RAISING A SUNKEN STEAMSHIP.

Those who have had occasion to cross the Jersey City or Hoboken ferries may have noticed a collection of nondescript craft anchored in the North River, well over toward the New Jersey shore, yet quite distant the group looked not unlike a swarm of big flies gathered about a dead beetle lying on its back with stiffened legs projecting up int o the air. Near by, the mainmast of a submerged ship is readily made out, and the accompanying craft seen to be great box shaped boats, some of them a hundred feet long, and in company a full-rigged schooner. The sunken vessel is the Britproperty of the Merritt wrecking organization, which has been engaged in raising her.

On a stormy afternoon in the early part of last February, the Welles City steamed up the Hudson River as far as Christopher Street, well over toward Jersey City, and dropped anchor.
The captain had chosen his anchorage with an eye to convenient delivery of cargo rather than to good hold ing ground, because, under ordinary conditions, there is not much strain on the cables of a ship riding at anchor in the smooth waters of a riverway; and so it was that when, toward daylight, a huge field of ice, having broken away, suddenly came pounding down upon him, he was wholly unprepared. His bower anchor tore its way through the soft mud of the bottom and was soon afoul. The holding fluke tripped, and permitted the anchor to fall over on to its side; and $\left|\begin{array}{l}\text { permited } \\ \text { though he quickly dropped his big kedge anchor, whose }\end{array}\right|$
broad stock or cross-bar prevents its fouling, the power of the mud to resist was not equal to the force of the oncoming ice, and the Welles City went drifting down stream. Directly in her track lay anchored the iron steamer Lone Star, of the Morgan line. She headed in the direction whence the Welles City was advancing, and, her crew perhaps not wide-awake nor quick enough to slip their cables, the Welles City came down upon the sharpiron prow of the Lone Star broadside on. It cut into her side just abaft the main channels as though she had been made of cheese, and giving a great list, she rocked forward and aft several times, and went to the bottom in eight fathoms of water.
On the other side of the world they are content, when a large vessel goes down in navigable waters, to take (Continued on page 23.)

grixutific egmerican.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. for the U. S. or Canada..One copy, six months, forthe U. S. or Canada
Remit by postal or express money order
Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the Scientific american, for a little over one year, may remit $\mathbf{S l}_{1}$ in current Colonial bank notes. Address

MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientific Amprican. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size wisth Scientific American. Terms of subscription for Supplement, $\$ 5.00$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belonging to the Postal Union.
throughout the country.
Combined Rates.-The Scientific American and Suppiement
will be sent for one year, to any address in U. S. or Cond will be sent for
seven dollars.
The safest way to remit is by draft, postal order, express money order, or
Australia and New Zealand.-The Scientific American and Supplement will be sent for a little over one year on receipt of $s / 2$ current Colonial bank notes.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
larke quarto pages, profusely illustrated, embracing: (1) Most of the plates larke quarto pages, profusely illustrated, embracing: (1) Most of the plates
and pages of the four preceding weekly issues of the ScIENTIFIC AMERIand pages of the four preceding weekly issues of the Scientific Ameri-
Can. with its splendid engravings and valuable information. (2) Com mercial, trade, and manufacturing announcements of leading houses. mercial, trade, and manufacturing announcements of leading houses. world. Single copies, 50 cents. Marufacturers and others who desire
to secure foreign trade may have large and handsomely displayed anto secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, JULY 9, 1887

table of contents of

SCIENTIFIC AMERICAN SUPPLEMENT

INO. GO1,

For the Week Ending July 9, 188\%.

Price 10 cents. For sale by all newsdealers.
I. ASTRONOMY.-A Star Finder--A simple ap
constructed by any mechanic. -1 illustration.

Photographic Study of Stellar Spectra, Harvard College Observ. tory.-First annual report of the Henry Draper memorial obser
tions.- Review of the work by Prof. EDWARD C. PICKERING... tions.-Review of the work by Prof. Edward C. Pickering.......
BIOLOGY.-Sponges.-The growth and life history of sponges

R. VON LEDENFELD...
III. ELECTRICITY.-Phenomena of Alternating Currents.-By Prof.
ELIBU THomson. -16 illustrations..........................
Iv. Eling Thomson.-16 illustrations.
 A New Process of Casting Iron and other
broideries, Fern Leaves, and other Combustible Materials.- By A. E. OUTERBRIDGE. Jr. - A new and eminently practical process of producing ornamental castings. -4 illustrations.
Bricks and Brick Work. - By Prof. 7 . RoGER
Bricks and Brick Work.-By Prof. T. Roger Smith, F.R.I.B.A.able contribution to the engineering of architecture.
Link Belting.-By CHARLES A. ScHIEREN.-An interesting an practical paper on leather belting made of links.-9 illustrations....
Recent Progress in Gas Engineering.-A lecture by Mr. A. MACRecent Progress in Gas Engineering.-A lecture by Mr. A. MACbranch.. ..
MISCELLAN EOUS. -Herbet's Tepid Douche.-Apparatus in use
for bathing soldiers in the French barracks. -1 illustration. for bathing soldiers in the French barracks. -1 illustration. Kent's Torsion Balance.-A new type of balauce, involv sional sus
Preserv

The Fanc The Falls of Gairsop Niagara.- 2 Illustrations The New Britis

 The Winner of the Derby.-Portrait and description of Merry Hampton...
 fastest type of British to
row $\&$ Co.- 1 illustration
The German Navy.-The New Gunboat Eber.-A description of a late accession to the German navy. -1 illustration.
II. ORDNANCE AND GUNNERY.-Magazine Rifes.-Continuation of this inportant article, including the Chaffee-Reece, Kropat-
schek, and other magazine guns. -3 illustrations schek, and other maguzine guns.- 3 isustrations
New British Torpedo Experiments.-Experime
against a ship.--The efficiency or torpedo nets.-The effects of

ACCESSION OF THE UNITED STATES TO THE INDUSTRIAL UNION.

The following announcement is made in La Propriete Induistrielle, the official organ of the International Bureau of the Union: "From a communication addressed to the Federal Council of Switzerland by the United States minister at Berne, the date of the accession of the United States to the Union for the protec tion of industrial property has been fixed for May 30 1887." According to the above, the United States is now a member of the Union, and our citizens are entitled to the enjoyment_of all its benefits. The fact, we presume, will be soon proclaimed by the President.
It is difficult at the present time to foresee all the results, advantageous or the contrary, that may accrue to us from this membership. It has been very extensively published in the daily press,that, under the laws of the Union, all American patentees would enjoy a priority of time for seven months after the date of their American patents, during which they could take patents in all the several countries covered by the Union. But this is an error, as the laws of the Union provide for a priority of seven months, not from the date of the patent, but from the date of the application for the patent.
As the business of our patent office is considerably in arrears, in some classes more than seven months in ar rears, in such cases the Union affords no benefit. In other classes the arrearage is not more than two or three months. In these cases the Union will be of some benefit.
The other laws of the Union relate chiefly to trade marks, concerning which the protection accorded to the members of the Union is full and satisfactory.
The following are the present members of the Indus trial Union : Belgium, Brazil, Spain, France, Guatemala, Italy, the Netherlands, Portugal, Salvador, Servia, Switzerland, Great Britain, Mexico, Sweden, Norway, Paraguay, Uruguay, Roumania, Tunis, the United States.
In the official statement of the articles of the conven tion, published in the Patent Office Gazette of May 24, 1887, it was stated that Germany was a nember of the Union; but this we believe to be an error. Germany, we are informed, has not yet become a member.

USE OF THE SIREN IN MARINE SIGNALING.
In certain cases, as in fogs and tempests, optic telegraphy is impossible. Cannons have long been employed in these cases. A slightly violent wind makes them nearly useless, and even in good weather they are of little use, because of the difficulty of sufficiently multiplying their detonations, as to whose number there are no certain and invariable agreements.
As for the ordinary whistle, these can only serve as toys, and could they be employed in signaling, the steam whistle, already much used, would be prefering of
Here, too, the lack of agreement as to meaning Here, too, the lack of agreement
signals operates to restrict their use.
For some little time, ocean vessels owned by the large shipping companies have been provided with an instrument giving sounds of wonderful height and intensity. We speak of the siren. The siren, invented by Cagnard de la Tour, has been greatly modified, and steam has replaced the original currents of air. Applied to the same uses, the siren leaves far behind it the cannon, ordinary whistle, and steam whistle. Nothing remains but to fix a certain and invariable standard of comparison.

We give below the ideas emanating from M. Edme Genglaire, student of the naval school of medicine at Toulon.

The siren being in communication with the boiler, the current of steam can be governed by an ordinary valve. The sounds produced vary in height and intensity in proportion to the quantity of steam emitted, so that sounds of any given pitch can be obtained. A set of resonators completes the apparatus.
It is well known that two identical resonators vibrate together for the same sound and for that only. Starting with this principle, in two similar frames containing several resonators, the corresponding resonators will vibrate or sound only when the note corresponding to them is produced. The siren will produce these sounds causing vibrations in the resonators, and two distant ships, or a shore station and a ship, or two land stations, supplied with sirens of similar model and identical frames of resonators, could most conveniently communicate. For this end each resonator should have attached to it an invariable signification, the same for all the frames.
All the navy and commercial vessels possessing girens and a frame carrying the same number of resonators, each marked with a number havingitssignification, will be prepared to communicate with each other or with the shore. It must be remembered that these acoustic effects can be conveyed intelligibly to an immense distance by the aid of the siren and the additional apparatus. The appa
The preceding theory being admitted, the following is the practical way of carrying it out as proposed by

In front of each resonator will be placed two metallic reeds; one rigid, the other thin and producing extended oscillations with the least effort. Each of these pieces of steel communicates with one pole of a battery by means of the circuit wire. When the resonator vi brates, the thin reed oscillates, touches the other bar, and the two poles of the battery being connected, an electric bell rings, thus giving a signal, so that the call, whether from ship or shore, can be recognized, while the bell of the signaling station by its sounds shows that the desired vibration or note has been produced. -Electricite.

the economical disposition of primary batteries.

The true action of a primary galvanic battery in some of its features is not generally comprehended, even by those familiar with the ordinary phenomena of electricity. The size of a battery, and the direct effects of varying it, and the deleterious effects of internal resist ance, are among the factors least grasped. At the present day the error is sometimes made of supposing that the size of a cell affects its electromotive force, and internal resistance is often spoken of as a beneficial element. Yet if the subject be brought down to facts, the case is a very clear one. The electromotive force is quite independent of dimensions, and a cell the size of a percussion cap will produce as high electromotive force as the largest made. This, to many, sounds a truism, yet it is by no means universally realized. But on the subject of resistance a more firmly fixed misconception prevails to a considerable extent. It is often asserted that low resistance batteries are not wanted. The truth is that they are wanted, and that the invention of a non-polarizing or constant and low resistance battery would be a valuable contribution to the resources of the electric engineer. The source of the error on the subject of resistance is doubtless due to the universal application of Ohm's law for fixing the number of cells in a battery for given external resistance.
By simple mathematical demonstrations it is proved that the most economical distribution of battery, as far as the number of cells is concerned, is attained when the internal, or battery, resistance and the resistance of the external circuit are equal. Thus with ten ohms resistance on the outer circuit, enough cells should be provided to have the same resistance internally. This, however, refers only to the number of cells, and not to their economic working. This limitation is very generally overlooked. The arrangement of battery so as to make internal and external resistance the same is considered the ultimatum, and the low resistance of cells is held not to be a specific advantage.
The ordinary calculation of the number of cells required to supply a circuit may be used as an example. Suppose a difference of potential of 35 volts is to be maintained between the extremities of an external cir cuit of 40 ohms resistance, giving a current of 0.875 ampere, and assume each cell of the given battery to yield 1.75 volts with an internal resistance of 1 ohm . In making the calculation, it is at first taken for granted hat the internal resistance of the battery must be 40 ohms. Therefore the total resistance to be overcome is 80 ohms , so that the effective voltage of the battery is reduced one half. Dividing, therefore, 35 volts by 0.875 volt, the dividend 40 is the number of cells that must be arranged in series. Then, as these will have a resistance of 40 ohms , the problem is solved, and this is treated as the most advantageous possible arrangement. This it is far fromi being; it is the best arrangement of forty elements in the given circuit. It contains the minimum number of elements that will maintain the given current through the circuit, but it is not an economical arrangement as regards consumption of mate nomi.
rial.
The
The battery in the case cited having exactly the same resistance as the external circuit, absorbs one half of the current. One half of the electrical energy disappears in forcing the current through the battery This represents fifty per cent of the chemicals and zinc which is actually wasted or spent on useless work. A battery run on this principle by no fair principle can be compared with a steam boiler, to settle the point of efficiency. It is doing only a shade over half the useful work that it is capable of. To compare the cost of a battery with any other prime generator, it must work under widely different circumstances from that instanced. Its difference of potential, and at the same time its resistance, must be lowered. This can be done by increasing the number of elements and arranging them in several parallel series.
The battery and circuit above cited having a resist ance of 80 ohms with 70 volts difference of potential in the battery, maintains a current of 0.875 ampere. By arranging four such series of cells in parallel, the internal resistance would be reduced to 10 ohms, the total resistance to 50 ohms, and a current of 1.4 am peres would be produced. To reduce this to 0.875 ampere, four parallel series of twenty-three cells each would be required. This is an increase in cells. The total number is 92 instead of 40 . But as the battery would only have one seventh the resistance of the
one half the electrical energy, thus indicating at once a saving of nearly 50 per cent in consumption of zinc and cheinicals. The limit of efficiency is approximated to by using a little over double the original number of cells.
In all applications of primary batteries to motors, this principle should be kept in mind. In storage batteries it has received a high development. They have such low internal resistance that it is treated as of no value, or as zero. It is for this reason that they have become of no practical value. Wereithey of high resistance, and were they used so as to possess within themselves one half the total resistance, then, instead of developing an electric efficiency of 85 to 90 per cent, they would give a return of only $421 / 2$ to 45 per cent of the charging current. Their constructors in order to obtain a commercial efficiency were obliged to construct them of low resistance. But the inventors of primary batteries having their minds fixed on other considerations, such as economy of space, rather than economy of material consumed, have overlooked the evil effects of high resistance.
The resistance may be reduced by bringing the plates closer together. In the primary battery the solution of a metal has to be provided for, and the difficulties due to the low rate of diffusion of liquids have prevented too near an approach of the plates to each other. In the storage battery this trouble is of course absent. Butit is clear that in low resistance lies the hope for a future use of the primary battery for small powers or for electric launches. So many points tell in favor of the primary battery that it seems a pity that it cannot be more generally used. But it can never be economically employed if the minimum number of cells only is adopted as the basis of installment.

Photography in Natural Colors.

A very remarkable chemical paper by M. Cary Lea is now in course of publication in the American Journal of Science, in which the author gives the results of his laborious and extensive investigations concerning the salts of silver and their relations to the photographic image. The ease with which the author produces the most splendid colors, their richness and variety, is really marvelous. He reaches the gratifying conclusion that photography in natural colors is now among the possibilities of science. We give a few extracts from the concluding portions of his paper :
Almost any silver solution brought into contact with almost any reducing agent, and then treated with HCl , gives rise to the formation of photo-chloride. Almost any chlorizing influence brought to bear on metallic silver has the same result. Or when silver is brought into contact with almost any oxidizing agent and HCl , it may be said without exaggeration that the number of reactions that lead to the formation of photochloride is much larger than that of those leading to production of normal chloride.
Exposed to ordinary diffused light, all the bright shades of silver photo-chloride quickly change to purple and purple black. The darker shades are more slowly infuenced.
Mercuric chloride gradually changes it to a dirty white.
Mercuric 'nitratedissolves itl easily and completely, but apparently with decomposition, as it. can only be recovered as white chloride.
Potassic chloride seems to be without effect.
Potassic bromide soon converts it to a dull lilac, which at the end of twelve hours showed no further change.
In contact with potassic iodide, the color instantly changes to blue gray; this change is produced by a quantity of iodide too small to dissolve even a trace of silver; the filtrate is not darkened by ammonium sulphide. With a larger quantity, silver is dissolved abundantly. By acting with renewed iodide solution, the substance continually darkens and diminishes until the substance continually darkens and diminishe
only a few black points, barely visible, are left.
Treated with dilute solution of potassium chlorate and HCl , the red substance gradually passes to pink, to flesh color, and finally to pure white.
The action of heat on the photo-chloride is very curious; its tendency is generally toward redness. Specimens appearing quite black are rendered distinctly purple or chocolate by heating to 212° Fah. in a drying oven. Often when the substance first sepa rates.by addition of $\mathbf{H C l}$, it is pure gray; this gray will often be changed to pink by simply heating to 212°. (This happens when a gray form is produced; if the grayness is due to admixed metallic silver, it is only removed by boiling with nitric acid.)
The somewhat surprising change of color which is often seen when the crude substance is boiled with nitric acid (sometimes from dull dark gray to crimson) is due to three concurrent actions-that of the mere heat, the removal of the silver, and the breaking up of uncombined su bchloride.
RELATIONS OF PHOTO-CHLORIDE TO HELIOCHROMY.
The photo-chloride was examined both with the spectrum and under colored glass.
The rose colored form of photo-chloride was that.
which gave the best effect. In the violet of the
spectrum it assumed a pure violet color, in the blue it acquired a slate blue, in green and yellow a bleaching influence was shown, in the red it remained unchanged. The maximum effect was about the line F, with another maximum at the end of the visible violet, less marked than the one at F.
Under colored glass the colors obtained were brighter; under two thicknesses of dark ruby glass the red became brighter and richer. Under blue glass some specimens gave a fair blue, others merely gray. Under cobalt a deep blue was easily obtained, and under manganese violet a fine violet, very distinct in shade from the cobalt. Green produced but little effect ; yellow was sometimes faintly reproduced, but rarely. But the yellow glass of commerce, even the dark yellow, lets through portions of nearly the whole spectrum, as can readily be seen by testing it with the spectroscope.
The dark purple forms of chloride do not give as good results as the rose and coppery shades. These last have many points of resemblance with the material of Becquerel's films-resemblance of color, probably of composition, as far as we can judge of the constitution of those films from their origin; they were far too attenuated to admit of analysis ; and resemblance in the curious way in which their color is affected by heat, so that the conclusion seems inevitable that they are at least closely related.
There is certainly here a great and most interesting field for experiment; hardly any two specimens of photo-chloride give exactly the same results with colored light, and this suggests great possibilities. There is the very great advantage in this method over any previous, that the material is easily obtained in any desired quantity, and in a condition most favorable for experiment.
The action of light on proto-chloride can be a good deal affected by placing other substances in contact with it. Any substance capable of giving up chlorine seems to influence the action somewhat; ferric chloride often acts favorably, also stannic and cupric chlorides. Evidently an important point in all heliochromic processes is that as white light must be represented by white in the image, it is an essential condition that white light must exert a bleaching action on the sensitive substance employed. Red chloride does not bleach but darkens in white light, but the property of bleaching, to a very considerable extent, may be conferred on it by certain other chlorides, and particularly by lead chloride and zinc chloride.
This I look upon as very important.
Another matter of interest is exaltation of sensitive ness, and this I find is accomplished in quite a remarkable way by sodium salicylate, the presence of which at least trebles the action of light on these substances, and probably on others.
I am persuaded that in the reactions which have been here described lies the future of heliochromy, and that in some form or other this beautiful red chloride is destined to lead eventually to the reproduction of natural colors.

Employers' Liability.

In many cases of injury to workingmen running machinery, it is difficult to decide which party is to be held responsible, or whether it is attributable to mere unavoidable accident, which it was impossible to caution or guard against. Each of the parties wants to shift the responsibility upon the other, the employe to recover damages from the employer, and the latter to shirk such obligation. Where the case is not quite plain, or is not settled by compromise, endless lawsuits are frequently the consequence. The legislative bodies of the various States and of all industrial countries have endeavored, therefore, to define」 the liability of employers; and building inspectors, factory inspectors, boiler inspectors, and a number of other similar functionaries have been appointed to see
that the laws are observed and that the regulations regarding precautionary measures to prevent accidents in factories are complied with. But the more numerous and the more specialized such enactments become, the less security they afford to the parties concerned,
and the wider a field do they open for legal trickery and the more loopholes for evasion.

The fact is, the very oldest part of our common law affords the best common sense as to the proper standpoints for judging of such liability, and there is perhaps more danger that legislators will, by statute, limit and impair the efficacy of the common law than that they will improve upon it by newly devised regulations. The English government has lately been collecting in formation as to the law in relation to this matter in other countries, and the reports seem to confirm the idea that in no other country are the provisions of the law so generally sound and wholesome as in France. mon law, and its provisions concerning them are thus formulated by the civil code:
ART. 1382. Any action whatever of a man which causes an injury to another obliges the person by whose fault the injury has occurred to repair it.

Art. 1383. Everybody is responsible for the injury he has caused, not only by his action, but also by his egligence and imprudence.
Art. 1384. A man is responsible, not only for the injury he has caused by his own action, but also for that which is caused by the action of persons for whom he is answerable, or of things in his charge.
The father, or the mother, after the decease of the husband, are responsible for the injury caused by their children [here the Roman law has: also guardians for injuries caused by their charges.-Ed.] who live with them, being minors.
Masters and employers for the injury caused by their servants [Roman: slaves] and overseers in the performance of the functions in which they have employed them.
Tutors and artisans for the injury eaused by their pupils or apprentices during the time they are under heir supervision.
This responsibility is incurred unless the father, mother (guardian, masters, and employers), tutor, or artisan prove that they could not prevent the action which gives rise to the responsibility.
Art. 1385. The owner of an animal, or the person using it, is responsible, so long as it is being used by him, for the injury which the animal has caused, whether the animal was in his charge or whether it had strayed or escaped.
Art. 1386. The owner of a building is responsible for the damage caused by its fall, when such fall has taken place in consequence of defective maintenance or faulty construction.
The principles laid down in these articles are almost verbatim translations of the Roman law, and are also nearly in the same wording contained in the old Prussian "Landrecht" compiled by Suarez, under the reign of Frederick II. They would undoubtedly be held as good common law in all our courts to-day, where not limited by some statute. They include, in fact, all cases of reponsibility imaginable, and our law makers have actually nothing more to do than to make regulations in reference to the use of steam power and machinery, whose violation puts the owner, employer, or overseer in a position of responsibility analogous to the owner of a building, animal, slave, otc., after the Roman law.

Uses of Slate.

Slate is not confined to its use as a roofing material by any means, but, on the contrary, is probably more universally used than any other stone. In composition and texture, it is admirably adapted to the reception of carved and moulded designs, is susceptible of a high polish, and possesses great power of resistance to the principal destructive elements, besides having the additional merit of wide range of color, embracing black, dark blue, purple, purple clouded green, gray clouded green, light green, and a clear, bright red. The scope of consumption is rapidly expanding, and among the uses to which slate is applied the following may be enumerated : Flagging, flooring, floor tiles, moulding for tiles, vestibule trimmings, slabs, etc., wainscoting, mantels, hearthstones, steps, risers, platforms, sills and lintels, turned balusters, laundry and bath tubs, sinks and wash trays, meat and watertanks, refrigerator and cooling room shelves, cistern linings, brewers' vats, mangers, butchers' and curriers' tables, bar fixtures, billiard table beds, urinals, school slates and blackboards, countertops, vault work, grave linings and covers, and memorial tablets. Of the above, no record of production or value can be obtained that would prove at all useful as a basis for estimates. Possibly, a faint idea of the proportions devoted to these various uses might be obtained from the production of the Slatington (Pa.) section, where, besides an output of 108,000 squares * of roofing slate, there were also made (in 1885), in round numbers, 39,900 cases of school slates, 31,850 pieces, or 1,430 cases, or 27 carloads, of flagging, 5,900 cases of blackboards, 30 cases of mantels and hearths, and 47 car loads of shaved slate.-Mineral Resources of United States.

A New Light for Instantaneous Photographs.
At a recent meeting of the Berlin Physical Society, Prof. C. W. Vogel communicated the most recent discovery in connection with instantaneous photography, by which it is now possible to obtain instantaneous photographs not only at night, but also in the darkest places. Messrs. Goedicke and Miethe have prepared a mixture of pulverized magnesium, chloride of potash, and sulphide of antimony, which when ignited produces an explosive, lightning-like illumination of such intensity that by means of it an instantaneous photograph can be taken. The speaker then gave a demonstration of the discovery by taking photographs of several persons present. He used the artificial light, of which each flash lasted one-fortieth of a second, and in a few minutes produced a picture during the meeting. The powders, as prepared by the discoverers, cost only a few pfennigs each, and will hence readily come into general use.
*A "square " is 100 square feet, weighs 600 lb ., and covers the same
area as 1,000 shingles.

A MILL TO FREE RICE FROM ITS HULLS The invention herewith illustrated, which has been patented by Mr. John A. Lockfaw, of Wilmington, N. C., provides a mill designed to receive the rice as it comes continuously from the thrashing machine, and separate the grains or kernels of rice from the hulls. The central operating shaft is hollow, The central operating shaft is hollow,
and as the rice is fed down the hopper it and as the rice is fed down the hopper it
is carried along the inside of this shaft by a spirally flanged conveyer, shown in dotted lines, and delivered in the center of the casing at the opposite end of the shaft, the shaft carrying upon this end a disk with roughened surface. Just in front of this disk, and held at its edges by the flanges of the two sections of which the casing is made, is a flexible diaphragm, preferably made of heavy canvas. At the rear of this diaphragm, and opening centrally into the chamber in which it is situated, is a.tube connected with an air pump operated by an eccentric on the main shaft, so that as the latter revolves, and feeds the rice forward from the hopper delivering it between the roughened disk and the diaphragm, there will be an air pressure at the back of the latter. This diaphragm is intended to be sufficiently yielding to prevent the rice from being broken as it is caught bet ween the roughened face of the disk and the diaphragm, by which the hulls are stripped from the kernels of the grain; and in order to prevent too high an air pressure being kept up in the chamber, a safety valve is provided in the top of the casing, through which the pressure is regulated by the tension of a spring. There is also mounted upon the shaft a pulley which drives a fan, the blast from which is delivered in front of an opening near the bottom of the casing, out of which the rice and hulls fall when the mill is in operation, the hulls being thus

Lockfaw's rice mill.

blown off. It is said that this mill works well practi cally, and exceeds the anticipations of its inventor.

A STEAM HEATED IRONING MACHINE.

The machine herewith illustrated is designed to facilitate the ironing of towels, napkins, table cloths, and other goods. It has two steam heated cylinders partly

CORBETT'S IRONING MACHINE.
inclosed in a sheet iron drum, in which are two doors, by the opening or closing of which the goods are made to pass out at the rear of the machine or are returned to the front, as the operator desires. In ironing collars, cuffs, and similar articles, which may require to be passed several times through the machine, one of these doors is closed, so that the goods passed through on that side are returned to the front until the work is suffi ciently ironed, when the articles are finally passed through on the other side and delivered through the other open door on the rear side of the machine. The
ironing is effected by the hollow metallic rollers shown which are operated by a belt from any convenient power, the journals of the rollers being tubular, for the entrance and escape of the steam necessary for properly heating the rollers, and any desired pressure is obtained by turning the small crank handles shown.

ROHLMANN'S WOOD TURNING LATHE

For further information address the patentee, Mr. Frank Corbett, No. 354 Bowery, New York City.

AN AUTOMATIC WOOD TURNING LATHE.

It will be readily understood from the illustration how the power communicated through the driving pulley operates the lathe spindle and its mandrel, and the worm on the same shaft, through which motion is imparted to the sprocket chain seen in front, which moves the tool carriage. The latter is adapted to slide on guideways on the main frame, and carries two adjustable tools. It also has an upper and a lower pocket, through which pass the upper and lower parts of the sprocket chain, engagement of the tool carriage with either part of which--thus giving the backward and forward movement-is effected by the engagement of arms on the tool carriage with tripping arms on the main frame.

The rear part of the tool carriage actuates a feeding mechanism for placing the wood to be turned automatically in the lathe between the mandrel on the operating shaft and the opposite end centering spindle, the feeding mechanism being supported upon ways secured to the main frame, which also support a rack or hopper, in which the wood to be turned is placed. As shown in the illustration, the block to be turned is held by the feeder in position to be grasped and held between the end spindle and the mandrel on the shaft of the driving pulley. The forward motion of the tool carriage effects this by disengaging a pivoted latch, when a weighted bell crank lever throws the spindle forward, the spindle taking hold of one end of the block, while forcing the other end centrally on the mandrel opposite, and the block is rotated by the operating spindle. At the same time the movement of the tool carriage turns a forward projecting rod of the feeder, which had acted as an arm to hold the block in position, thus releasing the block, and, by another lever, the carriage which had fed the block up into position is caused to slide backward till its front is directly under the rack or hopper, when another block of wood slides down upon it.
As the tool carriage moves to the left, the cutting tools, properly adjusted, finish the turning of the block, when the chuck on the tool carriage comes in contact with the one on the operating mandrel, pushing the latter to the left, thereby disengaging one end of the turned block, and raising a weight which holds the mandrel in locked position, while a lug of the tool carriage operates a bar that forces the spindle at the other end to slide backward, disengaging the other end of the turned block, which then drops out of the machine.
On the backward motion of the tool carriage, a lug thereon engages a lever which causes the feed carriage to slide forward, with the new block of wood to be operated upon held in position to be engaged by the mandrel on the operating shaft and the opposite spindle, as at first. The tools are easily adjusted or changed, their position on the top of the tool carriage rendering them readily accessible, and the special manner in
which the feeding mechanism is supported and opewhich the feeding mechanism is supported and opeout of the way, so that they will not interfere with the free working of the other parts of the machine.
This invention has been patented by Mr. Joseph Rohlmann, of 2001 Messaine Street, St. Joseph, Mo.

Do not Eat Raw Eggs.
In the Monatschrift zum Schutze der Vogelwelt, Proessor Liebe adduces reliable data in answer to the question whether living worms are to be found in hens' eggs. A short time previously his sister had found a round, thread-like worm, the length of a little finger, in the white of an egg. It moved itself in a very lively manner. She at once took the white of the egg to a druggist, who put the worm in alcohol. Professor Mobius, of Kiel, decided that the specimen was an example of the thread worm of fowls-Heteratis inflexa-often found in the small intestine of the domestic hen. Only a few instances of the existence of the same in the white of the egg have been recorded.-Allgemeine Medicinische Central-Zeitung.

A MINER'S TOOL TO CUT FUSES, SET CAPS, ETC.

The invention herewith illustrated provides a combination tool for miners' use, to cut the fuse, fasten the cap thereon, and to make a cavity in the powder, when desired, for inserting the fuse and cap, preparatory to its being fired. Near the pivot connecting the blades of the plier like tool are half round openings or slots having curved cutting edges, by which the fuse can be squarely cut into two parts. Near the front end of the tool are half round openings having inwardly project ing tusks or prongs, and when the firing cap is slipped over the cut-off end of the fuse, and the tool applied thereto, these prongs embed themselves in the thin metal forming the sides of the cap and firmly clinch it to the fuse. Within the handle is pivoted a pin, which can be readily swung out, as shown in dotted lines, and forms a serviceable tool for making a proper cavity for the fuse in the powder.
For further particulars relative to this invention,

HALE'S FUSE CUTTER AND CAP SETTER.
address Mr. C. D. Hale, patentee, or Mr. F. H. Cole, box 377, Lead ville, Col.

A DEVICE TO FEED THE SEED IN COTTON PLANTING

 Our illustration shows a hopper and seed feeding device therein which has recently been patented by Mr. Charles W. Oldham, of Mitchell, Ind. At or near the front of the hopper is journaled the crank shaft for operating the feed, the crank itself not being shown in our view, the shaft carrying a drum, and a block being attached to the shaft by cheek pieces. Connected to this block by a right and left hand screw rod is a similar block with cheek pieces, in the outer ends of which is journaled another shaft, carrying also a
drum, the distance apart of the shafts being adjusted by turning the screw rod. Over the drums thus carried by these shafts is placed a feed belt carrying outwardly projecting teeth, which, as the crank handle is revolved, carry the seed from the hopper over a low projection secured to the front end of its bottom. The hopper is filled with seed by lifting out the frame and feed belt to the position shown in dotted lines, and in operation the belt and frame rest upon the mass of seeds, feeding from the upper surface and lowering in the hopper as the mass diminishes.

THE PREMIUM FOLDING STOOL AND CHAIR.
The object of this improved form of chair is to permit a greater spread of the legs, which renders it more steady and more firm on its foundation, and also enables it to be packed into a small space for storage or transportation. It will be noticed that the slant of the back rest and of the legs is not the same, and to provide for these different slants, the back rest and legs are made in separate pieces. It is not possible to construct the back and legs of one continuous straight piece and accomplish this. If the legs were continued straight up to form the back, the inclination would be too great, while if the $b a c k$ is raised to a comfortable angle the legs would be too close together, rendering the chair uncomfortable and unsteady. This objection is sometimes overcome by curving the back and legs to an angle, but this prevents the chair from being folded into a very compact form. Since the back is independent of the slant of the forward legs, it may be adjusted to any angle desired, by simply changing the point of its pivoted connection. When folded, the chair occupies only about one inch and a half in thickness, and a space of 60 ft . will hold enough chairs for 500 people, or chairs of this design can be placed in a hall or opera house for seating 2,000 people, and yet may be stowed away under the stairs or beneath the side benches.

A very desirable feature of this chair is that the back section is made detachable, and the chair may thus be readily converted into a neat camp stool.
This chair is the property of Mr. Hiram F. Henry, of Gowanda, N. Y.

A PEN FOR DOUBLE AND SINGLE LINE RULING.
A ruling pen, consisting of two pens combined in convenient form for use, one of the pens capable of making two lines at a time and the other a single pen, is shown in the accompanying illustration, and forms the subject of a patent recently granted to Mr. Christian A. F. Orlob, of Salt Lake City, Utah Territory. The pens have each a square shank which fits into a corresponding aperture in a cross piece secured to the handle, and to use either pen singly one has only to turn the other in its socket at right angles to the normal position, or it can be readily removed from or socket. The center plate of the double pen is split into two prongs at the point, and the distance of the side plates therefrom is regulated in the usual way by the small nuts, according to the thickness of the line to be made, the pen, when filled with ink, making a double line without permitting the ink to run from one pen to the other. The other pen is such as used for ordinary ruling, but it has a joint to permit of or from the double pen, decreasing or increasing the distance between the double : ae and the single line.

BARROW' FURNITURE ATTACHMENT.

According to the semi-official Berlingske Tidende, the new repeating rifle of Captain Wadsen and Lieu tenant Rasmussen is to be introduced in the Danish army. In this rifle the barrel is not fixed to the stock, but is secured by a spring. In firing, the barrel is forced backward, by which motion the bottom plate of the breech is opened, the empty cartridge ejected, and a fresh cartridge pushed forward into its place, the magazine holding six cartridges. The bottom plate is then closed again, and all these movements are made automatically, so that the rifle need not be taken from the shoulder. All that is required to be done is that, as soon as the six shots are fired, the magazine is refilled. The rapidity of firing is stated to be marvelously rapid, as many as six shots having been fired in a second (?) In aiming, of course, more time is re quired; but if the aim is once taken, the six shots may be fired in succession.-Broad Arrow.

Gold on Alaska Islands.

Samples of ore from a new mining discovery in Alaska are on exhibition at the office of Geo. W. Sessions, in Nevada Block. The new mines are on Ounga Island, one of the Choumagin group, 100 miles west of Sitka, 200 miles east of Ounalaska, and 1,200 miles north of San Francisco. The island is near the southwestern shore of the Alaskan peninsula. It is about 14 miles long and 6 wide. Geo. C. King, who went there for the Sitka Mining and Commercial Company last summer to look for coal and copper, found the ledge in September. In December another expedition of the same company went up and made more careful in vestigation. The result was that early in April another experition, with a number of miners, a five stamp mill, and sup plies, landed on the island.
Active work was begun on the ledge. It has been traced for some 10,000 feet. It was found that the porphyry hanging wall on the east was 200 feet from the outcrop, the granite foot wall on the west was 800 feet from the outcrop, and the outcrop was at no point less than 100 feet in width.
To determine the value of the rock in the ledge, two crosscuts were started-one from the east side and one from the west-at a vertical depth of 50 feet. The crosscut from the west, at a distance of 20 feet, struck a body of galena ore, which was from 2 to 4 feet thick in the bottom of the cut, the day before Mr. Sessions left for home. The assays were from $\$ 5$ to $\$ 200$ in gold and silver, and the ore also carried from 70 to 80 per cent galena, which alone, at present quotations, is worth $\$ 80$ per ton.
It will be remembered that the big wine of Alaska, known' as the |Treadwell, is on an island-Douglassand there are plenty more islands to prospect. This new discovery will doubtless cause a more vigorous prospecting on the islands as well as mainland of Alaska. A mining district has been formed on Ounga Island, where the big ledge has been discovered.Min. and Sci. Press.

A DUSTLESS CARPET SWEEPER.

The invention herewith illustrated, which has been patented by Mr. John M. McClain, of Catlin, Col., consists of a fan wheel rotated in a sweeping box and a moistened dust catching wheel emptying into a water trough. The sweeping box has low runners on the sides, on which the device is pushed forward over the floor, and on its front is a vertically adjustable brush, one edge being provided with wire and the other with hairand jute bristles, the brush being reversible at will. As the device is pushed forward, a fan wheel in the front compartment is revolved by turning the crank, when a current of air is caused in the direction shown by the arrows, catching the dust raised by the brush and carrying it back over a dust pan and upward against a dust wheel. This dust wheel, which is set in motion by the current of air, just dips its rim in a water trough in the bottom, thus keeping itmoist, and at the same time deposits the collected dust there, the heavier particles not thus carried up on the dust wheel being deposited upon the dust pan, which is situated between the water trough and the open bottom part of the sweeping box in front.

A WALL PROTECTING ATTACHMENT FOR FURNITURE.
To preserve walls from being broken and furniture from being marred or scratched, Mr. Frederick Barrows, of Haverhill, Mass., has devised and patented an attachment, such as shown in the accompanying illustration. It consists of a roller of wood, rubber, or other suitable material, mounted to turn loosely on its axle, the latter being held in the upper and lower ends of a bowed supporting arm, which is pivoted between lugs upon a bracket secured to the back of the sofa or other article of furniture. A plate spring is also employed to exert a slight outward pressure against the back of the bowed supporting arm below its pivot. It is intended that two of these rollers shall be attached to the back of a sofa, bedstead, or other large article of furniture, while one will be sufficient for chairs and similar small pieces.

AN IMPROVED KEY HOLE GUIDE AND ESCUTCHEON. The practice of cutting a slot in the wood, where a mortise lock is used, to guide the key to the key hole, and covering this slot with the ordinary key hole escutcheon, is often carried out in so unworkmanlike a way as to make it difficult to insert the key in the lock. The register of the slot with the aperture in the lock is generally only approximate, and it is usually roughly cut and a good deal too large. To overcome

PATTERSON'S KEY HOLE GUIDE AND ESCUTCHEON.
this difficulty, Mr. Samuel S. Patterson, of 233 South Street, Wilkesbarre, Pa., has patented the combined key hole guide and escutcheon shown in the accompanying illustration. A circular recess is cut in the raming over and leading to the key hole, and therein is fitted a cylindrical boss, formed integrally with the escutcheon, but having a lzey hole slot which continues and exactly registers with that in the escut cheon, and also registers with the key hole of the ock. The escutcheon may be secured to the framing by screws in the usual way.

AN IMPROVED WATER GAUGE FLOAT

The accompanying illustration represents a glass water gauge attached to a boiler, and within the gauge a float of novel design, which has recently been pat. ented by Mr. Loudon Campbell, of Alexandria, Va. The float is made of dark blue glass, highly tempered to prevent its breaking, and is provided near each end with encircling rings forming projecting flanges. These rings serve as scrapers within the tube of the water gauge, during periods of ebullition and under the normal action of the boiler, scraping the froth and scum from the inner surface of the tube, and keeping it always in a bright and cleanly condition. The float thus indicates the height of water in the boiler in so plain a manner that it cannot fail to be observed by a casual glance, while it can be easily seen from a considerable distance. A spiral spring, not shown in the illustration, is placed in each end of the gauge
 tube to prevent breakage of the float when the tube is blown out and the float goes to the bottom.
This improvement is applicable to all classes of steam boilers, being especially desirable in gauges where the water used is muddy or impure. It is now being used by steamers on the Potomac River and by several manufacturing concerns.

MOCLAIN'S CARPET SWEEPER,

Death of a Notable Elephant.

Bijou, the great pet elephant who has for two years been on exhibition in the World's Museum on Washing Street, Boston, and previously was a resident of the Central Park menagerie in New York, is dead. This animal is the oldest and had been in captivity longer than any elephant ever on exhibition. Bijou has been in this country for sixty years, and while he is known to be seventy-five years old, the probabilities are that he was born nearly a hundred years ago. Recently he had suffered greatly from old age, and his efforts to stand up and receive cakes and candies from visitors at the museum, as he used to, were painful in the extreme. In the last two weeks his massive legs refused to support the weight of his huge body, and his attempts to respond to the call of his old trainer were very affecting. He would try to raise himself on his knees, and then reaching his trunk toward his keeper, knees, and then reaching his trunk toward h.
the huge beast would settle back and moan.
The old elephant had also lost his appetite and was growing thin. He found it hard to sleep, and lay awake nights groaning and in such evident pain that it was decided to kill him. A box of chocolate drops saturated with a powerful poison was given Bijou after the museum closed on the night of June 19, and in forty-five minutes the beast twined his trunk affectionately around his keeper and died. Bijou's body will be buried in an underground air tight vai until decomposition is complete. This will require some nine months, after which the bones will be separated, bleached, and then prepared, and in another month the skeleton will be placed on exhibition at the World's Museum.
Bijou was an African elephant. Sixty years ago he came to this country, since which time he had traveled with nearly every circus on the road. Twenty times, it is said, his ownership changed hands, and with each stranded show poor Bijou would get a new master. When a youngster he was owned by a London tavern keeper, who exhibited him with a pair of immense gorillas in his tavern, and from there he drifted across the Continent. When but an infant, Prince Albert of England rode him and made him a pet, but his after life was not so pleasant.
In 1840 he visited Germany with a prominent showman, and tramped back and forth throughout the world until 1873 and 1874, when he was an attraction in the Great Eastern Circus. Then O. P. Older, a well known circus man, purchased him, and later Bob Frier, an equestrian with Barnum's circus, broke him to tricks.
Bijou then went to California, and at last drifted back to New York. On the way home, in crossing a bridge Bijou refused, after trying the planking, - to make the passage. His keepers, it is claimed, goaded him on. He took a few more steps and plunged through the rotten boards, spraining his ankle, and since then he has never been himself.
While in the Central Park menagerie in New York, the agent of the World's Museum bought him. That was two years ago, and until within three weeks Bijou was never off his feet, even to lie down. He was considered one of the best trick elephants in the country. He played five tunes on the harp, played the harmonica, stood on his head, and did the housekeeping business for the circus with all the intelligence of his nature. During his sickness he has been fed largely on fruit, and a day's allowance included two dozen oranges, twelve loaves of bread, one hundred and fifty pounds of hay, half a bushel of grain, and a bucket of shorts.
Bijou was valued at $\$ 3,000$, and was probably better known throughout this country than any elephant ever on exhibition.-New York World.

Test for Animal and vegetable Fibers.
A nẹw method has been enunciated by Hans Molisch, in Dingler's Polytechnisches Journal (No. 261,135), for distinguishing between animal and vegetable fibers, depending on two new sugar reactions. α-naphthol and thymol give characteristic reactions with cane and grape sugar, which are more delicate than the tests of Trommer and Fehling in common use. The method of procedure is as follows: 5 cub. cm . of the sugar solution are mixed with one or two drops of a 20 per cent solution of α-naphthol in alcohol, and then concentrated sulphuric acid is added in large excess. A deep violet coloration is produced, which gives rise to a bluish violet precipitate on dilution with water. Thymol similarly gives a red brown precipitate. Glucosides and carbo-hydrates, after treatment with sulphuric acid, will also respond to these tests, so that the cellulose in the cell walls of plants may be detected by its use. As animal fibers do not contain any sugar or carbo-hydrates which are capable of giving this color reaction, they can be readily distinguished from plant fibers.
Satisfactory results have been obtained with linen cotton, hemp, jute, China grass, straw, and many other substances of vegetable origin; while wool, hair, etc., give no reaction. With silk, however, a transient color is produced, especially if the boiling has been continued for some time. When wool is to be tested, it is neces
sary that it should be first well cleansed, as "woo lice, " a feature of vegetable origin, gives the color reaction. Also, many fabrics made from animal fibers are finished with gum or mucilage, which must be removed before the test is applied. Any coloring matter present, according to the author, does not prevent the reaction from being seen.

A NEW STYLE OF THERMOMETER.

In the Scientific American for December 5, 1885, we published an interesting letter from Dr. Warren, of Boston, Mass., in which he described at considerable length the disadvantages of the common thermometer and the urgent need there was of a new form of instrument, especially for medical purposes. Since that date there has been brought into market a new and ingenious form of thermometer, Immisch's avitreous ther mometer, which seems to answer many, if not all, the requirements. We give an engraving of its exterior appearance and size, the cut being the same size as the article itself. The interior mechanism consists of a small tube, bent in circular form, having one of its ends fixed to a support, the other end free to move, but connected by a fine spring with a shaft carrying the indicating or dial pointer. The tube is filled with a highly expansible liquid. Any variation of temperature causes the tube either to curl or expand, as the case may be, and thus moves the pointer. There is a stop catch, by which the pointer may be held or locked to show its indication as long as desired.
The instrument is waterproof and durable, very sensitive to slight changes of temperature, and very accurate. This fact is established by the guarantee of the Kew Observatory, which accompanies each instrument. Altogether, this is a scientific and desirable form of thermometer, which every medical man especially should be provided with. Messrs. Sardy, Coles \& Co., 96 Maiden Lane, New York, supply the instruments and give further information.

LARVE OF bOT FLY in HORSES stomach.

by JAmes f. m'dougall.
I have lately had sent to me, by the son of one of our most eminent breeders, a portion of a horse's stomach, containing a great number of large maggots (the larval form of the horse bot fly) adhering in thick clusters to the lining of the stomach. The gentleman in forwarding specimen writes me that the number of maggots in the entire stomach would have filled a peck measure. I am strongly of opinion that these maggots are much
more prevalent in horses' stomachs than has hitherto more prevalent in horses' stomachs than has hitherto been made plain.
I have spoken to a number of veterinary surgeons with large country practices, and they inform me it is quite a common thing with horses that have died between January and June to find these maggots in large numbers in the stomach, especially if the animals were at pasture the previous summer or autumn.
The maggots are produced from eggs laid by the horse bot fly (Gastrophilus equi). The female deposits her eggs upon those places which are most easily reached by the animal's tongue, as, for instance, the

Horse bot fly maggots on lining of stomact.
shoulders, the legs, the inside of the knees, etc. The effect of the moisture and heat of the tongue seems to
be such that licking the places where the eggs have been deposited liberates the minute maggots contained in the eggs, which adhere sufficiently to the tongue to be carried from thence with the food into the stomach. On reaching the stomach they immediately attach themselves to the lining by means of two small hooks with which their mouths are furnished. Here they remain till the following spring, feeding upon the
mucus secreted by the mucous membrane. When full grown, they are about an inch in length. When the maggots are fully developed from the larvæ, they are removed from the stomach during ordinary evacuations. -The Farmere' Gazette, Dublin, Ireland.

Many Items of Interest.

At a recent meeting of the Polytechnic Society of Berlin, says the Journal of the Telegraph, the question was asked, What studies are best to fit one to be an electrical engineer? Herr Frischen, one of Siemens and Halske's experts, replied that much practical experience was required. After graduating from school, a rigid course in an advanced technical school should be taken, followed by an apprenticeship in a factory. He remarked that at present the title of electrician is He remarked that at present the title of electricia
used too freely, and that the claim of some to it is that they have nailed up a few wires.

A lens which magnifies, and yet is perfectly flat on both sides, is a scientific novelty. It is made at Jena, by the manufacturer of Professor Abbe's new optical glass. The lens consists of a single disk, whose density varies so that its refractive power decreases regularly from the surface inward.

To purify water in glass vessels and aquariums, it is recommended to add to every 100 grammes of water 4 drops of a solution of 1 gramme of salicylic acid in 300 grammes of water. The Norsk Fiskeritidende, pubished at Bergen, Norway, says that thereby the water may be kept fresh for three months without being renewed.

An observer down South says an alligator's throat is an animated sewer. Everything which lodges in his open mouth goes down. He is a lazy dog, and instead of hunting for something to eat, he lets his victuals hunt for him. That is, he lies with his great mouth open, apparently dead, like the 'possum. Soon a bug crawls into it, then a fly, then several gnats, and a colony of mosquitoes. The alligator doesn't close his mouth yet. He is waiting for a whole drove of things. mouth yet. He is waiting for a whole drove of things.
He does his eating by wholesale. A little later a lizard will cool himself under the shade of the upper jaw. Then a few frogs will hop up to catch the mosquitoes. Then more mosquitoes and gnats will light on the rogs. Finally a whole village of insects and reptiles settle down for an afternoon pienic. Then all at once there is an earthquake. The big jaw falls, the alligator blinks one eye, gulps down the entire menagerie, and opens his great front door again for more visitors.

The application of soda ash or any other scale resolvent to a dirty boiler, the editor of the Locomotive says, should be followed by a thorough cleaning shortly afterward to remove any scale which may be detached or loosened, or injury to the boiler may result. The dea obtains in some cases that it is only necessary to put the solvent into the boiler and let it work, no further attention being necessary. This is a great mis ${ }^{*}$ take. If a solvent does any good, its action is either to loosen scale so that it becomes detached in flakes, or it dissolves it so that it remains in the water, either in a finely divided state or in solution. In the first case, the accumulation of a mass of scale on the bottom of the shell is more than likely to result in burning the plates. The only thing to do is to open the boiler and emove it mechanically.
In the second case the result will depend more or less upon the nature of the scale and the amount and character of impurities that find their way into the boiler. If the scale is cut by the action of the solvent into a fine powder, and grease gets into the boiler, as it will in all cases where an engine exhausts into an open heater for the purpose of heating the feed, trouble is sure to result. Burned plates may always be expected under these circumstances. The only thing to do is to blow off all the water in the boiler, thoroughly clean it out, and begin again, omitting the grease.

Gold will only melt at a comparatively high temperature, as we all know, but what is not generally known, the Jewelers' Journal says, is that if two per cent of silica be added to the gold. it can be melted over the flame of a common candle.
From the same source the reader may learn that a pretty alloy, said to resemble gold exactly, can be made with 16 parts copper, 1 of zinc, and 7 of platinum. The copper and platinum are covered first with borax and then with powdered charcoal and melted, then the zinc added, and the alloy thus produced is exceedingly malleable, and can be drawn into the finest wire, while it never tarnishes.

Food Adulterations.

The examinations as to tea, coffee, and sugar conducted by Edward G. Love, Ph.D., for the New York World, resulted as follows:
A review of the 300 reports discloses that of the samples of tea, 88 were not adulterated and 12 were adulterated, mostly with "lie tea" and foreign leaves; that of the samples of ground coffee, 72 were unadulterated and 28 were adulterated, mostly with chicory and peas; that of the sugar samples, 98 were pure and only 2 adulterated with starch glucose. In all, there were, of the 300 samples, 258 good- and those of 270 were correct and 30 wero light.

Resin in Soaps and Fats.

According to the authors, the methods of Sutherland, Gottlieb, and Heiner do not give quantitatively useful results. 'They recommend a modification of Gladding's process. From 1 to 2 grms. soap are dissolved with heat in 80 per cent alcohol, the solution, if acid, is neutralized with ammonia, mixed with excess of a 10 per cent ized with ammonia, mixed with excess of a 10 per cent alcoholic solution of calcium nitrate, and filtered when
cold. The filtrate passes through at first turbid, and must be repeatedly poured back. The precipitate is washed several times with 80 per cent alcohol, mixed in a roomy flask with an excess of silver nitrate solution, and diluted with three volumes of water. After some shaking, the precipitate (if a sufficiency of silver solution has been used) collects on the surface, and the solution is nearly clear. It is filtered, and the precipitate is washed with cold water until the washings no tate is washed with cold water until the washings no
longer give a precipitate with hydrochloric acid. The washed precipitate is dried at 70° to 80°, and washed with ether into the same flask in which was the silver precipitate, and which must have been dried internally in the mean time.
After some time the ethereal solution is filtered through a dry filter into a graduated 100 c. c. cylinder, and the undissolved portion is washed with ether until the filtrate makes up 90 c. c. The ether which flows through last must be colorless. If 90 c. c. do not suffice, a larger graduated cylinder of about 250 c . c. may be used. The solution is then mixed with about 10 c.c. of dilute hydrochloric acid, well shaken for a long time. The cylinder is then filled with ether or hydrochloric acid up to the mark and shaken again. . If the operation has been well managed, the precipitate of silver chloride settles quickly, and the ethereal solution of the resin is quite pure and transparent. The volume is read off, from 50 to 60 c. c. are taken with a pipette, the ether is distilled off, the residue dried at 100°, and the resin weighed. From the weight we must deduct 1.6 mg . for every 10 c . c. of the ethereal solution, on account of oleic acid which has been dissolved.-A. Grittner and J. Szilasi, Chemiker Zeitung.

A Steam Engine of 1809 .

Retained in perfect running order in the United States Steamboat Inspector's office at Louisville, Ky., says the Louisville Courier Journal, is an oscillating
engine constructed in 1809 by Daniel French. It is engine constructed in 1809 by Daniel French. It is the kind ever constructed. Its description is simple. Having its piston rod attached directly to the crank pin, as the crank revolves, the cylinder oscillates upon trunnions, one on each side of it, through which the steam enters and leaves the steam chest. The valves are within the steam chest, oscillating with the cylinder. It is perhaps as satisfactory an engine of this class as has ever been built, for it is well known that the mechanism actuating the valves in oscillating steam engines has seldom proved perfectly satisfactory in its operation.
The inventor, whose son carried on a shipyard for years at Jeffersonville and was well known to many of the older citizens of the city, was contemporaneous with Robert Fulton, who built a steamboat on the Seine in 1803 with Chancellor Livingston, and who, in 1806, with Livingston, had a boat built on the Hudson, in which he placed machinery claimed to have been made by Boulton \& Watt in England.
Daniel French had litigation with Fulton about this steamboat, claiming that the latter had appropriated his invention, but Fulton was backed by Livingston's influence and capital; and, though the case was before the courts for many years in one form and another, French was finally defeated. Although the oscillating engine on exhibition in the steamboat inspector's office was not built till 1809, it was by no means the first attempt French had made to invent an engine applicable for steam navigation. He had been known as an inventor for a quarter of a century before, and his numerous inventions of different kinds had given him an extensive and esteemed reputation. Those who knew him were wont to say that he was half a century ahead of the time in which he lived.
It is not improbable that Fulton was familiar with French's experiments with steam. It is an historical fact that in connection with his profession as an en gineer he had passed years in the scientific experiments the result of which forever identified his name with steamboat navigation. It is not to be doubted, therefore, that he was acquainted with the efforts of every experimenter of the power of steam in this direction, from the time that Blanco de Garay is supposed to have actually applied steam to the propulsion of a ship at Barcelona, in the year 1543, up to the
time when, in 1763 , William Henry, of Chester County, time when, in 1763, William Henry, of Chester County,
Pennsylvania, tried his model steamboat on the Conestoga river. Fulton witnessed that experiment, and it is a matter of record that he was familiar with the work of the numerous contemporary inventors in America, and had visited England, where he found others at work on the same problem. But with this invention, as with all others, though the claimants may be numerous, the credit attaokes to the one mest may be numerous, the credit attaches to th

A most important and interesting series of experiments was lately carried out at the School of Military Engineering, Chatham, England, under the superintendence of Major Sale, R.E., and in presence of Lieu-tenant-General Sir John Stokes, K.C.B., R.E., Admiral Colomb, Major Cundill, R.A., Her Majesty's Inspector of Explosives, and a large gathering of other officers of Explosives, a
and gentlemen.

and gentlemen. The new Ger

The new German explosive, roburite, belongs to what is known as the Sprengel class or type, being a mixture of two substances, neither of which separately possesses explosive properties. In this case both components are solid, and the resulting mixture has a sandy, granular appearance, somewhat resembling the commonest yellow sugar. Roburite is the invention of Dr. Carl Roth, an eminent German chemist and analyst, who claims for it the following advantages over other explosives:

1. That the two components are perfectly harmless and inert separately, so that they can be stored and transported without any restriction whatever.
2. That even when mixed or ground up together in an ordinary coffee, cement, or flour mill, the mixture is perfectly safe to handle and use, as neither percussion, friction, nor the application of an ignited or heated body will cause it to explode. This can only be effected by using a detonator charged with fulminate of mercury.
3. That, when detonated, roburite produces neither spark nor flame, and will not, therefore, ignite firedamp nor coal dust in mines. Dr. Roth states that this point was decided by the trials of the Imperial German Commission upon Accidents in Mines, and that, in consequence, this explosive is now being introduced into the coal mining regions of Germany, as affording absolute safety to the men employed.
4. The amount of noxious gases produced by its explosion is so infinitesimal, that for this reason alone it is superior to other exlosives in common use for longitudinal and deep mining work. The report from a mine in Westphalia, with shafts about $1,500 \mathrm{ft}$. deep, states with reference to roburite: " The men are not
inconvenienced by the gases, and experience no difficulty whatever in breathing the moment after a shot has been fired, and they resume their labor at once."
5. Roburite is not subject to deterioration through climatic variations of temperature. It should be kept dry, but if it becomes damp, its strength can be safely restored by drying.
The object of the trials was to test roburite in comparison with gun cotton, dynamite, and blasting gelatine. The programme of the experiments actually carried out was as follows:
A. Safety Tests.-After being ground through a small hand mill, the substance was struck direct and glancing blows with heavy hammers upon iron plates, without any result. Flame was then applied to a portion of it by means of a short length of Bickford fuse, but without igniting the mass. Thrusting a red hot iron from a portable forge into the roburite caused only slow combustion and crepitation locally, which ceased when the iron was withdrawn. When a quantity was
put on the forge fire, it merely burnt a way like an orput on the forge fire, it merely burnt away like an or-
dinary combustible. Dr. Roth wished to fire a powder charge in contact with the roburite, but it was considered that the above named tests were more severe.
B. Test on Mild Steel Plates, 2 ft .6 in. by 2 ft .6 in . B. Test on Mild Steel Plates, 2 ft .6 in . hy 2 ft .6 in .,
and of various thickness.-These plates were supplied and of various thickness.-These plates were supplied
by the Patent Shaft and Axletree Company, Limited, and were laid flat in shallow trenches, a hollow being left underneath the central portion of each plate; heavy timber balks were stacked around each square
trench, with the object of showing the comparative distrench, with the object of showi
persive force of each explosive.
I. Three pounds each of dynamite and roburite were placed on the center of plates 2 in . thick, some sandy oam being piled loosely on top. The results of detonation were that the dynamite produced a dent in center of plate $13 / 4 \mathrm{in}$. deep; the indentation produced by the roburite was about $11 / 2 \mathrm{in}$. deep, but the bulge appeared to have a wider area than in the former case.
II. Five pounds each of roburite and gun cotton were then exploded upon the same plates, with the result that in the former case the plate was smashed into four tolerably equal pieces, while the gun cotton made a breach through the center of the plate somewhat resembling that which would be caused by the penetra-
tion of a large projectile. The diameter of the hole tion of a large projectile. The diameter of the hole
was roughly 12 in., with five radial fissures almost reaching the edges, the longest 15 in ., the plate being at the same time bent into the shape of a pack saddle. This would seem to have been a remarkably tough piece of metal. The timber balks were scattered in all directions.
III. Eight pounds each of dynamite and roburite were then detonated upon plates 3 in . thick. The dynamite caused an indentation $21 / 4 \mathrm{in}$. in maximum depth, while the roburite gave a bulge 3 in. deep in the to the corners of the plate.
IV. This series of tests was concluded by exploding
thick, rather more loam being heaped on top of each. The roburite caused a wide indentation $1 / 8 \mathrm{in}$. deep in center, while the tremendous local force of the gun cotton was exemplified in a striking manner. In addition to an indentation $31 / 2 \mathrm{in}$. in greatest depth, a small crack appeared to extend right through the plate, this crack corresponding with one edge of the lowest slab of gun cotton, the rectangular shape of which could be clearly seen indented on the steel plate, the depth being $1 / 4 \mathrm{in}$. at the crack and $1 / 8 \mathrm{in}$. along the other edges of the slab. There is a circular hole drilled in the slab of wet gun cotton to receive a small cylindrical disk of dry gun cotton, as a primer, and the po-
sition of this disk was marked by a circular hollow in sition of this disk was marked by a circular hollow in the steel plate $1 / 2 \mathrm{in}$. deep in center.
C. Blasting or Mining Test in Brickwork.-Three holes, each $11 / 4 \mathrm{in}$. in diameter and 18 in . in horizontal depth, were drilled in the solid brickwork of the counterscarp wall, and were respectively charged with 2 oz . of gun cotton, blasting gelatine, and roburite. The
holes were then tamped with loam in the ordinary manner, and fired by means of short lengths of Bickford fuse. The gun cotton produced no apparent effect upon the brickwork, but Major Sale was of opinon that the hole must have been open or very weak at the back. The blasting gelatine produced violent ocal action, displacing the brick through which the hole had been bored and the four adjacent to it. There was a slight bulge in the wall, the cracks extending radially from 10 in . to 12 in . The roburite exhibited a more widespread rending action upon the wall, the radius of disturbance being 15 in . or more, and the bulge being also greater. Rather larger charges of each explosive would have afforded a more satisfactory comparison.
D. Ground
D. Ground Mines.-Ten pounds each of gun cotton, blasting gelatine, and roburite were loaded into holes in the bottom of the ditch 4 ft . deep by 8 in . in diameter, filled up with sand, and slightly tamped. The explosion of these charges cast up tremendous fountains of loam and sand, and resulted in the following craters: Gun cotton, $10 \mathrm{ft}$.6 in . wide by $1 \mathrm{ft} .81 / 2 \mathrm{in}$. deep; gelatine, 14 ft . 6 in . wide by 3 ft .7 in . deep; rodeep; gelatine, 14 ft . 6 in . wide ft y 3 ft . 7 in . deep; ro-
burite, 12 ft .3 in . wide by 2 ft 9 in . deep. The explosion of the gun cotton mine appeared to cause great local action, but it will be seen that the area and depth of its crater was considerably less than that caused by the roburite, which again must yield the palm, in this instance, to the blasting gelatine. It is, however, to be remarked that these mines had been placed much too close to one another, so that their craters crossed; this would give whichever charge was the last to explode a certain advantage.
In summing up the results of the foregoing experiments, we must bear in mind the great difficulty-we
had almost said the impossibility-of obtaining any absolute standard of comparison of the relative strengths of two or more explosives. Each will seem to prove itself superior for certain purposes. Judged, however, by any standard of comparison, it appears that the new explosive has acquitted itself very well, and-especially when we consider its absolute safetymust have a great future before it. Roburite has shown itself to be in some respects more powerful than dynamite, to which it is likely to prove a serious rival in the industrial field, although the latter has the proverbial advantage of strong possession of the ground. An important element in the struggle for ascendency will be the price at which roburite can be supplied, as compared with dynamite, and this will be, we understand, strongly in favor of the new substance.
As regards the military application of explosives, there is nothing in the results of these trials to disturb the firm conviction of our government that gun cotton is the best adapted for torpedo charges, submarine mining, and hasty demolitions of all kinds. Its superiority in local force to dynamite, when employed without any confinement, is once more strikingly demonstrated, to say nothing of the far greater safety of wet cotton, and its applicability for use under water with no other confinement than that of a net to keep the slabs together. But although quite, outside the scope of recent experiments, the great power and perfect safety of roburite seem eminently to fit it for use as a bursting charge for shells, into which its granular form would allow it to be conveniently loaded. Much stronger than any picric powder, and doubtless better able to withstand the concussion of the discharge of the gun, an extended series of trials would be necessary to determine the best mode of so employing it.-Engineering.

Coppered Tin.

Mr. P. H. Laufmann, Pittsburg, is manufacturing copper-plated sheet steel, which indicates a newuse for that metal. The sheet is made of decarbonized steel, and is manufactured at the Apollo Sheet Iron Mills. After being rolled to the proper thickness, it is electroplated with copper on both sides and tinned on one side, and in this condition, it is stated by the manufacturers, it is a better article for many purposes than

NEW FRENCH ARMORCLAD CRUISER LE TERRIBLE
It appears that the fleet of armorclads, which not long since appeared to have grown senile in the presence of the more modern torpedo boat, is now more in favor than ever with the navymen. All the great nations are taking every step to increase the efficiency of their navies, both in constructing ships of enormous tonnage and in constructing new types of ships. Without leaving out of sight the necessity for a fleet of torpedo boats, France ought to follow this movement. The maneuvers of last year have not dethroned the ironclad. Those of this year, we are ready to affirm, will not lessen the prestige of those magnificent ships which are the honor of our navy. Let us rejoice at this most recent addition to the fleet of a new type of cruiser.

The Terrible, which was launched in 1881, satisfactorily finished its trial test during the latter part of the winter. It is now entirely finished. This ship is a mate of the Requin, which was constructed in the shipyards of the Loire, and which was launched in 1885.

The hull is of iron and steel, and measures 280 ft . in
art, and to that portion of his invention which does not include any portion of public knowledge, or the work of other inventors, whether patented or not in any country, and that the time covered by this investigation covers the early period of their history before the system was thoroughly formulated and crystallized by legal decisions, this is a remarkable showing, testifying to the skill of the patent solicitors, and also the examiners in their patent department.
It is difficult to estimate the value of the patents still in force. Although such estimates have been made, they are necessarily vague and void of the precision essential to accurate statistics; yet the amout of capital invested in faith upon the validity of patent protection is very large, and generally remunerative to a satisfactory degree.-Engineering.

The Exhaustion of Petroleum.

A writer in Home Knowledge discusses the problem of the exhaustion of our oil fields in the following man| ner: |
| :---: |
| It |

nearly exhausted. In less than a generation a small part of the population of this continent alone has used up nearly all the valuable stores of energy which had been accumulated during millions of years of the geologic past.
More recent inquiries confirm the conclusions of Professor Lesley and Mr. Carll. The signs of exhaustion in the oil-producing regions can now be clearly recognized. During the last four years there has been a steady diminution in the output, accompanied by an increase in the price per barrel, which nevertheless does not even maintain the nominal annual value of the supply. Mr. Wrigley announced in 1882 that 154 , 000,000 barrels of oil had already been raised up to the beginning of that year, and expressed the opinion that not more than $96,600,000$ barrels remained to be raised. In this last estimate he was undoubtedly mistaken. for up to the beginning of 1885 no fewer than $261,0 \times 0,000$ barrels had been raised, and in the year 1885 as many as $21,042,041$ barrels (nearly $3,000,000$ fewer than in 1884) were obtained. But although the estimate of 1885 of were obtained. But although the estimate of 1885 of
the quantity of oil still remaining fell far short of the

THE NEW FRENCH ARMORED WAR SHIP TERRIBLE-7,200 TONS DISPLACEMENT.
length, 59 ft . beam, with a draught of 23 ft .9 in ., 7,168 tons displacement, with armor plating 50 centimeters in thickness amidships, 37 centimeters forward, and 33 centimeters aft. It is provided with 12 boilers.
The armament, mounted on the forecastle, consists of two cannons of 47 centimeters, four cannons of 10 centimeters, and ten machine guns. There is a complement of 332 men.-L'Illustration.

Stability of Patents.

Although the patent system of the United States involves a search on the part of the government as to the novelty of the invention, yet it has been a frequent remark on the part of the general public that few patents can stand the tests of the courts. This ratio is sometimes stated to be as high as nine out of ten, or some equally conventional fraction. A member of the bar has recently tabulated the adjudication of patents by the United States courts, as recorded in Meyer's Federal Decisions from 1776 to 1835 , and finds that 73 per cent of the patents upon which suit was brought were sustained. The total number of patents brought to an issue was 983 , and of these 269 were annulled, and of the remaining 714 which were held valid, 480 were sustained in full, and 234 were held to be valid in part. When it is considered that the United States patent law requires that protection can be accorded only to the original inventor who has added to the state of the
both of oil and gas has now been so largely drawn upon that within less than a score of years scarcely any will be left which can be brought at reasonable cost into the market. The boundaries and extent of the oil regions have been determined. All the sands in which oil will ever be found in such quantities as to be worth working are known, and have been drilled through in various places. It is scarcely possible that any new fields will be discovered which will be comparable, either in extent or productiveness, with those now known. So far back as January, 1883, Professor Lesley pointed out that no petroleum is now being produced in the Devonian rocks, either by the process akin to distillation or otherwise. What has been stored up in the past, a process which probably lasted for millions of years, may be got out. But when these reservoirs are exhausted, there will be an end of the petroleum supply. "The discovery of a few more pools of $2,000,000$ or $3,000,000$ each can make little difference." Mr. Carll, whose opinion on the geology of the oil-hearing districts may be regarded as decisive, has come to a simiar conclusion. "Thereare not at present," he pointed out quite recently, "any reasonable grounds for expecting the discovery of new fields which will add to the declining products of the old, so as to enable the output to keep pace with the shipments or consumption.'
The stored petroleum in this region has then been very
truth, and though we may admit as possible that even now much more oil remains to be put out than the most experienced geologists suppose, the signs of approaching exhaustion are yearly becoming more unmistakable. The expense of bringing the oil to the surface grows greater year by year, and threatens soon to become so great that the profit of working the oil stores will be evanescent. So soon as that state of things is approached, we may be sure that the oilmen's occupation in Pennsylvania and western New York will be gone. It has been stated that the Japanese, unwilling to let the least fraction of the earth's interior stores be lost, have been known to excavate a vertical shaft to a depth of 600 feet in order to raise a few gallons of oil per day. But in America, when the oil mines are so near exhaustion as this, they will be abandoned; nay, they will be abandoned long before they approach such a condition. With the failure of the oil supply all the collateral branches of industry associated with it will fall, too.

The green diarrhœa of infants is, according to Dr. Hayem, caused by a microbe which secretes the coloring matter characteristic of the complaint. The disease is epidemic and contagious. The best treatment, he said in his communication to the Academy of Medicine, is to give the child after each feeding a teaspoonful of 2 per cent lactic acid.

RAISING A SUNKEN STEAMSHIP.
(Continued from first page.)
out as much of the cargo as the depth and other conditions admit, and then, if the hull is dangerously near the surface, blow it apart. The Merritt wrecking organization of this port, however, had such success in raising a sunken ship, the Lornty, in New York bay some time since, that the owners of the steamer determined to trust to them the work of raising the wreck. In spite of difficulties other than those interposed by nature, and which could scarcely have been foreseen, the steamer Welles City will in all probability soon be lifted intact from the bed of the river.
The work done by the wrecking company is as unique as it is interesting, and we will endeavor, by means of the clever drawings made by our artist, to describe its progress and the nature of the difficulties which from time to time appeared, though ineffectually, in the way of its accomplishment.
Fig. 3 is a picture of the steamer, and is from a photograph taken shortly after the steamer went down. As will be seen, she is half-brig rigged. Her topsail yards are cock-billed, showing that when she went down she had been made ready for docking. The

Fig. 1.-CROSS SECTION OF THE SUNKEN STEAMER, PONTOONS, AND SLINGS.
taut by the aid of fall-and-tackle and hydraulic jacks, and are then toggled on securely.
In the present instance, it was a difficult matter to get the chains under the ship, first because her hull was in some places sunk fully fourteen feet in the muddy bottom of the river, and again because of the unusual size of the chains required If the reader will refer to Fig. 2, he will see a representation of the preliminary process of keel-hauling a sunken ship. The "sweep" chain, a light chain, has been dropped over the bow, and the diver is engaged in thrusting it under the fore-foot of the stem, so that it will run clear when pressure is put on from above to work it completely under the hull. This operation is called "sawing," and consists in working the chain from side to side until it forces its way through the sand and reaches that part of the hull where the first heavy or lifting chain is to be placed. The links of this sweep chain are only one-half inch in diameter.
Now the men attach a one inch messenger chain, and when the end has been pulled by the sweep chain completely around the hull and up to the surface on the opposite side, another and larger chain, and, perhaps, even another yet, takes the place of the first, until finally a big chain, with links $21 / 2$ inches in diameter and 14 inches long, is finally pulled completely

Fig. 2.-mode of placing the slinging chains.
shrouds and stays are intact, and her smokestack shows its white band under the black-the insignia of the line to which she belongs. Here are her dimensions : Length, 275 feet; beam, 36 feet; depth, $23 \cdot 6$ feet ; tonnage, 1,936 gross. The upper structure is of iron, and the hull of steel.
She was loaded with 25,000 boxes of tin and other cargo amounting to 1,900 tons, and before anything was done toward lifting her, this was removed by the aid of divers, as in the ordinary way.

In the old method of lifting a small vessel to the surface, ropes were made fast to the hull, fitted with a traveler, and then watertight casks forced down and made fast. Later on, this system was improved by sinking pontoons filled with water and carrying temporary weights; and when these were hooked on and the weights removed, the water was pumped out by means of hose connecting the pontoons with a steam pump affixed to the deck of the tender on the surface. This was an awkward, a costly, and, worse than all, an uncertain method, and utterly inadequate for the floating of a great ship like the Welles City. Captain Merritt's pontoons (see Fig. 1, A A) are of three sizes-100, 60, and 50 feet in length-and have apertures or wells isosceles triangle shaped (B B), which on deck are only large enough to admit. heavy chains, but gradually enlarge toward the bottom, so as to admit of the play of the chains which descend through the pontoons which float on one side of a sunken vessel, and, passing under her hull, are carried up through the centers of the pontoons on the opposite side. These chains are hauled

Fig. 1.-IMPROVED AUTOMATIC CUT OFF ENGINE.
[for degcription see page 24.]
around the hull. This pro cess is continued until a series of big chains are wrapped about the hull and brought up, as said before, through the openings in the center of the pontoons overhead.
The front page cut furnishes a good view of the sunken ship, with most of the large-sized lifting chains already set in position at stated intervals from stem to stern ; the chains being closer together and most numerous immediately under that section of the hull which contains the boilers and engine. Immediately above, and on either hand, the big pontoons are floating; being kept apart, those on one side from those on the other, by stout those on the other, by stout cross beams, so that, when
the ship is finally lifted, there will not be any impediment in the way of her reaching the surface. While some of the seventy men who comprise the wrecking crew are engaged in hauling and setting the chains, others lower away hogsheads filled with water into the open hatches of the sunken ship. When a score of these have been thus lowered, the process momentarily stops, and the diver at work down deep in the bowels of the hull makes them fast, and then attaches the end of a hose, let down from above, to the bunghole of each in turn. The men on the deck of the wrecking schooner above apply the steam pump to the upper end of the hose, and the hogsheads, as they are emptied of their contents, have their plugs driven home by the submarine workman, who wields a heavy hammer fitted with a tapering driving end. These empty barrels, as may be imagined, add to the buoy ancy of the hull and sensibly
lessen the lifting power required to raise the ship. And now we have the pontoons, the chains, and the tackle all ready, and only await the change from the ebb to the flood tide to begin bringing the sunken steamship to the surface. As soon as low water slack occurs, the river water is let into the great pontoons till their decks are fairly a-wash in the surface of the river. The slack of the chains is quickly gathered in, the fall-and-tackle, which, as may be seen in the frontispiece, depend from the tops of the standards on the pontoons, are called into action, the hydraulic jacks are worked, and the chains hauled taut. As the flood tide serves and the waters gradually rise, the great steam pumps are set to work and the water is pumped out of the pontoons, and it is now a question whether the weight of the sunken ship-2,000 tons-which keeps her below is greater than the inclination of the great submerged pontoons or air chambers to force their way to the surface with their burden. If not, then the hulk will leave the bottom of the river, and the whole mass-pontoons, tenders, and the depending wreck-guided by powerful tugs, follow the flood tide up stream. Referring to the hydrographic chart, a shoal spot is discovered in the river bed, and pretty soon the sunken ship is directed toward and grounded upon it, and, at the next low water, the pontoons are again flooded
Once more they sink to their upper surfaces, once more the slack of the chains which support the hull is gathered in, and the water again pumped out of the pontoons. At the next flood tide, the pontoons show moro and more of their sides above the surface, and the hulk again forsakes the river's bottom and is towed to another and still another shoal spot, the pontoons being flooded at low water and pumped out at high water till finally her decks are above the surface. Then the steam pumps are set to work upon her, and she is freed from water. Now the great, ugly pontoons and wrecking schooners that so ill become her are cast off, and once more the gallant ship is free for a further career of utility.

The difficulties which beset the way of wreckers engaged in such an enterprise as raising a great ship like this from the bottom of the river are many and continuous, and sufficient to deter even the most skillful were they not led by so courageous and resourceful a master as Captain Merritt. Little or nothing could be done save during slack water, say two hours during the twenty-four at most, and of ten not so much as this, because the spring tides this year. owing to the unusual rainfall, were very heavy, and consequently the low water slack has been so short in duration as to be at times scarcely perceptible; the great rush of waters down stream toward the estuary formed by the junction of the two rivers often overpowering the incoming flood from seaward until well along toward the end of the first quarter. The ebb has claimed the mastery for more than its allotted six hours; the effect being the
backing up of the waters of the bay against the yet running ebb of the river. In this swash the wreckers had to work while the pontoons rolled from side to side in the contention of the waters.
At times, toward the middle of the ebb tide, when the swollen waters of the upper river got fairly under way, the current rushed by the point where the wreckers were at work, at a speed of quite four knots
an hour ; and one day, while the struggle for mastery between the ebb and flood tide was in progress, and the waters of the bay were backing up against the river's ebb, so severe was the wrenching of the great chains against the steel keel of the sunken steamer, caused by the bobbing about of the pontoons holding
the ends above water on either side, that one of these great chains was cut in two. The writer saw the parted link. It was fourteen inches long by two and a half in diameter, and was almost bent double, being cut through the center as if by a knife.
At times, before the heavy chains were fairly made fast around the hull of the wreck, the wrecking colony were almost torn from their moorings by tows coming down stream and stupid lightermen going up. On one of these occasions-it was on the early morning of March 27 , before the cargo of tin had been taken outtwo barges, the one loaded with brick, the other with plaster, drifted down upon them. The first scraped clear, while its mate ran foul of the protruding foremast of the sunken steamer, carried it away, and then went down, cargo and all, and settled itself athwart the fore hatch and foc'-s'le deck of the wreck. This had to be removed before the work could go on, because it was directly in the way of the sweep chains while passing under the bows of the sunken ship,
It is worthy of remark that the steamer Lone Star of the Morgan line, whose bow cut down the steamer Welles City, was destroyed by fire while lying at the cotton wharf on February 28.

The Photography of Projectiles,

A photographer at Pesth has succeeded in taking photographs of projectiles, fired from a Werendler gun, while having a velocity of 1,300 feet per second. The projectiles appeared on the impressions enveloped in a layer of air hyperbolta in form,

IMPROVED AUTOMATIC CUT OFF ENGINE.

The engine illustrated on the preceding page is manufactured by Messrs. McIntosh, Seymour \& Co., of Auburn, N. Y. Great care has been taken that all the details should be in accordance with the best practice, and in design the engines are as compact and rigid, and as heavy in the stationary part, as could be desired. Those sections of the moving parts which usually show weakness have been made unusually heavy, although their gross weight has been carefully kept down. All the wearing surfaces are generous, and various devices for oiling them while the engine is running have been provided. Correctness, simplicity, and superiority of is laid to the efficiency of the balanced valve and the governor or automatic cut off regulator.
The valve is made very tight, has cast iron ends, and a tube connecting them. This is like the ordinary piston valve, and has been made in this form because it is very simple in form, is easy to make, and is perfectly balanced. In order to obviate the ordinary wear and tear from friction and the consequent loss of steam, an adjustable seat is provided, which consists simply of a crescent-shaped ring having steam ports through it which match with the ports in the steam chest itself. The ring is split, and is adjusted in place by a stem, which extends to the upper side of the steam chest, where it can be turned by a wrench. This construction enables the ring to be adjusted at any time a leak is discovered, and this may be accomplished quickly and easily. By using valves of large diameter and somewhat long trave ${ }^{5}$
The governor is located in the fly wheel, and consists mainly of a pair of weights pivoted at the periphery of the wheel and having inclined jaws, in which slide blocks, as shown in Fig. 3. These blocks turn freely in a pendulum, which is also pivoted near the periphery of the wheel (see right hand of governor in Fig. 2), and which is further connected with the eccentric and serves to either raise or lower the eccentric when it is subjected to a similar movement by the action of the sliding blocks in the jaws of the weights. As the speed of the engine increases, the weight will be lifted by centrifugal force against the action of the springs, and as they move outward the pendulum will be thrown over by the inclination of the jaws. This brings the center of the eccentric nearer the center of
of the shaft and shortens the travel of the valve thereof the shaft and shortens the travel of the valve, thereby reducing the cut off and, consequently, the supply of steam supplied to the cylinder.
The extreme change of speed from when the engine is running light to when it is working under its maximum load is very slight. In some experiments made to test this point the variation in speed when the load was changed from 1.1 h . p. to $38 \cdot 8 \mathrm{~h}$. p. was only one half a revolution.

How to Catch and Preserve Moths and Butterfilies.

There is no part of our country in which one cannot form a beautiful local collection, and any young person who wants amusement, instruction, and benefit from two, three, or more weeks in the country can find all in catching butterflies and moths, arranging them, and studying them up.
Provide yourself first with two tools, a net and a poison bottle. The net may be made of any light material. I find the thinnest Swiss.muslin best. Get a piece of iron wire, not as heavy as telegraph wire, bend it in a circle of about ten inches diameter, with the ends projecting from the circle two or three inches; lash this net frame to the end of a light stick four or five feet long. Sew the net on the wire. The net must be a bag whose depth is not quite the length of your arm you can easily reach the bottom with the bottle (to be described) in the other hand. Never touch wing of described) in the other hand. Never touch wing of
moth or butterfly with your fingers. The colors are in the dusty down (as you call it), which comes off at a touch. Get a glass bottle or vial, with large, open mouth, and cork which you can easily put in and take out. The bottles in which druggists usually get quinine are the most convenient. It should not be so large that you cannot easily carry it in your pocket. Let the druggist put in the bottle a half ounce of cyanide of potassium ; on this pour water to the depth of about three-fourths of an inch, and then sprinkle in and mix gently and evenly enough plaster of Paris to form a thick crean, which will set in a cake in the bottom of
the vial. Let it stand open an hour to set and dry, then wipe out the inside of the vial above the cake and keep it corked. This is the regular entomological poison bottle, used everywhere. An insect put
quietly at once. It will last several months.
ietly at once. It will last several months
These two tools, the net and the poison bottle, are your catching and killing instruments. You know where to look for butterflies. Moths are vastly more numerous, and while equally beautiful, present more
varieties of beauty than butterflies. They can be found by daylight in all kinds of weather, in the grass fields, in brush, in dark woods, sometimes on flowers.
shut wings on the trunks of trees in dark woods. The night moths are more numerous and of great variety. They come around lamps, set out on verandas in the night, in great numbers. A European fashion is to spread on tree trunks a sirup made of brown sugar and rum, and visit them once in a while at night with net and lantern. Catch your moth in the net, take him out of it by cornering him with the open mouth of your poison bottle, so that you secure him unrubbed.
Now comes the work of stretching your moths. This is easy, but must be done carefully. Provide your own stretching boards. These can be made anywhere with hammer and nail and strips of wood. You want two flat strips of wood about seven-eighths or three-fourths of an inch thick and eight to fourteen inches long, nailed parallel to each other on another strip, so as to leave a narrow open space between the two parallel strips. Make two or three or more of these, with the slit or space between the strips of vari ous widths, for large and small moths and butterflies. Make as many of them, with as various widths of slit, as your catches may demand. Take your moth by the feet, gently in your fingers, put a long pin down through his body, set the pin down in the slit of the stretching board so that the body of the moth will be at the top of the slit and the wings can be laid out flat on the boards on each side. Have ready narrow slips of white paper. Lay out one upper wing flat, raising it gently and carefully by using the point of a pin to draw it with, until the lower edge of this upper wing is nearly at a right angle with the body. Pin it there temporarily with one pin, carefully, while you draw up the under wing to a natural position, and pin that. Put a slip of paper over both wings, pinning one end bove the upper and the other below the under wing thus holding both wings flat on the stretching board Take out the pins first put in the wings and let the paper do the holding. Treat the opposite wings in the same way. Put as many moths or butterflies on your stretching board as it will hold, and let them remain in a dry room for two, three, or more days, ac cording to size of moths and dampness of climate. Put them in sunshine or near a stove to hasten drying When dry, take off the slips of paper, lift the moth out by the pin through the body, and place him per manently in your collection.-Wm. C. Prime, in N. Y. Jour. of Commerce.

The Identification of Artificial Butter.
C. Fruwirth, of Vienna, Austria, in a letter to our cotemporary the Country Gentleman, states that the following proposition with regard so oleomargarine and artificial butters generally has been made in Germany. The indiscriminate coloring by some dye or pigment of all such articles had already been proposed and rejected. In consequence of this, Prof. Soxhlet of Munich, has proposed a new treatment, which is worthy of attention. He proposes-and his proposition will be offered to the House of Representatives in Germany-to make it a law that all bogus butter must be mixed during the preparation with phenolphtalein, which is made out of one of the products o the dry distillation of tar, and one gramme of it will be enough for 100 kilogrammes of bogus butter. The butter can then be offered for sale colored yellow, or uncolored, or in any way desired, and the phenolphtalein will not be seen at all. But by adding a solution of soda, or ammonia and water (liquor ammonii caustici), or even a teaspoonful of water and the ash of cigar, to a piece of butter the size of a bean; the whole of the butter will become a nice red if it is bogus butter, or if bogus butter is mixed with it
It will be immediately seen that this is a proof which can be made by every policeman in any shop, by every guest in a dining room, etc. In your country it would be easy to enact that no butter shall go out of the factories to which has not been added the phenolphtalein. The internal revenue officers, which have to deal, since the first of November, 1886, with bogus butter, could very easily took at this point also.

Rag Bleaching.

Dr. C. Wurster gives a description, in a recent num ber of the Berlin Papier Zeitung, of a process for re solving chlorine gas and collecting the gas for reuse He connected the different bleaching vats with lead pipes with water valves and sucked out the gas with a ventilator. All the parts of this apparatus were coated with paraffine, which resists the action of the gas. Between the vats and the ventilator was placed a lead cylinder, full of coke, with water dropping upon it, to prevent volatilization. A false bottom with small siphons, whose upper edges are cut off obliquely, forms the distributing apparatus. The original plan of using lime water or a solution of soda for absorption of the chlorine was found unnecessary, as water alone an swered the purpose. The use of this apparatus makes it possible for the men to step upon the vats in ten minutes and obviates the hurtful effect of the gas upon the workmen's health and the rusting of the machinery, because the air which flows from the ventilato mangogly gyen maull of ghlorime,

SIMPLE PHOTOGRAPHIC AND PHOTO-MICROGRAPHIC apparatus.
A photographic outfit that will do very good execution may be purchased for a few dollars, but notwithstanding the small expense, many are deterred from making a beginning in photography on account of the first outlay.
While first class photographic instruments can be made only by makers having the greatest skill and large experience, an ordinary camera that will serve the purposes of the amateur may be made by the amateur himself with the expenditure of an insignificant sum for materials.
Figs. 1 to 12 show a camera tube, box, and tripod the materials of which cost less than a dollar. The construction is within the range of any one having a little mechanical ability. The camera is intended for 4 by 5 plates, therefore the size of the plate holder and the focal length of the tube will determine the size of the camera box. To a void turning the camera or plate holder, the box is made square and the inside dimensions of the plate holder are such as to permit of placing the plate either horizontally or vertically, according to the subject to be photographed. The plate holder is $53 / 4$ inches square inside, and is pro vided with a wooden back of sufficient thickness to support the hooks employed for holding the plate. There are four V-shaped wire hooks, a, at the bottom of the holder, two for receiving the end edge of the plate, and two farther apart, and arranged higher up, for receiving the side edge of the plate; and near the top of the holder there are three Z-shaped hooks, a one in the center for engaging the end edge of the plate, and one near each
side of the holder for receiving the side edge of the plate. The top of the frame is slotted, and the sides and bottom are grooved to receive the slide, which covers the plate before and after exposure. To the under surface of the upper part of the frame of the plate holder is attached a looped strip of elastic black cloth, such as broadcloth or beaver, which closes over the slot of the plate holder, as shown in Fig. 10, when the slide is withdrawn, and thus shuts out the light. The interior of the plate holder, as well as the slide, should be made dead black, by applying a varnish made by adding three or four drops of shellac varnish to one ounce of alcohol, and stirring in lampblack until the required blackness is secured.
The main frame of the camera box is made square, and is secured at right angles to the base board. The frame is provided with a narrow bead or ledge that will enter the front of the plate holder and exclude the light.

To the front of the frame are secured four trapezoida pieces of pasteboard, of the form and size given in Fig. 6. These pieces of pasteboard are secured to each other and to the camera box frame by tape, glued on as shown. If the box is made of junk board, it may be nailed together with wire nails. In this manner a pyramidal box is formed which is strong, light, and compact. In the smaller end of the box is fitted the beveled centrally apertured block shown in Fig. 7. The aperture of this block must be made to fit the camera tube shown in Figs. 1 and 2, after having received a lining of plush or heavy felt.
The camera tube may consist of paper or metal. Paper answers well, and costs nothing. The internal diameter of the tube is determined by the diameter of the lenses. Ordinary meniscus spectacle lenses of eight inch focus are employed. These lenses are secured in place by paper rings, shown in Fig. 3, the inner rings being glued in place, the outer ones being made removable for convenience in cleaning the lenses. The lenses are arranged with their convex sides outward; the distance between them is $11 / 4$ inches, and in one side of the tube, half way between the lenses, is made a slot to receive the diaphragms, as shown in Figs. 1 and 2. Upon each side of the slot, within the tube, are secured flat rings, shown in Fig. 4, which together form a guide for the diaphragms, as shown in Fig. 2.
The tube is adjusted at the proper focal distance
from the plate by temporarily securing at the back of the box a piece of ground glass or tracing paper, in exactly the same plane as that occupied by the plate in the plate holder. The tube is then moved back and forth until a focus is obtained which shows the image fairly sharp throughout the field. In arranging for a fixed focus, it is perhaps best to favor the foreground rather than the distance. The tube should move with sufficient friction to prevent it from being easily displaced. By using a small diaphragm, it will be found unnecessary to focus each subject separately.
In Fig. 12 is shown a combination of cheap lenses devised by Mr. Henry Mead, which is effective for portraits and for other classes of work when focusing is
good objective for photo-micrography. In photographing microscopic objects, it will be necessary to employ a focusing ground glass, and to focus very carefully by the aid of a magnifier.
Slow plates are preferable for this use, as they bring out the detail much better than fast plates. The time of exposure will vary with the object, from fifteen econds to a minute or more.
Fig. 13 shows the arrangement of the lantern, the microscope, and the camera box. It will be noticed that the annular space in the end of the camera box around the microscope tube is stopped by a black cloth wound loosely around the microscope tube. This and other precautions are necessary for preventing the light from reaching the plate except through the ob-
ject and the microscope. G. M. H.

Fig. 13.-MICROSCOPE AND CAMERA ARRANGED FOR PHOTO-MICROGRAPHY.

Pita.

According to a report of Consul Burchard, of Ruatan, in Honduras, the pita plant has never been cultivated, but grows wild in patches on the borders of rivers and lagoons. The stalks of the plant contain the fiber of commerce, and grow sometimes to a height of 12 feet. The Indians scrape off the hard skin of the stalk with a bamboo knife, and thus obtain the fibers which form the heart of the stalk. Another plan is to steep the stalks in water until the skin decomposes; but this is sald to injure the fiber somewhat. In recent years ma chines have been devised to decorticate the fiber, but these have all been failures, owing to the fact that no machine has yet been invented capable of operating on a profitable scale. In Honduras the pita or "silk grass" fiber is used chiefly for thread, nets, fish line, and cordage. Samples of the
$81 / 2$ inch focus, having their convex sides arranged outwardly, and a plano-concave lens, 16 in . focus, arranged with its concave side against the concave side of the outer lens of the system. The plano-concave and the rear meniscus lenses are arranged $11 / 2$ inches apart. Diaphragms may be used as in the other case, and a box about 8 inches deep will be required.
The tripod is formed of a triangular centrally apertured board, to which are hinged three tapering wooden legs, by means of ordinary butt hinges, as shown in Fig. 11. The base of the camera box is secured to the tripod by means of an ordinary thumb screw.
This outfit will enable the amateur to cultivate his tastes, and learn much about photography. Dry plates will of course be used. They are procurable almost anywhere, and are inexpensive. As to the treatment of plates after exposure * and printing and toning, the reader is referred to the works on the subject of photography. The amateur who possesses one of the microscopes described in a previous article of this

SIMPLE PHOTOGRAPHIC CAMERA.
fiber sent to the United States and Europe have been manufactured into lace handkerchiefs, ribbons, and wigs. It is held to be a substitute for silk or linen; and if proper machinery were forthcoming, the wild pita fields of Honduras might be utilized in commerce. Consul Burchard indeed expresses the opinion that the fiber is destined to become a very important element in the future commerce and industry of this country.

A Curiosity in Photometry.

It is interesting at the present day, when the photometry of gas and electric lights has been brought to some degree of perfection, to read of an expedient adopted in former times in Paris to control the quality of the street lamps. The method has very recently been made public. ThePolice Department of Paris, in whose charge the matter was placed, had paper patterns cut out representing what they considered the proper size, or profile, of a gas flame. These wer furnished to their inspectors, who compared them with the flames of the street burners, and judged accordingly of their quality. In case of de ficiency, fines were imposed These fines were levied, and not collected until some 600 ,000 francs stood against the gas company. The method was so crude that the authorities did not venture to submit it to a court of law. The devisers of the plan overlooked the fact that a small flame may, and often does, give more light than a large one, and reduced it all to a question of size. Nevertheless, our present system is far from perfect, from analogous causes. Complaints of its inaccuracy have grown more frequent since the introduction of water gas, and several have appeared during the last year. It is known that a water gas that shows sixteen candles on the bar photometer is far from satisfactory, while a sixteen candle coal gas will always be accepted as of series may arrange it for projection as described on good quality. The whiteness of the water gas flame page 393 of vol. lvi. of the Scientific American, and may insert the end of the microscope tube in the camera box above described, after removing the tube, and project the image of the microscopic object on the sensitive plate, and thus produce good negatives of the objects, from which prints may be made which will be interesting both to the operator and his friends. The eyepiece of the microscope referred to is a very - Mos Buphammer, Fo, G4,
probably introduces an error This appears especially probable when we recollect that the standard of comparison is a candle having an extremely yellow flame. Polarization photometers have been little tried, and it is hardly known how efficiently they will act, but at this late day the absolute photometer has yet to be constructed. The effect of light on the human eye is the ultimate standard. This introduces a subjective element into the question that is very hard to cope with.

engineering invention.

A lock for bolts of pistons has been patented by Messrs. Joseph Wormald and Joseph Wor-
mald, Jr., of Missoula, . Tontan Ter mald, Jr., of Missoula, Montana Ter. Combined witha
fixed prate and studs is a ock plate, with circular slots fixed plate and studs is a lock plate, with circular slots
adapted to engage the studs to hold the lock on the adapted to engage the stuas to hold the lock on the
fixed plate, and projections on the rim of the lock plate engage one side of the bolt heads of the usaul bolts,
preventing the latter from turning. This invention has preventing the latter from turning. This invention has also been patented in Canada and in England.

MISCELLANEOUS INVENTIONS

A vehicle spring attachment has been patented by Mr. Stephen M. Wier, of New Haven,
Conn. The invention consists in yokes resting upon or suspended from the axles near the wheel bearings, with stirrups for receiving the ends of the springs, the
stirrups capable of springing to permit of the elongastirrups capable of springing to permit of
tion of the spring due to its compression.
An ironing table has been patented by Mr. Franklin P. Burcaw, of Hazleton, Pa. Its con-
struction is such that the legs may be folded to have struction is such that the legs may be folded to have the device occupy only a small space when not in use,
but the several connections are of such a character that
when the table is opened and in position for use it will when the table is opened and in position for use it will
be perfectly steady and cannot accidentally collapse.
A drip trough for doors or windows has been patented by Mr. William W. Pitmon, of
Waseca County, near Smith's Mill, Minn. The sill is made with a gutter or groove and a channel leading made with a gutter or groove and a channel leading
thence outward, a tube fitting at its inner end within the outer end of the channel, and having an outlet opening with a plug or knob.
A combined hook and clasp for horse collars has been patented by Mr. Louis T. Anderson. of
Carronl, Iuwa. The mevention consists of a clasp made to be slipped upon the rim or front roll of a horse collar, with a tongue or hook stamped from the material
of the clasp, making a cheap and convenient device for of the clasp, making a cheap and co
attaching sweat pads to the collars.
A wagon box lock has been patented hy Mr. Nathan O. Calkins, of Elm Creek, Nebraska. It
is for fastening an auxiliary wagon box on top of an is for fastening an auxiliary wagon box on top of an
ordinary one, and do away with the employment of ordinary one, and do away with the employment of
slats and staples for such purpose, the lock consisting of a hook latch of peculiar constrnction and a re
A druggist's mortar has been patented by Mr. Edmund G. Purdy, of Ballston Spa, New York. It has one or more lugs projecting from its outer
surface, and an annular frame is to be used therewith arface, and an annular frame is to be used therewith for receiving the lugs, thus holding the mortar in a for receiving the lugs, thus
fixed position while in use.
A vehicle wheel has been patented by Mr. Robert A. Townsena, of sibl, Bention of an inclined The invention covers the application of an inclined
plane at the hub to lengthen the radii of the wheel to plane at the hub to lengthen the radii of the wheel to
compress the spokes, fellies, and rim, with tire jacks, operated by the spokes, to bridge the space between the fellies caused by the shrinkage of the latter.
A mouth harmonica has been patented by Mr. John F. Stration, of Brooklyn, N. Y. It is to now in general use, but is provided with an upper set of reeds, of which each reed forms a chord with the corresponding reed of the lower set, making
harmonic tune when played, forming a duet.
An accordion has likewise been patented by the same inventor. It is constructed in ac-
cordance with the principle noted in the preceding cordance with the principle noted in the preceding
invention, having an additional set of bass reeds tuned invention, having an additional set of bass reeds tuned but in harmony therewith, so as to produce harmon
the accompaniment when the accordion is played.
A cider press has been patented by Mr. Hiram P. Latham, of Denver, Col. A series of feeding device of a tube opening to the rollers at the side of the case, with a hopper, a conveyer screw rotat ing within the tube to force the substances to be ground
to the rollers, and other novel features, the press being also adapted for pressing and grinding other substances
A rinsing and drying device for dishes Mary Purvis, of Plainview, Minn. It is designed to be used after the dishes have been washed, when they are placed in particular places or on racks provided there-
for within a case, in such way that hot water poured through an aperture into a pan in which the utensil
A flour bolting reel has been patented by Mr. Francis E. McMaster, of Millburn, Pa. The reel periphery, in combination with the bolt chest, the flaps to brush the outer face of the bolting cloth, and also
brush the bolted material from the walls of the chest, brush the bolted material from the walls of the chest,
the device being simple and inexpensive, while making the action of the reel more quick and effective.
A mattress has been patented by $\mathbf{M r}$ Karmell Brooks, of New York City. The invention provides a detachable strip of non-heat-conducting ma-
terial to protect the top and botiom of the mattress such material being of rubber or paper backed with such material being of rubber or paper backed with
linen or otherwise, or other suitable substance, whereby
a thinner mattress may be used, and cold will not so readily penetrate it.

A pocket knife has been patented by Mr. Carl Hollweg, of Barmen, Prussia, Germany. The other, there being also a locking lug and outer independent handle, with other novel features, whereby the
blades can all be independently opened and closed, or locked in position, without touching them, and no springs are employed.
A kindergarten game for teaching
children has been patented by Imogen B. Oakley, of Pittsburg, Pa. Combined with a copy book having il.
detached cut or stamped letters made to form fac
similes of the printed letters in the book, the child forming the names or titles from the loose cut o

A gas burner has been patented by Mr. Josiah Burgess, of Zanesville, Ohio. It is princi pally designed to produce and burn gas from petroleum and its products, and for the burning of other gases, in
laundries, coffee wasters, stove heaters, ctc., providin laundries, coffee wasters, stove heaters, ctc., providing
means for vaporizing the oil supplied by a tank and means for vaporizing the oil supplied by a tank and
distributing it through suitable burners in properly regulated amounts.
An improvement in folding furniture has been patented by Mr. Joseph B. Brolaski, of St. Louis, Mo. The invention covers especially the con-
struction of an improved bureau, which may be easily struction of an improved bureau, which may be easily
knocked down and its parts closely packed, and in which the joints may be readily tightened or loosened thus making each joint adjustable.
An adjustable coat holder has been Hungary. It consists of a single length of wire bentia fongary. Itconsists of a single length of wire bent o
form two sets of parallel bars, the ends of the wire
being coiled at the inner ends of the bars to form being coiled at the inner ends of the bars to form
hooks, in connection with shoulder supports that can be moved inward and outward to correspond to the widh of the garment at the shoulders,
A device for converting motion has been patented by Mr. John W. Ledyard, of New York
City. This invention covers a novel construction for converting reciprocating into rotary motion, which is designed to give more power with the same length of stroke, and so that the dead centers will be more easily
and smoothly passed than when a crank is used in the and smoothly
ordinary way.
A wire cloth delivering reel has bee patented by Mr. Silas E. Ratekin, of Kansas City, Mo It has a vertical body and a vertical roll holder, with
horizontal pivot or shaft connecting the holder to the horizontal pivot or shaft connecting the holder to the
body, whereby the holder may be swung from a vertical to a horizontal position, a locking device upon the body engaging and holding the roll holder in either
two positions, with various other novel features.
A pitman or pump rod has been padesigned especially for windmills, and the invention consists in the interposition of a spring or elastic cushion in the direction of its length, to render the rod
elastic, and take up excessive strain and jar, causing a elastic, and take up excessive strain and jar, causing a
shorter stroke for the pump piston in proportion to the increased speed of the wheel.
A hair or mustache curler has been patented by Mr. Morris N. Posner, of New York City.
The main body part of the device has a slot in one end, with a spring-pressed clamp bar mounted on the slotted end and normally pressed down thereon, to firmly hold he mustache or tuft of hair while it is being wound around the device, the spring clamp being rea
by pressing with the thumb on its rear end.
A vehicle tongue support has been patented by Mr. Alva N. Rooks, of Alpha, Mo. Two parallel and spaced semi-elliptical springs are pivoted
to the under surface of the tongue, their inner ends to the under surface of the tongue, their inner end
bearing against the under side of the forward axle at each side of the king bolt, and so held adjustably that they will support the pole in any desired position, relieving the horse from such weight.
A road grader and leveler has been paAted by Mr. John Skinner, of Newman, Ill. This invention covers an improvement on a former patented
nvention of the same inventor, providing a better method of elevating and lowering the framework carry-
ing the harrow teeth and scraper, so that the machine ing the harrow teeth and scraper, so that the machine
can be easily supported at any desired height from the ground.
A coin or ticket receiving turnstile has been patented by Mr. Walter Peake, of New York
City. The turnstile post has a cam and locking plate, combined with a locking dog and two pistons, one conected to the dog and the other acted upon directly by the cam, with other features, whereby the turnstile is
operated only when a ticket, coin, or check, or other

A washing machine has been patented by Mr. George W. Wilson, of Lanesborough, Minn. she tub has a false bottom, and secured to tos side is a lever designed to operate a pneumatic washing head or pounder in the tub, the action of which not only squeezes the clothes, but by pressure and sucion forces air and water through them to quickly free them from dirt.
Saliva-proof mouth pieces for cigarettes orm the subject of a patent issued to Mr. Joseph B. sists of a new method and machine to do work hereto ore done by hand, the cigarette being made to rotate n its own axis in contact with a surface supplied with
the material to be applied, such as paraffine, varnish
A horseshoe has been patented by Mr. Charies J. Le Roy, of St. Louis, Mo. It has a calk reess open at one end, with an independent calk fitting cerein, there being a longitudinal groove between the being enlarged and closed at its inner end, whereby a nail driven into the recess will have its point bent ove or clinched against the closed end of the groove.
A photographic camera has been paented by Messrs. Nicholas Schroder and Edward G-
Adams, of Brooklyn, N. Y. The patent provides for Adams, of Brooklyn, N. Y. The patent provides for a
construction whereby the front and back of the camera
may be angled in various directions to adapt the focus may be angled in various directions to adapt the focus
to parts of the*subject not lying in the same plane. An adjustable or sliding base frame may be dispensed with, while making a light and efficient camera and plate
A device for swaging insertible saw teeth has been patented by Messrs. Nels H. Wheeler
and Neil M. Newhouse, of Corvallis, Oregon. It is for and Neil M. Newhouse, of Corvallis, Oregon. It is for
restoring old and unserviceable teeth, the swage blocks
being adjustable in relation to each other for the pro-
per size of tooth, and firmly seated in a vise or socket, when the old tooth, at a cherry red heat, is placed in
position, and, by the movement of a cam-headed lever is drawn and swaged to the proper configuration at the oint, receiving a roll temper.
A wheel and axle form the subject of patent issued to Mr. Henry Q. Maurino, of Albuquerque, New Mexico. The invention provides a wheel on which the tire may be placed without heating, and tightened when necessary, there being devices for ex
panding the felly sections by endwise pressure of the plates held at the faces of the wheel to overlap the ends of the spokes and the felly sections.
A machine for making paragon umof Philadelphia, Pa. It is designed to flatten, re-enforce and perforate the ribs in continuous lengths, instead of In separate pieces, as has been heretofore done, in conwill also be tempered, annealed, and tested in the oper ation, without the aid of skilled labor, the machine presenting many nove
arrangement of parts.

An adding machine has been patented by Mr. James Richardson, of Tarrytown, N. Y. It ha wo series of numbered wheels, a series of numbered
keys, with means for imparting motion to the number-
ed wheels from the keys, mechanism for insuring the operation of the numbered wheels in succession and or returning the wheels and the wheel-moving mechan
ism to the poin't of starting, together with a registering and summing mechanism and a disk for registering the number of the addition.
An improved card clothed roller and a machine for making card clothing forms the subject Saxony, Germany. A strip of card clothing having its rows of teeth set obliquely to its length is wound spirally on the roller so as to bring its rows of teeth parallel with the axis of the roller and the arms of the teeth in radial position, improving the working effect and enabling the teeth to better withstand the working strain. The machine patented is for making the card clothing
with the card teeth set in rows arranged obliquely to the length of the band.

SCIENTIFIC AMERICAN

buIldina EDITION.

JULY NUMBER.

TABLE OF CONTENTS.

1. Plate in Colors of a Two Thousand Five Hun-
dred Dollar Dwelling, at Montelair foor pans, also sheet of details, specifications,
2. Plate of in Colimate, etce. of a Handsome City Residence
at Kansa City, Mo., costing Seven Thousand
Five Hundre, Doliars with plans, specifica-
tions, sheet of details, etc
3. Page shawing in perspective of an Elegant
Stone Residence, corner 119th Street and Sixth
Avenue, New York City Avenue, New York City.
4. An Atractive Residence at Providence, Rhode
Island, with perspective and plans. Cost, Five
Thousand Five Hundred Dollars. 5. Dwelling at at Jersey City, N. J.., with elevations
and foor plans. Cost, Three Thousand Five
Hundred Dollars.

7rawing in perspective of a Dwelling at East
New York. Cost, about Three Thousand Five
Hundred Dollars. A Modern Engrish Dwelling, with half page
perspective drawng.
Drawing in perspective of a Residence at East Drawing in perspective of a Residence at East
Orange, N. J.costing about Four Thousand
Five Hundred Dollars. Fige Hundred Dhollars.
10. Engraving of the Bourse at Havre, France.
11. Hotel and Ofice Building, River Side Avenue,
Spokane Falls, W. T. Quarter page engraving. Spokane Falls, W. T. Quarter page engraving,
12. The new Facade of the magnificent Cathedrai
of the Duomo of Florence. Full page engrav-
ing. Portrait of Donatell, the sculptor. 13. The Manchester Royal Jubilee Exhibition, with
nine large engravings covering four pages,
including specimens of "Old Manchester and
Salford."
14. A Residence of Moderate Cost, in St. Louis Park,
Minn., with perspective and floor plans.
 Mass.
The New Post Office, Springfield, Ohio. Quar-
ter page engraving.
Miscellaneous Contents: Women as Architects.

The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single

MUNN \& CO., PUBLISHERS.
361 Broadway, New York.
ßusiness and æersomal.
The charge for Insertion under thes head is One Dollar a line for each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.

All Books, App., etc. cheap. School of Electricity, N.Y. Chemist of 15 years' experience wants position. Low
salary. References. P., box 2422 , The new "Trautwine" contains articles on machine ock drills, air compressors, and modern explosives. The
former gives prominent modern drills.
For Sale-One 100 H. P. Buckeye Engine.-On account of our putting in a 300 H . P. Corliss engine (July 1)
e offer for sale a Buckeye engine, 100 H. P., in Arst class we offer for sale a Buckeye engine, 100 H . P., in Arst class
order. Can be seen running at factory of Seabury \& rder. Can be seen running
Johnson, East Orange, N. J.
Electric Mats, Burglar Alarm, under Carpets. Only curity. (Thieves remove panel or glass. Old Alarms Stores, Offices, Door Open.
S. S. Applegate, Camden, N.
Stationary and boat engines, boilers. Best and cheap.
est. 1 to 10 H. P. Washburn Engine Co., Medina, Ohio.
st. 1 to 10 H. P. Washburn Engine Co., Medina, Ohio.
Press for Sale-Quick acting. Hole in bed 8×5;
punches to center of 13 in. sheet; 2χ in. shaft: also four punches to center of 13 in. sheet; $2 x$ in. shast: ins
spindle Drill. A few second-hand engines in frst-class For the latest improved diamond prospecting drills, adaress the
Chicago, 111 .
The Australian-American Trading Co., 20 Collins St., West Melbourne. Sole agencies for American novelties
desired. Correspondence solicited. Care of Henry W. desired. Correspondence solicited. Care of Henry W.
Peabody \& Co., Boston.
The Railroad Gazette, handsomely illustrated, pubshed weekly, at 73 Broadway, New York. Specimen
oopies free. Send for catalogue of railroad bonks. The Knowles Steam Pump Works, 113 Federal t., Boston, and 93 Liberty St., New York, have just isproved forms of Pumping Machinery of the single and uplex, steam and power type. This catalogue will be
Link Belting and Wheds
Presses \& Dies. Ferracute Mach. Belt M. Co., Chicago. Woodworking Machinery of all kinds. The Bentel \&

Nickel Plating.-Sole manufacturers cast nickel an"Little Wonder." A perfect Electro Plating Machine Sole manufacturers of the new Dip Lacquer Kristaline. Complete outatt for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of Sudern de Supplement Catalogue.-Persons in pursuit of information of any special engineering, mechanical, or scien-
tiflc subject, can have catalogue of contents of the SclENT subject, can have catalogue of contents american Surplement sent to them free.
ENTIFIC The SUPPLEMENT contains lengthy articles emoracing e. Address Munn \& Use Ainsworth's Belt Clamp. See advt. next issue. We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure sbestos goods of all kinds. The Chalmers-Spence Co., 49 and 421 East 8th Street, New York.
Steam Hammers, Improved Hydraulic Jacks, and Tube 60,000 Emerson's 1887 Book of superior saws, with Supplement, sent free to all Sowyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, a., U. S. A.

Friction Clutch Pulleys. D. Frisbie \& Co., N.Y.city.
"How to Keep Boilers Clean." Send your address
or free 88 page book. Jas. C. Hotchkiss, 120 Liberty St., or free 88 page book. Jas. C. Hotchkiss, 120 Liberty St.,
J. Y. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works ma-
chinery, and containing reports of tests, on application. Timber Gaining Machine. All kinds Wood WorkDouble boring machines. Double spindle shaping
nachines. Rollstone Machine Co., Fitchburg, Mass. Iron and Steel Wire, Wire Rope, Wire Rope Tram Iron and Steel Wire, Wire Rope, Wire Roper
ways. Trenton Iron Company, Trenton, N. J.
Astronomical Telescopes, from $6^{\prime \prime}$ tolargest size. Observator
land, 0.
Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting ppearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa. Send for new and complete catalogue of Scientific Books for sale by Munn \& Co., 361 Broadway, N. Y. Free

NEW BOOKS AND PUBLICATIONS.

McCarty's Annual Statistician. 1887.
Pp. 650. San Francisco, Cal. : L. P. Pp. 650.
McCarty.
This is the eleventh edition of Mr. McCarty's work, each issue being more full and complete than its pre-
decessor. It is a sort of omnium gatherum of matters decessor. It is a sort of omnium qatherum of matters
pertaining to history, politics, geography, and trade, le under either of these headings, and to a large circle of readers cannot fail to fill a valuable place as a ready

Improved Plumbing Appliances. By
 Comstock.
This book treats only of lavatories, including wash basins, bath tubs, and kitchen and pantry sinks, to gether with water closets, traps, and waste pipes. It
presents forcibly the need of the best work in plumbing, with all the work so constructed that inspection
will be easy, and urges the need of greater simplicity than has lately obtained in the fittings adopted in
some of our more expensive dwellings. Illustration are given of some of the latest patterns of water closet
flushing arrangements, but the writer, who is an archi-
tect，and has developed a special device of his own of
this kind，naturally argues strongly in favor of his own device．

The Conversion of Heat into Work．

 By William Anderson．LondonWhittaker \＆Co．New York：D． Van Nostrand．
The simple and direct but extremely interesting way
which an ordinarily complicated subject in which an ordinarily complicated subject is here pre－
sented will donbtless render this book of exceptional value to young mechanics who know little of the theo－解 have to＂dig out＂their education from books，without the aid of teachers．Although now published as a
practical handbook．on heat engines，it contains but practical handbook on heat engines，it contains bu
little matter in addition to that which appeared in the original form in which it was published，as lectures hefore the Society of Arts and Manufactures，London， which were printed in six successive numbers of the
Scientific American Surplement in the latter part Scientin
A History of Salt Lake City and its
Founders．Salt Lake City，Utah Founders．Salt La
This is a handsome octavo volume of nearly 1,100 pages，profusely illustrated with fine steel engravings of the princtpal Mormon notables from 1840 to the present time，with biographical sketches．It is in fact
a history of Mormonism and its growth and develop． ment in Utah，written by＂authority of the Council and under supervision of its Committee on Revision，＂and therefore giving a picture of Mormonism in the most favorable light in which it is possible to present the
institution to the public There are too many outside institution to the public．There are too many outside
evidences of material prosperity and thrift everywhere evidences of material prosperity and thrift everywhere oo be seen in the resourceful valiey where the Mormon
emigrants from Illinois and Missouri began to make emigrants from Illiniois and Missouri began the com－
their home in July， 1877 ，and the vitality of the munity has been too plainly manifested on many oc that the＂Mormon question，＂as it is called，is still one of no insignificant importance．It is no part of our purposes to discuss the matterer，but just why and how it pupb ecome of such material significance is probably
more fuily explained in this volume than in any other one work published．
The British Guiana Directory for 1887， published by C．K．Jardine，Demerara，cannot fail to be valuable aid to such of our merchants and manufac fertile and resourceful tract of 600,000 square miles lying just under the equator，on the northeast coast of South
America．The book gives full details of all depart America．The book gives full details of al depart ments of the e itthe government，with classined directory
for the principal trades in different cities，the promi nent country estates，etc．
＊＊Any of the above books may be purchase through this office．Send for new catalogue just pub
ished．Address Munn \＆Co．， 361 Broadway，N．Y．

Thuduct（hatins

HINTS TO CORRESPONDENTS．

NII incrals sent for ex
marked or labeled．
（1）W．M．L．writes ：1．In building an eight light dynamo as illustrated in Scievilific Ameri An，Aprit 23 and 30 can 1 substitute brass instead of
bronze for making sleeve A，flange B，and cylinder E， Fig． 6 （Scresmiric American，April 30），also for yoke－ holding shaft，or only make cylinder E of bronze and
the rest of brass．＇A．Brass may be used，but bronze i preferred on anccount of itss sardness and durability． 2.
Does it Does it make any difference in the winding of the field magnet whether I wind both posts right or left handed，
or should they be wound different？A．Wind so that or should they be wound different？A．Wind so that
if placed endways the direction would be uniform． Both must be wound either right or left handed． 3 ． Both must be wound either right or left thanded．${ }^{3}$
How can I attach machine to wooden base？A．Drill How can I attach machine to wooden base？A．Drill
and tap the polar extremities，and insert tap bolts through the wooden base．4．What is the best wood to
use for the armature core？A．Well seasoned mahogany or maple．5．What are the wedges made of that are use for dividing the coils on the armature？A．Hard
rubber vulcanized fiber hard wood or bone．
（2）R．T．asks：In regard to pumping cold water into a boiler when the water is low and the flues heated，is it not the gas that is generated in com－
ing in contact with the hot iron that causes an explo－ sion？A．It is dangerous to pump cold or hot wate into a boiler with the ine of water below the top flues at such times the flues out of water may become red
hot，as also the sides of the boiler above the water Pumping up the boiler at such times largely increases the generation of steam，posibly carrying the prea
sure up to the point of rupture．The theory that ex plosions are thus caused by gas formation is in no wa sustained．
（3）C．H．D．\＆Co．ask the ingredi－ ents of a solution in which to steep burlap or jute bags porting acid fertilizers，such as dissolved phosphate rock A．Plunge the bagging into a solution．at 142° Fah and heave for an hour，the solution consisting on
sulphate of alumina $24 / 4$ pounds，water $5 \% / 2$ gallons，and
borate of lime 214 pounds．The borate of lime is added
after the sulphate of alumina has dissolved，and the whole decanted when settled．After taking out of this bath，the textiles are put into a second bath．composed of 244 pounds resinous soap and 244 pounds Marseilles
somp dissolved in 518 gallons water and carried to the boiling point．At the end of ten minutes the baggs are allowed to drip，are next dried，and then rewashed and
dried．Bagging made in this way，it is claimed，will re－ ried．Bagging made in this way，it
（4）E．T．H．asks how to make a ma－ hogany stain for wood，and a varnish to coat it to re
present a polish．A．The following is a dark stain： Bresent a poish．A．The following is a dark stain．
Boil $1 / 2$ pound of madder and 2 ounces logwood chips a gallon of water，and brush over while hot；whe dry，go over the whole with a pearl ash solution， bruised io the quart．Or put 2 ounces dragon＇s bloo stand in a warm place，shake frequently，and whe dissolved，steep the work in the mixture．To polish take a piece of pumice stone and water，and pass re
peatedly over the work until the rising of the grain peatedly over the work until the rising of the grain is
cut down．Then take powdered tripoli and boiled lin－ seed oil ，ond polish the work to bright surface
（5）H．W．F．asks ：1．What cement， ther liquid or otherwise，can I use to mend china so as to hola hot substances，and hecement to be ransparent
or white？A．See article on cements in Sciestrifc merican Supplement，No．158．for this informatio How is，dak finished as＂antique oak＂？Is it possi－ A．BF intensifying the stain，the oak can be made to re－ symble the antique article．New furniture restained has that appearance．3．What is the cause of the ＂gapes＂in chickenc，etc．，and what can be used to pre－ vent and cure it？A．Camphor pills，it is said，will cure
this disease．Sulphur is also used．4．How do you nultiply hyacinth bulbs？A．They multiply from the （6）H．A．L．and others．－Your ques－ ion has been many times answered．Try and look atle more closely into the exact terms of the problem along a road travels faster around its axis than an－ other part．The axis moves along the road with the mean speed of the top and bottom of the wheel．The top of the wheel moves twice as fast as the wagon．
Per contra，the periphery of the wheel is during one half Per contra，the periphery of the whel is during one half of its revolution gaining，and during the other half los
g speed，as compared with the forward motion wagon and axle，so that the bottom of the wheel，of part in contact with the ground，does not move in a measurement of this onward movement．－A snake
climbs a tree that is small enough to allow of its pe－ culiar manipulation，by a spiral movement around the trunk or a return bending of its coils nearly half way around，by which the snake obtains a grip．Their favorite trees are the kind that have low limbs，which give them a natural rest．－For the manufacture of steel
see back numbers of ScIENTIFIC AnERICAN SuPpur－ see back
mENT．
（7）W．J．B．writes ：Referring to arti－ cle in Scientific American，April 23 ，1887，upon eight light dynamo，will you please inform us through your
paper： 1 ．What size of wire and how many layers to paper： 1 ．What size of wire and how many layers to
wind upon field magnet to make a plain series machine it，using but one strand for conductor？A．Use eight layers of No． 12 （Am．W．G．）wire on each leg
of the magnet． 2 ．What changes will be required to the it operate 12 standard 16 candle power lamps stead of 8？A．Put coarser wire on the armature，say No．18，and increase the speed，and increase all of the di－ mensions of the machine about 20 per cent．
（8）P．S．asks：How many gallons of deliver into a tank．the point of delivery being 38 feet bove ground and the head of water being 13 feet higher than point of delivery？A．1，400 gallons per hour．
（9）R．F．asks how large to make balloon and of what material，to lift 5 pounds．A．You in require a globular balloon of 712 fect diamet
when filled with the carbureted hydrogen of your gas works to lift 5 pounds and the weight of the balloon of say 2 pounds．For material use strong tissue paper or
Chinese silk well varnished with rubber varnish．See Balloon Makin
Nos．249，413．
（10）G．K G．asks：What will remove bicycle oil from corduroy without leaving a stain？A．
Use ether or a mixture of ether and ammonia．Apply a circle all around the stain，and sponge off the spot
st of all．
（11）H．K．asks（1）the most practical nethod for making brass signs．A．Use nitric acid to eat into the metal．2．How to permanently blacken he
letters and scroll work？A．Mix asphaltum，brown eters and scroll work？A．Mix asphaltum，brow ill in the spaces，finally cleaning the edges with tur－
（12），S．O．N．writes：We have a driven well about 25 feet deep，with seven feet of water in it， sut it does not pump easy．We think the point is in saggest a way to make the water flow more freely－lik exploding a dynamite cartridge in it？A．The pipe should either be drawn up so as to allow the strainer
to receive the surface water lying upon the clay，or be to receive the surface water lying apon the clay，or be
driven deeper，to reach the next sand stratum，which may give a better supply．It will be of no service to arpedo the well in the clay．Besides，your point should have a strainer which precludes the use of a torped and find what is below the clay．
（13）J．J．asks the best way to tin tem－ pered steel（small pieces）with a smooth thin coating
without injuring temper or getting too hard． first cleaned the pleces in a hot solution of potash，then put them in diluted muriatic acid and then in zinc acia， nd even nly that the surfacess should have a half polish or be quite smooth．Also the tin bath should have a clean
dered sal ammoniac upon the surface and skimming
Have the tin pretty hot and draw the pieces slowly out the tin．
（14）E．P．asks ：How are photographs on boxwood obtained？A．See ScIENTIFIc AMERICAN
（15）C．E．E．asks how to make an enam－ el on steel，one that will dry quick and black．A．Use
japan varnish and bake in an oven at 250 temperature．
（16）J．M．L．asks what to put in com－ mon coal tar to make it adhere to iron better than it
does when simply boiled，and then applied．A．Mix with pulverized plumbago or lampblack．Thin with benzine if nece
netallic paint．
（17）H．S．sends a plant to be named nd asks whether it has any medicinal properties．A The plant is a species of elder，Sambucus glauca．Its
medicinal properties，if it has any，are probably the same as those of the eastern species，the flowers of which have been reported diaphoretic and discutient， he berries nd，in small doses，diobstruent．
（18）W．S．asks：What is the greatest pipe that can be used therefor？ o the capacity of a pipe for a siphon．The greatest height depends upon the pressure of the air．It may 33 feet，practically 28 to 30 feet．
（19）G．S．D．asks how hair clippers are ground or sharpened，whether on flat surface or be－ ween the teeth，and what is used to sharpen them with．
A．Neve sharpen the clippers on the fiat side．Always oil．You can buy the stone in long sticks， $1 / 2$ inch
diameter，throught the hardwara trade
（20）P．\＆S．ask as to the feasibility of running an upright shaft direct from engine，through six story building and connecting with it shafts on each
fioor by gearing．A．Vertical driving shafts in mill fioor by gearing．A．Vertical driving phafts in mills
are only to be tolerated as a necessity，or as turbine shafts．The step of a long vertical shaft is a source of constant trouble，which added to the noise has about
（21）H．M．D．－Six inch copper pipe nay be bent to a nealing，with resin．Allow the resin cool，and ben that the pipe will bear half way round to keep it from flattening．Bend a alittle，then melt the resin out and
anneal again．You may have to do this two or three
（22）F．E．writes ：I wish to make wire rheostat with resistance of 3,000 ohms，divided into 10 divisions or more－or 15 ．What size wire will
have to use to put 200 ohms resistance in each coil，and how much to each coil？Also give same with 300 ohm resistance to each coil．A．Of No． 35 German nilver
wire，one pound gives about 8,136 ohms resistance
Un Therefore one twenty－seventh pound will give yo 200 ohms．The exact resistance of each coil has to be determined experimentally．One pound of No． 40 wire
gives about 41248 ohm，so much less of this，about gives about 41,48 ohms，so much less of this，about e－fifth the above amounts，would answer．
（23）C．H．G．wishes further directions about making a kite without a tail，such as was de scribed in Supplement，No．595．A．The directions for tand，read：＂The bow ．．．consists of two piece of osier，each 515 units in length，that form，through their union，a total length of 7 units．＂．This simply
means that the two endsof the osier that are to form the center of the bow should be lapped over each other to when the tho pieces are joined seven－tenths the leng of the central stick．
（24）G．C．H．asks：1．What is the best hey require before magnetization，and what temper wil shape to make them？A．Use cast steel．hardene and drawn to a purple．The straight bar form is pro bably the best．2．Would a heavy coiled flat spring，say
$1 /$ inch thick and 6 inches wide and 20 feet long，be eight 4mes as strong as one one－sixteenth inch thick， inches wide，and the same length as the first？A．It would be more than eight times as strong．3．Wint the
lighter spring lift 150 pounds？A．You have left out the element of time and distance．It will lift 150
ism．
（25）D．M．G．writes ：In the article hat kind of a battery can be used？will a tolegen battery answer，and how many？Where can I get the carbons，in Cleveland？A．It will require from 25 to
50 Grove or Bunsen cells．The ordinary telegraph bat－ tery will not answer．You can get
house dealing in electrical materials．
（26）J．D．McC．asks ：1．In Scientific AMERICAN SUPPLEMENT，No．160，article on induction oil ，inat is the object gained by having the secondary them？A．The construction in sections is for the pur－ pose of more effectually separating those layers of the Coil having the greatest differences of potential，so as insulating material．2．Is there any good reason for preferring naked wire to silk－covered wire，except its greater chaapness？A．Naked wire e ilies closer and is
cheaper than covered wire；no other reason exists for its employment
（27）O．R．asks ：1．What is a good glue to use in making camera bellows？Ordinary glue becomes hard and the rubber cloth breaks．A．Use can Surpiement，No．158．2．A developing formula in which quinol is used in place of pyro？A．You
probably refer to the hydroquinone developer．The formula is as follows：A．Water 80 cubic centimeters
carbonate of ammonia in water．To 8 parts of A add 1 （28）W．D．B．S．asks ；1．Is there any ifference in the liftiug power of an elevator rope or pes when the rope is passed through an eye，and the ted and attached in two places on the crosshead of the evator，the ropes being all of one size？A．There is no difference．2．What is the strain on a rope that two men re pulling on，one at each end，supposing one pulls 209 pounds one way，and the othe
A．The strain is 200 pounds．
（29）B．P．G．writes ：About four years ago a young man in this place boiled a hen＇s egg
and put it away．On breaking it open the other day， and put it away．On breaking it open the other day，
he found that everything in it had shrunk to a mass out one－twentieth the size of the egg，almost perfectly gg shaped．It looks like a piece of amber，being most eautifully translucent．A．The white of eggs con－ men．By boiling，the albumen is coagulated，but without much if any loss of water．By lapse of time the water radually evaporates，and the result spoken of was pro－ bably due to this evaporation．
（30）Subscriber asks：Has it been de－ nitely ascertained yet what caused the sinking of the Oregon？A．It was caused by collision with a vessel
（31）W．S．asks：Does the brake of a ar wheel when set up so as to nearly but not quite he wheel slides？A．Yes．If thewheel is kept from rotat ig．the part in contact with the rail becomes polished nd slides easily．If allowed to slowly turn a new sur－ ace is continually presented to the rail．The latter practice stops the car quicker．

TO INVENTORS

An experience of forty years，and the preparation of
more than one hundred thousand applications for pa－ ents at home and abroad，enable us to understand the aws and practice on both continents，and to possess un－ qualed facilities for procuring patents everywhere．A
ynopsis of the patent laws of the United States and all foreign countries may be had on application，and persons contemplating the securing of patents，either at home or broad，are invited to write to this office for prices，
hich are low，in accordance with the times and our ex which are low．in accordance with the times and our ex－
tensive facilities for conducting the business．Address MUNN \＆CO．．of

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

June 21， 1887 ，

and each bearing that date．

Atomizer，A．P．Lighthil

Awnings，dev． Axle，R．Grace

Axle lubricator，H．Augustin
Axle，vehicle，W．F．McNutt
Bag hinge stay，telescopic，C．
Baling press，w．A．Laidlaw．
Baling press，A．Wickey．
Barium sulphate，proce
treating，Page \＆Krausse．．．．．．．．．．．．．．．．．． 365,318
Barrels，guard head for，G．H．\＆F．O．Knifton．
Battery．See Electric battery．
Bed bottom，Tי．E．O＇Brien ．．．355，2ז2
Bed guard，T．D．Smith．．．．．．．．．．
Bedstead，folding，F．E．Muller．．．．．．．．．．．．．．．．．．．．．．．．． $365,3,38$
Bell，call，Comstock \＆Buxton．．．．．．．．．．．．．．．．． 345,241
Bending rails，etc．，machine for，J．Abbott．．．．．．． 365,885
Billiard cues，machine for trimming the ends of，
J．S．Gold．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．365，301
Bit．See Bridle bit．
Blast furnace top，Kennedy \＆Scott．．．．．．．．．．．．．．．．．．．．．．．．．．365，242
Blast nuachine，sand，King \＆Maw．．．．．．．．．．．．．．．．．．． 365,241 Bobbin winders，thread roll pin for，C．D．Austin．． 365,29
Boiler．See Steam boiler．
Boiler．See Steam boiler．
Bookcase，revolving，D．C．McMartin．．．．．．．．．．．．．．．． 365,085
Box．See Cock box．Journal box．Packing and
show box．
Box lock，W．Clark．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．365，048
Bottle stopper，W．Werts．．．．．．．．．．．．．．．．．．．．．．．．．．．．．365，28
Brace．See Rail brace．
Bracelet，T．C．Hudson ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．36． $26,25 \%$
Bracelet，. C．Confin bracket．
Bracket．．．．．．．．．．．．．．．．．．．．．3ee
Brake．See Car brake．
Bread，making，J．D．Cox．．．．．．．．．．．．．．．．．．．．．．．．．．．． 365,33

Buckle，J．F．Bartlett．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 365,22
Buildings，corrugated ridge capping for，W．H．\＆
B F P．Powers．．．．．．．．．．．．．．．．．．．．．．．．．．．． 365,09
Buste，H．．Canfleld．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
field \＆Sorge，Jr．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．365，126
Button fastening attachment，E．O．Ely．．．．．．．．．．365，2
Button fastening attachment，E．O．Ely．．．．．．．．．．．．．．．．365， 36,29
Cable roads，grip releasing device for，J．T．．．．．． 365,36
Cooney．．．365，168
Can．See Oil can．Packing can．
Candy pail and show case，combined，J．Lutted．．．． 365,346
Candy pail and show case，combined，J．Lutted．．．．365，34
Car brake，C．K．Corliss．．．．．．．．．．．．．．．．．．．．．． 365,243
ar coupling，J．H．Dunn．．．．
ar coupling，o．E．Long．．
ar coupling，W．Metcalf．．．
Car coupling，D．H．Sherman
Car，safety， \mathbf{F} ．D．Knight．
Car seat，reverway，Maron \＆Bohn
Car seats，head rest for，H．W．Fackrell
Car starter，B．C．Pole．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 365,274
Cars，sand box for railway，H．W．Jordan et al．． 365,070
Carding machines，top flat stripping mechanism
for，A．Falls．
Carpet sweeper，J．M．McClain
Carriame，ehild＇s，V．Doane，Jr．
成窓器

IMPORTANT TO METALLURGISTS, MINERALOGISTS, MINERS, ASSAYERS, CHEMISTS, ETC., ETC.

 FOR 188\%.
The Most Popalar Scieutific Paper in the World Only 83.00 a Yenir, including Postage. Weekly. This widely circulated and splendidly illustrated teen pages of useful information and a large number of
ter original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery Hew Inventions, Noveltities in Mechanics, Manufactures,
Chemistry, Electricity Telegraphy, Pbotography, ArchiCecture Agriculture, Horticulture, Natural History, etc. Amiricis a popular resume of the best scientific in to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of the ScIEN Terins of Subscription.- One copy of the SCIEN-
TIFIC AMERICAN will be sent for one year-62 numbersor Canada, on receipt of three dollates by the pub lishers; six months, \$1.50; three months, \$1.00. CAN wil be supplied gratis f or every clubof five subscribers
at $\$ 3.00$ each : additional copies at same proportionate
rate. The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Ad dress all letters and make all orders,draits, etc., pay

361 Broadway, New York.

 Scientific American Supplement. This is a separate and distinct publication fromTHE SCIENTIFIC AMERICAN, but is unfform therewith THe SCINATIFIC AMIERICAN SUPPLLEMENT is published
weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geooraphy, Archæology, Astronomy Ship Building, Marine Engineering Pb, Mining Technology, Manufacturing Industries, Sanitary En gineering, Agriculture. Horticulture, Domestic Econo my, Biography, Medicine, etc. A vast amount of fresh
and valuable information pertaining to these and allied engravings.
The most important Ensineering Works, M echanisms and Manufactures at home and abroad are represented and described in the SUPPIEMENT.
Price for the SUPPIEMENT for the United States and crican and one cor, or one copy of or one year for $\$$ i.00. Address and remit by posta MUNN \& CO.. 361 Broadway, N. Y., To Foreign Subscribers.- Under the facilities o
the Postal Union, the ScIENTIFIC AMERICAN s now se by post direct from New York, with regularity, to sub British colonies; to France, Austria, Belgium, Germans Russia, and all other European States; Japan. Brazi Terms, when sent to foreign countries, Canada excepted
\$4, gola, for ScIENTIFIC AMERICAN, one year; \$9, gold for both SCIENTIFIC AM ERICAN and SUPPLEMENT fo

CURE Foin DEAF

LIGHT DRAFT STEAM LAUNCHES.
COAL AND WOOD BURNINC
Small Marine and High Speed Engines, also Patent. Steel Tubu
lar Boilers. Patent Automatic Adjustable SKAG.
H. B. WILLIAMSANUFACTURED By

STEAM ROAD ROLLERS

Fon"

anfactat bob
Shafting and Gearing,
, Texti pROPULSION OF STREEET CARS.
paper by A.W. Wright. in whichan endeavor is made
solve the probilem asto the amount of power requred

WELLS BROS. \& CO., OREENFELED, screw Cutting Manlinery and Tools for, Machinists', $\overline{\text { STEEL }}$ OUNER,

 ELECTRIC CONVEORS.-DESCRIP-

VOLNEY W. MASON \& CO.,

\qquad

 ROCK BREAKERS AND ORE CRUSHERS.

OTTO GAS ENGINE AGENCY, NEW YORK. Removes on May 1st to 18 VESEY STREET.
 CLART'S NOISELESS RUBBER WHEELS

HOW TO GRAFT--A VALUABLE PA-

aligho. ${ }^{2}$.

ICE-HOUSE AND REFRIGERATOR

VALUABLE P P T T E \boldsymbol{N} T POR SALE. For particulars write to the AdAMSON Co. (Agents
for Selling Patests). Muncie, Indiana.
PRTNERL WANTED, Or FORSA ALE.-A Rewly

STEAM PUMPS
 and Acid Blowers. Air Compressors. Etc.
BuIt By GUILD \& GARRISON, Brookly, N. Y.
FOR SALE, Nemply patented device to antomati

¿ New Catalogue of Valuable Papers

ICE \& REFRIGERATING

Water Wheels New and Second Hand

CAPILLARY ATTRACTION.-AN IN
 another continues to vary inversely as the square of the
distanee. When the distance between the nearest points
of the two bodies is diminished by various degrees.
With 30 to wode ind

Mond

Secretary of the Navy.
Proposals for Steel Gun Forgings for the

Sealed proposals from Washin gion, June 4. 188%.

BARREL, KEG,

STAVE MACHINERY.
Trass Hoop Driving. E. \& B. Rolmes,
EDUCATION OF THE AMERICAN

Phovertisements.

gen me con tohe good photopersy

FOREIGN PATENTS. Their Cost Reduced. The expenses attending the procuring of patents in
most foreign countries having been considerably re duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inventions abroad CA NAIA. -The cost of a patent in Canada is even
less than the cost of a United States patent, and the
formerincludes the Provinces of Ontaric. Quebec, New Brunswick, Nova Scotia, Britisb Columbia, and Mani
toba.
The number of our patentees who avail themselves o
the cheap and easy method now offered for obtaining patentsin Canada is very large, and is steadily increas
ENG.
ENIAND.-The new English law, which went into
torce on Jan. 1st. 1885, enab es parties to secure patents orce on Jan. 1st. 1885 , enab es parties to secure patent
in Great Britain on very moderate terms. ABritish pa in Great Britain on very moderate terms. ABritish pa-
tent includes England, Scotland, Wales, Ireland and th Channel Islands. Great Britain is the acknowledge flnancial and commereial center of the world, and he
goods are sent to every quarter of the globe. A good goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patent nvention is like it t realize as much for the patentee
in England as his United States patent produces for him at hroue. and the small cost now renders it possible
for almost every patentee in this country to secure a pa tent in Great Britaiu. where his rights are as well pro jected as in the United States.
on very reasonable terms in France Austria, Russia. Italy. spain (the latter includes Caba Australia, and the other British Colonies. An experience cf forty years has enabled the
publishers of The Sctentific Anuricanto publishers of The Scientific Anclican to establish
competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to 1 y done and their interescs faithfully guarded.
A pamphlet containing a synopsls of the patent laws
of all countries, including the cost for each, and othe information useful to persons contemplating the procuring of patents abroad, may be had on application to
this office. entific Americas, cordially invite all persons desiring any information re ative to patents, or the registry of trade-marks, in this country or abroad. to call at their
offices, 361 Broadway. Examination of inventions, con sultation, and advice free. Inquiries by mail promptly answered. Address, MUNN \& CO. and Patent Solicitors, Branch Offices: No. 622 and 624 F Street, Pacitid

PATENTS.

MESSRS. MUNN \& CO., in connection with the publiIn this liue of busi ness they have had forty-one years'
experience. and row have unequaled facilities for the
 for Books, Labels, Reissues, Assignments. and Reports
on Intringements of Patents. All business intrusted to
them is done with special care and promptness, on very
reasonable terms
A pamphlet sent free of charge, on application. con-

tent Laws, showing the cost and method of securing patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patent

DO NOT RUY a Drill Chuck, until sou have seen
 The THE INVENTION OF MACHINES. A paper bv Prof. Hale Shaw, pointing out what is neces
sary forthe foundation of \& science of the invention o
machines, and showing what steps have already bee
ter

ESTABLISHED HALF A CENTURY.
MARYIN'S SAFES wht wextiniowermy NOT FOLND INTHER MAKEs that will well repay an INVESTIGATION BY THOSEWHO THE BEST SAFE MARVIN SAFE CO. NEW YORK, PHILADELPHIA, YORK'. PHILADELP
LONDON. ENGLAND.

SHIELDS \& BROWN

For BoILERS and STEAM PIPES FOR Reduces Condenasiton of Ateam. The Best Non-Conducloroting of and Freezing. World 143 Worth Street, New York. 78 and 80 Lake Street, Chicago

EPP S'S

GRATEFUL-COMFORTING.

To Business Men.

 more than to see his advertisement is a printed news-
paper. He wants circulation This he has when he
dovertises in the ScIENTITIC AMEITCAN. And do not
let the advertising agent intuence you to substitute

 from the papers having a smail circulation than is allow
ed on the SIENTFII AMERICAN.
For rates see top of firte colum of this page, or ad
dress dress MUNN \& CO., l'ublishers, 361 Broadway, New Yoik.
RUBBER BELTING, PACEING, HOSE,

MECHANICAL and MANEFACTURING PURPOSES
The Largest and Most Extensive Manufacturers in America
THE GUTTA PERCHA AND RUBBER MFG. CO.
SHAFTING, PULLEYS,
HANGERS, AND GEARIMG.
 USEFUL BOOKS.
Manufacturers, Agriculturists, Chemists, Engineers, Me-
chanics, Builders, men of leisure, and professional
men, of all classes, need good books in the line of
their respective callings. Our post office department
permits the transmission of books through the mails
at very small cost. A comprehensive catalogue of
useful books by different authors, on more than ffty
different subbects, has just been published for free
circulation at the office of this paper. Subjects clas-
sified with names of author. Perrons desiring a
copy, have only to ask for it, and it will be mailed to
them. Address,
MUNN \& CO., 361 Broadway, New York
 Samples and descriptive Price amples and descriptive Price List free by mail.

ROSE POLYTECHNIC INSTITUTE,

VULCANITE EMERY WHEELSS.

Made SOLID of the Celebrated
ELLINGTON WILLLS EMERY.
SUPERIOR TOALL OTHERS.

 CUTS COOL and FREE.
NEW YORE BELTING \& PACKING CO. NEW YORK BELTING \& PACKING CO
warehouse: $\begin{aligned} & \text { Eole Manufacturer. } \\ & \text { w Park Row, New York. }\end{aligned}$.

95 MILK ST. BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnishd by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

THE—

Scientific American

Building Edition.

The Scientific American Architects' and Bullders' Edition is issued monthly. $\$ 2.50$ a year. Single copies. 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with fine engravings; illustrating he most interesting examples of modern Architectural Construction and allied ubjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expenive. Drawings in perspective and in olor are given, together with full Plans, Specifications, Costs, Bills of Estimate, and Sheets of Details.
Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving homes or erecting structures of any kind, have before them in this work an almost endless series of the latest and best examples from which to make selections, thus saving ime and money.
Many other subjects, including Sewerage, Piping, Lighting, Warming, Ventilating, Decorating, Laying Out of Grounds, etc., are illustrated. An extensive Compendium of Manufacturers' Announcements is also given, in which the most reliable and approved Building Materials, Goods, Machines, Tools, and Appliances are described and illustrated, with addresses of the makers, etc.
The fullness, richness, cheapness, and convenience of this work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO., Publishers,
361 Broadway, New York.
Building Plans and Specifications.
In connection with the publication of the Building Edition of the Scientifio American, Messrs. Munn \& Co. furnish Plans and Specifications for Buildings of every kind, including Public Buildings, Churches, Schools, Stores, Dwellings, Carriage Houses, Barns, etc. In this work they are assisted by able and experienced architects.
Those who contemplate building, or who wish to alter, improve, extend, or add to existing buildings, whether wings, porches, bay windows, or attic rooms, are invited to communicate with the undersigned. Our work extends to all parts of the country. Estimates, plans, and drawings promptly prepared. Terms moderate. Address

MUNN \& CO.,
361 Broadway, New York.
PRINTING INESS,

