

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

§rixutific gmmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. publibeed weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 Colonial bank notes. Address
MUNN \& CO

The Scientifc American Supplement

Address MUNN \& CO., 351 Broadway, corner of Franklin Street, New York
Scientific American Export Edition.

Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
NEW YORK, SATURDAY, JUNE 11, 1887.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT INO. 597.

For the Week Ending June 11, 188\%.

Price 10 cents. For aale by all newsdealera.
I. ARMS OF WAR--Magazine Rifles.-The different types of military magazine rifles described.-8 illustrations ... Chemistry and
Cellulose............ Cellulose..
Determina
Determination of Nitrog
Nutritive Value of Fungi
Nutritive Value of Fungi.. leaves of Gymnema sylvestre.
Resin Gas for Iron Making.:
Resin Gas for Iron Making.
III. GEOLOGY.-The Artesian Wells of the Oued Rir'... artesian basin and its phenomena described from the geological
and topographical outlook. -1 illustration......... and topographical outlook.-1 mustration.
IV. HYGIENE AND SANITATION.-Adulterations in Food and Drink.-The microscopic examination of
and other food products.- 16 illustrations.
The Relation between Drinking Water
The Relation between Drinking Water and Typhoid Fever.- By DowLing brinjamin, M.D. - An elaborate examination of the causation of typhoid fever.-The agency of drinking water in disMISCELLANEOUS. - Th
originators of the great enterprise. The director-general and United States director.-" Buffalo Bill.," 3 portraits............... 9
The Manchester Royal Jubilee Exhibition.-Description of the The Manchester Royal Jubilee Exhibition.- Description of the
buildings of the exhibition and their features of construction.-3 buildings of the
illustrations...
I. NAVAI ENGINEERING.-T.. new yacht designed for
ranean. -3 illustrations..
VII. PHY8ICS.-A pparatus for Investigating Terrestrial Magnetism. - A reflecting magnetometer for giving at one observation the deflection and declination. -1 illustration
VIII. TECHNOLOGY.-A New Method of Manufacturing Cylindrical
 Cases and Prevention of Sto
of bisulphide of carbon on gas burners discussed.-1 lilustrative... . Lecked Coil and Stranded Wire Ropes.-A new and ingemiona
 Wroaght Iron:-By J. STAREIR GARDNER.-The manufacture

CREBBRATION OF THE ANIIVERSARY OF NATUBAI GAS IN FINDLAY, 0.
Natural gas in its minor manifestations has been known for many years, and has on the smaller scale been used for lighting since a very early period. But its application on the large scale to the arts as a perfect fuel is comparatively new. The honor of this achievement belongs distinctively to America. In its introduction to the glass house and steel works, it is correctly stated that a new era in the
state and nation has been marked.
In its applications of natural gas to the arts, Ohio has made great progress. In that State and in Pennsylvania, industries have been revolutionized, the clouds of smoke from bituminous coal fires have melted away, and a new excellence of product has followed from the introduction of natural gas. The anniversary of its introduction into the city of Findlay being now at hand, the matter has been taken up by the city. With a view to celebrating this important epoch, the people of Findlay, through the Chamber of Commerce, have decided to commemorate the first anniversary of the practical application of natural gas to the mechanical arts in their city. The celebration is to be held on June $8,9,10$, under the presidency of the Hon. William Vance. The programme is an extensive one. It includes the laying of corner stones of new industrial es tablishments, driving the silver spike on the Findlay electric railway, competitive drills, processions and fireworks, and other features. Speeches by various distinguished men, a banquet, and ball are also comprised. The anniversary promises to be a notabl event in the history of natural gas development.

THE DEFENSE OF THE HARBOR OF NEW YORK, Some months have passed since we suggested as subject for thought and work by our readers the de fense of the harbor of New York. The problem is, un questionably, a live issue. The richest city of Ameri ca is now defenseless and exposed to the attacks of any foreign power. Little or nothing could be done in the regular way to defend it. If the emergency arose, we would have to utilize the passenger and freight vessels which we now possess. With these much could be done. Pneumatic tubes for throwing dynamite torpedoes could be arranged on the ferry boats, as suggested by Lieut. Zalinski. Yet there is room for much thought in studying the application of our present means to defense.
Our weakness is in the want of means. Our navy is now in process of construction, or, at least, its founda tions have been laid. In the naval science of the day, we have still much to learn of foreign nations. The science of sailing vessels is distinct from that of steamers. In old times we led the world by the superiority of our ships. But, with the abolition of sails and the introduction of steam, the situation tends to be reversed. Every week brings news from Europe of some triumph, real or imagined, in naval architecture. The day has come when the fighting vessel must have speed. This quality was never so essential as at the present day. The foreign powers show continually. a fuller appreciation of the fact.
The recent purchase of the liner America by the Italian government, and the building for Italy and other powers of fast torpedo boats in the private ship yards of England, prove how much stress is laid upon the speed of war vessels. In ordering the building of vessels for our own navy, this point has not been over looked, as premiums for excess and penalties for deficiency in this quality enter into the contracts. Gratifying as this action is, the question of how America actually stands in the capacity for producing fast ships may be a subject for serious investigation. A reasonable doubt may be entertained in the matter. Five years ago, high speed had a very different meaning from what it now possesses.
The speed of torpedo boats constructed in England has been attaining a higher standard each year. Every few weeks a new speed is chronicled, until recently a velocity of thirty miles an hour over the measured mile is claimed. By the side of a boat capable of such speed, our government launch Stiletto would seem slow.
Experience, and of a very costly kind, is required to arrive at the points necessarily followed in fast steamers. England is supplying the other powers with these vessels, and her builders are acquiring their skill and experience at the expense of foreign governments. But in case of war, their yards will be in the best possible condition to build the same vessels, or better, for their mother country

The people of the United States have always proved themselves great in their power of rising to emergencies. They are not only inventive, but possess the power of inventing quickly. This power they may yet be called upon to exercise. It would seem better if they were allowed to begin now the attack upon the problem of the construction of fast ships of war.
In this connection a suggestion of great importance was made at the meeting of the New York Chamber of Was made at the meeting of the INew York Chamber of
Commerce on June 2. Mr. Ambrose Snow, the Pilot

New York and Brooklyn should unite in building a fleet of ten steam rams, to be used in case of necessity foet of the defense of New York harbor. When built, he proposed that they should be kept in reserve at the Navy Yard, and in case of necessity they could be manned by the crews of tug boats. There was much that is excellent in his suggestions. If the cities could find no authority for expenditures for such a purpose, our merchants, as a matter of insurance, could readily raise the necessary funds. The vessels once provided, the tug boat fleet would provide most competent sailors and engineers. These vessels, in their daily cruises, un many miles out to sea in the most tempestuous weather. For defensive service they supply as good a tock of material and school of seamen as did the whaling ships and bank fishermen in old times. If the pariotic merchants were to unite and build a successful flee ${ }^{ \pm}$in short time, and if the vessels proved efficient, here is every probability that the United States would be glad to acquire possession of them as members of its new navy.
In the organization of such a scheme, and in designing the vessels, the enterprising business man and the inventor could work hand in hand. In this field the room for invention is unbounded, and the government could do no better service to the people than in encouraging every such movement as the one we have spoken of.

Hints to Swimmers.

"When the bathing season arrives," remarked a natatorium professor the other day, "we'll hear of the usual maximum of drowning cases, and among them, as usual, a fair share of expert swimmers. The chief reason why good swimmers are so often drowned when they are accidentally thrown into the water is because the shock causes them to lose their presence of mind. The loss of presence of mind leads to paralysis of body, or to such wild exertions as accelerate drowning, instead of contributing to preser vation. The ability to behave wisely in case of sudden accidents can only be acquired by experience just as everything else has to be acquired. The theory of the matter can be taught in swimming schools, but the practice must be acquired by experi ence. Hence, in some of the European swimming schools, says the Hebrew Journal, the pupils are taken out boat riding and purposely upset, as though the upsetting were accidental. They are also suddenly pushed overboard, and subjected to all manner of prepared accidents, so as to accustom them to acting in emergencies. In this way they learn how to behave in case of real accidents, and are protected against the loss of their presence of mind on occasions of danger on the water. They are also taught to have faith in the sustaining power of the water itself. They get to know that the water will sustain them if they will only render it the least help.
A finger laid upon an oar, or the gunwale of an overturned boat, or a board, or almost any floating substance, will sustain the human body in calm water Persons who have been properly taught, and have acquired the habit of acting with self-possession in the water when they are upset, do not attempt to climb upon the overturned boat, but simply take hold of it and quietly support themselves. A boat half filled with water, or completely overturned, will support as many persons as can get their hands upon the gunwale, if they behave quietly. In a case of accident, a person who understands and acts in ac cordance with these facts would stand a better chance of being saved, even if he were a poor swimmer, than an expert swimmer would stand who should lose his presence of mind.

Eight Hours a Day.

In his recent very sensible address to workingmen in Boston, Edward Atkinson said, respecting the proposed eight hour system: "If you cut down the work in factories, in workshops, and in the building trades. to eight hours, you cut down the product. Then there will be fewer goods, fewer stores, fewer tools, fewer houses, and that means a higher price and higher rent." This is the doctrine that has been steadfastly preached in our columns for years past. The proposition to try to make men richer by reducing the hours of labor, and so reducing the amount of wealth created, is as stupid as would be a scheme for enlarging a water power by cutting down the mill dam.-Textile Record.

Aluminum-Silver Alloy.

Alloyed with a small per cent of silver, aluminum oses much of its malleability, but with 5 per cent of silver it can be worked well, and takes a more beautiful polish than the pure metal. With 3 per cent of silver it is very suitable for philosophical instruments, being harder and whiter than the pure metal, and is not tarnished even by sulphureted hydrogen. With small amounts of silver, it appears very suitable for scale beams, and is now frequently used for this purpose. The alloy containing 5 per cent of silver has often been suggested for coin of small denominations, as it is hard, suggested for coin of small denominations,
bright, and retains its luster in handling.

PHOTOGRAPHIC NOTES

Improved Distance Measurer.-At a meeting of the Photographic Society of France, M. Lemercier exhibited a novel attachment to a camera, for quickly ascertaining how far objects were from the camera. The device consisted of a V-shaped jaw on an acute angle placed horizontally on the front portion of the top of the camera, and connected by a system of levers to the lens, so arranged that when the lens is drawn in or out for focusing, it will automatically open or close the jaws.
If an object is 200 feet distant, the lens is moved until an accurate focus is obtained, and a corresponding mark is made on the jaws. When the ground glass is removed, focus is obtained by operating the lens until the object can be plainly seen between the jaws at the 200 feet mark. Other marks for different distances are made on the jaws. A peculiar advantage of the device is that it enables one to determine how far off a man is from the camera. If, when the jaws are wide open, the head and feet are just included in the space between the outer extremities of the jaws, then the man will be ten yards distant. If his image be so small as to come within a mark near the apex of the jaws, then he will be 200 feet distant. The operator stands behind the camera, and looks through and against the side of the jaws.
Diffusing Light in Studios.-Frequently there is need of diffusing light in studios, either from the direct rays of the sun or from the reflection of colored light from high buildings. Waxed tissue paper has been found to be one of the best mediums for this purpose, since it allows a large percentage of light to pass, and at the same time it is the latter is equally diffused. Pictures may be made as quickly as if there was no medium interposed. Thus we have a new use for waxed paper, in the manufacture of photographic screens.
Removing Pyro Stains from the Fingers.-The British Journal of Photography says this is easily done by moistening the hands with a dilute solution of almost any acid-hydrochloric, nitric, oxalic, citric, etc. After cleansing in this manner, the hands must be freely washed in hot water. If this precaution is not taken, the stains will reappear under the use of soap and water.

Something New about Bees.
At a recent meeting of the Royal Microscopical Society, Mr. F. R. Cheshire called attention to some specimens of bees, known as "fertile workers." It was generally well known that in the beehive all the eggs were usually laid by the queen, and in her absence no ovipositing occurs until they have taken some of the eggs remaining in the hive, and by a special feeding of the larvæ have been able to produce fresh queens. If, however, it should happen that in a hive which has lost its queen there are not eggs available for this purpose, it was found that some of the workers under some special circumstances, which could not be very clearly explained, became capable of laying eggs, but that such eggs produced drones only. These bees were known as fertile workers, and though there could be no doubt as to their frequent existence, they were very difficult to catch, owing to their being the same in appearance as the ordinary workers. He now exhibited two of these fertile workers having the ovaries drawn out of the bodies, and attached to the stings and abdominal plates, so as to show that they really were workers. There was a remarkable peculiarity to be observed in connection with the ovarian tubes of these insectsevery ordinary worker possessed an undeveloped ovary which it was very difficult both to detect and dissect ; but when under the influence of some stimulus the worker became fertile, a number of points began to appear in the tubes which afterward became developed, and it would seem that the eggs were developed in al ternation, an examination of the tubes showing them to contain developed eggs alternating with others in an undeveloped condition, and of which some very curious instances were seen in the specimens before the meeting.

" The Spectacle Mission."

A provincial contemporary contains an account of a new missionary enterprise-one for distributing spec tacles among the poor. This may seem at first sight a very prosaic thing to do, but we recognize in it the very genius of kindness. "I was eyes to the blind" was one of the most excusable boasts of Job in his moments of pardonable complacency. Such may be the satisfaction of Dr. Edward Waring, of Maida Vale, who is credited with initiating this piece of benevolence among the inmates of St. Giles' Workhouse and the Cleveland Street Sick Asylum years ago. Such a service implies much trouble and time. It is of little use to supply spectacles to the poor without much personal trouble to suit the glasses to sight. We can only hope that Dr. Waring's example will be fruitful, and that the intolerable irksomeness of life in those who have the disposition to work without the means of doing so will be extensively mitigated.-Lancet.

A few weeks ago we had a curious explosion here which is, I think, worthy of record, in order that imilar occurrences may be guarded against in future. What exploded was a steel cylinder which was being charged with oxygen gas in the basement of the School of Science building. It was one of the so-called forty-foot cylinders made by the New York Calcium Light Company, and was intended to be charged to pressure of fifteen atmospheres. It had been regularly used at that pressure for a year or two
At the time of the explosion the pressure was only At the time of the explosion the pressure was only
about ninety pounds, as shown by a pressure-gauge connected with the apparatus. This gauge had been duly tested only a week or two before, and found correct. The oxygen was being pumped into the cyl inder from the gasometer by an ordinary force-pump, furnished for the purpose by the makers of the cylinder, and driven by steam power at the rate of about eighty strokes per minute. The lower portion of the cylinder was immersed in a vessel of water, to keep it cool; and the pump piston was lubricated with a heavy mineral oil, such as we are accustomed to use in the steam en gine cylinder. The seat of the lower valve is of hard rubber, and had just been faced off, so that the pump was in exceptionally good order, and working very effectively. The connection between the pump and cylinder was by a heavy lead pipe of about a quarternch bore, and about five feet long.
At the time of the explosion two persons were in at tendance, one of them Mr. Fisher, the mechanician o the School of Science, in charge of the machine shop, who stood by the pump watching the pressure-gauge and the other his assistant, standing by the cylinder itself. Suddenly a flame, blue or green, and some three or four inches long, made its appearance on the top of the cylinder, where the lead pipe was coupled to the stop-cock. The young man at once reached out with his hand to turn the wrench (which was in its place, on the top of the cylinder), in order to prevent any loss of gas; at the same time naturally turning half round away from the cylinder, stooping a little Before he could turn the wrench, the thing exploded, with the noise of a six pounder gun. The cylinder tore in two about six inches from the bottom. The upper part flew up, striking the floor of the mineralogical cabinet above, giving such a blow as moved some of the cases several inches, and shook the specimens completely into $p i$. The glass of every window in the basement was blown out, the plastering was knocked down,
and the whole establisment was pretty thoroughly wrecked. Strange to say, neither of the men was much hurt. Mr. Fisher had his eyebrows singed, and a piece of the cylinder nearly as large as one's hand was shot through the brim of his hat, passing within an inch of his forehead. The assistant was sent flying, head first, nearly twenty feet, against the gasometer tank. Of course, he was a good deal bruised and shaken, but fortunately not seriously injured, not enough to confine him to his room even for a single day.
Somewhat similar explosions, but much less violent, had occurred two or three times before, always in charging the oxygen cylinder; but the damage done had never been anything more than blowing off the lead tube from its connections, or bursting it. I learn also that something of the same sort is not quite unknown in the pumping rooms of the establishments which deal with the gases on a large scale.
Now, as to the explanation. My theory is this, and several eminent chemists and physicists to whom it has been proposed accept it, while none, so far as I know, reject it. The explosion was probably due to the firing of oil spray, and possibly a little oil vapor mixed with the oxygen gas. The inside of the cylinder after the explosion was found to be covered by a fllm of oil, which undoubtedly came from the pump cylinder, and was forced into the pipe along with the gas; a little puff of gas and oil spray passing through the valve at each stroke of the piston.
Now, oil in pure oxygen will, of course, burn with extreme violence and the evolution of great heat, if anything sets it on flre; and though the immediate effect of such tiring might not be an explosion quite in the sense of an explosion of gunpowder or dynamite, yet it is certain that the sudden and intense heating of the gas in the cylinder would immediately raise the pressure, already ninety pounds by the gauge, to three hundred or four hundred pounds, and quite beyond the strength of the metal. The fact that the young man was not torn. to pieces, but simply pushed
and thrown, corresponds to an explosion of the kind indicated. At the same time, the fact that the hand with which he tried to turn the wrench was slightly singed, shows that fire was present. It was not merely a case of a cylinder weakened by age and rust bursting under a pressure it ought to be able to bear.
The firing of the misture of oil and gas was unquestionably due to the sudden pressure produced at the lower valve of the pump by each piston stroke. It will be remembered that the seat of this valve was of vulcanite, a very poor conductor of heat; so that,
although the bottom of the cylinder was kept fairly cool by the vessel of water in which it was immersed, yet there was nothing to prevent the gas itself, just at the valve, from becoming very hot, and even rising above the temperature of ignition, if at any time, during a stroke or two, the valve happened to stick little.
The moral is simply this: Do not lubricate an oxy gen pump with oil, but with soap suds or something that will not burn in oxygen.

Killed by an Orange Seed.

Henry Chatfield, of 115 Henry Street, Brooklyn, the head of the hosiery department of a Fulton Street notion store, died May 29 of the effect of the lodgment of an orange seed in his intestines. He had been ill for several weeks with inflammation of the intestines, fol lowed by ulceration. Dr. Emerson, his physician, called in Dr. William Gilfillan for consultation, and they, having decided that an operation was necessary, procured the assistance of Dr. F. H. Colton. On the morning of May 29 the three doctors made an incision, and after removing a quantity of pus found the source of trouble and removed it. The patient however, was unable to rally from the shock, and died about 4 o'clock. Dr. Gilfillan said:
" The operation was a desperate one, and was undertaken only as a last resort. There was no possibility of saving the patient otherwise. The orange seed was found lodged in the appendix vermiformis. This is a small sac that is attached to one part of the intestines. What purpose it serves is not exactly known. It is however, a sort of trap, always ready to catch and hold hard substances passing through the intestines. The lodgment of such substances in it is not invariably fatal, but the exceptions are rare. Seeds of oranges, rasins, and similar fruits are peculiarly liable to be caught in this way. Is it dangerous to eat oranges? Well, I suppose in a city of this size there is one case a year of death from such a cause. Very frequently it is an orange seed, but not al ways. There are about 600,000 people in Brooklyn, all eating oranges right along, and with one death a year from this cause it would seem to be about as dangerous to eat an orange as to sit in the house and wait for a stray pistol ball to kill you Still, it's just as safe, and a good deal nicer, not to swallow the seeds when you eat oranges." $-N$. Y. Sun.

Influence of the Degree of Rarefaction on the Efficiency of an Incandescent Lamp.
In the manufacture of lamps, the photometric researches by Sig. Heess, applied to some Swan lamps where the rarefaction of the gas was made to vary from a maximum obtainable with a mercurial air pump down to 2 mm . (10-125 inch) by a mercury gauge, are of much interest. It was ascertained that naturally the illuminating power for a given quantity of electric energy was highest when the highest vacuum obtain able was produced. As the pressure was allowed to in crease, the light diminished ; but at first the decrease was slight, so that the luminous intensity was nearly equal to the maximum value until the pressure ex ceeded 2 mm . (10-125 inch). Increasing the pressure be yond this point, the luminous intensity rapidly decreased, until it became reduced to two-thirds of it original value, when the pressure increased from 2 to 6 mm . (1/4 inch).
Sig. Heess concludes that to obtain from a lamp a good luminous efficiency, the tension of the gas should not exceed 2 mm . The author notes that while the experiments were conducted with the Swan lamp, it is probable that the results would apply to lamps of other types. In any case, the result of these experiments should be placed on record, because in judging of the expediency of pushing the exhaustion of an incandescent lamp to certain limits, not only the luminous efficiency, but other circumstances also, have to be taken into consideration.-G. G., in L'Industria.

Deaths of Eminent Foreign Medical and Scientific

The deaths of the following foreign medical and scientific men are announced: Dr. W. Hack, Professor of Laryngology and Dermatology in the University of Freiburg in Baden, was recently found dead, apparently from heart disease, upon his tricycle, which was standing in the middle of the road near Staufen in the Untermunsterthal.-Dr. Max Geminger, Conservator of the Munich Zoological Museum, and a well-known entomologist.-Dr. Joseph Lerch, Extraordinary Professor of Zoology and Director of the Zoo-chemical Institute in the German University of Prague.-Dr. Vladimir T. Horschelmann, Privy Councilor, and late holder of a high position in the St. Petersburg district, Military Medical Staff. At the time of the Crimean war he was senior surgeon of the Preobrashenski Regiment.-Dr. Edward Meyer, who is described as the Nestor of Livonian practitioners, being at the time of his death eighty-two years of age, and having taken the M.D. degree at Dorpat in 1827.-Dr. Hellinger, oneof the oldest and most respected medical officials in the Rhine provinces.-Lancet.

SMORING PIPE.

The bowl of the pipe communicates through openings in the bottom with a chamber having a suitable outlet, which can be located at any desired point on the bowl or stem. The opening through the stem terminates in this chamber. It is evident that, by blowing through the stem, a powerful current of air will be drawn down through the tobacco in the bowl and the smoke will be forced through the outlet. It is impossible for either the smoke or nicotine to enter the mouth, and there is no danger of the pipe becoming clogged. The strongest tobacco can be smoked by a person not at all accustomed to it. The smoke can be blown out at any point of the pipe, either the head or stem,
 for fumigating purposes. A more uniform draught, and one which can be continued for a longer time, is possible with a forced blast through the stem, as in this pipe, than with the inward draught of an ordinary pipe. This construc-
tion can be applied to any pipe or holder made specially for it, or it can attached to the ordinary forms of smoking devices.
This invention has been patented by Mr. Henry G. Schramm, of Camden, N. J., who will furnish any further particulars.

STANDARD DANIELL'S BATTERY.

t. o'conor sloane, ph.d.

The sulphate of copper battery is probably more used as a standard of electromotive force than any other. Various forms have been suggested and adopted. Among the features to be secured are permanency and freedom from tendency to local action. In these and other respects, the battery as usually constructed is defective, as it is emphatically a two fluid cell. It is essential that the plates should each be immersed in a particular fluid, and that the fluids should not mix.

To secure this end, various means have been adopted. The porous jar form is very commonly used. But as a

standard daniells battery.

scientific apparatus this is defective. The pores of the jar become filled with the battery salts, and to start new this may require quite a lengthy process of cleaning. Then it sometimes happens that metallic copper precipitates upon the surface of the porous jar, rendering it quite hors de combat. Thus the mere fact of the use of such a jar introduces an element of complication.
In the cut is illustrated a very simple and cheap form of cell that avoids most of the troubles usually affecting Daniell's battery. Two forms are shown, one of the simplest possible description, the other a modification designed to secure lower resistance, and admitting of the convenient use of a septum of gold beater's skin or other membrane.
The simpler form is constructed with two test tubes, a small bent glass tube, and the plates and solutions. Two test tubes are placed in a stand. A piece of glass tubing is bent in a smooth curve, so that when in place it will extend from one to the other, as shown. This should be about 3 mm . ($1 / 8$ inch) in internal diameter. A piece of copper for negative plate, and of zinc for positive plate, are provided. To each a wire is connected by soldering. The de sired solutions must now be prepared. The strength
is of course to be flxed by the experimenter, according to the results he wishes to obtain from the battery. The use of saturated solutions is very usual. Assuming such to be employed, one of the test tubes is nearly filled with a saturated solution of copper sulphate. The other one contains a saturated solution of zinc sulphate. The latter is the heavier fluid. The bent tube is now filled with the same solution of zinc sulphate. If it be held while thus flled with its two open ends down and open, it will not empty itself. The least jar or shake will cause it to do so; but by careful handling it can thus be carried from one vessel to another. Having then filled it with the solution, which is easily done by siphoning, it is carefully lifted up as described, and lowered into the solutions in the test tube. To be sure that no air bubbles rise into the bend, it is well to have the zinc sulphate tube filled to the higher level. Then, on introducing the bent tube, a little of the zinc solution will first siphon over and sink to the bottom of the copper solution. A slight mixing of the solutions is not prejudicial, provided no copper solution comes in contact with the zinc plate. The bent tube having thus been introduced, the copper plate is placed in the test tube containing copper sulphate solution, the zinc plate in the other tube, and the battery is ready for use.
It is of extremely high resistance, and no porous septum is used to secure more perfectly from mixture. A slight mixing of the solutions in setting up, moreover, cannot well be avoided. The other form overcomes these troubles, and also gives a cell of lower resistance. The bent tube is made of larger diameter. It may be nearly as large as the test tubes. To the apex of its bend a capillary tube, opening into a large tube, is connected. If desired, a septum may be tied over one of its lower ends. The tubes are filled with their solutions, the bent tube is placed in position, and by suction the liquid is drawn up until it rises through the capillary tube, well into the larger one. The suction is stopped and the end left free. The liquid naturally sinks, but, owing to the small size of the capillary tube, with such slowness that a cork can be inserted, without trouble, into the suction tube. The plates are put into their places, and all is ready for use.
If a piece of membrance is used, it should be tied ver the end of the tube which is immersed in the solution of higher specific gravity, containing the sulphate of zinc. It is well also, in this case, to pour into that limb through the suction tube a quantity of the zinc sulphate solution. The level of liquid in the test tubes and the length of the straight portions of the bent tubes must be so adjusted that enough liquid will be left in the test tubes after the filling of the connecting tube. To make this easier to effect, it is well to use test tubes of large diameter, or even small beaker glasses.
Nearly Thirty-three and a Half Miles per Hour.
Messrs. Thornycroft, of Chiswick, have just completed a new torpedo boat for the Spanish government which for speed, it is stated, has beaten anything that has yet been built. The new boat is 147 feet 6 inches in length, has a beam of 14 feet 6 inches, and draws 4 feet 8 inches of water. She has two tubular boilers and twin screw compound engines, which act independently of each other, while the steering gear consists of two curved rudders, which make her extremely handy, as she is able to turn about in three times her own length, going at ordinary speed, which, at a trial on May 10, was 15.84 knots with the natural draught. On a recent trip with the tide in her favor and forced draught, she is said to have attained the extraordinary speed of 29.01 knots, or a rate of nearly $331 / 2$ miles an hour. Her times on May 10 on the measured knot were, for two runs of a knot each, with the tide, 2 minutes 10 seconds and 2 minutes $111 / 4$ seconds, while against the tide, for three runs, the record was $2 \cdot 25,2 \cdot 25$, and $2 \cdot 251 / 2$, giving a mean speed of $26 \cdot 18$ knots, or over 30 miles an hour.
The boat is divided into a number of watertight compartments, and in case of being.hulled by shot is fitted with ejectors capable of discharging 480 tons of water per hour. She has two torpedo tubes in the bows, and has space to carry four Schwartzkopf torpedoes, and will mount four Nordenfelt machine guns.-Iron.

FRUIT GATHERER.

By means of this light and portable device, the fruit may be harvested without injury to either tree or fruit, and any known fruit may be brought from the top of a tree to the ground or hand of the operator in a perfect condition. The upper end of a hard light wood pole is constructed with flat sides and edges. Centrally, upon one side of the pole, is a groove, in which slides an iron or steel rod, pivoted to the upper end of which are short arms whose free ends are united to semicircular cutting plates. The straight edge of one of the plates is formed with a eutting edge, while the straight edge of the other plate is provided with an angular groove to receive the cutting edge. A wrought iron cap having a central triangular cross piece is fitted over the end of the pole, to serve as a guide to the short arms and as a brace and stay for the upper portion of the pole. A tube of canvas or cot-
ton, about three or four feet longer than the pole, open at its lower end and slitted a short distance at its upper end, is secured to the semicircular plates. This tube receives and conducts the fruit to the ground or hand of the operator. To use the gatherer, the cutting plates are closed and it is hoisted up among the branches. When near the fruit, the operator inserts the offset of a detachable handle in the most convenient slot in the sliding rod, and, by means of the handle, pushes the rod upward, thereby causing the pivoted arms carrying the cutting plates and the flexible tube to extend upward and outward above the end of the pole. The fruit is thus covered within the out stretched cutting plates and tube, and, upon the handle being drawn downward, the stem is cut by the plates as they come together. The fruit is then con ducted by the tube gently to the ground.

EVANS' FRUIT GATHERER.
This invention has been patented by Mr. Eugene E. Evans, of Crystal Springs, Miss.

IMPROVED DOOR SECURER

This door fastener is specially adapted for use with refrigerator and ice house doors, which under all conditions are brought by it up tight to the jamb. To the outside of the door, Fig. 2, is attached a plate, and upon the inside, Fig. 1, is held a second plate, these plates being shaped as shown in the engraving. A square spindle formed with a handle at one end, and having a thread at the other, passes through the plates and door. Upon the inner end of the spindle is placed a segmental block having opposite cam faces and formed with a square opening to receive the spindle, the block being held by a nut screwed upon the spindle. To the inner face of the jamb is secured a plate having a narrow right-angled projection, the outer face of which is inclined in opposite directions from the center, the plate being so held that one of its inclined surfaces will engage one face at the reduced end of the block when the latter is carried from a vertical to a horizontal position. The block is made with a double face and the plate with a double inclined surface, so that the device may be used either right or left, as found most convenient. In operation, when the door is open, a lug upon the handle rests upon a horizontal lug on the plate on the outside of the door, the handle and block being in a horizontal position facing the inner edge of the door. When the handle and consequently the block are carried to a vertical position, the door

KEIL'S IMPROVED DOOR SECURER.
can be closed; and then if the handle be carried downward in the direction of the inner edge of the door, the reduced end of the cam will engage the inclined face of the plate, and the farther the handle is carried down, the tighter the door will be pressed against the jamb. Ordinarily, the handle need only be carried to a horizontal position to effect a tight joint; but a full quarter turn more may be made if the door is badly shrunk or warped. The fastening is secure when made, and easily released.
This invention has been patented by Mr. Henry F. Keil, of 162 East 53d Street, New York City.

IMPROVED CAMERA CLAMP AND TRIPOD HEAD.
The well known tripod screw for securing a camera firmly to the head of a tripod has many disadvantages, which have several times been pointed out. Yet it still continues to be one of the most indispensable articles photographer has to use.
The object of the device shown in Figs. 1 and 2 of the engravings is to overcome the defects incident to the common screw clamp, by avoiding all separable parts and the wear of the screw thread, and at the same time to permit the camera to be easily and quickly secured to the tripod. A truncated cone shaped casting, hav ing a projection provided with a socket or seat set flush with the top of the tripod head, is secured by screws to the under side of the head. 'The lower face of the casting is planed or filed off on a bevel. Passing through the hole drilled in its center is the fastening
ra after it is secured, a slight depression is provided in the inner surface of the plate at the end opposite the entrance slot, clearly seen in Figs. 1 and 2.
To clamp the camera on the tripod head, it is only necessary to rotate the spindle by the thumb disk until the two beveled faces are parallel with each other, then to push the spindle upward until the faces meet, which leaves the spindle head projecting above the tripod head. When the camera is then set upon the tripod, the head of the spindle enters the key hole slot, and by a slight movement lengthwise the head is brought directly over the seat of the slot. By slightly rotating the spindle by the fingers with the thumb disk the beveled faces act upon each other like a cam, and at once draw down the spindle head into the seat of the key hole slot, firmly clamping the camera bed to the tripod head. A reverse movement allows the spindle to be pushed up so that the camera may be quickly removed.
It will be observed that the clamp is very simple, effective, and strong, is in fact more durable than a screw, not liable to get out of order, and with it a camera can be very quickly adjusted to a tripod.
The inventor prefers the triangular form of a tripod head, as shown in Fig. 1, and has the tripod legs rigidly secured thereto to cured thereto to avoid the wear and racking motion incident to detachable
legs, which frequently occurs when phoThe fastening for the
spindle, having a solid head turned on its upper end, tographing in a brisk wind. Th Fig 3, and consists and a thumb actuated disk, held rigidly by suitable screws, at its lower end. The upper face of the disk is beveled to correspond with the bevel on the casting above.

Located in a slot in the spindle is a very light steel spring (see Fig. 2), which, in pressing against the walls of the hole, holds the spindle by friction, in any position, as it is elevated or depressed, and at the same time allows the spindle to be freely rotated. When the spindle is not secured to the camera, its head is drawn down into the seat in the upper face of the casting, so that nothing will project above the surface of the tripod head.
A light metal plate, having its ends bent up around the sides of the central bar of the camera bed frame and secured thereto by screws, as shown in Fig. 1, has a key hole slot in which the head of the spindle of the clamp fits. The wood of the camera bed is dug out back of this slot, forming a recess, as shown in Fig. 2. It will be noticed this method of fastening the plate to the camera bed frame secures unusual strength, since the pull on the screws is at right angles to their length. To prevent any possible slipping of the came-
leg of the tripod is shown in Fig. 3, and consist a round plate, provided with two projecting ears through a pin riveted in the extremity of the tripod leg. The through a hole in the extremity of the tripod leg. The
plate is secured to the underside of the tripod head by screws. This construction makes a very rigid and steady bearing for the tripod head and camera. Both may be carried about on the shoulder without in any way straining the clamp.
Different sized cameras may be used on the one tripod head. The improved clamp may be fitted to any tripod head or camera. The inventor, Mr. M. P. Warner, Holyoke, Mass., or the manufacturers, The Scovill Manufacturing Co., 423 Broome Street, New York, are prepared to furnish clamps and fit them to tripods. Further information may be had by addressing either party.

THE NEW MILITARY MULTICYCLE

This machine, manned by ten men, which may recently have been seen traversing numerous London thoroughfares, is Messrs. Singer \& Co.'s latest adapta-
tion of their "Victoria" or "Four-in-Hand" quadri-
cycle, and is intended for the rapid transport of infan try from one point to another. When fully manned, it carries twelve men, who can take with them, if necessary, a light baggage cart or ammunition wagon By thus mounting the riders in single file, instead of two or four abreast, the machine is both rendered more manageable and it also presents less surface to a strong head wind. The speed got out of this machine is surprising. Ten miles an hour is a low average rate, and sixteen have been easily accomplished. It is less affected than any other velocipede by rough roads, and passes easily over a newly metaled track. All the tires are wired on the Otto principle, so that they cannot be greatly damaged by cuts from sharp stones. The whole control and steering of the machine is in the hands of one man, who found no difficulty in man aging it even in the most crowded streets. It turned easily in less space than a hansom would have needed, and threaded its way among numberless vehicles with out mishap. The crew in charge of this multicycle are all trained volunteers, who will be able to execut intelligently any military evolutions which may be demanded of them. The machine is now being severely

AP ROBERTS' NOVEL TRUNK.
tested at Aldershot by authority of the War Office.The Graphic.

A NOVEL TRUNK.

The trunk herewith illustrated is the invention of Mr. G. I. Ap Roberts, of River Falls, Wis. It is con structed at one end with an inclined bottom on which are secured one, two, or more bearings, each carryng a wheel, as shown in the sectional view, Fig. 2. The wheels do not touch the ground when the trunk stands on its bottom. The end opposite the nclined bottom is provided with handles. When it is desirable to move the trunk, the handles are grasped, and that end lifted until the trunk rests upon the wheels, when it can be rolled in any desired direc tion. It is apparent that this invention is also ap plicable to sample cases, tool chests, etc.

IT has been demonstrated that platinum wire may be drawn so fine as to be invisible to the naked eye, although its presence upon a perfectly white card can be detected by the touch, and can be seen by the aid of a small magnifying glass when the card is held in of a small magnifying glass when the card

INFANTRY SOLDIERS ON THE ROAD

SEARCH LIGHT ON THE U. S. CRUISER ATLANTA.
The recently completed U. S. cruiser Atlanta is provided with two search lights of great power, one being located just back of the 8 in . long range breech loading rifle on the forward deck, while the other is immediately back of the stern chase 8 in . rifle. These lights are exquisite specimens of mechanism, and, although at first glance they seem to be extremely complicated, there is in reality no part not necessary in order to produce their quick, accurate, and easy universal adjustment.
The tube or cylinder containing the light proper has a length about equal to its diameter, and is mounted upon trunnions placed in bearings in a yoke swiveled upon a post or standard secured to the deck. The tube has a free movement on its trunnions to provide for vertical adjustment, and also moves freely on the pedestal for horizontal adjustment. These movements are accomplished by hand, the operator grasping the tube and manipulating it as may be necessary; but when a fine adjustment is required, the tube is clamped in the bearings and to the standard, when the movement is then controlled by a worm and gear.
Within the tube, the front of which is furnished with a glass door, and in the sides of which are sliding doors, through which the interior can be reached, is an arc light, the carbons of which are three-quarters of an inch in diameter. The are is located in the focus of a parabolic reflector covering the rear end of the tube, the direct rays being prevented from leaving the tube by a shield held in front of the arc. The carbons are carried by a frame having a movement parallel with the axis of the cylinder, so that the arc can be maintained in the focus. Each carbon is provided with an independent adjusting apparatus, by means of which its point can be moved to either side, forward or back, and up or down. Through the center of the reflector is an opening, covered by a red glass, through which the arc can be inspected, and at the center of the right hand side of the tube is a prism. The light can be cut off by a shield, which can be swung down between the arc and reflector. A switch controlling the current of electricity is placed on the pedestal.
These devices for altering the position of the points of the carbons by hand are, of course, independent of the usual mechanism governing the carbons and regulating the arc. They are intended to provide means for shifting and regulating the are in its relation to the focus.

In the top and bottom of the tube are openings, so covered as to prevent the light from passing out, which serve to ventilate the interior, the heat of the light being sufficient to create an upward draught.
The beam of light issuing from the lantern diverges slightly, and is sharp and well defined. When required, a lens can be fitted over the plane glass cover so as to produce a pencil of light having parallel rays.

It is evident that, from the elevated position of these two lights, their location on the ship, the extraordinary power of the light they throw, and the ease with which they can be handled, the surface of the water immediately around the vessel and at a long distance off can be brilliantly illuminated. The rapidity with which the beam can be swept around and adjusted to short and long distances will serve to give warning of the approach of any floating craft, and any object once sighted can, by means of the delicate adjusting contrivances, be easily and surely kept in the
path of the beam. Provision is also made for keeping path of the beam. Provision is also made for k
the light steady during the rolling of the ship.
For particulars concerning the search lights we are indebted to the courtesy of Lieut. W. P. Clason.

Early Use of Mahogany.

It is said mahogany was first known to Europeans through the fact that Sir Walter Raleigh, when at Trinidad in 1595, used planks of it to repair one of his vessels. The samples thus carried to England were much admired, but for over 100 years it was put to no practical use. In 1720, however, a Dr. Gibbons, of London, received a few mahogany planks from a friend in the West Indies, and employed a cabinet maker to work them up. From that time to the present, the wood has been a staple article of commerce, So far the supplies have practically all come from Spanish America, but there is some possibility that other sections may contribute to the supply. Mahogany, though of an inferior quality, has been shipped from Africa, and certain parts of India have proved to be adapted to its growth. Mahogany is of slow growth.

Steel Oarm.

Yates \& Co., Birmingham, are making an oar in which the blade is made from the best sheet steel, highly tempered. It is put forward as being much stronger than the ordinary wooden one, and cannot be broken without undue violence. The handle fits into a socket running nearly the whole length of the blade, and forming a backbone of great strength. The oar being much thinner in the blade than the wooden one, enters and leaves the water cleaner. The handles are made separately, of the ordinary spruce or ash, and if broken can be readily replaced.

The Northampton Herald, referring to a well boring or Belding Brothers, silk manufacturers, Rockville, Conn., says of the work: When the sandstone was reached, it was thought that at a depth of 750 feet that would be the last of it; but when this depth had been attained, and the sandstone still continued, it was then predicted that by the time the drill had gone down 1,250 feet, it would be through the stratum, but not so; 1,250 feet, it would be through the stratum, but not so;
and again another prediction was in order, and 1,500 and again another prediction was in order, and 1,000
was the depth named. But the well has been bored some 3,440 feet, all but 200 feet being through sandstone, and now the best geologists are at loss what to say, for the question how far the sandstone does extend is a conundrum which they " give up."
Prof. Emerson, of Amherst College, and other eniinent geologists declare that it is impossible to tell anything about it. Mr. Haskell, the solicitor of the anything about it. Mr. Haskell, the solicitor of the
North American Mining Company, which is sinking the well, has brought the matter before the geologists of the Boston School of Technology, and they do not attempt to give any theory which affords any encouragement as to how far it will probably be necessary to go down before getting through with the sandstone. The theory is that the sandstone is the deposit of a vast river current in the past ages, and therefore it is difficult to arrive at any conclusion as to what the depth of this deposit may be. The well is now the deepest in the country, and, with one or two exceptions, the deepest in the world. There is one at St. Louis 3,180 feet in depth, which flows seventy-five gallons of water per minute.

Making Solder.

The solder manufacturers make it so easy for tinners to procure solder, and at such a reasonable price, that it may be only a few years before there will be so few tinners who know how to make the article that the process may be counted among the lost arts. In many country towns, old tea lead can be bought so cheaply that it may pay the tinner to make his own solder. To make good solder, care must be taken that the metals are not heated too much, or they become hard, or lose their life. The usual way of making solder is to put a kettle on the forge and melt the pig tin, then the lead is added. If this operation is left to incompetent persons, there is danger that the material may be heated too hot. This should never occur.
The tea lead can be melted quickly by bending a piece of heavy iron in the form of a trough, which can be placed on the forge in an inclined position. By having a proper amount of fire under the iron, and burning resin with the lead, the paper can be burnt off very rapidly. A pot can be placed under the trough to catch the melted lead. As soon as enough lead has been melted, the pot of lead can be weighed, and the proper amount of tin added to make the desired quality of solder. For general use, most tinners prefer half and half; while for rough work, whatever that may be, a solder composed of fourteen parts of tin to twenty-two of lead may do.
The greatest care should be taken that there is no zinc in the solder; if there is a suspicion of any, it can be removed by burning sulphur on the surface of the melted solder. This operation should not be continued too long, as sulphur will eat tin as well as zinc.
When the metal is ready to be dipped out, it should be constantly stirred, so the heavy lead will not settle to the bottom, and leave the tin on top. Its paper can be taken off tea lead by opening out the lead and sprinkling it with water, then folding up again, and allow to stand until the paper will peel off. This saves one heating, 'and makes the peel off. Thi
solder richer.
There are two kinds of tea lead. One kind looks more like solder, it is so light colored. This kind is said to contain bismuth. It is better for solder inaking than the darker colored kind. As long as the solder is melted, its surface should be covered with resin, to prevent the air from forming the oxide of tin ; and if the solder is poured into pans, it should be skimmed with a piece of Russia iron as wide as the dish, so, when the solder cools, it will look like cakes of silver. The "scraps" from the solder boards should never be melted with the new solder, as there may be
some pieces of zinc or galvanized iron in the collec some
tion.
As

As hot metals are not convenient to weigh, another way of making the solder may be used. The lead can be melted in the kettle, and about as much tin put in as may be thought right. When there is more than half lead, a star will form on a button of the solder as it cools; as more tin is put in, this "star"
will disappear, until the button shines like silver Then the solder is all right. These buttons are made by taking out a little solder in a ladle, and pouring it on a heavy stake, so it will cool at once. A little practice will enable one to tell the quality of solder as well as could be done by weighing.
A little bismath added to solder makes it melt easier, and teaspoons can be made that will melt on
being putinto hot tea. This makes anice joke to play
on people, for it is enough to surprise any one to It is by to drink so has theon.
It is by putting bismuth into solder, so it will melt easy, that our brother tinners in China manage to solder the lead lining of tea chests so nicely and cause the " Melican"" tinner to wonder how it is done.-American Artisan.

How Watch Dials are Printed at Elgin.

The progress of art is nowhere more apparent than in the to-day method of dial making, contrasted with he old system of hand painting and ruling.
We have just examined the present system of printng dials employed at Elgin, a system first invented by Henry Abbott, of New York, and supplemented by the experiments and exertions of Mr. Eggler, the present superintendent of the dial department at Elgin. This system dispenses with all the old army of skilled dial painters and rulers, besides producing work of an accuracy and beauty they could never hope to equal. As at present employed, the first step taken is to en grave on a steel plate a pattern of the dial they wish to produce. This steel plate once made serves as a model forever, for from it is first formed a matrix of brass, on which is made by the usual electrotyping process a number of copper electrotypes, containing the pattern substantially the same as the first engraved steel plate. These copper electros are next covered with the pigment they wish to mark the dial, and after drying are cleaned off carefully, the pigment of course remaining in the depressions. These copper plates are next placed upon a flat, revolving table, and collodion poured upon them. Centrifugal force disperses the collodion evenly over the plate, and in a few moments the film of collodion, backed by a sheet of paper, is carefully removed, having taken up the pigment from the plate. These coppers, after a limited use, are discarded, as the collodion and friction of rubbing in the pigment tend to mar the distinctness of the image. These collodion sheets are next laid care fully on a dial which has been already baked and polished, and after removing the paper backing, used to facilitate handling, the dial is gently fired to evaporate the collodion and fix the pigment firmly on the ate the collodion and fix the pigment firmly on the
enamel. Dials are thus produced of a beauty and accuracy all depending upon the execution of the original model ; and as such a model, laid out mathemati cally and finely engraved, serves to always produce its counterpart, dials are made with an accuracy and cheapness not to be attained by the old process of individual treatment. Various colors may be printed, only requiring care in the first laying on of the pig-ment.-C. B. Garrett, Jewelers' Journal.

Interesting Cure of Insanity.

An interesting instance of fighting insanity by insanity has recently been noticed among the Blackwell's Island patients. Two lunatics had been received who were disposed to commit suicide. In addition each possessed a special delusion, one to the effect that he was a cow, the other that his head was an iron ball, was a cow, the other that his head was an iron ball,
and was to be rolled along the floor. They carried these beliefs into action, one striking his head against the padded walls of his cell, the other rolling his head, and of course his body with it, along the floor. The two patients were placed together, and each was privately informed of the other's weakness and warned to watch his companion to prevent him taking his own life. Thus each had a charge in the other. Their vigilance was unceasing. Each supposed himself perfectly sane, and this belief was accompanied by considerable scorn for the other's weakness of intellect and accompanying delusions. Gradually under the influence of this treatment the patients were observed to improve. To have their attention centered on definite duty and on objects external to themselves proved a tonic for their diseased minds, and gradually a complete cure was effected, and they received their discharges from the asylum.

Absorption of Nitrogen from the Atmosphere.
Soils were placed in vessels of glazed earthenware, and in some cases were protected, in others exposed to air and rain, the rain water being collected and analyzed, and the amount of ammonia and nitric acid in the air being also determined. The results show that vegetable soils continually absorb nitrogen from the air, even when they are not supporting vegetation. The amount absorbed is in all cases very much greater than the quantity of nitrogen existing as ammonia or nitrogen oxides in the air or rain. In fact, the rain removes from the soil in the form of soluble nitrates considerably more nitrogen than it brings in the form of ammonia. At the same time, the amount of nitrogen absorbed is far greater in the case of soil exposed to rain than where soil is protected, probably owing to the greater activity possessed by the nitrogen-absorbing organisms under the former conditions. In the majority of cases, a notable proportion of the absorbed nitrogen is converted into nitrates.-Berthelot, Compt. Rend.

Sorrespondence.

AN IMPROVED RHEOSTAT FOB INDUCED CURRENTS

 To the Editor of the Scientific American:While residing on Staten Island, N. Y., I invented a simple rheostat for the Faradic current, the construction of which was published in the Scientific Ameri can on November 9, 1878.
When applying the Faradic current through this rheostat for therapeutical purposes, the seance has to be interrupted whenever a change in the strength of the current is required. My present rheostat obviates this, besides being still simpler than the other.
Directions for Making.--File the screws of four bind ing screws lengthwise, half way ; put the filed, flat sides of two binding screws against each other, and tie or solder them together, thus obtaining two double binding screws, joined end to end.

The black line indicates the joining. Roll tightly a thick knitting needle three or four times around in thin writing paper, and glue or gum the paper while rolling. When dry, cover the paper with plumbago by using either stove blacking or a soft pencil. Slip the binding screws on the blackened needle, and the rheostat is ready.
F. G. Оенме, M.D.

Roseburg, Oregon.
Artificial Rubies.
Many visitors to the Paris exhibition of 1878 will remember an interesting collection of artificial rubies exhibited by M. Fremy. These had been obtained either by heating together at a high temperature a mixture of alumina and minium or a mixture of equal weights of alumina and barium fluoride, with a trace of potassium bichromate in each case to impart the rose color. As earthen crucibles had been used in the operation, it was then supposed that silica derived from them might have determined the crystallization of the alumina. This, however, has since been disproved in respect to the latter mixture, and numerous experiments made by M. Fremy in conjunction with M. Verneuil have demonstrated that nearly all the fluorides possess, to a remarkable degree, the property of determining at a red heat the crystallization of alumina (Comptes Rend., civ., 738). Calcium fluoride, especially, appears to exercise over alumina an enormous power of mineralization; for when pure native calcium fluoride and pure alumina were calcined for some hours at a white heat in the same crucible, but separated by a platinum plate pierced with holes, the emanations from the fluorspar proved sufficient to cause the alumina to change its amorphous state and form a crystalline mass. In order, however, to prevent any " perturbation in the commerce of precious stones" being caused by this announcement, M. Fremy adds, in a foot note, that although the rubies obtained by this method are of fine color, good shape, very distinct in crystallization, and in every respect more beautiful than previous proßucts, they are still small, and therefore without commercial importance.-Pharm. Journal.

The Origin of a Small Race of Turkeys.
In 1877 the author sent a number of wild turkeys to Santa Cruz Island, situated in the Pacific Ocean, about 20 miles off shore. The island is about 30 miles long, and five to ten wide, and contains no animals injurious to fowls excepting a small gray fox. The first season four hens raised 61 birds to maturity, which attained the size of the parents. The next year the produce was 120 , of about the same size. These birds multiplied and lived perfectly wild in the forest, and in a few years it was observed that they had diminished very much in size, so that now it would be impossible to find a cock which would weigh over six pounds, which is less than one-third the size of their original ancestors, or the first and second island generations.
The author thinks this is undoubtedly a case of pretty close inbreeding, although he does not think the fact is conclusively established. These birds had an abundance of feed on the island, consisting of acorns, berries, insects, and grass, and have always been healthy and vigorous, with habit of flight about the same as that of the Eastern wild birds in their native haunts. The writer has introduced wild turkeys in various places on the Pacific slope north of San in various places on the Pacific slope north of San
Francisco, which have been prolific and healthy, and attained the normal size.-J. D. Caton, American Naturalist.

The Vienna Papyri.

A recent number of the Vienna Mittheilungen, which communicates periodically the results of the examination of the papyri of the Archduke Rainer, contains a notice by Professor Bickell of a fragment of an gards it as a Greek translation from the Aramaic. A photographic facsimile of it is given, which is about 12 centimeters square and does not contain more than 100 Greek MS. symbols. It gives the words addressed by Christ to the Apostles after the last supper, as they are recorded in St. Matthew xxvi., 30 to 34, and St. Mark xiv., 26 to 30 , but with notable variations. For instance, the words, "After I am risen, I will go before you into Galilee," do not appear in this fragment. The noted palæographist Wessely believes the fragment dates from the beginning of the third century. Professor Bickell recalls that Papias mentions, according to the testimony of St. John the Disciple, that St. Matthew wrote down in Aramaic a collection of Christ's discourses, and that this collection formed the groundwork of St. Mark's gospel. Hence he suggests that this fragment may really be a portion of a pre-canonical gospel. Professor J. Krall has discovered from five fragments of a papyrus on " Æsthetics" that the lost play entitled Scylla, hitherto attributed to Euripides, was in truth a dithyrambic poem by Timotheus, who flourished a century later. The editor himself, Professor Karabacek, states on the authority of one of these papyri that the earliest mention of the Turks by name must now be pushed back to 808 A.C. Hitherto the earliest date, as found in a MS. in the British set down at which

The Influence of Tea, Coffee, and Cocoa on

Dr. James W. Fraser, in a recent number of the Journal of Anatomy and Physiology, has recorded the results of an interesting series of experiments on the action of our common beverages on stomachic and intestinal digestion. The experiments have been most carefully arranged from a physical standpoint, and give us some valuable hints on the digestion of the chief alimentary principles, but they have no bearing, it should be mentioned, on individual variations of human digestion, or on the influence of the various glands in preparing the gastric or intestinal juices. They are, however, of much value in showing how standard preparations of the peptic and pancreatic ferments are modified in action when our ordinary daily beverages are allowed their free action on the digestion of various articles of food. The digestive processes were carefully investigated, and absorption was imitated by a proper dialyzing arrangement. An artificial peptic juice, and afterward an artificial pancreatic juice, were employed, and the amount of nitrogenous matter dialyzed was most carefully estimated. The food stuffs experimented on were raw and cooked serum and egg albumens, raw and cooked myosin, syntonin, alkali albumen, casein, gluten, starch, and oleine. The results obtained from an exhaustive series of experiments and analyses show that all the three typical infused beverages-tea, coffee, and cocoa -retard the digestion and absorption of all the nitrogenized proximate principles of dietetic substances when peptic and pancreatic digestion are taken together, and that they uniformly retard peptic digestion, although tea may assist the diffusion of peptones from the stomach. Pancreatic digestion is also uniformly retarded, and diffusion thereafter is but rarely assisted, so that neither of them compares advantageously with water as a standard beverage for experimental investigations. A summary of dietetic advice is added to Dr. Fraser's observations, which will, in the main, agree with that which is now given by our best auz thorities in cases of dyspepsia; and we are glad that experimental inquiries afford so strong a basis of support to empirical clinical observations:
"1. That it is better not to eat most albuminoid food stuffs at the same time as infused beverages are taken, for it has been shown that their digestion will in most cases be retarded, though there are possibly exceptions. Absorption may be rendered more rapid, but there is a loss of nutritive substance. On the other hand, the digestion of starchy food appears to be assisted by tea and coffee ; and gluten, the albuminoid of flour, has been seen to be the principle least retarded in digestion by tea, and it only comes third with cocoa, while coffee has apparently a much greater retarding action on it. From this it appears that bread is the natural accompaniment of tea. and cocoa when used as the beverages at a meal. Perhaps the action of coffee is the reason why, in this country, it is usually drunk alone or at breakfast, a meal which consists much of meat, and of meats (eggs and salt meats) which are not much retarded in digestion by coffee. 2. That eggs are the best form of animal food to be taken along with infused beverages, and that apparently they are best lightly boiled if tea, hard boiled if coffee or cocoa, is the beverage. 3. That the casein of the milk and cream taken with the beverages is probably absorbed in a large degree from the stomach.
4. That the butter used with bread undergoes diges tion more slowly in presence of tea, but more quickly in presence of coffee or cocoa; that is, if the fats of butter are influenced in a similar way to oleine. 5. That the use of coffee or cocoa as excipients for codiver oil, etc., appears not only to depend on their pronounced tastes, but also on their action in assisting the digestion of fats."-Lancet.

HOW TO GRAFT OLD TREES.

The Rural New-Yorker says that the following is an easy and effective method of grafting old trees. By it the percentage of failure is reduced to a minimum, and branches at least six inches in diameter, and, in the case of pear trees, 75 years old, may be worked with assured success. Last year we mentioned the case of such a pear having been grafted two years before with the Kieffer, that gave a full crop last year fall. Saw off the branch at right angles to the stem to be grafted,

as shown by a. Then cut a clean slit in the bark through the wood, as shown-a slit the same as in budding. Separate the bark from the wood and insert the cion, b, one for each slit. The number of slits for each stock will be determined by its size. We will suppose the stock illustrated to be six inches in diameter, and that six cions are to be inserted. The stock after receiving the six cions is shown at c. Grafting wax is not needed. A thick paper may be wound about the top of the stock, extending about one inch above it and securely tied with strong twine, as shown at d. The space above the stock encircled by the inch of paper may then be filled to the top of the paper with a puddle of soil and water, made so thin that it can be readily poured from any suitable vessel. This mud protects the surface of the wood of the stock, and excludes the air from the insertions. It gives every advantage of wax without its objections. Of course, stocks of any size may be worked in this way. One, two, or any number of cions may be inserted, according to the size of the stock.

Geometrical Proportion.

Various problems have been based on the rapid increase of the last number in a series of geometrical proportion. A man offers to sell a horse for what a farthing will increase to if multiplied by two, and the product doubled successively for every nail, twenty-four in all, in the horse's shoes. The twenty-fourth term of a geometrical proportion with a ratio of 2 , and whose first term is unity, is $8,388,608$. A pound sterling contains 960 farthings, so that the horse would cost over 873 pounds, or over $\$ 4,000$. A cent treated as the basis for a similar calculation gives at the end of thirty days over five millions of dollars. We give below the series, numbering also each term. It will be noticed that the increase at first is slow. Thus eight days are needed before the amount increases so as to exceed a dollar To find the sum of any number of terms, the last one must be multiplied by two and one must be subtracted from the product.

1	\$0.01	16	\$32\%.68
2	. 02	17	655.36
3	. 04	18	1,310.72
4	. 08	19	2,621.44
5	. 16	20	5,242.88
6	. 32	21	10,485.76
7	. 64	22	20,971.52
8	1.28	23	41,943.04
9	2.56	24	83.886.08
10	5.12	25	167,7\%2.16
11	10.24	26	335,544.32
12	20.48	27	671,088.64
13	40.96	28	1,342,177.28
14	81.92	29	2,684,354.56
15	163.84	30	5,368,709.12

INEXPENSIVE ARC LAMP.

by aeo. m. hoprins.

For most experimental uses, and for practical use in connection with the projecting lantern, the simple and inexpensive are lamp shown in the annexed engraving serves a very good purpose. It requires an occasional adjustment of the carbons to maintain the are ; but this is a matter of little consequence if the lamp is used for a purpose requiring the constant presence of the operator in its vicinity. Should the are be broken, it may be re-established instantly without care ful adjustment of the carbon rods. As will be seen by reference to the engravings, the lamp requires little skill or time for its construction, and the materials of which it is made cost practically nothing.
The experimental lamp shown in Fig. 1 consists of two stout copper wires, say No. 12, each bent to form a

Fig. 2.- SImple arc lamp for projection.
helix of sufficient size to readily receive the carbon rod and permit of turning the rod for the purpose of feeding it forward to maintain the are as its point is consumed. The straight ends of the wire extend in the same direction at right angles to the helix, and are offset and inserted in a board and bent down upon the under side of the board, as indicated by the dotted lines in Fig. 1. The two helices are arranged axially in line, so that the points of the carbon rods will center accurately, and each helix is bowed at its center to secure a spring contact with the sides of the rod.
The electrical connections are made by clamping a copper burr down upon one foot of each helix, and upon the end of one of the conductors.
The outer ends of the rods are inclosed in short pieces of rubber tube, to prevent an electrical contact of the fingers with the rods. This simple lamp has been found very useful in experiments in connection with the eight light dynamo, recently described in these columns. When this lamp is used in connection these columns. When this lamp is used in connection
with a small dynamo like the one referred to, or with
a battery, no particular care is necessary in handling it, but it should be used with caution in a circuit conveying a very heavy current. When used in connec tion with the eight light dynamo, the carbon rods should be five-sixteenths inch in diameter. By turning one or the other of the rods in the helix, it is moved forward or backward, according to the direction in which it is turned; the friction of the carbon in the helix giving the carbon the motion of a screw in a nut. When the arc is broken, it is unnecessary to screw the rod forward and then retract it, to re-estab lish the are, as the wire will spring sufficiently to permit of pushing the rod forward to bring the points in contact, and the resilience of the wire will return the carbon to its normal position, thus establishing the arc.
The lamp is adapted to lantern use by grooving the edges of the board and mounting the board between clamping pieces attached to a standard and provided with tongues fitted to the grooves of the board, a screw being inserted in the clamping pieces for drawing them into contact with the edges of the board, as shown in Fig. 2. A small concave reflector is attached to the center of the board, to reflect the light which would otherwise be lost.
The clamping device permits of centering the reflector, and the are is retained opposite the center of the reflector by the occasional adjustment of the carbons.

AMATEUR MECHANICS.

simple back gear for foot lathes.
It often happens that the owner of an ordinary foot lathe desires to accomplish work beyond the capacity of his lathe. For work beyond the capacity of his lathe. For
example, he may desire to bore an engine cylinder or turn an iron wheel, or turn or bore a large piece of wrought iron or steel. Any of these operations requires slow speed and strong driving, both of which are impossible without back gear or its equivalent ; but back gear is expensive, and most foot lathes would not warrant its application.
The engraving shows a simple and inexpensive device for securing a slow, strong motion, which is adapted to much heavier work than that commonly done on small lathes. Of course, there is a limit to the size of work possible with a light lathe, even though provided with back gear, the limit being determined by the strength and rigidity of the bed and other parts; but almost any lathe worth possessing should be sufficiently rigid to permit of boring the cylinder of a one horse power engine and doing all of the other work on such an engine, with the exception, perhaps, of boring and turning the flywheel.
The attachment is so simple that little more than a glance at the engraving is required to convey the full idea of its construction and application. To the back of the face plate is secured a disk of hard wood, such as maple, cherry, or mahogany, as large in diameter as can be swung in the lathe. The wood may be fastened to the face plate by means of ordinary wood screws passing through the plate into the wood, or by bolts. Two small straight lag screws, or coach screws, or large wood screws, are selected, one of them to be used as a tangent screw for driving the wooden disk, the other to be fluted like a tap and used for cutting the edge of the wooden disk, so as to convert it into a worm wheel the wooden disk, so as to conv
adapted to the tangent screw.

In the edge of the wooden disk is turned a groove, formed on a circular curve of a little greater radius than that of the screw.
The screws are centered in the lathe and trued, and a journal is formed near each end of each screw. A small grooved pulley is fitted to the shank of one of the screws, and the screw is journaled in wooden or metallic boxes, secured by small clips to an upright upported by a cross bar extending across the lathe bed and held in position by a bolt. The screw is now fluted either in the lathe or by means of a file, the flutes being preferably formed on a spiral. The screw is then heated red hot, plunged into powdered prussiate of potash, again heated to a red heat, and finally plunged into cold water. This operation casehardens the iron, so that it will cut the wood without being easily dulled. The fluted screw is now placed in its journal boxes, and a round belt is passed from the drive wheel of the lathe over two small guide pulleys, supported as shown, and around the pulley on the screw.
The screw is rapidly revolved, and the frame by which it is supported is driven forward by the taps of a ham-

SIMPLE BACK GEAR FOR FOOT LATHES.
mer until the threads engage the periphery of the wooden disk. When the disk has made one revolution, the marks of the screw are examined, and if they coincide where they overlap, the operation is continued by gradually tapping the frame forward until the screw has cut as deeply as possible into the wood, when the fluted screw is replaced by the entire one, and the attachment is complete.
Should the threads lack much of coming together after the disk has made one revolution, the disk must be turned down a very little.
The wooden worm wheel should be saturated around its periphery with a heavy oil, or what is better is to rub on tallow and melt it by means of a gas flame or lamp, so that it will be absorbed by the wood.

Ir has been computed that the death rate of the globe is 67 a minute, 97,790 a day, and $35,639,835$ a year, and the birth rate 70 a minute, 100,800 a day, and year, and the bir
$36,792,000$ a year.

Fig. 1.-SIMPLE ARC LAMP.

A PAIR OF LIVE SALAMANDERS

A large tub partly filled with water, and placed in the middle of a room on the second floor of Reiche \& Bros.' animal house in Park Row, New York City, contains a pair of the world-famed salamanders, which ancient historians, and indeed some later naturalists, incline to place in the same category with the fabled sphinx, the dragon, and the basilisk. They are of the largest variety known (Cryptobranchus maximus), and said to have been found in the crater of an extinct volcano near Niphon, in Japan, lying torpid in an Avernus-like pool.
They belong to a second family of the order Batra chia, which also includes lizards and frogs, and can live out of as well as in the water. Having the legs of a saurian joined to the form of a fish, exuding an acrid humor through a skin covered throughout its whole extent with black warts and tubercles, the giant salamander seems the embodiment of all that is most repulsive among the reptilia. Goaded by the keeper with a sharp stick, it comes to the surface and spits and hisses, and its little eyes, sunk deep amid the cankerous growths of the head, burn like coals of fire. Then it looks a very demon.
One of the present specimens is 3 feet or thereabouts in length, and of a chocolate-brown color; the other is somewhat smaller and black. The mouth, when op en, shows a dou ble set of serrated teeth, with points like so many needles. The tongue is cream-pink pointed, and has the quick, almost spasmodic move ment of the snake's.
The second night after their arrival, both es caped from the tub of water and left upon the sanded floor of the room two trails of slime, indicating the seve ral directions they had taken. The smaller was found only a few feet distant, behind a pile of boards. The trail of the larger one led out into the hall down two flights of stairs, and into the cellar. Before it was found, a black bear, chained in the cellar, suddenly died, and the dealer in animals insists that it was killed by the intruding salamander.
He thinks that the reptile, while crawling along,
great warts which cover it close up or separate with the rhythmical movements of the limbs. A close examination shows the bodies of these creatures to be alive with the footid exudations from the pores; an exudation which, if active in the normal state, is strikingly ncreased if the animals be irritated, in proof of which the keeper, prodding the larger salamander with a pointed stick while crawling on the floor, the slimy track he left behind him visibly thickened.
With commendable alacrity and caution, the New York Board of Health sent a sanitary inspector to examine the conditions under which the reptiles were be ing cared for. Authorities say that everything the salamander touches is impregnated with poison. That distinguished naturalist, Pliny, says :
"Of all the venomous animals, it is the salamander that is by far the most dangerous, for while other reptiles attack individuals only, and never kill many persons at a time, the salamander is able to destroy whole nations, unless they take proper precautions against it. For if this reptile happens to crawl up a tree, it infects all the fruit with its poison, and kills those who eat thereof by the chilling properties of its venom. Nay, even more than this: if it only touches with its foot the wood upon which bread is baked, or if it happens to fall into a well, the same fatal effects will be sure to
of his ugly head, and all attempts to make him bite or pit failed signally
Like his supposititious congener, the newt, the salamander's favorite food is said to be flies, bugs, frogs, and fish; and though he can bite, as is proved by the ease with which he masticates the meat on which he is now fed, and the fact that he has been known to eat his own species, nature has evidently supplied him with other means of attack and defense than the needle-lik teeth that deck his jaws. The head is large and flat, having a single branchial orifice on each side, thus closely resembling a North American tailed batrachian reptile called the menopoma, and which is said to connect the perrenibranchiate amphibians with the salamanders. Indeed, no less an authority than Van der Hoeven classes the menopoma with the reptile under discussion, which he calls Cryptobranchus japonicus. The tail is about one-third the entire length, and there is a loose fold of skin extending from the head all the way to the tail, which seems to have an active part in the locomotion.
A wonderful property of the salamander is its power of enduring extreme heat or cold, which led to its being called "Daughter of fire with body of ice." Perhaps it was because of his ability to withstand very high temperatures that induced the belief among the
was attacked by the bear, and, in self-defense, spat at him. The fluid which it ejects from its mouth is milkywhite, acrid, and does not differ essentially from aconite or wolf's bane. It is not soluble in water, but dissolves readily in spirits of wine. In taste it resembles corrosive sublimate, and is very astringent.

The student of natural history will scarcely fail of regret that a careful autopsy was not made of the dead bear to discover whether or no there was any proof that it was killed by the salamander. It is interesting to note that, when the wandering salamander was at last found, the experienced naturalist-dealer, thrusting aside for the time the terrible warnings that have come down through the ages of the deadliness of the salamander, coolly threw a blanket over the reptile and lifted him into the waiting tub, thus evincing his confidence in the more recent investigations of contemporary naturalists.

The two salamanders swim lazily about their tank, the smaller of the two continually seeking to hide his head under the big one, and both keeping well down toward the bottom, as though their eyes were unused to so strong a light as that shining upon the surface. At stated times, both come to the surface for air, though careful observations show that they can remain below for at least half an hour without apparent discomfort. When out of the water, there is no glisten to the skin, as in other of the amphibia. The surface is dull, though constantly changing its complexion as the ancient Greeks, who seem to have originated the fabulous stories concerning the salamander, that he could survive the furnace. It is certain that he has been found frozen in blocks of ice and come to life again upon its melting.

Another won derful property is his power of renewing portions of his body when once removed, a case being on rec ord where a lost eye was completely renewed in a year's time, and his extraordinary tenacity of life.
M. Dumeril mentions a case where three fourths of the head of a sala mander was off with a pair of shears. Put into a glass vessel and deprived of nostrils, eyes, ears, and without a tongue, he con tinued to live an tinued to live and to move around,
even when cicatrization had so done its work that there was no normal connection with the
with any part of the body, the sole of the in contac with any part of the body, the sole of the foot
causes the hair to fall off from the whole body."
Though this is a highly colored and evidently erroneous description of the properties of the salamander, there is no doubt that its saliva and secretions are poisonous, and one cannot help regretting that the Board of Health did not send an analytical chemist along with its inspector, so that we might know just how much truth there is in the water story; that is to say, just how far the poisonous influence of this reptile will extend in a running stream or in still water.
The result of the inspector's visit was an order from the Board of Health that the water from the great tub be carried away only in galvanized iron buckets, and that disinfectants be used freely in and about the premises as long as the salamanders are there. A very interesting experiment was made last week to test the power of the reptiles to destroy life. A rabbit was brought in and thrust against the large salamander, the same being placed upon the floor for the purpose. Bunny gave the same manifestations of fear as when pursued by his arch enemy, the ferret. He shook as with a palsy, his eyes filled with tears, and his powers so weakened that, at times, the limbs refused to bear the body upright, and he fell upon his side or head. The reptile, as though regarding the occasion as unworthy the exhibition of his much vaunted powers, simply thrust poor Bunny aside with a lazy movement

a Pair of live salamanders

 lungs, and no passage for receiving food. Aristotle Nicander, Dioscorides, and Pliny all agree that the salamander is proof against the fiercest flames. The latter authority even outstrips the others in declaring it has no sex. Linnæus places the salainander among the lizards, though he has a heart with two auricles.As to the ability of the salamander to withstand fire the only evidence recorded of later years was supplied to the naturalist Buffon by M. Ponthonier, a French consul at Rhodes. He declared that he saw a salaman-der-one of the smaller species-walking about among the live coals of his kitchen fire. He removed it while still alive; the balance of his household, insisting it was the devil, flying for their lives meantime. Buffon removing it from the bottle in which it was sent him discovered that a portion of the reptile was missing, and concludes therefrom that it would have been en tirely burnt up had the Frenchman not rescued it in time.
Ancient authority says that the wonderful cloth sent by the Tartar king to the Roman pontiff, and containing the holy napkin, the sudarium domani, in which it is yet preserved, was made of the skin of the sala mander. For centuries the heart of the salamander worn in an amulet, was thought to be a prophylactic, and a certain cure for leprosy.
The giant salamander is said, on good authority, to be a specimen of the now extinct species, a portion of whose remains, found in 1725 incrusted in a large block
of stone, and mistaken for those of a human being, gave rise to the belief that man witnessed the Deluge, and excited great interest among the palæontologists. We are told that "Scheuchzer, a Swiss naturalist of some celebrity, who added to his scientific pursuits the study of theology, being called upon to give his opinion as to the nature of this relic of ancient times, declared that he recognized in the skeleton the remains of a man. In 1726 he published a description of these fossil remains in the Philosophical Transactions of London, and in 1731 he made it the subject of a special dissertation entitled 'Homo diluvii testis''"-man a witness of the Deluge.

Many Items of Interest.
Bradstreet's has compiled very exhaustive tables on the number of workinen at present engaged in the various industries of the country, the wages paid them, and other highly interesting data, and the general results shown are very satisfactory. It appears from them that at least 400,000 more workmen are engaged than at this time two years ago, and that the wages, which had sunk very low in the two years prior to 1885, are at present at about the same figures they were during the bright business year of 1881-82.

A correspondent of the Carriage Monthly asks the editor for a good receipt for mixing body rough-stuff out of Reno's umber and orange. The editor applied to Reno Bros. ior the information, and their reponse contained the following receipts, with the further remark that many painters had various ways of mixing rough-stuff, the rules below being as near right in general use as any :
For Rough-stuff.-Take equal parts of good japan and coach rubbing varnish. Pour together and add enough of the French umber filler to bring it to the consistency of a thin paste. Thin with thin turpentine.
For Priming and Lead Coating.-Use French umber filler. Mix with oil to the consistency of keg white lead, and use the same as lead.
For Putty and Glazing.-Mix with japan and varnish to the consistency required.

A harrow-shaped flock of wild geese, the Waterbury (Conn.) American says, went northward over the city recently. They seemed to attend sharply to the business of traveling until they spied one of the numerous kites the boys in the northern portion of the city were flying. This kite was uncommonly high in the air, and the geese objected to it. At least they circled about it two or three times, and then four of their number, delegated for the purpose, attacked the kite and tore it into shreds, and went on their way.

Mr. E. L. Corthell, chief engineer of the Atlantic and Pacific ship railway project, of which the late Captain Eads was the head, announces.his determination to do all in his power to bring it to a successful conclusion. All who have known of Mr. Corthell's work in connection therewith, his unceasing efforts before Congress, certainly have faith in Mr. Corthell's ability to construct the work. He is well and favorably known in connection with this project, as well as his construction of the jetties in the South Pass, and other engineering plans with which Mr. Eads was identified.

Mr. Corthell has entered into a copartnership with Mr. Geo. S. Morrison as consulting and constructing engineers, with offices at 35 Wall Street, New York City, and Lasalle Street, Chicago, and will direct construction of railroads, examine, report, and take charge of river and harbor improvements for government or corporations. This will in no way, says our informant, interfere with the ship railway project, in which Mr. Corthell is interested with an enthusiasm second only to that of the late great inventor of the vast enterprise.

A country hotel proprietor, who had adiertised for city boarders, was astonished the other day at receiv ing a letter from a New York gentleman asking him to send him samples of his drinking water for analysis. It was a wise precaution on the part of the man seeking a summer home, for a great deal of sickness arises from contaminated water; and if every one seeking country board for their family would make similar investigation respecting the sanitary condition of the places they are inclined to occupy, a twofold benefit would be the result-sickness in his own family would likely be avoided, and the boarding-house keeper would be necessitated to put his premises in cleanly condition.

A writer says that female canker worms have not the power of flying, and can only reach the extremities of limbs, on which they deposit their eggs, by crawling up the trunk. They begin this with the first warm days of spring, before buds and leaves are ready to put forth. It is quite common for them to do this while the nights are cold enough to harden tar in vessels around the trees intended to obstruct their progress. This old method has therefore given way to spraying
the trees with water in which London purple or Paris green has been dissolved, thus killing the worms after they begin to eat. It requires very little poison to do this, two teaspoonfuls of poison to a barrel of water being sufficient. Too strong a dose might injure the apple leaves, which when young are very tender.

Mr. Thomas A. Edison, the famous electrician, has a very handsome residence in Llewellyn Park, Orange, N. J., and he is abont to erect outside of the park a three story brick building, 250×60 feet, for conducting his experiments and as a repository for his books, drawings, models, etc. When completed, it will undoubtedly be the finest building devoted to electrical science in the world.

Wood and.Iron says that one of the neatest and best ways of testing the soundness of a boiler plate is to sling it up by the corners so that it will lie in a horizontal position, and scatter a small quantity of dry sand evenly over the surface. By tapping the sheet lightly underneath, the sand will be thrown off wherever the plate is solid, while in places wher lamination or blister occurs the sand will remain fixed.

Wrought iron expands and contracts with a force of about 200 pounds per square inch for each degree Fah. This property was taken advantage of at the Museum of Arts and Trades, in Paris, to draw in the walls of a gallery that had bulged outward by the weight on the arch. A number of bars were placed across the building and screwed into plates on the outside. Alternate bars were then heated, and when expanded were screwed up tightly, when the cooling and contraction of the bars drew the walls closer together. By repeating the operation the walls were brought into their original position.

The Burning of the Museum of Confucius.
A conflagration which took place lately in a remote village of China has destroyed one of the most remarkable literary and artistic museums in the world. The edifice in question was the ancestral home of the family of Confucius, built centuries ago, near Loo, in the province of Shan-Tung. In this building, generation after generation, the male heirs of the great Chinese teacher have dwelt in an unbroken line for
2,500 years, bearing the title of dukes. With every other family in China, a nobleman's rank must always be lower than that of his ancestor; for no true Confucian would presume to stand higher than his grandfather, father, or his elder brother. In the illustrious " House of Confucius," however, the lofty title of duke passes unchanged except when emperor after emperor adds by royal decree some new phrase of honor to the name and line of the famous philosopher. The tomb of Confucius is a huge mound, overgrown with trees, on the banks of the River Sze, with carved animals on each corner and groves of cypress trees ranged solemnly around. The relics of his age, and the rich tributes of worship paid to him by generation after generation, since 600 B . C., have all been gathered into this "House of Confucius," lately destroyed. Here were accumulated precious texts on stone and marble and commentaries of his books, wonderful carvings in jade and alabaster, jars and vases of porcelain, beyond all price, to say nothing of jewels and gold and silver work sent from all parts of the Celestial Kingdom, and even by reverential "outer barbarians." All, or nearly all, of these treasures are forever lost by this deplorable event, which has fallen upon China as nothing short of a national calamity.
No liberality on the part of emperor or people can No liberality on the part of emperor or people can
replace the vanished memorials of that remarkable teacher.-London Telegraph.

Spectroscopic Reaction in Gases.

At the suggestion of Sir Henry Roscoe, Mr. T. W. Best has made an interesting series of experiments on this subject, which has recently been communicated to the Manchester Literary and Philosophical Society. The author mixed the pure and perfectly dry gases in eudiometers provided with aluminum electrodes, which were connected with an induction coil and Leyden jar. The light of the discharge was then focused upon the slit of a one-prism spectroscope. The only gases experimented upon were hydrogen, nitrogen, and oxygen, but it may be hoped that others will shortly be examined. When nitrogen is added to hydrogen at ordinary atmospheric pressure, the least quantity of the former element that can be detected is 1.1 per cent. At the same pressure as little as 0.25 per cent of hydrogen can be detected in nitrogen. This curious difference is also observed with mixtures of nitrogen and oxygen. As little as 0.8 per cent of nitrogen can be detected in oxygen, whereas not less than 4.5 per cent of oxygen gives a visible spectrum in nitrogen. At lower pressures the results are somewhat different, the least quantity of nitrogen perceptible in hydrogen being, at ten inches and a half, 36 , and at three inches and a half $2 \cdot 5$. The experiments are well worth extending. The limits of delicacy with gases containing carbon would be very interesting.

A Microscope Showing Perspective.

Mr. Burch has recently exhibited to the Royal Society of Great Britain a microscope of his invention, which, instead of being focused merely for the plane of the object to be examined, gives the perspective of the latter's different parts. All those who have looked into a microscope will appreciate the value of this improvement.
Mr. Burch discovered, in 1874, that if the distance of two lenses from each other is equal to the sum of their ocal lengths, the optical conditions become such that the size of the images is always proportional to that of the objects, whatever be their position on the optical axis.
This proportion is in direct ratio of the focal length of the two lenses. A displacement of the object upon the optical axis brings about a displacement of the image in the same direction, but which is to the first as the quare of the ratio.
He has constructed a microscope on this principle and has exhibited to the Royal Society a magnified moss shown in perspective. The field of this first in strument is quite small, but Mr. Burch points out a means through which he hopes to enlarge it sufficiently. -L'Industrie Moderne.

The Use of Chloride of Palladium Paper in Detecting
To search for leakages of gas, Dr. Bunte suggests the use of paper dipped in palladium chloride solu tion. Such a paper, in fact, changes its color as soon as it is in the presence of a quantity, however small, of gas, coming from leaks imperceptible by the odor, and which produce no effect upon the earth covering the pipes. Dr. Bunte suggests the following method of practically applying the test to street mains. Above the pipe are excavated, at intervals of 2 to $3 \mathrm{me}-$ ters ($61 / 2$ to 10 feet), holes 30 to 40 cm . (12 to 16 inches) deep, corresponding to the joints and sleeves. In each opening is placed an iron tube 12 to 13 mm . ($1 / 2$ inch) in diameter, within which is a glass tube containing a roll of the test paper. The air from about the main enters the iron tube, and the trace of gas which may be present reveals itself by coloring the paper brown or black, according to its quantity. If after ten to twenty minutes the paper is still white, we may be certain that at the point tested there is not the small est escape of gas. Various authorities who have ex perimented with Bunte's method certify to its efficacy. Beyer, of Mannheim, Eitner, of Heidelberg, Richard, of Carlsruhe, the superintendent of the gas company of Stuttgart, may be noted among these As a consequence of the trials made at Monaco, it follows that if the use of palladium paper is of incontestable use for testing outdoor conduits, it is of no less value in the case of leaks occurring within

Dr. Bunte admits this fact, but adds that in applyng this reaction to places closed tightly, certain roubles present themselves. Thus, suspending a piece of paper saturated with palladium chloride to the ceiling of a gas-lighted room, only a small fraction of the air comes in contact with it. Now, to produce the coloration, a certain volume of gas is required. It fol lows that gas must form a considerable portion of the atmosphere to act upon the paper. Better results would be obtained by aspirating the gas through tubes containing it. Another trouble is that the paper suspended in the air dries and becomes less sensitive. Felker overcomes this trouble by placing under the glass tube a receptacle filled with palladium solution.L'Industria.

Pietsch's Sewer Pipe Trap.

Under the head of "Something New in Traps," the Brooklyn Eagle of May 14 says
"Mr. Herman Pietsch, of 360 Fulton Street, the inventor of a wash bowl trap for which he claims peculiar merits, exhibited his apparatus in the health department laboratory this morning. There were pres ent Dr. Kent, Dr. Elias H. Bartley, and Inspector Coggins, of the Plumbing Bureau. All these gentle men expressed their opinion that Mr. Pietsch's invention was far ahead of anything which had yet been placed before the public."
We may add this trap has been in use in the ScIentific American office for two or three yewrs, and gives the utmost satisfaction.

Whetstones.

The Guide Scientifique describes the following method of making artificial whetstones: Gelatine of good quality is dissolved in its own weight of water, the operation being conducted in a dark room. To the solution $11 / 2$ per cent of bichromate of potash is added, which has previously been dissolved in a little water. A quantity of very fine emery, equal to nine times the weight of the gelatine, is intimately mixed with the gelatine solution. Pulverized flint may be substituted for emery. The mass is moulded into any desired shape, and is then consolidated by heavy pressure. It is dried
hours.

THE PARIS INTERNATIONAL EXHIBITION
The crowning triumph of the French republic, reserved for the centennial anniversary which changed the destinies of the great nation, and gave liberty and license to her children, will be worthy of France and of the occasion the country feels called upon to honor. There are still two years to pass hefore the Great In ternational Exhibition of 1889 will be opened to the public, but they will be all too short to complete the vast scheme which has been evolved from the numerous plans submitted for consideration, and which is now being pushed forward with the system and zeal which distinguish the organization and energy always characteristic of great public undertakings in France. As will be seen from the perspective view and general
plan we publish this week, the exhibition buildings
elating : 1. To electric lighting. 2. Generators and electrical machines. 3. Tests and measurements. 4. Telephones, telegraphs, etc. The first sub-committee, under the presidency of M. Lemonnier, had first to consider two fundamental questions : Shall the exhibition be lighted every evening, and what spaces shall be ighted? Naturally, the first question was promptly answered in the affirmative. It was indeed considered possible that such a course might be objected to on the ground that theaters, concerts, and other places of public resort might suffer, but, on the other hand, it was obvious that, during the time of the exhibition, Paris would be so crowded with visitors as to secure ample audience for every species of entertainment. Moreover, electric lighting will be undoubtedly one of he great attractions to exhibitors who could only get

Besides the foregoing, there will be at least 184,000 quare feet for the industrial and art galleries, restauants, etc. An approximate estimate shows that some ,000 horse power will be required to produce the necesary light of $3,000,000$ candles.
Under the auspices of the syndical chamber of elecrical industries, a syndicate has been formed for ndertaking this great work. This syndicate, which cludes among its members the leading electrical en gineers in Paris, has offered to furnish the material, and to furnish light at all the private and public parts of the exhibition that will be open at night, on their own responsibility. Other French and foreign exhibitors will, however, be invited to aid the syndicate with engines, dynamos, and plant. The remuneration of the syndicate will consist : (1) A payment of one franc

THE PARIS INTERNATIONAL EXHIBITION
will occupy the whole of the Champ de Mars, the quays on each side of the river, and the extensive grounds of the Trocadero and the Palace itself. The most striking feature of the exhibition will be the great Eiffel Tower, nearly $1,000 \mathrm{ft}$. in height, opposite to and axial with the Trocadero Palace and the Pont de Jena At the other end of the Champ de Mars, and extending for its whole width, will be a vast hall, covered with an arched roof about 350 ft . span, to be devoted to machinery. Adjoining this will be a vast building for miscellaneous groups, and on either side will be two great halls, one devoted to art and the other to industrial exhibits. What space is not covered in will be laid out in gardens. The general arrangement of the buildings will, therefore, be on three sides of a square, the fourth side being occupied by the stupendous monument, which it is reasonably expected will be a source of astonishment and attraction to visitors. A committee has been appointed to assist the commis-sary-general a nd the director of sections, to attend to everything relating to electrical matters. The president of this committee is M. Mascart, and it is divided into four sub-sections charged to examine all the questions
ustice after dark. In order to arrive at an approxi- \mid for each evening visitor, the entrance charge being mate estimate of cost, it was indispensable to describe fixed at two francs; (2) a tariff to be paid by private what portion of the exhibition should be lighted. First the Trocadero Palace might be thrown out of consideration, as it will be lighted by gas. 'The question of illuminating the Eiffel Tower is also held in reserve The portions of the exhibition opened to the public at night will be limited to the terraces, the art galleries the industrial exhibition, the agricultural exhibition, the machinery hall and approaches, as well as the restaurants and offices. The areas of the various sur faces to be illuminated are as follows :

1. Open Spaces.	Square mete
Gardens	188,810
Courts outside machinery hall	17,075
Or about 2,213,000 sq. ft.	205,885
2. Covered Surfaces.	
Machinery hall.......	. . 63,000
Central gallery	... 5,250
East and west galleries	. 7,200
Offices, etc.	... 900
	76,350

Or about 818,700 sq. ft.
users; this tariff to be fixed by the administration.
It is not too much to say that the success of lighting the 1889 exhibition will be assured, thanks to the nitiative taken by the Paris manufacturers of electri cal plant, who, to the number of six, have undertaken the responsibility

THE EIFFEL TOWER.
As soon as the construction of the Eiffel Tower in connection with the Paris Exhibition of 1889 was de cided on, the works were commenced and pushed for ward with so much activity that very shortly the first portion, that is, the foundations of the four columns forming the base, will be finished, and it will be of in terest to describe them before they are covered up out of sight. As is well known, the tower, 984 ft . in height, will rest on a base occupying a square, and be carried by four steel columns, supported on masonry piers, 328 ft . apart from center to center. The axis of thes foundations coincides with that of the Champ de Mars, and their sides are perpendicular to the Seine. They occupy the site which since the 1878 exhibition had
been utilized as a garden. The two masonry piers nearest to the Seine are in ground which the old maps of Paris indicate as having been occupied by an arm of the river, so that there is no wonder that the excavations revealed the presence of water a short distance below the surface. The further piers, on the contrary, rest in firm gravel, entirely free from water. On this account different methods had to be followed in constructing the foundations of the two sets of piers. Those nearest the Seine are being formed with caissons sunk by compressed air. The ground over the whole surface of each pier was first removed to a slight depth, and then at the bottom of this rectangular excavation were placed four large wrought iron caissons 49 ft .3 in . long by 19 ft .8 in . wide and 10 ft . high. About 6 ft . above the bottom of the cassion a platform or roof was made, carried on a series of girders 18 in . deep. These made, carried on a series of girders 18 in . deep. These
caissons are placed in such a way that their principal caissons are placed in such a way that their principal
axes are parallel to the diagonal of the excavated rectangle, which converges toward the center of the base of the tower. It is in the same direction that all the angles of the structure lie, and the thrusts be exerted. The cassions thus arranged, as shown in the annexed diagram, are provided with the ordinary pneumatic with the ordinary pneumatic
appliances on the floor of the appliances on the floor of the
partition above referred to, the space beneath serving as a commodious working chamber, which is lighted by electricity. The work of sinking is done by ten men in each caisson. It is kept up continuously day and night, and a daily average progress of 15 in . or 16 in . is made. The ultimate depth of the bottom of the caissons is 32 ft .9 in . below the ground level. At the end of last week the four caissons of the piers nearest the center of Paris were almost erected. Those for the corresponding piers are nearly in their final position. The work on the two piers furthest from the Seine is much more advanced. They have been built on the ground over an invert of beton 6 ft . thick, and are finground over an invert of beton 6 ft . thick, and are fin-
ished each with four skewbacks at an angle of 52 deg. ished each with four skewbacks at an angle of 52 deg .
to carry the arches of the tower. The superstructure will rest on 3 ft . of masonry on top of the piers, and a double bedplate of cast iron and steel. These will be secured to the masonry each by two holding-down bolts built into the piers, 4 in . in diameter and 23 ft . long.

Special precautions have been taken for passing off harmlessly underground the atmospheric electricity which will accumulate on this gigantic lightning conductor. A commission of electricians was appointed to consider this question, and to point out the precautions that should be taken. They consist in sinking below the foundations ten cast iron tubes 20 in . in diameter, which are connected with the metallic structure. In a few days the ground around the foundations furthest from the Seine will be filled in, and only the skewbacks to carry the framework will be visible. When the caissons of the other piers are sunk they will be filled with beton, and the masonry base will be built upon them. Nothing has yet been definitely fixed as to the elevators. There will be one in each inclined column, and from a level of 490 ft . there will be only two, which, however, will work vertically. Several different types have been under consideration. It is cal culated that the pressure of the tower on its base will be about 57 lb . per square inch. The effect of wind is allowed for in this estimate at about 33 per cent. It is also calculated that the maximum oscillation at the summit of the tower will not exceed 7 in .-Engineering.

Tuning an Organ by Telephone.

A Birmingham paper says that a novel experiment was recently tried there with the telephone. A letter was received by Messrs. Rogers \& Priestly, musical caterers in that town, asking them to send an organ to suit a pianoforte to a room at Moseley, where a concert was to take place that night. The firm were totally at a loss to know the precise tone of the piano, and consequently despaired of being able to comply with the demand in time. However, much to their surprise, they found that they could communicate
with the people at Moseley through the telephone. with the people at Moseley through the telephone.
Forthwith Messrs. Rogers asked that one of the notes of the piano should be struck. When this was done, the sound could be distinctly heard in Colmore Row, and by gradually reducing the pitch pipe the tones of both instruments were made to correspond.

Hypnone.

Von Schuder writes of fourteen patients treated by acetophenon, or hypnone, in whom favorable results followed. A dose of from 2 to 4 drops was sufficient to produce sleep of several hours' duration. The effect was especially happy among the phthisical.
No ill after-effects were observed. In one case only, after 6 drops had been given, the patient awoke from a long sleep with headache and slight vomiting. The effect, dependent upon the dose and the individual
peculiarities of each patient, was manifested after from peculiarities of each patient, was manifested after from
one-half to one and one-half hours.-Der Pharmaceut.

One of the incentives to Better Work.
One of the strongest inducements the mechanic can see in striving to learn to do work better and quicker is the prospect of increased wages. While to a certain extent there may be a desire to excel, yet if there is no particular profit in excelling, the principal inducement is gone. It is of course sometimes difficult, where large numbers of men are employed, to grade them so that justice will be done to all. Employers recognize this fact, yet it can be done. Where men are working under the piece system, the better workman gets pay at least for his ability to do more rapid work. And here, too, comes one of the worst difficulties with labor unions or organizations. They to a certain extent have the same question to deal with. Where men are paid by the piece, the difficulty is apparently overcome. But there are so many kinds of labor in the performance of which this system cannot be carried out, that it is utterly impossible to solve the question by this plan. To a class one of the strongest inducements to joining a labor organization is the prospect of securing an increase in wages. This class is greatly benefited, in the matter of wages, by membership in a labor union, for they receive the same wages as their fellows, provided the piece system is not in vogue; whereas if working outside the pale of a labor organization, they would be compelled to stand on their
merits, and consequently put up with the wages their abilities command-in short, receive what they earn, and no more. Masons, carpenters, blacksmiths, machinists, in fact the skilled workmen of most trades, place themselves on a level with the unskilled and incompetent when they join a labor union, and without the piece system receive the same rate of wages, no matter how much more profitable their labor may
be to the employer.
Does not such a system tend to discourage men who have the ability to excel? Does it not lower the standard of excellence and merit? Does it not pro-
duce indifference and carelessness in the ranks labor? The Industrial Gazette, after asking the above questions, pertinently adds: So long as the superior workman is obliged to work for the same wages as other men who are unable to cope with him either in quality or quantity of work done, just so long will he fail to see the object of striving to improve. He is not benefited by the union, because the wage rate established by fellow members is lower than his ability would command under other circumstances. He pays a penalty for being a good workman, and membership in the union entails pecuniary loss. Not only himself, but his employer is injured also, for the
latter has a right to expect his employe to do his best, which he cannot do when conscious that a slouch workman receives the same rate of pay for a smaller amount of poor work than he does for a greater amount of first class work. A reform in this direction is the crying need of the hour.

Electro Deposition of Iridium.

In a patent recently issued to Mr. Wm. L. Dudley, of Covington, Ky., the inventor describes a process of
depositing iridium, by means of which a bright, flexible reguline deposit is obtained.
The inventor uses either an aqueous solution of the double chloride of iridium and sodium or of the double chloride of iridium and ammonium, containing about two ounces of metallic iridium to the gallon, and acidified with about one-half an ounce of sulphuric acid to the gallon.
The solution of the double chloride of iridium and sodium is prepared as follows: The hydrate of iridium is dissolved in the least possible quantity of hydrochloric acid and evaporated in a water bath to expel the excess of acid. The residue is then dissolved in water and an amount of sodium chloride is added sufficient to combine with all of the chloride of iridium present to form the double salt. The solution is then diluted to the required amount, so as to contain about wo ounces of metal to each gallon of liquid. The required amount of sulphuric acid is then added, and the solution is ready for the electro deposition.
The solution of the double chloride of iridium and ammonium is prepared as follows: The hydrate of iridium is dissolved in the least possible quantity of hydrochloric acid and carefully neutralized with ammonium hydrate. It is then acidulated with sulphuric acid until all of the precipitate produced by the ammonium hydrate is dissolved, and finally diluted with water until each gallon of the liquid contains about two ounces of the metal. The solution is then ready for work when acidified, as before mentioned.
From both of these solutions Mr. Dudley obtained a thick, bright, and reguline deposit of iridium; and he has found that a plate of iridium or phosphide of iridium, as made by the Holland process, if used as an anode, will
is passing
As in electro plating with other metals, it is essential, to obtain good results, that the articles to be plated should be perfectly clean. A brighter and smoother deposit is obtained if the -articles are highly polished
before they are introduced into the iridium bath. In
plating articles which are readily attacked by the solution, it is of course desirable to first coat them with some metal not appreciably affected by such solutions. In the deposition of iridium from any of its solutions it is necessary to avoid battery power of too great intensity; and in case the intensity be too great, it can be recognized by the deposit becoming dark and powdery, and also by an excessive evolution of gas from the surface of the anode and cathode. In managing the solution, alkalinity should be avoided, although neutral solutions may be employed; but acid solutions are to be preferred.
During deposition, where a thick deposit is required, it may be found necessary to remove the articles from the solution from time to time, and to wipe them in case the deposit should have a tendency to become black; but this blackness may be avoided by proper manipulation of the solution and battery power, and also by proper cleansing of the articles. It is also found that when the articles to be plated are kept in gentle motion during deposition, the deposit will take place faster and be brighter and thicker than if they are allowed to remain stationary. Mr. Dudley does not claim, however, that the plating produced by his process will resist the action of acids which will dissolve finely divided iridium.

The Islands of the Pacific.

In addition to the two large islands recently dis covered in the Pacific Ocean, a third has just been discovered lying less than 100 miles from the northern coast of New Guinea. It has been named Allison Island, is nearly three miles long, rises from 100 ft . to 150 ft . above the sea, and has abundant timber. Several stretches of fertile and inhabited land, some of them much larger than Allison Island, have been found with in a few years at a distance of 200 or 300 miles from the New Guinea coast, and similar discoveries are made once in a while in various parts of the Pacific. Although the maps of the Pacific Ocean are studded with islands which appear to be lying close together, vessels may sail among these islands for weeks together without once coming in sight of land. So vast is the waste of waters, that not long ago a crew which had been shipwrecked in the great island region of the Pacific rowed north forty days before they reached Hawaii, the nearest land. Mr. A. R. Wallace, who has traveled widely in the Pacific, has expressed the opinion that there are still a good many islands which have never yet been seen by white men. Now and then a Pacific trader finds some new or little known island, and opens trade with its inhabitants. When the Woodlark Islands were explored some time ago, it was found that an Australian firm had carefully charted the islands several years before, and had been quietly trading there, all unknown to the other Pacific merchants.

Basic Slag as a Fertilizer

The following matter is the result of investigation by Professor Dr. Paul Wagner, director of the agricultural laboratory at Darmstadt :
Phosphate in finely crushed basic slag acts more quickly than phosphoric acid in crude guano or bone meal, notwithstanding the slag contains a larger percentage of lime than the other two manures. The value of the slag depends upon its fineness. Slag I. is reduced equal to the finest flour; II. is slightly less so, and III. is twice as course as II., yet barely one fourth as active. Basic slag is especially valuable on moor and peaty meadow soils, and the author deems it unwise to use any other phosphate manure on such earths. In laying out pastures and meadow, the slag gives great help when placed deep in the ground, and its use is advocated in vineyards, orchards, and gardens. If ammonium sulphate be used additional to slag, they must not be strewn as a mixture, as the lime in the slag would liberate ammonia. Slag can be mixed with nitrate of soda and potash salts without deterioration; but to prevent adhesion from standing unused, powdered peat must be added. The iron in the slag is not at all deleterious.

Preservation of Wooden Poles.

A simple method of treating wood with preservative solutions is employed in Norway for telegraph poles. After the poles are set in place a man goes from one to another with an auger, with which he bores a hole in each post, beginning at a point about 2 feet above the ground, and boring obliquely downward, at as small an angle as possible with the axis of the post, until the point of the auger reaches the center of the stick. The auger hole should be an inch in diameter, and, in telegraph poles of the ordinary size, will hold easily 4 to 5 ounces of sulphate of copper, which is put into it in the form of coarsely powdered crystals, and the opening then stopped with a plug, the end of which is left projecting as a handle, so that it can be pulled out and replaced. It is found that the crystals of copper sulphate disappear slowly, so that every three or four months the charge must be renewed; while the wood, both above and below the auger hole, even to the very top of the pole, gradually assumes the greenish tint due to of the pole, gradually assumes the g
the presence of copper in the pores.

ENGINEERING INVENTION.

A dumping car has been patented by Mr. Augustin C. M. Auguin, of Raincy, near Paris,
France. Combined with a truck having transverse shaft with a worm, and the laterally movable body with transverse rack on its under side engaging the worm are hooks and gudgeons for limiting the outward move ment and forming the axis on which the body turns in of cars to be displaced in either direction laterally.

AGRICULTURAL INVENTIONS

A check rowing attachment for corn planters has been patented by Mr. Orren A. Shotts, of Osceola, Iowa. It is an attachment capable of being
levated bodily from the ground and adjusted laterally nd byrotation, the drop being automatically operate by the action of the check wheels, the invention covering various novel features of construction and combina

A plow has been patented by Mr. Edward B. James, of Thomasville, Ga. It may be arranged as a double plow, or two single plows adjusted plow two furrows of different depths sirnultaneously or it may he used as a cultivator, having two plow them, with pivoted standards supported by offset braces, the handles having an adjustable support for holding them at different heights.

miscellaneous inventions

A device for lowering coffins has been patented by Mr. John T. Meredith, of Buchtel, Ohio may be supported over the mouth of the grave, and lowered therein, the apparatus being strong, cheap, and durable.
A post hole digger has been patented y Mr. James H. Humphrey, of Platte City, Mo. The nachine consists of a grip, lever, disk rod, an uiskly from the digger, and when digging to assist it in reaining very wet or dry earth.
A line protector for vehicles has been patented by Mr. Frank C. York, of Salina, Kansas. It
is intended to prevent the lines of the harness in driv gg from being caught under the ends of the thills, the hill ferrules having loops in which straps a

A scarf attachment has been patented by Mr. Louis Fischer, of New York City. It is a comined neckband keeper and catch maae from a blank of sheet metal, having a tooth or catch pin formed in egrally therewith and folded to form a tubular guide or the bana, the aince berg aing a fastening for it
A ditching machine has been patented y Mr. 1 Archibald Stewart, of Keota, Iowa. It has a knives are arranged, an elevating screw or auger within the cone raising the earth cut away by the knives, the drawing forward of the machine over the ground simul aneously forming the ditch by a continuous operation.
A saw buck has been patented by Mr. Charles B. Guy, of Postville, lowa. In combination with curved upper ends, whereby the wood billets may be clamped in the crotch of the buck by an easy and natural movement of the sawyer's foot, and may be quickly released to shift'the wood along the buck.
A show case has been patented by Mr. James H. Flagg, of Brooklyn, N. Y. It has a series of lower compartments, and an upper chamber having an
inclined bottom and a glass or transparent cover, with a removable drawer in the upper chamber having a series of compartments, so that samples will be in full iew of the parchaser and the not

An end gate for wagons has been pa ented by Mr. Munn Davis, of Wahoo, Neb. This in ention provides a evice occupying but little space, to facilitate the dumping of wagons und carts, dump cars the device being adapted to dump the load by a single ttached is ind while the

A spring clasp for gloves has been patented by Mr. Siegmund Bernhardt, of New York City them to the glove at the placket, between the lining and the outer part of the glove, the side pieces being hinged by a pin at the point of opening, and one of the side pieces having attached thereto a fiat pointed steel

A drawer has been patented by $\mathrm{Mr}^{\text {r }}$ Joseph H. Knaus, of Fayette, Mo. The invention covers a combination by which an endless strand, of cord, wire, or chain, passes around pulleys at the front and rear of the casing, at opposite sides of the drawe opening, whereby the binding of the drawer in moving it in and out of its casing will be prevented, and the riction obviated.
A combined screen and storm door has been patented by Messrs. Louis Guthrie and William G Baumgardner, of Filer City, Mich. In a door having a around three edges of the opening, a panel sliding in the ways formed by the rabbets of the moulding while fourth piece of moulding is secured to the outer edge of the panel and completes the border.
A filter has been patented by Mr. Wil liam T. Nesbet, of Schell City, Mo. It is intended as a strained and filtered before entering the cistern, and ha 2 vertically placed cylinder, within which is a smalle erforated cylinder, to act as a strainer, arranged above the filter proper, the arrangement being such that the strainer and filter can be readily cleaned.

SCIENTIFIC AMERICAN
BUILDING EDITION

JUNE NUMBER.

TABLE OF CONTENTS.

1. Plate in Colors of a Twelve Hundred Dollar
Cottage, with floor plans, also sheet of details, speciffcations, bills of estimate, etc.
Plate in Colors of a Five Thousand Dollar Resi-
dence, with plans, sheets of details, description Plate in Colors of President Cleveland's Cot
 Doluar, with Three Thous. plans. New York, with perspective and floo
A Twenty. Thoussand Dollar Suburban Resi Fence, with perspective and partial page engraving. An elegant design.
Residence of George W. Childs, Esq., at ${ }^{\text {W }}$ Woot ing, Delaware Co., Penn. Half page engrav-
Exhibition of Fine Arts, Venice. With one page of engravings.
A Hungarian Villa. page engraving.
Design for a Store and Stable adjoining. With 13. A Carriage House and Stable of moderate cost 14. Semi-detached Dwellings at Evanston, Ill Half page engraving.
The Country Residence of George Ebers, Starn-
berger Lake. Half page engraving. berger Lake. Half page engraving.
2. The new Addition to the Metropolitan Museum
of Art, Central Park, New York. With an en-
graving.
3. The Historic Monuments of France: The Ro-
ma Arch of Mars, at Reims. Half page enThe Tower of Belem, near Lisbon. With half 19. Tage engraving. Churches of moderate cost, with perspective views and ground plans.
4. Residenceof Mr, Arthur Lawrence, Maidenhead
Thicket, Berks, near London, showing perspective, and pla, n.
Modern Japantse Houses, ive ine ingures. Figure
1, Interior Arrangementof an Aino Dwelling;
Figure 2, Aino House, Yezo; Figure 3, A
Street Scene in Kioto; Figure 4, A Modern Street Scene in Kioto; Figure 4, A Modern
Japanese House; Figure 5 , Framing of an
Ordinary Twostoried House.
Giscellaneous Contents: Creosote Wood Pre-
serving Stains. Architectural Education. -

Link Belting and Wheels. Link Belt M. Co., Chicago Presses \& Dies. Ferracate Mach. Co., Bridgeton, N. J Woodworking Machinery of all kinds. The Bentel Nickel Plating.-Sole manufacturers cast nickel an des, pure nickel salts, polishing compositions, etc. \$10
Little Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline Complete outitit for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of Catalogue of books on civil and mechanical cine Catalogue sent free. F.\& F. N. Spon, 35 Murray St., New York. Guild \& Garrison's Steam Pump Works, Brooklyn
v. Y. Pumps for liquids, air, and gases. New catalogue now ready. Iron, Steel, and Copper Drop Forgings of every de We are Bu We are sole manufacturers of the Fibrous Asbesto
Removable Pipe and Boiler Coverings. We make pure Removable Pipe and Boiler Coverings. We make pur 19 and 421 East 8 th Street, New York. Steam Hammers, Improved Hydraulic Jacks, and Tube xpanders. R. Dudgeon, 24 Columbia St., New York. 60,000 Emerson's 1886 Book of superior saws, with supplement, sent free to all Sawyers and Lumbermen Address Emerson, Smith a Co., Limitea, Beaver Falls,
Pa., U. S. A. Hoisting Engines. D. Frisbie \& Co., New York city. "How to Keep Boilers Clean." Send your address
or free 88 page book. Jas. C. Hotchkiss, 120 Liberty St. The Holly Manufacturing Co., of Lockport, N. Y ill send their pamphlet, describing water works ma Cutting-off Saw and Gaining Machine, and Wood Hodges' niversal angle union mates pipenn Hodges' universal angle union makes pipe connectio
any angle. Rollstone Machine Co., Fitchburg, Mass Stearns new bench drill. Low priced, highly finished. $\begin{aligned} & \text { Used by all } \\ & \text { advt., p. } 301 .\end{aligned}$
Astronomical Telescopes, from $6^{\prime \prime}$ to largest size. Ob and, 0.
Split
Split Pulleys at low prices, and of same strength and

INDEX OF INVENTIONS

United States were Granted,

 May 24, 1887AND EACH BEARING THAT DATE

Air compressor, U. Cummings..................... Amaigamating apparatus, gold, B. C. Molloy,

Anchor, C. E. Best.....
Animal trap, E. Oiver.
Animal trap, A. Sewel.
Ankle support, F. Hackey...................................
Axle box, car, W. P. Wylly..........................
Bag. See Paper ba.. Traveling bag.
Bag hinge stay, C. Reinisch....................... Bag holder, Wrigh
Bale ties, implement for buckling, F. S. Williams
Baling press, T. J. Corning
Baling press, J. J. Stopple.
Ber
Baling press, H. L. Whi
Bar. See Car draw bar.
Barrel swing or crane, C. H. Keehner...............
Bathing closet and apparatus for administerin
steam, hot air, etc., baths, combined, J. W.
Schoenecker...............................
Beans, machine for cutting string, Young \&

Bicycle luggage carrier, C. R. Bannihr...........................363,3
Biacking, J. Prickett.........
Board. See Ironing board.
Bobbin stand, A. W. Parki
Boiler. See Domestic boher
Boiler cleaner, C. D. Wilcox
Book support, B. B. King
Boot or shoe burnishing machine, E. M. Park
Bottle, internally. stoopere....................................
Bottling aerated liquids, mac
Johnston.
Box. See Ax
Box. See Axle box. Cigar box. Folding box
Music be..............................
Box making machine, C. Crawford...
Brace. See Carriage top brace.
Bracket. See Scaffold bracket.
Bracket. See Scaffold bracket.
Braid for binding, M. H. Fouill
Braid for binding, M. H. Fouillet-Chevance......
Brake. See Car brake. Machine brake. Wag
Brakes, method of and apparatus for operating
pressure or vacuum, H . Hollerith.
Broiling, roasting, etc., apparatus for, E. P. Hous
Brooch, J. \& T. J. Porte
Broom holder, brush,
Bustle, D. o. Fosgate
Button, F. A. Fox.
Button and button fastener, R. J.
Button, convertible, L. D. Fren
Can. See Lamp filling can.
Canister, P. Metzger.
Canopy, portable folding
Car brake, H. M. Glines.
Car brake, street, G. Troller
Car coupling, W. E. Caton....
Car coupling, R. J. Edwards.
Car coupling, A. N. Hall..
Car coupling, E. E. Herrinto
Car coupling, w. S. Lennon
Car coupling, L. Self................
Car coupling, Thurber \& Brockwa
Car couppling, B. F. Warren.
Car coupling, D. Y. Wilson.
Car draw bar, I o. Phillips.
Car, dumping, A. C. M. Auguin
Car platiorms, safety
Car, railway, H. C. Fay
Car starter and brake,

Car ventilator, H. e. 363,642
363,383 Car wheels, device for changing railway, L. ... 363,692 Smith.............. 363,6
Car wheels, pattern for, J. N. Conway............... 363,5
Car window screen, Groves $\&$ Wyckoff.......... 363,3 Car window screen, Groves \& Wyckoff............
Cars of cable roads, switching 'grip, W. Cars of ca
Klemme.
Carding engi
Carding engine, W. Dobson..........
Carpet fabric, G. Crompton
Carriage, folding, W. Singer
Carriage top brace, J. Bauer...
arrier. See Bicycle luggage carrier. 363,3537
363,
Cart, road, G. J. Cline................................. s63,727
Casks, bushing for, C. Hammer..363,633
Caster, G. E. Hill..............
Casting car wheels, W. Wil............................. 383, 36343
Cement, I. Lichtentag................................ 363,402

igar holder, skeleton, M. P. Hough................ 363,4637
Cleaner. See Bioler cleaner.
Clock movement, secondary electric, c. D. War-
ner.. 363,440
Clock, primary electric pendulum, J. Zeiner...... 363,498
Closet. See Bathing closet. Water closet.
Cloth cutting machine, A. Warth...
Clothes line hook, L. Coyne...
lothes pounder, E. A. Beans
Clutch, white \& Moore
Clutch, friction, Crompton \& Wyman... 363,707
Clutch, friction, D. B. West............................ 363,493
Clutch mechanism, J. Reece..................... 363,421
Cock, gas or other, J. V. Horn 363,639
Coffins, device for lowering, J. T. Meredith
Comtortables from continuous fabrics, making,
F. L. Palmer.......................................
Corn drill and planter, double lister, Williams \&
Whitney ...73,711
Crn shellers, husk cutting attachment for, W.
w wills.
W. Wills...................................... 36, 36,712

Corset fastener, R. M. Hunter....................... 36,
Coupling. See Car coupling. Hose coupling. Pipe
coupling.
Crane, F. Service ...363,424
Cuff holder, E. S. Smith........

Cutter. See Sheet metal cutter.
Cutter head, J. B. Mahaffey...........
Cyclometers, mechanical movement for, M. H.
Damper regulator, Fowler \& Chadwick..33,459 363,630

Digger. See Post hole digger.
Display frame, S. Dancyger....................... 363,369
Display frame, S. Dancyger........................... 363,369
Distilling petroleum, I. Stevens............... 363,432

Domestic boiler, J. Reilly..............................
Door catch and door opening device, combined,

Drier. See Lamber drier.
Drill. See Corn drill. Grain drill.
Drill tube, T. . . . Crane....................... 363,f00
Drilling machine, coal and rock, E. Mose............. 363
Dyestuffs and coloring matter, manufacture of, F .
Bayer........... ..363,502
Eccentric, shifting, J. Grant......629
Elastic fabric, T. Taylor............................... 363
Electric motor and dynamo electric machine, R.
M. Hunter..
Electrical energy into mechanical force, system
of conversion, $\mathrm{H} . \mathrm{M}$. Paine.................. 333,669
Elevator. See Portable elevator.
Embroidering combined presser foot and guide
for use in, J. F. Atherton 363,
lating engine. Piston engine. Rotary engine.
Traction engine
$\&$ Brown.. 363,469
vener, four horse, E. R. Bird........................36,359
xercising machine, w. L. Coop............. 369
Exercising machine, W. L. Coop..................
Eyelets to articles of wearing apparel, attaching,
A. P. McGraw................................
Fabric. See Carpet fabric. Elastic fabric.

File cutting machine, A. Weed............................ 363,492
Fiie or clip, paper, J. Munger.................... 363,53
Fitter, W. T. Nesbet.......................... 363,68
Fire
Fire kindler, C. Van Gulpen............... 363,703
Folding box or crate, J. C. \& W. L. Thompson..... 363,700
Frame. See Display frame. Lantern frame.
Piano-action frame.
Fruit, foliage, and flowers, artiflial, E. H. Eve.... 363,736
Fruit, foilage, and flowers, artifcial, E. H. Eve.... 363,736
Fruit picker, G. C. Thompson.........................3837
Fumigator, W. F. Line........................ 363,433
Furnace for the combustion of refuse, Stafford \&
Pearson ...533838
Furniture, S. Hayward..............
Gauge and dividers, combined, S. Copelard. Garments, safety pocket for, A. Brenowit
Garments, waistband for, W. E. Smith.
Garnents, waistband for, W. E. Smith
Gas engiue, J. S. Wood.
Gas ixture, A. W. Zimmerman........................
Gas generating aparatus, J. A. Price........
Gas motor engines, pendulum governor for, F. W.

Gate. See End gate. Railway gate.
Gearing for changing speed, I. M. Sweet............. 363,776
Gearing for changing speed, 1. M. Sweet............ 363
Gem settings, construction of, o. T. Smith
Glass tubes, instrument for cutting off, Toedt \&
Burnham....... 363,663
lassware, machine for fishing articles of,
Blackburn \& Mann... 363,580

nt for inserting, B. B.	ham...		2hovertisements.
Gloves, spring clasp for, S. Bernhardt............. $66,5,588$ P	music desk for upright, w. Rohling,	s, J	
Governor	Picker. See Fruit picker.	Sming, T. J. Benli............................ 28,303 ${ }^{\text {S }}$	
in drill T. R. Crane........................38,005 Pi,	Pieture holder, artists' m		
		Smitch stand, A. A. Strom.......................	
Rain drills, feed device for, T. R. Crane.......... 363			e-
	Planter check rowing attachment, corn, O. A. Shotts................................36,555 Th $^{\text {T }}$	Jnerat	insufiee as early as Thursday morn-
${ }_{36,530}$ P			
P		d. Macken	
	(e) $\begin{aligned} & \text { Post. See Railway bufrer post. } \\ & \text { Post hole diger, J. H. Humphres................ } 363,745\end{aligned}$	${ }_{\text {Tow }}$	
	Post or pile driver, E.\& \& A. Welsh.................. ${ }^{368,706}$ T ${ }^{\text {a }}$	To, sling, L. . B. M M yers....................363,755, 3	
Hay rakes, tooth or prong for horse, A. H. ${ }_{\text {cese }}$ P	Printers		
	Printing machines, inking apparatus for, A. ${ }^{\text {ase }}$, T	Traveling bag, sidido \mathbb{E} Flocke.................... 388788	
Heating apparatus, J. A. Irons . 363,747		Truck, hand, H. E	
Hides, machine for breaking and softening raw, C. A. Schieren . \qquad	Miehle .. 363,409 Protector. See Vehicle line protector.		
	Pump, J. Raab......... 338,677		
${ }_{P}$			
	. 36		
${ }_{1}^{\text {R }}$	Railway buffer post, S. S . P. Trafton Railmay gate and semaphore, combined, E.		
Hose coup			
363,479	Railway joint, S. A. Kilmer..................... 368,388 V		
		Velocipede, E. Blossfeld............................ 363,360	
		Velocipede handle bar fastening, C. R. Bannilir... 363,354	
tines,			ELECTRICAL, Ed ward P.Thompson, Solicitor
Ironing board, H. в. Mavis............................. 366,527			
${ }^{363,663}$			
Joint. See Railwa joint.			
Kitchen cabinet, w. C. Dollens................... 3 36,372			Adtocopyist Co, 166 William Street, New York.
${ }_{363}^{36}$	${ }_{3}^{363,624}$		
Lace holders, tool for setting shoe, C. A. Sullivan 366,433 H	Refri		
La			
${ }_{\substack{365,611}}^{36,54}$		Watch mainsprings, manufacture of, F. Sedk-	ts of the country.
Lamp fil			
Lamp, incandescent electric, C. G. A Aderson..... ${ }^{363}$		${ }_{\text {w }}^{\text {w }}$	
mps			
	Rug holder, S. A. Kilmer......................... 3683,399		- A table showing the composition of some of the pig-
${ }_{36,3,34}$	Sat		
enn,			
ntern, tu		DESIGNS.	
the attachment, McCrosson		Cuspidor, F. D. Mersereau........................ 17,388	THE CH
	Scaffold bracke		
ck. See Eleetric lock.	sco	Type ornaments, font of combination, J. West..... 17,359	
oms, connecting device for harness straps for, G. H. Avery \qquad	scre	TRADE MARKS.	
zenge	Sea		THE USE OF TORPEDOES IN WAR.-
Lubricant distributer, J. T. Waters,.............. 36,3655	Seal lock, R. M. Sull........................... 363,775		
Iubricating apparatus, automatici, J. Ryan........ 363 3682 Iubricator. See Valve lubricator.	Seat. See Reversible seat. Seding machine J. $\&$ T. H. Noxor.............. 368,758	Blood, purifier and general invigorant, Seminole	cear presentation of the present state of e eticiency o the torpeo. the egree orf perfecton that it hasnow
I.ubricator, J. Ryan......................363,683, 383,684	Service pipes, stop cock box for, J. H. Kennedy.. Sewing machine butontole \mathbf{W}. Randel	Calico, Dunnell Manutacturing Company............114,466	
	Sewing machine, buttonhole, , W. Randel.......... ${ }^{3}$	Canned fish, w. T. Coleman \& Co................ 14,432	CAN SUPPHFMAT . Nos 536 and 537 Ten cents
	Sewing machines, take-up device for, C. F. Little- john..636,656	Cigars, Sternemann Bros.	
Meat cutting machine, L. F. Fadum................. 363,112	Sewing machines, work plate for, C. F. Little-	Goodhart \& Koch........ 14,439	
Meat cutting machine, C. . W. Hottmann............ 36,485		Coton cloth, Arnold Print works.................... 14,25	DEAFNESS RELIEVED
Medical compound, Blumentahi \& steele........... 363,48	47	Cotton tabrics, such as sh	
		Cutlery and edge tools, table, pocket, and other,	
			WILLIAMS, 10 E. 14th, N. Y.
erometer gauze, A. E. Whitmore............... 363,09	Brown................. 36,723	1 varieties e	
	t m		
		Gold leat for teeth flling, C. A. Timme........... .. 14,499	
	ppe	Jacket, cardigan, Thorne, Carroll \& Co............. 14,488	
Music, ap	es,........... з36,521	Liniment, D. Loreaux.	Sele
Huard....................................... 363,392		Medicine for the cure of rheumatism, A. Manheim 14,44	
,51		Medicine, tonic, c. . . Warne	
Music leaf turner, W. E. Swett................... 36 ze, 459	9 Singletree, J. W. Waterfield......................... 363,422	3	
Musical instrunuent, meechanical, J. H. Chase...... 383,591		Muslins, unhleached, H. в. Clafin \& Co............... 14,431	
Musical instrument, mechanical, C. A. . . Kuster..... 36,4940			
Mustical instrument, stringed, G. W. Van Dusen... 363,664		$\begin{gathered} 40 \\ 00 \end{gathered}$	
Nail. See Shoe nail.	Spindie driving bands, tension regulating device		
		Son... 14,450	ITORS
	ing machine spindle support, A. R. Sher-	Soap, J. Cer Soap for laundry, toilet and general purposes,	
120	ttoon and water closet, combined, white \&	Lever Bros.	
343,430	${ }^{363,494}$		1
52	en holder or handile, W. P. Pinel ${ }^{333,674}$	Tobaco, smoking, F. W. Felkner \& Son 14,	
Laughlin.......................3638,622			CAA SUPPYMEENT, No. 589. Frice 10 ce had at this office and fromall newsdealers.
:366,531	Square, bea	Whisk, A. Blum.............................. 14,22t	
		Whisky, F. Westheimer \& Sons....................... 14,456	
See Stair pad. from recalcin	, T		
facture of, J. P. Perkins..................... 36.3683	${ }_{\text {st }}$		
Paper baz, E. E. E. Clausen...................... 363,596	Ste Ste		
..	Steam trap, J.	$2{ }^{\text {chen }}$ cenis. In ordering please state the number and date	
Paper, cabinet for sanitary toilet, w. Flint........ $36,3,39$ Paper holder, toilet, $\mathrm{J} . \mathrm{H}$. Sperry	ste	of the patent desired, and remit to Munn \&	
Paper holder, toilet J. J. H. Sperry. 36,634 Paper trays, machine for making, w. s. McKin-			
		iflcations, not being printed, must be copied	
Pen, fountain, C. W. . Livermore................... 36,526 Pens and other articles, holder for, \mathbf{C}. W. Boman,			
men	Strap. See Shawl strap. String instrument, T. Brett. 363,720	4	

mimmbuan JUST READY.
 rast The above or any of our Books sent by mail, free of
postoge at the pubication price, to any adaress in the
world.

 HENRY CAREY BAIRD \& CO., 810 Walnut Street, Philadelphia, Pa., U. S. A. THE ECLIPSE OF ALGOL, WITH THE

 The cushman Chuck Co., Hartford, Conn. ALCOHOL, SWEET POTATO. - AN

SCIENTIFIC BOOK

 CATALOQUE, mailed + ree to any address on application.
MUN \& CO., Publishers Scientific American,

FOREIGN PATENTS, Their Cost Reduced.

The expenses attending the procuring of patents in
most foreign countries having been considerably re duced the obstacle of cost is no longer in the way of a
large proportion of our inventors patenting theirinven tions abroad. former includes the Provinces of Ontaric, Quebec, New
Brunswick, Nova Scotia, British Columbia, and ManiBrunswick, Nova Scotia, British Columbia, and Mani
toba.
The number of our patentees who avail themselves of
the cheap and easy method now offered for obtaining
ENG1, A ND.-The new English law, which went into in Great Britain on very moderarte terms. ABritish paChannel Islands. Great Britain is the acknowledged
finarial and commercial center of the world, and her goods are sent to every quarter of the globe. A good
Invention is like y to realize as much for the patentee
in tnalund as his United States patont it England as his United States patent produces fo for almost every patentee in this country to seccure a pa
tent in Great Britaiu, where his rights are as well pro jected as in the United States.
on very reasonable terms in Francents are also obtaine Austria, Russia, Italy. Spain (the latter includes Caba Australia, and the other British Colonies. publishers of The Scientific Amerionnto establish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to have the business of their clients promptly and a pamphlet containing a synousis of the
information useful to persons contemplating the pro curing of patents abroa, may be had on application to this office.
MUNN
entific american, cordially invite all persons desiring any information relative to patents, or the registry of
trade-marks, in this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, con
sultation, and advice free. Inquiries by mail promptly sultation,
answered.

Address, $\xrightarrow[\text { MUNN \& CO., }]{\text { Publishers and Patent Solic }}$ 361 Broadway, New York

Branct Offices: No. 622 and 624 F ' Street, Paci

CURE FifideAF

MFRY WFFMTE. WELLINGTON MILLS EMERY SUPERIOR TOALL OTHERS. Thousands of manufacturers teasify to tit being the Strong-
ent, most Durabie, and Heaithiest E mery Wheel made
 NEW YORL BELTING \& PACKING CO., Warehouse: 15 Park Row, New York. OTTO GAS ENGINE AGENCY, NEW YORK.
Removes on May 1st to 18 VESEY STREET.

Water Whels New and Second Hand
Adarest FLENNILEN TURBINE Co., Dubuque, Iowa CLARK'S NOISELLESS RSBBER WHEELS

Special Rubber Mould Work. Istimates
CDNFIELD RUBEER
o., Hridgeport, conn.

GRATEFUL-COMFORTINC.

STEEL GUNS, GUN METAL, GUN

 do deant:

LIGHT DRAFT STEAM LAUNCHES. COAL AND WOOD B URNINC ar Boilers. Patent Automatic Adjustable
MANUFACTURED BY H. B. WILLIAMS \& CO., Rochester, N. Y., U. S. A.

AIR, PURIFICATION

an improved army filter--de-

NEWSPAPER FILE

MUNN \& CO.

ROCK BREAKERS AND ORE CRUSHERS.

ICE \& REFRIGERATING

SHIELDS \& BROWN

For BOILERS and STEAM PIPES FOR $\underset{\text { Prevents } A \text { Sweating and Freezing. }}{ }$ Prevents Sweating and Freezing.
 AMATEUR SITH'S WORK - A CON-
 tained in SCIENTIFIC AMELICAN SUPLEMENT, No.
till
all newsdealers.

ROSDICUM

ฐ̌ientific Smerician

The Most Popalar Seientific Paper in the World.

 Onls $\$ 3.00$ a Year, incluting Postage. Weekly. This widely circulated and splendidly illustratedpaper is published weekly. Every number contains sireen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery epresenting Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Pbotography, ArchiAll Classes of Readers find in the Scientific ormation of the day; and it is the aim of the publishers to present it in an attractive form, avolding as muct as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in Terms of Subscription.-One copy of the Scienhific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extra copy of the SCIENTIFIC Ameri-
CAN will be supplied gratisfor every clubof five subscribers t $\$ 3.00$ each, an The safest way to remit is by Postal Order. Draft, o of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, dratts, etc., payable to MIUINIT \& 00

861 Broadway, New York. T표
Scientific American Supplement. This is a separate and distinct puhlication from
THE ScIENTIFIC AMERICAN, but is uniform therewith THe Scientific American Supplement is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of Science and the all the principal departments of science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geography, Achat, Mechanicar Engineering. Steam and Railway Engineering, Mining Ship Building, Marine Engineering, Photogri:phy, Technology, Manufacturing Industries, Sanitary En
gineering, Agriculture, Horticulture, Domestic Econo my, Biography, Medicine, etc. A vast amount of fresh
and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated wit engravings.
The most im
portant Enoineering Works, Mechanisms, and described in the Suppiement
Price for the SUPPlement for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AM for one year for $\$ 7.00$. Address and remit by postal MUNN \& Co.. 361 Broadway, N. Y., Pablishers Scientific american
To Foreign Subscribers.- Under the facilites of
Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to subBritish colonies; to France, Austria, Belgium, Germany Kussia, and all other European States: Japan. Brapil Termico, and all States of Central and South America 54, gola, when sent to foreign countries, '"anada excepted, for both ScIENTIFIC AMEREACAN and SUPPL; ore year. This includes postage, which we pay. Remit
hp postal or express mones br Dostal or express money order. or draft to order of
MUNN \& CO., 361 Brosdway,

To Business Men.

 munN \& co., Publishers,

Trangingion of Powe

Trenton Iron Go.

Fire and Water-Proof Builiding Frlot,
Fite-Proof Paints, Steam Pacings, boiler Ramples and descriptive Price List free by mail, E. W. JOENS Mr'G CO., 87 MATDEMMANE, N. 7.

PATENTS
MESSRS. MUNN \& CO. in connection with the publiamine improvements, and to act as Solfitors of Patents
ar Inventors.

 them is donenents of Pathents. All businesi intrusted to
treasonable terms.
A pamphet sent free of charge, on application, con
taining full information about Patents and how to pro

tenta, etc.
We also send, freeof charge, a Synopsis of Foreign Pa
tent Laws, showing the cost and method of securin patents in all the principal countries of the Forld.
MUNN \& CO., Solicitors of Patent BRANCH OFFICES.-No. 622 and 624 F Stre

The Original Unvulaaized Packing autrursuan:

SHAFTING, PULLEYS,
HANGERS, AND GEARING.

USEFUL BOOKS,

0JACKET KETTLES,

ESTABLISHED HALF A CENTURY.
 HAVE MANY PATENTED NOT FOUND IN MPRQVEMENTS THAT WILL WELLER REPAY AN INVESTIGATION BY THOSEWHO TO SECURE THE BEST SAFE MARVIN SAFE CO. NEW YORK, PHILADELPHIA, LONDÓN. ENGLAND. SOLID EMERY WHEELS.-BY T. D D

chanics, Builders, men of leisure, and professional

 chanics, Builcers, men of leisure, and professionamen, of all classes, need good books in the line of their respective callings. Our post office department permits the transmission of books through the mails
at very small cost. A comprehensive catalogue of useful books by different authors, on more than fifty circulation at the office just been published for free ifled with names of author. Persons desiring a MUNN \& CO., 361 Broadway, New York ICE-HOUSE AND COLD ROOM.-BY R. G. Hatifid. With directions for construction. Four
Gngraving. Contaned in ScIENTIIT AMERICAN SUP
PLEMENT, 59 . Price 10 cents. To be had at this office PLEMENT, 59 . Price 0 cents. To be had at this office
and of allnewsdealers.

RUBBER BELTING, PACKING, HOSE,

MECHANICAL and MANUFACTURINGPURPOSES The Largest and Most Extensive Manufacturers in America.
THE GUTTA PERCHA AND RUBBER MFG. CO
 ar amamiai
Estimates will be given and contracts made by the
Household Sewing Machine Co., for the manufacture of machinists' tools of any description. Will manufacture under contract patented specialties.
We are also prepared to do Japanning and Plating in

Household Sewing Machine Co Providence, R. I.

THE ARC ELECTRIC LIGHT.-A RE cent address before the New Fork Electric Light Asso- ceation by Leo Datt, fiving bier brief review of the history of elect ric lighting, showing what it has accom

WITHERRBY, RUGGG \& RICHARDSON. Manufacturers
of Patent of Patent Wood Working Machinery of every descrip.
tion. Facclities unsurased Shop formerly oecapled
by R. Ball \& Co., Worcester. Mass. Serd for Catalogue.

esting Machinery

TITNUS OLSB

 RADII OF CURVATURE GEOMETRI cally considered. By Prot. C. Maccord, Sc.D.-Explanation of a new enethod of determinin the radiop or
ture of many plane curves by very simple sure of many plane curves by very simple graphic con
spuction, the proposed mode of operation being based
upon the fundanental idea of rearding hine as gen

MODEL And Send forCirciars. C.E.Jones\&Bro. CIMcimmati, 0. (Mention this Papers

\& Ney Catalogulaof Valiuable Papers

Self-Contained. Sensitive Governor. Balanced Valve. High Speeds. Stationary Oilers, Best Eiconomy.

Gold Medal Cincinnati Expaskion, 1894.
THE JOHN T. NOYE MFG. CO.,

95 MILK ST. BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

-THE—

Scientific American

Building Edition.

The Scientific American Architects' and Builders' Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifications, Costs, Bills of Estimate, and Sheets of Details.
Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving nomes or erecting structures of any kind, have before them in this work an almost endless series of the latest and best examples from which to make selections, thus saving time and money.
Many other subjects, including Sewerage, Piping, Lighting, Warming, Ventilating, Decorating, Laying Out of Grounds, etc., are illustrated. An extensive Compendium of Manufacturers' Announcements is also given, in which the most reliable and approved Building Materials, Goods, Machines, Tools, and Appliances are described and illustrated, with addresses of the makers, etc.
The fullness, richness, cheapness, and convenience of this work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers.

> MUNN \& CO., Publishers,

361 Broadway, New York.
Building Plans and Specifications.
In connection with the publication of the Building Edition of the Scientific American, Messrs. Munn \& Co. furnish Plans and Specifications for Buildings of every kind, including Public Buildings, Churches, Schools, Stores, Dwellings, Carriage Houses, Barns, etc. In this work they are assisted by able and experienced architects.
Those who contemplate building, or who wish to alter, improve, extend, or add to existinglbuildings, whether wings, porches, bay windows, or atticroms, are invited to communieateswith the under signed. Our work extends to all parts of the country. Estimates, plans, and drawings promptly prepared. Terms moderate. Address

MUNN \& CO.,
361 Broadway, New York.
PRINTINNG INKS:

