

A WEEKLI JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

LATEST TYPE OF THE MAXIM MACHINE GUN.

It will be remembered that Mr. Henry M. Stanley was compelled, a short time ago, to abandon his lecturing tour through this country, and was recalled to take command of an expedition in relief of Emin Pasha, the successor of General Gordon, who is at present supposed to be beleaguered by hostile Africans near Wadelai, not far from Lake Albert Nyanza. Before leaving England he provided himself with one of Mr. Hiram S. Maxim's automatic machine guns, and the illustration, which is taken from a photograph, represents the great explorer in the act of firing the gun, while our compatriot, the inventor, is standing immediately behind the gun.
The gun made for Mr. Stanley weighs 40 pounds, the swivel on which it is mounted weighs 16 pounds, the tripod without the shield weighs 50 pounds, 解nd the shield weighs 50 pounds. The gun may be detached from the tripod, which may be folded with the great est facility. The seat slides back, drawing the strut with it, and the whole thing folds up. The tripod is different from the type illustrated in this paper.in issue of December 13, 1884, being constructed for this particular sarvice.
The ection of the gun is automatic, each cartridge being discharged.by the recoil of the shot preceding. The cartridges are placed in a belt, and the empty
shells are thrown out in front of the gun, as shown in the photograph. The rate of fire is about 600 times a minute. With the shorter and smaller cartridges, such as are used in the U. S. army, the rate of firing would be about 700 shots a minute. The rapidity of the fire is such that at a thousand yards range twenty bullets will strike the target after the gun ceases to fire, while by giving the gun a very high elevation, five hundred rounds may be discharged before the first bullet strikes the ground.

To prevent too great heating a water tank is pro vided, from which the water is fed through the casing around the barrel. The amount of heat thus generated is about $11 / 2$ units for each discharge, and a thousand rounds will evaporate more than a pint of water.

The gun is mounted pivotally, to admit of considerable latitude of range, and it may be turned very readily in any direction. The shield in the illustration is raised as a protection against arrows and spears. The top and bottom hinged sections may be lowered and raised, however, to provide a double thickness against bullets.

Casting Steel Forts.

Sir Henry Bessemer proposes to obviate the enormous expense of ordinary armor plates for forts by casting in situ the whole face of a fort or complete turret in
one solid piece of steel, with all its ports and loop-holes properly shaped and formed in the act of casting. He says: "Let us take as a simple example the production of a fort with a curved face 100 ft . in length, 16 ft . high, and 3 ft . in thickness. Such a plate would be moulded after the manner practiced in ordinary iron foundries, that is, with brick walls held together with iron binders and internally lined with fire clay. Alongside this mould would be placed the melting cupolas and four fixed 20 ton Bessemer converters, each capable of turnout out eighteen charges per day of twen ty-four hours; thus delivering into the mould one ton of molten steel a minute. At this rate of working, the mould would be filled in sixteen hours, and produce a single plate weighing 960 tons, requiring no backing or superstructure for its support, and no expensive fitting together of separate parts. The static pressure in the mould tending to bust it open would, in this system of slowly filling the mould, be extremely small, owing to the fact that the metal will solidify at the lower part, leaving only half a foot or so fiuid at the upper part. It will be equally obvious that it would be quite impossible to destroy such masses of steel as could be produced by this method by any existing artillery, while the price which such castings would cost at a time when we can purchase finished steel rails for $£ 315 \mathrm{~s}$. per ton will be readily understood.'

MR. HENRY M. STANLEY EXPERIMENTING WITH THE MAXIM AUTOMATIC MACHINE GUN,

šientifir ghmerican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. postage included....
${ }_{3}{ }_{1} 50$
Clubs.-One extra copy of THE SCIENTIFIC AMMRICAN Willi be supplied
gratis for every club cftive subseribersat $\$ 3.00$ each; additional copies at ame proportionate rate. Postage prepaid. Address
Remit by postal or express money order.
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement

 85il ne newsar, porstage paid, to sub bscribers.
Combined Rates. The SCIENTIFIC A MERICAN and SUPPLEMENT
will be sent for one year, postage free, on reeeit of seven dollars. Both
papers to one address or or ifferent addresses as desi red. papers to one address or difrerent addresses as desi red.
rene safest $\begin{aligned} & \text { ay } \\ & \text { to remit is by draft, postal order, ex press money order, or }\end{aligned}$

Scientific American Export Edition.

NEW YORK, SATURDAY, MARCH 5, 1887.

Contents.	
(Illustrated articles are marked with an asterisk.)	
Business and perso	eorites, explosion of, on the. 145
pitalists and inventors.......... ${ }^{146}{ }^{146}$ Mule ki	
Carriage, Italian state*........... 151	
Defense ofthirtydays.................N 147	
Ears, protection of, under can- 145	
Earthquake in Europe, the*..... ${ }^{150}$	Ra
Farthquakes, famous,	
Fire extingushers, chemical, for	
Gas lighting, system öf, improved 148	
Inventions, agricultural.......... 154	
Inventions, index of.c........... ${ }^{\text {Inventions, mechanical....... }} 15$	
Inventions, miscellaneous.......... 154	

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

INO. $\mathbf{5 B 3}$.
For the Week Ending March 5, 188%.
Price 10 cents. For sale by all newsdealers.

- ORDNANCE-Weight and Power of Modern Guns.-Table of di-
I. PRYSICS. - Rrfects of Heat on Iron- The internal friction of

IX. THCHNOLOGY. Cameo Cutling as an Occupation-The history

COAST DEFENSES.

The report recently made on heavy guis; material for coast defense, by a committee of the of Representatives, furnishes additional proof $i_{1} \ldots t$.
even intelligence and honesty, if not properly informed, may be led into error.
The reasons of the committee for its refusal to sanction the giving of contracts for the heavier caliber guns will find commendation among the judicious and informed. When we have shown our ability to make six and eight inch guns of the new pattern with dispatch and certainty, it will be time enough to undertake the far more difficult construction of twelve and fifteen inch guns; whereas, to begin without experience upon these monsters would, like enough, prove a waste of both time and money.
When the committee discusses the steel $v s$. iron question, its information seems meager and its logic untenable. Here are its own words
"It may be asked why the amount appropriated is so small, and why no provision is made for a still larger gun, and why the appropriation is restricted to steel and excludes cast iron? The answer of the committee to these interrogatories may be briefly stated. Steel was selected because the committee believe it to be much the best material for large guns, as proven by actual test, and it would seem to be a manifest truth to the ordinary mind from common observation.",
These answers, besides that they are "briefly stated," re, we fear, incorrect.
It has hardly been "proved by actual test," nor is it manifest to the ordinary mind," that steel is "muc the best material for large guns."
So far as cast iron guns are concerned, as has already been pointed out in these columns, they have stood a test fully three times as great as it has been thought advisable to subject steel guns of the same caliber to, and have been fired hundreds of rounds under a pressure of nearly seventeen tons to the square inch of bore.
The committee suggests an appropriation for mor tars. The importance of mortars-rifled mortars of the new type for coast defense-can hardly be overestimated; for, if the experiments in France with the new French monster mortar have not been exaggerated, it is peculiarly adapted as a powerful auxiliary to the work of a torpedo boat defense. The report winds up with the following lucid statement of our most pressing needs
". "There is no harbor defense, in the judgment of this committee, that can be reached so quickly and so cheaply, nor which can be made more complete, than that made by the use of torpedoes, torpedo boats, and submarine mines. The sole protection necessary to cover and guard them can be improvised with great ease, when we have guns and men who know how to handle them. The dynamite torpedo upon a torpedo boat will, ere long, revolutionize all opinions and plans forharbor defense, unless this committee have failed in forecasting the future. We are so sanguine in our judgment that we appropriate this sum to give assurance to the inventive genius now studying the torpedo system and the use of dynamite therein that, upon the consummation of their plans, they may readily expect recognition from this government in a substantial form."
It is to be regretted that a committee which shows such a just appreciation of what is most required for harbor defense, which, in fact, admits in set terms that torpedoes, torpedo boats, and submarine mines are tion of only $\$ 600,000$ for them, as against millions to be turned over to the circumlocution office to start a wild goose chase for high power steel guns that will not burst.

An Extensive Water Supply.

The water supply for large cities or groups of cities is becoming a matter of serious difficulty all over the world. There are many questions involved, and sometimes there are so many conflicting rights that, no matter what steps are taken, they seem inevitably to lead toward interminable lawsuits. It is interesting, therefore, to note that the cities of Paterson, Raritan, Newark, and Jersey City have a fair prospect of geting pure water at a very reasonable cost, and that they are enabled to get it without outlay of capital. By the payment of a fixed sum per million gallons, the water is to be supplied to each city in its own service reservoir, according to its needs. At present, the cilies elow the Great Falls of the Passaic River are taking
their water from the river by pumping works. Of their water from the river by pumping works.
course, the pollution of the river by the cities, factories, and residences on its banks renders the water far from desirable for drinking and cooking use, and many plans have been proposed to secure better water. One of the chief obstacles to the adoption of any o ers, who could not be dispossessed except by an action at law under the right of eminent domain. But to apply this law on the motion of one city might cut off the ight of another city in the same watershed to con right of another city in the same watershed to con-
demn the water rights necessary to its supply. And it
rain that if Jersey City took steps to control the er of the upper Passaic, she would meet the opposition of not only the owners whose rights would be at stake, but also of Newark and Paterson, who might thereby find themselves deprived of their natural supply of water. Among so many conflicting interests, it would be very uncertain whether eminent domain would be a sufficiently potent rod with which to smite the rock.
But while the interested municipalities have been thus hampered, a way seems to have been opened on different lines. A company, known as the West Milford Water Company, was formed expressly to secure the right to sufficient water above the Great Falls to supply the population below that point for many years to come. The Society for the Encouragement of Useful Manufactures, of Paterson, chartered in 1791, owned the perpetual right of using the water of the Pasaic River above the Great Falls. This society is under contract to supply water to many manufacturers, and any interference with the water by proceedings under eminent domain would entail the payment of enormous damages when the condemnation should be made. But the society was not averse to parting with the right to use the surplus water, and this right was bought by the West Milford Water Company. Here, therefore, was provision for many millions of gallons of pure water during the greater part of the year. But, as there is a period of low water in summer, lasting generally about two months, further provision was necessary. Lying up in the hills of northern New Jersey are several ponds or small lakes, whose water is very pure. The West Milford Water Company selected several of these, carefully surveyed the land, and bought the land completely surrounding these ponds. The chief of these in importance was Dunker Pond, near the New York, Susquehanna and Western Railroad. It lies in a deep gorge, across which it is proposed to build a dam about 100 ft . long and 50 ft. high. The water will then be backed up to a depth of 35 ft . over an area of about 600 acres.
Another large reservoir will be formed at Macopin Pond. Other sources of supply secured were at Oak Ridge, Montville, Great Notch, Splitrock Pond, Hauk's Pond, and the overflow of Pequannock and Rockaway Rivers.
All the titles have been carefully settled, and the company has no hostile rights to fight. It proposes to build all the dams, aqueducts, gates, pipe lines, and ther means of storage and sapply, so that none of the cities will be called upon to raise or expend money for works. It is proposed to sell water to the cities, delivered to them in their service reservoirs, at less than thirty dollars per million gallons, less than three mills per onehundred gallons. The height of the reservoirs above tide level is so great that the water would rise far above any height at which it wauld be needed. The present cost of pumping and interest on the plant in Newark now amounts, with insufficient head, to about thirty-five dollars per million gallons.
The great interest to engineers in this matter will be the construction of the dams, aqueducts, and pipe lines, the system being practically equivalent to associating and consolidating the chief sources of water supply in a large and important watershed.

De Bange Guns.

A series of experimental trials with these guns has just been going on at Christiania, Norway, before a special committee, and the results are so satisfae. tory that the important question De Bange versup Krupp has, no doubt, been definitely decided in favor of the former, as far as Norway is concerned. The guns have a caliber of 8.4 centimeters, and the number of shots flred, amounting to 1,000 , have not effected the smallest trace of extension, the diameter measured before and after the 1,000 shots agreeing to a hundredth part of a millimeter. The accuracy and the range of the flring bave also been entirely satisfactory. Some minor drawbacks in connection with the gun carriages and the regulating screws, both of which suffered somewhat from the powerful recoil, have been removed, and those now used have stood the last 600 rounds without the least hitch. De Bange's obturator packing -consisting of two-thirds asbestos and one-third sheep's tallow, covered with sailcloth-has also proved most effective, although quick series of thirty, forty, and even fifty shots have been fired without cleaning the barrel or other parts.

The Telephone as a Source or Infection.

At a meeting of the Caucasian Medical Society, Dr. A. P. Astvatzaturoff, of Tiflis, drew attention ("Proceedings of the Caucasian Medical Society," November 17, 1886, p. 263) to the danger of infection arising from the promiscuous use of the mouthpieces of public telephones. To prevent any accident of the kind, he recommends that the mouthpiece should be disinfected every time after or, still better, before it is used. In other words, some disinfectant fluid should be kept at overy telephone station, and the speaker should, first every telephone station, and the speaker should, first
of all, dip the mouthpiece into the fluid, and then wipe it with a clepn towel-Brit. Med. Jour.

On the Explosion of Meteorites.

We have received from M. Hirn a tirage a part of a communication to L 'Astronomie, in which he discusses the various phenomena accompanying the explosion of meteorites, with a view to explaining their causes.
M. Daubree, a long time ago, pointed out how very striking and difficult of explanation the noises are which are often heard in connection with the passage of meteorites, and called in question the explanation which had been given of their being really due to a veritable explosion.
M. Hirn, in his paper, begins by considering the causes which are at work in the production of the thunder which accompanies electric discharges, and of this he writes as follows: "The sound which we call thunder is due, as everybody knows, to the fact that the air traversed by an electric spark, that is, a flash of lightning, is suddenly raised to a very high temperature, and has its volume, moreover, considerably increased. The column of gas thus suddenly heated and expanded is sometimes several miles long; as the duration of the fiash is not even a millionth of a seconc, it follows that the noise bursts forth at once from the whole column ; but for an observer in any one place it commences where the lightning is at the least distance. In precise terms, the beginning of the thunder clap gives us the minimum distance of the lightning; and the length of the thunder clap gives us the length of the column. It must be remarked that when a flash of lightning strikes the ground, it is not necessarily from the place struck that the first neise-is heard." M. Hirn then gives an interesting case which proves the truth of this remark. He next points out that a bullet whistles in traversing the air, so that we can to a certain extent follow its flight. The same thing happens with a falling meteorite just before striking the earth. The noise actually heard has been compared to the fight of wild geese or the sound produced when one tears linen. It is due to the factthat the air rapidly pushed on one side in front of the projectile, whether bullet or meteorite, quickly rushes back to fill the gap left in the rear.
The most rapid cannon shots scarcely attain a velocity of 600 meters a second (over 1,500 miles per hour), while meteorites penetrate the air with a velocity of 40,000 or even 60,000 meters per second ; and this increased velocity gives rise to phenomena which, al though insignificant where cannon shots are in question, become very intense and important when we consider the case of the meteorite. With that velocity the air is at once raised to a temperature of from 4,000 to $6,000^{\circ} \mathrm{C}$. The matter on the surface of the meteorite will be torn away by the violence of the gaseous fric tion produced, and will be vaporized at the same time by the heat. This is undoubtedly the origin of the swoke which meteorites leave trailing behind them.
We have, then, precisely as in the case of lightning, a long narrow column of air, which is expanded, not so instantaneously certainly as by lightning, but at al events in an extremely short time and through a great length. Under these circumstances we should have an explosion in one case as in the other-a clap of thunder followed by a rolling noise more or less prolonged. If a cannon ball could have imparted to it a velocity of 100,000 meters per second (nearly two hundred and fifty thousand miles per hour), it would no longer whistle, it would thunder, and at the same time it would produce a fiash, as of lightning, and would be instantly burnt up. . M. Hirn depends upon this line of reasoning to show that meteoric thunder need not necessarily have anything to do with an actual explosion. He then points out that the intensity of the noise produced in every point of its trajectory depends, first, on the height; second, on the velocity of the meteorite ; third, on its size ; and fourth, on the configuration of the country over which it passes. He refers to the observation of Saussure that a pistol fired at a height of 5,000 meters makes very little noise. He then points out that at a height of 100,000 meters the density of the air is reduced to the small value of $0 \cdot 000,000,004 \mathrm{krg}$.; the temperature being supposed to be $-200^{\circ} \mathrm{C}$. In such a medium as this a meteorite could produce no sound, although it might give out a very brilliant light, because its temperature and light depend, not on the absolute value, but on the rapid change of density.-Nature.

A New Theory of Boiler Explosions,

M. Hochereau, formerly a works manager in Belgium, has recently published a curious theory of what he calls fulminating explosions of steam boilers. He attempts to demonstrate that these fulminating explosions are to be attributed principally, if not exclusively, to the ignition by an electric spark of a mixture of air and more or less highly carbureted gas produced in the boiler. For this it is necessary to establish three points : First, the possibility of an electric spark in the norinal conditions of working boilers; secondly, the production of a more or less pure hydrocarbon gas thirdly, the presence of the air necessary for the forma tion of an explosive mixture.
As to the formation of an electric spark, it is known
escaping from narrow orifices ; and M. Hochereau says he bas witneeed the appearance of sparks when steam hàs esenped from a crack in a plate. He declares also that if the stewn escaping from the safety valve of a boiler is observed in the dark, under favorable conditions, an electric aureole of 0.20 or 0.30 meter in diameter may be perceived round the valve. The spark is also produced when the steam valve is opened, as well as at the opening of the slide valve of an engine. Then the presence of hydrogen,' more or less carbureted, is ascribed to the decomposition of organic matters, especially of a fatty nature, which find their way into the feed water, particularly when condensed water is returned to the boiler. Finally, the necessary air is supposed to be derived from that dissolved in the water and given off when it is vaporized. It is a fauciful theory, and requires verification.

Nazography.

La Science en Famille says that a new journal is soon to appear as the organ of the science of "nazo soon to a
Nazography, says the author of the system, permits of divining the character, habits, and inclination of people by a simple inspection of their noses. According to this system, the nose should be as long as possible, as this is a sign of merit, power, and genius. Example: Napoleon and Cæsar, both of whom had large noses.
A straight nose denotes a just, serious, fine, judicious and energetic mind; the Roman nose, a propensity for adventure ; and a wide nose with open nostrils is a mark of great sensuality. A cleft nose shows benevolence ; it was the nose of St. Vincent de Paul.
The curved, fleshy nose is a mark of domination and cruelty. Catherine de Medici and Elizabeth of England had noses of this kind. The curved, thin nose, on the contrary, is a mark of a brilliant mind, but vain and disposed to be ironical. It is the nose of a dreamer, a poet, or a critic. If the line of the nose is re-entrant, that is, if the nose is turned up, it denotes that its owner has a weak mind, sometimes coarse, and generally playful, pleasant, or frolicsome.
A pale nose denotes egotism, envy, heartlessness. The quick, passionate, sanguine man has a strongly colored nose of a uniform shade. With the drinker the shade becomes more pronounced toward the tip.

teel for Heavy Guns.

In a paper on this subject By E. B. Dorsey, C.E., be fore the U. S. Naval Institute, he says:
The Duke of Cambridge, Commander-in-Chief of the British Army, said in the House of Lords, on April 30 1876: "Out of seventy heavy guns employed against the south west of Paris (by the Germans) thirty-six were disabled during the first fortnight of the bombardment by the effect of their own fire." This is strong language from very high authority, and shows that even Krupp's guns may fail when tested by actual service. The preceding also shows the great necessity of investigation before adopting for our guns the treacherous hard steel.
All who have worked large pieces of hard steel have noticed that serious cracks and fractures originate in very slight cuts, nicks, or punctures in the metal; in fact, on this class of metal all such injuries are care
futly avoided, and when they unavoidably occur are if possible, carefully cut out. In working hard steel, in order to prevent the starting of these cracks, no holes are punched unless carefully reamed out afterward, and no edges cut or sheared unless afterward planed Mild steel is not affected in this manner.
In battle, these large guns must receive many dents or cuts from shot from small cannons and machine guns. These injuries may not be sufficiently large to cause direct weakness of the gun, but they are ample to originate the fatal cracks so common and unaccountable in hard steel. The formation of these cracks will be accelerated by the firing of the heavy service or fighting charge of the gun. Of course, if the gun is enirely protected from the fire of small cannon or ma chine guns, this risk will be avoided; but, owing to the reat length of modern guns, it is doubtful if its entire length can be protected from machine gun fire. Before finally adopting this class of metal for our large guns, it would be well to make experiments, to see how guns made from it would act under the same conditions a in battle. They should be subfjected to a severe fire rom small cannon and machine guns, and afterward fired repeatedly with the usual severe fighting charge.
Conclusions.-If it is necessary or desirable to have light guns, these can be made by using many thin hoops, or cylinders, inade of mild steel, building one over the other on the barrel, instead of the thick hoop of hard steel, as called for in the ordnance specifications. The strength and reliability of the gun will in crease for the same weight proportionally as the thickness of the hoops decreases to a practical limit. Al that is necessary is to find out by experiment what is the proper thickness of hoops consistent with weight, strength, and coot. This thickness may be found to ised in' fortifications need not be so light as that bo
use on shipboard. Suppose, for illustration, that in stead of using thick hoops of hard steel, twelve hoops made of mild steel be used, placing one over the other. By putting the proper amount of work on these, the tensile strength can be raised very high without impairing the quality. Moreover, if by any chance one or two of these hoops should break or fail, the remain ing ones will be ample to sustain the strain, as they would always be used with a large factor of safety. A gun, if properly constructed and proportioned, madein this manner, of mild steel, could not fail, even with any reasonable amount of bad treatment. This is a practical application of the old adages: "In union there is strength," and " Not to put all your eggs in one basket."
The
The steel that I advise to be used for making guns is the ordinary mild steel of commerce, made by a great many establishments in the United States in large quantities, and which can be had at any time in any desired quantity. It is now selling at about sixty dollars per ton.
The hard steel called for in the specifications is a special product, not used to any extent in commerce, being too unreliable and expensive for any commercial use. It must be manufactured to order, and owing to great.
By the use of many and thin hoops, or cylinders, of mild steel, properly built up and proportioned, a gun can be made that will be at all times safe, reliable, and unfailing. If hard steel, or steel of high tensile strength, in thick hoops is used, the gun will be more costly, and of greater theoretical strength, but practically much weaker, and will fail when least expected, and without any apparent cause or reason. If it is necessary to have thick hoops, as called for in the ordnance specifications, make them of mild steel, giving the necessary strength by additional material. This may make a heavier gun, but it will always be safe and reliable. Hard steel should not be used until much more is definitely known of the supposed improvement of oil temper on large pieces or masses of metal
or the Ears under Cannon Frring Dr. Samuel Sexton, of this city, says: "It is the experience of many officers that the vibrations of great intensity which are given off from some fleld pieces and bursting shells, charged with high explosives, are more disagreeable than the heavier sounds of great guns. The metal itself vibrates under these circumstances similarly to a tuning fork.
"A very disagreeable jar is imparted to the temporomaxillary articulation when the individual is near a great gun being fired off. This is lessened, it is believed, by standing on the toes and leaning forward. Some simple precaution, to be employed by officers and men during artillery practice, would seem very much needed, since aural shock is not only painful and distressing, but orders cannot be well heard while the confusion lasts.
"There is probably no better protection than a firm wad of cotton wool well advanced into the external auditory canal. In suggesting this protection, it is believed that harm can seldom take place from pressure of air from within, since it is known that the violent introduction of air into the tympanum from the throat, by means of Politzer's method of infiation, seldom ruptures the drum head, though, if such a volume of air were suddenly driven into the external auditory canal, the drum head would in nearly all cases be ruptured."

Hand Fire Grenades.

An analysis of the contents of one of Hayward's hand fire grenades has been communicated to the Chemisch-Technische Zeitung by Herr A. Gawalovski, of Brunn. He finds that it is full of a colorless liquid of sp. gr. 1•1986, neutral to test paper, and giving the following composition on analysis : Chloride of calcium $18 \cdot 329$, chloride of magnesium 5.700 , chloride of sodium $1 \cdot 316$, bromide of potassium $2 \cdot 179$, chloride of barium $0 \cdot 265$, water $72 \cdot 211$, with traces of iron and aluminum chlorides. The flasks have a volume of about 600 cc ., are filled at ordinary atmospheric pressure, and can be made at a very trifing cost. Harden's fire grenade consists of a solution of common salt and salammoniac, and Schonberg's of a solution containing one part soda to three parts common salt. The value of the solutions in these three grenades he estimates at about 3,5 , and 1 pfg. respectively per flask, or in English coinage at one-third, one-half, and one-tenth of a penny.

The Canses of Paper Turning Yellow.

The author contends that the yellowing of paper is due to an oxidation determined by light, and especially by the more refrangible rays. This discoloration is more striking in wood papers than in rag papers. Dry air is another important condition for the proservation of paper. The author thinks that in libraries the electric light is inferior to gas, on account of the large proportion of the more refrangible rays present in the former.-Prof. Wiesner.

A NEW LABORATORY TROMP.
The suction apparatus formerly used in laboratories consisted of a bottle from which water was allowed to flow, and which had the inconvenience of being cumbersome. For obtaining a vacuum, recourse was had to the air pump-a costly apparatus; and for forcing air into the blow pipe, the device used was a bellows operated by foot. All this is now replaced by the suction and force tromp, which merely requires to be connected with the faucet of a water pipe. With this remarkable apparatus, one has nothing to do now but open and regulate two cocks in order to obtain a continuous supply of air under pressure. The apparatus is shown in its entirety at T, in Fig. 1, where are also shown some of its applications. In the first place, it communicates with a safety bottle, F , which is provided above with a valve to prevent the water from entering the vacuum apparatus-an event that would occur should the pressure of the water happen to diminish suddenly in the pipes. R is a board, to which are affixed two glass cocks, form$i_{\text {ng a }}$ a double T. This arrangement permits of obtaining a vacuum in two different directions. \mathbf{M} is a pressure gauge

Fig. 2.-PRINCIPLE OF THE TROMP. that shows the degree of the vacuum produced in the various apparatus. M^{\prime} is a pressure gauge that can be moved from place to place. These two instruments are so constructed that they can be easily filled and cleaned, and their scales are detachable. C is a bell glass with polished edges, and which is provided at the top with a polished glass cock. It rests upon a base which has been polished with emery, and which is cemented to a metallic frame supported by four legs. This bell glass covers a stand upon which capsules or vessels containing extracts may be placed. Under the lower shelf of this stand is placed a vessel containing sulphuric acid. The degree of vacuum is ascertained through a small manometer.
In the foreground may be seen the gas burner that the tromp converts into a blow pipe when air is forced into it. It only remains now to explain the mode of operation of the apparatus. The tromp is based upon the principle of the Giffard injector and was Giffard injector, and was
devised in 1872 by Mr. Lane, a pupil of Deville's. Shortly after that period, the brothers Alvergniat put the first models of the apparatus into the market, and the use of them has now become general in laboratories.
The tromp, which is made of glass, consists of two conical nozzles, A and B, arranged as shown in the diagram in Fig. 2: The water enters through the faucet, R, passes from cone A into cone B, as in the injector, and, on making its exit, carries along with ing its exit, carries along with it the air that it has sucked
in at T. The water that in at T. The water that with air. The suction of the tube, T, is very strong, and, upon putting the tube in communication with a bell glass, it is possible to obtain a maximum vacuum, which varies in winter and summer according to the tension of the aqueous vapor.
The apparatus may be made of metal. Mr. Alvergniat, in his new apparatus, has connected the two cones at G (2, Fig. 2), and left but one aperture, H, or two aptures, as shown in Fig. 3, which represents one of the metallic tromps at $t t^{\prime}$. The tube through which the water flows is prolonged in a metallic cylinder, G. If the lower cock, D^{\prime}, be nearly

LABORATORY TROMP AND OTHER APPARATUS.
risk his money should be shown a reasonable hope for
closed, a certain quantity of waterwill accumulate in the cylinder and compress the air therein, and the latter will escape under pressure, through the cock at the top. It is possible to obtain a pressure of $0: 10 \mathrm{~m}$. of mercury. The discharge of compressed air is regulated through the cock, D^{\prime}.
This exceedingly practical apparatus is destined to render valuable services to physiologists, botanists, and all laboratories of science.-La Nature.

Capitalists and Inventors.

Inventors often complain of the difficulty experienced in inducing capitalists to join them in their enterprises. No doubt there is often good ground for such complaint. Not infrequently, however, we think the blame rests as much with the inventor as with the man of money. It must be remembered that usually the inventor studies the field more closely than the capitalist, because he has more time, and his attention is more closely directed to the investigation. It can hardly be expected that the man who devotes one hour to a superficial investigation of the subject can explore it so deeply and satisfactorily as the one who has given to it months and perhaps years. The capitalist is often blamed for not seeing into the ad vantages of an enterprise, when the fact is it has never been presented to him in the right light. Some one makes an important discovery, which, if utilized, will seemingly yield large results. Capital is invoked, but no systematic method is employed to demonstrate that the returns for an investment in working this new field of discovery will yield profitable results. Inventors too often think that capitalists should take their simple assertion that the invention will yield large returns. This would be very well if inventors as a class were not over-sanguine, and their predictions in a business way did not so frequently prove futile.

Every investor has a right to have some reasonable assurance that his money will be spent in a profitable direction. Money is the great lever that moves the world. If judiciously employed, it is a source of great gain; if wrongly employed, it too often becomes powerless for good. Every man, therefore, who would seek the aid of capital in furthering his plans for introducing an invention should first be prepared to show the whole state of the art covered by such invention, and wherein the improvement exists. Second, he should, if possible, show what particular market needs to be supplied with such improvement, and something approximating to the returns which reasonably may be expected. Third, he should have some well settled plan of introducing the new product or furthering the new scheme. Fourth, it should be supported by well considered arguments tending to the convincing of the men whose money will be embarked in the enterprise. Because, however sanguine
 btaining fair ret is measurably safe
The general denouncement of capitalists for their proverbial slowness in coming to the rescue of inventors is too often ill timed. There are millions of dollars to-day invested in experimental plants and in promoting new discoveries. We are glad to. say that in the majority of cases these investments have proved very lucrative. Probably no field of enterprise offers more allurement than this, and if capital is not always secured, it does not follow that the man with the money is to blame. Inventors must employ business methods when ap-

Fig. 3.- SECTIT ON OF THE APPARATUS. proaching business men. If they are not capable of doing this, let them employ a third party, who, in many cases, furnishes the missing link between the patent and the bank account.
There are without doubt thousands of patents which have never been introduced to the public, which would yield very large fortunes to any one who would take them up and work them properly. : Whose fault is it ? Probably not the capitalists, for they are, generally speaking, only too glad to find a good way to invest their funds. The blame, if any, rests upon the inventor, who, in many instances, places so high a value on : his invention that capitalists cannot afford to assume the risk of introducing the new thing, or because the inventor has not taken the right method or adopted the proper plan of bringing his matters to the attention of the men whose aid he invokes.
Inventors, often, get too easily discouraged. They bring their invention before three or four capitalists, none of whom feels disposed to introduce it, and they immediately give up, blaming the stupidity of capital, and bemoaning their own sad lack of funds. Now, the commercial traveler does not thus easily lie down under difficulties. He moves on from town to town. Each negative answer he gets only urges him forward to the man who he is sure sooner or later will be found to say yes. If the inventor had more of the commercial instinct, more of the commercial man's persistency and push, more of his indomitable will and pluck, he would succeed. There is far less trouble pluck, he would succeed. There is far less trouble
with capitalists than with inventors themselves. It really seems as though in most cases a "go-between" were absolutely necessary. When the inventor himself fails of eliciting help, the best thing he cán do is to obtain the services of some keen, shrewd, far-seeing business man to help him out of his difficulty. If his invention is worth pushing, nine cases out of ten there will be little trouble in procuring financial help if the proper methods be employed.-The Industrial. World.

Nickel Bromide,

Nickel bromide has' been employed medicinally as a hypnotic and a sedative. According to Mr. A. Drew (Amer. Jour. Pharm.), it may be prepared conveniently by treating granulated nickel treating granulated nickel
with bromine under water, with bromine under water,
and carefully evaporating the dark green solution, when the salt is obtained in deep green deliquescent crystals, freely soluble in water but much less soluble in alcohol. The less soluble in alcohol. The
salt is conveniently adminissalt is conveniently adminis-
tered in the form of a sirup, which may be prepared by placing 377 grains of bromine and 137 grains of nickel in a flask containing 12 ounces of water, digesting at a gentle heat until the reaction has ceased, filtering, and then ceased, fing 24 ounces of sugar and adding 24 ounces of sugar and
sufficient water to make $\mathbf{3 2}$ sufficient water to make
fluid ounces. The sirup, which is of a beautiful green color, contains in each fluid drachm 5 grains of crystallized nickel bromide, which is an average dose.

REIN PROTECTOR.

This device is attached to the dashboard of the vehicle, and is intended to inclose the reins, so as to pre vent the horse from getting them under its tail. To the bottom bar of the skeleton frame are secured elliptical rings, the upper sides of which are split and separated a sufficient distance to admit of readily placing the reins within and removing them from the rings. To the tops of the rings, on opposite sides of the slits, are secured bars. Secured at right angles to on end of the lower bar are two rods, placed a suitable dis tance apart to receive the dashboard between them These bars are held to the dashboard by U-shaped

LEITH'S REIN PROTECTOR.
clips, as shown in the engraving. The horizontal part of the protector-that stretching in front toward the horse-has a maximum length of fifteen inches, and is raised sufficiently to have the reins at least six inches above their ordinary height. The protector may be applied to either side of the vehicle, and it is evident that when the reins are placed in the rings they will be protected against interference of the horse's tail.
This invention has been patented by the Rev. David Leith, of Trenton, Tenn.

RAFTING BOOM PNN.

This boom pin is designed to be used in connection with a link or other coupling for forming rafts and booms in rivers for retaining floating logs, etc. The pins are used in pairs, united by a coupling consisting of two united twisted links placed one upon each pin as shown in the lower left hand corner of the engraving. The pins are preferably made of iron or steel, blunt at one end and formed with a square head at the other end. The edges of the head are slightly rounded, in order to lessen the tendency to gouge into the logway and bend the pin. Upon each pin, near the blunt end, is formed a spiral flange, which engages with the wood of the timber in which it is inserted

BUISSON'S RAFTING BOOM PIN.
The spiral is of very steep pitch, in order to leave a portion of the body of the pin between the coils, and its lower end is beveled to a point and terminates flush with the surface of the pin just above the end. In applying these pins a hole is bored in the two sticks of timber to be united, the holes being slightly longer than the body of the pin. The pins are then screwed down by a key or wrench applied to the heads. The spirals enter the wood, and securely hold the pins to the timber.

This invention has been patented by Mr. Cyprian Buisson, of Wabasha, Minn.

On the Absorption and Elimination of Mercury in the Human Organism.
Dr. Welander has made a series of experiments to de termine how mercury is absorbed by and eliminated from the body. To the urine is added liquor sodæ and a little honey, and the mixture boiled for a quarter of an hour in a retort. Then the liquid is poured out into a glass, where it is left until complete precipitation has taken place. Next, the fluid is poured off; and the precipitate is placed in a glass retort. A little hydrochloric acid is added, and a piece of copper wire, three centi meters long and half a millimeter thick, which has just been heated to a red glowing heat, is placed in the re tort. - The fluid is now heated to the boiling point, and the opening of the retort closed with a cork, after which the retort is placed in an oven at a temperature between 95° and $149^{\circ} \mathrm{F}$., and left there for thirty-six or forty-eight hours. At the end of that time the wire is taken out, dried, and placed in a thin glass tube, the opening of which is closed by melting. That part of the tube which contains the wire is heated over a very weak flame of an alcohol lamp. In consequence of this procedure, the mercury is sublimated, and deposited as small metallic globlues in the upper part of the tube.
The presence of iodine salts prevents the precipi tation, and they must, therefore, be removed from the urine if it contains any. The best way of doing this is to collect the precipitate formed after the first boiling on \& filter, and pour a little water on it once or twice We must not take too much water, because the mercury is soluble in water.
The test described is so fine that mercury has been found in a solution of corrosive sublimate of 1 in $10,000,000$.
The experimenter must make sure that his reagents do not contain any mercury, which is often the case with hydrochloric acid.
Sometimes the globules of mercury are visible to the naked eye, but the safest way of examining them is by means of the microscope.
When mercury is given by the mouth, it appears, a a rule, in the urine one or two days later. Administered through the anus, it was already found the following day. When applied through the skin, it appeared like wise, as a rule, on the following day in the urine.
Mercury is rapidly absorbed by wounds and ulcers. Injected under the skin, mercury is very rapidly ab orbed, and appears often in the urine as early as on or two hours after the injection.
Mercury is constantly eliminated with the urine; a very great part, and perhaps the greater part, of what has been introduced into the body leaves it in that way.
The salivary glands play quite a secondary role in this respect.
The fæces, on the other hand, contain constantly mercury, and often in considerable quantity.
Mercury is likewise eliminated with the milk, and was found in the urine of the nursling.
The elimination takes place in proportion to the amount introduced.
Welander discredits the statement of Paschkis and Vajda that mercury may remain for twelve or thirteen years in the body. He has, as a rule, found it four or six months after the end of the treatment; frequently it is found from six to twelve months, and sometimes even more than a year, after the treatment has been discontinued.
Welander thinks mercury circulatesin a soluble form with the blood. He found it in abundance in this fluid in every case examined. He found it likewise in pus taken from patients treated with mercury, and in as citic fluid.
The conclusion to be drawn for practice from these experiments is that when a rapid and powerful effect is aimed at, the administration of mercury by hypoder mic injections is preferable, while for the intermitten treatment of Fournier the mereurial pills will do a well.-Dr. Edward Welander, Abst. 'fr. Nordiskt Med iciniskt Arkiv, xviii., No. 2, 1886.

Defense of New York within Thirty Days.

Captain Ericsson, of Monitor fame, writes as follows to the New York Herald:
I have read with much attention the editorial para graphs published in several journals relating to the Destroyer and its submarine gun, and beg to state for the information of all concerned that the Destroyer system so completely solves the problem of applying submarine artillery for defending harbors that I have had no occasion to waste time on the consideration of any other method. Moreover, the extraordinary caliber of the submarine gun employed in the Destroyer, viz., 16 inches, has presented no practical difficulties, and has not failed in a single instance during a long series of trials to expel the submarine projectile with a veocity exceeding 300 feet in three seconds.
It should be mentioned that this projectile is 25 feet long and carries 300 pounds of guncotton, a charge sufficient to shatter the hull of ironclad ships of all classe so completely that the boasted "water-tight compartments". will prove of no avail in preventing destruction and sinking.

binding file.

The accompanying engraving represents an improved binding file, which is the invention of Mr. James W. Dickieson, of 17 and 19 Rose Street, New York city. Near one end of the bottom cover are two uprightrods, pointed on their upper ends. To the upper surface of the top cover is fastened a guide frame formed with apertures fitting over similar ones in the cover. In a recess in the guide frame are placed two bars, held at one end by a kearing in the frame, the other end being supported by a pin. Through the middle of the guide frame passes a screw, which is pointed at its lower end. The sectional view, Fig. 2, clearly shows the arrangement of these parts.
In order to place additional documents on the file, or

DICKIESONS' BINDING FILE.
to remove those already on, it is necessary to remove the top cover. The documents are placed over the pointed uprights and pressed downward in the usual way, when the top cover is placed on the rods and moved down until it rests on the papers. The thumbscrew is then screwed down so that its pointed end forces the bars outward until they press against the prights, and thereby lock the top cover in place. When the thumbscrew is turned in the opposite direc tion, the bars are released from the uprights. The cover and any of the documents can then be removed, the thumbscrew serving as a handle.

CHILD'S TRAY.

In this tray provision is made for holding a plate in a protected position, and also for receiving a drinking vessel, while any liquid spilled upon the tray will find its way to an under or subsidiary tray. In the bottom of the main tray is a large circular opening, the edge of which is struck up to form a convex or embossed sur face. The purpose of this opening is to expose the reeiving surface of a plate placed upon the under tray and held firmly by the inwardly curved edge of the opening which bears upon it, as shown in the lower ectional view. The convexed surface accommodates the flaring sides of the plate, and serves as an ad ditional stay therefor. Toward the upper right hand corner of the tray is an opening to receive a glass, and

COUSINS CHILD'S TRAY.
at intervals in the bottom are cut drain apertures, through which any spilled liquid will flow to the subsidiary tray, which is of the usual construction and in which the main tray rests. In such a tray the child has easy access to the contents of the plate, but cannot remove the plate itself, and the glass is so held that it is not liable to be overturned.
This invention has been patented by Mr. Thomas Cousins, of Norwalk, Conn.

Left-Handedness.

Dr. Daniel Wilson, president of the Royal Society of Canada, has lately contributed a paper to the Proceedings of that society on the subject of left-handedness, to which he has managed to give an unexpected and very practical interest, affecting all who have children or who are concerned in their education. The author had written previously on this subject, but not with such full and effective treatment. He reviews the vari ous causes to which the general preference of the right hand has been ascribed, and also those to which the occasional cases of left-handedness are attributed, and finds them mostly unsatisfactory. He shows clearly that the preferential use of the right hand is not to be ascribed entirely to early training. On the contrary, in many instances whereparents have tied up the left hand of a child to overcome the persistent preference for its use, the attempt has proved futile. He concludes that the general practice is probably due to the superior development of the left lobe of the brain, which, as i well known, is connected with the right side of the body This.view, as he shows, was originally suggested by the eminent anatomist, Professor Gratiolet. The author adopts and maintains it with much force, and adds the correlative view that "left-handedness is due to an ex ceptional development of the right hemisphere of the brain.'
A careful review of the evidence gives strong reason or believing that what is now the cause of the prefer ence for the right hand was originally an effect. Neither the apes nor any others of the lower animals show a similar inclination for the special use of the righ limbs. It is a purely human attribute, and probably rose gradually from the use, by the earliest races o men, of the right arm in fighting, while the left arm wa reserved to cover the left side of the body, wher wounds, as their experience showed, were most danger ous. Those who neglected this precaution would be mostly likely to be killed ; and hence, in the lapse of time, the natural survival would make the human race in general,, " right-handed," with occasional reversions, of course, by "atavism," to the left-handed or, mor properly, the ambidexterous condition. The more fre quent and energetic use of the right limbs would, of course, react upon the brain, and bring about the ex cessive development of the left lobe, such as now gene rally obtains.
The conclusions from this course of reasoning are very important. Through the effect of the irregula and abnormal development which has descended to us rom our bellicose ancestors, one lobe of our brains and ne side of our bodies are left in a neglected and weak ened condition. The evidence which Dr. Wilson pro duces of the injury resulting from this cause is very triking. In the majority of cases the defect, though it cannot be wholly overcome, may be in great part cured by early training, which will strengthen at once both the body and the mind. "Whenever," he writes, "the early and persistent cultivation of the full use of both hands has been accomplished, the result is greater officiency, without any corresponding awkwardness odefect. In certain arts and professions, both hands are necessarily called into play. The skillful surgeon finds an enormous advantage in being able to transfer his in strument from one hand to the other. The dentist has to multiply instruments to make up for the lack of such acquired power. The fencer.who can transfer his weapon to the left hand places his adversary at a dis advantage. The lumberer finds it indispensable, in the operations of his woodcraft, to learn to chop timber right and left handed; and the carpenter may be fre quently seen using the saw and hammer in either hand, and thereby not only resting his arm, but greatly facilitating his work. In all the fine arts the mastery of both hands is advantageous. The sculptor, the carver, the draughtsman, the engraver, and cameo cutter each has recourse at times to the leit hand for special manipulative dexterity; the pianist depends little less on the left hand than. on the right; and as for the organist, with the numerous pedals and stops of the modern grand organ, a quadrumanous musician would still find reason to envy the ampler scope which Briareus could command."
That all this is true is abundantly shown by the num orous examples cited by the author, from the greates of artists, the left-handed Lionardo da Vinci, to the distinguished ex-president of the American scientific association, Prof. Edward F. Morse, and (we may add) to Dr. Wilson himself, both of whom are known to be accomplished draughtsmen with this too-neglected hand. In view of these facts, it is evident that few more important subjects can be offered for the consideration of educators than that which is presented in this impressive essay.-Science.

Thirty-three Years Ago

Mr. James P. Slater, of Baxley, Ga., in a letter re erring to some patent business recently transacted or him through this office, adds as follows:
"Accept.my thanks for the prompt manner you have done my business. You are the same old Munn.\&.Co you were in 1854, when you obtained a patent for me on circular saws."

PISTON HEAD FOR sTEAM ENGINES.

Two split metal packing rings are placed upon the body of the piston, which has a flange at one side of less diameter than the cylinder. Upon the other side of the piston an annular disk, Fig. 1, is held by bolts. The disk is of the same diameter as the flange, and the adjacent faces of both are faced off to form flat and true seats for the outer edges of the two packing rings. The body of the piston, between the screw-threaded openings, is recessed to reduce its weight, and opposite ach opening a projection or lug is formed to strengthen the body at the points where the bolts enter it, while between these lugs the metal is removed to still further essen the weight. The packing rings are duplicates of each other, each being split diagonally, and are constructed to form a recess in their outer edges, opposite the openings, to receive small blocks, shown in the per pective view, Fig. 2, which serve as steam checks, to prevent steam from entering the piston head at the openings. Each steam check is held in place by a small ip, which enters a corresponding depression formed in the side recess of each ring. Upon the inner surfaces of the rings are formed lugs, and a circular spring, fitted within each ring, acts to expand it. The springs are endless, and are corrugated in such a way as to bear upon both the lugs and inner surface of the rings between the lugs, so that they may be readily introduced, and so that their outward pressure will be equal at all parts of the rings. Between the two rings is placed a

MeCART'S PISTON HEAD FOR STEAM ENGINES.
corrugated spring, the waves of which form opposite small curved springs, which are compressed when the bolts of the disk are screwed down, so that they act constantly to spread the rings apart, and thus force their outer flat surfaces against the flat seats of the lange and disk to form steam-tight joints that prevent the steam from entering the piston head between the rings and their confining surfaces. The adjacent sur aces of the rings are slightly cut away, to form a space for the interposed spring, and to form outer surroundng lips to confine the spring.
This invention has been patented by Mr. John McCart, of 204 East 21 st Street, New York city.

An Improved System of Gas Lighting.

There was recently shown at the Marlborough Pic ture Gallery, Pall Mall, London, an interesting system of gas lighting, the invention of Dr. Carl Auer von Welsbach, of Vienna. This system produces a pure, steady, and brilliant light, which is perfectly smokeless, and has comparatively little heating effect on the at mosphere. The system might be described, in fact, as partaking of the character of a new form of gas burner, called the Welsbach lainp, which can be screwed on to all ordinary gas fittings. There is placed within the gas flame-of special form of atmospheric or Bunsen burner-a mantle or hood of cotton net or webbing that has been previously steeped in a solution containing oxides of the elements zirconium, lanthanum, and some other bodies. The moment that, a prepared man tle is ignited it burns away with the smoky flame characteristic of burning cotton, but it leaves behind t a residual skeleton composed of the incombustible oxides contained in the impregnating solution; and this skeleton, while preserving its woven or reticulated character, becomes, under the influence of the Bunsen brilliant light, resembling somewhat that of an incandescent electric lamp.
It is stated that the mantles so employed last from 800 to 2,000 hours, and they, of course, can be renewed Further, it is claimed on behalf of this system that it effects a saving in the gas consumed. It is represented that while a standard Argand gas burner, consuming ive feet of gas an hour, gives an illumination equal to 16 standard candles, or $3 \cdot 2$ candles per cubic foot of gas an hour, the Welsbach burner produces a purer light of 20 candles with $21 / 2$ feet of gas per hour, showing an effliciency of 8 candles for each cubic foot of gas con
sumed. As the gas consumed is employed solely to heat the light-giving mantle, it noed possess no anturn
inating property in itself, and therefore gas of poor illuminating quality may be employed under the Welsbach system, with a corresponding saving of cost. The Marlborough Picture Gallery was lighted by 56 Welsbach lamps attached to brackets arranged along a central pipe running from end to end of the gallery.

Hints on Building.

Put up the frame and get a roof over it as soon as nay be, say in May or earlier. Then let it stand until the first of September to season. This is the old fashioned way, and it has advantages which those who have had experience with shrinking timber will not be slow to appreciate. In this part of the country the timber for a frame is always green when it is put up. Indeed, hemlock could not be worked very well dry. It is wuch better to have the shrinkage done before the inside finish is on than after.
All floors should be double. A layer of sheathing paper between them would not be a bad idea, and would pay for itself. The upper floor ought to go down after the mason work is done. A smooth, nice floor is a great preserver of carpets.
Back of the wash boards the space should be filled in with bricks. The ends of the floor timbers ought to be filled in such a way as to prevent rats and mice from having a free passage. Such a filling greatly diminishes the danger from fire
Do not let the tinman or the contractor persaade you that the gutters should be left until red with rust before they are painted. It is a plan which is designed to benefit them exclusively. The paint goes on more easily after the red rust begins. The tin, however, has begun its own destruction, and will go on rusting under the paint just as steadily as though it had no protection, though perhaps not quite so fast. Tin roofs should not be allowed to get red. They can be cleaned and painted on one side in the shop. The objection to this is that the resin or acid (none of the latter should be used) needs to be cleaned off by the rains, so that the paint will stick. The best plan is to have the cleaning done at once, without waiting for the rain.
All piping should be put into the house while it is in the frame. This saves expense and much qutting of woodwork. Alongside each chimney it is a good plan to have a space extending from floor to floor in which pipes can be run if desired. The chimney breasts and the spaces which they cover ought to be plastered on wire lath, for safety, and thus avoid shrinkage.

Have a spare flue in each chimney, to be used for ventilation. The open fireplace, as a ventilator, however, is a delusion. Make openings into the flue at the base board, and by proper management of doors and windows, perfectly pure air can be secured in every room.
Heat by a big hot air furnace several sizes larger than the furnace makers recommend. This furnishes the means for perfect ventilation, by providing an ample supply of warm, pure air. Keep the pipes and registers perfectly clean, or the smell of cooked dust will be mistaken for that bugaboo "burnt air."
In plastering do not use a "brown coat" of mortar. Put the finish directly on the "scratch coat." Time, labor, and patience will be saved, and the work will be better, harder, and more durable. Build the foundations for the piers, in the cellar, with as much care and deeper than those of the external walls. These piers support the center of the. house, and they are frequently neglected. The result is a great crop of cracks in the plaster.
Have the walls of the upper floor 9 feet high in the clear, even if you have to cut off six inches from the floor below. This is of course for a moderate size of house. High ceilings for sleeping rooms tend toward giving the sleepers purer air by furnishing greater space. When one is drawing plans, it is best to con sult with a carpenter and see whether the framing will come out even multiples of commercial lengths. It is sometimes cheaper to use the full lengths of the timber than to cut off six inches from the ends. Increasing the size of a house six or eight inches may frequently be done without any appreciable addition to the cost.
In designing, get the inside arrangement right. Have places for every piece of furniture. Arrange
the bedrooms so that they will contain beds without putting them against doors or windows. Put them against inside walls if possible. Have some connecting rooms and some which do not. After all this is done, put the outside on. Let doors and windows come where they will, and do not spoil your own comfort for the sake of an external appearance which is for the benefit of your neighbors.
Lastly, have a garret by building a sharp roof. Cover the roof with dark colored slate from Maine or Vermont. Lay it in cement, and be happy.
Moral: Alterations on paper cost much less than those in wood and stone. Therefore it is better to spend a long timeover the plans than to make changes on which the builder charges his own price-The Mechanical DTews:

©orrespondence.

Chemical Fire Extinguishors for C To the Editor of the Scientific American:

If the hand grenade fire extinguishers possess the real value and merits claimed for them, it seems to me that a number of these grenades, so arranged in proximity to each stove that in case of an accident they would break by the shock, would at once prevent or extinguish any possible fire. Nearly all steamboats are provided with such hand fire grenades, you find them in nearly all public and in a great many private buildings, but I do not remember ever having seen any of them carried as part of the equipment of a railroad car.
Possibly some different or better form than that of the hand grenade might have to be devised for a reservoir to contain the chemical liquids, and of such construction as would be specially adapted to the wants of the case in a railroad car
Bushberg, Mo., February 7, 1887.
G. E. Meissner.

Black Heterodon, or Hog-nose Snake.
the Editor of the Scientific Ainerican
In your issue of February 5, 1887, E. R. of Williamsport, Pa., describes a serpent which he considers "an other poisonous snake of Pennsylvania." His descrip tion, however, proves beyond a doubt that it is neither new to science nor in the least degree venomous. He describes plainly the black Heterodon; or hog-nose snake. In 1743, Mark Catesby gave it the name of Vipera nigra (black viper). He represents it in plate 44, armed with fangs, and says it is venomous (because he was so informed). Dr. Harlan of Philadelphia found it in eastern Pennsylvania previous to the year 1835. He considered it a new species, and gave it the name Coluber thraso (braggart snake), and classed it with the harmless serpents. Prof. Baird found it near Carlisle, Pa., many years ago, and describes it under the name of Heterodon niger, black viper ; spreading adder; non-venomous.
The posterior maxillary teeth of these snakes (Heterodon) are larger than the anterior, fang-like, and separated from the others by an interspace. There are no poison glands attached to these teeth, as in the rattlesnake and copperhead, consequently they are harmless. "The horn attached to the nose," as deseribed by E. R., is simply a prominent, broad, and turned up rostral plate.
There is no snake found here " with a head like an eels." The head of an eel is covered with an apparently smooth skin, not with regular plates as in al true serpents.
C. Few Seiss.

The Ohtcago Fire. Boat Geyser.

To the Editor of the Scientific American:
The fire steamer Geyser, which is owned by the City Fire Department of Chicago, was builtat Chicago in 1886. The vessel is constructed of wood, having a ength over all of 105 feet, a breadth of beam of 24 fee and 6 inches, and is of $71 \cdot 60$ tons burden.
To an admirer of fine lines, the portion of the body above the water line might seem to be deficient in gracefulness; but on close inspection of all the deck appointments one cannot help realizing that it is perfectly adapted to the purpose for which it wasdesigned, and hence must be admired. The lines ander the water, however, are very fine and carry the vessel with perfect ease and grace, the boat recently running to fire through twelve inches of solid ice without once topping.
The deck house is separated by partitions into four principal divisions, as follows: First, the wheel house and pilot's cabin, which are finely fitted up, and contain, besides the steering apparatus, two bed lounges and other furniture for the comfort of its occupants. The heating apparatus for this cabin is a novel and efficient one to the last degree, being simply a boxed register set into the forward end of the boiler jacket, this being made possible by the proximity of the boiler room, which adjoins the cabin.
The engine room forms the third division, and immediately in the rear of this lies the officers' cabin, which is heated by steam and compares favorably with the cabins of many of the finest private yachts. To an engineer, however, the real beauty of the vessel is concentrated in the engine room. Here indeed we find the perfection of engineering skill. The two high pressure engines have a piston stroke of 20 inches, the diameter of the cylinders being 18 inches, with 446 indicated horse power. These engines, which were designed and built by Chas. F. Elmer, are models of perfection in every respect, being supplied with steam reversing gear of most perfect action, which allows a cut-off at any point, and is instantaneous and sure in response to the simple reversing lever. The faultless working of the engines is shown by the fact that the boat when running at a rate of twelve miles an hour can be reversed and started back within a space of twenty feet, or less than one-fifth of the length of the vessel. The engines are coupled directly to
buieket sectional wheel, eight feet in diameter.

Water for fire purposes is supplied by two double steam pumps, built by Clapp \& Son. The steam cylinders of these pumps have a 17 inch bore and 10 inch stroke; the water cylinders having a bore of 9 inches with a 10 inch stroke, the pumps being vertical. The water is received through two 12 inch seacocks, one on each side of the boat, the cocks being so arranged that either or both may be used to supply either set of pumps. There are fourteen $31 / 2$ inch discharge gates. The pumps are capable of throwing eight two-inch streams 249 feet; but the greatest effect is produced from a stand pipe from which a four-inch tream is thrown 425 feet with sufficient force to splinter boards and even large timbers as though they were eggshells. Both engines and pumps are as near perection in every respect as it was possible to make them, even being fed with oil by automatic oil pumps, thus dispensing with oil cans and their attendant bother and dirt. Steam is supplied by a single steel boiler 16 feet in length, 11 feet and 4 inches in diameter, with 4 flues 3 feet in diameter and three-eighths inch in thickness, built by John Mohr \& Son, and is allowed to carry a pressure of 100 pounds per square inch.
The boiler plate is 0.62 inch in thickness, tensile strength 55,000 pounds, ductility $54 \cdot 67$. The grate surace is 84 square feet, and the heating surface is 2,780 square feet. The boiler is fed by both inspirator and pony pumps. In the forward part of the boat is a water tank holding 587 gallons, for use when clean water cannot be obtained through the sea-cocks, and is supplied with water from the city hydrants. On deck at the stern of the vessel are two hose carts, carry meter, which can be run to any part of the deck.
With a steam pressure of 95 pounds, the engines make 150 revolutions and give a speed of between 17 and 18 miles an hour. The boat is supplied with both hime and modoc whistles, the latter being, used as a ire whistle. There are sleeping accommodations on board.for four officers and eight men, who comprise the rew and fire company. The Geyser is commanded by Capt. Wm. A. Cowan, a man of acknowledged ability, and is certainly a great credit to the Chicago Fire Department, and will undoubtedly render efficient ervice.
A. T. FAy.

Chicago, January 27, 1887.

India Paper.

The tenuity, softness, and strength of the paper manufactured in China have sometimes given it the name of silk paper. Many persons, deceived by the appearance or the name, really think the paper is made of silk; but a careful examination shows that it is of vegetable origin.
It was toward the end of the first century of our era that a mandarin of the palace-a distinguished physi-cist-discovered the secret of reducing the bark of a ew trees, as well as old fabrics, into a very fine pulp, by boiling them in water. Out of this pulp he inade arious kinds of paper.
At present, $c h i$, which is the Chinese name for paper s made of various materials. It is made of hemp, of the bark of the mulberry and several other plants, especially the bamboo, of the bark of the cotton plant, of rice and wheat straw, and of the membrane found in the cocoons of silkworms.
Sometimes the substance is wholly bamboo. In this ase it is taken from the largest canes, the shoots of the preceding year. After taking off the green epidermis of these, they are split into straight pieces six or seven feet long, which are allowed to set for a fort night in a muddy pond. They are afterward washed
in clean water and spread out in a dry ditch. Then in clean water and spread out in a dry ditch. Then
they are reduced to a harl, which, after being bleached and dried in the sun, is thrown into large boilers, and after being boiled therein is pounded in mortars until it is reduced to a fluid pulp. To this pulp is added a definite proportion of a gum that the Chinese extract through maceration, from a plant that produces long and little shoots, and the epidermis of which is smooth and is known in China under the name of hotong.
The mixing is done in reservoirs three or four feet in depth, from which the workmen dip up the pulp with their forms. These latter are made of bamboo threads drawn as fine as brass wire, by means of a steel draw plate, and then boiled in oil until they are well im pregnated with it, in order that they may not be affected by humidity.
It is said that the Chinese make paper that is some times sixty feet in length. It is probable that they form this of many pieces, which they skillfully unite at the moment of depositing the sheets. On coming from the form, the sheet of paper is spread upon a wall covered with a very smooth cement, and which is hollow, and heated through a furnace. The paper is applied to the wall by means of a brush in the shape of a feather This explains the strim that we observe on the back of the paper, while the side that has been in contact with the wall is brilliant and satiny. This mode of drying may contribute to the quality that this paper possesses of receiving impressions.
India paper has a wrong and aright side. The-right
side is smooth and sitky, and looks as if it had been calendered, while the wrong side is rough 'and full of little diagonal strix, due to the friction of the brush above mentioned.
As this paper, because of its fineness, has little resistance, and has not enough body to take an impression, it is pasted upon unsized vellum paper, which serves as a mount, and which frames it, so to speak, through margins whose whiteness brings its color into relief. The pasting requires a peculiar preparation, as follows: In the first place, by means of a scraper, all foreign matters are removed, such as vegetable filaments, hairs, earthy substances, etc. Then the sheets are spread upon a large table and their wrong side is covered with a layer of thin starch or pulp paste. This pasting is done with a fine soft brush or, better yet, with a sponge. In this operation, care has to-be taken to keep the paper from getting torn, and also to prevent inequalities in the paste, which would produce a disagreeable effect when met with behind the clear tones of the proofs; and special care must be taken not to let any paste get on the smooth side, since, in working off, the paper would tear or would take but a very imperfect impression.
The sheets thus pasted are spread upon cords removed as far as possible from a fire, as the latter would cause them to shrivel up. After this they may be kept for many years, either flat or in the form of rolls, but always in a dry place. When it is desired to use them, they are folded into as many divisions as the size requires, and are placed in thirties upon a sheet of glass lying upon a table. On the first sheet are traced the dimensions of the design, and finally the sheets are cut with a very sharp knife guided by an iron ruler.
At present, India paper is cut to exactly the size narked by the boundary lines of the design, while formerly a margin of about three-quarters of an inch was allowed.
Half an hour before they are to be used, these sheets are interposed between the sheets that are to serve as mounts, and that have been wet as for ordinary printing. The dampness of the paper suffices to moisten the paste and give the India paper the suppleness that it requires in order to take an impression.
When the stone is properly inked, the paper is adjusted upon the stone by means of datum marks made with a dry-point. Then the vellum paper is superposed, and through the pressure of the roller the two sheets become united in one.
Before the interposition of the India paper, it should be subjected to anether inspection in order to ascertain whether it has been properly cleaned of foreign substances. Attention should be particularly directed to those parts of the paper that are to receive half-tones. Less attention may be paid to those parts that are to receive the blacks, as here the imperfections of the paper are almost always imperceptible. Even a hole in such parts would pass unnoticed, although, were there a necessity for it, this might be stopped up by interposing between the India and vellum paper a bit of India paper, not cut with the scissors, but torn irregularly, in order that the edges of the piece be not apparent on the proof.
The fineness of India paper, its color (varying from pearly to dirty gray), and the property that it possesses of taking impressions render it very valuable to lithography. This paper softens tones, blends one of them with another, harmonizes clear tones with vigorous effects and tempers their hardness, and thus gives the print an agreeable aspect.-Bull. de l'Imprimerie et de la Librairie.

The wood pulp industry in Norway for the year 1886 shows a very large increase upon the figures of a few years back, albeit prices have ruled very low. The cause for this is attributed not so much to overproduction as to excessive competition among the sellers of this article; and as a great many sales for forward delivery have been booked at extremely low prices (2l. 15s. f. o. b. Hull has in many cases been taken for wood pulp with 50 per cent water), there are no immediate prospects of an improvement. The quantity exported during the year 1886 is about 120,000 tons; in the year 1885 it was 107,651 tons ; 1884, 88,220 tons; 1883, 70,464 tons; 1882, 58,884 tons; 1881, 42,194 tons ; 1880, 26,055 tons. Several of the old works have extended their production during the past year, and several new establishments are in the course of erection, so the production this year may probably be put at 150,000 tons wood pulp with 50 per cent water. There have been four cellulose manufactories at work during the past year. Two for the production of soda cellulose have worked with considerable success; two have produced sulphite cellulose; one of the latter has been burnt down. Nine more manufactories for sulphite cellulose are being built, with a capacity of about 10,000 tons dry cellulose. The greater part of the Norwegian wood pulp is exported to England, France, and Belgium ; in Russia the increase in the duty has stopped business, and the same can almost be said of Germany. America, too, has drawn part of her supply from Norway, but this trade is not expected to continue.

THE EARTHQUAKE IN EUROPE.

Nearly six months have elapsed since the Charleston earthquake. The coast line of the vicinity of the unfortunate city experienced a seismic disturbance unprecedented in intensity as regards that locality. 'l'he wave, starting from a center near the city, extended far and wide, affecting a vast region with shocks of greater

Fig. 1.-Various seismographs.
or less severity and number. As we are going to press, the cable brings the news of a similar disaster that has affected the southern part of France and northern Italy. The Riviera, the great winter resort of the Continent, comprising the banks of the Ligurian Sea and the Gulf of Genoa, has been violently shaken by an earthquake that in its destruction of life, as last reported, far surpasses the Charleston one, and which will take its place among the memorable earthquakes of the world.
On February 23, the cities of the Riviera were resting after the carnival, which had terminated the night before. At twenty minutes to six on the morning of that day, a shock was felt at Geneva; next Turin, Milan, Bologna, Leghorn, Marseilles, Toulon, and the whole Rivierafelt it. It reached Cannes at 6:05, and Leghorn at $6: 23$. In Nice, sixty buildings were ruined and left tottering, and the tower of the church of st. Augustine was thrown down. The inhabitants left their houses, and numerous camps were established. A patrol of the military was maintained for the preservation of order. The exodus then began, six thousand people leaving the region in one day.
The shock was felt all along the Riviera, Mentone and San

Fig. 2. CONTACT POINT OF
SEISMOGRAPH D. Remo and the other towns bing involved in the catastrophe. The Genoese region was most severely affected. Many hundred deaths are reported from the interior and coast of that district alone. In one village a lơss of three hundred lives is reported. Bajardo and Diana Marino are completely destroyed. Fifteen thousand people left Nice, and twenty thousand Genoa. In Bajardo, Castellano, and Aurigo, the churches were destroyed. Shocks are reported as felt at sea at $6 \mathrm{~A} . \mathrm{M}$. and $8 \mathrm{~A} . \mathrm{M}$. off the coast. At the Vesuvius observatory no shocks were recorded. Several trains with supplies, and carrying soldiers, have been dispatched to the relief of the sufferers in the interior. The total number of deaths so far reported is between one and two thousand. The number, it is to be feared, will be rather increased than diminished by later reports.
Going inland, the shocks extended east and north as far as Parma and Turin. To the south the effects were felt on the island of Sicily, Catania, at the foot of Mount Etna, being disturbed. Damage is report ed in the Basses Alpes and Department of the Var.
In \cdot Washington, D. C., which is provided with a seismoscope, set up in the physical laboratory of the United States Signal Office, a dis turbance was noted at 7:33 A.M. on February 23. From this observation a calculation of the velocity of transmission of the earthquake wave will be calculated. It repre sents nearly 600 miles per hour.
Although the United States have felt comparatively safe from these visitations, the last year has shown that we can no.longer boast of our immunity. The extinct volcanoes of the Auvergne in France, and the active volcanoes of Italy and Sicily to a certain extent, menaced th security of the region now shaken. Yet no one anticipated such a ca lamity, and the future prosperity of the Riviera, so largely dependent n its winter visitors, has probably received a severe blow.

New York city has no seismograph, so no record is vailable for its share in the effects of the wave of transmission. This earthquake and the recent American ones will, we doubt not, lead to the establishment of one here in connection with the signal service.
To show what is done abroad in this direction, we illustrate one of the great earthquake stations of the world, and its apparatus, the Vesuvius observatory. It is erected on the side of the mountain, overlooking the beautiful Bay of Naples. The lower floor of the building contains a number of seismographs, some of the simplest construction, and others more complicated, involving registering apparatus. Several are shown in Fig. 1.
The apparatus marked A is of the simplest kind. It is a needle of steel held firmly in a vise, and its period of oscillation is adjusted by a weight that can be set at different heights. It is, though simple, extremely sensitive. B and C are intended to work electrical registering apparatus. They have contact points, that are held over mercury in cups, and kept just out of contact with it. On being vertically agitated, the points dip into the mercury, thereby closing a galvanic circuit and operating registering apparatus. B is intended for weak, and C for strong shocks. D shows an apparatus for indicating horizontal shocks. A pendulum terminating in a platinum point hangs within a glass case. The point lies within an annular trough filled with mercury, shown on a larger scale in Fig. 2 at E. The least horizontal movement causes the pendulum to swing so as to immerse the point in the mercury, closing an electric circuit and effecting the registration.
To produce the registration, an apparatus shown in Fig. 3 is used, comprising two clocks and recording

Fig. 3.-REGISTERING APPARATUS.
mechanism. The one marked A runs continuously. The clock B is held arrested, and only starts when a current due to the movements of the vertical or horizontal movement seismograph passes through either the electro-magnet $m m$ or $n n$. Such a current attracts the armature of the magnet, starts the clock into motion, and rings an alarm bell, thereby causing the recording tape to be unrolled. We may assume the magnet, $m m$, to be connected with the apparatus for register ing verticalmovements. Its armature carries a pencil of definite color that marks the tape as long as the disturbance continues. The other magnet, $n n$, whose armature is provided with a pencil of different color, acts in the same way for horizontal shocks.
For undulatory movements, the apparatus illustrat-

THE VESUVIUS OBSERVATORY.
ed in the next cut, Fig. 4, is used. A series of U tubes one of which is shown on a larger scale in Fig. 5, containing mercury are held in a frame, some lying in the meridian and others across it. By contact points the least disturbance causes a current to flow to the regis tering apparatus. Each tube is provided with a float

Fig. 4.-APPARATUS FOR UNDULATORY MOVEMENTS.
from which a cocoon fiber runs up and over a pulley and carries a weight at its end. This moves an indes attached to the axis of the pulley, and thus shows the extent of the wave movement
It is with such instruments as these that the move ments of earthquakes are recorded. In the inter ests of science, it is to be regretted that more such sta tions do not exist. For some days before the earth quake in Ischia in 1883, the apparatus in the Vesuvius observatory was continually excited, but owing to ou imperfect knowledge no prediction was possible. The establishment of more such stations may lead to the possibility of predicting these disasters.
On the same day that brought the cable accounts of the disaster, a full account was received of the great eruption of Mauna Loa, in Hawaii. This occurred last January, and was of great interest, and was accompanied with Fig. 5.-T TUBE OF UNDU. heavy earthquakes. If the
 theory of earthquakes ever assumes a tangible shape, some connection between distant disturbances may be traced.*

Famous Earthquakes

The following is a list of the principal earthquakes that have taken place since the tyelfth century, with the casualties caused

Year. Place. Persons killed		
1137-Sicily		15,000
1158-Syria.		20,000
1268-Cilicia		60,000
1456-Naples.		40,000
1531-Lisbon.		30,000
1626-Naples.		70,000
1667-Schmaki.		80,000
1692-Jamaica		3,000
1693-Sicily .		100,000
1703-Aquila, Italy.		5,000
1703-Yeddo, Japan		200,000
1706-The Abruzzi.		15,000
1716-Algiers.		20,000
	1726-Palermo	6,000
	1731-Pekin	100,000
	1746-Lima and Callao..	18,000
	1754-Grand Cairo..	40,000
	1755-Kashan, Persia	40,000
,	1755-Lisbon.	50,000
	1759-Syria	20,000
	1784-Ezinghian, Asia Minor	5,000
\cdots	1797-Country between Santa Feand	
-	Parama.	40,000
	1805-Naples....	6,000
	182-Aleppo............	20,000
	1829-Murcia.......................	6,000
场	1830-Canton.	6,000
	1842-Cape Haytien	4,000
	1857-Calabria.	10,000
	1859-Quito.	5,000
Lmo	1860-Mendoza, South America.....	7,000
	1868--Towns in Peru and Ecuador..	25,000
	1875-San Jose de Cucuta, Colombia	14,000
	1881-Scio..	4,000
	1886-Charleston	

Lubricant.

A mixture of 100 parts of mineral oil, says Dingl. Polyt. Journal, with 25 parts of castor oil, is well mixed with 60 to 70 parts of sulphuric acid, and then worked with 2 or 3 volumes of water. The whole is allowed to stand; the watery layer is then drawn off, and it is then allowed to stand for several days, when it is carefully neutralized with soda or potash. The product is termed "bakusin.'
*For additional illustrations and descriptions of seismographs, see ScIENTIFIC
SUpplevernt, Nos. 455 , 488, and 563.

Dried Sewage.

Many attempts have been made to convert sewage sludge into a marketable manurial article, with greater or less success, among other processes being that of separating the liquid from the solid constituents by filtration under pressure. The most recent system of fluid deprivation, and perhaps the most rational one, having regard to the value of the ultimate product, is that of Mr. Astrop, whose system of converting sewage sludge into dry powdered manure was inspected recently by a party of above 200 gentlemen interested in such matters, who were conveyed by special train to Walthamstow, where the works are situate. The works are situate close to the Walthamstow sewage works and farm, and consist of a timber building two stories building two stories
high. On the ground floor is the driving power, consisting of a 12 horse engine and boiler ; part of the desiccating apparatus is also on this floor, but the treatment of the sewage sludge commences on the upper floor. Here is a tank into which thé sewage sludge is pumped after it has been chemically treated and de prived of its supernatant water by Mr. Jerram's arrangements in the adjacent sewage works. The tank will contain about 400 gallons of sludge, which is fed into the water extracting machine through a 6 inch pipe, and the supply is regulated by a sluice valve.
The machine, which is about 24 feet in length and 8 feet in width, consists first of a large sludge vat, in which are two hollow perforated metal cylinders, 12 inches diameter, and covered with fine wire gauze having 6,400 meshes per square inch. These cylinders revolve against brushes, which keep the meshes of the wire gauze clear. By means of a pump a partial vacuum is created in these cylinders, and the result is that about 60 per cent of the moisture contained in the sludge is extracted at this point. From this tank the sludge is delivered by a sluice valve on to an endless traveling web of wire gauze of the same mesh as that on the cylinders, the web being as wide as the machine-namely, 8 feet. This web is supported by brass rollers placed at intervals, and passes under two rollers and over two of Korting's exhausters, which remove another 10 per cent of the moisture. The sludge has now assumed the consistency of a thick paste, and in this condition it is passed between five pairs of rollers furnished with iron scrapers. From the last pair of rollers the semi dried sludge falls into a hopper, whence it is fed into a disintegrating cage on the lower floor, and in which it is finally disintegrated and dried by a blast of warm air, leaving only about 5 per cent of moisture in it. The solid particles of the sewage now assume the form of a coarse powder, which falls through the wire meshes of the disintegrator on to the head of an Archimedean screw running in a long trough, and by which means the powdered manure is delivered into a pit, whence it is packed in bags for the market. The continuity and efficiency of Mr. Astrop's system were satisfactorily demonstrated to those present, and it was stated that the resulting powder possesses a high manurial value. The process is certainly simple and effective, and if the commercial results of the use of the manure prove successfuland there appears to be no reason why they should not-the process would seem to offer a satisfactory solution of the sewage question undercertain con-ditions.-London Times.

Quince Cider.

A very pleasant beverage can be produced as follows: Take a quantity of ripe quinces, cut into quarters and with the pips, etc., removed. Boil these in a copper with double their weight of water; when boiled to perfect softness, pour the must into a vat.

To this add, for every fifty pints of must, two pounds is almost wholly of wood, the least possible quantity of of sugar and half a pound of yeast, diluted in a suffi- metal being used in its construction. The body rests ciency of hot water. Mix the whole well together, and allow to ferment. Then strain and bottle.

SOME FINE OLD CARRIAGES.

The Cluny Museum of National Antiquities, in Paris, France, contains some fine specimens of the work of
carriage makers of a period dating back at least as far in Berlin fashion on a double perch, between the poles of which are long leathern straps, curling over wheels with great circular plates, all notched and gilded, by which means the straps are tightened or loosened at pleasure. The panels are painted with mythological subjects on an aventurine ground. An extraordinary

ITALIAN STATE CARRIAGE, 1710-1725.
the paintings and the ribbons which adorn the unoccupied space, as well as by the complete framing of the body of the coach, with its windows and doors, in gilded foliage.
Several specimens of the Sedan chair of an early period are to be seen at the Museum, one dating from the period of Louis XV. being represented herewith. It is richly adorned on either side with landscapes on a gold ground, and infront with armorial bearings.
The amount of money lavished on the carriages of the wealthy and high born, in the sixteenth and seventeenth centuries, before

s the commencement of the last century. These old carriages, some of the most noteworthy of which are represented in the accompanying illustrations, are still in a perfect state of preservation, and afford striking evidence of the skill and taste of the artisans of that early period.
The Italian carriage here shown is styled a gala chariot, and is designated by a French artist as a voiture a l'Anglaise. The springs are of English manufacture, having upon them the stamp of a London

FRENCH SEDAN CHAIR, 1700.
maker. The panels are painted with symbolical figures of Literature, Science, and Art. The design and ornamentation are throughout pretty and graceful, but the vehicle has an amount of work put upon every detail which one will look for in vain in the carriage maker's productions of to-day.
In the French state carriage the apparent heaviness of the frame is the most noticeable characteristic. It hich has recently taken place, may prove a death blow to this peculiar industrial art. There is one kind of rug made in Persia which never leaves that country, on account of its great weight and bulk and consequent cost of transportation. This is a kind of carpet felt, called namads. The ground is made first, the design being beaten in with mallets on one surface only. Another rug which rarely reaches Europe is the "ghilleem," made wholly or partly of cotton. The rich colors are imperishable, and the rug can be washed like a piece of calico. The so-called silk rugs are used almost entirely for hangings. They are rare, and of course very costly. One lies before the peacock throne of the Shah.

Natural Histopy Notes.

Chemical Action of Plant Life.-In a recent number of Nature, Prof. Klebs describes an interesting lecture experiment, which illustrates the chemical functions performed by plants. He states that the capability of algæ to render the water in which they live alkaline during the fixation of carbon by them under the influence of light may be easily demonstrated by the addition of a little phenolphthalein solution.
As the fixation proceeds, the water gradually assumes a deep red tinge, which as gradually disappears again when light is excluded. The explanation offered is that the algæ not only take up any free carbonic acid that may be present absorbed in the water, but decotnpose any acid carbonates that may be within reach. In darkness, the reverse takes place.
Preservation of Plants in Alcohol.-Many plants assume a brown color when placed in alcohol for preservation, and to prevent this change Professor De Vries, of Amsterdam, proposes (Nature) to add 2 parts of ordinary hydrochloric acid to every 100 parts of alcohol. Parts of plants brought into this liquid while yet living become absolutely colorless, or nearly so, after the alcohol has been sufficiently often renewed. Such parts as are already brown usually retain their color. By this method colorless specimens may be made of such plants as Orobanche and Monotropa, which, when treated in the ordinary manner, always become of a dark brown tint. There are only some species with coriaceous leaves that cannot be treated with success with the acid alcohol. Colorless specimens of these must be made by plunging them into boiling alcohol. Professor De Vries has found the proportion of acid above stated to be best suited for the purpose, and specimens may remain for months, perhaps forever, in the acid alcohol without injury. The alcohol, after having been used, may be decolorized by distillation after neutralization with ammonia or carbonate of soda.
The Leap of the Salmon.-The power that the salmon possesses of ascending waterfalls is the subject of some interesting details by Prof. A. Landmark, director in chief of the Norwegian fisheries. He states that in certain cases salmon have been observed to ascend to a distance of 16 feet, and he feels this to be truè from having seen them leap over two masts which were $31 / 2$ feet apart, and which had been placed across the river at about 16 feet above water, at Hollefoss, upon the Drams, at Haugsend. He says, even, that certain salmon, on ascending a vertical fall, are capable, if they meet the fall at right angles with the muzzle of remaining a minute or two in the midst of the mass on
falling water, if they do not succeed in passing over the fall at a single leap.
Fruit Development.-The cause of the fertility pro duced in fruit trees by bending the twigs at an acute angle has been investigated by Prof. Sorauer. He finds that the bark on the lower surface of the twig below the bend, is thrown into transverse folds, here and there detached from the wood. New woody tissue is formed in these cavities, which is filled with starch grains, and after this there is a formation of new woody tissue of a normal character, but always thicker there than elsewhere, and especially on the convex up per surface. The mass of woody tissue checks the flow of water toward the tip of the branch, to the great ad vantage of the bud directly beneath, which is thus more likely to develop as a fruit bud.
Edible Fungi.-In the Students' Society for Natural Sciences at Upsala, Herr C. T. Morner has contributed a careful analysis of the following edible fungi, viz. Agaricus campestris, Lycoperdon bovista, A. procerus, Morchella esculenta, Boletus edulis, B. scaber, Lacta rius deliciosus, Hydnum repandum, L. torminosus, H. imbricatum, Cantharellus cibarius, B. luteus, Sparassis crispa, and Polyporus ovinus. The above order represents the relative proportion of digestible albu minoids, varying from 223 per cent of the dried substance in the first to 3.1 per cent in the last. But, in addition to this, there is a large quantity of indigestible albuminoids, amounting to as much as 16.7 per cent in Lycoperdon bovista, and 11.8 per cent in Morichella esculenta, and in many cases exceeding the amount of digestible nitrogenous constituents. Other nitrogenous constituents not of an albuminoid character-ammonium salts, amido-acids, etc.-are also invariably present, though usually in smaller quantities, the ni trogen in them representing from 0.21 to 2.49 per cent of the total dry weight of the fungus. The total result of these investigations is materially to reduce below the amount hitherto supposed the proportion of digestible coistituents in edible fungi, and consequently their value as articles of food.
The writer further states that a hen's egg corresponds, in nutritive value, to $0 \cdot 28 \mathrm{kgr}$. of Agaricus cam pestris, $0 \cdot 73$ of Lactarius deliciosus, $1 \cdot 30$ of Cantharellus cibarius, and 2.05 kgr . of Polyporus ovinus; 1 kgr . of beef contains as much nutriment as 93 kgr . of Agaricus campestris, $15 \cdot 2$ of Morchella esculenta, 24:2 of Lac tarius deliciosus, $41 \cdot 6$ of Oantharellus cibarius, and 67.0 of Polyporus ovinus. The daily requirements of the body in digestible albuminoids (130 gr .) would be farnished by 5.7 kgr . of Agaricus campestris, 6.9 of A. procerus, $9 \cdot 9$ of Boletus edulis, $14 \cdot 7$ of Lactariu
deliciosus, 26.3 of Cantharellus cibarius, and 41.6 Polyporus ovinus.
The American Water Weed is the name applied in England to our small aquatic plant, Anacharis canadensis. This plant, after its introduction into Europe a few years ago, found itself so much at home that it began to choke up streams and lakes and make itself a nuisance to those who delight in boating. Dr. Barnes, of Hanover, now contends that it is not only not an unwixed evil, but an extremely valuable plant, since it destroys the germs of malaria and dysentery; and he recommends that it be introduced into waters where it does not already exist. He says that fish are always healthier where the plant abounds.
Modification of Plants by Climate.-Mr. Crozier, of Michigan University, in a paper on this subject, sums up his conclusions as follows:

As plants move from the locality of their largest development toward their northern limit of growth, they become dwarfed in habit, are rendered more fruitful, and all parts become more highly colored. Their comparative leaf surface is often increased, their form modified, and their composition changed. Their period of growth is also shortened, and they are enabled to develop at a lower temperature."

A One Hundred and Fort

Sir William Turner the minent Pref Anatomy in the University of Edinburgh, recently delivered a lecture to the members of the Philosophical Institution of that city on "Whales, their Structure and Habits," in the course of which he referred to a point of considerable interest to engineers, which was the horse power exerted by the tail of a large whale. Regarding the length of full grown whales, Professor Turner remarked that the porpoise was 4 ft . or 5 ft . long, whereas the Greenland right whale was from 50 ft . to 60 ft . long, and he said that the great finner whale, which frequently visited the British seas, reached the length of 80 ft ., or even more. An animal
of the latter sort was stranded at Longniddry some years ago. After speaking at some length on the structure of whales, the lecturer made some remarks on the rate of speed at which they traveled. It had been estimated, he said, that the Greenland whale could attain a speed of nine or ten miles an hour, and that the finner whales attained even a greater speed. In all probabiity the Longniddry whale could propel itself through the water at, the rate of twelve miles an hour, and the sperm whale was said to be capable o driving itself along at the same rate of speed. He had known builder of the Anchor liners, to assist him in known builder of the Anchor liners, to assist him in
arriving at the horse power which must be exercised by one of these great whales so as to acquire a speed of twelve miles an hour, and he put the case of the Longniddry whale before him. It was 80 ft . long, weighed about 74 tons, and had a tail 18 ft . to 20 ft . across from the extreme ends of its flanges. With these data Mr. Henderson calculated that a whale of the dimensions mentioned, in order to attain a speed of t welve miles an hour, would require to exercise a propelling force of 145 horse power.

The Efrect of Strong Light upon the Eye

The exposure of the eye to intense light has been at ended with many curious and unfortunate results. In Ghent, who while trying to observe the effects of irritation of the retina gazed steadily at the sun for twenty seconds, a chronic irido-choroiditis developed, which ended eventually in total blindness. Dr. J. A. Andrews, in an article upon this subject (Trans. of A mer. Ophthalmol. Soc., 1886), collects a number of cases in which choroiditis and retinitis occurred in persons who had observed an eclipse of the sun. The single flash of a sun reflector .has been known to cause retinitis. Scotomata, amblyopia, and other temporary visual disturbances of a functional character have been frequently noted. M. Reich has described a curious epidemic of snow blindness which occurred among a body of laborers engaged in clearing a way through masses of snow which obstructed the road between Passanaur and Mleti, in the Caucasus. The rays of the sun, re flected from the vast stretches of snow on every side produced an intense glare of light, which the unaccustomed eye could not suppert without the protection of dark glasses.
A few of the sturdiest among the laborers were able to work with impunity, but the majority, and especially the weakly and anæmic, suffered severely in their eyes, in spite of the various devices to protect them from the light. Among seventy strongly marked cases, thirty were so sexere that the men were absolutely unable to continue their work or to find their way home. They were collected in a covered place, where Reich found them on his arrival prone on their faces, striving to hide their eyes from the light, and crying out from
pain. Photophobia was present in all the cases: Hyperæmia of the conjunctiva, with more or less injection of the ciliary vessels, and even chemosis, was found in all severe cases. Recovi en chas was found in

Dr. W. C. Rockliffe (Ophthal. Rev., September, 1882, quoted by Dr. Andrews) records a case of acute conjunctivitis brought on by exposure of the eyes to a 3,000 candle power electric light. Dr. Emrys-Jones and Dr. David Little have both reported instances showing that workmen or others who expose the naked eye to an arc light of great intensity are liable to have con junctivitis, as well as more serious ocular disturbances. It is estimated that exposure of the naked eye for one minute to an arc light of 2,000 candles will cause con juctivitis. The violet or orange lights ate said to be less injurious than the normal white light.
The light of lightning is too transient to cause any injury from simple retinal over-irritation; but it is known that cataracts sometimes follow lightning strokes, and these are believed to be produced by some physico-chemical influence.
Glass blowers suffer from an opacity of the lens brought on, not by the light, but the intense radiant heat ($148^{\circ} \mathrm{F}$.) to which they are exposed during their work. Dr. Andrew.s found such opacities in 4.5 per cent of men under thirty-eight years of age, and 20 per cent in men above that age. Dr. Meyhoefer found 9 per cent among men under forty.
Of all forms of artificial illumination, the incandes cent electric light, so far as facts now go, is the best. Among 1,100 persons who worked by this light, Dr. Andrews found not a single case of injury. On the other hand, many persons testified to the fact that they could work longer by it with less fatigue than with the gas or oil light. This is due, it is found, to the steadi ness, absence of heat, and perhaps the greater propor tion of violet rays. Short-sighted persons are, in par ticular, benefited by the use of the incandescent lamp. -Medical Record.

The Spheroidal State of Water as Seen in Glass te of Wa
Works.
The spheroidal state of water has long formed a favorite object for experimentation by lecturers. It
consists in protecting a liquid from contact with a consists in protecting a liquid from contact with a
hot surface, by interposing between the two a layer of gaseous molecules. These are supposed to oscillate back and forth, forming a " Crookes layer," and keeping the two separate. The molecules are assumed to enter into the same state in which the rarefied gas in the radiometer or Crookes vacuum tubes exists. The paths of vibration of the molecules are supposed to bear some tangible relation in length to the distance separating the boundary surfaces. Many of the experiments with heated metals or fluids, in which the operator seems to be proof against heat, are founded upon this phenomenon. By having the skin properly protected by a layer of steam or other vapor, hot protected by a layer of steam or other vapor, hot
metals and boiling water will have no effect upon it as long as the protective layer is maintained.
In glass works the spheroidal state of water is sometimes illustrated on a large scale. In making colored glass, such as ruby glass, in which gold is the base of the coloring agent, it is often necessary to remelt the charge. The pot of melted metal is emptied by ladling, and the melted glass is poured into water.

A barrel of water is placed upon the floor near the opening of the pot, and the workman with an iron ladle pours the melted glass into the water. It at once sinks, and, owing to its intense degree of heat, becomes surrounded by an atmosphere or thin layer of stearn. The water does not touch it, and hence is but slightly heated. The surface remains quiet, and the depths of the water glow with a diffused red light. After a while the glass cools, the water comes in contact with it and bursts into rapid ebullition. Even this ebullition is less violent than would have been anticipated, owing to the non-conducting power of the glass. As soon as a small thickness becomes cool, it protects the center of the mass.
If a few ladles are emptied into a bucket of water, the effect is far more striking. The red hot glass can be seen lying in a mass, as large as a cocoa nut, quietly at the bottom of the pail. It reminds one of the red hot pellets of magnetic oxide of iron that can be seen under water in the oxygen combustion of iron wire. It is most impressive to see the great lump of glowing glass maintaining its full heat under the comparatively cold water. This state of things may last for a minute or more before the water boils.

PHOTOGRAPHIC NOTES.

Method of Discharging the Yellow Color from Platinum Prints.-The Photo. News suggests that the supposed yellow color noticeable in platinotype prints, and recently attributed by some authorities to the action of sulphureted hydrogen on the iron salts, is not actually so, as was recently proved by a series of experiments, where the print was held in strong sulphureted hydrogen gas, and was not in the least affected. The real;cause was the turning of the paper itself, which gave the yellow appearance to the whites of the pieture.
By immersing the discolored print in a bath of weak chlorine water or a weak acidified solution of bleaching powder, the yellow tint is at once
ing the print back to its original vigor.

A FLORIDA "MULE KILIER"(Thelyphonus gigantous).
To any one interested in entomology, a glance at the accompanying illustration will be sufficient to satisfactorily locate the "mule killer" among that interesting intermediate group known as the Thelyphonidæ.
None of the spiders possesses real antennæ. In the scorpions the antennæ appear in the form of pincers ; in the spider they are transformed into horrid, poisonous, jaw-like organs, instead of the harmless feelers seen on the heads of lobsters, beetles, moths, and butterflies.
The antennæ of the whip scorpion, like the spider's. are changed to venomous fangs or cheliceræ, which, in this case, take the form of large prehensile claws, and remind one of a crab or scorpion.
The most remarkable part of the anatomy of the whip scorpion, however, is the structure of the anterior pair of legs, which are much thinner than the other three pairs. The fore feet are formed of a great number of joints, so that the front limbs are converted into flexible organs of touch. Here we see a creature whose antennæ are changed into poisonous jaw-like claws, and the fore legs transformed to antennæ or feelers.
The name whip scorpion comes from the peculiar caudal appendage resembling a whip lash, which can be moved about at the will of the owner. The abdo men is distinctly ringed, after the manner of a scorpion:
The animal is nocturnal in its habits, hiding under chips, etc., but is very active and pugnacious.' When kept in captivity, it will greedily devour horse flies and small bugs.
Amid the tangled underwood in the dark damp, re-

WHIP SCORPION (Thelyphonus giganteus).

cesses of the Florida forests, along with many other curious, horrid, or beautiful creatures beneath the mouldy leaf or bit of bark, the mule killer lurks during the day, awaiting with the owls the grateful twilight, when it can wander forth in search of crickets, flies, bugs, and other defenseless insects, which it seizes and greedily devours. It sometimes happens that a planter riding through the wood disturbs the "mule killer," and sadly rues the day he did so.
According to the following stories, this little anima is well equipped for the battle of life :
Some road makers had occasion to go into camp at night, and hardly had they comfortably rolled themselves in their blankets before one of them gave a scream of pain. His companions quickly came to his assistance. A light was speedily procured, when a large whip scorpion was discovered in the poor fellow's blanket. Although this incident happened some years ago, the sufferer has never fully recovered from the effects of the poison, and it is said that he is still a helpless invalid. The illustration accompanying this article was made from this identical whip scorpion, now quite harmless, owing to its long sojourn in a bottle of spirits.
Another party of road builders were at work during a spell of cold weather on the Anclote. One of the party, returning to camp after a hard ride, picked up a blanket and buckled it around his sweating mule, to prevent the animal taking cold, but the poor mule caught something worse in the blanket, and commenced to kick, rear, and plunge, finally rolling upon the ground in agony. As quickly as possible the blanket was removed, disclosing a brown object, about $21 / 2$ inches long, hanging by a pair of prehensile claws to the mule's back-it was a mule killer, and the mule was dead within an hour.
Near the same place, under very similar circum stances, a horse was lost.
A gentleman well known along the Florida coast as a cattle buyer, while riding a young mare through the "flat woods," had occasion to cross a swampy bit of ground, known in local parlance as a "' palmetto bog head." He had not proceeded far before his mare began
to kick frantically. Fearing that she had been bitten by a snake, the rider hastily dismounted and discovered a "mule killer" sticking fast to his mare's hind leg, just above the hoof. In this case also the poisonis said to have proved fatal within an hour or two.
There are many. stories afloat relating the fatal effects from this ill omened, but interesting, animal's bite, some of which add man to the list of its victims.

Poivrette-a New Adulteration of Pepper.
 by PROF. J. campbelh brown, d.sc.

The substance known in the pepper trade as "poivrette," or "pepperette," is now so frequently used for the purpose of "fraudulently increasing the weight and bulk" of commercial pepper, that the members of this society ought never to omit a careful search for it in all samples of pepper officially submitted to them. As many commercial analysts do not appear to be yet familiar with poivrette, and as some public analysts have applied to me for specimens, a short account of it may be of use to the society. It made its first appearance in Liverpool last summer, when more than one wholesale pepper merchant brought me samples and inquired what the substance was, and what were its properties. During the last three months I have met with it in between twenty and thirty retail samples of pepper.
Poivrette is a pale, slightly buff or cream colored powder, resembling in the bulk the principal middle layers of the pepper berry, when ground; and when mixed with pepper cannot be distinguished by the eye, nor even by the hand lens, from particles of pepper. In the earlier samples the coarser particles could be isolated by spreading the pepper on a stiff sheet of paper, held in a nearly, but not quite, horizontal position. On tapping this with the finger tips, so as to make the larger particles jump gradually to the lower edge of the sheet, the poivrette particles could then be picked out, and easily distinguished from pepper by crushing them between the teeth. Recently, however, it has been so finely ground and sifted that it cannot always be partly separated in this way, although the toughness and hardness of the particles can always be distinguished by the teeth in a mixture.
Microscopic examination, with a one-sixth or oneeighth objective, shows that it consists of pale dense ligneous cells, some entire and marked with linear air spaces, some torn and indistinct.
The stones of olives, imported in pickle for table use, gave 3.68 per cent of ash, but well washed olive stones, thoroughly burnt to a white ash, gave under 2 per cent of ash-like poivrette. "White poivrette" is therefore cleaned very pale, and perhaps partly bleached olive stones, or precisely similar tissue; black poivrette is the same, mixed with a little black husk. It is to be noted that, although it contains no starch, yet it yields some sugar to Fehling's solution, after being boiled for some time with dilute hydrochloric acid. The quantity depends on the length of time and strength of acid, but may be stated approximately about 10 per cent. It is important to bear this fact in mind when making a full chemical analysis of pepper containing poivrette. After removing from such a mixture the matters soluble by boiling in dilute caustic alkali, the woody fiber which remains has a yellow color ; it consists of the poivrette and some of the cells of pepper husk and one of the subcortical layers of the pepper berry. The pepper cells are made lighter, and the poivrette cells darker by the alkali, so that the two are more nearly of a similar yellow.colorafter treatment with alkali. This rendersit more difficult to distinguish such of the cells as have somewhat similar markings ; butit enables us to distinguish more clearly, as poivrette, the many torn particles which have no definite form or markings. The final examination of the complete cells is better made with good daylight rather than with artificial light, and in a portion which has been treated with water only.
The pepper cells are mostly different in shape, and are colored, and have generally a dark substance in the interior. They are not numerous, but the quantity varies in commercial samples, owing to the modern practice of decoricicating the pepper berry to every different extent possible, and mixing the various portions so obtained, including husks, in every variety of proportion with each other or with ordinary pepper. Each individual analyst must make himself familiar with both kinds of cells, as no description can convey an adequate idea of either.-The Analyst.

Early Date of Some of Capt. Ericsson's Inventifons.
Capt. Ericsson's secretary, in answer to a published statement that the Destroyer is taken from ideas published in the Army and Naoy Journal in 1863 or 1864, writes to the Daily News of New York as follows:

Captain Ericsson, in September, 1854, submitted to Emperor Napoleon his system of expelling projectiles from submarine guns for the purpose of destraying ships of war. The Emperor promptly acknowledged the receipt of the plans in very flattering terms.

Regarding the revolving turret, Captain Ericsson has published elaborate illustrations (see The Century, December, 1885), showing that the device is very old,
year 1807, designed a floating tower armed with a battery of revolving cannon, Timby's revolving tower being a palpable plagiarism of Bloodgood's invention. It will be seen also by reference to The Century of the date mentioned that Ericsson studied the system of revolving cannon more than sixty years ago.
' Regarding the screw propeller, it suffices to state that Captain Ericsion obtained a patent in England for this invention, 1836, and that Mr. Petit Smith simultaneously obtained a patent for propelling vessels by a modification of the Archimedean screw. These rival methods of propelling vessels, in a practical point of view essentially different, have been much discussed among English engineers, but Captain Ericsson having successfully applied as early as 1842 his propeller to the American screw frigate Princeton, his claims cannot be disputed. Indeed, The London Mechanics' Magazine said a long time ago, 'The undivided honor of having built the first practical screw steamer belongs to John Ericsson.'
S. W. Taylor.'

A CHEESE BOX TOBOGGAN.

Wo illustrate in the cut a toboggan made of such primitive material as cheese boxes. These boxes are made of oak or other hard wood. Of this a thin piece, from one-eighth to one-quarter of an inch in thickness, and about five feet long, is bent around in a circle, and is provided with a bottom and cover. To make the toboggan, one or two such boxes are required. A single large box affords material for a small one. The selection should be made with a view to procuring one of the thickest that is attainable. Its bottom is removed, and all nails carefully extracted. It is then gradually

a cheese box toboggan.

straightened out. No steaming is necessary. A strip of board is placed across one end, and is nailed outside of the edges of the piece to the floor. This gives a starting point. The curved board is straightened out and secured by other transverse pieces. For a week or more it is well to leave it thus extended. Undoubtedly a good soaking with hot water would help the process along. One end is left bent, the straightening process only being applied to four-fifths of its length.
The thin board thus procured is fitted with cross battens and side rails; as shown. A cross batten is required every six inches. They are three-quarters of an inch square, and are cut so as to project about an inch beyond the board. On top of these the side rails, a trifle heavier, and with rounded corners, rest. The outside of the rails is on a line with the edges of the board. These parts are secured by screws that enter from below, go through the board and cross battens, and enter the side rail. The holes for these must be carefully bored and countersunk in the bottom board. One screw goes through each intersection of batten and side rail. No intermediate ones are necessary if the bottom is in one piece. The weak part of such a toboggan is its side edges. To fortify these an extra piece, about an inch wide, is screwed to the projecting ends of the battens. If anything happens to this, it is easily replaced. The front is battened, as shown, and drawn back and down as far as desired, and sequred with wire or cord.
The extra side pieces may be made from another cheese box, or may be heavy hoops. They should be a little thicker than the rest. As shown in the cut, the bottom board is in two pieces. This presents some advantages, especially as regards warping. It, also, is not easy to find a cheese box wide enough. If made thus, care must be taken to see that both halves are of precisely the same thickness. Screws will be required along the inner edges running into the battens. The outer skin may be smoothed with a piece of pumice stone, washed, dried, and rubbed up with beeswax. The only care necessary is never to leave the toboggan on damp, ground, as it warps badly under such circumstances.

ENGINEERING INVENTIONS.

A caraxle has been patented by Mr. Isaac W. Lewis, of Portland, Oregon. It is a two part
axxe, the shell having projections on its inner surface axie, the seill having projections on its inner surface
near one end, a spinde fitting in the shell having pro-
jections breaking joints jections breaking joints with those of the shell, and a
flling of soft metal being used, making an axle which jections bo soft metal being used, making an axle which
filermits one wheel to revolve independently of the permits
other.
A steam engine has been patented by Mr. Charles F. Chandler, of Newark, N. J. The steam recede from each other, there being a rotary valve in the eteam chest, pitmen connected with crank arms
placed at angles to each otheron the main shaft, and placed at angles to each other on the main shaft, and
reversing gear for the rotary valve, the steam being reversing gear for the rotary valve, the steam
applied in such manner as to avoid dead centers.
A governor for controlling the supply of fluids has been patented by Messrs. Alpheus and
Joseph Darling, of Petrolia, Pa. This invention relates to governors nsed to regulate the supply of gaseous steam or other fluids at a point of delivery, and pro vides novel features of construction and combination to make such
and durable.
A car coupling has been patented by with a pivoted drawbar and a shaft having a ratch with a pivoted drawbar and a saart having a ratchet
wheel is a pivoted pawl, with one end arranged to
engage the ratchet and the opposite end extended in engage the ratchet, and the opposite end extended in position to be engaged by the drawbar on an approach.
ing car, whereby cars will be automatically conpled on coming together, and may be uncoupled without going
An electric railway signal has been patented by Mr. Edward D. Wells, of Westminster,
Md. This invention contemplates dividing the line, as in the block system, with electrical connections whereby a train is automatically signaled and prevented from
entering upon a section of track until it is cleared, and entering upon a section of track until it ir cleared, and
provides a peculiar construction and arrangement of provides a peculiar construction and arrangement of
the circuit and signaling mechanism, which is also the circuit and bignaing mecinnism,
equally applicable as a awitch signal.

mechanical invention.

A drilling machine has been patented by Messrs. Edgar Allen and Daniel S. Henrie, of Three
Rivers, Mich. The construction is such that the drill spindle carries the drill in yielding connection with the material to be operated upon, and so that the pressure
may be varied as required, the invention covering novel features of construction and combination for attaining these ends.

AGRICOLTURAL INVENTION.

An adjustable plow shovel has been patented by Messrs. Amos B. Root and James F.
Youtz, of Möint Joy, Pa. The curved standard has a Youtz, of Moint Joy, Pa. The curved standard has a
pivot and adjusting apertures at its apper end and a pivot and adjusting apertures at its apper end and a
vertical socket at its lower end, a transverse screw extending into the socket, and a bracket with vertical shank having an annular groove into which the set
screw enters, to hold the shank from horizontal or verscrew enters, to h
tical movement.

miscellaneots inventions.

A gate has been patented by Mr. John B. Holton, of Washington, Ky. The main feature of
this improvement consists in a right-angular hinge rod, this improvement consists in a right-angular hinge rod,
in connection with a special construction and combination of parts whereby the gate is braced, adjusted for taking up sag, and attached to the pivot post, the in-
A crock carrier has been patented by Mr. George K. Schaner, of Osborn, Ohio. It consists of a pair of levers crossed and pivoted together, and having
angled serrated jaws, the longer arms of the levers angleg serrated jaws, the longer arms of the evers
being bent inwardly toward each other and having an elastic bail by which the jaws are drawn together in lifting two crocks thus held and lifted together.
A chimney cowl has been patented by Mr. Christian W. Ackermann, of Streator, IIl. The
conical cap of the cowl is provided with a series of conical cap of pendants, and there are various novel details of construction calculated to give good ventilation to a
room and yet automatically prevent rain or snow from blowing into the chimney.
A sofa bed has been patented by Mr. Lionel S. Trotter, of Portsmouth, Ohio. This invention covers a norvel construction and combination of
ports in ases of beds adapted to be folded for use as partis in a clesso of beds adapted to be folded for use as
a sofa or chair, and provides a simple and inexpensive bed of thisis character. in which provision in made for
the concealment of the bedclothes within the frame.
the concealment of the bedclothes within the frame.
A faucet has been patented by Mr. Charles H. Loper. of Hickory, N. C. Combined with a bushing is a sliding tube having the inner walls of its
outer end beveled, with other novel features, whereby outer end beveled, with other novel features, whereby
the fancet can be pushed inside the barrel to be completely out of the way, to facilitate quickly moving the
An electric burglar alarm has been patented by Mr. Edward E. Carr, of Chalmers, Ind. This invention consists in the peculiar arrangement of
the circait and contacts, and the means for locating the the e circait and contacts, a a the meang for locating the
break, being applicable with a s single battery to the brears and windows of dwellings, barns, etc., for sound ing a continuous alarm.
A fruit picker has been patented by Mr. Jesse R. Hunter, of Palatka, Fla. It has an arm with stem-sapporting shoulder and operating lever,
with a spring wire secured at one end of the arm, conwith a spring wire secured at one end of the arm, con-
nected to a catting blade, and formed between its ends with a loop, in which the fruit is received after its

A neckscarf has been patented by Mr.
$\left\lvert\, \begin{gathered}\text { carry a pictare, which can be exhibited or screened at } \\ \text { the will of the wearer, the scarf having an }\end{gathered}\right.$ the will of the wearer, the scarf having an opening in
front, back of which the picture is adjustably held, front, back of which the picture is adjustably hela,
ordinarily hidden from view, but so that it may be exordinarily hidden from view, but so that it
hibited by the wearer pulling upon a band.
A dental anodyne or local anæsthetic has been patented by Mr. Robert H. Peak, of Orlando, Fla. It consists of a neutral misture of acetic acid and
carbonate of ammonia, salicylic aciid, and hydrochlorate of cocaine, to be used for preventing or relieving pain during
teeth.
A method of decorating glass has been patented by Louisa Winterhoff, of Hammersmith; rransfer paper, which is dampened and applied to the glass, printed, side in contact, the paper then being moistened and stripped from the glase, and the printed
mpresion dusted with finely powdered resinous sub $\substack{\text { mimpressii } \\ \text { stance. }}$
A clamp has been patented by Mr. Frederick F . Houston, of Chicago, ill. This invention covers novel features of construction and arrangement rame for effect on all four sides of framed work at once, being especially designed for the use of carpen-
ters, cabinet makers, and woodworkers in general, while ers, cabinet makers, and wood
A tent has been patented by Mr. Merritt P. McKoon, of El Cajon, Cal. It is an improved "A"
tent, with its ends firmy closed and extended at bottom into a half diamond shape, the doorway being at the center of one of the sides, with an inverted V-shaped
canvas over the doorway, from the front peak of which is a guy rope passing over a suitable support for holding a guy rope passing over arm.
the roof straight out and frm.
A wire covering machine has been patented by Mr. Daniel Macduff, of North Grafton, especially adapted to produce a very pliable metallic apecially a aapted to produce a very pliable metallic consists of a device for corrugating the wires before for winding the thread around the corrugated wires.
A book adjuster has been patented by Mr. Irvine J. Adair, of Dallas, Tex. It consists of a threaded aperture, with base piece, adjusting screw spring catch, and other novel features, for leveling
books, especially large and heavy account books, and books, especially large and heavy account books, and
holding the leaves poen, and enabling the book to be
closed and opened agan at the seme place losed and opened again at the same place.
A folding baby carriage has been patented by Mr. Charles Haller, of New York City. It is end of the carriage body, so that the elasticity of the spring can be regulated, and so that the carriage can be ased as a cradle, with other novel features, the inven-
tion being an improvement on a former patented in-

A measuring rack for goods in the piece nas been patented by Messrs. William. C. Newton and
James G. Ferrill, of Batesville, Ark. It consists of a rame in which are side pieces adapted to hold the rol or board carrying the goods in such way as to facilitat at
the removal of just the quantity of goods required, the rack being designed for both light and heavy fabrics of all widths.
A pocket knife has been patented by Mr. Julius Wiesner, of Manchester, N. . . It. It is a
springless clasp knife, the blade having studs on op posite sides of its shank at diametrically opposite sides with other novel features, whereby the blade will be
and held rigidly in an open or closed position, although the
knif has no back spring俍e has no back spring.
A heating and ventilating apparatus Las been patented by Mr. Richaro A. Reev, of Pomeroy
Washington Ter. This invention covers a novel con struction and combination of parts for providing the
heater with plenty of pure air, economizing fuel properly tempering the heated air by discharging steam into it in any desired quantity, and for drawing of the
foul air and admitting pure air to the room.
A repeating fire arm has been patented by Mr. Carl J. Bjerkness, of Arkdale, Wis. The inven-
tion consists of a cylinder sliding in the breech block, a fring pin sliding in the cylinder, and a bushing on the breech block, making a repeating arm which loaded automatically and throws the firing pin back t t
its place by the back action of the charge, and also diecharges the cartridge shell automatically.
A lubricating composition has been patented by Mr. Joseph Plante, of Levis, Quebec
Canada. It consists of powdered sulphur, peat and Canad. . It consists of powderen sulphir, peat, and
oil, the peat being used because it readily remains mixed with the oil, and the sulphur because the sul-
 tor being designed for car axles and other purposes.
A composition for the manu facture of stone ware, etc., has been patented by Mr. Richard c
Remmey, of Philadelphia, Pa. It consists of Delaware clay and Delaware yellow brick clay, flour of mica, pulverized fine burnt clay, Connecticat brownstone, ground feldspar, and powdered loam, so combined as to
be impervious to acids, extremely hard, and stand grees be impervious to acids, extremely hard, and stand great
changes of temperature without crucking or scaling.
A circular knitting machine has bee patented by Mr. Thomas C. Chawner, of New York
City. It is intended for working hard twisted yarns, and has special cutting means, in combination with catch lever and block, for automatically severing the
yarn with a shears-like cut, with other novel features, the invention being an improvement on a former pated invention of the same inventor
A tobacco wagon frame has been patented by Mr. Joseph F. Prescott, of Hopson, Ky. It
consists of two pairs of longitudinal timbers supported
trestles consisting of crosed timbers, forming both
the supports and braces of the frame, which is inex the supporti and braces of the frame, which is ines
pensive and rigid, and especilly adapted for a wagoo pensive and rigid, and
for carrying tobacco.
An alarm attachment for door knobs Las been patented by Mr. William P. Allison, of Kenne bunk, Me. The door knob spindee has levers con-
nected by an intermediate mechanism to a lever centrally pivoted to a support, from which a connection
made with a lever adapted to operate the door bell made with a lever adapted to operate the door bell, so
that the act of turning the knob to open the door will sound an alarm.
A picture exhibitor has been patented by Mr. Arthur M. Boos, of Buffalo, N. Y. It is a device
of novel construction, superior to the ordinary book or novel construction, superior to the ordinary book pictures, with side openings and interior catches, and slides to view photographs of various sizes, and may be made of large size, and operated by machinery to display advertisements.
A caster has been patented by Mr. John S. Dignam, of London, Ontario, Canada. It is of the kind in which the cruet-carrying receptacles turn
apon a horizontal shaft, a cross piece at the bottom of the base adapting the caster to be attached vertically as
in a buffet railway car, with other novel features, the in a buffet railway car, with other novel features, the vention of the same inventor
A trace carrier has been patented by Mr. John L. Gilman, of Des Moines, Iowa. It is applidobble harness, and so arranged that the ends of the traces may be inserted and securely held against accidental displacement, relieving the etableman of the
trouble of doing ap the trace to prevent its dragging apon the ground.
A subsidiary axle arm has been patented by Messrs. George Hoepfner and Henry Wuest, hicle if the originul arle for use on the axle of a ve acle if the originul axle becomes broken off, to be adapted for either end of the main axle, and the invention covering a special construction of the axle and clamps.
A refrigerator has been patented by ooling box has top doors, and there is an overhanging rame and guide pulleys, with cords and weights, the ice box having an ice support in its lower end and a
water tank in the upper end, the discharge pipe being water tank in the upper end, the discharge pipe being
connected with the tank and having its lower portion isposed in coils below the ice support
A device for renovating garments has been patented by Annie Shanley, of New York City. It consists of a standard with heating shell and heating core, with gas pipe fitted in the shell for heating it
when the core is not to be used, with other novel fhen the core is not to be used, with other novel
featnres, whereby the sleeves and shoulders of velvet othergarments may be renovated without ripping o
An arc lamp has beenen
An arc lamp has been patented by Messrs. Vaclav Klan and Francis Spurny, of Prague,
austria-Hungary. The carbon holders are suspended from two sets of pulleys, one for balancing the carbons and their holders by their weights as usual, and the other set to maintain equilibrium against the resultant attraction of the two solenoids by a suitably suspended counterpoise, with other novel features.
A thill coupling has been patented by Mr. Joseph Christiff, of Hightstown, N.J. Combined with the thill iron, clip, and bolt connecting them, is a
nut having inward beveled sides, and a wedge with one nut having inward beveled sides, and a wedge with one vertical edge beveled to engage the beveled nut and
bearing against the clip with its opposite vertical edge, he object being to prevent the rattling of the shaft or hill coupling.
Storing ice forms the subject of a pat nt issued to Mr. George T. IMcCormick, of New York
City. This invention provides means for dressing or trimming blocks of ice by the power that moves the blocks along the tramway into the ice house, a saw being arranged to run parallel with the tramway and cut off the honeycombed and snow ice from each
block, there being also vertically arranged saws nives to dress the sides of the blocks.
A music leaf turner has been patented by Mr. Seth Rathburn, of Chicago, Ill. It is adapted or use with both organs and pianos, the apparatus
being fixed to the face of the music rack, and the music in position, with separate leaves between spring tongues moved by carrying arms, which may be operated either by a treadle or by hand by the performer,
without interfering with the performance of the composition.
A flue or chimney lining has been patWest Vy Mr. Hugh McMahan, of New Cumberand section, and the interior angles filled in or re-enforced to approximate a round form, the ends being so formed that one end of each section shall have tenons and the
other end sockets to fit such tenons, the design adapting itself especially to terra cotta or earthenware fiues and chimney linings.
A hay press has been patented by Mr. Charles A. Hamilton, of Meridian, Miss. It is an im or reversible, the material being fed into the press box in successive charges to be acted on by a reciprocating follower, which is operated by a pivoted reversihrown back by the elasticity of the pressed materia after reaching the limit of its forward movement.
A watch regulator has been patented by Mr. Aloys Platt, of Brooklyn, N. Y. The adjusting here will be no side play at the point of connected that and the connection is so arranged between the adjust ng screw and the lever which moves it that all danger lator lever to which it is attached, is avoided, the in invention of ther patente

Pusiness and Personal.

The charge for Insertion under this head is One Dollar a linefor each insertion; about eight woords to a line. Advertisements must be received at publication office
as early as Thursday morning to appear innext issue.

In its editorial of Feb. 19, Engineering News speaks of Mr. Wellington's new "Economic Theory of the Lo nical work which has ever appeared in this country Trautwine's ' Pocket Book' alone excepted."
Patent swing cut-off saw, with patent shield for saw.
Manufacturers' Advertising Bureau, 8 Broad St., N . Benj. R. Western, Treas. Managers of advertising

Telescope

Wanted-Experienced and practical foreman in bras working factory. Must have best references and be
thoroughly competent. Give full particulars; no others

The Anchor Supporters. B. A. Pollard, 32 Whiting St., Boston, Mass.
Ten dollars a month will buy a farm in Claremont Colony. Maps and full pa
Raynond, Surry Co., Va.
I want to have manufactured, on royalty, my knock down pigeonhole case. Everybody needs one. Send for

A stock company in this city, owning four U. S. pa tents covering striking improvements on staple article
in hardware line, want $\$ 30,000$ additional capital. Goods ested three years by consumers, and highly commended Made by contract, obviating risk of plant; demand un
limited; profts large, ranging in price from 850 to 8150 Foreign patents owned by company. Acceptable party may have choice of execut
P. O. Box 773, New York.

- Best tempering fuid known-Mercury, potash, and hydrochloral. $\$ 2.00$ per gallon. Samples, 25 c . Address Blake's Improved Belt Stud
Blake's Improved Belt Studs are the best fastening
or Leeather and Rubber Belting. Greene, Tweed \& Co, or Leather and Rubber
83 Chambers St., New York.
Link Belting and Wheels. Link Belt M. Co., Chicago The Railroad Gazette, handsomely illustrated, pub lished weekly, at 73 Broadway, New York. Specime
copies free. Send for catalogue of railroad bonks.

Protection for Watches.
Anti-magnetic shields-an absolute protection from all electric and maguetic influences. Can be applied to any
watch. Experimental exhibition and explanation at watch. Experimental exhibition and explanation at Anti-Magnetic Shield \& Watch Case Co.." 1 John
New York. F. S. Giles. Agt., or GilesBro. \& Co., Chicago where full assortment of Anti-Magnetic
be had. Send for full descriptive circular.
Woodworking Machinery of all kinds. The Bentel \&
Concrete patents for sale. E. L. Ransome, S. F., Ca
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pum

The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just is
sued a new catalogue, in which are many new and im proved forms of Pumping Machinery of the single and duplex, steam and power type. This
mailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. $\$ 100$
"Litle Wonder." A perfect Electro Plating Machine Sole manufacturers of the new Dip Lacquer Kristaline Co.. Newark, N. J., and 92 and 94 Liberson, Van Winkle Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co. New Haven, Conr. Supplement Cotologue Persons in pursuit of info mation of any special engineering, mechanical, or scien
tiff subject, can have catalogue of contents of the SCItiflc subject, can have catalogue of contents of the SCl-
ENTIFIC AMRRICAN SUPPLEMENT sent to them free ENTIIIC AMRRICAN SUPPLEMENT sent to the
The SUPPLEMENT contains lengthy articles embracing sience. Address Munn \& Co. Publishers, New York.
Curtis Pressure Regulator and Steam Trap. See p. 45.
Inventors wishing to sell their inventions, address, With partic
ton, Mass.
We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pu asbestos goods ond Boiler Coverings. We make pure 419 East 8th Street, New York
Universal \& Independent 2 Jaw Chucks for brass work Steam Hammers, Improved Hydraulic Jacks, and Tube 60,000 Emerson's 1886 Book of superior saws, with Address Emerson, Smith \& Co., Limited, Beaver Falls Pa., U.s. A.
Safety Elevators, steam and belt power ; quick and Cotton Cotton Belting, Linen Hose, Piston Valve Rod
Packing. All kinds of Mfrs. supplies. Greene, Tweed \& Co.. New York city
"How to Keep Boilers Clean." Send your address
free 88 page book. Jas. C. Hotchkiss, 93 John St.; N. Y. for free 88 page book. Jas. C. Hotchkiss, 93 John St., N. Y.
The Holly Manufacturing Co., of Lockport, N. Y., Nill send their pamphlet, describing water works ma-
Na agara Steam Pump. 20 years before the public. Always first premium. Adapted for all purpos
Norman Hubbard, Manufacturer, Brooklyn, N. Y. Iron and Steel Wire, Wire Rope, Wire Rope Tramways. Trenton Iron Company, Trenton, N. J.
Astronomical Telescopes, from $6^{\prime} \prime$ to largest size. Observatory
and, 0.
Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.
Send for catalogue of Scientific Books for sale by
Munn \& $\mathrm{CO}^{\prime} 301$ Broadway, N. X . Free on application.

Hildex (lunins
HINTS TO CORRESPONDENTS.

(1) F. E. asks : If a piece of magnetic the surface of the earth, would the magnetic attraction of the north pole attractythe iron, or would it fall in 8 of the falling body would be slightly affected by the magnetic attraction, bat such pull would be very smal compared with that of gravity.
(2) J. M. asks how to polish bullocks' horns. A. First scrape' with glass to take off any roughness, then use pumicestone powder with a piece
of cloth wetted until a amooth face is obtained. Next polish with rottenstoned and linseed oil, and finish the rottenstone and oil, the better the polish.
(3) K. S. S. asks: Is white clothing warmer to wear than black? A. For the same material
black is warmer in sunshine and white during darkness.
(4) E. G. desires: 1. Receipt for making good cosmetic. A. For black. use good lard 5 parts,
wax 2 parts (or hard pomatum 7 parts), melt, stir in levigated ivory black 2 parts, and pour it into monlds of tin foil, which are afterward to be placed in paper sheaths. For white, the same without coloring matter.
2. Bay rum. A. Saturate $a / 4$ pound block of carbonate 2. Bay rum. A. Saturate a 3 2 pound bock of carbonate place in in a a fitter, and pour water through it until the quantity of water and of alcohol employed depends on the desired strength and quality of the bay rum. 3_{3} Brilliantine. A. Take of honey 1 fl ounce, glycerine fil ounce, cologne $1 / 2 \mathrm{fl}$. ounce, and alcohol 2 fl . ounces. 4. A good razor paste. A. Take of levigated oxide of tin, prepared putty powder 1 ounce, powdered oxalic acidi4/ ounce, powdered gum 20 grains, make into a over the strop. With very little friction, this paste gives a fine edge to the razor, and
(5) S. E. L. asks the best and surest way to drill holes in chilled iron. A. A moderate chil can only be drilled by the hardest blunt drill with great
(6) N. P. K. wants a receipt for tak ing varnish off of furniture. A. Use a solution or about 3 pourds common washing soda to a gallon of water. Apply this to the work with a common pain
brush, and aftergallowing it to etand foria short tim he varnish can be removed with an ordinary stiff scrub bing brush
(7) J. C. H. asks how to reduce overntense dry platenegatives without the use of potassium oxalate. A. First immerse the negative in a concen trated solution of alum and citric acid (makea a 10 ounce saturated solution of alum, let stand for a few hours
and add 1 ounce citric acid). The negative should be left in this solution for a quarter of an hour. If no reducing effect takes place, then wash and immerse the plate in a bath of:

Sulphuric acid. water

Water. 20 oz
for about the same length of time. The negative will
have a grayish color. 2 . What is a good formula for bave a grayish color.
ground
glass varnish?

3. A good cigar flavor. The following is one of many of tobacco: Comminute cassia bark, orris root, licorice root, angelica root, and rosewood, each 7 oz . Macerate with 4 gallons of water, press out the liquor, and
compound with a solation of 2 pounds of pure saltpeter and $31 / 4$ pounds of white sugar in 1% gallons o ing 100 pounds of leaf tobeco
(8) N. M. B. writes: In the shop where I work, the main shart puileys and belts are greatl) charged with electricity. Can you tell me the caus
of i , and what effect it has on speed of shaft? Does
Dit retard its If so, is there any remedy for it? A. The electricity generated in belts is presumably due to the
bending of the belt and itt slight friction on the pul leys. It indicates dry air and a dry belt, and doe not noticeably affect the running of the machinery Moistening the air is the remedy if any is really needed, or a metallic comb with ground connection
night be fired with its teeth close to and pointing toward the belt. The charge can be taken from the shaft and pulley by attaching a wire to the shaft and (a) W.
(9) G. B. W. asks how to produce hydrogen and oxygen cheaply to use for welding pur poses. A. You can prodace hydrogen by passing steam
over ignited iron scrap contained in a 'throagh." retort or one with connections at both ende. By using eoal
instead of iron you will geta mixture of hydrogen and
carbon monoxide that is just as good for your purpose. A very high heat is required. Oxy yen can be made
by heating chlorate of potash mixed with a quarter its weight of binoxide of manganese to a low red heat, or eat ing, as it is liable to burn the iron. Superheated air would probably be better and cheaper
(10) G. A. C.-See Lowe Gas Process, in Scientific Amrican Supplement, Nos. 98, 114, 53,
nd on Water Gas consult Scirntiric Amrican Supand on Water Gas consult Scientific American sur-
pukment, Nos. 60 , 303, 388,311 . Use one square foot heating surface in boiler to 8 square feet of radiating surface for ordinary rooms, and one square foot of radiating surface, to 100 cubic feet of air in exposed rooms
or 120 cubic feet of air in ordinary rooms. The square
. or 120 cubic feet of air in ordinary rooms. The square
root of the square root of the heating surface, in root of the square root of the heating surface,
feet, in the boiler will give a fair average diameter of the main steam pipe in inches. Proportion the distribution tol the radiation according to intervening pipe sizes. 0 radiator should have steam inlet less than is inch have 1 inch and 11 inch inlets, one less size outlets; 1 inch pipe is the most suitable for radiators. There is no perceptible dif
(11) B. S. M. Co. asks (1) what receipt there is for staining wire, or iron or steel, blue. A. The processes are similar for obtaining colors by a stain. Bluing is generally done by heating to obtain the color of rag with antimony chloride, dip it into olive oil, nd rub the iron over. In 48 hours it will be covred with a fine coat of ru
cratch brush, and apply oil.
(12) J. H.-Gun barrels are not case ardened. They are blued by heating and mottled by acids. This is a very dimcut work, requiring experi barrels is a chemical process alone. See answer to preceding query.
(13) W. G. K. asks : How can I color cop er medals so as to give them the appearance of old bronze? A. Dissolve 30 parts of carbonate or hydroalt, cream of tartar, and acetate of copper in 100 parts ofetic acid of moderate concentration or in 200 arts of strong vinegar, and add a little water. When an intimate mixture has been obtained, smear the coper object with it, and let it dry at the ordinary temperature for 24 ', or 48 hours. At the end of that time
he object will be found to be entirely covered with the object will be found to be entirely covered with
verdigris presenting various tints. Then brush the verdigris presenting various tints. Then brush the hole, and especially the rehefs, wo necessary set the high reliefs with hematite or hrome yellow or other suitable colors. Light tonches ith ammonia give a blue color to the green portions, nd carbonate of ammonium deepens the color of the arts on which it is laid.
(14) G. C. F.-The North American magnetic pole is in about 7312° north latitude and 96° is supposed to be about 33°. As only about $11 / 4$ of a evolution of the magnetic pole has been noticed, it is yet uncertain whether it completes a revolution or is only vibratory. It is supposed to occupy the point
of most inteuse cold. What connection the two phemost inteuse cold. What connection the two phe-
nomena have is not yet known. The variation of the eedle for New York for 1887 is 817_{105}° and increasing athe rate of 3 minutes per annum. The Coast Survey
have this work in hand, and publish reports of investigations on the subject.
(15) J. H. V. asks the greatest number of tons it would be safe to pull up an incline of four No. 9 steel wire cable A 15 tons.
(16) G. B. asks a varnish for protecting nce wire. A. Use well boiled linseed oil, properly laid h; first well cleaned and freed from all he iron should he oil should be of the best quality and well boiled, without litharge or any drier being added. Asphalt varnish or coal tar may be used instead of the above.
(17) L. F. M.-If an attempt were made use the House telephone to talk, the Bell Company will talk if constructed in accordance with the patent. If a microphone transmitter was nsed with it, the claim of infringement by the Bell Company would be by so
(18) J. L. P.-The vacuum system of propulsion "described by you does not take into ac-
count the theory of equality of action and reaction. The vessel would, as far as the vacuum
(19) J. S.-In answer to your question, orse power on a boiler at 60 pounds pressure, th ypes made us say 150 instead of 15 square feet. The latter figure is large, but is not out of the way in a used, although with better efflciency the heating sur face may be reduced to as low as 6 to 12 square fee
(20) N. S. B. asks : How can'I quickly and inexpensively freeze water in a bottle, what freez ng mixture to use, and what sort of an apparatus to
mploy? A. Nitrate of ammonia and water is one the best of the simple mixtures. Surround your bot the with the coldest water you can get, held in a non conducting vessel of wood if possible. Add an equa weight of nitrate of ammonia. Stir well. A second what is better, if you can cool enough water to use or the solvent for the second portion of nitrate of soda, the work will be better done. Probably chopped ice with one-half its weight of salt would be cheaper and better
and two successive applications should effect th resalt. Almixture of 5 parts nitrate of ammonia, 6 parts sulphate of soda, and 4 parts dilute nitric acid
is exceedingly powerfal. Use wood as far as possible for the onter vessel, and metal for the inner. Glass will probably break

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

February 15, 1887

and each bearing that date

ISee note at end of list aboutjcopies of these patents.

ir, apparat lingworth

larm. See Burglar alarm.
larm attachment for door knobs, W. P. Allison nimal trap, T. B. Zeller

Axle box, railway, M
Axle boxes, raiway, Marshall \& Bates
Axle, car, I. W. Lewis...
Axle lubricator, W. C. Banflll........
Axle lubricator, car, C. .i. Kock et
Axle lubricator, car, E. Pynchon et al
Bag. See Tobacco bag.
Bale or package tie, J. B.
Bale tie, W. O. Gunckel.
Ball and socket joint
Ball and socket joint, H. M. Yale.
Barrel stand or swing and coun bined, I. G. Pollard.
Bed bottom, spring, G. Steinson Bedstead, invalla, C. L. L. Emery..........
Bell, electric alarm and signal, S. H. Sho Bell, preuinatic, E. J. Colby Bit. See Bridle bit.
Blackboard, revolving, Lykens \& Rodkey....
Blasting out rock corners, Murdock \& Blind, inside, J. W. Anderson.........
Block. See Hat black. Pulley block. Block. See Hat black. Pulley block
Board. See Multiple switch board.
Boat slide, marine, H. H.
Boiler. See Wash boiler.
Boiler. See Wash boiler.
Boiler attachment, E. F. Barber
Boot crimper, E. B. La Follette..........................
Boot or shoe heel trimming machine, C. H . Tras Boot or shoe insole, W. H. Russell...................
Boot or shoe sole and heel trimming machine, H. Trask.
Bot

Bottle stopper, C. De Quillfeld
Box. See Axle box. Fare box. Journal box. Wagon brake
Bridge gate, swinging. Svacina \& Rad1
Bridge, swinging, R. W. Smith.
Bridge, swinging, R. W. Smith
Bridle bit. F. Monier..........
Brush, shaving, J. L.!
Buckle, J. Hazelton.
Buckle, J. Hazelton..
Buckle, G. W. Moore
Buckle, G. W. Moores........
Buckle, girth, G. W. Moores
Bugl
Buggy boot, H. W. Ransom.
Burglar alarm, C. Lamberty

Burglar alarm, C. Lamberty.
Burglar alarm, electric, घ. E.

Burial casket, J. H. Bootes.............................

Burner. See Gas burner. Lamp burner. -Vapor | burner. |
| :---: |
| Butter tub, J. McAdam.........................357,985, 357, | Button fastening staple, G. W. Prentice........... 357,

Buttons, machine for drilling holes and .plowing Gamera. See Diffraction camera. Photographi..........................

apstan, J. B. Spooner

Car brake, G. F. Card
Car chain, G. Brooks.
Car, convertible freight, W. F. Mossop
Car coupling, S. F. Green
Car coupling. F. Hardy..
Car coupling, J. Y. Pope
Car seat, R. R. Pease........
Car starter, Butler \& Ligibe
Car wheels, manufacture of forged, J. Coffn...
Cars, derailing and replacin.
street, Hennig \& Rettig....
Cars, drawhead for railway, J.
Cars, running gear for railway, G. M. Brill.
Cars, running gear for railway, G. M. Brill..
Carety guard for railway, E. A. Wescott
Cars, safety gaard for railway, E. A. Wescott...
Cards, machine for grinding hand, W. s. Burton.
Carriake, baby, C. M. Banks..................... Carriuge, baby, C. M. Banks..
Carrier. See Pool table ball
Carrier. See Pool table ball carrier. Sheaf car
Case. See Cigarette case
Cash indicator and register, W. L. Horn
Caster, w. P. Tracy
Celery, blanching, H. G. Lee.
Chain, drive, N. P. Levalley
Chain, drive, N. P. Levalley
Chaius, etc., testing tensile strength of, w. Kent.
Chair. See Folding chair. Railway rail chair. Re
chining chair.
Check rein, harness, P. A. Smith....................
Chlorine by electrolysis, obtaining, D. G. Fitz
Gerald
Churn, E. S. Gibbs.
Churn, E. H. Inzer.
Cigar machines, feed regulat
Prangley....................
Cigarette case, F. S. Kinney...
Cigarette case, F. S. Kinney...
Clasp. See Rope or line clasp.
Clusp bodies, making, J. H. Doolit
Clasp reducer, making disintegrator, W. H. Burkman
Clipping machine hair
Clipping machine, hair, L. S. Lee.
Clock system, electric, T. J. Zoell
 Cloth board and tag therefor,
Cothes drier, C. D. Hawkins.
Clutch, friction, D. R. Kinyon.
Coal or rock drill, J. L. Willia
Coin counter, P. E. Sarsfield..........
Collar fastener, horse. B. M. Johnso
Colter and jointer, roller, D. A. Moo
Commode, chair, E. S. Farson.......
Copy holder, printer's, G. W. Ba
Corn, apparatus for separating germs from, G.
Corset, T. S. Gillert
Cotter key, W. P. Brown
Cotton beater, T O
Cotton beater, T. Oldroyd..
Counter stiffener, \mathbf{G}. H. Bri
Counter stiffener, . H. Briggs
Coupling. See Car coupling. Hose or pipe
ling. Pipe coupling. Thill ling. Pipe coupling. Thill conpliing
Crossover stitch, N. Cort.
Cruolble, cap and guard,

Indraulic motor, P. Murray,
ndicator. See Cash indicator.
Inhaler, Hood \& Resnold
roning, fluting, and plaiting structure. combined
oint. See Ball and socket jo
Jointing and trimming machine, E. K. Patten.

Key. See Cotter key.

Knitting machine, w. Roberts
Kitting machine, straight, T. C. Cha wner
adder, step, W. F. Gordon
Lamp burner, E. H. Hicko
Lamps, ventilator and smoke Lell for
Latch, gate, S. Pugsley..............
Lathing attachment, wire, G. Kelly
Lock. See Gate lock. Nut lock.
oom for weaving fabric containing waws stripe, Loom stop motion, G. F. Hutchins Lubricator. See A................................
Lubricator, IL. Kaczander
Lumber binder, W. Baynes

Masher, potato, T. F. Tinby

Measuring machine, eloth, N. W. H
Metal plates, machine for bending and flanging
ill. See Grinding mill. Sawmill. McLean........

Maso
Motion, device for conveying, J. J. Greenough
Motion, device for transforming, C. H. Kellogg
Mower, s. s. Brown...
Mowing machine, S. Garvin Kelly:

Nut lock, J
oilcloth, stair and table, A. F. Buchanan

Organs, coupler for reed, J. Hessler
Paint breamer, Rooney
Pan. See-Mining pan.
Paper, apparatus for holding toilet; \mathbf{O}. H. Hicks. Kron..
I. Nesmaith

Photographic burnishing machine, W. G. Entre
Photographic camera, W. I. Adams.
hotographic frames, vignette attachment for, I.
in. See Husking pin. Sofety
Plow, rotary, H. Myers
Plow, three-wheel riding, B. F. Bout pulverizing riding gang, B. F. Butle

Portfolio, S. W. Bates
Pot. See flower pot.
Press. See Printing and stamping press. Press for packing bran, etc., c. H. H. Br
Pressure regutator, F. M.

Printing and stamping press, W. N. Wheless
Printing machine, perfecting, J. T. Hawkins. otector.
Pump head, J. Q. Adams
Pump, plamber's force, J. H. Lawless.
Puzzie, J. W. Hanson.... Rallway apparatus; cable, H. W. McNeill
Railway crosing. W. S. East.....
Ralway rail chair, A.J. Moxham...
Railway signal, electric. E. D. Wells
Renge or cooking stove, G. H. Holliday Reclining chair, c. Ferst..................
Reel. See Harvester reel. Hose ree Retrigerator, \mathbf{W}. W. Dunn Regulator. See Pressure regulator. Temperature Rein holder, M. R. Heatherl Rein protector, D. Leith. Rock drilling del. Heney. Rock or coal driti, J. She
dorph
8etury ptana En G. yeles

	Water wheel or shif's propeller, M. \mathbf{M} Weeding implement. lawn, C. Clarke. Vifll ventilator, and anti-freezer f or Arndt. Wells, casing spear for artesian, J. B Wheel. See Water wheel. Wheel making machine, J. M. Ridley Whiffetree hook, E. Briggs Whip socket and rein holder, com Horn. Whiste, G. H. Crosby Windnill, J. Q. Adams. Windmill, D. P. Barrett. Window, E. R. Crofut.. Windows, fastener for meeting rails Wire barbing machine, A. J. Bates.. Wire manipulating tool, J. W. \& N. J. Wire rope ways, clip for, A.S. Hallid

DESIGNs.
Botlo, W. R. Petalold
Bride froit.
W. Ward
Glass dish, G. L. Abbott
Glass dish, G. L.
Panel, F. Mankey.
Rug, A. Petzo broch, C. W. Schumann
Scarf pin or bro..............
Stove or range, J. Reiffenstein.

TRADE MARKS
Baking powder. O. F. Durney...
Beans, A. B. Cleveland Compan
beans, A. B. Cleveland Company.
Cutlers and scissors, H. Boker \& C
Husks, baled, C. R. Van de Carr...

Medicinal compou G. H. Rundle.

Mixture for disor
C. F. Kelley..

Pantaloons, E. F. Miner......
Peas. A. B. Cleveland Company...
Pine Pine wool fabrics and preparations, L. \& E. Lairit
Rings, solid watch cases, and other solid jewelry solid gold inger, H. Muhr's sons....
Sheetings and drills, brown, Russell
\qquad Sleds and toboggans, coasting, Johnson, Emerson
\& Co.. 14,0
Soap in bars or caiees, Union Soap,Co.............. 14,
Spool holders, s. Dunelius \& Co............... Suspenders, karters. and armlets, Armstrong
Manufacturing Company.........................079

A printed copy of the specifcation and drawing of
any patent in the foregoing list, also of any patent issued since 186f, will be furnished from this office for 25 cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 36, Broadway, New York. We also furnish copies of patents
granted prior to 1866; but at increased cost, as the granted prior to
spéciflcations, not being printed, must be copied by hand.
Canadinn Patents may now be obtained by the going list, provided they are simple, at a cost of $\$ 40$
each. If complicated the cost whl be a litte more. For each. It complicated the cost whil be a little more. For,
full instructions address Munn \& Co., 361 Broadway,
New York. Onher foreign patents may also be obtained.

Provertisements.

Cutting-off Saw and Gaining Machine
 Work, and the latest im -
proved W ood Working C. B. Rogers \& Co NORWICH, CONN., 109 Liberty St., N.
ACAARLADAWAEALALASA

ICE-BOATS - THEIR CONSTRUCTION

NEWSPARECT FILE
,

"Moral: Insure in The Travelers."

ORIGINAL ACCIDENT
Company of America,
LARGEST IN THE WORLD. ALSO,
Best of Life Companies.
 Men, for each $\$ 1000$, with $\$ 15$ Weekly Indemnity.
Accident Tickets, ${ }_{30}^{25}$ days dant for sale say, $\$ 4.50$ at all Local Agencies and Leading Railroad Stations. ALSO THE
Bést Life Policy $\begin{aligned} & \text { in the market. Indefeasi- } \\ & \text { bin Non-forecitane, Worla- }\end{aligned}$
Pail Policy Holiders, \$13,000,000 Pays ALL CLAIMS Without Discount, and immediately upon receipt of satisfactory proofs.
Assets, . . . $\$ 9,111,000$
Surplus, . . . \$2,129,000
JAMES G. BATTERSON, RODNEY DENNIS,
JOHN E. MOREIS, Ass't Sec'j.

AUTOOOPVST
Muthing viriten ot VELOCITY OF ICE BOATS. A COLLEC.

THE COPYING PAD--HOW TO MAKE

SCIENTIFIC AMERICAN SUPPLE

New Catalogue of Valuable Papers

IMPORTANT BOOKS

 ASSA ANDG.

 HENRY CAREY BAIRD \& CO. 810 Walnut Street, PLiladelphin, Pa., J. S. A.

 HENRY CAREY BAIRD \& CO., Industrial Publishers, Booksellers, and Importe
$\mathbf{8 1 0}$ Walnut St., Philadelphia, Pa., U. S. A

MAGNETISM OF SHIPS, AND THE

Barnes Foot-Power Machinery.
Complete outftrs for Actual Worksno Complete outits for Actual Worksnop
Busioess Read what acustomer sion:
Considering its capacity ame the act curateness of y yor No. 4 Lathe 1 do
not see howit
low cont. The velocproduced at such

CURE Figi DEAF

OUSUMPTION W
Kmiswex
DEFFESS $5=3 y=$

 All other kinds Imitations and Inter ior wor name is stamped in full npon all our NEW YORK BELTING \& PACKING CO.
ICE \& REFRIGERATING

$\underset{\substack{\text { Hogshead, } \\ \text { BARRE }}}{\text { KEG, }}$ STAVE MADDINERY. E. \& B. Holmes BUFFALO, N. Y.
Telegraph and Electrical Yedical Battiveres PPREIEES

OIL WORKS MACHINERY

NEW VOLUMES

 OF THETall Instrand Scierce Sfries.

D. van NoStanNo, Publisher, 23 Murray and 2% Warren Stso, New York

VENTILATION-GREAT IMPORT-

THE DINGEE \& CONARD CO'S
BEAUTFUL EVER-BLOOMING

Patants il Braxid and Inexica

Until quite recently, considerable diffi culty has been experienced by inventors in obtaining patents in both Brazil and Mexico. The requirements of the officials of these countries caused much bother and delay, and the expenses of a patent corresponded therewith.
But there no longer exists that trouble and delayin obtaining patents in either country. The proprietors of this paper have perfected arrangements with resident professional gentlemen in both countries, Brazil and Mexico, which en ables them to obtain patents within reasonable time and at reasonable cost.
These two countries embrace an enor mous area of territory, and makers of im proved machinery and implements are now finding a market for their products in those countries.
The cost need no longer deter inventor from obtaining patents in either Brazil or Mexico.
For further information address MUNN \& CO.,
Proprietors Sclentific American, 361 Broadway, New York.

\$10.00 10 \$50.00 per night. pa

FOREIGN PATENTS.

Their Cost Reduced.
The expenses attending the procuring of patents in
most foreign countries having been considerably re most foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inventions abroad
less than the cost of a of a patent in Canada is even former includes the Provinces of Ontaric. Quebec, Ne Brunswick, Nova Scotia, British Columbia, and Mani

The number of our patentees who avall themselves of the cheap and easy method now offered for obtaining ing.
ENGIAA ND.-The new English law, which went into orce on Jan. 1 st. 1885 , enab.es parties to secure. patents ent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the pecnowledged goods are sent to every quarter of the globe. A good invention is likely to realize as much for the patente him at hrrae. and the small cost now renders it posion for almost every patentee in this country to secure a tent in Great Britaiu, where his rights are as well projected as in the United States.
OTHEIR COUN'IRIES.-Patents are also obtaliod on very reasonable terms in France, Belglum, Germany
Austrla, Russia. Italy. Spain (the latter includes Cab Austria, Russia. Italy, spain (the latter includes Cab
and all theotherSpanish Colonies), Brazil, British ludia Australia, and the other British Colonies.
An experience of forty years has enabled the
publishers of THe ScIentific Animican to estapyinh competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to have the business of their clients promptly and
is done and their interescs fuithfully guarded
A pamphlet containing a synopsis of the patent laws
of all countries, including the cost for each, and othe information u eful to persons contemplating the pro-
curing of patents abroad, may be had on application to this office.
MUNN \& CCO.. Editors and Proprietors of THE ScIentipic american, cordially invite all persons desiring
any infurmation reative to patents, or the trade-marks, in this country or abroad. to call at their offices, 861 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly answered.
dress, MUNN \&CO

Phocrtisements.

SONNECTION BETWEEN THE CRY

ARTESIAN

 RAILWAY AND STEAM FTTTERS' SUPFLLES Rue's Little Giant Injector. screw jacks, sturtevant blowers, \&c. johs s. urquhart, 46 Cortandiftr, n. y

A

 VOLNEY W. MASON \& CO friction PoLLETS CLDTCHES and ELEEVATORS PROVIDENCE. R. I.

WITHERBT, RUGG \& RICHA RDSON Manufacturers

mention this paper.

PATENTS.

MESSRS. MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to exfor Inventors.
for Inventors.
Inthis line of busin ess they have had fority-one years'
ecrpervence, und now have unequaled facilities for the Henthis line of busin ess they have had forty-one years'
eperience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the
prosecution of Applications for Patents in the United prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& Co. alsoattend to the preparataion of Caveats, Copyrights
for Books, Labels, Reissues. Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with
Aeasonampherms. sent free of charge, on application, con-
tainimg fullet information about Patents and how to pro
aire cure them; directions concerring Labels, Copyrights
Design, Patent, Appals, Refissues, Infringements, As-
signments, Rejected Cases, ITints on the Sale of Pasignments, Rejected Cases, IIints on the Sale of Pa-
tents, ett.
We also send, reeof charge We also send, Ireeof charge, a Synopsis of Foreign Pa-
tent Laws showing the ocost and method oof securing
patents in all the principal countries of the world.

MIUNN \& CO., Solicitors of Patents, 361 Broadway, New York. BRANCH OFFICES.-No. 622 and 624 F Stree
cifo Building, near 7th Street, Washington, D. C.

ग

THE BRIDGEPORT WOOD FINISHING CO
 W York business orfice, $96-93$ Maiden lane. Manufactur
"WHEELERS DATENT WOUD KILLER. BREINIGS LITHOGEN SILIGATE PAINT LITHOGEN PRIMER, WOOD STAINS

JACKET KETTLES,

CEE-HOUSE AND REFRIGERATOR

AQUA

PURA

 Turbid Water Made Blian.
 ments removed.
 piea anan Resiult

tar

NEWARK Sild fer Circulars and Estimates. mive, NuMin, N. J.
 MUNSON'S PORTABLE MILLS,

A FATR OFPFRR.

cannot bew will put JENK INS Bros. VALVE on the worst place you can fnd, where you
 Te avoid imposition, see that valves are stamped "Jenkins Bros."

JENKINS BROS.

1 John St, New York. 13 So. Yourth Stu, Phila. 105 mike st., Botion. ROCK BREAKERS AND ORE CRUSHERS.

PPECIAL MACHINERY

For Grinding and Polishing
Manufactured by The Somersworth Machine Co
F. FR. V ARFI, Astig

154 Lake Street,
CHICAGO.

ICE-HOUSE AND COLD ROOM.-BY R.

- ASBSNOS ROUTMG

FIRE-FROOF

 \int PHIS is the perfected form of portable Roofing, manufactured by usfor the past twenty-seven years, and is now in use upon roofs of Factories, Foundries, Cotton Gins, Chemical Works, Railroad Bridges, Cars, Steamboat Decks, etc., in all parts of the world.
Supplied ready for use, in rolls containing 200 square feet, and weighs with Asbestos Roof Coating, about 85 pounds to 100 square feet.
Is adapted for all climates and can be readily applied by unskilled workmen. Samples and Descriptive Price List free by mail.
H. W. JOHNS MANUFACTURING CO.,
H.w. Johns' Fire and Water-Proof Asbestos shoathing, Building Felt,

Asbestos stemm Packinge, Boilor Covorings, Liquild Paints, Fire-Proof Painta, etc. VULCABESTOM, Moulded Piston-Rod Paeking, Rings, Gaskott, shoet Packing, etc. Established I858. 87 MAIDEN LANE, NEW YORK. Emucaea,

THE AMERLCANBELL TRLPHONE CO

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th 1877, No 186. 787
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it.or its licensees responsible for such unlawful use, and all the consequences unlawful use, and all the conseq
thereof, and liable to suit therefor.
 Order from our "Special List." THE JOHN T. NOYE MFG. CO.,

Columbia Bicycles and Tricycles.
The POPE MFG. Co.,597 Tastington St.,Bostor" Branch Houses: 12 Warren si, New
York: liowabuh Ave,' chicago.

§rientific Anmexiciam

FOR 188\%.

The Most Popalar Scientific Paper in the World. Onls $\$ 3.00$ a Yenr, including Postage. Weekly. This widely circulated and splendidly illustrated paper is publisisied weekly. Every number contains six oen pages ofring of new incolion lange number representing Engineering Works, Steam. Machinery New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Archi-
tecture Agriculture Horticulture, Natural All Classes of IReaders find in the Scientific American a popular resume of the best scientific in formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive every community where it circulate
Terms of Subscription.-One copy of the Scien-
TIFIC AMERICAN will be sent for one year- 52 numbers TIFIC AMERICAN will be sent for one year-52 numbersor Canada, on receipt of three dollars by the pub lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extria copy of the Scientific Amert CAN wil be supplied gratis for every clubof five subscriber rate. Express Money Order. Money carefully placed insid of envelopes, securely sealed, and correctly addresse seldom goes astray, but is at the sender's risk. Ad
dress all letters and make all orders, drafts, etc, puy ableto $M エ U M J V$ \& C_{0}; 361 Broadway, New York. тет
Scientific American Supplement.
This is a separate and distinct publicationefrom,
THic ScIeNTIFIC AMERICAN, but is uniform therewity in size, every number containing sixteen large pages.
The Scientific American Supplicmive is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in
all the principal departments of science and the Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History. Geography, A rchæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining
Ship Building, Marine Engineering, Photogriphy Technology, Manufacturing Industries, Sanitary En gineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated wit
engravings. The most impcrtant Engineering Works, Mechanisms,
and Manufactures at home and abroad are represented and described in the SUPPLEMENT
Canada 5.100 near Canada. $\$ 5.00$ a year, or one copy of the SCIENTIFIC AM-
ELIICAN and one copy of the SUPPLEMENT, both mailed for one year for $\$ 7.00$. Address and remit by postal order. express money order, or check,

MUNN \& Co., 361 Broadway, NeY., Publishers Scientific amelican
To Foreign Subscribers.- Under the frettionge
the Postal Union, the SCIENTIFIC Amprioni is rowsent the Postal Union, the SCIENTIFIC Amirioain le rowseat.
by post direct from New York, with regularity, to sub-
scribers in Gret scribers in Great Britain. India, Australia. and all other Russia, and all other European States ; Japan, Brazil, Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada $\$ 4$, gola, for Scientific Amirican, one year: \$9, gold for both Scientific Amprican ani Supplement for one year. This includes pcstage, which we pay. Remit MUNN \& CO., 361 Broadway, New York.

PRINTHING INKS.

