chambers, one directly
over the other, fitted with plungers connected by their over the other, fitted with plungers connected by their in the press case frame, making a novel plunger-actu"ating mechanism, the press being simple, durable, and
A binding clamp for battery electrodes has been patented by Mr. Horatio J. Brewer, of New
York City. It consists of a holder having inclined sides iftting on the wedge-shaped end of a batter electrode, with a set screw screwing in the top plate of
the holder and firmly securing the holder to the batery electrode, and also holding the wire in a firm contact with the battery electrode.
A neck yoke swivel has been patenta by Mr. James M. Colman, of New Castle, Washingyoke may be turned in any direction in a horizontat plane, and may begrwung as desired in a vertical plane by turning it upon its connection with the pole of the
vehicle, obtaining a perfectly free and easy motion for the horses.
A machine for winding yarn has been pastented by Mr. Benjamin A. Dobson, of Boltan, Lancombination and arrangement of parts to stop the wind ing automatically when the yarn breaks or fails, to
provide improved means for regulating the tension on provide improved means for regulating the tension on
the threads, and to give greater facilities for piecing up
the threads, and to

A graduated filing case, especially designed for receiving photographs, has been patented
o Mr. Richard M. Hodge, of Princeton, N. J. It con y Mr. Richard M. Hodge, of Princeton, N. J. It con-
sists of an outer box with central longitudinal and sistis of an outer box witi centrail longitadna1 and
trannverse partitions, givin spaces for articles to be filed of different sizes, while the connections between the partitions and the case and between upper and lower strips give a frictional contact sufficient to
A centrifugal amalgamator has been patented by Mr. William White, of Mount Vernon, N. Y. The invention consists of a pan provided with a
number of pockets. which are preferably produced by number of pockets. which are preferably produced by
forming concentric \mathbf{r} dges about the axis of the pan, to Yorming concentric r dges about the axis of the pan, to
prevent the mercury from moving in a body to the exprevent the mercury from moving in a body to the ex-
treme edge of the pan when rapidly revolved, being an treme edge of the pan when rapialy revolved, being an
improvement on a former patented invention of the same inventor.
A button fastening machine has been patented by Messrs. Chester L. Olds and John Eklund, oes, shoes, and in one operation forms the staple from a
continuous wire, passes it through the eye of the button, and clinches it in the leather to securely. attach the button, the invention covering a machine of peculiar arrangement and construction of parts for carrying out these successive steps.
A vehicle heater has been patented by Mr. Edward A. Olmstead, of New York City. It is heater, and has a boiler connected by tubes with a secondary boiler or drum, the boiler mounted within a casing having a fire chamber, below which is a lamp box having a perforated metal diaphragm in its upper
portion, the vehicle being heated by the circulation of portion, the venicle being heated by the circulation hot water or steam
een patented by Messrs. Pius and Karl Kaul, of 'Brook n, N. Y. A vertical paddle is revolved by a crank, of the paddle slides as its lower end revolves with the rank, the invention covering novel features, whereby the paddles may be adjusted to the depth of the water
and the swiveling guide at the upper end of the and the
paddle.
A machine for threading and pointing screw eyes has been patented by Mr. John B. Hardy, of or feeding the blanks from the revolving hopper to an axiliary hopper, means for feeding the blanks to the pointer, means for swinging the pointer and pointer
spindle laterally to align them with the jaws for revolving the blanks, to point the same and cut the thread longitudinal movement for entering the blank between the revolving jaws.

ЭBusiness and ${ }^{2}$ ersonal.
The charge for Insention under thes head is One Dollar a linejor each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.

New editions of Trautwine's "Railroad Curves" and Excavations and Embankments" are now ready. The
itter has been out of print for some years. It now apears in very attractive shape, thoroughly revised, and The best Dynamos for Light, for Nickel Plating, Elec trotyping, etc., are made and warranted by th
ElectricCo., New York. Send for catalogue.
Wanted-An experienced and thoroughly practical nace," P. O. box 773, New York.
Durrell's imp. nut tapper. Taps $1 / 2$ to 2 in . New imp. All Books, App., etc. cheap. School of Electricity, N.Y Wanted-Firm with means, plant, and suitable business connection to Join patentee in the manufacture
nd sale in the United States of Brough's centerboard escribed on page 146 of this issue. It is a practical sucess, indorsed and used
Brough, Gananoque, Ont.
For best leather belting and lace leather, including Hercules, see Page Belting Co.'s adv., p. 125.
Stationary and boat engines, boilers. Best and cheap Bennett's Lubricator is giving universal satisfaction send for circular. Bennett Mfg. Co., Chicago, ill.
Press for Sale-Quick acting. Hole in bed 8x5; punches to center of $13 \mathrm{in}$. sheet; $23 / \mathrm{in}$. shaft; also four
pindle Drill. A few second-hand engines in first-class spindle Drill. A few second-hand engines in first-class For the latest improved diamond prospecting drills, ddress the M. C. Bullock Mig. Co., 138 Jackson St.
Chicago, ill. The Railroad Gazette, handsomely illustrated, pub. shed weekly, at 73 Broadway, New York. Specimen
copies free. Send for catalogue of railroad books. The Knowles Steam Pump Works, 113 Federal st., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and aplex, steam and power type. Th
Link Belting and Wheels. Link BeltM. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J
Whodworking Machinery of all kinds. The Bentel \&
Nickel Plating.-Solesmanufacturers cast nickel an"Luttle Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline
Complete outat for plating, etc. Hanson, Van Winkle \& Complete outift for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Supplement Catalogue.-Persons in pursuit of information of any special ensineering, mechanical. or scien-
tifc subject, can have catalogue of contents of the SciENTIFIC AMERICAN SUPPLEMENT sent to them free. The SUPPLEMENT contains lengthy articles emoracing
the whole range of engineering, mechanics, and physical

Iron Planer, Lathe, Drill, and other machine tools of Iron and Steel Wire, Wire Rope, Wire Rope Tram Iron, Steel, and Copper Drop Forgings of every de We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Cbalmers-Spence $\mathrm{Co}_{\text {a }}$ 19 and 421 East 8th Street. New York.
Universal \& Independent2 Jaw Chucks for brass work Steam Hammers, Improved Hydraulic Jacks, and Tube repan Dudgeon, 24 Columbia St., New York. 60,000 Emerson's 1887% Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U. S. A.
Hoisting Engines, Friction Clutch Pulleys, Cut-off upings. D. Frisbie \& Co.. 112 Liberty St., New York. "How to Keep Boilers Clean." Send your address
or free 88 page book. Jas.C. Hotchkiss, 120 Liberty St. The Holly Manufacturing Co., of Lockport, N. Y. will send their pamphlet, describing water works ma Wardwell's patent saw benches. All sizes in stock Rollstone Machine Co Fitchburg, Mass,
Split Pulleys at low prices, and of same strength and Works, Drinker St. Philadelphis Pa Send for new and comple catal
Send for new and complete catalogue of Scientific
Books for sale by Munn \& Co., 361 Broadway, N. Y. Fre Books for sale
on application.

SYLENTLFIC AMERICAN
BUILDING EDITION.

AUGUST NUMBER.

table of contents.

1. Elegant Plate-in Colors of a Four Thousand
Dollar Residence at Flushing, N. Y. Y., with floor
plans, specifications, sheet of details, bills of estans, specifica
2. Plate in Colors of a Twelve Hundred Dollar
Double House, with plans, specifications, sheet
of details, bills of estimate, etc. Page engraving of an Elegant Residence corner
Eighth Avenue and Berkeley Street, Brook-
lyn, N. Y. 4. The new United States Court House and Post
Office, Montelier, Vermont. Half page en-
graving. Half page engraving showing Competitive De-
sign for Carnegie Free Library, Allegheny
City, Pa., Jas. W. McLaughlin, Architect. 6. The National Agricultural Exposition Building
at Kansas City. Quarter page engraving. Drawing in perspective, with floor plans, of a
Forty-five Hundred Dollar Dwelling. 8. Engraving of the Cogswell Polytechnic College,
San Francisco, with description. 9. Illustrations of an English Double Cottage of 10. Design for a Marble Fireplace. Half page il-
lustration. 11. Perspective view, with floor plans, of a Hand-
some Cottage of moderate cost. 12. Design for a Church of moderate cost. Half
page illustration. 13. Two elevations and a floor plan of an Austrian
Country House. 14. Engraving of Tomb of Colonel Herbinger
Mont Parnasse Cemetery, Paris. 15. Selections of Carved Work from the New Hotel
De Ville, Paris. Page of illustrations. 16. Two large views of Engine Room at Ferguslie
Mills, Paisley: Decoration in Burmantofts
Faience. A French Villa at Enghien-les-Bains, France.
Two perspetive views and four figures show-
ing floor plans. ing floor plans.
3. The College of the City of New York: The
Technical Courses. Eleven views of different
Departments.
4. Perspective view of City Residence of Herr 20. The Home of Milton. Full page of views. 21. Quarter page engraving of a Continental Cot-

t'ons.
The Scientific American Architects and B ilders

HMded (4uries

Hints to correspondents.

(1) H. H. S. asks (1) some solvent for plaster of Paris which is in small flakes. A. A hot sat-
urated solution of sodium hyposulphite will dissolve plaster of Paris 2 Something that will dissolve gela ine containing chrome alum, which has set and hard ened. A. Use the strong acids. 3. Is there anything that can be mixed with gelatine so that it will set, but
not dry or harden? A. We know of nothing except not dry or harden? A. We know of nothing except
possibly the addition of a large quantity of glycerine. possibly the addition of a large quantity of glycerine
4. Is there any way to drill a cavity in an artifcial 4. is there any way to drill a cavity in an artificial
tooth without using diamond dust? A. Use the ordinary drill such as dentists use, moistened with turpentine. 5. How do manufacturers of rubber articles ge such a fine polish on them? A. They are polished with fine pumice and a stiff brush and finished with whit
 and keep a spring temper? A. There are some surfac they have not been generally adopted.
(2) B. C. M. desires recipe for stencil paints-black, red, green, and blue. A. Take shellac 2 ounces, lamp black a sufficiency. Boil the borax and shellac in water till they are dissolved, and withdraw shellac in water the they are dissolved, and witharaw
from the . When the solution has become cold complete 25 ounces with water, and add lamp black enough to bring the preparation to a suitable consist ence. When it is to be used with a stencil, it must be made thicker than when it is to be applied with marking brush. The above gives a black ink; for red
substitute Venetian red for lamp black; for blue nultra marine: and for green, a mixture of ultramarine and chrome yellow.
(3) B. J. H. asks if there is any solu tion that can be put on a plate glass window to kee
fies off. A. Any solution would hurt the of the glass. An infusion of smartweed is partially of the glass. An infusion of smartweed is partial
successful in driving away flies, but its use must be continually repeated.
(4) C. C. H. asks: What is the fall in feet of the Mississippi River from its source to its mouth? A. Lake taska, where the riverrises, is 1,57
feet above sea level; the most of the fall is in the uppe region; the slope of the high water surface from Cair to the Gulf of Mexico is 322 feet.
(5) J. W. F. asks (1) how to make a good rosewood stain. A. Take alcohol 1 gallon, cam
wood 2 ounces, set them in a warm place twenty-four hours, then add extract of logwood 3 ounces, aquaforti 1 ounce; and when dissolved, it is ready for use. 2.
A reliable walnut stain for furniture, mostly hardwood. A reliable walnut stain for furniture, mostly hardwood.
A. Spirits of turpentine 1 gailon, pulverized asphaltun A. Spirits of turpentine 1 gailon, pulverized asphaltum 2 pounds; dissolve in an iron kettle on a stove, stirring
constantly. 3. A cheap polish to brighten hard oil anished work after being rubbe.. A. Gum shelac der and siet rabic, 4 onnce, gum coplin closely corked bottle with 1 pint alcohol, in a warm place, shaking every day till the gums are dissolved,
then strain and bottle.
(6) C. G. C. asks why druggists use distilled water? Could they not use common water as well2 A. So as to have it as pure as possible. Com-
mon water often contains slight quantities of iron, salt. lime, and other ingredients, which render its use unde sirable where a pure chemical is needed
(7) E. M. W. asks for a good cheap liquid shoe polish. A. Take of gum shellac $3 / 2$ pound
and alcohol 3 quarts. Dissolve, and add camphor 1λ ounces and lamp black 2 ounces,
(8) J. F. A.-See the article on "Canned Food" in Scientific American Supplement, No.
499, also the article "How to Can Asparagus" in Scientifio american Su
(9) J. H., Jr., desires a receipt for sticking paper to zinc. A. Use starch paste with which a little Venice turpentine has been incorporated, or
(10) F. W. L. says : 1. What is the re sistance of a 10 and 16 candle power standard Edison lamp and the E. . M. F. generally used with each? A. also a standard 8 candle power with following con stants:

$8 \mathrm{BB}-35 \quad \because \quad 41 \quad " \quad 085$
candle power lamps are not catalogued. 2. What is the relatio rend series dynamoss Does it make any ference in the above question whether the armature is open or closed coil? If it does, how so? A. No rela tive resistance of field and armature for dynamos can be given, as it varies in the different makes. The open coil armature normally hass the greatest resistance.
For examples of both constructions see Scirvtipro AMERICAN SUPPIRMENT, Nos. 161 and 600 . 3 . What is the theoretical advantage of the condenser in an indnc-
tion coil? A. When a circuit including a coil is broke-
n extra current is produced, which goes in the same in an induction coil defeatso its action by delaying the flll break of the current. By a condenser this extra current is caught and sent around the coil in the oppo-
site direction to the main current, thus demagnetizing site direction to the main current, thus demagnetizing
the eoil, and improving instead of deteriorating the cut-off. 4. Why is resin used in preference to muriatic acid as a fux, for soldering electrical joints?
A. Chloride of zinc flux to which we presume you allude, tends to corrode the wire, on which it is used. This sction is not immediate, but slow, and will always occur to some extent unless the joint is cleaned with hot water and dried. Resin is not only non corrosive, but acts as a preventive. 5 . Is there any rule by which
you can tell the resistance and length of a given weight you can tell the resistance and length of a given weight
and gauge of cotton covered wire knowing the weight and gauge of coton covered if possible, give rule for
and na gauge or bare well as single covered. A. No
double covered as
vecan be given that would be practical as regards weight. Resistance is unaffected by the coating. 6 What book or Scientific American Supplement gives practical directions for making the different forms of galvonometers and electrometers? A. For manual on this subject, we recommend Haskins' work on "The
Galvonometer and its Uses." This we can send you or $\$ 1.50$.
(11) C. F. D. says : I mail to your adress a twig cut from my tree. Is the trouble scale louse, to exterminate them? The tree is twenty feet high, and literally covered. A. In the absence of Professor Riley Prof. L. O. Howard, of the division of entomology pon the twig is a scale louse, and seems without doubt obe the commou peach Lecanium (Lecanium persice) dithough the twig is not that of any variety of peach with which I am accuainted. It seems to resemble a tion upon this point from Mr. Diller. The remedy for is to spray the trees, preferably in the springof the year vith a dilute kerosene emulsion made according to the
Kerosene.......
Common
 Water................. 1 g pallon $\}^{-\infty}$ peran Heat the solution of soap and add it boiling hot to pump and spray nozzze the mixture by means of a force mulsion, if perfect, forms a cream, which thickens on cooling, and should adhere without oiliness to the surace of glass. Dilute before using, 1 part of the emul gives 3 gallons of emplaion and makes when diuted 30 gives 3 gallons of
gallons of wash.
(12) C. I. M. asks: 1. What size and amount of cotton covered copper wire shall I use to
make the strongest electro magnet; core of $\boldsymbol{\psi}$ inch soft now using 1 cell (gallon) of blue vitriol battery? A fistnce withn hour magnet to about four ohm's re 18 will be a convenient size, using three pounds fo both legs. 2 . Will it make any difference if I use iron washers to hold wire on core instead of hard rubbe
washers? A. Iron washers will make little or no dif washers8 A. Iron washers will make little or no dir
ference. You must have the ends of the legs fnished To a true plane. 3. What kind of battery is best to ge strongest magnetic force? A. A bichromate plunge
battery is about the best for exhibiting electro The gravity batteries are of too high resistance and too
(13) W. H. C. asks (1) what effect steam will have on coiled solid rubber. A. It disintegrates or rots it by a few months' use, according to the pres hetemper from tempered steel? A. It will in time, if the pressure or temperature is high, say a hun red pounds or more.
(i4) D. S. W. asks : What proportions or camphor, niter, alcohol, sal ammoniac, and water nalcohol 2 ng the chemical storm glass? A. Dissolv part sal ammoniac. Then add water drop by dro until the mixture begins to grow a little clondy. Th olution is then ready for introduction into the tube nother formula is the following: Dissolve 2 2/2 drachm
camphor in 11 fuid drachms of alcohol. Dissolve 38 rrains of nitrate of potash and 38 grains of sal ammonia twid drachm of water, mix the solution
(15) C. D. asks the amount of curvature (16) E. T. H. asks (1) how to make powder which, when added to water, will form an
areeable lemonade. A. Take 1 pound finely powdered oaf sugar, 1 ounce tartaric or citric acid, and 20 drop essence of lemon. Mix and keep dry. Two or three will make a pleasant lemonade. The addition of unce of carbonate of soda to the above renders
effervescent. 2 . A silicate varnish for paper which wil render it erasable for lead pencils. A. Such varnish a secret preparation.
(17) C. F. - Galvanized iron pipe is angerous than lead pipe, but both should have thei contained water discharged after standing a few hour
Plain iron pipe also shows rusty water after water ba remained in pipe a few hours, and is also liable to fill ap with rust nodules in two or three years, if the pipe
(18) T. M. S. asks (1) the process o cleaning brass gnn shells. A. For such as have been nsed, boir in a strong solution of caustic sooa, rinse in part, water 4 parts, and rinse in hot water. 2. The rocess of polishing tool handles. A. Polish by rub while in the lethe or in quantities, by tumbling with urnings. A splint brush revolving very fast is some times used for polishing single articles.
(19) W. C. I. asks: What would be th
ween two cast iron columns each 10 feet high and nches diameter, one made solid, the other cast hollow
the shell being 1 inch thick? A . The crushing value o the solid column is two and a half times greater than the
(20) C. E. M. asks the size and form of bellows used in hand organs. A. They are about 10 and double like a forge bellows.
(21) M. S. G. - There is no truer or etter means of flnding the actual horse power of an engine than by taking indicator cards of both strokes and ascertaining by them the mean engine pressure. This, multiplied by the speed of the piston in feet per
minute, dividing the product by 33,000 , gives the acminute, dividing the product by 33,000 , gives the ac-
cepted horse power. Otherwise the area of the piston is cepted horse power. Otherwise the area of the piston is
multiplied by the boiler pressure, less the assumed comultipinied by the boiler pressure, less the assumed co-
efficient by expansion and loss of pressure from boiler to engine, in place of the mean engine pressure by card The coefficients computed for various degrees of cut-off may be found in the "Engineer"s Handy Book," Roper which we can mail for $\$ 3.50$.
(22) J. C. M. asks how to get a fine polish on such stones as quartz, granite, etc., to use them as specimensin a cabinet. A. Grind the required surface on a grindstone. Let the last grinding be very on an end riece with ground pnmice stone and wate until a partial polish is obtained. Finish on a peiece o
(23) G. N. W. asks for a recipe for a ood black stamping ink for tracing cloth, one that will not rub off, for rubber or metal stamps. A. Try the following: Dilute 1 part of coal tar with 1 part of benzine, and stir into it one-tenth part of lampblack, use. By ading ore or lese, wenzine it can be

(24) C. H. T. asks the easiest way to make holes through an oyster or clam shell. A.
Drillthe holes witha hard, sharp steel drill, the same as used for drilling iron. Use the drill dry.

TO INVENTORS

An experience of forty years, and the preparation of Ane than one hunbrod, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the se abroad, are invited to write to this office for prices, hich are ow. in accorance wht the times and our ex tensive facilities for conducting the business. Address
MUNN $\&$ CO..ofitice SCIENTIIC AMRRICN, 661 Broad way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

August 16, 1887 ,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]

Alarm. See Burglar alarm.
malgamator, centrifugal, w. White. Unctics, washer
Automatic sprinkler, Ross \& McAllister..
wnings, device for overating, T. Char
Axle boxes, dust guard for car, Dawson \& Fro
xie, car,. . Peckham
Bac. See Feed bag.
Baling press, D. L. Hannay
Bed bottom, woven wire mattress, J. B. Ryan..
Bed, sofa, F. W. Herings
Belt, electric, A. Owen...
Belt fastener,
Bevel, C. Tiller
Billiard tables, attachment for, Hubbell. \& Bisbe Binder, temporary, Yeiser \& Dom... Board. See Paper board.
Boiler. See Sectional boile
Boilers, water gauge for steam, F. A. Drummond. 368,197 Book holder, adjustable, P. A.
Boot or shoe strap, J. Walden
Boots or shoes, machine for finishing the
edges and cleaning the uppers of, C. F. Leigh
ton
Bottle for liquid blacking, metal, S. M. Bixby
Bott. See Miner's safety box. Music box
Box opener, Cooper \& Doggett...............
Brake. Sech
Brake. S
brake.
Brick drier, portable, M. Carroll. Brick machine, N. Kirchner.................
Brick moulding machine, W. Partridge. Bridge, J. Mitchell.
Bridge gate, C. Fisher
Bridles, check rein carrier and blinder stay for
Schenkenberg.
Buckle, J. s. Boyd.
Buckle and strap fastening, R. W. Chapman
Buckle a and strap fastening, R. W. Chapm
Bucle, suspender or other, C. R. Harris.
Buggy boot, C. B. Morehouse
Burglar alarm, A. E. Hathawa
Burner. See Inje
Bustle, A. Stern.
Button fastening machine, Olds \& Eklung
Cable tram way, J. S. Lake...
an. See Sheet metal can. Shipping can Can, D. A. Burdett.
Candlestick, F. W. Jenkins Canopy supporting frame, Tracy \& Winchell Car brake, A. P. Massey....
Car coupling, T. Bolt......

Car coupling, Burwell \& Ma
Car coupling, J. A.
Car coupling
Car . 368,513
$.368,374$
3684 Car coupling, H. J. Peck
Car heater, C. Hofstetter
Car heater, W. P. Patton
Car spring plates, die for making, C. T. Schoen...........
Car wheel, B. J. Westervelt...
ing passenger, G. W. Pearsons..................
Cars, metallic frame for railway,
Carpet stretcher, A. Stockdale.
Horn.....................
Cash received, means for checking, A. Steer.....
Cement, manufacture of, A. C. Schulz
Cement, preparing, A. Bonnet.......................
Centrifugal machines, apparatus for working, G.
D. Leval...
Chains, machine for making sheet metal, R.

Breul...
Chair. See Switch chair.
Chair, L. De Lill.......................
ing, w. E. Case.................................... 368,19
Chisel cutter for sash and blinds, J. Steele....... 368,55
Chuck, rock drill, J. B. Maas.
Churn, Phelps \& Drake.
Churn motor, G. De Laval...

Circuit changer, c. W. McDaniel...................... $368,466,368,4$
Clasp. See Spring clasp.
Clamp. See Clutch clamp. Screw clamp.
Clamp, Berger \& Muller............................ 368,
Cleaner. See Knife cleaner. Nail cleaner.
Clock cases, die for torming metallic, M. Fowler.. 368,626
Closet. See Water closet.
Clothes drier, J. Hadles
 ham..
Cock for boilers, gauge, W. C. Baker....
Compost distributer, revolving, C. H. Brooks
Concentrator, F. Batter....
Core print and gate pattern, T. Thomas
Corn sheller, B. M. Root.
Corset, M. W. Henius
Corset, M. J. Roberts.
Corset, M. . J. Roberts..
Cotton or hay press,

Cotton or hay press, H. M. Meetre....................... 3
Car coupling. See Car coupling. Bope coupling
Cuff holder, G. H. Phelps.....................368,305, 368,30

Culinary vessel, H. Kaplan.
Curtain pull, D. H. Tinkham
Cutter. See Chisel cutter. Thread cutter
Cutting rags or other materials, machine for, J.
H. Turver.............................. 368,
Clarsson
Decoy, hunting, W. Ryan...
Dental engine A. W. Brown
Dental mandrel and disk, D. W. Clark
Dental plate, A. Robinson..
Dental plugger, F. Abbor
Dental plugger, N. Clark..
Depurator, E. J. Harding
Die. See Screw cutting die.
Digger. See Potato digger.
Display frame, Aiken \& Huntington.
Door hanger, W. J, Lane................................. 368,387
368,478
386,19
368,354
Dreage, vacuum, J. H. Rae.........................
Drier. See Brick drier. Clothes drier. Grain
drier.
drier. Rotary drier.
Drill. See Rock drill.
Dropper. See Seed dropper.
Dumb waiter, J. F. Tilman..........................368,256 Dumb waiter, J. F. Tilman............................. 368,26
Elastic fabric, Moore \& Green, Jr.......368,29,
Electric conductors, battery connection for, P.
Bowe.. 388,3212
Electric lock, T. B. Hornaday.................. 368,265
Electro-mechanical brake, G. T. Woods..........
Engine. See Dental engine. Gas engine. Pump-
ing engine.
Engine, A. Rigg..............

Extractor. See Nail extracto
Eyeglasses, E. B. Meyrowitz.........................
Fabric. See Elastic fabric.
Wherry... 368,502
Feed bag, . s. Ketchum...........................33
36nce machine, B. A. Welds.................. 368,261
Fence machine, B. A. Weld.......
Fence, portable, D. c. Hapenny
Fence, portable, D. C. Hapenny...
Fence post, Chamberlain \& Merrill
Fence post, L. G. Haase.....
Fence post, G. W. McEwen.
Fence stay, wire, W. M. Clow....................... s68,45
Fences, tension device for use in constructing
wire and picket, J. Wintrode............... 368,561
Ferrule, plumber's, W. Bishop.
File, paper, A. B. Sherwood.....
Finger nail cleaner, G. O. Eaton
Finger nail cleaner, G. O. Eaton. ...
Firearm, breech - loading, C. A. King.
Fire escape, G. W. Hibsc
Fire escape, C. Matson
Fire extinguisher, hand, J. E. Long
Fishing line reel, W. B. Carpenter.......................
Fodder loading and unloading machine, shock,

Fork, H. D. Alexander....
Frame. See Canopy supporting frame. Display
frame. Picture frame.
Frame joints, stretcher and fastener for, w. G. \&
J. L. Rawbone.......................... 368,289
Fruit picker, Martz \& Keener................... 368,299
Furnace. See Gas furnace. Heating furnace.
Fruit picker, Martz \& Keener.........................
Furnace. See Gas furnace. Heating furnace.
Ore reducing furnace. Steam generating fur
nace. Doyle \& Carson........................... 368,4
Furnace,
Gauge. See Micrometer gauge. Micrometer pipe
gauge.
Galvanic cell, w. e. Case......38,
Game or puzzle, geometrical, A. Niggemann....., 38,48
 Gate. See Bridge gate

Gate, J. W. Harland.
Gate, G. W. Henshaw
enerstor machinery, reversing, c. B. Cottrell Governor, \mathbf{C}. W. Baldwin Grain binder, W. N. Whiteley
Grain. means for elevating, G. Romwebe Grooving machine, wheel, S. F. Brown Gun or toy pistol, spring, Handle. See Tool handle. Hanger. See Door hange
Harness loop, E. Barnard
Harrow, E. H. Hickerson
Harvester, J. S. Davis.
Harvester binder, F. D. \& J. S. Mercer
Hat brims, rouinding jack for, M. Hild ford...............................
Hay loader, T. Grapes.
Hay tedder, C. Gates.
Head rest, C. F. Cornelius
Heater. See Car heater.
Heating apparatus, J. L. Brink ...
Heating furnace, Fuller \& W ycko
Heel nailing machine, J. W. Soule
Hinge, Hask, P. D. Beckwith
Hoist, inclined, Crane \& Reynol Hoisting bucket, A. E. Brown..............
Holder. See Book holder. Cigar holder
holder. Scarf holder

er tubing. Eingham
Hub attaching device, A. Zink.
Hub, vehicle, B. C. H. Simpson
Ingot maniptlator, F. Heron
Inkstand, s. Darling..
Insulator, electric wire clamp, J. R. Fletcher... malleable, J. F. Alexander.
ding and self-supporting, Whit
ournal bearing, W. s. Sararpneck
Key. See Telegraph key.
Kite, W. F. Fleharty.....
Knife cleaner, R. W. Jamieson...........
Lacing cord fastener, E. M
Ladder, step, G. M. Edgar
Lamp for velncipedes, etc.., E. Rasmussen
Land roller, W. P. Settles
Lifter. See Transom lifter.
Lock See Electric lock Nut A. Morrison.....
Locomotive attachment, T. Alexander ,on boom, B. A. Rice.
mechanism for \mathbf{W} Smith fabrics, cutting Lubricator, J. Elis...
Mattresses, device for stuffing, J. R. De Haven. Measuring mechine , gauge, F. Spaulding
Milk, can for measuring and retail
Miner's safety box, J. Hargraves
McIntyre....
Mop, J. H. Omo
Motor. See Churn mot
Music box, G. Perrier
Nail extractor, P. F. King.........
Nail machine, wire, A. E. Preston
Netting attachment, mosquito, M. L. Hardy
Nut lock, L. Sèlf.
Oiler, Booth \& Brabson................
Ore reducing furnace, w. L. McNair
Overshoe heel, J. C. Mac
Packing ring, C. Carter.
Paper board O Gloeckner
Paper bottles, manufacture of, L. H. Thomas
Paper, ornamenting, C. G. Mort
J. C. Hott......................................

Pencils, etc, homander for, G. Cornwall
Penct or other articles, rubber tip attachmen
for G. B. Adams.......................
Permutation lock, J. H. \& T. D. Morris..................... Plcker. See Fruit picker.

Picture frame W. A. McGill
for hanging, H
bard
Pitman, w. w..........
Planter, corn, Carter \& McCoy
P anter, potato,
E. C. Sehroed
Plate rim, pie, 0
Plow, Le Gibbs.
Potato to Fence post.

Vessels, d
Pond.
Washing machine, R. R. Davis.
Washing machine, J. W. Dunckhorst.
Water closets for ships, etc., J. J. De
Weather boarding, J. E. Donaldson.. Weighing apparatus, automatic grain, Simpson Shaffer
Weighing beam for testing machines, scales, etc
C. E. Buzby.......................................
Wheel. See Car wheel. Grooving machine

Wheel.
Whiffletree hook, C. N. Briggs.
Windows, strengthening glass, Morgan \& Ander
Wire twisting device, H. N. Macomber............
Wire twisting wrench, adjustable, C. E. Wintrode
Wrench. See Wire twisting wrench.

DESIGNS.
Bottle, F. B. Warner....................................
Buttons, etc., ornamentation of sleeve, J. W. Mi
Cigar lighter and cutter stand, J. Kaufnamn
Handle for s oons, forks, etc., E. J. Stanto Pitcher, H. Podmore.
Rug, J. Pegel........
Sleigh. landau, J. Kingsbury
Slop jar, H. Podmore.
Stove, gas, J. L. Sharp
Stove, ras, J. L. Sharp.....................
Type, font of printing, w. F. Capitain.
Yype, fon of printing, w. . Capitain
Type, font of printing, A. Little.......
Vase, M. W. Carr.........
$.27,17,63$
TRADE MARKS.
Blacking for leather, R. Georg
ain named, stamfor......... Manufacturing Companq.
Gum, wretive FITERED
Gum, chewing, Adams \& Sons.
Gum, chewing, Adams \& Sons......................
Medicine for hemorrhoids or piles, H. R. Bauman. Paper and envelopes, note, G. B. Hurd \& Co Peanuts, Hills Bros...................................
Plated wares for household use, gold and silver W. Kogers Manufacturing Company Salt, A. Kerr, Bro. \& Co.......
Shirtings, Boott Cotton Mills
A printed copy of the specifcation and drawing of issued since 1866 , will be furnished from this office for 25 cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361 Broadmay, New York. We also furnish copies of patents
granted prior to 1866; but at incel granted prior to 1866; but at increased cost, as th
spenifications, not being printed, must' be copied b hand.
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the foregoing list, provided they are simple, at a cost of $\$ 40$
each. If complicated the cost will be a little more. For each. If complicated the cost will be a little more. For
full instructions address Munn \& Co., 361 Broadway,
New York. Oiner foreign patents may also be obtained.
ふんDertisements.

PEDESTAL TENONER.

Car Work and the latest improved Woodworking
C. B. ROGERS \& CO.

Norwich, Conn.
New York.

HOW TO GRAFT.-A VALUABLE PA

$\$ 10.00$ to $\$ 50.00$

ARTESIAN WELLS.-A PAPER BY

VOLNEY W. MASON \& CO.
PRICTION PULLERS CILTHGEN: and ELEVATOBS

INDIANA PAINT \& ROOFINC COM
THE IRON AND COAL DISTRICTS

COLORS. COMMON AND POISONOUS.

FAST EODTEEVE

A SYNOPSIS OF ALL THE KNOWN

EXCELLLENT BI.ACK Copisg of antatho uriten or
arawn with any Pen (or
AUTOCOPYIST: $=$
AMMONNI SULPABATE.-A PAPER

TUNNEL FOR FOOT PASSENGERS IN

14181588

Fight Light Dynamo
 Complete Machines or Cast ings furnished, also Wire

ORNAMENTAL DESIGN, PRINCI

 EDUCATION OF THE AMERICAN Cititen . A A lecture by Prof. R. R. H. Thurston on the
tbeme: "How may we best alid in thos mikhty social

Scientitic American

Building Edition.

The Scientific American Archi tects' and Builders' Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special footure in the pracantation in each number of a variety of the latest and best plans for private residences, city moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifications, Costs, Bills of Estimate, and Sheets of Details.
Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving homes or erecting structures of any kind, have before them in this work an almost endless series of the latest and best examples from which to make selections, thus saving time and money.
Many other subjects, including Sewer age, Piping, Lighting, Warming, Venti lating, Decorating, Laying Out of Grounds, etc., are illustrated. An ex tensive Compendium of Manufacturers Announcements is also given, in which the most reliable and approved Building Materials, Goods, Machines, Tools, and Appliances are described and illustrated with addresses of the makers, etc
The fullness, richness, cheapness, and convenience of this work have won for it the Largest Circulation of any Archi tectural publication in the world. Sold by all newsdealers.

MUNN \& CO., Publishers, 361 Broadway, New York.

Builiding Plans and Specifications. In connection with the publication of
the Building Edition of the ScIEntific american, Messrs. Munn \& Co. furnish Plans and Specifications for Buildings of every kind, including Public Buildings, Churches, Schools, Stores, Dwellings, Carriage Houses, Barns, etc. In this work they are assisted by able and ex perienced architects.
Those who contemplate building, or who wish to alter, improve, extend, or add to existing buildings, whether wings, porches, bay windows, or attic rooms, are invited to communicate with the undersigned. Our work extends to all parts of the country. Estimates, plans, and drawings promptly prepared. Terms moderate. Address

MUNN \& CO.,
361 Broadway, New York.

DEAFNE88 CURED $\begin{gathered}\text { By using the Huestis } \\ \text { Patent Ear Drum, guar- }\end{gathered}$ anteed superiorto ail Street, New York
CURE Fir DEAF

Atio MBIeqla IELOEO A Specialty. RUBBER MATS
 RUBBER MATTING AND STAIR TREADS

NEW YORK BELTING $\&$ PACKING CO, 15 PARK ROW, N. $y_{\text {. }}$

R UBEER BELTING, PACKING, HOSE, VULCANIEED RUBBER FABRICS

1the baragwanath steam jacket Feedwater Boiler and Purifter.

BIT
 RALLWAY AND STEAM FITTERS SUPPLIES Rue's Little Giant Injector.
sCREW Jacks, sturtevant blowers, \&c. JOHN S. URQUHART, 46 Cortlandt St., N. \mathbf{Y} THE CURTIS

1RETURN STPAMI TRAP
 or waste. Manuanactured by Boston, mass.

BEFORE YOU BUY A BICYCLE
GR GUN send stamp to A. WV. GUMP

SCIENTIFIC BOOK CATALOGUE,

Mosis

 Send Grecostamin tor Mestipe Srecimens:

New Catalogue of Valuable Papers

ROCK BREAKERS AND ORE CRUSHERS.

TNTM

GRATEFUL-COMFORTING.

THE USE OF TORPEDOES IN WAR.-

Water Wheels New and Second Hand $\frac{\text { Address FLENNIKEN TURBINE CO }}{\text { PERFECT }}$
NEWSPAPER FILE

 MUNN \& CO., Publishers Sciejtific american.

us as long as you live. Fact!
 MAFER \& GROSH, 40 S street, Toledo, Ohio.

ICE \& REFRIGERATING

FOOD ADULTERATION By Jesse P AND ITs DETECTION.

E. \& F. N. SPON, 35 MORRAY ST. NEW YORK.

Proposals for Steel-cast Guns for the Navs

 No gun or castop for anun will be pad for utit tho

Proposals for Steel Gun-Forgings for the Navy.

osals, from
ifh twe guns, all
ifle

Didvertisements. Inside Paze, each insertion $:=:$ 85 cents a linee. The above are charges per agate line-about eight

aligroop
 Meshine Coo, Amertforn, Conn,
New York Office, 237 Broadway. THE COPYINGPAD.-HOW TO MAKE

SHIELIDS \& BROWN

For BOILERS and STEAM PIPES FORGAS ANDWATER PIPES. The Best Noevents sweating and roceron of ring. World
 PROPULSION OF STREET CARS.

角! /IGHT\&SLACK BARRELMACHINERY

ELECTRIC CONVEYORS.-DESCRIP

USEFUL BOOKS.

Manutacturers, Agriculturists, Chemists, Engineers, Me-
chanics, Builders, men of leisure, and professional men, of all classes, need good books in the line ot
their respective callings. Ou post office department their respective callings. Our post office department
permits the transmission of books strough the mails at very small cost. A A Comprehensive catalogue of
useful books by ifferent authors, on more than fifty
different subjects dirferent sumbects, , has just been published for free
circulation at the office of this paper. Subjects clascirculation at the office of this paper. Subjects slas-
sifed with names of author. Persons desiring
a them. Address.,
MUN N $\&$ CO.,
361 Broadway, New York

ention thlis paper

PATENTS.
 for Inventors.

tainamphlet sent free of charge, on application. con-
 signments,

HUWN Ae principal countries of the worla. \cdots ant Broadway, Ner York

THE BRIDGEPORT WOOD FINISHINGCO ereinig. agent, panclpalffitef manhaciran NewMILFORD,Conn WHEELERS DATENT WOQD GTLLER.

LITHOGEN PRIMER,

GOLD MEDAL, PARIS, 1878. BAKER'S Breaxfisist Cocoad. Cocoa, from which the excess of Oil has been removed. It has three wimes the strength of Cocoa mixed
with Starch, Arrowroot or Sugar, and is therefore far more economical, costing less than one cent a
cup. It is delicious, nourishing, strengthening, easily digested, and
admirably adapted for well as for persons in health.
Sold by Grocers everywhe
W. BaKER \& CO., Dorichester, Mass.

SUPPLIES FROM HMPRANT PRESSOR

WATER MOTOR

OTTO CAS ENGINES.
 OTTO GAS ENGINE WORKS chicago. Phladelphia. New Yort Agency, 18 Vesey Street.

Samples and descriptive Price List free by mail.

PIPE GOVERINGS Absolutely Fire Proof. braided packivg, mill board, shlithivg, cemert; piber and sprilaities.

Hyatt Pure Water Co.

HYATT PURE WATER COMPANY

BABBIT and AVTI-FRICTION METALS E. A. C. DU PLAINE,
\& $\mathbf{~ C o . ~ C A N A L . ~ S T . , ~ C H I C A G O , ~}$

 Lubrieating Babbit (Absorbs the oil well).
Adilishes.
Adantin
 PLUMBAGO babbits. No. 1 Plumbaro Metal: BABBITS.
No. 3 Plun
I Pun

WTTHERBP, RUGG \& RICHARDSON Manuacturers

To Business Men.

The value of the ScIENTIFIC A MERICAN as an adver- tising medium canot be overestimated. 1ts circulation

 is many times greater than that of any similar journalnow published. It toes nto all the States and Territo
ries, and inead all the pricipal iliraries and reading
rooms of the world. A business man wants something
 let the advertising agent intuence you to substitute
some other paper forthe SIENTIFICAMERCAN, When
selecting a list of publications in wuico you decide it is
sit
 ed on the SCIENTIFIC AMERICAN.
For ror trates see top of fret column of this page, or ad

The Original Onralcanized Pading CALLED THE STANDARD-As it is the Packingby which Accept no packing as JENKINS PACKING unles
stamped with our "Trade Mark."

MEAMERCABLLTHPHOPCO

 95 MILK ST. BOSTON, MASS.This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such anlawful use, and all the consequences thereof, and liable to suit therefor.

(m) BARREL, KEQ,

Hogshead STAVE MACHINERT. Over 5 farieties manu-
f.actured by
E. Bolmes, Truss Hoop Driving. E. \& B. Holmes, MuSpitiv

Scientific Anrericam

FOR 188\%.
The Most Popular Scientific Paper in the World. Only 83.00 a Year, including Postage. Weekly.
This widely circulated and splendidly illustrated paper is pubisied weekly. Every number contains six original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery New Inventions, Noveltes in Mechanics, Manuf:actures, hemistry, Electricity Telegraphy. Photography, Archi All Classes of American a popular resume of the best scientiflc in to present it in an attractive form, avoiding as much a possible abstruse terms. To every intelligent mind, reading. It affords a constant supply of linstructiv every community whive of knowledge and prog Terms of Subscription.-One copy of the ScIen-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United State or Canada, on receipt of three dollars by the pub lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.--One extra copy of the SCLeNTIFIC Amert.
CAN wil: be supplied gratis forevery clubof five subscribers CAN wil be supplied gratis for every cub of five subscribers The safest way to remit is by Postal Order. Draft, o Express Money Order. Money carefully placed inside seldom goes astray, but is at the sender's risk. Ad dress an letters and make all orders, draits, ete., pay

MIUININ \& CO., 861 Broadway, New York.

Scientific American Supplement. This is a separate and distinct publication from
THe Scientific American, but is uniform therewitb in size, every number containing sixteen large pages.
THE SCIENTIFIC AMERICAN SUPPL EMENT is published weekiy, and includes a presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geography, Archæology. Astronomy Chemistry, Electricity, Light. Heat, Mechanical Eng neering. Steam and Railway Engineering, Mining
Ship Building, Marine Engineering, Photogriophy Technology, Manufacturing Industries, Sar itary En gineering, Agriculture, Horticulture, Domsatic Econo
my, Biography, Medicine, etc. A vast amount of fro and valuable information pertaining to these and allied engravings.
The most important Enjineering Works, Mechanisms,
and Manufactures at home and abroad are represented and described in the SUPPIEMEN
Price for the SUPPIEMENT
Price for the Suppiement for the United States and Canada. $\$$.id a year, or one copy of the SCIENTIFTC AM
ERIAN one copy of the SUPPLEM ENT, both mailed for one year for 8 f .00 . Address and remit by postal MUNN \& Co.. 361 Broadway, N. Y.,

To Foreign Subscribers.-Under the facilities of

 by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia. and all other Russia, and enies; to France, Austria, Belgium, Germa Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,84, gold, for ScIENTIFIC AMERICAN, one year ; \$9, gold 84, gol, for SCIENTIFIC AMERICAN, one year; \%9, gold
for both SCIENTIFIC AMERICAN and SUPPLEMENT for
one year. This includes postage, which we pay. Remit hr postal or express money order, or draft to order of
MUNN \& CO., 361 Broadway, New York.

PRINTING INKE;

