Entered at the Post Office of New York, N. Y., as Second Class Matter.
A WEEKLY JOURNAL OF゙ PRACTICAL INFORMATION, ART, SCIENCE MECHANICS, CHEMISTRY, AND MANUFACTLRES.

NEW YORK, FEBRUARY 5, 1887.
${ }_{[}^{\text {Price }} \mathbf{8 3 . 0 0} \mathbf{1 0}$ per Yentat:

BRIDGING THE HUDSON AT POUGHKEEPSIE.
A glance at any map of the Eastern and Middle States will show the need of a bridge over the Hudson River at a point midway between New York and Albany. All traffic between the New England States and the. West and. South over either of the lines having a terminus at Jersey City is subjected to more or less delay, caused by crossing the Hudson at that point. The Poughkeepsie bridge, together with about twelve miles of road to be built between Poughkeepsie and Gardiner, will obviate this difficulty by making an almost direct route from Boston and Springfield to Scranton and the anthracite coal fields and Harrisburg. The advantages to be derived by the transportation of coal over this route, and by the passenger and freight traffic between New England and the West and South, are apparent.

The Poughkeepsie bridge bas four piers in the river. These are of masonry resting upon timber caissons, which are dredged down to about 125 feet below high water. These caissons are 60 feet by 100 feet, with twelve pockets left open for dredging, and which will be filled with concrete after the caissons are sunk.

The masonry will be built on grillages, 46 feet by 100 feet by 10 feet deep, with temporary sides. These will be sunk to rest on the top of the caissons, which will be 20 feet below high water. The masonry piers are 24 feet thick and 86 feet long, and their tops will be 30 feet above high water. From that level to the lowes point of the superstructure- 100 feet-will be steel towers, 16 feet by 60 feet on the base and 16 feet by 30 feet on top, made of eight columns well braced together in all directions. The wind pressure provided against is 30 pounds per square foot upon the exposed surface of the spans and towers and the area of the trains. : The spans are provided to carry a train load of 3,000 pounds on each track, headed by two consolidation locomotives of 85 tons each, with factor of safety of 5 . The pressure on the caisson bases is about 3 tons per square foot, and the material.upon which they rest is hard gravel. The principal changes from the original plan of this bridge, as designed some 15 years ago, are, substitution of steel towers for masonry, which diminishes the pressure on foundations very. much; substitution of three cantilever spans of 548 feet each and two connection spans of 525
feet each for five disconnected spans of 525 feet each. This change enables the Union Bridge Company to erect the three cantilever spans without staging in the river. It also gives more waterway between the piers, and a clear height of 160 feet instead of 130 feet in three spans.
The superstructure will embody all the results of the atest and best practice. The following is a record of the test of an eyebar similar to those to be used in this bridge
Ultimate strength, $66,445 \mathrm{lb}$. per square inch.
Elastic limit, $36,063 \mathrm{lb}$. per square inch.
Elongatio: in 8 ft ., 21 per cent.
Elongation in 12 in . at point of fracture, $371 / 2$ per ent.
Reduction of area at point of fracture, 51 per cent. All broke in the body of the bar.
These were tested on the Union Bridge Co.'s 600 ton testing machine at Athens, Pa., at present the most powerful testing machine in the world.
It is expected to pass trains over this bridge before December 31, 1887. When it is considered that the (Continued on page 84.)

grientifir ghmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Propmetors. published weekly at

NO. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year. postape included.e.
One copy, six months, postape included.

MUNN \& Co., 361 Broadway, corner of Franklin Street, New York. Address

The Scientific American Supplement

 The safest way

NEW YORK, SATURDAY, FEBRUARY 5, 1887.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT INO. 57 .
For the week Ending February 5, 1887. Price 10 cents. For sale by all newsdealers

1. ELECTRICITY.-Gray's Standard Galvanometer.-A reflecting galvanometer with a long solenoid for fixing t.
The New Sextuplex Telegraph. - Mr. Stephen D. Field's new sysly described. -8 illustration
II. ENGINEERING.-The Meigs Elevated Railway.-The new system
of railroad.-Described at length.-Engineer Geo. Stark's report on of railroad.-Described at length.-Engineer Geo. Stark's report on
the same.-6 illustrations........................ II. GEOLOGY.-The Muir
II. GEOLOGY.-The Muir Glacier.-By G. Frederick Wright.-
Elaborate account of the great Alaska glacier.-Its surroundings Elaborate account of the great Alaska glacier.-Its surroundings
and general features.-Its velocity.-The temperatures and flora of and general features.- 1 ts
the region. -2 illustrations.
V. MISCELLANEOUS.-Method of Breaking Glass Tubes.-By ERNST BECKMANN.-A simple and certain method of cutting glass tubing.
Necklaces o
upon human hair- 1 illustration... 921
The British Life Saving Rocket Service.............................
the coast of Great Britain.-The rockets, coil box, whip block, the coast of Great Britain.-The rockets, coil box, whin
wagon, ladder, helmet, etc., described.- 16 illustrations wagon, ladder, helmet, etc., described.- 16 illustrations...
The Fading of Water Colors.-Thesubject treated with The Fading of Water Colors.-Thesubject treated with refe
to mineral colors especially.- Note by ArTHUR RICHARDSON The Gas Companies of America.-By WM. W. Goodwin.-Full statistics of this industry.--Price of gas per M. - Amount sold.-
How made and quantity of coal used, etc. How made and quantity of coal used, etc.
v. PHOTOGRAPHY.-Photography of Moving Objects, and the
Study of Animal Movements by Chrono-Photography.-By E. J. Study of Animal Movements by Chrono-Photography.-By E. J.
MAREY.-An elaborate exposition of Prof. Marey's experiments on animal motion; the report of a recent lecturc; the motions of horses and men. -17 illustrations.,
VI. PHYSICS.-An A pparatus for Maintaining Culistant Temperatures up to co0 Degrees.-By G. H. BALILEY.-An apparatus for use
in work requiring accurate maintenance of temperatures.-Its use in the determination of atomic weights. -2 illustrations. Influence of Change.-The vapor pressures of matter in the solid
and liquid states contrasted ; notes on the nature of liquids. and and liquid states contrasted; not
Soap Bubbles.-A lecture by Prof. A. W............................. 9 .
British Association, September, 1886.-A most iner befor British Association, September, 1886.-A most interesting treat-
ment of the subject; determination of the constants of films character of different films.- 8 illustrations...........................
 -A full report of this celebrated lecture, with accounts of the VII. TECHNOLOGY.-Improved Gas Fire.-Mr. WILLIAM HoULIs new open gas fre for use in living apartments, a substitute for the grate coal fre.-2 illustrations.

THE BELL TELEPHONE SUITS.

On the 24th day of January the hearing of the ap peals in the five telephone suits before the Supreme Court of the United States began. From the bench of judges, Justice Woods and Justice Gray were absent. The former was ill, and the latter decided not to sit in judgment on the case, because his relatives held Bell telephone stock. The five cases are appeals by the fol lowing parties from decisions of the circuit courts : 1, Amos G. Dolbear ; 2, the Molecular Telephone Co. 3, the Clay Commercial Telephone Co. ; 4, the People's Telephone Co.; 5, the Overland Telephone Co. The Court assigned a period of two weeks to the hearing, which is now going on from day to day.
Much sensation was created at the outset by Mr. Lysander Hill's charges in his brief and argument relative to alleged collusion between Bell's attorneys and the Patent Office examiner. He charged that the original copy of the patent with erasures marked upon it had been withdrawn from the Patent Office, and a clean copy substituted. This charge was met by Mr Storrow of counsel for the Bell Co., who stated that the change of specifications as alleged had never been made; but that he himself had made some compara tive memoranda upon a certified copy of the specification for use in the Dowd case, and that these personal memoranda had been printed in the record in the Dowd case, and this was assumed by Mr. Hill to be a true copy of the original Bell specification, while it really had nothing to do with it. This was generally regarded as a point scored by the Bell Company. Mr Lysander Hill appears for the Drawbaugh Company, the People's Telephone Co.
The immense size of the records before the court and the magnitude of the interests involved in the decision, will render this one of the memorable law trials. The Bell Company is said to have already spent a million of dollars in litigation, and the value of their franchise, as indicated by dividends and outside interests, is probably worth over one hundred millions of dollars. The court has before it twenty volumes o records, embracing 15,000 pages, besides the voluminous briefs of the different counsel.
The fact that five cases are to be jointly tried, and that such full records of testimony are produced, would seem to point to a thorough sifting of the rights of the parties and of the true scope of the claims of the Bell patent. But unfortunately this thoroughness is only apparent. All the cases are burdened by concessions and weakened by omissions. The full case against Bell, it is to be feared, will not be presented.
The Supreme Court is rigorously confined in it judgments to the case as presented by the proofs taken in the lower court. It has no right to take or call for any new proofs. Its work is really a revision of the circuit courts' judgments. In recent times there has been a pronounced tendency on the part of the Supreme Court to decide against monopolies. Its memorable reissue decisions have done much to limit the scope of patents. Formerly, it was a frequent practice to reissue a patent before beginning a suit thereby putting its claims and specification in condition for the specific suit to be brought. The Supreme Court has, by the decisions alluded to, put a stop to this practice. Each patent that comes before it must stand on its original claims. This alone has made many patents valueless. The court has also been much more vigorous in its treatment of patents than were the old school of judges. Its reputation now is that of a destroyer rather than of a sustainer of patents. Many a patent runs the gauntlet of the circuit courts Within late, years, it has been impossible to withstand with the least prospect of success, the Bell Company in the circuit courts, owing to previous favorable decisions. Whatever the issue, the merits are now to be judged by a tribunal whose tendency is opposed to patents, and which is unfettered by previou decisions.
A very interesting point is the bearing of the House telephone on these suits. No such complete defense against the Bell claims has yet been produced. First in the columns of this, and later in those of other papers, it has been described and illustrated. Yet the Supreme Court can make no use of it in framing an opinion, because it is not in the circuit court records. It the judges know of it, and they probably do, their position is a peculiar one. They may be convinced that it should break the Bell patent, or at least greatly abridge the claims, yet they can take no cognizance of it in rendering their decision. It is quite within thei power to allude to it in their opinion, merely as a mat ter of history; but for them it is not evidence.

This is greatly to be deplored. The best and most conclusive defense yet produced is excluded from consideration. The court may find itself in the position of a judge who, following the verdict of a jury which has pronounced a man guilty, condemns him to punishment, knowing him to be innocent. Thishypothetica ment, knowing him to be innocent.
On Feb. 4 the time set for the hearing expires. Th opinion and decision will then be anxiously awaited.

It is earnesitly to be hoped that some fimitation may be placed upon the extravagant claims of the Bell Co. Meanwhile, the Government suit for the cancellation of the Bell patent is progressing in Massachusetts. In this the House telephone will probably figure as a most important reference. But the remedy, if this shall prove the only one, comes at a late day. Already twothirds of the period of the patent has nearly expired, and in 1893 the first Bell patent will be public property.

SIR JOSEPH WHITWORTH.*

On Saturday, January 22, Sir Joseph Whitworth died in his eighty-fourth year, at Monte Carlo. He was born at Stockport, Cheshire, England, on December 21,1803 . His education was limited; his father first taught him, and afterward he entered a private school at Idle near Leeds. At the age of fourteen he entered his uncle's cotton mill, and spent four years in the shop after leaving the operative department, where a congenial occupation was found in the general machine work. At twenty-one he moved to London, entering the employ of Maudesley \& Clements. The latter had been associated with Babbage in the production of his calculating machine. There it was that he formed the conception of making machine tools to use in making other machinery, and it is in this line of work that he won a great share of his distinction. In 1830 he began to attain success in the production of his celebrated proof planes. In 1833 he returned to Manchester, and placed over his shop the unpretentious sign "Joseph Whitworth, tool maker from London." In this shop he introduced his great edge-planing machine.

The gauge of screw's next engaged his attention, and he collected screws from all parts of England, and constructed his standard gauge of screw threads. He had to build a perfectengine lathe for his work. Six months' consecutive work was devoted to the production of a lathe screw thirty feet long. In some sense, this has proved itself the standard lathe of the world. He also developed the slide rest in this shop. Measuring engines next engaged his thoughts; and he ultimately produced his world-famous apparatus that measured within the $1-1,000,000$ of an inch. Turning his genius to everyday life, he constructed a street sweeper that is said to have converted Manchester from a dirty to one of the cleanest of cities. From 1834 to 1849, he took out fifteen patents.
In 1854, Lord Hardinge, Master-General of Ordnance, invited him to construct machinery for making guns. This led him to make his famous experiments on rifles and projectiles. After two years' work, he produced his rifle, proved in direct trial far superior to anything of the kind in England or France. In 1856, he began his work on large ordnance, producing the famous Whitworth cannon. This has met with great favor among most nations, except Great Britain, where Sir W. G. Armstrong always obtained the supremacy as regards adoption of his guns and ammunition. His guns were used by the Confederacy in the civil war of the United States, and won encomiums from the artillerists.
His last work was the production of his hydraulic steel. He hailed the advent of the Bessemer steel process with ardor, but found its defects in the blowholes in the metal. He devised a press by which he subjected the molten metal to a pressure of six tons to the square inch, thus doing away with blowholes and increasing its strength immensely. One of his presses was called the 8,000 ton press. The results were extraordinary. The shafts of many steamers were made of this metal, those of the City of Rome and the Inflexible among others. In 1877 he applied it to armor plate. In 1868 he founded thirty $£ 100$ scholarships, which, by his advice, counsel, and donations of exhibitions to competitors, he fostered personally throughout his active days. They were designed to train young men in technical work, which he recognized as one of the needs of England. His baronetcy, which expires with him, he received in 1869.

Analyzed the Ashes.

Two barns said to be filled with unthrashed wheat were recently burned in Germany. They were insured, but it was impossible to collect, because the claim was made that the contents of the barns were simply straw. When the affair got into the courts, chemical experts were called to analyze the ashes. Wheat contains a large quantity of phosphoric acid, almost ten times as much as does straw. Naturally, in the burning of these barns, wood ashes, cement, and other mineral substances were mixed with the ashes submitted to the chemists, but none of these admixtures contain phosphoric acid. The experts found that of two samples placed in their hands one contained 10.2 per cent and the other 19 per cent of the acid, thus proving conclusively that the farmers were in the right, and the insurance companies, as is generally the case according to public sentiment, in the wrong.-Fireman's Herald.
*For a full account of the life and work of Sir Joseph Whitworth, *For a full account of the life and work of
ee Soientific American Supplement, No. 248 .

the pet ambition of john roach.

The papers are now teeming with appreciative notices of Mr. John Roach, the distinguished shipbuilder and still more remarkable statesman and philanthropist, who has recently gone to his rest. Mr. Roach was universally recognized as the most active, earnest, and productive of shipbuilders, and was widely known as a man of broad and sound views of political economy as judged from the point of view of the protectionist; but it is doubtful whether many, aside from his personal friends and his own employes, ever associated his name with those of the last named class of benefactors of their race. But the occasional hints at this modestly concealed side of the character .of that great man which have appeared since his death have reminded me of one or two occasions in which he, while generally discussing matters of business, displayed characteristics hardly to have been anticipated in a man of his habits and occupations, and having a history and surrounding such as were his during all the earlier portion of his life.
I first met Mr. Roach nearly twenty-five years ago ${ }^{\circ}$, during the most exciting period of the civil war, at that great Washington hostelry which was then, as it has remained, one of the most attractive fields of study for the reader of human nature that can be found among all the great public houses of this country. We had had occasion to discuss some matters relating to the operations of the navy-I was then in the ser-vice-and the conversation finally turned upon the general poliey of the country, especially as affecting the administration of the navy department and the development of an efficient corps of engineers; and he insisted that I should accompany him, with a mutual friend, to his room, abôve stairs, where a pleasanter atmosphere and a bright fire might prove conducive to our comfort. In the course of our chat, the great shipbuilder exhibited such a capacity of mental grasp, such power of expression, and such clearness of vision in a field to which I had supposed him an utter stranger, that I was as much amazed as delighted. He took the leading part in the conversation, and kept us entranced with his wonderful magnetism, and, at times, his eloquence, until nearly daybreak, when we left him, completely tired out, while he was himself as fresh, apparently, as in the first hour of our interview.
At another time, meeting on the "limited" train, both en route to Washington from New York, he seized upon the first available opportunity to get me cornered at the smokers' end of the car, to tell me of a plan which, as he said, he had had in mind since the very earliest days of his prosperity, when he began to see a possibility of his being able, at some time in the future, to do something for other men who might have as little of this world's goods as he possessed but a few years before. His idea was that, at some time in the not distant future, when he should have placed his business on an absolutely secure footing, and should have made his family suitable provision against future needs, he would found an institution in the neighborhood of some large city, presumably New York, in which every impecunious inventor should find all the aid that he might need to perfect the devices which might be taking shape in his brain, and to get them into successfu operation. He would establish a school of some kind, perhaps a technical school like that so splendidly started at Hoboken by the will of the late Edwin A. Stevens, with the operations of which he was tho roughly familiar, and in which he always exhibited a real interest, or like the Sibley College of Cornell University, and similar schools of mechanics and engineering, now becoming, fortunately, so common in the United States and Europe, but with the special modifications required to make his pet scheme on integral and essential part of the plan. He would sible for the needy inventor to find there pre it pos apparatus for experimentation, facilities for construction and operation of his invention, whatever, in fact, he might in any way find useful in its development, and even the aid of experienced mechanics and of learned men of science, all placed freely at his disposal; so that he might, quietly and comfortably, go about his work with an assurance that, if there was anything at all in his notion, it shonld be most certainly, and promptly, and effectively given working form and use ful application.
Mr. Roach believed, as he said, that such an institu tion might, if properly organized and well managed, be made to return to the country many times its cost by securing the immediate development of valuable in ventions and their prompt application where, without such aid, they might lie dormant and useless for years, or even be lost to the world altogether. As he put it, the successful development of a single such invention might give to the world the equivalent of millions of dollars in facilitating production, saving lives and property, or in promoting the comfort of the people.
The would-be philanthropist de lared himself thoroughly in earnest in the matter, and was very anxious to learn all that could be ascertained in regand to the probable cost of such an institution, and was
of a million of dollars in this most philanthropic of schemes. He became finally very much inclined to add such an endowment as he contemplated to that of some already established technical school; but it is to be presumed that he never quite reached the point at which he aimed to bring his private fortune, preliminarily to its appropriation. Like many another good man, with a heart as large as his brain, he went under before he felt that he had gotten his own life-raft quite safe.

I have had several such experiences; but I have never met a man who seemed to me to take at once so large and so generous a view of the opportunities of wealth -with perhaps a single exception-as did John Roach. The incident was a very pleasant surprise to me, who had never suspected that so much thought for the less fortunate of his fellow mortals had found a place in the mind of a man who was driving so tremendous a business with such wonderful energy and persistence. The anecdote will probably be as pleasant a revelation to many others among his many friends, even, perhaps, to some who had known him much longer than its narrator. I doubt if even his nearest and dearest friends ever knew all the good that this fiuent, yet reticent, man aspired to accomplish. The stories told by his own men of his thought of them, of his unceasing care for them, of his friendly aid and wise counsel, always freely given when asked, would make a volume, and a very touching and tender interest would it have to every " manly man," such as was John Roach himself.
R. H. Thurston.

Sibley College, Cornell University,

Ithaca, N. Y., Jan., 1887.

Papier Mache.

The manufacture of papier mache (literally, "chewed paper") forms an important branch of the paper industry. Who does not remember those projectiles of our school days which we called "spit-balls," and which when thrown at a wall or ceiling adhered thereto with tenacity? What was most striking about these balls was their extraotdinary hardness after they became thoroughly dry, this being the more marked in pro portion as the chewing had been more perfect.
It was through observing such hardness that theidea occurred to some one to employ paper pulp in the occurred to some one to employ paper pulp in the
manufacture of various objects. Yet the substance employed in the industry is not a " mashed" paper in the absolute sense of the word, but is a paper converted into a soft cardboard by mechanical processes.
In the manufacture of papier mache, the raw mate rial used is a bluish-gray, unsized, strong, fine-grained paper. The sheets may be compared (whiteness, which is of no account, being excepted) to Annonay lithographic paper. Cotton forms the basis of it.
These sheets are pasted together by means of a layer of dextrine or starch, applied with a steel spatula. When the desired thickness has been obtained, the mass is put into a hydraulic press that operates in a highly heated drying room. Under the immense pressure of this apparatus there forms a solid block, which is as hard as boxwood or ebony, and which is perfectly plane or has the form of the mould in which the raw material, so ductile when moist and so hard when dry, was compressed. It can be moulded into any shape whatever, that of table legs, chair arms, rose-work, mouldings, etc.
This sort of wood, without pores, sap, fibers, and knots, is capable of being worked with the saw, the gouge, the rasp, and the lathe. It can be polished, if need be, although this operation is reserved for the thick black varnish that is applied to it in several coats with an intervening stay of a night in a very hot, airheated drying room. When it comes from the latter the varnish is very hard, and is free from blisters and cracks. It is possible that many of the objects that are offered to us as being finished with Japan pr Chinese lacquer are merely impregnated and covered with a mixture of gum copal, bitumen, tar, resin, and other hydrocarbons impregnated with lampblack and color certain proportions.
The baking is the important point. When this operation has been too greatly prolonged, the varnish scales off and cracks; and when it has not been carried to a sufficient extent, the surface remains sticky. It is not necessary, then, to exceed a certain temperature, always higher than 100°.
This moulded and pressed paper can be easily turned in the lathe, and made into light and indestructible balls and beads, or be fashioned into inkstands, caskets, and cylinders.
It is from this substance that are manufactured al those bracelets of large black beads studded with Scotch imitation diamonds, all those necklaces, pins clasps, and trinkets of all sorts that are taken for pitch coal or some precious wood. Again, those handsome bracelets composed of semi-lucid and opaline globules that seem to have been cut out of a stone formed of concentric layers, like certain precious stones, are
 nacreous, painted and gilded trays, round tables, and caskets that are known as Japanese work are merely
papier mache. The Japanese know but one kind of gilding, while we have two-the dead and the brilliant. We have, likewise, a liquid nacre taken from the scales of the whitebait that well imitates the white currant and certain transparent' berries. The nacre is solidly inlaid by means of the hydraulic press, and finally the surface is finished with pumice stone in order to make it perfectly even, and covered with a colorless varnish of the first quality.-Bull. des Fabricants de Papier

The Wooden Railways of the United states.
The Northwestern Lumberman gives the following table of the , various logging railways of this country :

		发密				
Alabama	${ }_{3}^{28}$	146	${ }_{36}^{36}$	${ }_{64}^{64}$	27	250
${ }_{\text {Arkansas }}$	${ }_{28}^{28}$	104	831/2	${ }^{611 / 3}$	${ }_{20}^{23}$	215
Calirornia		114				549
Georgia	${ }_{32}^{15}$	${ }_{225}^{176}$	${ }^{85} 1316$	${ }_{2}$	${ }_{61}^{18}$	203 244 1
Kentucky	4	44		41/4	7	177
Louisiana	9	35	2	19	9	${ }^{67}$
Maryland.		13		13	2	12
Michigan..	54	283	128	2251/2	60	1,370
nnesota						
Mississippi	${ }_{7}^{15}$		${ }_{21}^{21 / 2}$	12	15	139 98
Missouri	7	${ }_{8}^{31}$		12 8	7	${ }_{9}^{93}$
New Hampshi	3	19	28		7	184
New York.	4	9	6		2	20
North Carolina.	8	117	6	4	9	123
Ohio ..	5	18	5	12	${ }_{8}^{8}$	${ }_{8}^{36}$
Oregon		7	${ }^{4}$			${ }_{44}^{28}$
Pennsylvania	${ }^{44}$	168	${ }^{123}$	${ }^{51}$	${ }_{20}^{36}$	444
(ennessee...		${ }_{51}$		${ }_{51}$	4	80
Texas..	35	153		153	36	296
Utah..	1	2				
Vermont	1	26	4		1	15
Washington Terr		${ }_{109}^{120}$		${ }_{27}$		114
West VIrginia...	1	${ }_{3}^{32}$	$\begin{aligned} & 8012 \\ & 38 \end{aligned}$	8818	${ }_{3}^{3}$	$\begin{array}{r}48 \\ 98 \\ \hline\end{array}$
Wisconsin..		56				95
Totals.........	383	2,288	1,011	1,001	428	5,182

These roads for the most part are made of wood, consisting of longitudinal poles or timbers, and the cars and locomotives that run on them are provided with grooved or double-flanged wheels. They are the cheapest form of railway. The estimated aggregate amount invested in these roads is close on to twelve millions of dollars, itemized as follows :
5,182 cars, at $\$ 150$. 00.......
. $\$ 1,712,000$ 5,182 cars, at $\$ 150 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
2,288 miles roadbed and track, at $\$ 4,000$ 9,152,000
. $\$ 11,641,300$

Total..

How to Cleanse Drop Oll

An interrogator in one of our Continental exchanges wishes to know how he ean cleanse the thick drop oil from the engine, bearings, shaftings, pulleys, etc., so that it can again be used for lubricating, and N. A. answers as follows:
This drop oil is collected in many mills and factories to be cleaned and used again. A little apparatus has been constructed for this purpose, which, it is reasonable to suppose, is patented. It may be described as follows: The apparatus is a box-like concern, of several "stories," the interior either lined with, or else consisting entirely of, lead. Above, it has a shoulder like a funnel, into which is poured the oil to be cleaned. The purified oil passes off through an escape pipe in the bottom. The different shelves, or "stories," are perforated and covered to a height of about two inches with raw, loose cotton, through which the oil must percolate. The cotton serves as filter, and retains all kinds of contaminations. After the oil has in this manner passed through the several shelves, it is nice and clean and drops into a vessel underneath. The dirty cotton is occasionally replaced by clean. This is about the most inexpensive way of effecting it that I know of. It is also necessary to add that the apparatus must stand in a warm place. The cleaning of the oil with chemicals is both a tedious and a doubtful process, because even after thorough washing it may still retain traces of acids, rendering it unfit for lubricating purposes.

Change of Officers.

The death of John Roach, who was president of the Chalmers-Spence Co., of New York, well-known manufacturers of asbestos goods of all kinds, left a vacancy, which was filled by the trustees of the company, on the 24th inst., by the advancement of Robert H. Martin, the former secretary and business manager. Mr. Geo. E. Weed still holds the position of treasurer, while Mr. C. H. Van Nostrand, the former efficient and agreeable managing clerk, has been made secretary of the company. The business of this company is steadily on the increase.

Comet $a, 1887$ (Thome)

Science Observer says: On January 24, a cable message, received from Dr. A. Krueger, announced the discovery of a bright comet by Dr. Thome, Director of the Observatory at Cordoba, on January 18, in the constellation Grus, and further stated that the object will become very brilliant, and in phygical characteristics similiar to the great comet of 1880 . The tail of this comet was seen at Melbourne on the night of January 21, as reported by the Associated Press.

LATHE FOR AMATEURS AND LIGHT SHOP WORK. The illustration herewith shows a practical form of lathe for a large variety of work. It is sold at a very low price, on account of the large demand that there is for such an article, from young beginners in mechanical work. The lathe has $41 / 2$ inches swing, is_ 12 inches between centers, and has a face plate for turning cups, a long and short tool rest, and three turning tools. A scroll saw is also furnished for use in connection with the lathe. The saw is attached to the table, so that it can be removed easily, and the lathe as

the house lathe.

easily attached. The saw swings nearly 16 inches in the clear, and, though not calculated for heavy work saws inch walnut readily. The lathe rests on iron legs screwed to the table, the saw being operated independently of the lathe, thus avoiding the unsteadiness and noise which so often render one or the other of these appliances nearly useless.
This machine is made by A. H. Pomeroy, of Hart ford, Conn., who furnishes an illustrated catalogue.

AN ELECTRICAL MUSIC BATON.

Those who frequent the opera must certainly have been struck with the regularity with which the choruses or orchestras of the side scenes follow the measure beaten by the leader of the orchestra. It is very rare that the arm of the one is in advance of or behind the voices or instruments of the others. How is such a result brought about? Up to the present, the means have been of the most elementary character. The leaders of the choruses in the side scene have followed by eye the motions of the orchestra
leader's arms. This was not always an easy thing to do; especially when the stage was entirely closed by scenery; and the musician who beat the measure in the side scenes was obliged to obtain a glimpse of the hall through an aperture or fissure, and get over the difficulty the best way he could.
This process has recently been discarded, and there is now being used for leading the music of the side scenes a metronome, which we herewith illustrate, and which is the invention of Mr. Carpentier. The opera tion of this is of the simplest character. At the representation of "Patrie," for example, in the fourth act the confederate Flemings perceive that they have been denounced, on hearing the music that precedes the Spanish troops, and the strains of which gradually mingle with those of the orchestra. In the side scenes, the measure is here marked by means of the Carpentier metronome placed upon the music stand of the side scenes leader, and connected with the orchestra leader's stand by two electric wires.
The apparatus is represented in Fig. 2. It consists of a blackboard, which, if it be desired, can be hung up on the scenery, and the principle of which is based upon a curious optical illusion. On the surface of the board the reader sees a white and a black line, the latter hardly visible. Each of these lines marks the position of a ruler mounted in a groove in the board in such a way that it can pivot a quarter of a revolution on its axis, and alternately show two surfaces, one of which is white and the other black like the board. In the figure, the upper ruler exhibits its white surface, and the lower its black one. As by a rapid and simultaneous pivoting the upper ruler becomes black and the lower one white, the spectator seems to see but a single ruler, which appears to move backward and forward. The illusion is perfect, even though the artifice be known.
Such is the principle of the apparatus. As for its mechanism, that is very simple, and the details. of it are shown in Fig. 3. Here may be clearly seen the two rulers, G, H, at the neighboring extremities of which may be distinguished two small rollers, over which run cords. Each of these cords is pulled at one end by a spring and at the other by the armature of an electro-magnet, F. As long as no current is traversing the electro, the springs hold the rulers in one of their two positions; but when the electro acts, the springs yield, and the rulers abruptly pivot.
As for the maneuvering of the apparatus; that devolves upon the leader of the orchestra. . Fig. 1 shows the post of the leader, who stands upon a low plat. form among his musicians. Under his right foot he has an iron pedal, A, mounted upon two rods that extend beneath the platform, and at the least pres sure set up an electric contact. The reader will see that if the leader presses the pedal, a current will pass, and the phantom baton will be observed in its ower position, and that if the pressure be removed the baton will rise, thus perfectly obeying the foot of him who controls it.' While maneuvering the apparatus, the leader has his two hands free, the right one to hold his baton, and the left to turn the pages of his music. We must state, in addition, that he has under his eyes, and lying flat on his stand, an apparatus, D , which is a reproduction, on a small scale, of the one between the scenes. The two apparatus are con ected by the wires, B, C, E, and make identical move
ments, the smaller one informing the leader of the effect of the motions of his foot; and guarding him against irregularities that might be followed by disagreeable consequences. The same small apparatus is shown at the bottom of Fig. 3.
This new electric baton operates with great precision, owing to the fact that the masses in motion are very small. It presents, moreover, the advantages of visibility that would be possessed by a baton held in the hand, since it has every appearance of such.L'Illustration.

DEVICE FOR TRIMMING THE ENDS OF TUBES.
Tubes cut in two in the usual way have upon the outside a slightly roughed or burred edge and upon the inside a rough and ragged edge, that serves to most materially lessen the bore of the tube at each joint, as

DELGADO'S DEVICE FOR TRIMMING THE ENDS OF TUBES.
shown at A^{\prime}, and at the same time to form a well adapted lodging place for any sediment carried by the fluid passing through the pipe. The obstruction thus presented is gradually and surely increased by the lodging sediment, and the flow through the pipe thereby lessened, until finally the pipe is completely choked. To easily and quickly remove these rough edges, so that the end of the pipe will present an evenly rounded surface, as shown at \mathbf{B}^{\prime}, that will offer no obstruction to the flow and form no recess for the sediment to lodge in, is the object of the simple and ingenious device here illustrated.
Pivoted in the forked end of the handle is a curved arm, having an aperture formed in its enlarged outer end, through which the pipe to be trimmed is passed. Upon the inner side of the end of the arm, and flush with the edge of the aperture, is a projection, the serrated edge of which rests against the tube to hold it firmly. To each shank of the fork is pivoted a link, between the outer ends of which is swiveled an apertured disk, through which the shaft of the cutting tool passes, the outer end of the shaft receiving a crank handle, by means of which the cutter may be turned to trim the end of the tube. The cutting tool, shown enlarged in the lower view, consists of a disk through which passes a shaft. One face of the disk is formed with cutting teeth, while the hub of the shaft upon the same side is slightly enlarged and also formed with

Figi li-LIEADER's STAND.

fig: g - thectric music batong.

Fig. 8,-mECHANISM of THE BATON,
teeth. It is evident that this cutting tool, which may be turned either by hand or by means of the device above described, is well adapted to the work, and will above described, is well adapted to the work, and will
effectually remove the rough edge from both the inside and outside of the tube.
This invention has been patented by Mr. E. Querol y Delgado, whose address is 142 Hull Street, Brooklyn, N. Y.

back band For HarNess.

This back band is designed for use in harness in which chains form the traces. To each end of the back band, which is a broad piece of leather of sufficient

JOHNSON'S BACK BAND FOR HARNESS.

length to pass over the back of the horse, is riveted a metal plate formed with a T-head at one end, through which the rivets pass. The lower portion of the plate is folded upon itself to form the lonp for the trace. To prevent the plates chafing the horse, they are covered with leather strips, which are, preferably, tongues formed at the ends of the back band. Snap hooks are attached to the ends of the band and to the plates by means of metal loops held to the band and plates by the same rivets that connect the plates to the band. The loops are covered with leather strips. By making the back band in this way, the loops in the plates take the wear of the traces and preserve the leather of the band, while the metal loops holding the snap hooks take the wear of the hooks, so that the durability of the band is greatly increased; and by the use of the snap hooks the band is made much more convenient than the ordinary band of this character This invention has been patented by Mr. Ike Johnson, of Honey Grove, Texas.

balanced cooring stove for ships.

This stove is designed for use on ship board, as it is accurately equipoised on its base, so that it will always maintain a horizontal position, no matter to what ex tent the ship may roll. The frame of the stove is constructed to form a fire box and ash pit at one end and a separate oven at the opposite end. The oven and fire box are separated by a central space or cham ber inclosing the upper end of the base or support. The top plate, to which the fire box and oven are joined, is provided with a hollow ball, open a the top and bottom, and fitting in a hemispherical

BEKOFSKY'S BALANCED COOKING STOVE FOR SHIPS.
seat or cup of the base, thus pivotally supporting the stove. The base forms the chimney of the stove, and is connected at its bottom with a horizontal pipe which extends as far as convenient, and connects with a vertical pipe. Beneath the horizontal pipe is formed an air space that prevents burning the deck. The flame and products of combustion may, by properly arrang. ing a damper, be made to pass directly to the chimney or to pass first around the oven. Between the fire box and oven are formed boxes, which may be closed by doors and which serve as warmiñg ovens to be used
or heating plates, etc. From the top of the stove ise arms supporting rods notched in the upper edges, and on these are placed two movable weights formed with open hooks, so that they can be easily shifted, in order to be brought opposite any pan or kettle for properly counterbalancing and keeping the stove in an upright jposition. When the stove stands at an angle, the lower opening in the ball will be partially closed by the sides of the cup, which tends to interfere with the draught. To avoid this, the cup portion is formed with numerous side openings, sufficient in size and number, so the aggregate area of the openings will never be less than the sectional area of the support. At one end of the fire box may be formed a water-heating reservoir. On smooth water the stove may be chained to the deck by four chains, or four legs sliding in vertical grooves may be used instead.
This invention has been patented by Mr. V. S. Bekofsky, Isaakiefsky. pl. n. $\frac{6}{89}$, care Restaurant, Mrs. Michel, St. Petersburg, Russia.

THE INGERSOLL DUPLEX ROCK DRILLING MACHINE
The engraving illustrates an invention which was patented in July, 1886, in the United States, Canada, England, France, and Germany. It is the result of many years' practical experience, and has several novel features.
The drill shaft is journaled to revolve, and to reciprocate vertically in bearings in a carriage, which is fitted to slide on the side bars of the frame. The hand crank wheels are mounted to revolve freely on the main shaft, with which they are connected by pawls and ratchets.
The main shaft is journaled horizontally in the dril carriage, and is provided with two cranks, which are connected by straps with the cross head of the drill shaft. The cross head is fitted to slide vertically on the drill carriage, and the drill shaft is journaled to rotate in the cross head, but it is provided with rigid

THE INGERSOLL DUPLEX ROCK DRILLING MACHINE
collars above and below the head, whereby the head ifts the drill shaft. Around the drill shaft a powerful spring is coiled, to drive the drill into the rock. A feed screw provided with a hand crank at the top of the machine, is journaled in the upper cross bar of the frame. On the feed screw is a nut journaled in the upper cross bar of the carriage, and provided with upper cross ratchet teeth. On the front of the carriage is a feed ratchet teeth. On the front of the carriage is a feed
lever, whose upper end is provided with a pawl to engage the feed screw nut, and whose lower end has a screw point to be engaged by a wedging collar on the drill shaft at each throw thereof. The drill shaft is spirally grooved and provided with a splined ratchet whee and a pawl, whereby the drill is rotated a little at each stroke, so as to take a new chip. The frame is mounted on a tripod, each leg of which has telescopic adjust ment, and the hinge joints are so arranged that the drill may be set to work horizontally, or at any down ward slant, and at almost any upward slant.
In operation, the feed screw is first to be turned until the drill point rests firmly on the rock to be drilled, then turn the crank wheels until the hole is drilled deep enough. The pawls on the wheels engage the ratchets on the main shaft and turn it forward, lifting the drill against the resistance of the spring. When the shaft cranks pass over center, the spring drives the drill into the rock with all its force, the ratchets of the shaft revolving freely forward ahead of the pawls on the wheels, and the shaft cranks throwing past their lower dead center. Then the pawls again engage the ratchets as before; so that two full revolutions of the shaft and two strokes of the drill are produced by each revolution of the drive wheels, thus permittipg the
operator to work moderately, and at a living speed,
while the drill makes double the same speed without any jar on the machine. This is a new mechanical device, and it gives the name "Duplex" to the machine. While the feeding device may be adjusted to feed at different rates of speed, yet it is purely automatic when at work, and adjusts itself to the varying hardness of the rock in the progress of drilling each hole, so that, if a soft stratum be entered, the carriage will be fed fast enough to make each stroke do work ; or if a hard streak be struck, the drill will not be forced ahead any faster than it has cut away. Practical miners will appreciate the value of this characteristic in the saving of drill points and in the saving of wear and tear on the machine.
Already the demand for these machines is very large, and it has become necessary for the manufacturers to provide them with engines attached to meet all requirements.
For further particulars, address the agent of the manufacturers and owners of the patents, Mr. W. X. Stevens, 705 G Street, N. W., Washington, D. C. Also see our Business and Personal column.

IMPROVED GAS PLIERS.

The engraving represents a combination tool embodying pliers having variously sized jaws, a wire

DAHL'S IMPROVED GAS PLIERS.

cutter, a lava tip turning attachment, a band for cleaning the slots of lava tips, a screw driver, and a stopcock or valve turning recess. Each jaw is formed with two concave serrated recesses arranged to register as shown. In the extreme end of each jaw is a serrated recess, back of which is a semicircular flange, still back of which is a plain-faced recess. When the faces of the end recesses are brought into engagement with the tops of the burners, the lava tips will pass through the apertures of the flanges and enter the plain recesses. The lava tips may be brought into the bite of the flanges, and so forced within their sockets. In each section of the pliers, just back of the recesses, is formed a slot having a cutting edge. These constitute a wire-cutting attachment. The inner edges of those portions of the handles next the pivot are parallel when the jaws are brought together, thus providing for the reception of the thumb piece of a valve and enabling the operator to turn any valve or stopcock that may have become bound. The rear end of one handle is formed as a screw driver, while in a recess in the other handle is fitted to slide a spring strip, that may be used to clean out the slits of lava tips.
This invention has been patented by Mr. Will P. Dahl, of 919 25th Avenue South, Minneapolis, Minn.

IMPROVED LEAD PIPE REEL

Lead pipe is usually put up on reels which do not have an inclosing case, the heads of the reels being con-

EITAPENC'S IMPROVED LEAD PIPE REEL.
nected by slats, which must be knocked off before the pipe can be unreeled and disposed to customers; and before the reel can be turned, it is necessary to elevate it upon a bar passed through its hollow shaft or body. Like trouble also attends the putting up of the pipe on the reel. These difficulties are obviated in the invention here illustrated, which has been patented •by $\mathbf{M r}$. Fred. Eitapenc, of Oneonta, N. Y. The outer reel case
is of circular form, and is made up of opposite heads connected by slats. Within the case is arranged the reel proper, which is provided with two heads, suitably connected together and mounted upon a shaft having bearings in the heads of the case.
One end of the shaft projects sufficiently far to receive a crank handle, by means of which the reel may be turned. By this construction there will be no ne cessity of raising the reel from the ground either to coil the pipe upon it or to remove it, while the slats need not be removed, as the pipe can be passed between any two of them. The reel is thus rendered more durable by not having to knock off the slats to pay out the pipe, and the whole is so fitted that it may be readily taken apart when required.

Honor the Inventor.

We-regret that there is a disposition sometimes to speak sneeringly of the various patent devices that are brought to the attention of the public, and it is possible that there are also sneers for the inventors of these devices. While it is true that there are some cranks among inventors, and while it is true that many of the patent devices are crude and impracticable, yet each one represents an original idea, which, combined with the original ideas represented in other devices, has made our people the foremost on the earth. There have probably been some worthless inventions patented at Washington, and it is probable that ninety-nine out of every hundred have yielded no returns to the owners; but it is a truth nevertheless that there are very few of the whole of the vast number which have not served a noble purpose, the ideas contained in each having been at some time and in some form utilized in producing the perfected device, that works with greater precision and the apparent intelligence of the human will. It is not one inventor to whose genius is due the perfect machine of to-day, but it may be that the ideas of a thousand have been combined to produce that result, many of whom are dead, nearly all of whom are forgotten and their names unknown, save as they are written upon the musty records of the patent office.

Unaided by the genius of the humble and sometimes cranky inventors, the world with its billions of capital and its millions of strong and willing arms would have made but poor progress in bringing railroading up to its present state of perfection. The tremendous possibilities of the future are bounded only by the genius and the labor of inventors. There will be no lack of labor and capital, but all will depend upon the men who wear their lives out in making the practical application of an idea to which their genius has given birth. A few more efforts, and the thousand or so of geniuses and cranks miscalled "the patent car coupler fiends," but who are really angels in disguise, will give us a car coupler that annually saves many thousands of valuable human lives. A little more labor, and the inventors will give us a brake that will greatly lessen the number of collisions. A few more improvements, and we shall havesuch tunneling and grading machinery that, instead of going over and around mountains and hills, we shall go straight through and under them, giving us solid tracks without grades and curves; and in a word, instead of our trains making fifty miles an hour, we shall with greater safety make one hundred miles an hour, at just such time as it shall suit the convenience of our inventors to have us do so.
Then by all means let us give every encouragement and aid possible to inventive genius. Instead of contracting, let us enlarge in every manner possible the scope and usefulness of the patent office. Instead of sneering at the "crank" inventors of patent devices, let us honor them as the greatest benefactors of their race.-Railway Service Gazette.

Gen. Charles P. Stone.

General Stone, known as Stone Pasha from his services in Egypt, died in this city, January 24, of pneumonia. He was born in Springfield, Mass., in 1826. He graduated from the Military Academy in 1845, and served in the Mexican and civil wars. He resigned from the United States army in 1864, and in 1870 accepted a position under the Khedive of Egypt. His work in reorganizing the Egyptian forces received the highest praise. He resigned his commission in 1883. He was offered the command of the English expedition against El Mahdi, but refused it, as he could not obtain a sufficient allowance of forces. His work as engineer and director of the pedestal for the Statue of Liberty on Bedlow's Island, in New York Harbor, won him considerable notoriety. This was the last work of his life, being completed but a few months before his death.

A Chance for the Inventors.

"The man who will invent a connection for bell ropes which will not break glass can make a fortune," said one of the attaches of the car department of the Pennsylvania road to an expressionist. "We lose an enormous amount of plate glass each year by breakage through the use of the iron connections on bell ropes."-Buffalo Express.

©arrespondence.

Explosive Effects of Dynamite

To the Editor of the Scientific American:
I bave seen of late in various publications many theories advancea in trying to account for the almost utter annihilation of human bodies by dynamite or nitro-glycerine explosions, most of which point to the direct action of the explosive. Owing to extraordinary rapidity of ignition and expansion, and consequent instantaneous formation of a vacuum, may not the terri ble rending into fragments of bodies within the immediate vortex of the explosion be accounted for on the hypothesis of a sudden expansion of the air con tained in the lungs and other parts of the body?

Cape Vincent, N. Y., Jan. 21, 1887.

Discovery of a New Comet (Comet Brooks No. 1 of 1887).

To the Editor of the Scientific American:
On Saturday evening last, January 22, 1887, about 7 o'clock, I discovered a new comet in the constella tion Draco

Its approximate right ascension at that time was 18 hours; declination north, 71 degrees. The comet is rather small, faintish, and has a slow easterly motion Telegraphic announcement was at once made, and news of the discovery was cabled to Europe the same evening.
This is the first comet of the new year, and ranks as the tenth comet it has been my good fortune to discover during the past few years. It was in this constellation-Draco-and a few degrees distant, that I discovered the second comet of 1883, now known a the Pons-Brooks comet. The new object being cir cumpolar does not set, but remains above the hori zon the entire night.

William R. Brooks.
Red House Observatory, Phelps, N. Y.,
January 22, 1887.

Another Poisenous Snake in Pennsylvania.

 To the Editor of the Scientific AmericanI am a frequent reader of the Scientific American The very interesting article in it on rattlesnakes, by Henry Guy Carleton, in March, 1886, and the saying of an "Undergraduate," "They were being taught we have but two poisonous snakes in this section of the United States, and the blowing viper is not poisonous, ${ }^{2}$ prompt me to offer a description of a third poisonous one, killed by myself, here in Lycoming County, Pennsylvania, my home for over thirty years.
This snake was a dull black color from head to tail above; beneath, three colors, mechanically mingledwhite, cobalt blue, and gamboge yellow. Length, feet ; thick and clumsy ; the skin loose and very thick head, 2 inches broad, with a horn solidly attached to the nose, three-eighths of an inch broad and the same high, having an arched point, bent backward. There are two fangs in the upper jaw, three-quarters of an inch long; stouter than a rattlesnake's; of the sam siac
On striking it with a stone, it came straight at me the head raised about a foot, its throat flattened to inches or more, and the jaws opened very wide, and blowing and hissing like a goose.
I have met with but one other, that hissed and moved away quickly. We have had rattlers killed every year ; copperheads, less frequently. We have another blowing snake, not uncommon, with a head like an eel's, a thin tail, no fangs; these are of very light colors-pinkish chestnut and white, chiefly mostly about $21 / 2$ feet long, with round bodies.
Williamsport, Pa., Jan., 1887.

Algaborilla.

Husks known under the name of algaborilla contain a tannin-like substance, which can be used for dyeing yellow. The trees from which these husks are obtained are the Prosopis pallida and the Prosopis algarobo, which occur in the mountainous districts of South America. The seeds form about onefifth of the weight of the husk, but contain no tannin. The husks contain about 27 to 29 per cent o the tannin. The coloring matter yields yellow pre cipitates, with salts of tin, antimony, lead, or alumina the tin compound is the brightest. For dyeing yarn, the latter is mordanted with tin, as usual, and placed in the dye bath, which contains water heated to boiling and about 7 to 10 per cent of ababorilla. After working the yarn in the bath for some time, the bath is left to cool, and the yarn afterward washed and dried. The color is not as brilliant as that obtained with fustic, but more of a straw color; it is, how ever, pretty fast, and resists weak acids; alkalie change the color into brown. With iron mordants', good grayish black shades can be produced, and 5 to 7 per cent of the husks will be sufficient for the bath Wool can also be dyed with algaborilla.

Birday Nents and Eggs.*

The philosophy of birds' nests and eggs involves questions far too profound to be settled in an hour's lecture. The extreme partisans of one school regard birds as organic automata. They take a Calvinistic view of bird life; they assume that the hedge sparrow lays a blue egg because, under the stern law of protective selection, every hedge sparrow's egg that was not blue was tried in the high court of evolution, under the clause relative to the survival of the fittest, and condemned, a hungry magpie or crow being the executioner. The extreme partisans of the other school take an entirely opposite view. They regard the little hedge sparrow not only as a free agent, but as a highly intelligent one, who lays blue eggs because the inherited experience of many generations has convinced her that, everything consid ered, blue is the most suitable color for eggs.
Perhaps the first generalization that the egg collector is likely to make is the fact that birds that breed in holes lay white eggs. The sand martin and the kingfisher, which lay their eggs at the end of a long burrow in a bank, as well as the owl and the woodpecker, which breed in holes in trees, all lay white eggs. The fact of the eggs being white, and consequently very conspicuous, may have been the cause, the effect being that only those kingfishers which bred in holes survived in the struggle for existence against the marauding magpie. But the converse argument is equally intelligible. The fact that kingfishers breed in holes may have been the cause, and the whiteness of the eggs the effect; for why should nature, who is generally so economical, waste her coloring matter on an egg which, being incubated in the dark, can never be seen? The fact that many petrels and most puffins, which breed in holes, have traces of spots on their eggs, while their relations the auks and the gulls, who lay their eggs in open nests, nearly all lay highly colored eggs, suggests the theory that the former birds have comparatively recently adopted the habit of breeding in holes, and that, consequently, the color, being no longer of use, is gradually fading away. Hence, we assume that the color of the egg is probably the effect of the nature of the locality in which it is laid.
The second generalization which the egg collector is likely to make is the fact that so many of these birds which breed in holes are gorgeously colored, such as kingtishers, parrots, bee eaters, etc. The question naturally arises, Why is it so? The advo cates of protective selection reply : Because their gay plumage made them so conspicuous as they sat upon their nests, that those that did not breed in hcles became the victims of the devouring hawk, exactly as the conspicuous white eggs were eaten by the marauding magpie. But the advocates of sexual selection say that all birds are equally vain, and wear as fine clothes as nature will let them, and that the king fisher is able to dress as gorgeously as he does because he is prudent enough to breed in a hole safe from the prying eyes of the devouring hawk. The fact that many birds, such as the sand martin and the dipper which breed in holes, are not gorgeously colored, while others, such as the pheasants and the humming. birds, are gorgeously colored, but do not breed in holes, is evidence, as far as it goes, that the gor geous color of the bird is not the effect of its breed ing in a hole, though the white color of the egg probably is. It must be admitted, however, that the atter cases are not parallel. While the hen kingishers and bee eaters are as gorgeous as their mates, the hen pheasants and the hen humming birds are plainly, not to say shabbily, dressed. If birds be as vain as the advocates of sexual selection deem them, it must be a source of deep mortification to a hen humming bird to have to pass through life as a tof to her rainbow-hued mate. While the kingfisher retios for the safety of its eggs upon the concealed situation of its nest, the humming bird depends upon the unobtrusiveness of the plumage of the sitting hen.
A very large number of birds, such as the grouse he merlin, most gulls and terns, and all sandpipers and plovers, rely for the safety of their eggs upon the similarity of their color to the ground on which they are placed. It may be an open question whether these birds select a site for their breeding ground to match the color of the eggs, or whether they have gradually changed the color of their eggs to match the ground on which they breed; but, in the absence of any evidence to the contrary, it is perhaps fair to assume, as in the previously mentioned cases, that the position of the nest is the cause, and the color of the egg the effect.
Many birds make their nests in lofty trees, or on ledges of precipitous cliffs. Of these, the eagles, vul tures, and crows are conspicuous examples. They are for the most part, too powerful to be afraid of the ma rauding magpie, and only fear the attacks of beas o prey, among which they doubtless classify the human race. They rely for the safety of their eggs on the inac
cessible positions of the nest. Many of them also belong to a still larger group of birds who rely for the safety of their eggs upon their own ability, either singly, in pairs, or in colonies, to defend them against all aggressors. Few colonies of birds are more interesting than those of herons, cormorants, and their respective allies. These birds lay white or nearly white eggs. Nature, with her customary thrift, has lavished no color upon them because, apparently, it would have been wasted effort to do so; but the eggs of the guillemot are a remarkable exception to this rule. Few eggs are more gorgeously colored, and no eggs exhibit such a variety of color. It is impossible to suppose that protective selection can have produced colors so conspicuous on the white ledges of the chalk cliffs; and sexual selection must have been equally powerless. It would be too ludicrous a suggestion to suppose that a cock guillemot fell in love with a plain colored hen because he remembered that last season she laid a gray colored egg. It cannot be accident that causes the guillemot's eggs to be so handsome and so varied. In the case of birds breeding in holes secure from the prying eyes of the marauding magpie, no color is wasted where it is not wanted.
The more deeply nature is studied, the more certain seems to be the conclusion that all her endless variety is the result of evolution. It seems also to be more and more certain that natural selection is not the cause of evolution, but only its guide. Variation is the cause of evolution, "but the cause of variation is unknown. It seems to be a mistake to call variation spontaneous, fortuitous, or accidental, than which expressions no adjectives less accurate or more misleading could be found. The Athenian philosophers displayed a less unscientific attitude of mind toward the unknown when they built an altar in its honor.

Krupp's Prussian and Carnegie's Pittsburg Steel

A visitor to the famous Krupp steel works gives an interesting account of its operations, which is related in the American Engineer. He saw a ten ton crucible steel casting being poured, and an enormous seventy ton steel casting being very gradually cooled, the outside being warmed with coke fires until the inside has partly solidified, when the block is hammered into shape to form the main piece of an immense gun. The enormous array of furnaces, and the perfect manner in which such a' large number of men-in some cases as many as eight hundred-all lift their eighty pound crucibles out of the furnaces and pour them. into the mould in rapid succession, is described as a wonderful gight. The scrupulous care bestowed upon the minutest detail was a noticeable feature about their manipulation of steel. If, after extended trials, a certain practice or proportion of ingredients has been found to give the best results, that practice is absolutely and exactly adbered to, nothing being left to mere possibilities. Apropos of the above, the Pittsburg Gazette states that Andrew Carnegie and his partners pay out more money in wages every month than Krupp, the celebrated gun maker of Essen, Germany, disburses among his men. Krupp employs 10,000 men, and Carnegie's various Pittsburg mills are operated by $6,000 \mathrm{men}$. The difference in the aggregate of salaries is the difference between American and European pay. The monthly pay roll of the Pittsburg iron master is over half a million dollars. Eight of the Carnegie blast furnaces produce each day 1,500 tons of metal. For making a ton of any kind of metal it requires four tons of material, consisting of ores, limestone, coke, and in mill metal cinder is used, making for each day 6,000 tons of material handled. Estimating this immense amount at twenty tons, or 40,000 pounds, to a car, it would require the use of 300 cars. In addition to this, the firm finishes every day at least 1,000 tons, requiring fifty cars more. Besides this, 150 tons of unfinished old iron and raw steel are handled at Thirty-third Street. The liquid metal, 650 tons daily, handled at the steel rail mill is transferred in what are called ladles. In making an estimate fully within bounds, it is safe to say that 375 cars are required every day to handle the raw and finished material used by Carnegie's mill. Twelve engines, or one locomotive for every forty cars, each being thirty feet long, added to the 375 cars, would make a train of 12,380 feet, or more than two miles in length. For 300 days it would take 111,000 cars. This would make a train $3,330,000$ feet long, which would reach over a distance of 630 miles-from Columbus to New York. The plants owned by the Carnegies cover 200 acres of ground. Upon this there are laid and maintained thirty-five miles of tracks, and the firm own twenty-two locomotives.

Beware of Draughts.

This is the time of year for colds, neuralgia, rheumatism, pneumonia, and kindred complaints. A little draught may produce either. A Spanish proverb runs as follows:

If cold winds reach you through a hole

A Multitudinous Clock.

The renowned horologist of Villingen in the Black Forest, Christian Martin, has just completed a clock which, as a marvel of construction, probably surpasses all that has hitherto been achieved in the clockmaking art. The clock is three and a half meters high, two and three-quarters broad, and is set in a magnificent Gothic case. It shows the seconds minutes, quart Gothic case. It shows the seconds, minutes, quarte hours, hours, days, weeks, months, the fo
the year, the years, and leap years until the last seeond of the year 99,999 A.D The clock is not only chronological, but geographical, and shows the right time, by comparison, in every latitude of the northern and southern hemispheres. It records the successivephases of the moon and it strikes the minutes as well as the quarters and hours.
The mass of automatic machinery in it will seem stupendous, even to those who have seen the splendid specimens of loca Black Forest clockınaking in the public Clockmakers' Halls at Tribery, Furtwangen, and other places, and the great clock on the opposite side of the Rhine in Strassburg Cathedral. There are multi tudes of working figures, representing the life of man, the creed of Christendom and the old Roman and German mythologies. There are sixty different personages to strike the sixty minutes-the Guardian Angel, Death as a skeleton, the twelve Apostles, the ages of man, the four seasons, the twelve signs of the zodiac the seven Teutonic deities-after which our days of the week are named-and many others.
During the night hours, winter and summer, a night watchman comes for ward and blows the hour on his horn. At sunrise a cock appears and crows lustily The cuckoo, the inevitable ornament of a Black Forest ideal clock, remains con cealed in the works of Herr Martin's clock until spring. The great face of the clock has thirty-two distinct compartments. A whole series of movable pictures are ex hibited in succession by the works-rep resenting in turn the seven days of Creation and the fourteen "Stations of the Cross." A little sacristan rings a bell in the spire, and then kneels down and folds his hands. The musical works, always a great feature in the Black Forest clock, have a sweet, flute like tone. -Echo.

IMPROVED SPRING WHEEL TRACTION ENGINE.

 We illustrate an improved spring spudded wheel, by Messrs. J. \& H. McLaren, Midland Iron Works, Leeds The tires of the wheels are formed with openings through which shoes are protruded by the action ofspiral springs, in such a manner that two or more of these spuds of each wheel will bear at the same time upon the road. Fig. 2 shows a side view of a wheel fitted with spring shoes, and Fig. 3 a cross section of the ame wheel.
The rim, A, of the wheel is formed with openings, B, hrough which the shoes, C, protrude. The projections are shown as being made in pairs, cast in one with a are shown as being made in pairs, cast in one with a
great tractive power is obtained, and the road is preserved from much damage. If desired, the springs, D, may be compressed by means of the nuts, H, to such an extent that the rim is always off the ground, whereby the advantage of a spring wheel is obtained, or if the pressure on shoes be applied by spring, spokesfrom the boss, there is obtained a spring-carried engine."
This engine, says the Mechanical World, is very powerful, a load of 76 tons, viz., a marine boiler weighing 56 tons and trolly 20 tons, having been drawn by one of its class over the streets of Liverpool.

Formation of the Diamond.

Among the many theories existing as to the formation of the diamond, that of Professor Simmler, of Switzerland, is certainly not the least probable. The diamond often incloses cavities which, in some instances, contain a gas, in others a liquid. Sir David Brewster, who had given much attention to the subject, found, in investigating the nature of the liquid, that its refractive power is less, but its expansive power greater, than that of water. In comparing the results obtained by Brewster with those calculated for other liquids, Simmler found the numbers for the expansive and refractive power of the liquid referred to to coincide singularly with those for liquefied carbonic acid. But other facts observed by different savants tend to prove also the presence of this agent in the coating of the most valuable of gems. Upon the bursting of such crystals there often occur two liquids in the cavities, the one behaving like water, the other like liquid carbonic acid. On one occasion it was observed that the liquid in a quartz crystal which was dashed to pieces scattered its contents around with a great noise, burning holes in the handkerchief wound around the hands of the experimenter. The acid content itself had disappeared. Upon these observations Professor Simmler based his theory, If carbon be soluble in liquid carbonic acid, it would then only be necessary to subject the solvent to slow evaporation; the carbon would thereby be deposited, and, by taking proper care, assume crystalline forms. In evaporating quickly the so-called black diamond, which, in the state of powder, is much used for polishing, the colorless diamond might be produced. Though the liquid referred to has never been subjected to chemical analysis, the formation of liquid carbonic acid in the interior of our globe may, nevertheless, be considered as highly probable. In the gaseous form we know it to be evolved in immense quantities from fissures, volcanoes, and mineral springs. When now this gas is produced in the cavity of a rock which is free from fissures, it will finally be compressed so highly that it will assume a liquid form by itself. Certain rocks may be considered strong enough to resist the expansive force of this agent, and if soluble carbon were there present, it might be taken up and redeposited, the carbonic gas escaping through somenewly formed fissures. If this theory is correct, the artificial production of diamonds may some day be accomplished.

SOME NEW FISHES

by c. f. holder.
During the past decade some extremely remarkable fishes have been added to the lists of those already fishes have been added to the lists of those already
known. Many of these are deep-sea forms, interesting and novel even to the specialist. The majority of these strange creatures were discovered by the Chal lenger and Talisman expeditions, the former having been sent out by the British government, while the latter was fitted out by France; and it is only fair to say that much has been accomplished by the United States Fish Commission in their dredging along ou own shores, although the ground covered by the latter was extremely small when compared to that gone over by the large and fully equipped foreign expeditions.
Only a few years ago, naturalists were almost unanimous in the opinion that fishes could not live in the greater and abyssal depths of the ocean, and it seemed only necessary to mention the enormous pressure that must exist in deep water to show that they were right. Again, the argument was brought up that animal life could not exist below a depth where the sun's rays ceased to penetrate. These arguments have lost their force, however, in the light of recent discovery, and it is found that the very darkest and deepest portions of the ocean bed are peopled with animal life of some kind. How, then, can they withstand the pressure that powders glass in the instruments, hoists iron and copper, and rends and tears the ropes A most casual examination of one of the extreme deep sea fishes tells the story. Some, when taken from the water, actually fall to pieces; and although of large size the types of oceanic carnivora, one and all, are adapted by a peculiar modification to their seemingly un natural habitation. In short, these dwellers of the deep sea are literally put together in the flimsiest manner. Their bones are cavernous, porous, and apparently permeated with holes in every direction; so much so that a pin thrust at random into the bone will pass into one of these natural pits. In this way the framework of the fish is enabled to withstand the enormous pressure. Water undoubtedly finds its way into all these crevices, and the pressure is equalized. Often the vertebræ are so loosely connected in large fishes that they drop apart when touched, showing how perfectly they are adapted to a life where the pressure amounts to two or three tons. The distribution of these fishes is interesting. Some genera are found at one level, say a mile, some at two miles, while others seem to rise and fall, passing from one level to another. This change, however, must be made very slowly, to enable the fish to adapt itself to its new surroundings. t is extremely difficult to realize the distances beneath the surface from which these fishes are taken. Imagine a body of water as deep as the distance between Tenth Street and the Arsenal building, Sixty-fourth Street and Central Park. Beneath that expanse of fluid (nearly three miles) is found the fish Bathyophis ferox. The genus Echiostoma lives at a depth of about two miles and a half from the surface. The naturalists of the Talisman dredged the fish Alepocephalus rastralus in water a mile and a half deep. The little luminous Scopelus was found in equally abyssal depths; Lepiodermer macrops, two miles; Macrurus affius, two miles and a quarter; and the list is a large one, many of the latter only visiting the depths given at times, and not having the fragile make up that distinguishes the true deep-sea forms. By the latter, I refer to those that habitually remain in the lower areas, such as the Trachypterida, Plagyodus, Chiasmodus (shown in the accompanying figure), Melanocetus, and Saccopharynx. These forms, though carnivorous, are often so fragile that they fall apart while being handled, and when compared with the surface fishes with which we are familiar, their bony and muscular parts seem but little able to stand the slightest exertion. The bones are extremely light, having very little calcareous matter in their make up, while the muscles appear to have degenerated to almost useless threads of tissue. From this it might be assumed that the fishes were delicate forms, not adapted for vigorous warfare. On the contrary, they are all carnivorous and rapacious in the extreme, undoubtedly moving about with great velocity, and preying upon their fellows in the deep sea.
Perhaps the most interesting feature in connection with some of these fishes is their manner of taking food or prey, and one of the most striking instances is shown in the accompanying figure, that represents the deep sea Chiasmoajus swallowing a fish several times larger than itself. This would seem an impossibility,
but even a casual examination serves to show that it is not more remarkable than the same thing in snakes. The Chiasmodus, in the first place, is a luminous form, its fins and body at portions being covered with a layer or deposit of mucus that has the property of becoming luminous, so that the fish is a veritable finny lantern, and enabled to capture prey by its own light. Often the victims thus seized are several times the actual bulk of the eater, but, by a curious arrangement of the jaws, the enormous mouthful is easily mastered.

In ordinary fishes that we are familiar with, deglutition is performed "by means of the muscles of the pharynx," but in the Chiasmodus there is an independent and alternate movement of the jaws, that the reader has perhaps noticed in our common snakes. When the Chiasmodus secures a hold upon its victim, it probably lengthens out, and if we could witness the operation, we would observe one side of the jaw move forward, and then the other, each advancing a little at every turn, the teeth taking hold at every move; and if we magine this repeated continuously, it must be evident that the animal so operated upon must be hauled hand over hand, as it were, into the stomach of the Chias modus. This is exactly what occurs. The Chiasmodus hauls itself over its victim. It is evident that a large tomach would be a-necessary adjunct for such an operation, and this we find to a remarkable degree in Chiasmodus, Melanocetus, etc.; the organ when dis tended depending from them like an enormous pouch
or in groups. These organs have been described as " a sort of bi-convex transparent lens, closing externally a chamber filled with a transparent liquid. This chamber is furnished with a membrane of black color, formed of little hexagonal cells, much resembling the retina. It is connected with the nerves.'
In Scopelus a luminous spot is seen, like a headlight, between the eyes, and in the deep-sea fish Malacosteus niger, extremely large plates are found directly beneath the eyes, while the Stomias has side plates. Equally strange are numbers of new fishes, as Eurypharynx, Melanocetes, and Mxcrurus, that seem to "run to head," that portion being extremely large and entirely out of proportion to the rest of the body. Thus, in the pelican fish, first mentioned, the mouth of the fish would hold its own body eight or ten times

The Macrurus is another strange form recently dredged. Its head and eyes are enormous when compared to the body, that dwindles away in an eel-like temination.
It is a matter of regret that the United States Government does not see fit to send out a well-equipped ship like the Challenger, so that our specialists might have as favorable opportunities as those of Europe. Some of the men-of-war lying at the navy yards rnight easily be fitted up for such work, and dispatched on a four or five years' cruise that would undoubtedly result in extremely valuable results to the nation and the cause of scientific education.

SWING BICYCLE.

The bicycle shown in the accompanying engraving is the invention of Mr. Nathaniel Brown, of Emporia, Kans. The wheels are secured to the outer ends of two hollow axles or shafts, which are mounted upon a central shaft, and are formed with ratchet wheels and friction disks. The seat is suspended by means of arms connected to centrally slotted straps passing over the axles; the ratchet wheels pass through the slots in the straps, and are engaged by spring pawls secured to the forward upper ends of the arms. In connection with each of the two other ratchet wheels is arranged a block, held to the hollow shaft by straps, and provided with a spring pawl engaging with the teeth of the ratchet. Pivoted in recesses in the lower ends of the blocks are lever arms, formed with inwardly extending fingers, arranged so that when the arms are swung toward each other upon their pivots, the fingers will be brought to bear against the faces of the friction disks.
The pulling of the levers downward starts the main wheels forward, and at the same time swings the seat forward, thus moving the pawls carried by the seat supporting the seat backward, and bringing them into engagement with teeth upon their ratchets, not so far advanced as were the teeth with which they were primarily engaged. As the levers are moved forward, the swing of the seat toward its normal position will act to advance the bicycle, and by so reciprocating the levers it will be seen that a pendulum motion will be imparted to the seat, which will, when once started, propel the machine for some time. When it is desired to turn the machine, say to the left, extra force is exerted upon the right hand lever, which will tend to drive the right hand wheel forward faster than the other ; or the motion of the left hand wheel may be checked by moving the left hand lever so that its finger will bear against the friction disk. To stop the machine, both brakes are applied by moving the levers toward each other. The rider may stop at any desired point, when ascending a grade, and rest at ease, since any tendency of the machine to run backward would be counteracted by the weight of the seat.

Improved Telephone Wires.

The German Post Office is now using, to a considerable extent, the new anti-induction telephone cables made by Messrs. Felten \& Guilleaume and others. The usual cable for overhead circuits contains wires of 27 . to 30 mm . diam., each separately insulated, and wrapped on the outside with tin foil. The cable thus formed is surrounded with three naked copper wires,
its size increased probably by the gases that generate uring digestion.
The deep-sea fishes are supplied with lights and feelers with which to capture their prey, and the former pecu liarity is one of great interest, showing that even the deepest recesses of the sea arenot the gloomy spots gene rally supposed, but have their living moons and stars. n some fishes the luminosity appears from the nucous nvelope at random over the body, in others it is con fined to phosphorescent platesarrangedhere and there
and sheathed with a lead covering. The whole is protected by a hemp taping and bitumen. These cables, when used for overhead circuits, are not strong enough to support themselves, and must be suspended from cast steel wires. The three naked copper wires, as well as the wrappings of tin foil, are all connected to earth. A smaller cable, containing ouly fourteen wires, is also manufactured. A large number of these cables are now erected throughout Berlin, and are used with sat isfactory results.

Vubstitute for Yellow Glass Panes Photography.

Writing in the Photographische Correspondenz, Carl Srna recommends the invention of Hugo Engler (Dresden) of a colored collodion stripped film, as a substitute for the colored plate glass now used. It has long been a recognized fact that it is possible to photograph objects and obtain some approximate color value without the use of a yellow pane of glass before the plate. Pre-eminently is this the case with erythrosin-silver bathed plates, now made known by Dr. Mallmann and Scolik. It must, however, be remembered that this rule applies only to cases in which no blue pigments have to be reproduced-in landscape photography, for instance, or in the reproduction of pictures in which blue tints have no special predominence. Where predominant, the insertion of the yellow pane is indispensable. The necessity of this yellow pane is, without doubt, one of the greatest troubles the orthochromatic photographer has to put up with. Placed either in front or behind the lens, it is a nuisance; for, supposing the object be focused before the insertion of the yellow glass, and the latter placed afterward, what is the result? Why, the rays of light are broken, and a perfectly fatal difference of focus is occasioned. Further, the thick plate glass now-used absorbs a considerable amount of light, necessitating, of course, a protracted time of exposure. In. 1885 Max Jaffe slightly improved upon this unsatisfactory ar rangement by placing the yellow glass in the dia phragm slit. By this means the focal distance was considerably decreased. But even this method was rather a troublesome one, necessitating either the cut ting in two of the lens or the widening of the diaphragm slit. By Engler's idea, however, it is possible to place yellow screens of every requisite size in a moment, with little cost and trouble. He replaces the yellow glass by stripped colored films of strong collodion. These cause no focal difference whatever, and by their use the time of exposure is greatly re duced, because of the small amount of light they absorb. The films are made in the following man ner: A clean sheet of plate glass is first rubbed with powdered talc, and then in the ordinary way coated with a four per cent raw collodion, contain ing dimethyl orange or aurantia (amount accord ing to judgment), and placed upon a level surface to set. As soon as dry, the film is removed from the glass and cut to the required sizes. The diaphragms of the lens are then brushed over with gum and placed upon the collodion film. By this means the yellow screen necessary is formed, and can be placed in with thediaplragut to which it is, of course, attached with out any necessity of altering the lens.-Photo. News.

OMPROVED CAR BRAKE

The accompanying engraving represents an inven tion which has been recently patented by Messrs. M T. Carson and J. D. Gurganus, of Whistler, Ala. The lower end of the brake staff is fitted to slide in lug projecting from a cast metal block, pivoted so as to turn on a plate fixed by bolts to the end sill of the car as shown in the sectional view, Fig. 1. Directly unde the lugs of the block, the main plate is provided with lugs in which a revoluble socket is loosely fitted. In the upper end of the socket is a square aperture, in which fits the lower end of the brake shaft. The brake chain is attached to the lower end of the socket, so that when the latter is turned by the shaft the chain will be wound upon the socket fo applying the brakes to the wheels. In the brake shaft, between the lugs, is placed a pin, which prevents the shaft. being withdrawn from the block. The socket is made hollow, thereby reliev ing it of unnecessary weight, and making it stronger, and also insuring the constant clearance of dust from its aperture, to which the brake shaft is adapted. To a lateral lug on the block is pivoted a dog, which may be engaged with a ratchet wheel fixed to the shaft to hold the brakes applied in the usual way.
When it is desired to lower the staff, so as to leave the entire surface of the car unobstructed al around so that freight can be loaded or unloaded conveniently, it is only necessary to lift the staf so as to withdraw it from the socket, when it may be lowered into the notch of a bracket secured to the car sill, as indicated by the dotted lines in Fig. 2. Every part of the brake will then be below the plane of the top of the car. After loading the car, the staff may be swung up again until the pivoted block strikes a stop, when the staff may be lowered into the socket in position for operating the brake. It will be noticed that there are no small parts to get out of order or be lost, and that neither the shaft nor block can be unshipped.

Petroleum in Amsterdam
In our issue of January 1, brief mention was made of an iron reservoir being erected at Amsterdam \times for the storage of petroleum. The capacity was errone ously given as $1,740,000$ gallons. It should have been 211,125.

IMPROVED RAILWAY RAEL JOINT

In this joint the meeting ends of the rails are beveled so that they overlap one another, thereby forming a more continuous bearing for the wheels than does the ordinary style of squared ends. The heads and webs of the rails are cut at an angle of 45°, and a portion of the base of each, up to the web, is cut away at right angles to the rail. One of the fish plates, which are held to the rails by bolts passing through slots in the ends, is of the usual pattern, while the other is formed in the center of its lower edge with a flanged piece of the same shape as the base of the rail, and which fits

SIEGEL'S IMPROVED RAILWAY RAIL JOINT.
in the recess formed by the cutting away of the end of the base of each rail. This flange forms a seat, upon which the ends of the rails rest. The form of the seve ral parts is clearly shown in Figs. 2, 3, and 4, Fig. 1 representing the complete joint.
It is claimed that the use of this joint, the simplicity of which is apparent, will do away entirely with the arring that now occurs as the wheels pass each joint, will permit increased speed, with less danger of accident, will lessen the wear and tear of the rolling stock, increase the life of the rails and of the ties under the joints, and reduce the liability of the ends of the rails spreading or getting out of shape, while the expansion and contraction of the rails will not have as much effect n travel as at present.
This invention has been patented by Mr. John Siegel of Montreal, Canada.

Clearing Waste Pipes.

The annoyance arising from the stoppage of wast pipes in country houses, although very great, is but a small matter compared with the dangers which may follow obstructed pipes. The " sewer gas" about which so much has been written, and which is so justly dreaded, is not, as many suppose, the exclusive product of the sewer. Indeed, the foul and dangerous gases are not only found in the sewers themselves, but in the un ventilated waste pipes, and those which are in process

CARSON \& GURGANUG' IMPROVED CAR BRAXE.
of being clogged by the foul matter passing through them. Any obstruction in the soil or waste pipes is, an inflow, doubly dangerous, because it may produce an inflow of foul gas into the pipe, even though the
entrance to the sewer itself has been entirely cut off.
The question is, how to get rid of the accumulation in pipes partly stopped or already closed. Digging up and cleaning out is a costly remedy, of ten ineffectua by reason of careless workmen. The second is the plumber's
In pipes leading Prom the house to the cesspool, there business man, 一 W., J., and silversmith.
is a constant accumulation of grease. This enters as a liquid, and hardens as the water cools, and is deposited on the bottom and sides of the pipes. As these accum ulations increase, the waterway is gradually contracted till the pipe is closed.
When the pipe is entirely stopped, or allows the water to fall away by dropsonly, proceed thus: Empty the pipe down to the trap, as far as practicable, by " mopping up" with a cloth. If the water flows very slowly, begin when the pipe at last empties itself. Fill the pipe up with potash, crowding it with a stick. Then pour hot water upon it in a small stream, stop ping as soon as the pipe appears to be filled. As the potash dissolves and disappears, add more watẹr. At night a little heap of potash may be placed over the hole, and water enough poured on so that a supply of strong lye will flow into the pipe during the night.
Pipes that have been stopped for months may be cleaned out by this method, though it may call for three or four pounds of potash. The crudest kind, however, appears to act aswell as the best. If the pipe is partially obstructed, a lump of crude potash should be placed where water will drip slowly upon it, and so reach the pipe.
It is also well to fill the upper part of the pipe with the potash, as before, and allow hot water to trickle upon it. Soda and potash are both used for tho pur pose of removing greasy obstructions, and the usua method of application is to form a strong lye and pour it into the pipe.
It is better to put the potash into the pipe, because the water which it contains, instead of diluting, helps to form the lye. As water comes in contact with the potash it becomes hot, thus aiding in dissolving the grease. Potash, in combination with grease, forms a "soft" or liquid soap, which easily flows away; while the soda makes a hard soap, which, if not dissolved in water, would in itself obstruct the pipe.
When a pipe is once fairly cleaned out, the pntash should be used from time to time, in order to dissolve the greasy deposits as they form, and carry them forward to the cesspool or sewer. The potash is very valuable for this purpose, because, in addition to its grease solving powers, it is exceedingly destructive to all animal and most vegetable matters.
The most dangerous gases appear to come from urinals and wash basin pipes, these in many cases seeming to be more foul than those from water closets. The decay of the soap and animal matter washed from the skin appears to be the source of the gases. The potash will be effective in keeping these pipes clear, and in this way may lessen the dangers.-Artisan.

Separating Fibers

Hydrofluoric acid attracts water powerfully, and thus carbonizes vegetable fibers, leaving the animal fibers intact, if the acid used is not too concentrated. In using hydrofluoric acid in gas form, the goods have to be well soaked in water before being exposed to the acid. The latter process is carried on in chambers, which are made of suitable material, e. g., lead, or else are lined with it. The acid is prepared from cryolith and sulphuric acid, and alum is obtained as a by-product. After the goods have been exposed for an hour, they are removed from the chamber, well washed with water, dried quickly in a drying chamber, and passed through a beater, where the carbonized vegetable fiber is separated in the form of dust. If a solution of hydrofluoric acid is used, wooden troughs, lined with lead, are employed; these are charged with water and either fluorspar or cryolith and the exact quantity of sulphuric acid which is required to liberate the hydrofluoric acid. The bath is kept at a temperature of 160° Fah., and the goods are left in it for an hour or
two. They are then washed, dried, etc., as above. This process can be used for burring wool, or for recovering wool or silk from rags, etc., or for separating any animal fiber, as hair, from vegetable fibers.-Industries.

The Ideal Jeweler

One of the greatest difficulties the jeweler has to overcome is that of obtaining original designs or ideas suitable for reproduction in the precious metals. Most of the household articles in common use have been thus reproduced in miniature, and the designer has ever to go further afield in search of novelties. Birds, beasts, and fishes, bicycles and steam engines, wooden shoes and warming pans, have all had their turn. We do not know that the electrical field has yet been trenched upon excepting perhaps with regard to some few of the odds and ends connected with telegraphy); but with this exception, hardly an object exists that has not its diminutive counterpart among the jeweler's stock. The ideal jeweler should be an educated man in the strictest sense. He should unite the knowledge of the antiquary, the archæologist, and the architect in his own proper person; he should be at once chemist, metallurgist, geologist, and mineralogist; and have at the same time, the qualifications necessary for

SCIENCE IN TOYS.

Among the many toys illustrating the phenomena of light, the simplest is the water bulb magnifier.
It consists of a small hollow sphere of glass filled with water and provided with a pointed wire arm for supporting the object to be examined. It is a Coddington lens lacking the central diaphragm. It answers very well as a microscope of low power, and illustrates the principle of refraction as exhibited by lenses. It receives the rays diverging from the object placed at its focus, and refracts them, rendering them convergent upon the opposite side of the bulb; but all of the rays do not converge exactly at one point, so that the image, except at the center of the field, is distorted and indistinct. This ef ect is spherical aberration.
The prism is found in the list of toys as well as among scientific instruments. It decomposes light, recom bines the dispersed beam, again forming white light
When placed in the sunlight, it yields a gorgeous spectrum. Even an ordinary prism may be made o exhibit several Fraunhofer's lines by arrangin it in front of a narrow slit through which a beam of sunlight is admitted to a darkened room. One side of the prism in this experi
 ment must be adjusted a a very small angle with the incident beam. The spec trum will contain a number of fine dark lines, known as Fraunhofer's lines.
These lines tell of the constitution of the sun. The principle illustrated by this experiment is the one upon which the spectroscope is based.
A plano-convex glass, having a number of facet formed on its convex face, constitutes the toy known as the polyprism.
The facets form slightly different angles with the

POLYPRISM.
plane face of the glass, so that the rays are refracted differently by each facet, producing an image. One man seen through this instrument appears like a congregation. A coin viewed through it is multiplied as many times as there are facets, and a grate fire appears like the conflagration of a city.
The cylindrical mirror shows an ordinary object very much contracted in a horizontal direction.
The pictures accompanying these mirrors are distorted to such an extent as to render the object unrecognizable until viewed in the mirror, which correct the image.
By tracing the incident ray from any point in the picture to a corresponding point in the image in the

1, contex ctidndrioal mirror. 2, distorted picture to be VIEWED IN MIRROR.
mirror, then tracing the reflected ray from the same point in the mirror to the eye, it will be found that in this, as in all other mirrors, the simple law of reflection applies; that is, that the angle of incidence and the angle of reflection are equal.

The concave cylindrical mirror in its behavior is the reverse of the mirror just described. It produces a laterally expanded image of a narrow picture, and while the convex cylindrical mirror disperses the light from a distant source, the concave mirror renders it convergent; but, as in the case of the water bulb,

oncave cyundrical mureor, caustics.

the reflected rays do not focus at a single point, but cross each other, forming caustic curves. These curves may be exhibited by placing an ordinary cylindrical concave mirror edgewise on a white surface, and placing a small light, a candle, for example, a short distance from the mirror, as shown in the engraving. A concave mirror is not necessary to this experiment. The same phenomenon may be witnessed by observing a glass partly filled with milk, arranged in proper relation to the light. The inner surface of the glass serves as a mirror, and the surface of the milk serves the same purpose as the white paper. A cylindric napkin ring will show the curves under similar conditions. In fact, any bright concave cylindrical surface will do the same thing.
The convex spherical mirror distorts to a remarkable degree. A silvered glass globe held in the hand yields an image of the experimenter something like that shown in the engraving.

spherical mirror.
Those parts nearest the mirror are enormously ex aggerated, while other parts are disproportionately diminutive.
The image in a convex mirror is apparently behind the reflecting surface, and always smaller than the ob ject itself.
The spherical concave mirror produces effects which are the reverse of those just described; and while, in this case, as in the other, the virtual image appears behind the mirror, the image is a magnified one. The real image, "which appears in front of the concave mirror, may be either larger or smaller than the object itself, depending upon the position of the object rela tive to the mirror and the observer. It is inverted, and is formed in the air. A candle placed between the center of curvature of the mirror and the principal focus forms an inverted image in air, which is larger than itself.
The phantom bouquet, an interesting and very beautiful optical illusion, is produced by placing a bunch of flowers (either natural or artificial) in an inverted position, behind a shield of some sort, and projecting its image into the air by means of a concave mirror. A magnifying hand glass answers the purpose, if of the right focal length, and a few books may serve as a shield. Two black covered books are placed upon one end and arranged at an angle with each other, and a third book is laid horizontally on the ends of thestand
ing books. The bouquet is hung top downward in the angle of the books, and a vase is placed on the upper book, over the hanging bouquet.
The concave mirror is arranged so that the prolongation of its axis will bisect the angle formed by lines drawn from the top of the vase and the upper part of the suspended bouquet, and it is removed from the

concave mirbor.
bouquet and vase a distance about equal to its radius of curvature.

A little experiment will determine thecorrect position for the mirror. When the proper adjustment is reached, a wonderfully real image of the bouquet appears in the air over the vase. With a good mirror and careful adjustment, the illusion is very complete. The bouquet being inverted, its image is erect. A very effective way of illuminating the bouquet, which is due to Prof W. Le Conte Stevens, of Brooklyn, is shown in the engraving. It consists in placing two candles near the bouquet and behind the shield, one candle upon either side of the bouquet. In addition to this, he places the entire apparatus on a pivoted board, so that it may be swung in a horizontal plane, allowing the phantom to be viewed by a number of spectators.
This simple experiment illustrates the principle of Herschel's reflecting telescope. In thatinstrument the image of the celestial object is projected in air by reflection and magnified by the lenses of the eyepiece.
The kaleidoscope is one of the most beautiful and inexpensive of optical toys. It can be purchased in the ordinary form for five or ten cents. It is sometimes elaborately mounted on a stand and provided with specially prepared objects. It consists of a tube containing two long mirrors commonly formed of strips of ordinary glass, arranged at an angle of 60°, with a plain glass at the end of the mirrors, then a thin space and an outer ground glass, the space being partly filled

1

, parts of kaleidoscope. 2, the pigure. 3, kaleidoscope.
with bits of broken glass, twisted glass, wire cloth, etc. The mirrors may be arranged at any angle which is an aliquot part of 360°. When the mirrors, $a b$, ant inclined at an angle of 60°, as in the present casg; the number of images will be six, if the object, c, be counted as one.
The images adjoining the object are formed by the first reflections of the object. The images in the second sectors are formed by second reflections, and two coincident images in the sector diametrically opposite the object are formed by third reflections.
In most kaleidoscopes a third mirror is added, which multiplies the effects.
The zootrope, or wheel of life, is a common, but interesting, optical toy. It depends for its curious effects upon the persistence of vision. It consists of a paper box mounted on a pivot, and having near its upper edge a series of narrow slits, which are parallel with its
axis. Against the inner surface of the wall of the box is placed a paper slip, carrying a number of images of the same object arranged in as many difobject arranged in as many dif-
ferent positions, each image different positions, each image dif-
fering slightly from the adjoinfering slightly from the adjoin-
ing images, the successive poing images, the successive po-
sitions of the several images being such as to complete one entire motion or series of motions. When these pictures are viewed through the slits, as the box is turned, the eye glimpses the figures in succession, and retains the image of each during the time of eclipse by the paper between the slits and until the next figure appears. The images thus blend into each other, and give the figure the appearance of life.
Some very interesting studies for the zootrope have been produced by the aid of instantaneous photography.
G. M. H.

Simple Chemical Experiments.
Take $1 / 2 \mathrm{oz}$. powdered alum and $1 / 2 \mathrm{oz}$. sulphate of copper ; dissolve in 1 oz . of boiling water; put into a glass tube or phial, and on cooling you will see the colorless crystals of alum are formed side by side with the blue crystals of sulphate of copper.
H. J. Dean, Chesham.

TO ENGRAVE ON STEEL.
Requirements.-A box containing powdered cupr sulph., and labeled "The Powder."
Directions.-Dissolve some of the powder in a small quantity of water; rub the surface of the steel over with a piece of wetted soap, so as to cover it with a thin coating; then dip the point of a pencil into the solution, and with it write or draw the required design on the steel. After a few minutes wash, and the steel will be found to be beautifully and permanently engraved.
F. Freeman.

INVISIBLE INKS-BLUE AND BROWN.
Requirements.-Ferri sulph., labeled "For Blue Ink ;" cupri sulph., labeled "For Brown Ink;" and potass. prussias flav., labeled "The Developer." They may also bear the Nos. 1, 2, and 3 respectively.
Directions.-Make separate solutions of Nos. 1, 2, and 3 , and preserve in bottles for use. With a clean quill pen write with the solution of either No. 1 or No. 2 , and allow to dry. The writing will remain invisible. Dip a feather or small brush into No. 3, or the "developer." The writing will then appear distinctly writ-ten-in blue if No. 1 ink has been used, or in brown i No. 2 was used.
F. Freeman.

THE FLOATING BEACON.

Requirements.-A cardboard box containing a half dozen or dozen small pyramid-shaped pieces of camphor labeled "The Beacons."

Divections.-Take one of the beacons, place it on the surface of some clean water in a basin, ignite the point with a match. The flaming beacon will then commence darting about on the surface of the water, and will continue doing so till burnt out. F. Freeman. BLOOD WRITING.
Requisites.-A pill box containing red iodide of mercury, and labeled "Magic Powder."
Directions.-Take some of the "Magic Powder," and rub it over the surface of a sheet of note paper with a piece of cork. Take the paper so prepared and hold it over the flame of a candle or lamp, slowly moving it to prevent burning. The red color will quickly disappear. Anything now written or drawn on the paper with a pointed piece of wood will appear as if written in blood.
F. FREEMAN.

F. Freeman.

SUN PRINTING-FOR TAKING TRUE COPIES OF INGS, LEAVES, PATTERNS OF LACE, ETC.

equirements - Fit 3 ij , liq ferrocyanid., 3 ij ; aquæ dest. ad $\overline{3} \mathrm{ij}$. M. ft. sol. Sig. "The prepared solution." "To be kept in the dark." Inclose camel hair brush.
Directions.--By candle light take a sheet of writing paper and brush one side of it over with the solution ; hang it up to dry in a dark room or cupboard. When dry, place the object to be copied next the prepared surface, in a printing frame; then expose to direct sunlight for a few minutes till the prepared paper has turned gray; take it out and wash the paper in clean water; the printing will then become permanently fixed. Instead of a printing frame, the object and paper may be inclosed between a piece of glass and flat wood tightly bound together.
F. Freeman.

THE SKELETON IN THE CUPBOARD.
Requirements.-A bottle of phosphorized oil, labeled " The Phantom Light," and a small brush, packed in cardboard box.
Directions.-Get a large sheet of paper, and then, with the aid of the brush dipped into the phantom light, roughly sketch the outline of the human skeleton; then attach it to the wall in an empty cupboard, shut the door, take your friends into the room in which the cupboard is (the room being quite dark), and ask
one of them to go to the cupboard. He will, no doubt,
run back greatly alarmed. Other devices may be adopted at the will of the operator. F. Frefman. BEAUTIFUL CRYSTAL ORNAMENTS.
Requirements.-Various boxes containing the following powdered chemicals: Ferri sulph., cupri sulph., alum sulph., pot. bichrom., potassæ nit., and common salt.
Directions.-Dissolve any one of the powders contained in the box in some hot water, so as to form a strong solution, pour the solution into an open tumbler. In the solution now suspend a piece of coke, a clinker, or any ornament with a rough surface; allow it to remain suspended a few days, and as the liquid evaporates, beautiful crystals will form and continue to grow on it. The color and appearance of the crystals will'depend upon the salt used.
F. Freeman, West Dulwich.

NIHILIST BOMBS.

Introduce a few drops of water into some small glass bubbles, having a neck about an inch long, and afterward close the end of the neck. This neck being put through the wick of a burning candle, the flame boils the water into a steam, and the glass is broken with a loud explosion.
Might be put up in small cardboard boxes, a dozen bombs in a box, labeled "Nihilist Bombs," with directions inclosed. Geo. E. Pearison, Northallerton.

FACIAL TRANSFIGURATOR.

Dissolve some salt and saffron in spirits of wine, dip a little tow in it, and set fire to the tow. By this light those who are of a fair complexion will appear green, and the red of the lips and cheeks will turn to a deep olive color.
Might be put in a 1 oz . bottle, and paeked in cardoard box with directions and fancy label, labeled "Facial Transfigurator."

Geo. E. Pearson, Northallerton.
LUMINOUS BOTTLE OR WATCH LIGHT.
Place a piece of phosphorus the size of a pea into a long glass phial, and pour boiling oil carefully over it till the phial is one-third filled. The phial must be carefully corked, and when used should be unstopped a moment to admit the external air, and closed again. The empty space of the phial will then appear luminous, and give as much light as a dull ordinary lamp, and just sufficient to see the face of a watch. Each time that the light disappears, on removing the stopper it will instantly reappear. In cold weather the bottle should be warmed in the hands before the stopper is removed. A phial thus prepared may be used every night for six months.

Geo. E. Pearson, Northallerton.
TO COAT COPPER WITH SILVER, IRON WITH COPPER, AND TIN WITH IRON, FROM ONE SOLUTION.
Directions.--Pour half the solution from the bottle into a wine glass and put into it the piece of copper wire; it will in a few minutes becomé coated with a thin layer of silver. If it is allowed to remain in the solution until the previously colorless solution becomes green, and the copper then taken out, a piece of iron wire put into the solution will become coated with copper in about twenty minutes; a piece of zinc put in when the iron is taken out will become covered with a thin coat of iron.
Explanation.-The first solution is one of nitrate of silver. When copper is put into it, it is attacked by the nitric radical(nitric acid), and forms a solution of nitrate of copper, throwing out the silver which previously was held in solution by the nitric acid. Iron put into the solution of copper is in turn attacked by the nitric acid and leaves a solution of nitrate of iron, throwing out
the copper. Zinc put into this solution is attacked, and the copper. Zinc put into this solution is attacked, and
leaves a solution of nitrate of zinc, throwing out the iron.
Materials Required.-Make a solution of nitrate of silver, gr. xx to $\bar{z} j$, put it into a 1 oz. phial, labeling it "Poison." Wrap round the bottle a paper descriptive of the experiments, etc. (as above), and also advertising other experiments and their prices. Wrap up the pieces of copper wire, iron wire, and zinc with the
bottle, put all into a cardboard box, and label outside : bottle, put all into a cardboard box, and label outside from danger. How to cover copper with silver, iron with copper, and zinc with iron, all from one solution Price, 1s. (Name and address.)"
R. A. Bellamy, Bedale.
a mysterious ega; or, how to put an ega into A BOTTLE.
Directions.-Soak an egg in the liquid, when it wil gradually become soft ; it may then be put into a bottle whose neck is very small. When washed well with cold water, it will again become hard, and will much astonish any one not in the secret.
Explanation.-When an egg is soaked in acetic acid it becomes softened, and may be pressed into any form. Water will again harden it.
Acid, acet. fort., and aqua, equal parts, in a 6 oz bottle, labeled materials, "The egg conjuring liquid." Wrap round a paper containing description, and advertising other experiments, put into box as in experi ment No. 1, and label outside: "Christmas Novelties ment No. 1, and label outside: "Christmas Novelties.
Chemical experiments free from danger. Price, 6d.

T

The Mysterious Egg; or, how to put an egg into a wine bottle without breaking either the egg or the bottle.".
R. A. Bellamy, Bedale.
 GI AN EXACT COPY OF ANY CIN OR METAL
OD HOW TO MAKE A SEAL OR ANY DEVICE I
OPER. coptions.- First take the impression of the medal
coftening the wax before e copied by softening the wax before the fire, and ofrefully pressing it on the coin; when it is cold, refove it cautiously, and cover it thinly, but completely, with a covering of black lead. Pour the solution into the bath (one solution to each side); put the zinc plate into the colorless liquid, and attach to the other end of the copper wire the wax impression which you end of the copper wire the wax impression which you
wish to copy, and allow it to dip into the solution of sulphate of copper, taking care that the wire is in contact with the black lead. In the same way you can cut any device, initials, etc., into the wax, and coat with copper.
Explanation.-This experiment is really depositing copper on the impression by electricity, the electricity being produced between the two solutions through the porous division. Care must be taken to have a good connection between the copper and the black lead on the impression, the black lead being a conductor of electricity and the wax not. The shower the copper is deposited, the firmer and harder will be the resulting deposit.
Materials:-A fully saturated solution of sulphate of copper crystàls (about 6 or 8 oz.), and about 6 or 8 oz. of acid sulph. (1) and aqua (3) for the other side. A small wooden box lined with pitch, with a thin cardboard partition in the middle. A piece of zine about 2 in. by $11 / 2$ in., with a piece of copper wire soldered on and bent over the partition, to hold the impression in the sol. of cupri sulph. A piece of wax (preferably a thin sheet). A camel hair pencil and some powdered black lead. Put the solutions in bottles, and the other things in the box; wrap up, with the particulars of the experiment, and advertising other experiments. Label : "Christmas Novelties. Chemical experiments, free from danger. Price 1s. 6d. Complete apparatus to take an exact copy of any coin or medal. To make a fac simile seal, or produce in solid copper any desired device or image."
R. A. Bellamy, Bedale.
what holdsit up'?
Materials.-A small tumbler or ale glass, a bit of sponge, and methylated spirit.
Directions.-See that the hand is large enough to well cover the mouth of the glass, moisten the bit of sponge with spirit, light it, and drop it into the glass, which at once cover with the naked hand. The flame will be immediately extinguished, but the glass will remain suspended to the hand, without any visible support. Unless the glass is jerked it will require a strong, steady pull to free it from the hand.
archibald Paterson, 133 Govan Road.
-Chemist and Druggist.

Mr. Beecher on English Railways.

Rev. Henry Ward Beecher has been talking to a reporter about traveling in England, and in reference to a query as to whether he enjoyed it, said :
"No. The railroads themselves, their bridges, their stations, are incomparably better than ours. They seem as if built for eternity. But there it ends. The cars are short, so that they have but six wheels, two here, two there, and two beyond, and one is, obviously of necessity, always over a grinding iron wheel. Then they oscillate so that they almost always make one seasìck, and always give a feeling of nausea. My test consists in conversation and reading, and I found that in the one. I had to raise my voice, and in the other my eyes became tired, and it was impossible for me to read with any degree of comfort. Now, here I do both with perfect ease. My eyes are strong and I am well, but I could neither talk nor read in the English cars. American cars would be very much better. There are a few palace cars over there, but they are not popular as yet. There is but a faint beginning of comfort for the engineers and stokers. For a long time they have been compelled to do their arduous work exposed to the elements; and even now they have nothing but a glass frame over them, open in front, affording a most imperfect protection against the moist, cold, chilly climate, so they bundle up like so many mummies. It is mate, so they bundle up like so many mummies. It is
the same way on the Cunard line of steamers. They are so afraid the pilots will be lazy if they are afforded any conveniences or comforts, that they keep them exposed at the wheel. The English people are very slow to accept improvements in engineering, but they are very prolific in invention, too. I saw in the Liverpool Exposition some most interesting and instructive sights, such as models of all the great ships of the various lines, and some of the finest castings that those wonderful mechanisms demand-duplicate shafts and cranks built for great ocean racers."

The acquisition of learning without study is like the acquisition of wealth without labor. It is as necessary for the mechanic to study out his problem when it comes to him to be studied as it is for him to finish his task by his handicraft.

February 5, 1887.]

ENGINEERING INVENTIONS

A car coupling has been patented by Mr , Jackson J. Kennedy, of Cleveland, Tenn. This
invention relates to former patented improvements of the same inventor, and conisists mainly in improved constzuction of the drawhead, its locking key and its bearings, the drawhead being also more readily adjust able to couple with cars of different heights.
A steering apparatus for traction engines has been patented by Mr. James F. Smith, of toothed arm connected with the front axle, with device for imparting a turnng motion to the arm tir cither direction by suitable means operated from an
engine attached to the traction engine, with various engine attached to the
novel parts and details.
A motor attachment for centrifugal pumps has been patented by Mr . Barton W. Scott, of Logansport, Ind. This inventron covers a nover construction and arrangement of parts. whereby it is intended to utilize the power of the water Issung from
the periphery of the centrifugal pump wheel for assistthe epriphery of the centrifugal pump wheel for asisit-
ing in the propulion of the pump, considerable force being ordinarily wasted
A feed water regulator has been Datented by Mr. Derwin E. Butler, of Chesterfield, Fulton County, Ohio (said Butler deceased; Aurelia O
Butler, executrix). A water tank is so connected with the steam space of the boiler that, when the water revet of the latter falls below a certain poont, the steam will exert its pressure apon the water in the tank to canaed
water to flow into the boiler, the constructior being simple and the operation automatic.
A car coupling has been patented by Mr. George J. Ferguson, of Greenville, Texas. Its construction is such that the coupling may be manipulated
from either side of or the top of the car and by hand from either side of or the top of the car, and by hand,
and the devices may be locked in or out of couple, so that a through train may be locked coupled, when no accidental uncoupling can occur in transit, while the coapling does not require any greater length of drawhead than that
novel features
A car door forms the subject of two patents issued to Mr. George J. Ferguson, of Greenville,
Texas. The object in one invention is to provide seximple constrraction by which the door in provide closed positions, mas be presed firmly in opainst the cide of the car, and will perfectly protect the contents of the car from the weather, the joint it makes not being affected by any jarring. By the other invention a construction is provided, intended mainly for grain cars, in which the door masy be firmly pressed against the bottom of the car and rastened, so it will not shake ing, and will be efflcient and durable.

mechanical inventions.

A hammer attachment has been patented by Mr. William K. Howes, of Strong, Me. It is secured to the hande by means of pivot screws, and is
for aiding in driving a a ail in a a position ordinarily out for riding in driving a nail in a position ordinarily out
of reach of the operator, providing means for holding the nail and striking it a first sharp blow, leaving it in a position to be
ordinarily given.
A shuttle box operating mechanism for looms has been patented by Mr. Jobn Zimermann, of
Philadelphia, Pa. It is for hand carpets and other fabrics, and is a combination of drop boxes, their suspending, cords or ropes, a link connect
ing the cords and the jacquard and its lever, with a plate provided with levers and pins, with various othe novel features, whereby the drop boozes are shifted antomatically with very little effort on the part of the
A carding machine forms the subjec of twa patents issued to Mr. George Bebb, of Indian-
apolis, Ind. The first invention relatese to machines for carding woolen and cotton fiber, and has for its object to keep the dofferfree from dirt and short fibers, whicl are liable to accumulate in the wire card clothing, the
device being designed to work antomaticolls, withot device being designed to work automatically, withou The second invention provides further for discharging the dirt and very short stock into a trough or other re ceptacle, while the longer fibers will be returned to th dofter to be incorporated with the lap.

agricultural inventions.

A hay loader and stacker has been patented by Messrs. Martin C. and John M. Isom, of Hoosier Prairie, ill. The invention consists of a nove construction and combination of parts, in which are hay ladder with horizontal platform at its an incline hoisting rope and hay fork pith oner novel fen end,
A fertilizer distributer and seed planter has been patented by Mr. Decatur Morgan, of Camden and the construction is such that the harrow will not be operated when no fertilizer is being distributed while the machine can be readily turned around and drawn from place to place without wasting the fe tilizer or being inconvenienced by the harrow.

MISCELLANEOUS INVENTIONS.

A windmill attachment has been patented by Messrs. Joseph Greenwood and William Hill, J.,. of Limestone, N. Y. This invention relates to
attachments for increasing the length of the stroke particularly in connection with pumps, and also to so belance the rods used to impart and receive power tha thert the teration of the windmill.
A mofinn platform has been patented by
with side bars formed in sections and nuited by hinges
are re cross bars hinged at each end to the side bars, there
peing a folding frame with trucks or ways, a truck to being a folding frame with trucks or ways, a truck to be monanted on the ways, with other novel features. to
facilitate placing and lowering the casket into the rave, the finvention being'an improvement on a former patented invention of the same inventor.
A sliding gate has been patented by Messrs. Daniel E. James and Edward Lazenby, of
Compton, Cal. This invention covers a style of gate Compton, Cal. This invention covers a style of gat
which can be opened and shat witbout getting out of one's carriage or wagon, being opened by an operating ord on one side, and closed by means of a similar cord
on the other side after passing through, while the pulleys, operating cords, etc., are thoroughly protected from snow ana rain.
An attachment for cooking stoves has been patented by Mr. Eugene Nifenecker, of West New inged door and an inner fue with or cover with attached to the cover and a frying pan held in place on the grate bottom in the cover, and removable from the
grate bar, the device being designed to carry off all grate bar, the device being designed to carry off all
vapors, odors, and smoke arising from boiling and vapors,
ryying.

Business and 2 Personal.
The charge for Insertion under this head is one Dollar a linefor each insertion; about tight words to a line
Advertisements must be received at publication oftice as early as Thursday morring to appear in next issue.

Metallic Pattern Letters and Figures to put on pat
erens of castings. Knieht $\&$ Son, Seneca Fanls, N. \mathbf{x}. The new "Trautwine's Curves" is an exceptionally handsome book. Enotinering News, July 3 3. 1886, says it
is probably the most complete und perfect trent is probably the most complete and perfect treatise on ne single subject of ra,
The illustrated circular of J. F. Mancha, Claremont a., offers tempting inducements to settlers in his flour For Sale-Foundry; machine bleckenit
For san eannary, mackine, blacksmith, and wood oof. Switch to shop; boats land at door. Splendid
lace for manufacturing. All kinds of iron send Dlace for manufacturing. All kinds of iron and wood-
orking machinery running on job work now. 87,500 Working machinery runing on job work now. 87.500 ,
\$1,50 cash; balance. long time. Write for particulars. W.," box 7 , Jefferson City, Mo.

Manufacturers' Advertising Bureau. Benj. R. Western, Treas., 8 Broad St.. N. . . .
for frms. 20 years' experience.
The Holly Manufacturing Co., of Lockport, N. Y. will lsend their pamphlet, describing water works ma inery, and containing reports of tests, on application, Patent for sale. G. A. Wright, Concordia, Kas. Perpetual motion discovered. E. Hall, Middleville, Telescope Lenses. Lowest prices. Gardam, 36 Maiden
For Sale- 32 in. by 60 in. vertical or beam engine ;
Woodruff $\&$ Beach make $7 \&$ ft. by 8 in. shaft; pulley in ections, 18 ft dia. In very good order Estimated eight, 28 tons. Price, F. . . B.., near Albany, N. Y.,
11,000. S. C. Forsaith Machine Company, Manchester N. H .

Wanted-To manufacture on royalty patented arti Ces capable of being made in tin or other light metals.
Reardon $\&$ Ennis, 311 River Street, Troy, N. \mathbf{X}. The Railroad Gazette, handsomely illustrated, published weekly. at 73 Broadmay, New York. Specily
copies free. Send for catalogue of railroad bookks. Protection for Watches.
nnti-maxnact maguetic infuences. Can be applied to any watch. Experimental exhibition and explanation at Anti-Maannetic Shield \& Watch Case Co.," 18 John St. New York. F. S. Giles. Agt., or Giles Bro. \&Co., Chicago where full assortment of Anti-Magnetic
be had. Send for full descriptive circular.
Wood working Machinery of all kinds. The Bentel \& Guild \& Garrison's steam Pump Works, Brooklyn, Guild \& Garrison's steam Pump Works, Brooklyn,
V. Y. Pumps for liquids, air, and gases. New catalogue ow ready.
Concrete patents for sale. E. L. Ransome, S. F., Cal. The Knowles Steam Pump Works, 44 Weshington tt. Boston, and 93 Liberty St., New York, have ust issued a new catalogue. in which are many new and improved forms of Pumping Machinery of the single and
cuplex, steam and power type. This catalogue will be auplex, steam and power type. This
mailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Nickel Plating.-Sole manufacturers cast nickel anLittle Wonder." A perfect Electro Plating Machine Sole manüfacturers of the new Dip Lacquer Kristaline Complete outat for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J, and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of Send Send for catalogue of Scientific Books for sale by Curtis Pressure Regulator and Steam Trap. See p. 45 . If an invention has not been patented in the United 8tates for more than one year, it may still be patented in
Canada. Cost for Canadian patent, $\$$ so. Various other foreign patents may also be obtuined. For instructions address Munn \& Co., Scientipic ambrican patent
Supplement Catalogue.-Persons in pursuit of infor mation of any special enkineering, mechanical, or scienhict subject, can have catalogue of eontents of the Sol-
ENTIFIC AMRRICAN SUPPIEMENT sent to them free The SUPPLEMEXNT contains lengthy articles embracing he whole ranige of englineering, mechanics, and physical Inventors wishing to sell their inventions, address, with particulars, Chas. Babson, Jr., 24 Congress St., Bos
on, Mass.
We are sole manufacturers of the Fibrous Asbestos
Remorable Pripe and Botler Coverings wo Removable Pipe and Botler Coverings. We make pur
asbestos goods of all kinds. The Chalmers-Spence Co

Pat. Geared Scroll Chucks, with 3 pinions, sold at same
prices as common chucks by Cushman Chuck Co., Hart prices as co
ford, Conn.
Steam Hammers, Improved Hydranlic Jacks, and Tub 60,00 B. $^{1 .}$. 1 . 60,000 Emerson's 1886 Bookof superior saws, with
Supplement. sent tree to an sawyers and Lumbermen. Adaress Emerson, Smith \& C... Limited, Beaver Falls Pa.. U. s. A.
Safety Elevators, steam and belt power ; quick and Mr. D. Frisbie $\&$ Co., 112 Itberty St. New York. Mr. O. Frink, 234 Broadway, New York. publishes a
neat 1 ittle pamphlet describlng the common torms of her
 upon request.
"How to Keep Boilers Clean." Send your address Magic Lanterns and Stereopticons of all kinds and rices. Vlews illustrating every subject for public e hibitions, Sunday schoors, coneges, and home entertainment. 136 page Mlustrated catatogue free. MeA nister,
Manu facturng Optician 49 Nassau St. Neew York: The Ingersoll Drill, see page 83, was patented in the Attorney, 705 G St., N. W. Washington, D. C., agent for sale of the machines and patents. Send for catalogue. Astronomical Telescopes, from $6^{\prime \prime}$ to largegt.size. Ob
servatory Domes, all sizes. Warner $\&$ \&wasey, cleve servato
land,
0

Split Pulleys at low prices, and of same strength and
and pparance as Whole Pulless. Yocom \& Son's shafting
 Refermation, and not for pubbication.

personal rather than general interest zannot
expected withour remneration
celentific American Sup

Minerals sent for examination should be distinctly
marked or labeled.
(1) M. R. asks what tutia alexandrina It is commercial zinc oxide, and can be pro
at any paint store.
(2) W. B.-Sulphur soap in baths is considered beneicial for skin diseases. Turkish bathe may be taken in winter and for the catarrh. See the
cure given in Sciemmitio American Suppicment, cure git.
No. 216.
(3) D. A. C. asks how to make "marsh mallows" (a candy). A. Dissolve one-half pound of
gum arabic in one pint of water, strain, and add half pound of fine sugar, and place over the fire, stirring constantly until the sirup is dissolved and all o the consistency of honey. Add gradually the white of four eggs well beaten. Stir the mixture until it becomes somewhat thin and does not adhere to the
finger. Flavor to taste, and pour into a tin slightly unsted with powdered starch, and when cool divid tnto small square
(4) H. F. J. writes: Some time ago I read of a drug to use on cotton to put in the ears to had to sleep in the daytime where there was considerable noise, and not to be injurious. Is there any such drug nd if so, what is it? A. Cotton alone should be suffi-
cient for any rightfal use. It is exceedingly ill ad vised under such circumstances to use drugs to pro
(5) W. S. C. asks some way to remove he soot from a smoke stack 50 ft . tall, that is constantorms and sticks to the walls of the stack more in the winter than summer? A. You probably burn wood which generates pyroligneous acid vapors, that condense eupon the walls of the chimney and cement the unburnt carbon in the smoke. More condensation occurs in winter than in summer, from the greater coll, and bat to burn anthracite coal, or sweep the chimney often
(6) H. B. B.-There is no general proportion of height to length'and number of panels appli-
cable in bridge building. The weight to be carried its cable in bridge building. The weight to be carried, it there be also a common road, single or double, or with passenger walks, probable wind force, etc.. are prime factors in establishing the height and length of panels. While the length of bridge is always a fixed measare the quality and strength of material is a modifying and variable factor. In working out the details of strains to
meet the requirement of assumed service, engineers may ary the details of construction and proportions to suit heir individual judgment.
(7) W.C. T. desires a process by which he can bleach tallow (make it white) without interfer-
ing with its use for culinary purposes. A. We recommend simple boiling with its own volume of water, as here is a strong and well-founded prejudice against the eo chemicals.
(8) J. A. H.-For an acoustic telephone on may use a fine copper or galvanized iron wire, trechod to the center tequin diok of thin each end at diameter. This may be done by soldering a small eyo the tin and twisting the wire in the eye. The disks supported by drumheads of tightly stretched parchment somewhat funnel shaped, the disk lying against
one side of the parchment and the wire extending from the other, and the parchment recelving the strain of the
line wire. Avoid turning sharpxorners. If neceeseary to
make a turn, use radial silngs of marline placed on utside of curve atted to a solid post or a honse.
(9) R. M. A. desires a cement that wil hold tortoise shell together, also hold it to steel o
brass. A. Take of mastic 30 parts, shellac 90 parts tarpentine θ parts, spirits of wine, 90 per cent strong, 350 parts.
(10) B. F. R. asks (1) a recipe for a good "oumach bitters." A. Grind to a coarse powder 1 pound cardamom seeds, $1 / 2$ pound nutmegs, $3 / 3 /$ pound
grains of paradise, $1 / 2$ pound cinnamon,

 a sirup made of $41 / 2$ gallons water and 12 pounde ugar, then filter. 2. What is the most wholesom food for man? A. See "Cost and Nutritive Value
of Foods," in Scientific American Suplement, No. 124.
(11) A. L. S. asks how to make retouch ng pencils in small quantities, such as used by pho lographers in toaching negatives. A. The pencils consist principally of metallic lead to which a small quan lity of antimony has been aded to bring about the re chase them ready made than to attempt their manuface yourself.
(12) J. J. D. asks : 1. What composition is used by hardware manufacturers to make paper
labels adhere to iron, and what is it composed of? . Use a dilute solution of white gelatine or isinglass, of cements see the collection given in Scirsmiric.
(13) T. H. asks: 1. What is fusel oil? A. It is the offensive, strong smelling oil produced alon with the alcohol during the fermentation of grain, potatoes, etc., when conducted on a large scale. ${ }^{2}$
How can it be detected when mixed with whisky? Only satisfactorily by chemical analysis. 3. What effect does it produce on those who take it, when
mixed with whisky? A. The injurious effect of whisky is due largely to an excess of this ingredient, which is comparatively free from it
(14) J. H. asks : Is there any gun whose range is said to be 15 miles, in the United States, Europe or elsewheres If not, tate longest range that is now
claimed. A. We believe there is no existing gun having a range of 15 miles. The longest range are the Bange guns, which are cqpable of throwing their projectiles 10 nes
(15) H. B. asks : 1. What is the propor tion of sulphuric acid to bichromate of potash in the fuid for single cell battery the following is recomnended: One gallon sulpharic acid to three gallon of water. After it is perfectly cold, add to it a solution of six pounds bichromate of potash in two gallons
boiling water Use when cold. 2 What must be the proportion in case chromic acid takes the place of bihromate of potash? A. For chromic acid use about or directly in the an. Phis will dissolve in cold water cid is the acia aler wisth ith. If the chromic third less than of the bichromate. 3. What are the formule in which the chemical action of the second case ${ }_{18}$ expressed? A. 1st. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+2 \mathrm{H}$. 2nd. $6 \mathrm{H}+2 \mathrm{H}_{2} \mathrm{CrO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}$.
Minerals, etc.-Specimens have been received from the following correspondents, and have
P. P. B. - The specimen is limestone containing

TO INVENTORS

An experience of forty years, and the preparation of ents ather aws and practice on both continents, and to possess unqualed facilities for procuring patents everywhere.
ynopsis of the patent laws of the United States and al Freign countries may be had on application, and person abroad are invited to write to this office for pric which are low, in accordance with the times and our ex ensive facilities for conducting the business. Address
MUNN \& CO., office SCIENTIFIC AMERICAN, 61 Broad-
\qquad
INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

January 18, 1887,

and each bearing that date
ISee note at end of list about copies of these patente.]

Addressing machine, I. D. Hurlbut.	
Adustable seat, C. C. Gould.........	
Advertising show stand, L. F. Wetzell.	
A wning and blind, combined, W. H. Jolliffe (r)...	
Axle lubricator, car, H. H. Buffum................... .. 356,26	
Bag holder, F. Haydon..	
	Barrel making machine,
Basket, W. H. Belknup 356,30	
Battery. See Voltaic battery. Bed bottom, O.S. \& W. S. H'ust	
Bedstead attachment, hospital, C. Drake.......... 356 ,	
Bicycle, C. A. Bouck.......... 356,095Bicycles, lantern supporting arm for, W. L. Fish.. 356112	
Bit stock, H. Smiley.	

Pumps，motor atiachment for centrifugal，B w
Scott．．．．．．．．．．．
 Radiator，steam，J．G．Shearlock．．．．．．．．．
Railway crossing，C．R．\＆H．Johnson．．
 Railway gate，R．C．Elliott
Railway signal，J．H．Ames．，
Rain water and flltoring the
impuritio．．．．．．．．．．．．．．．
same．intercepting impurities contained
Rake．See Horse rake． Rake．See Horse rake．
Reel．See Hosé reel． Refrigerating cellars and vaults，M．Leavy．．．．．．．． from solutiouts by，G．Jarmay．．．．
Refrigerator，J．P．Kmery Refrigerator，J．P．Emery Regulator．See Feed water regulato
Revolver，D．B．Wesson．．．．．．．．． Roofng，metallic，T．W．Helliwell
Rope splice，A．G．Garfeld．．．．．．．． Rope splice，A．G．Garfeld．． Rotary engine， E ．Verstraete．．．．．
Saesh fastener，F．D．．Livingstone． Sash fastener，White \＆Thom Sash fastener，
Sash fastening，s．P．Croswell，ad．
Sash holding device，w．A．Swift．
Sash holding device，w．A．Swift．．．．．．．．．．．．．．．．．．．．．．．．
Sawmills，saw catcher for band，G．H．Zschech． Sawmills，saw catcher for band，G．H．Zschech．．
Sawing machine，scroll，H．L．Beach．．．．．．．．．．．．．
Sawing wooden gutters，machine for，E．E．Elde Scourer．See Grain scourer Screen．See Fly screen．

$$
\begin{aligned}
& \text { Seat. See Adjustable seat. } \\
& \text { Seed drills, attachment for, J. R. Valentine } \\
& \text { Cona rotor } \mathrm{m} \text { p Dhillino }
\end{aligned}
$$ Seed drils，atachment for，J．

Separator，T．R．Phillips．．．．
Sewing machine．W．A．Mack．
Sewing machine，W．A．Mack．．．．
Sewing machine，A．Morehouse． Sewing machine gauge，A．Morehouse．
Sewing，method of，A．Morehouse．．．．．．． Shears．See Pruning shears．
Shears．See Pruning shears．
Shears，W．Lant．．．．．．．．．．．
Shingle，metallic，A．Ricketson．
Sliding bracket，gauge，and compass，combine
Signal．See Railway signal．
Skiagraph．J．M．Max well．．．．．．
Sliding gate，Jumes \＆lazenby
Snap hook，J．M．Basinger．
Soldering machine，P．Eley
Soldering machine，P．Fley．．
Spark arrester，W．F．Elkins．
Speaking tube，E．Becker．：．．．：
Spindle．See Spinning spindle
Spinning machines，filer for，L．
S．Leigh．
Spinning machines，fier for
Spinning machines，filier for，J．A．V．Smith．．．．．．．．．．
Spinning machines，etc．，saddle for the top

Spinning machines，spindle
tightener for，R ．Gemmell．
Spinning machines，spindle
Spinning machines，spindle driving mechanism
for，C．H．Fisher．
Spinning machines，tightener for spindle band
of，w．\＆ S ．Blackburn．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Spinning spindle and support therefor，c． ．
Fisher．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Spring．See Wagon spring．
Stamping apparatus，mail．Hey \＆Laass
Stamping apparatus，mail．，Laass \＆Hes
stanchion．anttle，E．H．Holey
Stand．See Bhow stand．
Stean builer，D．A．Dickinson
Stilt，W．B．Loveland．．．
Stone saw，E．G．Kempe
Stone saw，E．G．Kemper．．．．．．．．．．．．．．．．．．．．．．．
Stopper．See Bottle stopper．Can stopper． Store service apparatus，B．C．Algie Stove，G．E．Sharp
Studs or hooks，machine for setting lacing，w． Supporter．See Garment supporter． Switch board systems，test circuit for multiple，C． E．Scribner．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Switch board test circuit，multiple．C．．Scribner Syringe，J．C．Baker．．．．
Table．See Turntable

Table sink，T．M．Dils．

 Target，flying．F．Erb．Jr．．．
Target trap，fiying，C．Swan
Target trap，Hying，C．Swan．．．．．．．．．．．．．．．．．．．．．．
Teaching fractions，device for，F．B．Shannon Telegraph cables，manufacture of，w．R．Patte

Telephone receiver．E．T．Gilliland．
Thill coupling，H．D．Brown．．．．
Thrashing machine，J．F．Hanso Three－throw split switch，C．A．Iehman． Timepieces．escapement for，Clay \＆Hanson．．
Tongue，vehicle，H．W．Pratt．．．．．．．．．．．．．．．． Tool，routing．H．F．Stearns．

owel，hat，and paper rack，combined，E．L．Sor

 raction engines，steering apparatus for，J．F．
Trap．See Ant trap．Fly trap．Target trap． Tree protector，F．R．Woodward
Tricycle，G．E．Whitmore．．．．．．． Trimmer．See Wick trimmer Tube．See Speaking tube． Tug．hame，S．B．Davis．
Turnable，F．H．Saylor
ype writing machine，Greene \＆Smith Valve，balance，J．T．Merrill． Valve mechanism for compound engines，F．
Rites．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Valve，pressure regulating．F．A．Jone
Vehicle running gear．J．J．Fetzer．．．．． Vehicle running gear．J．J．Fetzer．．．．．．
Vehicle running gear，D．A．Sprague（r） Vehicle，two－wheeled，I．N．Fanebust Vehicle wheel，R．M．Suratt．．．．．．．．．．．． Wagon bodies from the running gear，device lifting，W．A．Pipher．．．．．．．．．．．
Wagon，dumping，R．H．Branch． Wagon spring．L．Fracher．．．．．．．．．．．．．．．．．．．．．．．
Walls，decorating．McDonnell \＆Mallen． Wardrobes，clothes rack for．H．T．Holzhall Washing machine，J．C．McCandlis Watch，stop，A．F．Goy－Blanc．．．．．．
Water wheel，turbine，P．H．Holme Wheel．See Vehicle wheel．Water whe Whip，k，K．Warren．．．．．．．．．．．．．．．．．．．．．．．．
Whip button and method of manufactare，

Abstract

Windmill，A．L．\＆D．M．Kitselman Windinill，A．W．McKenzie．$\mathbf{3 5 6 , 1 3 \%}$ $.356,145$ 356,215 Windinill，A．W．McKenzie．．．．．．．．．．．．．．．．．．．．．．．．．．356，145 Windmill attachment．Greenwood \＆ill，Jr．．．．． 356,216 Windmills，automatic regulator for，H．R．Ste－ 853,28 phens，．． 85, Wire box and cover fasteners，machine for mak－ ing，J．Adt．． 356,298 Wire fabric machine，A．L．Kitselman．．．．．．．．． 366,322 Wire rope，socket for fastening，F．C．Dumas．．．．． 356.106 Wood，machine for cross cutting，F．Mankey．．．．．． 3566,286 Writing，etc．，reproducing， 0. Steuer．．．．．．．．．．．． 356,298 Writings，etc．，reproducing，o．Steuer．．．．．．．．．．．．． 536,246 zlonite，apparatus for working，J．B． 1 Idson．．．．． 356,108

DESIGNS．

Bracelet，H．C．Lindol．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．17，070
Dishes，ornamentation of，C．E．Haviland．．．17，068，17，069 Easel，E．B．Crocker．．．066
Stove or range，cooking，G．E．Wilbur．．．．．．．．．． Type，font of printing，G．F．Giesecke．．．．．．．．．．．．．．．．．．．17，067 TRADE MARKS．
Bitters，Picon \＆Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13，993 Blacking，shoe，Societ cigarettes，Sil．．．．．．．．．．．．．．．．．
Coffee，Java，Lievre．Fricke \＆Co． Eye salves，T．Nairn．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13，999
13，991
Grinding mills，portable，P．Hobler． Liniment，Blake \＆Woodward．．．．．．．．．．．．．．．．．．．．．．．．．13，984
 Papar，wrapping and lining，R．．．93 13,992

Preserved fruits and vegetables，Leach Fils de Ch． Teyssonneau，Jne．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13，990 throat，J．Scharr．．．．．．．．．．．．．．．．．．．．．．．．．．． | 13,99 |
| :--- |
| 13,985 |

$$
\begin{aligned}
& \text { suspensk irs s, L. Dryfoos \& Co......................... } \\
& \text { Underksoards, Union Manufacturing Company.. }
\end{aligned}
$$

$$
\begin{aligned}
& 13,986 \\
& .13,987 \\
& .18,987
\end{aligned}
$$

A printed copy of the specification and drawing as
any patent in the foregoing list，also of any patent issued since 186f，will be furnished from this office for 25 cents．In ordering please state the number and date
of the patent desired，and remit to Munn \＆Co．， 301 Broadway，New York．We also furnish copies of patente
granted prior to 1866 ；but at increased．cost，as the speciftca
hand．
Canadinn Patents may now be obtained by the inventors for any of the inventions named in the fore－
going list，provided they are slmple，at a cost of $\$ 01$ going hist，provided they are simple，at a cost of
each．If complicated the cost will be a little more．For full instructions address Munn \＆Co．， 361 Brordwav．
New York．OLher foreign patents may also be obténind．

ヤో义vertisements．

autocopvist

COUNTERSINK and DRILL COMBINED．

LIGHTNING

 －

JUST READY

A PRACTICAL TREATISE ON PETROLEUM
 description of GAS Welle, the Application of
 syivania and New York. Charge Pennsyivania Survey
Philadelphia. Geolis in
Illustrated by 70 engravings and 2 plates. In one volume, engravings and 208 pages, price 84.50 .
sent by mail, freeof postaes, to any address in the

 HENRY CAREY BAIRD \& CO.,

The Techno-Chemical Receipt Book.

 delphia, author of "Gaf the Franklin Institute, Phila
lustrated by 78 engravings, in ontic Mananilume volume, over 500 pages
l2mo

 HENRY CAREY BAIRD \& CO., Inqustrial Publishors, Bookseliers, and.importers,
8ito Walnut St. Philadelphia, l'a., U. S. A.

THE USE OF TORPEDOES IN WAR.-
 Wawzuve

FOREIGN PATENTS.

Their Cost Reduced.

 NEW YORK BELTIITG \& PACKIAG CO.
 JoHn H. CHEEVER, Treas. J. D. CHEEVERE, Dep'y Treas.

Photo Encrpaving Co
 7 PARK PIACE. NEW YORK

MAGNOL A NEW DIBOUVERY

. B. MLALBER

 ICE-BOATS-THEIR CONSTRUCTION

NEW VOLUMES OF

No. 8y. Treatise on the Theory of the C Braction of Joinilidal CULLEN, C.E. o. 88. Beams and Girders. By P H. PYye Redstance
o. fse. Compressed Guin Cotton for Millitary Translated from the German of Max Von Fozster With an Introduction on
modern Gun Cotton,
facture, Properties and Analysis.
By Lievt. Jorn P. WISSER, U. S. A.
18mo. Boards. Price, 50 cents per.volume.
D. VAN NOSTRRAND, Publisher,

OTTO GA GUARANTEED TO CONSUME 25 to
PCER GENT. LESSGAS THAN

CLART'S NOISELESS RUBBER WHEELS ifferent Styles. Catalogue Froe Box L. GEO. P. CLARK.

WSPAPER FILE

MUNN \& CO.
Telegraph and Ehectrical Yealeal Rat SUP PPLIIES

TVTATY Have yon that you WHAT Nuw manc.

AEAMLLDAM EALALASA
a
CALDWELUS SPIPAL GTEEL CONVEYOL

BIC OFFER. To intodaco heon we

THE HAMMER TTELEPHONE-BY L

BIT $=2$ $=2$

THE PHONOGRAPHIC MAGAZINE

ELECTRIC CONVEYORS.-DESCRIP

THE BEST STEAM PUMP.

BARREL, KEQ, Hogshead,
STAVE MAMMRRY:
Truse Hoop Driving. E. \& B. Holmes,
S ENCINE.
ANY rew wixiwe
VOLNEY W. MASON \& CO. RICTION PULLETS CLUTCHES and ELEFATORS PROVIDENCE, R. 1
PLAYS

The cost need no longer deter inventors from obtaining patents in either Brazi or Mexico.
For further information address MUNN \& CO.,
Proprietors Scientific American
361 Broadway, New York.
CURE For PEAF

ELEVATED CABLE RAILWAYS. -

DEAFNESS

${ }^{2}$

CONSUMPTIONPIVRED

[^0]Pfovertisements.

The STATUE of LIBERTY, NEW YORE.

ARTESIAN

 COLD AS A CAUSE OF DEAFNESS.-A

ELECTRC
 Aroh St, philadelipha;

Tranamiaion or Pow,

WIRE ROPE

Prenton Iron Co.
 CEMOUSE. AN REFRTGERATOR

GRATEFUL-COMFORTINC.

the dingee e conard co's

Roses

SINKINGMINESHAFTS.-DE

PATENTS.

MMSSRS. MUNN \& CO. in connection with the publication of the SCIENTIFIC AMRRICAN, continue to ex-
amine improvements. and to act as Solieitors of Patents for Inventors.
In this line of business they have had fortl-one veara'
expaince, and now have wnequalad facilitices for the appoince, and now have wnepuabd facilitices for the preparation of Patent Drawings, Specifcations, and the
prosecation of Applications for Patents in the United statee, Canads, and Foreign Countries. Mesars Mran \& Co. alpoattend to the preparation of Caveats, Copyrights for Bookg Labols, Leissues. Assiguments, and Reports
on Infriagements of Patents. All business introsted to on Infriagements of Patents. All business intrusted to
them is dene with them is done with

 miknoments, Rejected Cases, Hints on the Sale or Pa-
 MUNN \& CO., Solleitory of Patents, 351 Broedway, Nem Yofk

[^1]

Wheblers Patent Woun Pillel: LTHOOEN LRIMER WOOD STA TANS

PAMPHLET GIVING DIRECTIONS FOR FINISHING HARD WOOD FREE TO ANY ADDRESS.

PATENT

 JACKET KETTLES,

PATENT RIVETED MONARCH RUBBER BELTING.
Eest 1 n the vrorict.
Specially adapted for PAPER MLLLS, SAW MHLSS, and THRESHING MACHINES.
THE CUTTA PERCHA and RUBBER MFG. CO., New York; Chicingo, san Francisco, Toronto.

THE PENBERTHY INJECTOR.
As every Injector is tested by the mannfatecrrers before it leares the faetory, we kno that, if
propery coniected and instructions are carried out. they cannot fail

71 John St., New York. 105 Milk Sto, Beston. 13 S. Fourth St., Philadelphia.

TCE-HOUSE AND COLD ROOM:-BTR.

AQUA PURA

 Send for Curcutare and Retimates.
NEWARE FILTERING CO., NEWARK, N. J. TEST RECORDING APPARATUS.-

 11 newsdealers.
 Branch Office and Factory, 230 Center Street, Now York RAILW AY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&c.
JOHN S. URQUHART, 4 Cortlandt St., N. Y.

Gamplet and Hlustrated Paniphlef "stean Saving and Fire-Proof Matertals" Free by Mail.

95 MILK.ST.; BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor

Established 1837. Machine Knive8, L. \& J. J. WHITE, BUFFALO. N. Planing, Moulding, Shingle and Stock rad Blanks for Moulding Cutters. Other Machine Cuttersto Pattern. Moulding Cutters can be ordered by number from Universal Moulding Book.
 Order from our "Gpecial List." TEE JOHN T. NOYE MFG. CO., BURPATO, N.
 MOSDUE

Scirntific Ammerican
The Most Popular Scientific Paper in the World.
 This widely circulated and splendidy illustrated paper is published weekiy. Every number contains six. original engravings of nem tormantions and discoveries, representing Engineering Works, Steam Machinery Chemistry, Eleans Novelties in Mechanics, Manufactures tecture, Agricolture, Horticuiture, Natural History, etc. All Classes of headers find in the Scieintipic AMERICAN a populat resume of the best selentific into present it in an attractive form, avolding as much as possible abstruise terms fo every intellipent mind, this Journal afforde a condant inppiy of instructive every community where it circiulintege and progress in Terms of Su where it circulates.
tipic Amirican will be sent for one vear- 52 numberspostage prepuld, to any subscriber in the United States or Canada, on receipt of three dollars by the pab
uishers; six months, 81.50 ; three months $\$ 1.00$ shers; six months, 81.50; three months, 81.00 . CAN will be supplied gratis for every club of fve subberiber at $\$ 3.00$ each ; additional coinies at same mroportionate rate. The safest way to remit is by Postal Order, Draft, or
Express Money Order. Monè carefull placed inside of envelopes, securely sealed, and correctir addreved seldom goes astray, but is at the eender's risk. Address all letters and make all orders, drafta, etc., pay

MUNTN \& CO.,

361 Broadway, New York.
antic American Supplement. This is a separate and distinct publeation from
 weekiy, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the princtpal departments of Science and the
Deeful Arts, emtracing Biology, Gecloky, Mineralogy, Oseful Arts, embtracing Biology, Gecloxy, Mineralogy:
Natural History, Georraphy, A rchæology. Astronomy, Natural History, Georraphy, Archæology. Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical EngiChemistry, Electricity, Light, Heat, Mechanical KngiShip Bullaing, Marine Engineering, Photogriiphy,
Technology, Manafacturing Industries, Sanitary Ena Technology, Kanufacturing Industries, Sanitary Khgineering, Agricalture, Horticulture, Domestlc wcono-
my Biography, Medicine,etc. A vast amount ớ freeh my, Biography, Medicine, etc. A vast amount of frem
and valuable information pertaining to these and allied subjects is given, the whole profasely illustrated with engravings.
The most
The most tmiportant Enstneering Works, Mechanisms and described in the SOPPLEMENT.
Price for the Supplement for the United States and Canads: 5.00 a year, or one copy of the SCTRNTTPTC AM RRICAN and one copy of the SUPPLEMRNT, bothmailed
for one year for 87.00 . Address and remit by postal order. express money order, or check, MUEN \& Co 361 Bron

Pablishers Scientipic American.

To Moreign subscribers.-Under the facllities To yoreign Snbseribers.- Under the faclities of by post direct from New York, with regularity, to subscribers in Great Mrttain. Indik. Australia, and all other Brtish colonies; to Rrance, A ustria, Belglum, Gormany
Rowis and an other Buropean States: Japan: Brasil Merioo, and all states of Central and South Ammerice Terms, when sent to foreign countries, Canada excepted for gili, for Scientimic American, one year; s9, gold
 oneyear. This includes pcatage, which we pay. Resat
oy poetal or erpress money order. or draft to oriar of MONN \& CO, 381. Brondway, New Yort.
PRINTINE TNKS:

[^0]: HLES

[^1]: dSo Building, pear Tth strieet, Waskington, D. C

