## a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.


PNEUMATIC GUN CARRIAGE AT SANDY HOOK.
The modern gun, whether it be of the sea coast type, barbette, or flank defense, is so much larger and heavier than the old style-carries such a charge of powder and gives such an increased shock in recoil-that the construction of the carriage which must bear its weight and withstand its recoil is of more than ordinary importance. Perhaps it would not be an exaggeration to say that, in building a new fleet, the selection of an efficient gun carriage for its battery is quite as vital to success as the selection of a trusty gun; and as the aggressiveness of fighting ships is in a direct ratio with the effectiveness of their batteries, it follows that defective carriages may render impotent the best efforts of the naval designer.

In a recent number we illustrated the hydraulic gun carriage, taking as an example one of those designed for the Atlanta's 8 inch breech loading rifles. In this number we illustrate the pneumatic carriage at Sandy Hook with gun in rest. These two types are, by long odds, the best yet devised, and each has such merit that the first authorities of the day are divided in opinion as to which deserves the first place.

Strength, as may easily be imagined, is the first requisite in a carriage for heavy guns; ability to withstand the shock of recoil being the test of efficiency. It must also be easy to maneuver, because a gun

NEW YORK, AUGUST 20, 1887.
[ $\$ 3.00$ per Year.
that cannot be readily trained and sighted, however ponderous and potent its projectile, loses much of its effectiveness. Toothed gear is now generally used in elevating and depressing the gun and in the lateral movements. The pneumatic.carriage, like its hydraulic prototype, automatically returns the gun to battery after firing. It receives and counteracts the force of the recoil wholly within itself. It may be said for the pneumatic type that it is simpler in construction than the hydraulic, fixes more accurately the power of the gun in recoil, and hence returns it sooner to battery. Water can be used as a recoil check of a hydraulic carriage only in certain seasons, and other liquids are apt to cake and cloy in the cylinders and lead to mishaps, whereas in the use of an elastic gas, as in the pneumatic carriage, there is no fear of this.
Let us turn for a moment to the Westinghouse air brake, which resembles not a little the pneumatic gun carriage. For many years its designer essayed unsuccessfully to bring about its adoption. Eminent engineers insisted that it was not a practicable contrivance for stopping trains of cars. It was constructed, they averred, upon a misconception of natural laws, and while carefully watched by interested persons on a trial trip where danger did not menace, it was faulty in design and uncertain of action, and they prophesied that when the vital moment came when its repressive $\mid$
action was most desired, it would prove wholly inadequate and fail lamentably. We have seen that they were mistaken in this, for to-day it is in almost universal use, its power being so well adjusted, and so certain withal, that a single man, by pressing a simple lever to the right or left, can, in a few moments, bring the to the right or left, can, in a few moments, bring the
heaviest train to a complete stop. The pneumatic gun carriage at Sandy Hook, which we illustrate, is constructed after the famous Powlett design. It is worked by compressed air, which comes from a pipe connected with the breast of the carriage. By means of simple levers, this air, besides being used to check the force of the gun in recoiling after firing, can be made to train the gun, elevate and depress it, and move it quickly from side to side. The old style carronade and broadside gun, pygmies in comparison, could not be handled by their numerous crews more readily than the great modern gun weighing many tons can be worked by means of this really simple apparatus.
The Sandy Hook pneumatic gun carriage has a slide furnished with cross transoms and angle knees sufficiently strong to bear the running and recoil cylinders. The latter are lodged beneath the piece and between the slide rails, care being taken to prevent their destruction by hostile shot. Inside one of the slide rails there is rack piece with a rolling eccentric clutch, fur(Continued on p.120.)


# Soritutific ghmxtian. <br> ESTABLISHED 1845. 

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

## TERMS FOR THE SCIENTIFIC AMERICAN.



Colonial bank notes. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
The Scientifc American Supplement
is a distinct paper from the Scientiric Amprican. The Supplement
is issued weekly. Every number contains 16 octavo pages. uniform in size

 $t$ way to remit is by draft, postal order, express money order, or
etter.
and New Zealand.-The Scientific Ambin


Scientific American Export Edition.


NEW YORK, SATURDAY, AUGUST 20, 1887.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

## INO. 807.

## For the Weok Ending August 20, $188 \%$.

Price 10 cents. For sale by all newsdealers.



IV. RILECTRICITY.-Fifty Years' Progress in Telegraphy- By W. Wr


II. GEOLOGY-The African Diamond Mines.-Sectional Views of the





THE AMERICAV ABSOCIATION FOR THR ADVANGEMENT of science.
Two main ends are accomplished by this association, which has just held its thirty-sixth annual neeting, in Columbia College, in this city. One of these is the interchange of scientific views and consequent increase of knowledge, the other is the social intercourse of scientific people. For both these objects favorable arrangements had been made by the citizens of New York, in expectation of an unusually large attendance. The roll of members, active and associate, showed 564 names up to Friday morning, of which 273 were those of new members. While this list has been surpassed at several former meetings, it should be understood that the rules are more strict than heretofore, especially as to associate members.
The opening meeting on Wednesday morning was called to order by Prof. E. S. Morse, the retiring president, who surrendered his chair to Prof. S. P. Langley, of Washington, D. C., the president-elect. After a prayer by Bishop Potter, Pres. Barnard, of Columbia College, made an address of welcome in the name of the city of New York, reviewing the achievements of the association during the forty years of its career, and paying a fitting tribute $t_{8}$ those members whose labors were done and who had gone to their rest. Pres. Langley made an appropriate reply, after which the association transacted the routine business incident to the full organization of the several segtions. A number of important changes were made in the constitution, at the recommendation of the standing committee, which is to be hereafter called "the council."
The addresses of the vice-presidents before the sec tions occupied the entire afternoon. The following is a brief report of these addresses.
Section B was addressed by Prof. W. A. Anthony, of Ithaca, on "The Importance of the Teaching of Physics in the Public Schools." He deplored the prevalent utilitarianism that demanded a commercial value for all scientific work. It is time to reverse this demand and to call for a process by which commerce shall contribute to science. As our nation grows in wealth, the principles and details of science should be made common property, and become the daily talk of the school boys. The precious truths of nature are the best heritage to be left to future generations. Physical science should be taught in the primary schools as well as in the universities. Thus an army will be raised up to push scientific work into new fields. In order to promote the application of science, let science itself be fostered. New experiments with new instruments will be sure to reach remunerative results, especially if invariably directed by scientific knowledge.
Before section C, Vice-President A. H. Prescott spoke on the "Chemistry of Nitrogen as disclosed in the Constitutioti of the Alkaloids." He said that the character of throgen is a challenge to chemical skill. Abundant in its free state, its compounds are so sparingly obtained that they set the values for the nourishment of life. Nitrogen is trusted for the projectile arts of war and peace, holds the structure of the anilme dyes, and \%overns the vegetable alkaloids. The study of the structural chemistry of the latter includes: 1 . Nitrogeito bases as derivatives of ammonia. 2. As
representea by aniline. 3. The pyridine type in the represented anifine. 3. The pyridine type in the vegetable alkaloide. It may yet come to pass that the identical alkaloids of nature will be made by art. This will not be dofre by chance methods nor premature short cats, but by well-earned progress through scientific methods faithfully applied.
Hon. Eckley B. Coxe, vice-president of section D, spoke on "The Necessity of Scientific Training for Engineers." An occasion like the present, whon an engineer who is really a business man is called upon to preside over a scientific body, naturally gives food for reflection. Engineering, though the youngest of the professions, is already divided into civil, mining, mechanical, and other branches. The engineer is deeply indebted to those who have determined experimentally and discussed mathematically the data which are indispensable to him. The great success of the first practical engineers, who were developed in the field or in the workshop, was achieved in spite of-not on account of-their lack of scientific education. There are three classes of engineers-scientific, consulting, and business. A young man should decide which of these he wishes to become, and adapt his studies ac cordingly. There is as much need of a technical education for the engineer as there is for the lawyer, physician, or clergyman.
The admirable address by Prof. Gilbert, before sec tion E, concerning the "Work of the International Congress of Geologists," attracted so much attention, and awoke so great an interest, as to be made the special subject for general discussion for the whole session on Friday, in the geological section. It was a thorough and able review of what has already been done by the geological congress, with criticisms on what it has attempted to do by imperfect methods, together
with novel and orlginal suggestions as to the scope and attainable results of such an organization. The address was quite lengthy, and instead of attempting a
of it in the Scientific American Supplement for this week.
Prof. W. G. Farlow, of Cambridge, addressed Section F on the subject of "Vegetable Parasities and Evolution."
A parasitic plant is one obliged to obtain its organ-
ized material from other plants or from animals. Par asites subsisting on dead matter are called saprophytes; those on living substances, true parasites. Mould on bread is a saprophyte; the potato rot fungus, a true parasite. Most parasites belong to the fungi. It is highly probable that vegetable parasites originated from non-parasitic forms. There is reason for believing that the earliest forms of undoubted plants were unicellular and not unlike protococcus. As soon as a protococcus has developed the power of attaching itself to other protococci, lost its chlorophyl, and developed means of penetrating the wall of its host, it has as sumed all the essentials of a chytridium. The develop ment of the filamentous and higher parasites from such chytridiaceous forms is possible. When one regards fungi as a single class of plants, and attempts to trace a clear connection between the highest and lowest members, he finds numerous gonet that cannot well be filled. A general parallel, however, exists between the fungi and the chlorophyl-bearing alga, and the development may have been from the lowest to the highest algæ, and the different groups of fungi may have arisen from different groups of algæ at different periods in the process of evolution.
Address by Professor D. G. Brinton, of the University of Pennsylvania, before the anthropological section, H: "A Review of the Data for the Prehistoric Chronology of America.'
Humboldt's hesitancy as to the origin of the human race should disappear, at least so far as the American Indians are concerned. The sources of information are : 1. Legendary. 2. Monumental. 3. Industrial. 4. Linguistic. 5. Physical. 6. Geological.

1. Back of the fifth generation all becomes vague and mythical, and all verbal records are apt to be untrustworthy. Even in the annals of Mexico there is no fixed date prior to A.D. 1325 .
2. The stone-built monuments of Peru and Mexico, and the brick buildings of Pueblo, do not warrant the claims for thousands of years-hundreds will do. Many of these structures were built within the memory of the natives, who met their European conquerors. The shell heaps, or refuse heaps, of villages in Maine, Florida, and Brazil contain remains of animals which are now extinct, and the human skulls found are of a different race. That race was familiar with pottery and polished stones.
3. In the oldest relics we find proofs of the palæolithic age-the simplest implements. In other ancient mounds we find fragments showing that the tribes were acquainted with the compound arts. The cultivation of useful plants is important. Maize and tobacco were raised over an area of 5,000 miles in diameter.
. The exceeding diversity of dialects in America proves high antiquity, but the many incorporative traits show original identity of plan.
4. Physical research is hindered by ideas of race classification. Maylayans and Americans were wrongly classified by Cuvier as Mongolians. The most ancient American skulls prove that in craniological features the American race in time and distribution has been identically one.
5. Man lived in North and South America immediately after the glacial epoch, but the epochs in the two continents may not have been synchronous. The American could not have immigrated from Africa or Asia, though the first American man was an immigrant and not autochthonous. When geology and geography have been studied more thoroughly in their application to anthropology, the lines of migration may be traced.
Prof. H. E. Alvord, Vice-President of Section I, spoke upon "Economy in the Management of the Soil."
Tracing the visible wealth of the country to its source, we find that it has all, with insignificant exceptions, been derived from the soil. Generation after generation has recklessly drawn on the stored fertility of the soil with no systematic effort at restitution. For food, clothing, shelter, and fuel, we depend almost entirely upon the soil. In spite of the rapidly increasing demands of our own country, for twenty years agricultural products have constituted three-quarters of all the exports from the United States; and this superabundance of soil products will continue well info the next century. Every crop removed diminishern ite store of plant food, and this reduces its reproductive power. The most important elements of plant food are potash, phosphoric acid, and nitrogen. Kycn remains upon or is retureed to the land, but there is great waste in addition to what is sent abroad. The revival of interest in agricultural studies, and the increasing number of able men who make them their life work, promise some success in the efforts to solve the prob

The address of Professor E. S. Morse, the retiring
president of the association, was delivered on Wednesday night, in the library hall, before a large and appre ciative audience. His subject was "A Decade o Evolution," and he reviewed with great earnestness and enthusiasm the work that had been done in the last ten years, especially by American naturalists, to prove and illustrate the Darwinian theory of the derivation of species. The address abounded in facts of the most curious and instructive nature, and was well received, except that the speaker felt impelled to retaliate on the church for its alleged obstruction of the progress of modern science. The entire speech will be printed in the proceedings of the association, and will have a high degree of value as a contribution to the history of scientific progress. Next week we shall give an outline of the more important work done in the arious sections.
It should be added that the members of the associa tion, while fairly diligent in their allotted duties a scientists, availed themselves of the privileges of the me tropolis and enjoyed a reasonable amount of sight-see ing. The excursions around the harbor and to West Point and Long Branch are popular features. The general reception on Thursday evening at the Metro politan Opera House was a brilliant affair, and brough together a delightful company representing all parts o the nation.

## REVIVAL OF PATENT EXTENSIONS

The last Congress may be said to have revived the almost obsolete custom of extending patents beyond the original time for which they were granted, and the probability is that the Congress which meets in De cember next will be strongly urged to pass a new gene ral law upon the subject.
By the amendment of the patent law passed March 2, 1861, the term for which letters patent are granted was changed from fourteen years to seventeen years and the provision of the statute for the extension o patents was altogether struck out, the additional period of three years on the original term being held to be tantamount to an extension of all new patents fo that much time. Patents granted subsequent to March , 1861, were issued without any privilege of extension and the only way in which they can be lengthened i by a special act of Congress in each individual case Hundreds of applications for extensions have been made to the Congressional committees, but, except in two or three cases, they have always been refused, and it had come to be generally understood by pateritees that there was little or no chance of getting a Congressiona extension. But Mrs. Henrietta H. Cole, of New York, inventor of the fluting machine patented June 12, 1866 -twenty-one years ago-has been more fortunate. The last Congress granted her petition, authorizing an ex tension. The Commissioner of Patents has heard th required evidence, and has granted the extended pa tent. So this patent monopoly, after having expired and become free to the public for four years, is again revived and put in force for seven years, dating from June 12, 1883, the date of the expiration of the firs erm of the patent.
The grant of this extension will be a justifiable en couragement for all patentees whose patents already have or are about to expire to besiege Congress fo special acts of relief in each particular case; and w hope no one will hesitate or be backward in filing thei applications. There are undoubtedly many cases in volving the greatest hardship to the inventor, in which an extension would be a relief. There are many inven tions, of most extraordinary value, for which the in ventors have not received a tithe of reward as com pared with the benefits their devices have conferre upon the nation. Congress should either hear and de termine each individual petition, and grant it, if just or it should pass a general law, under which all patent may be extended; or it should put a stop to the grant of any patent extensions.
Last year a bill was introduced, but failed to pass, providing for the extension of all expired patents, and this, under proper conditions, would seem to be the easiest and fairest way of disposingtof the matter. But it must not be forgotten members of Congress are politicians, and many of them seem rather to like to have their constituents run to them with their little private bills, as in that way a certain home influence and power is secured.
At present, the way to proceed for any one desiring to obtain an extension of a patent is to make applica tion by petition to Congress, to be presented and pressed by the senators and members from the State in which the petitioner resides. No official fees are re quired to be paid. Personal interviewing of members to explain the particular merits of the case is often of great assistance, particularly so if the lobbyist be a

Sunflowers are used in Wyoming Territory fo fuel. The stalks when dry are as hard as maplewood and make a hot fire, and the seed heads with the seeds in are said to burn better than the best
hard coal. An acre of sunflowers will furnish fuel hard coal. An acre of
for one stove for a year.

A Great Bell for Cologne Cathedral.
An official notice has been published of the great bell for the Cathedral of Cologne, the solemn inauguration of which took place some days ago with great pomp. The bell weighs 27,000 kilos., or about 26 tons 13 cwt The clapper alone weighs 800 kilos., or nearly $153 / 4 \mathrm{cwt}$. ts perpendicular height is almost $141 / 2$ feet; its diame ter at the mouth nearly $111 / 2$ feet. Twenty-two canons taken from the French were assigned by the Emperor William for its manufacture ; 5,000 kilos. of in were added. It was cast by Andreas Hamm, o Frankenthal, and ${ }^{\prime} 21,000 \mathrm{~m}$. $(£ 1,050)$ were paid for the casting. It will be known as the Kaiserglocke, or Em peror's bell; and as the two other large bells in the cathedral bear the epithets respectively of Pretiosa (precious) and Speciosa (beautiful), this one is styled Gloriosa. It bears above an inscription recording that Willian, the most august Emperor of the Germans and King of the Prussians, mindful of the heavenly help granted to him whereby he conducted the late French war to a prosperous issue, and restored the Ger man empire, caused cannons taken from the French to be devoted to founding a bell to be hung in the wonderful cathedral then approaching completion." A ikeness of St. Peter, the name patron of the church, is on the side, beneath which is a quatrain in the style of the mediæval conceits, praying that, as devout hearts rise heavenward at hearing the sound of the bell, so nay the doorkeeper of heaven open wide the gates o the celestial mansion. On the opposite side is inscribed sestet in German, of which the translation is:
"I am called the emperor's bell ;
On the holy watch tower Iam placed.
I pray for the German empire,
That peace and protection
That peace and protection
The bell was solemnly blessed in the cathedral by the Archbishop of Cologne, according to the elaborate itual set out in the Pontificale Romanum. The ceremony was very long, many psalms being chanted by he clergy and choristers while the bell was being prinkled with blessed water and anointed with chrism, and the portion of St. Luke, x. 38-42, was chanted by a deacon. Incense and myrrh were burn within it, and many symbolical rites performed. The phich the bell sounds is C sed as to

## A Millín Dollar Diamond-the Largest Brinant

 in the worldA ufodel of the Victoria, the Great White Diamont or the Imperial, has been sent to this city lately, and Mr. G. F. Kunz gives in Science the following
Concerning its early history very little is known ; in fact, where the stone was found is only a matter of con ecture-a remarkable circumstance when w
An explanation by a letter in the London Times wa given, as follows: "That this stone was not found in English dominions at all, but in the neighboring Orange Free State; that it had been found by a boor on his arm, who, knowing it to be a diamond, but fearing being turned out of his farm by a mob, kept the secre whole year, until a Mr. Allenberg of Port Elizabeth saw it, and forwarded it to London."
It is, however, believed that it was found by some one in one of the Kimberley mines, South Africa. The first intimation that any of the various mining com panies had of its existence was when they heard of its safe arrival in London. It is generally supposed that in the month of June or July, 1884, the stone had been found by one of the suveillance officers of the Central Mining Company in the Kimberley mines. It being his duty to search others, he had the privilege of not being searched himself, and so the stone was passed through the searching house, and he was afterward supposed to have found means of communicating with four illicit diamond buyers. Owing to the stringency of the diamond laws of Griqualand West, the trading in rough diamonds is forbidden any one not owning one of the "patents" or "licenses," as they are called, cost ing $£ 200$ and a guarantee of $£ 500$. All purchases made by them must also be entered in a special registry, and are duly signed every week by the police authorities $£ 3,000$ was the price paid to obtain the stone from the first possessor. To prepare themselves for the ordeal of ransporting the stone out of the district, they as sembled at night, commenced drinking, then gambling and after a night's debauch two of the party lost thei share in the big stone. The other two reached Cape Town in safety, where the diamond laws are not in orce, and from a dealer there received $£ 19,000$ cash fo their stone. An outward duty of one-half per cent is collected on all shipments of diamonds from Cape Colony; but this diamond is said to have been carried by one of the passengers of a mail steamer, and was causing considerable sensation at Hatton Garden, the great diamond market. After considerable time had been spent in trying to find a capitalist who could afford to buy such a gem, it was at last arranged by a former resident of the Cape mines to form a company of
eight persons, who bought the stone together for
$£ 45,000$ cash, on condition that if they should dispose of it each should receive a ninth share in the eventual profits.
Before cutting, it was estimated that the crystal would furnish either of the following gems : If cut as a briallette, 300 carats; as a drop, 230 to 240 carats; as a lozenge, 250 carats; and as a mathematically perfect brilliant, 150 carats. If cut in the latter form, it would have furnished cleavages that would cut into one 40 carat, one 20 carat stone, and 40 carats of smaller stones. It was finally decided to cut it into the largest possible brilliant, still preserving a good shape, and Amsterdam was

It was accordingly sent to the polishing mills of Jacques Metz, who erected a special workshop for the purpose. In order to better obtain the brilliant form of cutting, a piece was cleaved off which furnished a 19 carat diamond, and was sold to the King of Portugal for $£ 4,000$. The cutting of the large stone, which was commenced on the 9th of April, in the presence of the Queen of Holland, took about twelve months, since, instead of being cut by abrasion with another diamond, as diamonds are usually cut, it was polished down on the scaif; and a great amount of time was consumed by the cooling of the stone, as it heated after an hour's running on the wheel. The cutter of the stone was M. B. Barends. The stone in its finished condition weights 180 carats, and is a beautiful, perfect, steel blue diamond, and is the largest brilliant in the world.
It is $39 \cdot 5 \mathrm{~mm}$. ( $19-16$ inches) long, 30 mm . ( $111-64$ inches) wide, and 23 mm . ( $15-16$ of an inch) thick, being exceeded in size by one diamond only, the Orloff, belonging to the Russian crown, which weighs $1943 / 4$ carats, but is a large deep rose, and not a brilliant. The Victoria exceeds the Regent in weight by $441 / 8$ carats. The Kohinoor weighs only 106 1-16 carats.
The form of the Imperial is notentirely even. On one side of the girdle there is quite a flat place, a natural unpolished surface, necessary, in cutting, to preserve the large weight of the stone. It is, however, a perfect 58 facet brilliant.
The original weight of the stone was $4571 / 2$ carats, $31-60$ ounces troy. The stone to-day is held by a London syndicate for $£ 200,000$.

## Treatment of Dysentery.

In a correspondence from Bombay, Dr. C. MacDowall, physician in the British army of East India, speaks with great enthusiasm of the treatment of dysentery by ipecacuanha. Like other friends of this treatment, such as Docker, Ewart, Cunningham, Malun, etc., he says that it is almost a specific, renders the disease easy to cure, and prevents the complication most feared, i. e., hepatic suppuration. Buthe emphasizes, particularly, that "the remedy be given early in the disease, at the proper time, and in the proper manner." The principles of the treatment are:

1. To give a large dose of ipecac, at least thirty grains for an adult.
2. To prepare the stomach to accept and retain such a large dose by about twenty drops of laudanum an hour before giving the ipecac; also the application of a sinapism over the stomach, and to administer the ipecac in the form of large pills, not in solution. It must also be given at night, at the time of going to sleep, never in the morning, and not during the day, and no liquid is to be taken after the dose has been given.
Sometimes the patient vomits a little mucus toward the morning hours, but the greater portion of the remedy has by that time been absorbed. This treatment must be renewed every night, and usually the improvement is marked by the third morning, or sooner blood, mucus, pain, all three having disappeared. A disease which formerly made us despair now has lost its terror to us.
The opium may be substituted by a hypodermic injection of morphia. Bismuth subnitrat. may be given during the day. Small doses of ipecac: are more than useless; they have been tried in India for over two centuries without lessening the mortality in dysentery. Since more than twenty years the above has been adopted as almost the only treatment in British India, and has given the best results.-Progres Medical.

## Electric Meteorology

Mr. G. A. Rowell, of Oxford, says the Electrician, sends us a pamphlet with the above title, in which he discusses the cause of the changes in magnetic declination. He adduces evidence to show that the European and American magnetic poles are coincident with the centers of greatest cold for the two continents. Hence he attributes the shifting of the magnetic poles to the same series of astronomic and geologic causes which produce the secular changes in climate. This theory leads to the uncomfortable conclusion that as the magnetic declination in this country continues to decrease, so our winters will increase in length and severity. Without laying undue stress on the point, the author is certainly able to appeal to our recent melancholy experiences as an argument upon his side.

## Railway Sand Blast.

The Hinckley Locomotive Works, of Boston, are building an express locomotive with a single pair of driving wheels. This engine is built to the order of a Boston syndicate, and is intended to run the fast express, the Flying Yankee, on the Boston \& Maine. The engine will not be completed until Sept. 1. It is understood to embody many new features, and considerable interest will be felt in its performance. Any difficulty from slipping can probably be overcome by the use of the sand blast now successfully used on many English roads, and undergoing trial on the Chicage, Burlington \& Quincy. The sand being thrown on the rail by a jet of compressed air, cannot be blown off before the wheel reaches it. Experience in England goes to prove that the success of engines with a single pair of drivers depends entirely upon the character of the sand supplied. If dry and delivered fairly on the rail close to the driving wheel tread, no time is lost from slipping, even where the tractive power of the engine is 94 lb per lb. pressure on the pistons.

## IMPROVED MECHANISM FOR RECIPROCATING PLUNGERS.

A novel means of imparting a reciprocating motion to a plunger, applicable for use in connection with a hay or vegetable cutter, or a hay press, or for other purposes, is shown in the accompanying illustration, and has been patented by Mr. George McCarn, of Goodland, Ind. The drum or disk, which may be operated by a crank arm or a sweep, has bosses or projections on its peripheral face, and a pitman, connected at one end to a plunger, is held against the peripheral face of the drum by circular guides, concentric with the axis of the drum. As the drum is revolved the pitman is forced to the position shown in dotted lines in Fig. 1, by one of the lugs upon the drum; and as the lug passes from engagement with the pitman, the latter is returned to its first position by

a spring and link. In Fig. 2 the plunger is represented as being provided with a knife, arranged to be thrown against the cutting edge of another knife carried by a casing, within which the plunger is mounted, as the invention may be utilized for cutting hay, roots, etc.

## The British War Ship Undaunted.

H. M. S. Undaunted (12), belted cruiser, lately steamed out of Plymouth Sound into the channel for a final contractors' four hours' trial of her machinery with forced draught. The vessel was ballasted with heavy weights in order to bring her down to her deep load line draught, the same as if she had all her stores, guns, ammunition, coals, and crew on board ready for sea. Her draught of water forward was 20 ft . and aft 22 ft . The result of the trial was as follows :
Starboard engine horse power, 4,204; port engine horse power, 4,398 ; for both engines, 8,602, or 102 over the power contracted for, which was 8,500 . The highest power obtained was 9,020 , or 520 above what was contracted for. The speed of the ship on the measured mile was $19 \cdot 4$ knots per hour, which is the highest speed attained by any of her Majesty's heavily armed ships of war. The wave line was measured, and the curve proved that the protective belt was above and below the water line in the position as originally intended in the design. The-Undaunted is the second of five vessels of the same class ordered about two years ago by the Admiralty. Messrs. Palmer \& Co. have done important work in completing the two vessels intrusted to them to build, and which are the first two of the five. This vessel previously had a natural draught trial, when she attained a speed of over 17 knots, and indicated 5,640 horse power during the four hours' run, the maximum horse power being 5,890 , or 390 horse power above the contract, which was 5,500 .

## AN IMPROVED CISTERN DEVICE.

The illustration herewith shows a form of cistern and pumping arrangement by which water can always be drawn from the interior of the water in a cistern, avoiding both the scum on the surface and the sediment at the bottom. It has been patented by Mr. George $\mathbf{A}$. Allen, of Madison, N. J. The cistern is made with a

bottom trap or elbow, this portion being preferably of glazed earthenware, and with it is connected an over flow pipe and branch, E, F. The open top of the pipe, $E$, prevents siphoning, and provides for the insertion of a suction pump, whereby sediment may be with drawn. The pump pipe, $C$, is fitted, over its lower portion, with a slip tube, D , having an enlarged lower por tion, $B$, and a float, $A$, the iatter always locating the height of the slip tube in such way that the supply of water taken by the pump will be drawn from the holes in the slip tube beneath it in the body of the water, the in the slip tube beneath it in the body
slip tube being closed at the bottom.

## AN IMPROVED REVERSING GEAR FOR ENGINES.

The invention herewith illustrated provides a nove form of reversing gear for engines, which has been patented by Mr. Edwin H. Whitney, of Providence R. I. Fig. 1 shows a side elevation of the reversible eccentric, with hand wheel for operating it, Fig. 3 being a front elevation showing the engine shaft in ross section, and Fig. 2 a perspective view illustrating the application of the invention to an upright engine. The eccentric is formed with a hub having shoulders to engage a stop pin on the shaft, in combination with an operating wheel placed on the hub of the eccentric, and having a limited rotary motion thereon. The eccentric has a limited independent motion upon the shaft, and the hand wheel has a rotary motion


## WHITNEY'S REVERSING GEAR FOR ENGINES.

independent of the eccentric, combined with spring catches arranged to lock the hand wheel to the shaft Further information relative to this invention may be obtained of the American Ship Windlass Company George Metcalf, treasurer, Providence, R. I.

## Electricity a Form of Matter.

Mr. Carl Hering, writing to the Electrical World, says :
"It is a well-known fact that quantity of electricity measured in coulombs never is generated, never is consumed, and never does grow less, excepting leakage. The current flowing out of a lamp is exactly the same in quantity as that going into it; the same is true of motors and of generators, showing that electricity of itself is neither consumed while doing work nor is it generated. After doing work in a lamp or motor, it comes out in precisely the same quantity as it entered. A battery is not able to generate quantity or coulombs of electricity ; all it is able to do is to take the quantity which pours in at one pole and send it out at the other pole with an increased pressure, or E.M.F. Electricity, therefore, is not merely force (or a form of energy), but matter. It is precisely analogous to water in a water circuit. The water is neither consumed nor generated. The pump merely increases the pressure of the water which flows in at one end. The water motor merely consumes the pressure, and converts it into mechanical work of another kind. It does not consume the water. The quantity of water, measured in units of quantity, is the same in all parts of a closed circuit of water," etc.

## A SAFETY APPLIANCE FOR RAILROAD CARS.

The invention herewith illustrated provides means by which escape can easily be made from railroad cars in case of accident, and has been patented by Mr. Thomas G. Gilfillan, of Union, Oregon. Openings are formed in the roof of the car, which are fitted with trap doors, from each of which depends a hooked bar, the lower end of which is engaged by the head of another bar, the latter being held down, to keep the trap door closed, by a hand lever, engaged by a vertical toothed bar. Upon releasing the lever from the toothed bar, the trap door may be readily raised or removed,


## gilfillan's safety car.

and, iron steps or rails being attached to the side of the car, on both the inside and outside, a ready means of escaping from the car is thus afforded when other methods of egress might be cut off. In addition to these openings in the roof, similar openings, provided with trap doors, are arranged in the floor of the car.

## Banana Liquor.

The Indian Agriculturist calls attention to the fact that India abounds in bananas or plantains, and wonders that the fruit has never been employed in the distillation of a fermented liquor. The common prickly pear has been utilized for this purpose in Malaga, and with considerable advantage to the distillers; and it now appears that missionaries in the Congo region have discovered that a beverage made of bananas is a preventive of malarial fevers. A banana liquor company has recently een started in India for producing banana liquor in either an alcoholic or non-alcoholic form, and which can be used with equal advantage as an ordinary liquor or diluted with hot or cold or soda water. For the temperatures of northern regions, including England, it will probably be best esteemed in conjunction with brandy or other spirits.

## A New Torpedo Boat.

The Secretary of the Navy invites proposals for the construction of one first-class torpedo boat, complete, exclusive of torpedoes and their appendages, the vessel to be of the best and most modern design, to be constructed of steel of domestic manufacture, having a tensile strength of not less than 60,000 pounds per square inch, and an elongation in eight inches of not less than 25 per cent, and to have the highest attainable speed. Proposals will be received until November 1 next. Premiums will be paid or penalties exacted according as the speed of the vessel shall be above or below 22 knots per hour. The cost of the vessel, exclusive of premiuns, is limited to $\$ 90,000$.

AN IMPROVED WARDROBE HOOK AND SHADE FIXTURE The invention herewith illustrated provides an article of simple and cheap construction, to be used either as a wardrobe attachment or as a curtain and shade fixture, and has been patented by Mr. James Fanning, of No. 15 Becket St., Salem, Mass. The main longitudinal wire is made in two sections, the inner ends looped around each other, so that this wire may be shortened or lengthened as desired to adapt the device for use in dif-


FANNING'S WARDROBE HOOK AND SHADE FIXTURE.
ferent positions. The hooks which engage the window casing or other woodwork have downwardly bent spurred ends, the outwardly curved hooks being adapted for supporting hats and other articles of wearing apparel, while their eyes and loops are calculated to receive and support a curtain pole and shade roller, as will be readily understood from the illustration.

## AN IMPROVED GOVERNOR.

A governor which is designed to secure a constant given speed, however variable may be the work required of the motor, and which is applicable to heat engines, dynamos, and other machinery, is shown in the accompanying illustration, and has been patented by Mr. Alexandre Dieu, of No. 343 West Thirty-fifth Street, New York City. In a receptacle adapted to be filled with a suitable liquid, as oil, is journaled a ver tical shaft carrying on its lower end a bevel gear adapted to be rotated in the usual way from a rotary part of the motor. Sliding vertically upon the shaft, but compelled to turn with it, is a governing screw upon a cylindrical core, the blades of the screw re volving in close proximity to the inner cylindrical surface of the receptacle, and there being a series of ver tical passages in the screw core forming communication between that part of the interior of the receptacle below the screw and that above. Such communication may be interrupted or regulated by means of a valve plate, shown in Fig. 2, which is operated by an annular milled head upon the upper end of a sleeve which promilled head upon the upper end of a sleeve which pro-
jects through the receptacle cover. Inside this sleeve a tubular rod surrounds the vertical shaft, its lower end resting in a recess in the top of the screw core, the rod being raised by and falling with the governing screw, and carrying a weight on its upper end connected by an elbow lever with a rod arranged to regulate the power supply. The revolving screw produces a constant upward circulation of the liquid, at the same time raising the screw and with it the weighted rod and the adjusting sleeve, with its valve plate, the governing action being dependent upon the speed of rotation of the screw and the extent of the opening of the vertical passages in the screw core. On varying the latter, by means of the adjusting sleeve, the re-


## dieu's speed governor.

action upon the screw can be varied so as to regulate the point of equilibrium between such reaction and the weighted screw system, to increase or decrease the speed at will without destroying its constancy.

Sir William Armstrong's new gun to resist tor pedo attacks is a thirty-pounder, and develops a muz pedo attacks is a thity of 1,900 feet per second.

## Eighth Annual Convention of the $\mathbf{P l}$ Association of America.

The annual convention of the above association is to be held at Chicago, Ill. The period of the meeting is from August 9 to August 11. The meeting will be under the presidency of Mr. G. Cramer, of St. Louis, so well known to all dry plate workers. The society, as its name indieates, is open to all workers in the art, whether professional or amateur. The convention is to be held in the Exposition building, situated on the shores of and overlooking the lake. The plan of the meeting provides for the exhibition of photographs meeting provides for the expliances. Numerous prizes are offered; many are presented by manufacturers for the best work done with their specialties. The rules as to the display and labeling of exhibits are so well conceived as to avoid the possibility of any undue prominence being given to any exhibitors. Thus pictures to be exhibited in the art hall are not to have any marks indicating what paper, lenses, or plates were used in their production. Pictures conflicting with this and other similar rules may, however, be exhibited in the stock dealers' department. As the professional as well as amateur photographers take part in this convention, a most valuable and interesting series of exhibits is assured.

## AN IMPROVED GEARING FOR TRANSMITTING POWER.

An effective and economical means of transmitting power is shown in the accompanying illustration, and hasbeen patented by Mr. John Ljung, of Nelson, Minn. On a shaft carrying a U-shaped crank arm is secured a small gear wheel, which meshes into an intermediate gear wheel secured to a shaft having its bearing in a counterbalanced frame, which turns loosely on the crank arm shaft. The intermediate gear wheel meshes into an internal gear on the large transmitting wheel, which is connected either by belt passing over the wide

portion of its rim, or by the gear on one outer edge with the machinery to be driven. Fig. 2 shows sec tional end elevation of the swinging frame and intermediate gear wheel, the shaft carrying the gear wheel of the counterbalanced frame carrying also another ear wheel, which meshes into a corresponding gear wheel upon the crank-arm shaft.

Effect of Heat upon the Strength of Metals.
A series of interesting experiments has been conducted in Portsmouth Dockyard for the purpose of ascertaining the extent to which different gun metal compositions, and iron and steel, are affected as regards their strength and ductility by being heated to various temperatures not exceeding those to which they may at any time be exposed as parts of machines and structures. It has occurred to most engineers to observe instances of damage due to the overheating of bearings, etc., which have indicated that certain changes had taken place in the metals exhibiting this phenomena. In some gas making processes, moreover, gun metal and iron fittings are required to be exposed, while under pressure, to hot gases and superheated steam; and it is important to know the effect of this condition upon the strength of the materials in question. The Portsmouth experiments (the results of which are detailed in Industries) dealt with temperatures advancing by steps of $50^{\circ}$ from the atmospheric to $500^{\circ}$ Fah. The method of heating the specimens was by an oil bath, and every care was taken to complete the tests before the specimens lost their heat.
The result of the experiments went to show that with all bronzes there is a regular, but not serious, decrease of strength and ductility up to a certain point, which depends to some extent upon the composition of the bronze, beyond which the strength suddenly drops to about one-half, and the ductility vanishes. This critical point for ordinary gun metals is between $300^{\circ}$ and $400^{\circ}$ Fah. Phosphor-bronze preserves tumo-thirds of its strength and one-third of its ductility up to $500^{\circ}$ Fah. and Muntz metal and pure copper are also fairly satisfactory in these respects. Wrought iron increases in
strength up to $500^{\circ}$ Fah., but loses in ductility up to $300^{\circ}$ Fah.; after which an improvement begins, and lasts up to $500^{\circ}$. It is more ductile at atmospheric temperatures than when warmed. The strength of open-hearth steel is not affected by warming to $500^{\circ}$ Fah., but its ductility is reduced by one-half.

A SACK-FILLING SPOUT FOR FLOUR PACKERS.
An improved means of conveying flour from the auger tube to the sack is shown in the accompanying


CONANT'S FLOUR PACKER. illustration, and has been patented by Mr. Ossian A. C. Conant, of Terre Haute, Ind. The bent tube, intended for attachment to the auger tube, is provided with lugs, which pass through apertures formed in the lower binding hoop of the auger tube, as shown in Fig. 2, and to the lower end of the bent tube there is secured a flexible tube of sacking. A slide or cut is arranged in the bent tube to intercept the flow of flour, which is otherwise continuously forced down by the auger within the vertical tube.

## A Garden Barometer.

One of the simplest of barometers is a spider's web. When there is a prospect of rain or wind, the spider shortens the filaments from which its web is suspended and leaves things in this state as long as the weather is variable. If the insect elongates its threads, it is a sign of fine, calm weather, the duration of which may be judged of by the length to which the threads are let out. If the spider remains inactive, it is a sign of rain; but if, on the contrary, it keeps at work during a rain, the latter will not last long, and will be followed by fine weather. Other observations have taught that the spider makes changes in its web every twenty-four hours, and that if such changes are made in the evening, just before sunset, the night will be clear and beautiful.-La Nature.

## Railroad Horses.

English railroads do the major portion of their own carting, collecting and delivering freight at the freighters' doors. One of the largest companies, the Midland, have in constant employment no fewer than 3,200 horses; and of these 1,000 are located in London.
Some of these horses are, however, employed in switching cars, at which business a heavy horse weighing about $2,000 \mathrm{lb}$. can do good service. They soon become very expert, and start the car by standing with the trace chain slack, and then, without moving their feet, throw their shoulders forward, when their weight starts the car. They also learn to judge when the car has acquired sufficient speed, and step aside without a word of command, letting the cars come gently together.

## ATTACHMENT FOR TOP RAIL OF VEHICLE SEAT.

A means of attaching the top rail of a vehicle seat without the use of bolts or nuts is shown in the accompanying illustration, and has been patented by Mr. John W. Yous, of Mound City, Missouri. Metal straps secured to the back of the seat, and projecting from its top, are adapted to receive rearwardly projecting hooks formed on the top rail, as shown in Fig. 3. To the ends of the seat are attached straps having sockets with lateral openings for receiving right-angled fingers


## YOUS' VEHICLE SEAT

projecting downward and outward from the forward ends of the top rail, as shown in Fig. 2, these straps having pivoted latches, adapted to press against the inner side of the top rail, which is readily engaged with the hooks at the back and sprung into place and secured by the latch at the side. By this means the top rail is securely held, and may be attached or removed without the use of wrenches or other tools.

## an improved bit brace

A simple construction of bit stock and bit shank, in which the parts are not liable to displacement or breakage, is shown in the accompanying illustration, and has been patented by Messrs. George Gavin and Lawrence W. Cromer, of Eureka, Nevada. The socket of the bit stock has a cylindrical bore adapted to receive a similar cylindrically shaped bit shank, provided above its

shoulder with a pin, which, when the bit shank is in position within the socket of the bit stock, engages either end, as desired, of the horizontal arm of a Tslot. A vertical groove is cut in the face of the bit stock above the Tlot, in which slides a bolt that is held in position by a set screw, this bolt securely holding the pin of the bit shank in either division of the T-slot, as plainly shown in Figs. 2 and 3. It is only necessary to employ the sliding bolt when the bit stock is attached to a ratchet brace, the bit stock being complete without the bolt for use with orthe bolt for use with or
dinary braces. This invention may also be applied with augers and auger handles, and for other purposes.

## SIMPLE PLUNGE BATTERY.

The engraving represents an inexpensive and easily made plunge battery, which is very convenient for temporary use.
Twelve tumblers, arranged in two rows of six, are held in place by an apertured board supported a short distance above the base board by the round standards. To the standards is fitted a board which is split from the standards outward, and provided with two bolts with wing nuts, by which the board may be clamped at any desired height on the standards. To opposite edges of this movable board are. clamped six plates of carbon, $1 \frac{1}{4}$ inches wide, $1 / 4$ inch thick, and 6 or 8 inches long. The upper ends of the carbon plates are heated and saturated with wax or paraffine, and a copper wire is interposed between the carbon plate and the edge of the board. The strips of wood by which the carbons are clamped are $3 / 8$ inch thick. To these wooden strips are secured zinc plates of the same dimensions as the carbon plates, by means of ordinary wood screws passing through holes in the zinc into the wood. The wires connected with the carbon plates are bent over and inserted between the zinc plates and the wood, as shown in the engraving. That is, the car bon of one pair is connected with the zinc of the next pair in order, and so on throughout the series, and the terminal plates are connected with the binding posts.
The zincs are amalgamated, and the tumblers are nearly filled with a solution consisting of bichromate of potash dissolved in water to saturation, a quantity of sulphuric acid, equal in bulk to one-fifth of the bichromate solution, being slowly added.


SIMPLE PLUNGE BATTERY.
To maintain the amalgamation of the zincs, a smal quantity of bisulphate of mercury is added to the bi hromate solution, say $1 / 4$ ounce to every quart of so lution.
The tumblers should be as large as can be conve niently obtained. Those holding one pint are not too large.
The zincs and carbons may be connected up in dif ferent ways for different effects. For example, all of the carbons may be connected together and all of the zincs may be connected in the same way, thus secur ing a quantity current having` the electromotive force of only a single cell; or all of the zincs on each side may be connected together, and all of the carbons may be connected in the same way, and the series of zincs on one side may be connected with the series of carbons on the other side, thus giving a current having the electromotive force of two cells and the muantity of six.
G. M. H.

The following information is often inquired for, and s it may be useful in many cases for reference, we have compiled a table of the largest cities of the world, with their populations as stated by the latest authorities. In the absence of any official census, the Chinese cites have simply to be estimated, and, of course, must be accepted as an approximation only. We have not given any city whose population is below 500,000 , though there are many we could enumerate which closely approach that figure. It will be seen that in the thirty-five cities tabulated below there are 32,510 ,319 souls, or nearly the population of the British Isles, a fact which cannot be grasped in a moment by any ordinary intellect.

| Aitichi, Japan | 0 |
| :---: | :---: |
| Bangkok, Siam. | 500,000 |
| Brooklyn, N. Y | 771,000 |
| Berlin, Prussia | 1,122,330 |
| Calcutta, India. | 766,298 |
| Canton, China. | 1,500,000 |
| Changchoofoo, China | 1,000,000 |
| Chicago, Ill. | 715,000 |
| Constantinople, Turkey | 700,000 |
| Foo-choo, China | 630,000 |
| Glasgow, Scotland. | 514,048 |
| Hang-Chow-foo, China. | 600,000 |
| Hang-Tcheon, China. | 800,000 |
| Han-Kow, China | 600,000 |
| King-te-Chiang, China. | 500,000 |
| Liverpool, England. | 573,000 |
| London, England | 3,955,819 |
| Madrid, Spain. | 500,900 |
| Moscow, Russia | 611,974 |
| New York, N. Y | 1,400,000 |
| Paris, France. | 2,269,023 |
| Pekalonga, Java. | 505,204 |
| Pekin, China. | 800,000 |
| Philadelphia, Pa. | 850,000 |
| St. Petersburg, Russia | 766,964 |
| Sartama, Japan. | 962,917 |
| Sian, China... | 1,000,000 |
| St. Louis, Mo. | 500,000 |
| Tat-Seen-Loo, China | 500,000 |
| Tien-Tsin, China. | 950,000 |
| Tokio, Japan. | 987,887 |
| Tschautchau-fu, China. | 1,000,000 |
| Tsin-Tchoo, China. | 800,000 |
| Vienna, Austria. | 726,105 |
| Woo-chang, China | 800,000 |

-Pall Mall Gazette.

## Tariff itevision

The revision that is sure to come is sure, also, to be made in one of these two ways: Either in the interests of protection and labor here on our own soil, or in that of foreign production and foreign labor. Theresan be no middle ground, any more than there can be service of two masters. There is a grand struggle going on for the possession of our markets between our own producers and our own labor on the one side and the foreign producer and laborer on the other-and he that is not for us is against us. When the citadel is assaulted, even indifference helps the enemy. The industries of this country and its labor in every calling and pursuit have no option left them, but are called upon, in an inevitable revision of the laws that have created and fostered them, to defend their markets here against foreign invasion.
There are those who talk much of the necessity to us of foreign markets, and are ready to surrender our own to secure them. Do not listen to such preaching. The nation which cannot command its own markets cannot command foreign markets, for those conditions of production which will enable a foreign producer to undersell us here will enable him to undersell us in distant markets, where cost of transportation must be added to cost of production here. Every mile of distance to market is a dead charge upon production, and every mile cut off is a direct addition to profit. Seek first and all the time the nearest market, and make it and all possible augmentation of it your own, and then, if ever, will be added the facilities and opportunities of trade and commerce the world over which are sure to come to that people whose highest attainment in production is the result of the greatest variety and development of their own industries. This is the sure and only way to the markets of the world consistent with health and prosperity at home.-H. L. Dawes' address at the recent meeting of Amer. Paper Mfrs.' Assn., saratoga.

## Fireproofing Solution.

For rendering fabrics, wood, and other inflammabie objects fireproof, a writer in La Nature recommends borotungstate of soda, a salt which he states has never hitherto been employed for the purpose. It is made by dissolving boric acid in a hot solution of tungstate of soda. Objects impregnated with this solution are rendered incombustible. The solution gives off no deleterious gas, while ammoniacal salts, phosphate of ammonia, and salts of phosphorus render the air irrespirable.
Borotungstate of soda in solution is also said to possess valuable antiseptic properties, and has been used with the greatest success in diphtheria, for dressing wounds, and as a wash in cases where an antiseptic is needed. The solution has no odor, but its taste is bitter.
improvement in mandfacturing plated ware.
The invention herewith illustrated provides a method of manufacturing plated ware in which the parts mos exposed to wear are filled with precious metal or alloy as, for instance, the bottom of the bowl of a spoon o the back of the handle of a fork, these being the usua points of rest from which the plating on such article generally wears off the quickest. In such goods, and all flat plated ware of a similar kind, a recess is made at these points of rest, or places of greatest wear, and this recess is filled, in the process of manufacture, with fine or coin silver, or other metal corresponding with that used in plating, so that, after the whole is plated, abrasions of these parts will not, as in the ordinary plated ware, expose the baser metal or alloy of which the article is mainly composed. The illustration shows


WARNER'S PART SILVER-FILLED SPOONS.
the method of inserting this silver filling in a standard style of silver-plated teaspoons.
This invention has been patented by Mr. William A Warner, of Syracuse, N. Y., and articles made after this method are now being manufactured by Messrs. War ner Brothers, of that place.

## Removing Rust from Iron.

It frequently causes much trouble, indeed, in some cases defies all efforts, to free iron from ingrained rust, but according to a German paper the thorough cleans ing of it may easily be effected by immersing the article in a nearly saturated solution of chloride of tin, even if much eaten into. The duration of the immersion wil depend upon the thicker or thinner film of rust ; in most cases, however, twelve to twenty-four hours will suffice. The solution of chloride of tin must not con tain too great an excess of acid, otherwise it will attack the iron itself. After the articles have been removed from the bath they should first be washed in water and then with ammonia, and be dried as quickly as possible Articles treated in this manner assume the appearance of dead silver.

## AN IMPROVED FIRE-PLACE PROTECTOR

A device designed to protect the brickwork of fireplaces, preventing the fire from resting against the brick, and so constructed that the protector may be adjusted for use in fire-places of different size, is shown in the accompanying illustration, and has been pat ented by Mr. George W. Meharg, of Kennett, Dunklin County, Mo. To the two outer standards are connected rearwardly extending bars, bent at inner cor ners, and supported at their other ends by two other standards, in which are threaded apertures arranged to receive screws formed with right and left hand


MEHARG'S FIRE-PLACE PROTECTOR.
threads, and with central heads. In order that the exposed surface of the central standards may be as small as possible, they are made substantially triangular in cross section, the forward edge of the standards being the apex of the triangle, and jamb nuts are arranged on the screws to bind the parts in place when they are once properly adjusted.

## Volcanic silver

Professor Mallet has analyzed a specimen of volcanic ash collected on the Pacific cost in Ecuador, 120 miles west of Cotopaxi. The ash fell on July 23, 1885, and formed a deposit to the depth of several inches. The interesting feature in the composition of the material was the presence of a small amount of silver, probably as silver chloride ; several experiments showed that silver was present to the extent of 1 part in 83,600 of ash. This is the first time that silver has been identified in material ejected from a volcano.-Proc. Roy. Soc.

Water in Thermometer Tubes.
It has long been known that thermometers, when made from recently blown tubes, changed their register with lapse of time. The glass seems to undergo a very slow alteration in volume, which alteration extends overseveral years before a final volume is reached. The cure for this trouble is obvious. The tubes may be blown, filled with mercury, and sealed, and then may be graduated after standing a year or more. This method is obviously only practicable for the finer class of instruments; but it does provide effectually for such.
In thermometers constructed for very high or very low temperatures, abnormal readings have been no ticed which oiten have been considered inexplicable. But in some cases a cause for startlingly large errors has been found in the presence of water in the tube. A thermometer made with every precaution, by one of the makers of highest standing in this city, was recently shown by him. It was made for the higher temperatures, the scale extending from $90^{\circ}$ to $440^{\circ}$ Fah. After it had been used for a few months, it was, with a number of others, returned as useless, on account of in accuracy. On inspection, a considerable amount of water, enough to fill three-quarters of an inch of the bore, is seen to be contained within it. This accounts for its erroneous register. More or less of the water is of course mixed with the mercury, and at the high temperatures is converted into steam, rendering the readings valueless. The steam cushion formed above the mercury also would, to some extent, affect its readings.
Of the other thermometers, one showed the presence of a minute amount of some gas, quite possibly of water vapor. A small break existed in the column of mercury near the bulb. If the tube was inclined, this break expanded from a small fraction of an inch to an inch or more. This occurred just before the tube reached the horizontal position. The pressure of a column of mercury a few inches high was enough to compress the vapor to its original and very small volume.
These instances of errors are supplemented in the experience of the same maker by similar trouble found in a low degree instrument. This was made for use in a freezing machine, and when exposed to low temperatures, registered many degrees below the true standard. The maker examined it, comparing it with other thermometers, and tested its accuracy rigorously. He could find no cause for the trouble. From his examinations alone, it appeared that the thermometer was accurate. Exposed to the exceedingly low temperature, it again was found wrong.
The cause of the trouble with the high temperature instruments is evident. Somewhere a crack must exist through which water or air has been drawn. This undoubtedly happened at the higher temperatures. At ordinary heat the crack is probably hermetically closed. Those who have manipulated glass know that a crack may exist and be quite invisible. The sur faces of the crack may be in such intimate contact that no evidences of the fracture can be seen. Such a crack, or several of them, may have been developed in the glass of the erroneous instruments by the sudden changes of temperature to which they were subjected. On being immersed in a hot solution, the crack may admit some water. A vacuum exists in a ther mometer tube, rendering available the atmospheric pressure for forcing water in.
The sudden changes of temperature are inevitable in technical use. A confectioner must plunge his ther mometer directly into his sirups; he cannot stop to bring it gradually to the maximum temperature to which it is to be exposed. A thermometer that would stand this treatment is, in a commercial sense, a desideratum. Many such undoubtedly exist, but enough has been said to show that the maker cannot feel confident of any of his instruments, if to be thus treated. A good subject for investigation and invention is here afforded.
The low degree errors are a still more difficult sub ject. The occurrence cited is probably more of an anomaly than is the other. But it indicates that the perfect low degree as well as high degree thermometer is still to be devised.

## Manufacture or white Bread.

Within a recent period experiments have been carried on in Germany, which have met with full success, relating to making bread of the best possible appearance, though from such flour as usually is only made into bread with difficulty. The new improvement suggested consists in the addition of those materials which normally exist in flour from certain regions, and which are wanting in that from elsewhere. For example, the attempt was made to add a part of those components which give its value to the flour of Hungary and of Russia, or what amounts to the same, to add such substances as would bring about the production of products of equally good quality. It is known that carbonic acid gas, which is produced in the fermentation of bread dough, and which makes the loaf porous,
maltose either does not originally exist in equal proportions in all cereals, or its formation from starch does not occur with equal facility in all flour. When this last is the case, saccharification will be accompanied by peptonization of the gluten, which will seriously deeriorate the quality of the bread.
This makes it clear how the addition of maltose to the flour, in proper proportions, in all cases should facilitate the alcoholic fermentation, and, assisting the development of this, should retard the operation of the false ferments, which tend to darken or sour the dough. The treatment is easily carried out: Maltose sirup in the proportion of about 2 per cent of the weight of the flour is dissolved in the water used in mixing the dough. The quantity of leaven remains the same, and the fermentation occurs with rapidity and vigor. When the baking is executed at the proper time (as determined by experience), a product of most beautiful appearance is produced, yet has no sweet taste, because the maltose has entirely disappeared, being converted into alcohol and carbonic acid gas.-L'Industria.

## Industrial Education in the Minneapolis High

A manual training school, under the instruction of Prof. F. W. Decker, has lately been established by the school board of the city, in connection with the high school, and results have already been obtained that promise well for the success of this new enterprise.
The object of the course is not to make finished mechanics in any definite trade, but rather to give a general training that shall serve to render boys familiar with common tools and materials of construction, and lay a good foundation for any one of the several meohanical trades
The course serves also to correct some of the popular notions among boys that manual occupations are degrading, or at any rate not so respectable as occupations requiring only book knowledge. This latter result is attained by placing the manual training course on an equal footing with other high school courses, and requiring the same attention to system and order as in any branch of knowledge taught.
The course for the present term is woodworking
A large lower room of the high school building has been fitted up with benches and drawers and a variety of woodworking tools.
Each bench is provided with a full set of bench tools, and each boy has, besides, a number of edge tools and a drawer in which to keep them locked when not in use. Each boy is required to keep his individual tools in order, and all the bench tools have their proper places on a rack in front, where they must be placed at the end of each exercise. The benches and bench tools are lettered to correspond, so that it is easy to see at a glance that everything is in its proper place.
The use of the tools is taught in the following manner, it being assumed there is only one right way. The boys are each given a plane, for instance, and, after being shown the nature and construction of the tool, they are shown how to use it properly. All this is taught to them as a class. They are then given each a piece of board and are required to produce a plane surface, each being drilled until he is tolerably proficient in the use of the tool before being allowed to go on. Sawing is taught in a similar manner. The being fhrst discussed, and the reason for the teeth pointed out differently for cross-cut and rip awl, and the class is shown how to saw to line accuawl, and the class is shown how to saw to line accu-
rately. They are then each required to saw to given lines until the lesson is thoroughly taught. By keeping the attention of the pupils on one operation at a time and holding it until taught, rapid and sure progress is made. After the uses of a few of the most common tools is thus taught, the boys are allowed to construct something that will bring into use only operations they have previously learned. This serves to make the work interesting, though the work is designed to be for the purposes of instruction rather than contruction.
Whenever an article is constructed, it is done from an accurate working drawing made by the pupil himself, and thus the value of drawings, in connection with all construction work, is taught better than it could otherwise be done.
Each pupil is required to spend forty minutes per day in the drawing room and eighty minutes in the hop. Drawing is taught in much the same manner as the use of the tools just described, and it is found that the two branches of work go very nicely together. It was first planned to provide for a class of eighteen only, the class being in three divisions of six, each division spending, as before stated, eighty minutes in the shop and forty minutes in drawing.
The work at once became so popular, however, that the limit was increased to thirty, with several more anxious to join the class, but barred out for want of tools and shop room. Provision will probably be made for double the present number at the beginning of the new school year, and a new building
of, to be provided in the near future.
The sahool boand has aleo established an oveniag
school of drawing, which has been attended during the winter by over fifty pupils, mostly young mechanics, who are busy during the day.
Instruction is given in this school in both mechanical and architectural draughting after the first principles are mastered; and the interest manifested in the work shows plainly that it is valued as an aid to mechanics in their daily occupations. This school was first established a little over a year ago, but the attendance latterly has been nearly double that of the first season; many of those now attending were present last year. The most advanced pupils are at present engaged in such work as laying out and projecting bevel gearing, using the correct curves for the teeth, and showing finally the wheels in working position with two sets of teeth in contact. Others are making perspective drawings of objects of given dimensions, with the eye assumed in a given position.
A greater number are employed in making accurate projections of parts of buildings and machinery, working in all cases from dimensions given, rather than being allowed to simply copy.
The outlook promises much for the future of industrial education in our public schools.-TI. T'. Journal.

## The Phosphorescence of Sulphate of Lime.

M. Verneuil has recently investigated the cause of the phosphorescence of sulphate of lime, the ingredient of luminous paint. In order to prepare it so as to give a violet phosphorescence, it is sufficient to calcine a misture of 100 parts of cockle shell lime (Hypopus vulgaris), 30 parts of sulphur, and 0.02 part of subnitrate of bismuth. Pure lime does not give the phosphorescence when mixed with these materials. Hence M. Verneuil has analyzed the cockle lime and found it to contain: Lime, 54.95 per cent; carbonic acid, 43.26 ; carbonate of soda, 0.99 ; chloride of sodium, 0.06 ; silica, 0.02 ; magnesia, 0.01 ; insoluble matter, 0.04 ; organic matter and waste, $0 \cdot 67$ per cent; and traces of phosphoric acid. M. Verneuil then ascertained that a fine phosphorescence could be obtained by adding to pure carbonate of lime the foreign substances which analysis reveals in the cockle lime. It follows from his experiments that the violet sulphide of calcium prepared with cockle lime owes its vivid phosphorescence at once to the bismuth salt, the carbonate of soda, the sea salt, and sulphate of lime formed during the reaction, and the cockle lime seems to contain sufficient carbonate of soda and sea salt to give the maximum brightness. M. Verneuil is also of opinion that any matter capable of vitrifying the surface of the sulphite of calcium without coloring it is able to render the latter phosphorescent. It becomes phosphorescent, in fact, when it is heated to red heat on a platinum plate with a little borax, or carbonate of potash, chloride of sodium, carbonate of soda, silicate of soda, fluoride of calcium, cryolithe, fluoride of barium, chloride of strontium, chloride of barium, hydro-fluosilicate of barium, and so on. All these substances probably act in changing the molecular state of the sulphide of calcium conformably to the views of M. Becquerel.

## Heating by Electricity.

Though it is claimed as one of the advantages of electricity that it does not raise the temperature of the atmosphere when used for lighting, it is nevertheless, says La Nature, capable, under certain conditions, of evolving heat. This property is about to be turned to profitable account by the Societe des Usines Electriques of Berlin, who have announced that, in future, in addition to light, they will be prepared to furnish a supply of electricity for heating purposes. The appliances which the society offer to their customers have been constructed in view of the use to which they are to be put. For instance, for boiling water they have contrived a vessel having two cases, between which is placed a resistance coil. It is stated that with this appliance about $11 / 2$ pints of water can be raised to boiling point with 4 amperes 100 volts. In certain theaters electric stoves are employed for heating the curling tongs, the use of gas jets and spirit lamps being rigorously forbidden.

## New Russian Gunboat.

A new gunboat, built for the Russian government at Copenhagen, has arrived at Cronstadt. The vessel, which has been named the Manchuria, has been constructed of steel, at a cost of $55,000 l$. The following are the principal dimensions : Length, 210 ft .; beam, 35 ft .; displacement, 1,200 tons; draught, fore, without artillery and war material, 10 ft .2 in .; aft, 10 ft .7 in . The boat has two engines, with an indicated power of 1,000 horse power each. They can without any particular strain develop a speed of more than 13 knots. The armament of the Manchuria will consist of two 8 in . long-range guns in the stern, six Hotchkiss, one Baranovsky, and four nine-pounder guns The bottom of the boat is divided into forty-two water-tight compartments, and the hold is amply protected by fourteen air-tight partitions. An apparatus for ejecting Whitehead torpedoes will be placed in the vessel's bow. The average speed attained during the run from Copenhagen to Cronstadt was $111 / 2$ knots.

## H. M. S. ORLANDO.

This new ship of war, built in the yard of Palmer' Shipbuilding and Iron Company, at Jarrow-on-Tyne, is the first of the belted cruiser class, of which seven are being constructed for the Royal Navy. They are quite a new departure in war ship design, and while superior to anything of this class of war vessel afloat in point of speed, are much more heavily armed and have greatly more defensive power than the Mersey class, which approach them nearest from a constructive point of view ; the chief difference consisting of a belt of armor at the water line, which is fitted in the Orlando class, and from which they derive the name of belted cruiser.
The following is a general description of the vessel Length between perpendiculars, 300 feet ; breadth, extreme, 56 feet; depth, moulded, 37 feet; normal draught, 21 feet; and displacement, 5,000 tons. The estimated speed is about 19 knots. The armor is compound or steel-faced, and consists of a belt, 200 feet in length, extending from 1 foot 6 inches above the water line to 4 feet below. This belt is 10 inches in thickness, and is backed with 6 inches of teak, secured in steel

An inner bottom extends throughout the entire length of the engine and boiler spaces, the space between the inner and outer bottoms being divided into compartments, which are fitted as water ballast tanks. The vessel has three decks, exclusive of the platforms which cover the magazines, etc. The engines and boilers oc cupy four separate compartments, arranged fore and aft along the middle of the vessel, bounded on each side by coal bunkers, 5 feet in width.
The armament is exceedingly powerful, and consists of two $9 \cdot 2$ inch 22 ton guns, ten 6 inch 5 ton guns, six 6 pounder and ten 3 pounder Hotehkiss quick-firing guns, and numerous boat and field guns. The $9 \cdot 2$ inch guns are placed on the upper deck, one forward and one aft.-Illustrated London News.

## Dress in Relation to Health.

It has always been a stereotyped statement of physi ologists that the respiration of woman differs from that of man in being limited almost entirely to the chest. On the other hand, we have the apparently contradictory fact that abdominal or deep respiration is the
half or three-fourths white; while in no single instance did a full-blooded Indian girl possess this type of breathing.
"From these observations it obviously follows that, so far as the Indian is concerned, the abdominal is the original type of respiration in both male and female and that the costal type in the civilized female is devel oped through the constricting influence of dress around the abdomen. This is markedly shown in the greater prominence of the costal movements in those girls who were either one-half or three-fourths white, and who were hence dominated to a greateror less extent by the influence of civilized blood. While these tracings were taken an incident occurred which demonstrated that abdominal constriction could modify the move ments of the thorax during respiration. At my firs visit to the institution I obtained an exceptional costal type of respiration from a full-blooded Indian girl. At my next visit I concluded to repeat this observation, and found that, contrary to my instructions concern ing loose clothing, etc., this girl at my first visit had worn three tight belts around her abdomen. After these were removed she gave the abdominal type of


THE NEW BRITISH WAR SHIP ORLANDO.
plating of 1 inch thickness. On a level with the top o the belt is a protective deck, which extends throughout the whole length of the vessel. This deck, along the belt, is perfectly horizontal, and is formed of 2 inche of steel plating. Beyond the belt, at both ends, it is inclined downward to an angle of 30 degrees, and is 3 inches in thickness. All openings in this deck are fitted with either armor shutters or shell-proof gratings, and those necessarily open in action are fitt $\epsilon$ with coffer dams.
By the armor belt amidships, and the protective deck plating fore and aft, the whole of the vessel under this deek is rendered invulnerable to shot and shell, and forms an unsinkable raft, in which are placed the en gines, boilers, magazines, shell rooms, and steering gear. The movements of the machinery, the steering of the ship, and the firing of the guns are under com plete control from the conning tower, a massive struc ture at the fore end of the vessel. The look-out men in this tower are protected by 12 inch steel-faced armor and all the communications to engine rooms, maga zines, and steering wheels pass through a tube of stee 8 inches thick. The stem, which forms a ram, is ex ceptionally strong, and is well supported by the frame work of the vessel and the protective deck. The ram, tern-post, and propeller brackets are of cast stee
The hull is built of Siemens-Martin steel, and is divid ed into over one hundred watertight compartments.
through the veins to the heart. It is, therefore, a necessity for the prevention of blood stagnation in the lower portion of the trunk.
We have, at last, some investigations which promise to solve this interesting problem. These investigations tend to show that the exclusive use of the chest in respiration is a result of the restrictions of civilization, and is hence unnatural. In order to investigate this subject scientifically, Dr. Mays, of Philadelphia, devised an ingenious instrument for examining the respiration of the native Indian girls in the Lincoln Institution. The girls had not yet been subjected to the restrictions of civilized dress. The results of his investigations will be found recorded in the Thera peutic Gazette of May 16, 1887. He says
"In all, I examined the movements of eighty-two chests, and in each case took an abdominal and a costal tracing. The girls were partly pure and partly mixed with white blood, and their ages ranged from between ten and twenty years. Thus there were thirty-three full-blooded Indians, five one-fourth, thirty-five onehalf, and two were three-fourths white. Seventy-five showed a decided abdominal type of breathing, three a costal type, and three in which both were about even. Those who showed the costal type, ar a divergence from the abdominal type, came from the more civilized tribes, like the Mohawks and Chippewas, and were either one
breathing, which is characteristic of nearly all the Indian girls."
To us these facts are invaluable. It shows the faulty construction of modern female dress, which restricts the motion of abdominal respiration. It explains why, as experience has taught us, it is necessary to restore this abdominal rhythm, by proper movements, in order to permanently cure the affections of the lower portion of the trunk. It demonstrates conclusively that woman's dress, to be injurious, needs only to interfere with the proper motion of respiration, even though it exercises not the slightest compression.-Health Record.

## The Diet of Strong Men.

The Roman soldiers who built such wonderful roads, and carried a weight of armor and luggage that would crush the average farm hand, lived on coarse brown bread and sour wine. They were temperate in diet, and regular and constant in exercise. The Spanish peasant works every day and dances half the night, yet eats only his black bread, onion, and watermelon. The Smyrna porter eats only a little fruit and some olives, yet he walks off with his load of a hundred pounds. The coolie, fed on rice, is more active and can endure more than the negro fed on fatmeat. The heavy work of the world is not done by men who eat the greatest quantity. Moderation in diet seems to be the prerequisite of endurance.

## samuel pierpont langley.

by marcus benjamin.
Samuel Pierpont Langley was born in Roxbury, now a part of Boston, Mass., on August 22, 1834.
His early education was acquired at the Boston Latin and High Schools, but he did not go to college, then associated almost exclusively with the idea of a classical education, as his strongest bent was to those scientific investigations which have been the occupation of his later life.

In this connection he says: "I can hardly recall the time vhen a treatise on astronomy, even though then unintelligible, had not a curious attraction for me; and one of my very early childish experiences was in connection with my inquiries as to the reason why the glass in a hot-bed I saw kept the contents warm. That none of the elder people I questioned saw any difficulty about it, and that I did so, seems to me to indicate an early bias to studies on such subjects as those connected with radiant heat, in which I attribute any subsequent success I may have met with largely to the fact that their pursuit has always been in accordance with my inherent tastes and wishes."
The school days over, he turned his attention to astronomy; but finding that it could not yield a support for many years, he looked for a temporary substitute to civil engineering as a profession whose base was mathematical, while special circumstances led him later to the practice of architecture, so that it was not until he was thirty that he found himself free to return to the chosen work of his life.
In 1864, in company with his brother, John W. Langley, now Professor of Chemistry at the University of Michigan, he visited Europe, and took every opportunity of visit ing observatories and meeting astronomers, although the journey was made more for recreation than for study.
After an absence of over a year, he re turned to the United States, and during the summer of 1865 he entered the Harvard College Observatory, then under the directorship of Joseph Winlock, as an assistant.

His stay at Cambridge was of short duration, for, on the recommendation of Profes sor Winlock, he was appointed assistant professor of mathematics in the U. S. Navy, and assigned to duty at the Naval Academy, in Annapolis.
Prior to the war, a small observatory had been built in Annapolis by Professor William Chauvenet, but the subsequent transfer of the academy to Newport, R. I., had prevented any work of importance being under taken, and the instruments were practically unused. Professor Langley's first duties consisted in remounting them and placing the observatory in working order.
In 1867, he was invited to the charge of the Allegheny Observatory, near Pittsburg, and situated on one of the high hills above the Ohio River.
The endowment of the chair only provided for the observer's salary, while beyond the observatory building and a mounted equatorial of thirteen inches aperture, there was no equipment, so that a definite income to provide the means for research was one of the first necessities to be obtained. This income he himsel acquired for the observatory by introducing the then novel system of time service for regulating the public time of Pittsburg and of numerous private offices also furnishing standard time for the entire railway system centering in Pittsburg. The beats of the standard clock of the observatory were daily sent out automatically by electricity over the telegraph lines from New York and Philadelphia, west as far as Cincinnat and Chicago, north to Lake Erie, and south to Wash ington. This system of time is still in full operation and has always maintained a high reputation for ac curacy.
Indeed, it is not too much to say that the time service, now so universal in the United States, was inaugurat ed on its present practical standing by Professor Langley. Not that time had not been occasionally com municated to the public by other observatories, such as the Dudley Observatory, in Albany, N. Y., by Dr. Benjamin A. Gould, but that the extended, regular and official connection with railroads, cities, and the public generally, which has since become common through out the country, was originated as a system at the Al legheny Observatory in 1869.
In 1870 it became possible for him to turn his atten tion to original investigation, and since then, by a bril liant series of valuable researches in the domain of solar physics, Professor Langley has achieved a reputa tion that has carried his name beyond our own shores
One of his earliest papers, "On the Minute Structure of the Solar Photosphere,"* contains the result of two years' work, and includes his discovery, which

* American Journal of Science, Febraary, 1874
has since been confirmed by other authorities, that four-fifths of the sun's light comes from less than onefifth of its surface. One of the most detailed representations of a sun spot which had been published up to that time accompanied this paper. Edward S. Holden, president of the University of California, says: "This paper is fundamental. It treats of a subject of which little had been accurately known, and it leaves this subject in a satisfactory and settled condition."
"Studies of the External Aspect of the Sun,"* published soon after, contained his well-known engraving of the "typical sun spot," which has received the very highest praises from competent judges, and which has been copied by nearly every author on the subject. It was executed for the purpose of giving material for passing judgment on the current theories of sun spots, and had undoubted influence in determining the present belief that the surface of the sun was essentially gaseous or cloudlike.

The existence of a remarkable thermochroic action in the solar atmosphere, such that the vibrations of great wave-length are less absorbed than the visible and ultra-violet, was the subject of a series of papers published in the Comptes Rendus. $\dagger$ In these he also showed that no such difference between the polar and equatorial radiation existed as had been asserted by Secchi.
It followed from the first of these facts that sunlight before absorption contains immensely more blue than we habitually see, and that what we call "white

More delicate methods were needed for measuring the radiant energy of the sun, of which he believed two-thirds unexplored for want of proper apparatus, since the thermopile, the most delicate instrument science then possessed for this work, was insufficient for these new investigations, and so he devoted the year 1880 to experiments for the construction of a new instrument for analyzing and measuring this and like forms of energy. This instrument, which he called the bolometer, acts by means of a double system of extremely thin platinum strips, through which a current is made to pass. A sensitive galvanometer connected with both systems keeps its needle steady when the currents are equal. If one system is exposed to heat radiations while the other is protected from them, the temperature of the first is raised, its electric resistance is increased, and the battery currents through the two systems and the galvanometer no longer balance. The galvanometer needle then moves, and the amount of this motion measures the amount of heat disturbance. The sensitiveness of the instrument is far greater than that of the most delicate thermopile, and its constancy specially fits it for its work.*
His first researich with this new instrument showed experimentally that the maximum of heat in the normal spectrum was in the orange, and subsequently that the amount of heat which the earth receives from the sun had been greatly underestimated, on account of the previous inability to measure the solar heat in suf-
 ADVANCEMENT OF SCIENCE.
light is really the product of a selective process in the sun's and earth's atmospheres which has sifted out most of the blue before it reaches us, so that the light of common day is but the dregs of what originally started from the sun.
A study of the influence of sun spots on terrestrial climates was the investigation which he next took up. In a paper which he contributed to the Monthly Notices of the Royal Astronomical Society, $\ddagger$ he describes new methods of determining whether sun spots directly affect our climates or not. As a mere interruption of a given quantity of solar heat, he shows that their total effect on terrestrial climates cannot alter the mean temperature of the earth as much as one degree Fahrenheit. Whether they are indices of some remote action having an influence upon the climate, he does not undertake to say.
In October, 1878, he announced $\xi_{\S}$ his discovery of the duplicity of the "great A" group of the solar spectrum. At the same time he published his paper "On the Temperature of the Sun," in which he gives the results of comparison of the heat and light of the sun with that of the molten steel in the Bessemer converter. The temperature of the sun was then believed by leading men of science to be only about $1,500^{\circ} \mathrm{C}$., and Langley furnished proof that it was very much higher than physicists, misled by Dulong and Petit's law, had placed it. That this law was here thoroughly unreliable was demonstrated-a statement which is now fully conceded.

[^0]methods for the determination-of the "solar constant," that is, the amount of heat received from the sun, were pointed out.
In several memoirs $\dagger$ presented to the French Academy of Sciences he likewise described the leading facts in regard to the distribution of energy in the normal spectrum from the sun, and the distribution of this solar energy before absorption by the earth's atmosphere.
Professor Langley had accomplished so much of value bearing on the science of terrestrial meteorology, that in 1881 he was invited to organize and take charge of an expedition sent out under the joint auspices of the Allegheny Observatory and the United States Signal Service to the Sierra Nevadas of Southern California, for the purpose of applying his improved methods under the most favorable conditions. Mount Whitney, some 15,000 feet high, was chosen as the point of observation.
The results of his work were extensively published in journals both at home and abroad, but most fully as " Researches in Solar Heat and its Absorption by the Earth's Atmosphere," in "The Professional Papers of the Signal Service, No. 15 " (Washington, 1884). It was shown that the nature, as well as the amount, of the absorption of the solar rays had been completely misunderstood, and for the first time the general outlines of the actual facts were given. A map accompanied this memoir, giving newly explored regions, the infra-red solar spectrum, with numerous lines and bands, hitherto unknown, and, what was wholly new, with their places fixed upon the normal or wavelength scale by direct observation.
If these statements do not convey to the reader a clear idea of the general scope of the work, we may summarize it otherwise as an investigation of the till now nearly unknown major portion of that energy on which all organic life depends. I'his, it is to be understood, is the real and practical purport.
Finally, the value of the solar constant, fixed by Pouillet at $1 \cdot 76$ calories, was raised to 3 calories.
In October, 1883, he read a paper $\ddagger$ before the National Academy of Sciences on the " Experimental Determination of Wave Lengths on the Invisible Prismatic Spectrum," in which he fixes the wave lengths of solar heat throughout the whole extent of the spectrum, previous information having restricted our knowledge to the visible portion only.
During the same year he showed, § both from theoretical considerations and by experiments, that the absorption of the solar rays by the earth's atmosphere is at least double what it has commonly been supposed to be.
Contemporaneous work was not neglected by these researches to which we have previously alluded, for
Professor Langley participated in the expedition sent out by the United States Coast Survey to observe the total eclipse of 1869. On this occasion he was stationed at Oakland, Ky. In 1870 he was sent to Xeres, Spain, on similar work, and there determined the polariza-

See "The Bolometer and Radiant Energy," Proceedings of the AmeriAmerican Meteorological Society, December, 1880 ; and "The Actual Balance," American Journal of Science, March, 1881.

+ Comptes Rendus, 21st March and 18th July, 1881.
+ Comptes Rendus, 21st March and 18th July, 1881.
$\ddagger$ American Jorornal of Science, March, 1884 .
\& "On the Amount
§ "On the Amount of the Atmospheric Absorption," American Jour-
tion of the solare corona to bo radial. The total eeliped of 1878 he observed from Pike's Peak, and published his results in the reports of the Washington Observatory.

The transit of Venus in 1874, and again in 1882, also the transit of Mercury in May, 1878, form the subjects of papers published by him on the occasions specified.
His more popular writings include an account* of
' Wintering on Etna," where he spent some weeks during the winter of $1878-79$, for scientific purposes, living a hermit's life in a hut, three hours' journey above the inhabited zone, and of the modern astro-physical researches in a series of papers called the "New Astronomy," published in the Century Magazine at various intervals, beginning in September, 1884
Professor Langley has visited Europe five times, and his last voyage was made in response to an invitation from the Royal Institution of Great Britain to lecture before that body. His subject was "Sunlight and the Earth's Atmosphere," and was delivered on April 17 , 1885. The reception which he received is one of the gratifying evidences of the fact that science knows no country, and that genius is accorded its recognition irrespective of nationality.
A further token of this feeling was manifested during the present year by his receipt from the Royal Society of Great Britain of the gold and silver medals from the bequest of Count Rumford. Professor Langley also received, in 1887, the gold and silver medals from the Rumford fund, administered by the American Academy of Arts and Sciences. The two distinct foundations of Count Rumford were thus independently represented. In 1885 he was awarded the first "Henry Draper gold medal" by the National Academy of Sciences, for his work in astronomical physics.

He received the degree of LL.D. from the University of Wisconsin in 1882, and during the same year that of Ph.D. from the Stevens Institute of Technology. In 1883 the University of Michigan conferred upon him the degree of LL.D., and in 1887 he received a similar honor from Harvard University at its bicentennia celebration. In January, 1887, in addition to his duties at the Allegheny Observatory, he accepted the office o assistant secretary of the Smithsonian Institution in Washington.
Professor Langley is a member of the following societies: American Philosophical Society (April 16, 1875) the National Academy of Sciences (April 19, 1876); as sociate fellow of the American Academy of Arts and Sciences (February 14, 1883) ; and abroad, of the Astronomische Gesellschaft (September 14, 1871) ; honorary member of La Societe de Physique et d'Histoire Natu relle de Geneve (March 20, 1879) ; corresponding member of the British Association for the Advancement of Science (November 28, 1882); associate of the Royal Astronomical Society (December 14, 1883); and honor ary member of the Manchester Literary and Philo ophical Society (April 19, 1887).
Prof. Langley was elected a member of the American Association for the Advancement of Science in 1869, and was advanced to the grade of fellow in 1874. He was elected secretary of the section of mathematics and physics in 1875, and presided over this section in 1879, where he delivered his retiring address on "The Progress of Solar Physics." At the Buffalo meeting of this association, held in 1886, he was elected president, and therefore presided at the great meeting held a Columbia College, in New York, this year.

## New Fapt Boats.

The large steel paddle steamer Empress, built to the order of the London, Chatham, and Dover Railway Company, for' their service in the English Channel, by the Fairfield Shipbuilding and Engineering Company Limited, was lately run over the measured mile a Skelmorlie, on the Firth of Clyde. Notwithstanding the high head wind that was blowing and the heavy sea that was running at the time, the vessel attained a speed of 213 knots (over $241 / 2$ miles) per hour. The ves sel measures 325 ft . by 34 ft .9 in . by 22 ft . to upper deck, and is divided into eight water-tight compart ments. She has a gross register of 1,200 tons, and is similar in design to the Victoria, which was built in the same yard last year. There is a rudder at each end to facilitate the movements of the vessel in entering and leaving harbors. The vessel is supplied with a set of compound diagonal direct-acting engines, and the boilers, which are constructed of steel, are adapted for working pressure of 110 lb . per square inch. She is fitted with an electric light installation, and is otherwise most completely equipped.
A successful trial trip was recently made on the Clyde by the new steel screw steamer Victoria, the largest and latest addition made to the great fleet of the Peninsular and Oriental Steam Navigation Company. This is a vessel of 6,267 tons gross register. She measures 465 ft .9 in . (on load water line) by 52 ft . by 37 ft ., and is fitted with triple expansion engines of 7,000 horse power indicated, the cylinders being $40 \mathrm{in} ., 60 \mathrm{in} .$, and 100 in. in diameter respectively, and the length of piston stroke being 6 ft . She has accommodation for 154 first-class saloon passengers, 156 second-class, and

460 third-class passengers. All the fittings, mechanical appliances, and equipment generally are in keeping with the magnificent character of the steamer. On her trial over the measured mile at Skelmorlie the Victoria attained a speed of $17 \cdot 4$ knots, or nearly 20 miles per hour. This vessel makes up a total.of about 100,000 tons of new shipping built by Messrs. Caird \& Co. during the past fifteen years for the Peninsular and Oriental Company.

## PNEUMATIC GUN CARRIAGE AT SANDY HOOK

(Continued from first page.)
nished with a lever on its collar, and this lever instan ly responds to the shock of recoil and automaticall holds the gun in its vise-like grip, and then, when it is wanted in battery or at the rear buffer, in order to receive its new charge, releases it instantly. To the cross transoms of the slide the running cylinders are attached, furnished with pistons having rods leading to the forward transom of the brackets of the sliding carriage on which the gun rests.
There is a slot motion to the attachment of the collar of the piston rod to the carriage, in order that there shall be free play after firing in the strain on the piston rod in the box at the end of the piston head. Supply and exhaust pipes having reversing valves are furnished the running cylinders, in order to supply compressed air at any pressure. By an admirable arrangement, any amount of air pressure may be left at the rear end of the cylinder after firing, which, as will readily be seen, may be utilized in picking up the recoil, and, by means of the clutch lever; instantly forcing the gun back in battery. No tackle or winch or chain gear is required in training. At the rear end of the carriage is a pair of oscillating cylinders arranged horizontally and affixed to a worm geared in a worm wheel having a pinion geared in a cogged wheel, so arranged that any movement, up or down or lateral, will serve to work the piece in any direction. There is no center of axis or movement of these oscillating cylinders, because of the nice arrangement of the parts, and so there is no occasion for slide valves for a reverse motion; double pairs of supply pipes, which lead to the cylinder bases on either side of the running support, doing this work.
A smart press upon the lever, let it be to one side or to the other, and the training engine moves the gun in response. A cylinder furnishes the power for elevating or depressing the piece. This cylinder is of the upright description, and has enough draught to give whatever air pressure is required. At the breech of the gun, and on either side of it, there are racked standards fitted with a working slot, with a compress or screw surrounding a racked die, and, when the screw lever is touched, the breech of the gun, ponderous as it is, is firmly secured in any position.
The air compressor and the receiver, being wholly underneath the carriage, are out of harm's way; not only, as said before, protected from flying shot, but in no danger from contact with the cartridge car and other beavy moving apparatus. A word should be said here in special commendation of the stand-by recoil check, than which it is hard to conceive of a more ingenious and serviceable contrivance in modern gun gear. The best work of man's hand is but imperfection, and the wise mecha-
nician, knowing this, invariably places a safeguard of reserve in attendance upon even the most cunningly contrived device. And so it is that the Pownall type of pneumatic gun carriage has connected with it this stand-by recoil check, so that, should mishap befall the compressed air machinery or pipes, in battle, the turn of a lever and clutch brings this piece of mechanism quickly into play, and it easily takes the place of the defective recoil check. The reserve check is not fitted with cogged gearing like its prototype, being of still simpler construction. It keeps its parts smooth by attrition, running with the other apparatus, though taking no part in the work of the carriage save, as said before, in case of emergency.
The pneumatic gun carriage shown in the cut stands upon masonry, this being the form of base always constructed in land works for heavy gun car-
ciages, Aboard ship, however, the modern gun riages. Aboard ship, however, the modern gun
deck, barbette tower, or turret, can readily be given sufficient stability for its use. Indeed, the pneumatic gun is especially adapted for of recoil wholly within itself, it requires no roadway comparatively little sea room, and is never cast loose at the end of a line, as was the case with the old
style guns. These were so light that when one of them style guns. These were so light that when one of them hip, if she were laboring in the sea, it was dangerous to life and limb until caught and lashed, but in no wise threatened the stability of the ship; while the heaviest guns of to-day, should they break loose and go crashing to leeward at the critical moment when the lee guards were under, might even endanger the ship. As was shown in a recent number of the SCIENTIFIC
AMERICAN, the hydraulic gun carriage has similar ad vantages in this respect and in others. Indeed, when one studies the relative merits of these two admirable mechanisma, to wit, the pneumatic and hydraulic gun
carriages, it is not difficult to understand why authorities differ so widely as to which is the most effective type.
Much has been alleged as to the uncertainty of water or other liquids to perform the function allotted!to them in the cylinders of the hydraulic gun; yet, while it is true that water cannot be thus used with safety during a period of low thermometer, and that spirits of wine, alcohol, and the like in the presence of oil and dust are apt to cloy and clog, it may also be said that machinery for compressing air does not always work smoothly, some parts of it, unless great care be taken, being peculiarly liable to mishap. The Advisory Board of Naval Officers agreed with the Ordnance Committee that the hydraulic carriage was to be preferred for the new cruisers, after a careful and comprehensive examination of both types, while, at the same time, a board similarly made up of officers of the Royal Navy decided in favor of the pneumatic gun carriages for two new ships for the British navy. The type of ship in the two cases was, it is true, quite different, yet the fact remains that the two boards summed up merits and effects quite differently, and, with what might be called the same premises, arrived at conclusions widely separated the one from the other. It must, however, be regarded as a fortunate circumstance that both these, which, as said before, are the principal types, are having a thorough trial under circumstances quite similar to those for which they are designed, because these continual trials will bring out the merits and defects with emphasis, and hence lead to perfecting either the one or the other, or, perhaps, as is most likely and most desirable, both.

## Reading without Eyes.

W. H. Murray, a colporteur of the National Bible Society of Scotland, has devised a system of raised characters by which the blind are enabled to read. Says the Missionary Herald: We have recently received from Miss C. F. Gordon Cumming, the wellknown traveler, an interesting account of this effort to reach a large and suffering class in China. It is estimated that there are over 500,000 blind persons in China. Miss Cumming reports that Mr. Murray began life as a working sawmiller in the south of Scotland; but, having by an accident lost one arm, he became a colporteur in Glasgow, and subsequently went to Pekin. His pity having been aroused for the innumerable blind whom he met everywhere, he has given every spare moment for eight years to the study of a system by which they might be enabled to read. In place of the four thousand characters in ordinary use among the Chinese, he uses embossed dots representing some four hundred and twenty sounds; and his first experiment with a blind beggar from the streets, who was enabled to read fluently within six weeks, showed that the system was practicable. A school was opened at Pekin, and blind boys learned to read with great accuracy and rapidity-indeed, very much more speedily than their companions who had eyesight could learn to read the ordinary Chinese characters.

Progress of English Marine Engineering.
The steamship Ohio, an American built vessel of 3,325 tons, belonging to the International Navigation Co., has lately been repaired in respect to her machinery by James Houden \& Co., Glasgow. Her original engines and boifers, $2,100 \mathrm{~h}$. p., have been removed and new ones of equal power put in. The new engines are of the triple expansion type, with three cylinders, 31,46 , and 72 in . diameter, 51 in . stroke. The trial of the new mechanism lately took place, and the results were quite remarkable. The mean indicated h. p. was 2,124 , consumption of coal $1 \cdot 23 \mathrm{lb}$. per indicated h. p., speed $14 \cdot 12$ knots, or about $161 / 2$ miles per hour. The new machinery occupies much less space than the old, thus giving more room for cargo, besides increasing the speed and lessening the consumption of fuel.

We think it doubtful whether there is any concern in this country at present able to engine a ship like the above, and warrant the economies mentioned.

## Aluminam Steel.

The Iron Trade Review, of Cleveland, says: Some important and very satisfactory experiments have been made at the Cleveland Rolling Mill Company's works during the last two weeks in treating Siemens-Martin steel with small percentages of aluminum manufactured by the Cowles Electric Smelting and Aluminum Company, of this city. The result of the work proved conclusively that a small quantity of aluminum freed the steel from blow-holes and increased the tensile strength somewhat without increasing the elongation, besides adding very materially to the fluidity of the bath, thereby producing much sharper castings. It has not yet been determined how small percentages of aluminum are necessary to secure the required products, but from one-tenth to one-twentieth of one per cent gave satisfactory results. The castings made showed a tensile strength as high as 140,000 pounds to the square inch. The alloy was applied in the form of broken ferro-aluminum.

## The Preservation of weod.

The durability of wood-that is, its power of resisting the destructive influences of wind and weathervaries greatly, and depends as much upon the particular kind of wood and the influences to which it is exposed as upon the origin of the wood (timber), its age at the time of felling, and other conditions. Beech at the time of felling, and other conditions. Beech
wood and oak placed permanently under water may last for centuries. Alder wood lasts only a short time when in a dry situation; but when kept under water, it is a very lasting and substantial wood. Taking into consideration the differ ent kinds and varying properties of wood, and the different uses to which it is applied, we have to consider, as regards its durabili ty, the following particulars : 1. Whether it is more liable to decay by exposure to open air or when placed in damp situations. 2. Whether it is, when left dry, more or less attacked by the ravages of insects which while in a state of larvæ live in and on wood. Pure woody fiber by itself is only very slightly affected by the destructive influences of wind and weather. When we observe that wood decays, that decay arises from the presence of substances in the wood which are foreign to the woody fiber, but are present in the juices of the wood while growing, and consist chiefly of albuminous matter, which when beginning to decay also causes the destruction of the other constituents of the wood; but these changes occur in various kinds of wood only after a shorter or longer lapse of time. Indeed, wood may in some instances last for several centuries and remain thoroughly sound. Thus, the roof of Westminster Hall was built about 1090.
Since resinous wood resists the action of damp and moisture for a long period, it generally lasts a consid erable time. Next in respect of durability follow such kinds of wood as are very hard and compact, and contain at the same time some substance which-like tannic acid-to some extent counteracts decay. The behavior of the several woods under water differs greatly. Some woods are after a time converted into a pulpy mass. Other kinds of wood, again, undergo no change at all while under water-as, for instance oak, alder, and fir. Insects chiefly attack dry wood only. Splint wood is more liable to such attack than hard wood; while splint of oak wood is rather readily attacked by insects, the hard wood (inner or fully de veloped wood) is seldom so affected. Elm, aspen, and all resinous woods are very seldom attacked by insects. Young wood, which is full of sap and left with the bark on, soon becomes quite worm-eaten, especially so the alder, birch, willow, and beech. The longer or shorter duration of wood depends more or less upon the following: $a$. The conditions of growth. Wood from cold climates is generally more durable than that grown in warm climates. A poor soil produces as a rule a more durable and more compact wood than does a soil rich in humus, and therefore containing also much moisture. $b$. The conditions in which the wood is placed greatly influence its duration. The warmer and moister the climate, the more rapidly decomposition sets in while a dry, cold climate materially aids the preservation of wood. $c$. The time of felling is of importance. Wood cut down in winter is considered more durable than that felled in summer. In many countries the forest laws enjoin the felling of trees only between November 15 and February 15. Wood employed for building, and not exposed to heat or moisture, is not likely to suffer from the ravages of insects; but if it is placed so that no draughts of fresh air can reach it, to prevent accumulation of products of decomposition, decay soon sets in, and the decaying albuminous substances acting upon the fiber cause it to lose its tenacity and become a friable mass. Under the influence of moisture, fungi are developed upon the surface of the wood. These fungi are severally known as the "house fungi" (Thelephora domestica and Boletus destructor) and the clinging fungus (Merulius vestator). They spread over the wood in a manner very similar to the growth of common fungi on soil. Their growth is greatly aided by moisture and by exclusion of light and fresh air. A chemical means of preventing such growths is found in the application to the wood of acetate of oxide of iron, the acetate being prepared from wood vinegar. Wood is often more injuriously affected when exposed to sea water, when it is attacked by a peculiar kind of insect known as the bore worm (Teredo navalis). This insect is armed with a horned beak capable of piercing the hardest wood to a depth of about a foot. These insects originally belonged to and abound in great numbers in the seas under the tropical clime; but the Teredo navalis is met with on the coasts of Holland and England.X., the Garden.


Fig. 1.-TOP WITH REVOLVING MIRRORS-KÖIIG'S MANOMETRIC
mirror, it will appear as if formed of a regular series of pointed jets, the persistence of the successive images formed on the retina causing them to appear as if produced simultaneously.
The vibrations of the diaphragm due to the sound waves impinging upon it cause the gas to be pushed out of the burner in little puffs, which are not very noticeable when the flame is observed directly, but which are clearly brought out when examined by the erovivix minimer

By employing a double mouthpiece, two sets of flame points of different lengths alternating with each other may be shown. Each vowel sound yields a characteristic series of flame points. A whistle will yield very fine points, while a very low bass note will produce scarcely more than a single point for each half revolution of the mirror.
The traveling. top, shown in Fig. 3, exhibits in a striking way the persistence with which a rapidly revolving body maintains its plane of rotation. The top has a spindle, which is reduced in diameter at its lower end, and provided with a sleeve nicely fitted to the small part of the spindle. In a slot in the lower end of the sleeve is pivoted a small sheave, which is adapted to rest upon and run along a string. The top is set in motion by a string in the usual way, the small sheave being placed astride a string at the start. The string may lie loosely on the table at the start, and as soon as the top is spun the string may be taken up by its ends, lifting the top from the table, when the top may be allowed to run along the string from one end to the other.
By swinging the string sidewise, the top
lower edges of the wooden frame are bored at the center to receive the rod inserted in the bore of the top spindle. The frame fits the rod loosely, and is revolved by frictional contact with the rod and the upper end of the top spindle. This arrangement allows the mirror to revolve at a comparatively low rate of speed, the resistance of the air causing the mirror frame to slip on the rod. It is necessary thus to provide for the slow rotation of the mirrors, as the flame points would be blended into a continuous band of light by the persistence of vision were the mirrors allowed to revolve as rapidly as the top.

The device for producing the variable flame is shown in perspective in Fig. 1 and in section in Fig. 2. It consists of a cell formed of two parts, one inserted in the other, and provided the other, and provided with an air chamber, covered by a diaphragm of very thin soft rubber, a gas pipe entering the lower side of
the cell at one side of the diaphragm, and a fine gas burner inserted in the cell upon the same side of the diaphragm. A mouthpiecu communicates with the air


## Fig. 3.-Traveling top.

will be made to change its position, but it cannot easily be made to change its plane of rotation. G. M. H.

## Electric Phosphorescence

At a recent meeting of the Royal Society, Mr. W. Crookes, the well known physicist, exhibited a series of tubes in which a vacuum had been formed, and which contained precious stones, minerals, and rare earths rendered luminous or phosphorescent by means of an induction coil.

The coil used contained 57 miles of secondary wire, and was capable of giving a 24 inch spark.
One of the tubes contained a large yellow African diamond, weighing 116 carats. Under the electric current the stone was fluorescent. Other Cape diamonds gave a blue light, and some from Brazil gave an orange, yellow, or blue phosphorescence.
Australian diamonds emitted a yellow, blue, or green light; an Indian diamond gave a yellowish light, bordering upon green; rubies gave a red phosphorescence ; the topaz was blue, and the sapphire was green. The phosphorescent calcite of Branchville, S. C., which possesses the strange property of becoming luminous (yellow and golden) when heated to white heat, likewise gave a brilliant phosphorescence in the tube.
Mr. Crookes showed likewise a specimen of dolomite rom Utah, called "hellfire rock" by the miners, because it emits a strong red light when it is scraped with a knife. This, in the tube, gave a red light.
Dr. Crookes had also a large number of various kinds of minerals. Of these, we shall mention merely the sulphate of yttrium, which gives a yellow light, with discontinuous' spectrum, and sulphate of lime, the phosphorescence of which is red, and the spectrum of which consists of three wide bands.-La Lumiere Electrique.

Good Prospect for a Swiss Patent Law.
Holland and Switzerland are about the only states in Europe that have no patent laws. It is well known how the first attempt to obtain a popular vote in favor of the patent law for Switzerland failed from being coupled with a vote on the liquor traffic. This was five years ago. Recently, however, the question was again brought before the voters, and this time not accompaniad by other issues. The result was a decided victory for those who are striving to protect inventors. The number of persons who declared for an alteration of law, with a view to such protection, was 190,000 ; those against numbered 56,000 . The first step has thus been taken to place Switzerland on the same footing, as regards patent rights, as most other Continental countries. The federal government is now empowered to enact a law under which patents will be granted for all such inventions which can be represented by models, but chemical inventions will be excluded by special wish of those interested in chemical industries.

A dog bitten by a rattlesnake in Nebraska, instead of dying developed hydrophobia, and bit fourteen head of cattle, all of which died.

## ENGINEERING INVENTIONS.

 A car heater has been patented by Mr. PalmerJ. Gurnee, of Rondout, N. Y. It is designed to act as a heal generator, the car being heated througha drum or coil of pipe, while the construction of the generator is such that it is capababe of sustaining great
shocks, and yet has ample means to retain the fuel in shocke, and yet has ample means
the heater in the event of acident.
A car brake has been patented by Mr . Lawrence J. Zimmermann, of Brooklyn, N. Y. The brake consists of shoes, more or less rectangular in
shape, adapted to be positioned opposite the outer peri. shape, adapted to be positioned opposite the outer peri-
pheral surface of each wheel, to act directly upon the pheral surface of each wheel, to act directly upon the
track, making an aunsiliary brake, quickly applied and positive in its action.
A relief valve for engine cylinders has been patented by Mr. Walter Vielhaber, of Altoona, Pa.
Its construction is such that when water accumnlos Its construction is such that when water accumulates in the engine cylinder the pressure exerted on the valve
causes it to open automatically, while it can also be
opened from the cah of the engine by the usual hand opened from
lever or rod.

A balanced valve has been patented by Messrs. William A. Short and Eusebe Lalime, of
Malone, N. Y. The invention consists of a cage placed Malone, N. Y. The invention consists of a cage placed
in the steam chest, and having a vertical motion, a cylindrical slide valve operating in the cage, the valve cyindiral silae valve operating in the cage, the valve
being simple in construction and being completely balanced when the engine is reversed.
A foot guard for railway switches, etc., has been patented by Mr. Edward P. Edwards, of Web-
ster City, Iowa. It is made of sheet iron or other master City, Iowa. It is made of sheet iron or other ma-
terial, of different shapes, to fit openings of different widths between the rails, and adapted to be readily widths between the rails, and adapted to be readily
fastened in place, so as not to interfere with the workfastened in place, so as not to interfere with the work-
ing of the car wheels, while protecting the feet of those stepping on the rails.
A safety base for flues has been patented by Mr. Frank Anderson, of Union Springs, Ala.
It is designed to prevent the wood surrounding the It is designed to prevent the wood surrounding the
lower part of the flues in houses from becoming overheated, and consists in a perforated metal casing sur-
rounding the lower part of the fue, and having a cenrounding the lower part of the flue, and having a cen-
tral metallic pipe extending upward and built into the ${ }_{\text {tral metalick }}$ brickwork.
A car coupling has been patented by Mr. Philip Riley, of Marion, Iowa. It is designed to allow cars to couple automatically asthey come together,
or to be coupled by the operation of a hand lever at the side of the car, the coupling being fitted with a brake attachment preventing the withdrawal of the entered
coupling link, thereby assuring the dropping of the pin coupling link, there
through the link.

A hydraulic lift has been patented by Mr. Thomas Pownall Ford, Jr., of London, England. The invention consists in the employment of means of
controling the inlet and outlet of water to and from controling the inlet and outlet of water to and from
the two ends of a cylinder simuitaneously and to the the two ends of a cylinder simuitaneously and to the
same extent, avoiding hissing noise, and, with such valves operating simultaneously, employing a column entering through the inlet valve, with other novel entering
features.

## agricultural inventions.

A cotton chopper and cultivator has been patented by Mr. Horace N. Sibley, of Midway, La. Tts constraction is sach that the machine may be used as a.chopper to remove surplus plants and accu-
rately define the row, and may be subsequently adjusted to operate as a cultivator for the plants as they increase in size.
A spring hoe attachment for cultivators, seed drills, etc., has been patented by Mr. Charles ing device to hold the shovel of the implement to which it is attached with the requisite rigidity under ordinary strain while at work, but so as to yield to too great
strain, to prevent breakage of the shovel or hoe.

## miscellaneous inventions

A belt shifter has been patented by Mr. George H. Lowe, of Middletown, N. Y. It consists of a suitable frame provided with rollers to receive the belt from the pulley, and one or more rollers being
adapted, under a novel form of construction, to be adapted, under a novel form of construction, to
tilted for shipping the belt back upon the pulley.
A leather skiving machine has been patented by Messrs. Fritz Engel, of Worms on the Rhine, and Carl Wagner, of Offenbach on the Main,
Germany. It is for thinning the edges of leather, and is especially adapted for the use of sadderers, trunk is especialy adapted for the use of sadders,
makers, bookbinders, etc., the invention covering various novel details and combinations of parts,

A billiard cue chalker has been patented by Messrs. Samuel Clare and Edward W. Smith, of Winnipeg, Manitoba, Canada. It consists of a spi rally slotted tube containing a cylindrical chalk case with spiral spring, and other novel features, whereby he chalk dust is retained, and the tips are kept round nd uniform in shap
An egg beater has been patented by Mr . La Fayette Wikidal, of Salem, Oregon. This invention covers a novel construction and combination
of parts of an egg beater that is designed not only for whipping up eggs, but which may be used for beating up batter and other substances, or for mixing ingredi nts of any kind used in making cake or bread.
A center board for vessels has been patented by Mr. Thomas R. Brough, of Gananoque, eries of blades arranged to swing on a common pivot, with cam slots in the blades, and other features, where by the free ends of the blades may be projected from
he center board casing as desired.

A lamp filling can has been patented Mr. John A. Kendall, of Maysville, Mo. This in vention relates to that class of oil cans having an air forcing apparatus by which the oil is discharged
through a suitably arranged outfiow pipe into the lamp by producing an air pressure, the cam being simple in construction and very effective.
A bob sled has been patented by Mr Joseph P. Kramer, of West Branch, Mich. Its con Joseph P. Kramer, of West Branch, Mich. Its con-
struction is such that there is a slight rocking move ment between the runners and the bench, to allow the runners to change position slightly in rising over ob-
structions in the road without imparting a jolt or jer o the superstructure
A standard for logging cars has been Atented by Mr. Edmund J. Minnock, of Baker, Texas hort distance from its pivot, which can be readily urned down out of the way when loading, and whic when turned up into position will be firmly and securely A
A copy holder has been patented by Mr. Irvine J. Adair, of Dallas, Texas. It is a nove the same as one would hold a book in reading, all the lines being held the same distance from the eye, and a spring serving to hold the leaf in place when used to
copy into a record book.
A thimble skein has been patented by Mr. John E. Young, of America City, Kansas. It is for wr. John E. Young, of America city, Kansas. sides to permit the passage of oil or lubricating ma-
terial to the wood within to preserve it, and having also near its inner end an internal peripheral groove to re eive a packing ring.
A logging sled has been patented by Mr. John Wisdom, of Moose Lake, Minn. It consists with a cross bar or bolster for supporting the log, and an arrangement of chains for lashing the log to the
bolster and for receiving the evener to which the horses bolster and f
A joint for extension handles has been patented by Mr. Charles A. Bartliff, of Memphis, Tenn. It comprises a socket with longitudinal extension and transverse adjustable bands or wires connected at their ends to opposite side edges of the extension, the im
provement being more especially intended for use with rooms, brushes, and mops.
Ornamental strips for picture frames form the subject of a patent issued to Mr. Edwar solid flexible core or band, as of strip brass, on which is cemented a soft inclosing covering of plush or other soft and fluffy material, this compound strip to be bent as desired, and retaining its shape, for ornamenting

A grate for stoves and furnaces has been patented by Mr. Pillsbury C. Dolliver, of Augusta
Me. The grate has two oppositely pivoted grate sec tions, the longitudinal and cross bars of one section being in the same plane and the longitudinal bars of the other section being above its cross bars, one of the secbination with novel operating devices.
A spectacle joint has been patented by Mr. Frederick Scheidig, of New York City. The in formed with oppositely projecting ears adapted to be bent parallel with each other and embrace the eye on the end piece, and with a lug arranged to strike the stop
shoulder on the end piece, making a simple, strong, and easily attachable joint.
A galvanic battery has been patented by Mr. Horatio J. Brewer, of New York City. It conshoulder formed in the jar, means for holding the cup and zinc bar in place at the bottom of the jar, and zinc bar passing through the side of the jar, the invention being designed to prevent evaporation of the liquid and save a considerable amount of zinc
A combined egg tester and register has been patented by Messrs. Charles J. Mikesh and this invention is to of Sheldon, Iowa. The object of venient device, with the parts so arranged that as th cated by a simple mechanism, not liable to become di arranged.

A releasing device for use in connec tion with horse stables has been patented by Mr. Mor timer M. Shelley, of Brooklyn, N. Y. The invention by, in case of fire, all the horses in a given row of stall may be released at the same time, and will be drive from their stalls by water automatically dashed in thei

A vehicle top has been patented by Mr. Thomas B. McCurdy, of Lancaster, Texas. Its construction is such that the side curtains may be forced
upward to positions beneath the top proper, there being strips to serve as guides upon which the curtain frame slide, and other novel features, the invention being a improvement on
same inventor.

A door jamb has been patented by Mr. Christian Henricson, of Ashland, Wis. It consists in a facing supported and guided by horizontal rods and
pressed forward into contact with the edge of the door by springs, making a door jamb which compensates for
the swelling or shrinking of the door and desizned to always rest in contact with the edge of the door when
the laterer is closed.
A saw filing machine has been patented by Mr. John H. Sodee, of Seattle, Washington
Ter. The invention consists of an improved form of
lie and flle holder, and improved form of mechanism for ther novel features, the machine being designed for sharpening or fling either circular or gang saws, and reairing but slight adjustment for use for saw gumming.
An
An apparatus for aerial photography has been patented by Mr. James Fairman, of New York
City. Combined with a camera-carrying balloon are guy ropes for steadying it, the suspended camera havuspension link of the camera, and extending down to partly inclose the sides and top of the camera, the device being designed for locating the camera and taking views from a great altitude.
A feed regulator for roller mills and puriflers has been patented by Messrs. John W. Edwards and Chauncey L. Becker, of Waterloo, N. Y. wards and Chauncey L. Becker, of Waterioo, N. Y. connected with the valve, a hinged springarm and plate being also applied to the hopper, with other novel features, whereby the pressure of the material in the opper will act upon the valve to
An extractor for pulling roots, weeds, c., has been patented by Mr. Robert L. Shaw, Franklin, Pa. It consists mainly of two grasping jaws and a stock or handle to which they are connected, the
jaws being of novel shape and pivoted together by a Jaws being of novel shape and pivoted together by a
strong bolt, and a chain being connected at opposite ends to the handle and the inner end of a fulcrum bar, limiting the extent to which the points of the jaw may

SCIENTIFIC AMERICAN
BUILDING EDITION.

## AUGUST NUMBER.

table of contents

1. Elegant Plate in Colors of a Four Thousand
Dollar Residence at Frushing, N. Y. With floor
plans, specifications, sheet of detalls, bills of plans, seseifific
estimate, etc.
Plate in Colors of a Twelve Hundred Dollar
Double House, with plans, specifications, sheet Double House, with plans, speci
of details, bills of estimate, etc.
Page engraving of an Elegant Residence corner
Eighth Avenue and Berkeley Street, Brook-
lyn,
The new United States Court House and Post
Office, Montpelier, Vermont. Half page en-
2. Half page engraving showing Competitive Design for Carnegie Free Library, Alleghe
City, Pa., Jas. W. McLaughlin, Architect. 6. The National Agricultural Exposition Building
at Kansas City. Quarter page engraving. 7. Drawing in perspective, with floor pl.
3. Engraving of the Cogswell Polytechnic College,
San Francisco, with description. 9. Hlustrations of an English Double Cottage of 0. Design for a Marble Fireplace. Half page illustration.
4. Perspective view, with floor plans, of a Hand-
some Cottage of moderate cost. 2. Design for a Church of moderate cost. Half 13. Two elevations and a floor plan of an Austrian
Country House. 4. Engraving of Tomb of Colonel Herbinger, 5. Selections of Carved Work from the New Hotel
De Ville, Paris. Page of illustrations. Two large views of Engine Room at Ferguslie
Malls, Paisley: Decoration in Burmantofts

A French Villa at Enghien-les-Bains, France. ing floor plans.
The College of the City of New York: The
Technical Courses. Eleven views of different
Departments.
Perspective view of City Residence of Herr
0. The Home of Milton. Full page of views
21. Quarter page engraving of a Continental Cot-
tage.


MUNN \& CO., Pubitshers, 361 Broadway, New York.

## The charge for Insertion under thes head is One Dollar

 a line for each insertion; about eight words to a line Advertisements must be received at publication officThe new "Trautwines" contain two new tables of circles to four decimal places, and in larger type tha the older table. One of these gives the diameters in
units and tenths, and the other in units and twelfths, as feet and inches.
Hydraulic Press Wanted (second-hand).-In good condition, about $28 \times 36$. Send partic
J. M., P. O. box 3413 , New York City.
Stationary and boat engines, boilers. Best and cheapBennett's Lubricator is giving univeral Bennett's Lubricator is giving universal satisfactio Timber Gaining Machine. All kinds Wood Work ing Machinery. C. B. Rogers \& Co., Norwich, Conn. Accurate Counting Machines for kinds of machin ery. 10,000 and 100,000 sizes. Sen
D. Hubbard, New Haven, Conn.
Press for Sale-Quick acting. Hole in bed $8 \times 5$ punches to center of 13 in . sheet; $23 / \mathrm{in}$. shaft; also fou spindle Drill. A few second-hand engines in
condition. B. W. Payne \& Sons, Elmira, N. Y.
For the latest improved diamond prospecting drills, address the
Chicago, Ill.
The Railroad Gazette, handsomely illustrated, published weekly, at 73 Broadway, New York. Specime The Knowles Steam Pump Works, 113 Federal
St., Boston, and 93 Liberty St., New York, have just issued a new catalogue. in which are many new and im proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be duplex, steam and power type. Thi
mailed free of charge on application.
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Woodworking Machinery of all kinds. The Bentel \& Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc $\$ 100$
"Little Wonder." A perfect Electro Plating, Machine Sole manufacturers of the new Dip Lacquer Kristaline Complete outft for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mfg.Co., New Haven, Conn. Supplement Catalogue.-Persons in pursuit of infor
mation of any special engineering, mechanical, or scien tific subject, can have catalogue of contents of the Sclentific american SUpplement sent to them free
The Supplement contains lengthy articles emoracing The SUPPLRMENT contains lengthy articles emoracin the whole range of engineering, mechanics, and physica
science. Address Muin \& Co., Publishers, New York Curtis P Iron, Steel, and Copper Drop Forgings of every de scription. Billings \& Spencer Co., Hartford, Conn. We are sole manufacturers of the Fibrous Asbestos asbestos goods of all kinds. The Chalmers-Spence Co 419 and 421 East 8th Street, New York.
Pat. Geared Scroll Chucks, with 3 pinions, sold at sam ford, Conn.
Steam Hammers, Improved Hydraulic Jacks, and Tube xxpanders. R. Dudgeon, 24 Columbia St., New York 60,000 Emerson's 1887 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, ., U.S. A
Safety Elevators, steam and belt power ; quick and "H. D. Frisbie \& Co., 112 Liberty St., New York. How to Keep Boilers Clean." Send your address for fre
The Holly Manufacturing Co., of Lockport, N. Y will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Iron and Steel Wire, Wire Rope, Wire Rope Tram Split Pun Kh M, an Works, Drinker St., Philadelphia, Pa.

NEW BOOKS AND PUBLICATIONS.
The Cremation of the Dead. By
Hugo Erichsen.
Detroit: D. O. Haynes \& Co. Pp. 264. \$2. The sanitary and economical arguments usually ad-
duced in favor of disposing of the mortal remains of human beings by incineration, with a pelection of facts
and sayings touching the subject from far back in und sayings touching the subject from far back in
ancient history to the present time, are here brought toancient history to the present time, are here brought to
gether in a unique volume. The book is embellished gether in a unique volume. The book is embelied
with illustrations of many crematories, and gives with some detail the particulars as to the organization and work of the principal societies formed in recent years The author is an ardent advocate of the general introduction of cremation as a means of disposing of the
dead instead of by burial, and the volume is a plea dead instead of by burial, and the volume is a plea
to the public, calling for a more active interest in the to the public, calling for a more active interest in the
subject, which, it is conceded, the people must be The Graphical Statics of MechanISM. By Gustav Herrman. Translated
by A. P. Smith, M.E. Pp. vii, 158 . New York: D. Van Nostrand. 1887.
Plates.
Starting with the simpler problems of the equilibrium of muchines, the graphic method is applied to the
treatment of all the ordinary problems of mechanics. treatment of all the ordinary problems of mechanics.
To all except those peculiarly conversant with the To all except those peculiarly conversant with the few years in mechanics are of little avail. But by the system so intelligibly explained and illustrated in this
work, these higher problems are attacked by graphic methods, that for accuracy, simplicity, and practical methods, that for accuracy, simplicity, and practical
utility leave nothing to be desfred. Professor Herr-
man has won an extensive fame by his researches in
this special line. The merit and value of the book depends largely on his original investigations. After the subject of the equilibrium of machines is disposed of, the subject of friction and hurtful resistances occapies much of the space. Rolling, sliding, journal, tooth and chain friction, usually complicated subjects, are Professor Herrman's graphics. Belt gearing and ractical examples with some concluding remarks complete the text. The translator's work is well done, and ome notes by him add to the clearness of the text Eight folding sheets of plates are used to illustrate the problems.
Practical Electric Lighting. By A. Bromley Holmes. London and New
York : E. \& F. N. Spon. Pp. 183. $\$ 1$. This book presents in simple form a good many of the most interesting facts touching the especial depart ment of electrical work to which it is devoted, the final electric lighting.
**Any of the above books may be purchased through this office. Send for new catalogue just pub
lished. Address Munn \& Co., 361 Broadway, N. Y.

(1) F. W. (Vermont) asks (1) the best way to make a sun dial, to foasten on the side of the
house. A. The dial must have its plane due east and west, andyperfectly vertical by plumb line. The style should correspond with the polar axis of the earth, and or your latitude ( $44^{\circ} 50^{\circ}$ ) the style should be nclined to the face of the dial $45^{\circ} 10$. The hour lines should be laid off with a protractor from the side of the
style each way, as.per sketch, in which Fig. 1 represents

a plan and Fig. 2 a section through style. Such a dial keeps only mean time, and you will have to consult almanac as to when the sun is fast and slow. 2. The mending rubber goods, use rubber cement, which ca be obtained from the dealers in rubber goods. Se Supplement, No. 158, for numer cements.
(2) Carter wishes to know how to free his pond from the little plant called "duckmeat." A.
It would be a difficult matter, if not an impossibility to free the pond entirely from these plants withou the addition to the water of some substance that would destroy all plant life. The "duckmeats" are con stituted for living in ponds that sometimes dry up, and plication of moisture after being apparently dried up for some time. They are propagated by later up for some time. They are propagated by latera
buds that form new plants, and hence multiply very rapidly. There is no better method of keeping the plants in subjection than the one that you have used If you have ducks, give them access to the pond, and they will aid in the work of destruction, since they ar very fond of the plant, and this circumstance give the latter its common name. In the case of a fis pond, the presence of the duckmeats is rather benef cial than otherwise, since they become a depository for
the larvæ of insects to an extent almost incredible, and thus afford an abundant supply of food for fish
(3) D. W. F. desires a good receipt to polish pianos. A. Add to 1 pint of shellac varnish mixed. If you want the work dark, add a little burnt umber; or you can give the work any desired burn by mixing with the shellac the proper pigment in the dry state. Apply the shellac, thus prepared, with small bunch of rags held between your fingers. In applyligg it, be careful in getting it on smooth and even, leaving no thick places or blotches. Repeat the proces
continually until the grain $\cdot$ is filled and the workhas re
eived sufficient body. Let it stand a few hours to hard-
and and then rub your work lightly with one and oil, applied with a rag. A very little rub ing is necessary, and this is to be followed by the cleaning of the work with rags as dry as possible. With a or three times for the purpose of killing the oil. Have eady $1 / 4$ pound of pure gum shellac dissolved in one pint of alcohol ( 95 per cent). With this saturate a pad made of soft cotton covered with white muslin, and with this pad go over the work several times.
(4) J. H. D. asks: 1. What was the first railroad built in the United States, andin what year
was it built? A. The first American railroad was was it built? A. The first American railroad was
built in 1825-26, and used for the purpose of transporting granite from the quarries near Quincy, Mass., to tide water. 2. How to clean) buckskin riding trousers? A. Make a soiution of wesk soda and warm water, rub plenty of soft soda into the leather aud allow it to soak for two hours and then rub it well untilit is quite clean. Afterward rinse thoroughly in a weak solution of warm water, soda and yellow soap. When completely rinsed, dry well and quickly in a rough towel, then pull it
about and brush it well. It will never, however, be as soft and good as it was at first.
(5) P. C. desires (1) a good receipt for black bright varnish for harness. A. Grind ivory black into a quick-drying body varnish. \%. How yolks of eggs can be preserved for tawing purposes. A. Drive the moisture off by evaporating them in vacuo, same as
the white of egg is prepared. 3 . How vegeto-anima court plaster is made? A. The Pharmacopoeis any receipts for the different varieties
(6) W. B. P. asks : 1. Are wall papers ontaining arsenic usually considered deleterious health? A. They are. 2. How are they supposed affect or act on the human system? A. Dyspepsia, neuralgia, pains in the bones and joints simulating chronic rheumatism, headache, general debility, etc.,
are symptoms which attend chronic arsenical poisoning. See Taylor's "Medical Jurisprudence." 3. Are the dark and olive greens usually prepared with arsenic or arsenite of copper? A. Not generally, but occasionally; analysis is always necessary to determine the presence of arsenic. 4. Is the usual test-dissolving the color from the paper with aqua ammonia, and testing with a crystal of nitrate of silver-considered practically correct? $A$. It is an
(7) F. D. H.-The whole amount of wheat produced in the world in 1885, calculated in
bushels of 60 pounds, was $1,998,997,635$ bushels. The United States wheat crop for three years past has been tween 450 and 495 million bushels each year.
(8) B. M. L. asks how type writer ribbons are made, such as are used on the Remington
and other such machines. A. Take vaseline of high boiling point, melt it in a water bath or slow fire, and incorporate black or powdered drop black as it will take up without becoming granular. If the fat remains in excess, the print is liable to have a greasy outline; if the color is in excess, the mixture from the fire, and while it is cooling mix equal parts of petroleum benzine and rectified oil fatty ink, introduced in small por tions, by constant agitation apply, wind the ribbon on a piece of cardboard, spread on a table several ers, then unwind the ribbon into convenient length, and with a sof $t$ brush rub the ink, after agitation, well into the interstices of the ribbon with a
(9) A. D. asks how tracing cloth is made and the composition of the varnish put on its tissue. A. Linen is first provided] with a coating of starch and then with an application of benzine and linseed oil. It
is finished by beingismoothed between polished rollers
(10) N. D. asks: How is the velocity of the cannon ball at the muzzle of the gun ascertained . By an electric apparatus, the ball breaking a cirof passing through certain spaces. See Scientific American Supplement, No. 177, for description and
(11) F. B. desires a receipt to make reen paint for Venetian blinds that will stand the heat of the sun without blistering. A. Rub $\&$ parts of white lead and 1 of verdigris with nut oil or linseed oil var-
ish, mixed with oil of turpentine, and dilute both nish, mixed with oil of turpen
colors with ordinary drying oil.
(12) F. M. W. asks : 1. Is a brake block pressing against three feet of the tire of a wagon wheel practically any better than one pressing against two
feet? A. There is nothing gained, except there is a dif erence in wear by using a long brake block. The fric on for a given pressure is the same, whether the block of iron lying on the ground. A lifts one end up three feet, B then goes to other end and raises it level with irst end. Which man lifts most, and why? A. The hrust of the bar against its ground bearingl makes the ift of B a iittle heavier at starting to raise the bar.
(13) M. \& S. desire a receipt for makng papier mache and cellulose. A. There are two pasting different thicknesses of paper together, or by mixing the substance of the paper into a pulp, and then pressing it into shape by moulds. Cellulose is woody
(14) A. C. L. desires (1) good receipt for making plaster Paris casts, in imitation of bronze. A ee answer to query 1 in Scientific American of April 9, 1887. 2. Please explain the cause of rock
alt throwing off water as it does. A. It is due to the chloride of
drains away

TO INVENTORS.
An experience of forty years, and the preparation of An experience of forty years, and the preparation of
more than one hundred thousand applications for pa tents at home and abroad, enable us to understand th laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A
ynopsis of the patent laws of the United States and al foreign countries may be had on application, and person contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices which are low, in accordance with the times and our ex MUNN \& CO ofice Scientific American, 361 Broad way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

August 2, 1887,

## AND EACH BEARING THAT DATE

ISee note at end of list about. copies of these patents.]

Adding machine, G. Phillips
Alarm. See Burglar alarm.

## Ammonium surlphate, a ture of,. . Meve

## Argand burrer, S. G. Dochd. Argand burner, E. Melchior

## Axle and ma Paterson.

Axle skein, w............
Baling press, J. La Dow.
Baling press, J. Watson
Banker's case, C. W. Jenks
Battery. See Galvanic battery
Bedlows, W. G. Davis
Bellows, W. G. Davis....
Bicycle tire machine, W. A. McCool
Billiard cue chalker, Clare \& Smith
Blind, window, Brainard \& Swan
Board. See Electric light switch boor
Boards, double tonguing, S. J. Shimer
Boats, sliding top mast rigging for, E. S. Jones.. Bobbin, C. Hardy.
Boiler, H. Wojan
Biler attachment, C..................................
Bolt. See Reel bolt.
Bolt. cutting machine, W.H. Johnson
Boots or shoes and manufac
stiftener.for, s. Moore...
stiftener:for, S. Moore..........................
Boots or shoes, tool for burnishing the heels of
Z. Beaudry

st W. Lane................... ..................
sotling machines, automatic pressure
for soda fountains of, L . Leonhardt .
Box. See Folding box. Miter box. Music box.
Brake. See Car brake. Railway brake. Wugo
brake.
Brake beams, device for setting, J. R. Ide..
Brick machine, S. P. Crafts....
Bridle bit attachmment
Brush, blacking, W. England..
Brush wheel, revolving wire, J. H. Bringold.
Bung, bush, and vent, J. P. Gr
Burglar alarm, B. F. Hough..
Burner. See Argand burner
Burner. See Argand burner
Burner casing, H. F. Bartlet
Bureau and cheval glass, combination, G. F
Clingman

## $\xrightarrow[\text { Bustle, D. Basch }]{\text { Clingan }}$

Butter tub, H. R. French.
Buttons, process of and amachine for making, 0 W. Ketchum

Cable rack for switch boards, J. A. Seely...
Cales, perch holder for bird, G. C. Hinman
Can. See Lamp filling can.
Car brake, L. J. Ziminerman
Car brake, electro magnetic, J. Herrington
Car brake, street, C. . . B. Bur
Car coupler, R. R. Asbury.....
ar coupler, R. R. Asbury.
Car coupling, J. A. Bosch..
Car coupling, J. A. Bosch
Car coupling, F. A. Fox.
Car coupling,
. P. Hix..
Car coupling, O. P. Hix.
Car coupting, P. Riley...
Car heater, J. L. Bangley
Car heater, P. J. Gurnee..................
Car seat or settee, railway, F. H. Henry
Car starter, J. M. Linscott..................
Carrier. See Cash carrier
Case. See Banker's case.
Cash carrier, pneumatic, m. Barri.
Cash carrier, pneumatatic, M. . . . . Garri.. ...............
Cash carrier, pneumatic, w. . . Pain. 367,386
Cash carrier, pneumatic, W. S. Pain.
Cash carrier, pneumatic, J. E. Treat.
Caster, T. Goetz.

 Chair, A. D.|Cracke
Chair, W. I. Wilbur
Check hook, pad, J. M. Basinger.
Cheese cutting device, H. G. Wils
Chopper. See Cotton chopper
Churn, R. Delghton...
Churn, M. E. Morgan.
Cigars, cigarettes, etc., automatic vending app
ratus for, N. W. Russ
Cistern, G. A. Allen.....
Clstern, G. A. AAment....................
Clock, electric prograpporting clasp.

day ........................................
ffferdams for foundations of all kinds, apparatu.
for making, F.
Coffn, A. R. Ree
Coin holder, W. A. Porterfield.
Collar, apparel, E. \& o. Struensee
Columns, constructing ornamaching, N. Burch
Dubois.................. ...............
Connensting rod, $\mathbf{w}$. Wattie.
Cooking utensil hotder; R. B. Hough........
Copy holder
Corset, B. Epperly.
Corset fastener, B.
Corset fastener, B. R. Davenport................
Cotton chopper and cultivator, H. N. Sibrey.

Coupling. See Car coupling. Hose and pipe
coupling. Thill countig. Cover nr lid, e. Moneuse.....

## cultivator, L. P. Helmer

cultivator, L. P. Helme
Cultor, F. H. C. Van
Cultivator, listed corn, King \& Mörgan
367,653

Cultivation
ment for, C. R. Hartman..................
cutter. See Me
Cylinder lock, W. E. Sparks.............. 367,677
Dental flasks, fastening for, F. G. G. Hughes............. 3 .. 367,401
Desk, school, Garber \& McElvain................ 367,512
Desk, school, Garber \& McEivain.................. 367,512
Detector. See Ore detector.
Dish washing machine, Burdick \& Brown........... 367,361
Distilling apparatus, wood, E. Koch............ 367,413
Distilling apparatus, wood, A. F. Schmitt............. 367,669
Ditching or car loading machine, Shailer \& Kim-

Door spring and buffer, combined, H. A. \& H. A.
House, Jr............................. 387,634


Dress shield, armpit, c. Lewenberg....
Drier. See Lumber drier.
Drier. See Lumber drier.
Drill. See Mining drill. Ratchet drill.
Drum tightener, C. G. Conn.............................................367
Egg beater, L. Wikidal.......
Egg tester and register, combined, Mikesh \&
Conant....................................367.542
Electric cables, terminal for, R. H. Widdicombe.. 367,734
Electric conductor, T. s. Reed....... . ......... 367,548

Electric distribution, system of, E. Tromson..........................467,499
Electric machines and motors, reguluator for dy-
namo, E. Thomson..................................47,470

Electric wires and cables, conduit for, G. D. Sut- ${ }^{367,76}$
Elevators, safety attachment for, L. Senior......... 367,450
End gate, wagon, J. T. Snoddy.............. 367,666
Engine. See
Engines, operating direct-acting steam pumping,
,
L. D'Auria........................................... 36,62,
Evaporator. See Fruit evaporator.
Evener, four house, J. B. Scribner................. : 677,671

Evener, four house, J. B. Scribner...................
Extractor. See Root extractor. Stump ex-
Fans, udjustable hub for ventilating, G. P. Clark.. 367,595
Farm gate, G. G. Lee.................................415
reed regulator for roller mills and purifiers, Ed-
Feed water, apparatus for heating, R. R. Littic....... $367,607,660$
Feed water heating attachment for boilers, J. H.
Mathews ...............................
Fence, barbed, C. A. Hodge ..............
Fence machine, Hazen \& Kirkpatrick ........
Fence machine, slat and wire, G. W. Begole
Fence machine, slat and
Fence post, I. L. Landis.
Fence post anchor, I. A. Kilmer
F'ence signal, barb, R. E. Riale.
Fertilizer, J. Van Ruymbeke.
File and cover, combined paper, W. H. Fox.
Files, machine for cutting, C. M. Fairbanks
iles, machine for cutting, C. M. Fairbanks.
Finger ring, J. Scott...
….
$\ldots .$.
...
$3667,36,362$
Fire extinguishing apparatus, automatic, A. M.
Granger.......................
Fireplace front, T. F. Pennington.
Flour packer; O. A. C. Conant...
Flues, safety base for, F. Anders
Flues, satety base for, F. And
Folding box, c. J. Hasbrouck.
Folding chair, L. M. Fitch.
Folding table, J. T. Bon.......
Frame. See Stretcher frame.
Fruit evaporator, N. Glynn...
urnace. See Heat radiating furnace ........... 367,514
Furace. s. Heat ra........................................ 367,638
Furnace, J. Ju8
Furnace grate, c. W. Echerson.............
aauge. See Caliper gauge.
Galvanic battery, P. R. De Faucheux d'Humy...
Galvanic battery, J. Serson .......
Galvanic battery, J. Serson....... ................
Garment supporting clasp, W. H. Cushing.........
Gas, apparatus for manufacturing illuminating
and heating, J. Hanlon..................377,611,
Gas, app
man
Gas engin
Gas engine, J. Atkinson....................................................767,496
Gas light, incandescent, C. M. Lungren..... .... 367,53
Gas pressure regulator, automatic, J. W. Haa.

$.367,741$
367,733

Horses nead protector for, s. s. Hepbron......... Horseshoe bars, manufacturing, Eyno
Hose and pipe coupling, M. L. Babb...
Hub attaching device A. Hub attaching device, A. F. C. Garben
Hydraulic lift, T. P. Ford, Jr. Hsdraulic 1 ft , T. P. Ford, Jr
Ingot mould, H. Wrigh
Jewelry, J. Lamont........................
 Labels, method of and apparatus for dampening gummed, W. Leggott....
Ladder, hay, Jacob \& Patton
Lamp, Argand, w.
Lamp, Alectric arc, Wightman \& Lemp. Lamp filling can, J. A. Kendall.
Lamp shelf, R. W. Tanner.................... Lath machine, sheathing, w. s. Leonard Leather marking machine, A. Schmiedl. Leather skiving machine, En
Lifter. See Spittoon lifter. Light. See Gas light.
Lightning arr.
O'Brien...
O'Brien.......... for protecting oil tanks, D
Locomotive lubricator, W. M. Cratig l......................
in Lumber drier, J. D. Stanley.
Mail sack, W. H. Jones.......
Marker, land, E. A. Bachman.
Meat cutter, R. B. Pumphre
Meats, covering for, E. Metzger
Medical compound, J. P. Jones.
Metal working machine, compound, E. A. Olive Mill. See Roller mill.
Mining drill, W. Thornto
Mirror setting, J.F. Chatellier.
Miter box, A. Crum...
Mould. See Handle
Mould. See Handle bending mould. Ingot
mould. mould.
Moulding press, pulley pattern, Wheeler \& Coke-
(y) Mortise lock, M. L. Orum.... ..............
Mortise lock and latch, H. Hoffman, Jr. Mortise lock and latch Nail plate feeder, J. C. Goul Oiler, automatic, J. B. Purvis.....
Ore detector, electrical, L. Mellet Ore detector, electrical, L. Mellett........
Ore indicator, electric, Mellett \& Prince Organs, pneumatic action for, G. Sander
Packages, machine for wropping, w. S. Packakes, machine for wrapping, W. S. Jarbo....
Paint from cans, press for removing, N. P. Bur Ress......................................... Pastink, gumming, and gluing machine, c. Sey Pen, fountain, A. Fsfe... Pendulum gate, M. A. Shepard. Photography, apparatus for aerial, J. Fai Pianos, damper for upright, J. Herrburger... Picture frames, ornamental strip for, E. B
Pipe wrench, J. Clark............................. Piston meter, F. W. Hoo
Planer, S. J. \& G. J. Shimer
Planing machine, wood, G. E. Lloyd......
Planter and cultivator, combined

## Dickey <br> Planter, check row corn, 7 Planter, corn, J. Y. Jones.

Planter, corn, W. O. Yarboroug
Planter, cotton, H. Robbins.......................
Planters, anchor for check row, J. C. Barlow.
Planters, marking attachment for
Thompson.............................. Planting attachment,, ...................
Plamming. Thoms..............
Plow, J. W. Staling
Plow, J. W. Stalings.............................. Oldenbusch.... .....
Post. See Fence post.
Potter's machine, W. H. Iveler, J. N. William Potter's machine, W. H. Ivens....................
 Press. See Baling press. Moulding press.
Pressure regulator, fluid,
Pressnre regulator, steam, R. . . Gaines
Printer's galley, Rathbun \& Kinley Printer's galley, Rathbun \& Kinley.. Printing machines, ink fountain for, E. J............
Propeller for vessels, auxiliary, N. H. Borgfeld Protector. See Heel and sole protector. Protractor, A. J. Shaw Pulley hoister, J. W. \& J.
Pulley, split, W. R. Fee. Pulp machine, wood, W.
Pump, rotary, F. B. Demin
Pump, rotary, F. B. Deming..........................
Pumps, air compressor for deep well, Adams
Ryan................. Pumps, air inject.....................................
Punching checks, machive for,. I. Howard. Pyrotechnics, electric, J. H. Irwin. Rack. See Cable rack.

## Rail. See Railway rail

Rail braces, die for forming, W. A. Cornbrooks... Rail braces, die for upsetting the abutting end Rail crossing, , firder slot, E. B. Entwisle
 poele.................... .............
Railway cattle guard, Parks \& Mathes. Railway crossing, A. J. Moxham.... Railway grip, cable, W. J. Thoma Railway rail, J. M. Brosius. Railway signal, electric, E. M. Chase
Railway switch, J. W. Robberson... Railway switches, etc., toot guard for, E. P. Ed

## wards

Railway track and rail, B. s. Doran.
Ralwacks, combination crossing and switc
Railway tracks, recording the conditions of and marking, P. H. Dudley
Ratohet and pawl device, W. A. Loud. .
Betehet drill, B. F. L. Orcatt............
. 367,7286 ${ }^{3}$. 387,490 $\begin{array}{r}307,400 \\ .367,611 \\ \\ \hline\end{array}$ ${ }^{377,556}$ . 367,628

367,628 367.570 367,682 75,464 | 367,759 | $\mathbf{B}$ |
| :--- | :--- |
| 367,555 |  |
| $\mathbf{C}$ |  |
| $\mathbf{C}$ |  |
| $\mathbf{C}$ |  |

## 5

\author{

## 

} Stove, heating, H. A. Seithert............................................ Ticking or similar fabrics, H. H. ...................17,57,
Type ornaments, font of combination, $G$.

TRADE MARKS.
Cambrics, silesias, and hosiery, Sterling Dyeing
and F Finishing Company. and Finishing Company.
Cement, Cement, I. C. Johnson \& Cutlery of all kinds, Wiebusch \& Hilger Fertilizers, W. S. Powell Gloves, kid and other leather, F. Turner Heel nampang ....................................
Comp Machine Caint ready for use, prepared, Acme White Lead and Color Works.
Paper of all kinds, A. Smith..
Phosphate sherbet, W. E. Beck \& Co..
Powders und paints, face C. Herbert Powders and paints, face, C. Herbert................. 14,
Remedy compounded of roots, herbs, and barty Remedy compounded of roots, herbs, and barks
for chronic diseases, J. M. Willis \& Co.........14,003 Remedy for treating horses' hoofs, J. B. Campbell 14,651 Trunks, traveling bags, and satchels, E. Hager.

A printed copy of the specification and drawing of any patent in the foregoing list, also of any patent
issued since 186 , will be furnished from this office for 25 cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361 Broadway, New York. We also furnish copies of patents broanted prior to 1866; but at increased cost, as the
granecifcations, not being printed, must be copied by specinc
hand.
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the foregoing list, provided they are simple, at a cost of $\$ 40$
gio each. If complicated the cost will be a little more. For
full instructions address Munn \& Co., 361 Broadway, New York. Ocher foreign paterits may also be obtained.





## 

 ByOURNEw Emfine PROEESS.


MOVABLE DAM W1TH SWINGING Wickets and Trestles.-General description of a new
system of movable damas constructed at La M Multiere.
Lyos,





## NEWSPAPER FIAE



 "aranam

TUNE \& CO.,

(8.) ${ }^{\text {OLn}}$CLDRR'S NOISELEESS ROBBER WHEELS omary inn linered floorry. EXPLOSIVE DUST. A COMPREHEN-




## MALEABLE

HOW TO SOFTEN HARD WATER-



## -THE—

## Scieationc American <br> Building Edition.

The Scientific American Archi tects' and Bullders' Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors and with fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifications, Costs, Bills of Estimate and Sheets of Details.
Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving homes or erecting structures of any kind, have before them in this work an almost endless series of the latest and best examples from which to make selections, thus saving time and money.
Many other subjects, including Sewerage, Piping, Lighting, Warming, Ventilating, Decorating, Laying Out of Grounds, etc., are illustrated. An ex Announcements is also given, in which the most reliable and approved Building Materials, Goods, Machines, Tools, and Appliances are described and illustrated, with addresses of the makers, etc.
The fullness, richness, cheapness, and convenience of this work have won for it the Largest Circulation of any Archi tectural publication in the world. Sold by all newsdealers.

## MUNN \& CO., Publishers,

361 Broadway, New York
Building Plans and Specifications. ln connection with the publication o the Building Edition of the Scientifio American, Messrs. Munn \& Co. furnish Plans and Specifications for Buildings of every kind, including Public Buildings, Churches, Schools, Stores, Dwellings, Carriage Houses, Barns, etc. In this work they are assisted by able and experienced architects.
Those who contemplate building, or who wish to alter, improve, extend, o add to existing buildings, whether wings, porches, bay windows, orattic rooms, are invited to communicate with the undersigned. Our work extends to all parts of the country. Estimates, plans, and drawings promptly prepared. Terms moderate. Address

NN \& CO.,
361 Broadway, New York.
CURE EinideAF



SHIELDS \& BROWN OTTO GAS ENGINES.


For BOILERS and STEAM PIPES


 143 Worth street, New York. | 78 and 80 Lake street, chleago. |
| :---: |
| THE IRON AND COAL DISTRICTS |.



## MANUFAETURERS, ATTENTION!

隹


DEAFNESS CURED By using the Huestis


## NEW BOOKS.



E. \& F. N. SPON, 35 MURRAY ST., NEW YORK.


\section*{| pr |
| :---: |
| puta |
| ont |
| tion |
| se |
| se | <br> }

 OTTO GAS ENGINE WORKS, Chicago. Philadelphia.

ARTESIAN WELLS. - A PAPER BY


## 

| WANTED: To contract with some one to manufac |
| :--- |
| ture the BOSS |
| HUSKING |
| PIN. |



Something New. Made of Steel and Brass. Send al
once for sample pin tomake estimates on; or I will sell



## SCIENTIFIC BOOK

 CATALOGUE,
MUNN \& CO., Publishers Scientiflc Amertican, $\begin{gathered}\mathbf{3 6 1} \text { Brondway, New Yerk }\end{gathered}$





 SIN KING MINE SHAFTSS.-DE-



A SYNOPSIS OF ALL THE KNOWN
 Mrit Tos 515 and 516. Price io cent

PATENT For Sale. An Improved Sleigh Brake
\&̀ New Catalogue of Valuable Papers


Made sOLID of the Celebrared
SUPERIOR TOALL OTHERS, Thonsands of manufacturers testify to tits belng the Strong-
est, most Duruble, and Healthest Emery Wheel made.
 NEW YORK BELTING \& PACKING CO.,
 Wheod ispecinity. Warehouse: 15 Park
AGENTS: PERSICANER \& CO., Pickhuben 5, Hamburgh.
ICE\&REFRIGERATING

## THE INFLUENCE OF SURFACF CON



BARREL, KEG; Hogshead, Truss Hoop Drivis EDUCATION OF TEE AMERICAN



## T: 2n

## S.

Shatting and Gearing, Textile Machinery, LIGHT DRAFT STEAM LAUNCHES. COAL AND WOOD BURNING. Small Marine and Aigh speed Engines, alko Patent. Steel Tobu-
ar Boilers. Patent Automatic Adjustale SKAG. flar Boilers. Patent Automatic Adjustabie siak.

t

## te

## 

 on very reasonable terms in France, Belgium, Germany Austria, Russia. Italy. Spain (the latter includes Cabaand all the other Spanish Colonies), Brazil, British India Australia, and the other British Colonies.
An experience of forty years inas enabled the
publishers of THe Scientific Amelionn to estajlish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
hise the business of their citents promptly and proper 1y done and their interests fuithfully guarded.
a pamphlet containing a synopssis of the vatent laws
all councries, including the cost for each, and othe information useful to persons contemplating the prothis office.
MUNN \& (CO., Editors and Proprietors of THE SCI entific Amertican, cordially invite all persons desirine
uny information re:ative to patents, or the registry any information re:ative to patents, or the registry of
trade-marks, in this country or abroad. to call at their offices, 661 Broadway. Examination of inventions, sultation, and advice free. Inquiries by mail promptly answered.

Sarreas.
MUNN \& CO.
Publishers and Patent Solicitors,
Branct oppicrs: No. 622 and 64 F Btreet, Pecith
Building, near 7th Street, Wastington, D. C.

2 Inside Pase, each inger tion I: :


W. L. DOUGLAS \$3 SHOE. Mustup

 BABBIT and ANTI-FRICTION METALS

## E. A. C. DU PLAINE

 XXXX Nickel Babbit (pat) Wrarranted

 No. 1 PlumblumisaGO BABBITS.



 Samples and descriptive Price List free by mail.

## USEFUL BOOKS.

Manufacturers, Agriculturists, Chemists, Engineers, Me-
chanics, Builders, men of leisure, and professional men, of all classes, need good books in the line of permits the transmission of books through the mails
at very small cost. A comprehensive catal useful books by different authors, on more than fifty different subjects, has just been published for fre
circulation at the office of this paper. Subjects siffed with names of author. Persons desiring a
copy, have only to ask for it, and it will be mailed to



ORNAMENTAL DESIGN, PRINCI-



## 

## PATENTS.












 CALLEED PHE STANDARD-As At to the Reotmg by whic


THE COPYING PAD-MOW TO MAKE



EXAMINATION QUESTIONS IN GEN-



## EPPS'S GRATEFUL-COMFORTING. <br> 

CHLORINATION OF GOLD ORES.-A




MACHINES FOR PRODUCING COLD






TOUGHENED GLASS SLEEPERS. BY




## ELECTRIC Si 



ROCK BREAKERS AND ORE CRUSFRES.




## THE USE OF TORPEDOES IN WAR.-




## 

WITHERBT, RUGG \& RICHARDSON. Manufacturere

THE GREAT AQUEDUCT OF NEW




Woodworking Machinery.
 RollstoneMachine Oo. $\underset{\text { FITCHBURG, MASS }}{48}$ THE WONDERS OF LIGHT.-AN IN



## To Business Men.


 ries, and is read in all the principal libraries and readin
roomsor the orrad A business man mants something



 Fror rates see top of arrat column of this pafe, or ac
MUNN \& CO.. Publishors,

## [PRMEums CHE OIV S GIVE  RUSSIA CEMENT CO., SLmpuby milon Mampa

COLORS, COMMON AND POISONOUS



JACKET KETTLES,



TUNNEL FOR FOOT PASSENGERS IN



 ELECTRIC CONVEYORS.-DESCRIP-


STEN, POU, MS For Hot or Cold, Fresh or ha, Tar; ior Cane Juice, iquors. Syyupe Scumitor Am.
 hind Acid Blowers. Air Compressoras. Etce.
and
and

HOW TO GRAFT:-A VALUABLE PA-


## 95 MILK ST, BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequence thereof, and liable to suit therefor.
COMPRESSED AIR FOR TRAMWATS. - Apaper by Norman seife, discussing the comparative

Water Wheels New and Second Hand ALKALOIDS AND OTHER CRYSTAL



## 

## ฐrientific Ammrican

## The Most Popular Scientific Paper in the World.

 Only 83.00 a Year, including Postage. Weekly.This widely circulated and splendidy illustrated paper is published weekly. Every number contains six original engravings of new inventions and discovertes representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures Chemistry, Electricity Telegraphy, Pbotography, Archi All Classes of Readers find in the ScIENTIFIC AMERICAN a popular resume of the best scientific ino present it in an attractive form, avoiding as much a possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in

Terms of Subscription.-One copy of the Scien TIFIC AMERICAN will be sent for one year- 52 numbersor Canada, on receipt of three dollars by the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.- One extria copy of the SCIENTIFIC AMERI-
AN will be supplied gratis foreveryclubof five subscriber at $\$ 3.00$ each ; additional copies at came fre subscriber The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Ad
dress all letters and make all orders, draits, etc., pay

## MTININ \& CO.,

361 Broadway, New York.
Scientific American Supplement.
This Scientific AmbRican, but is uniform therewith in size, every number containing sixteen large pages. weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in
all the principal departments of science and the all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geciogy, Mineralogy,
Natural History, Geokraphy, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Englneering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Enlechnology, Manufacturing Industres, Sanitary En my, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied
subjects is given, the whole profusely illustrated with engravings.
The most
and Ma anfact and described in the SOPPIEMENT
Price for the
Price for the SUPPILEMENT for the United States and
Canada. 25.00 a year ERICAN and one copy of the SUPPLEMENT, both mailed for one year for $\$ 7.00$. Address and remit by posta order. express money order, or check.
MUNN \& Co.. 361 Broadway, N. Y.,
To Foreign Subscribers.-Under the facilities of the Postal Union, the SciEnTiPIC American if now sen by post direct from New York, with regularity, to sub orrbers in Grent britain. India, Austraila, and ail oth British colonies ; to France, Austria, Belgium, Germany
Hussia, and all other European States; Japan. Brazi Mexico, and all States of Central and South Americe Terms, when sent to foreign countries, Canada excepted for both Sor Scientific AMLAICAN, ONe year, क, gola for both SCIENTIFIC AMERICAN and SUPPLEment fo
one year. This includes postage, which we pay. Remit hr bostal or express money order, or draft to order of
MUNN \& CO., 361 Broadway, New York,
PRINTINTC INEES



[^0]:    Journal of the Hranklin Insticute, Angit and September, 1874.
    $\dagger$ March 22,29 and September 8, 1875.
    $\ddagger$ November, 1876
    \& Proceedinge the American Academy, October, 1878.

