

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, NOVEMBER 27, 1886.	

THE GYROSCOPE.	tor, of which the wheel formed a part. In that in	ment. In one respect, however, the electrical gyro-
by GEORGE m. Hopkins.	strument, the wheel maintained its elevated position	scope shows its superiority. When its gyratory mo-
ill here be made to explain the action	for a longer time than the ordinary gyroscope; but	tion around the vertical axis was maintained at a

No attempt will here be made to explain the action for a longer time than the ordinary gyroscope; but tion around the vertical axis was maintained at a of the gyroscope, the object of the present article it was found impossible to apply sufficient power to uniform rate, by the application of a very slight being merely to describe a few modifications of the preserve a uniform velocity. The gyration of the force, it would not descend, but would preserve its instrument, and to mention peculiarities noticed in wheel about the vertical axis acted effectively in re- plane of gyration indefinitely. The amount of force the performance of some of these modified forms. tarding its rotation about its own axis, so that the so applied was insufficient to accelerate the gyratory Some years since, the writer described, in these wheel descended in a spiral course; and the electric motion. Probably it was not more than enough to columns, a gyroscope in which the rotation of the gyroscope, so far as its normal actions were concerned, compensate for the friction of the vertical pivot. gyroscopic wheel was maintained by an electric mo- did not differ materially from the ordinary instru-
(Continued on page 340.)

GYROSCOPE WITH FRICTION DRIVING GEAR.

PNEUMATIC GYROSCOPE HAVING CONTINUOUS ACTION.

PNEUMATIC GYROSCOPE.

STEAM GYROSCOPE,

zrientifir glurricau.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one ear. postape included.
One copy, six months, postape included

The Scientific American Supplement

 Scientific American Export Edition.

NEW YORK, SATURDAY, NOVEMBER 27, 1886.

Contents.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 56 .
For the Week Ending November 27, 1886. Price 10 cents. For sale by all newsdealers.
ASTRONOMY-Stellar Pb

 V. CHEMISTRY.-Combustion.-On combustion with special refer

 II. MEDIUNE AND PH YSIO... The' 'reatment of fonstipation- By HENRY M. HiELi...i.D.
Full dercription of the treatment of this complaint by formation
of correct babits and by medicaments.

IX.

XI. TEClINOLOG Y.-Blee...

THE DYNAMITE CRUISER.
The report that the contract had been let for build ing a cruiser specially designed and fitted for armament with Lieut. Zalinski's dynamite throwing gun has been contradicted as premature; but it is admitted that such a cruiser is to be built upon plans practically identical with those stated in the above mentioned re port, namely, length 230 ft ., beam 26 ft ., draught 71/2 ft., estimated horse power 3,200, highest speed 20 knots. Under the supposition that this speed of 20 knots was intended to be a sustained speed, several critics have privately expressed their belief that no such vessel could be constructed; for they say that, inasmuch as the great 8,000 ton steamers are barely able to wake 18 to 19 knots in crossing the Atlantic, with a developed 12,000 horse power, a small steamer, such as is above outhine
There is a certain axiomatic character to these criticisms ; but the critics probably make a serious mistake in assuming that the speed of 20 knots is to be the craft's capacity for any great length of time. If she had a normal speed of fifteen or sixteen knots, which could be driven up by forced diaught for even an hour. or less to 20 knots, she would fulfill all the conditions necessary to success. For, under the lower rate of speed, she could overhaul almost any cruising fleet, or even any single cruiser, when making an ordinary service passage from one port to another. Then, not until the two craft were so close to each other as to recognize each other as enemies would the 20 knot speed be called for. It is not likely that a combat between an ironclad and a light unarmored cruser could last long. Either the latter would soon plant a dynamite shell or two in her heavy antagonist and finish her, or else she would be sunk by the ironclad's heavy fire.
As regards the battery to be given to the dynamite gun cruiser, it is natimal that so untried an experiment should produce a good deal of divergence of opinion. In its favor it is said that the acknowledged success of the gun on shore can undoubtedly be repeated at sea. Its accuracy, lightness, and inexpensiveness, coupled with the terrific effect of its projectile charged with dynamite, are all cited as advantages which makesuch a gun especially desirable for a nation like ours, which does not wish to spend large sums on heavy ironclads and expensive guns. Assuming, therefore, that a cruiser can be built, having high normal speed and the capability of increase for short periods to a unique speed ; that she can carry all the air compressing machinery, etc., for her dynamite guns, without depriving her of coal carrying capacity; that she can work
her guns as effectively at sea as they have been worked on land; that the long tubes will not be so affected by the constant tremor and vibration of a screw steamer at sea as to be thrown out of line or "buckled "-as-
suming these things, there is good reason to expect good results from this cruiser when built.
But it is urged that the experiment is not beginning right ; that the conditions in the proposed experimental cruiser are not at all likely to be the same as they would be in a war ship intended for service cruising. In the first place, there is certainly an awkward uncer tainty as to the position the two guns will occupy. It is evident that as each gun cannot be less than 60 ft . in length (possibly even 80 ft . may be requisite), the guns cannot be mounted in broadside on a craft having anly-26 ft achergroatact brence It follows that only a certain fore and aft style of mounting can be
used, and that the guns can be fixed oniy in a limited used, and that the guns can be fixed oniy in a limited
arc on each side of the bow and stern. Granting four points on each side of the keel forward and aft, each gun would cover eight points only, leaving sixteen points in which the vessel could not fire at an enemy at all. Clearly such a limitation of her fighting powers would detract seriously from her efficiency, and it ought not to be permitted if it can be avoided.
There is one experiment that has not yet apparently occurred to the constructor of the so-called dynamite gun, or at least nothing has been done about it practically. If a very high elevation were given to it-say even 60°-the projectiles, instead of striking at a low angle, would fall perhaps a little more nearly vertical than they went up, and would strike the enemy's decks instead of the broadside plating. Inasmuch as the decks are always more vulnerable than the broadside the effect of the dynamite shell exploding thereon would be more damaging to the ship struck than it would be if the shell exploded against the broadside.
Such an unusual elevation would permit the guns to be fired even from the broadside of a narrow craft like the proposed cruiser, while they could equally be fired at low elevations from the bow and stern. Of course such a use of the guns would be practicable only at such close quarters as to expose the craft to machine gun fire, and the game might not be worth the candle; 855 but it would seem to be nearly the only way of utilizing these exceptionally long guns in ships of narrow beam. In narrow channels defended on each side,
like the Narrows, this method of using the dynamite guns might be very effective. They could be sunk deep
guns and crews working them would be absolutely safe against the fire of a hostile fleet, while at the same time they could rain down shells upon the channel. Extremely accurate shooting could be secured with the compressed air guns, the effect of the wind being the only element of uncertainty; and twenty-five or thirty of these inexpensive guns, properly placed, ought to be sufficient to close any narrow channel against a hostile fleet.

The government may have adopted plans which will make the experiments on board this proposed cruiser conclusive; and while it seems at present as though she would be far from determining satisfactorily the practicability of using the dynamite-throwing gun at sea, it is well, in view of the importance of the issues at stake, to have the trial made.

TORPEDOES VS. RAMS.

The United States ship Tennessee, the largest in the service, and at present the flagship of the North Atlantic squadron, met with a mishap at the Brooklyn Navy Yard on the 14th inst. A steam cutter of small dimensions bumped against her port bow and opened a hole nearly three feet long. It is thirty years since the Tennessee was launched. While she is one of the most comfortable vessels afloat, it is said she has long outgrown her usefulness for war.
The ease with which the hull of our best war ship may be penetrated presents a striking contrast to that of some of the old iron hulks of the British navy. For example, they lately tried at Portsmouth an experiment to see how big a hole they could knock in the utfor the irenalad Resolute by exploding a first-etass torpedo under her bottom.
A 16 in . Whitehead, charged with 93 pounds of guncotton, was lashed to a boom and laid in contact with the port side, amidships. It was about 8 ft . under the urface, and close to the bilge keel. The conditions were entirely in favor of the torpedo, and it was expected that the destruction of the vessel would be both sudden and complete. The result, however, fell very far short of the anticipation. The ship was slightly inclined by the force of the explosion, and then listed a little in the opposite direction. Beyond this and the upheaval of the water, there was nothing to be seen by the spectators. Investigation showed that the bilge keel had been shaken off to the extent of 30 ft ., and the plating below much indented. Between the bilge keel and the armor belt the skin plating was forced in between the frames, and three or four strakes had parted in the middle for a length of 8 ft . some of the butts had been opened, so that gashes 2 in . or 3 in . wide appeared at the junction. Internally, skylights were broken and the coal blown about, but only one compartment was penetrated. The exact amount of damage cannot yet be determined, but it is evident that the ship was not disabled, and could fight her guns perfectly well.

WORK AND HABITS.

If the Knights of Labor can infuse in the mass of the organization the same ideas of personal habits as are voluntarily acted on by the managers, they will do much to improve the status of workingmen, whether laborers or mechanics. There already has been much improvement in this respect, the change being attributable to more intelligent estimates of the value of good habitstan those which prevailed a generation ago. It was considered not unusual for a first-class workman to have his periodical sprecs, and to be a free liver in the coarser meaning of the term ; ndeed, the union of loose habits and the reputation for competence to do a good job appeared to be natural and expected. "Blue Mondays" were.common, the best workmen not putting in an appearance until Tuesday, requiring a day to get over the weekly debauch. Such men appeared to consider that their skill as mechanics entitled them to a license that was njurious to themselves and harmful to the employer's nterests.
But the employers tire of these practices, and the dissipated workman cannot so readily assume on his skill as an excuse for his bad habits; the old notion of the union of drunkenness and duty, of immorality and ability, of high pay and low habits, is exploded. One of the most competent and efficient foundry foremen the writer ever knew lost his place in the establishment where he managed nearly fifty men, and his caste in the community, by his persistent practice of intemperate drinking. Said the manager, shortly after his dismissal: "I hardly know how to fill his place. There are not half a dozen men in the country who are his equals in the mixing of irons, the tempering of sand, and the carefulness of general management. never lost a casting under him of the value of ten dollars. But I needed hin six days in the week, and I paid for his coolness, his judginent, and his full capacity. I do not require my men to become total abstainers, although some might benefit by that method ; but I do want their intelligent work."
It may be a necessity that employs unreliable skill and presumptive talent, but employers will apply a remedy as soon as they can. The workman may be
certain that personal good character and personal good habits are compatible with steadiness in work and skill in handling tools. There is no proper show of independence in working five days and loafing two day: because the man is a first-class mechanic, and can assume on that fact and the forbearance of his empioyer. One of the best, as well as one of the largest, establishments for building machinery in this country has its own temperance organization in the shape of a mutual improvement society, and the proprietors justly boast that they have the best personnel of any shop of an equal number of hands. There are no "blue Mondays" in this establishment.

Ex-President Chester A. Arthur.

Chester Alan Arthur, the 21st President of the United States, died in New York city, Nov. 18, aged 56 years. Called to the Presidency by the assassination of Garfield, he bore himself through all the lingering days of Garfield's helplessness in a manner which had as much of wisdom as of dignity, and gave assurance to the country that allayed excitement and quieted apprehension at a time when men's minds were in a state of great tension. His subsequent career of three and a half years in the Presidential chair constitutes such recent history as to be familiar to all. People felt that the government under his administration was in safe hands, and its conduct in general was such as gave satisfaction to men of all parties.
Of Mr. Arthur personally it is to be said, first of all, that he was always the cultivated gentleman. He was graduated from Union College at an early age, having to teach school winters during the latter part of his college lifc, and while commencing the study of law, to assist in paying his own expenses. He was always a diligent student, and came of a family of marked intellectual capacity, but he was courteous, affable, and winning in manner, almost by nature; and in all that he did his gentle breeding was as evident as were the breadth of his culture and the thoroughness of his equipment when he was suddenly called upon, by a strange decree of fate, to fill the highest office possible for an American citizen.

The Welsbach System of Gas Lighting by IncanThis system, which is the invention of Dr. Carl Auer von Welsbach, of Vienna, consists in impregnating fabrics of cotton or other substances, made into the form of a cylindrical hood or mantle, with a compound liquid composed of solutions of zirconia and oxides of lanthenum (or with solutions of zirconia with oxides of lanthenum and yttrium), which mantle, under the inlanthenum and yttrium), which mantle, under the in-
fluence of a gas flame, is converted into a highly refractory material capable of withstanding for long periods without change the highest temperatures which can be obtained from the most efficient form of a tmospheric burners, and which, under the influence of such temperatures, glows with a brilliant incandescence, very white, and perfectly steady, and which, moreover, retains its woven or reticulated character; the organic tains its woven or reticulated character; the organic
volatile and carbonaceous matters being entirely burnt out, and replaced by an incombustible and highly re ${ }^{-}$ fractory residual skeleton, which becomes by its brilliant incandescence the source of light in the burner. The light emitted is, at a distance, hardly distinguishable from a twenty candle incandescence electric lamp, and by a modification of the composition of the inpregnating liquid, a yellower light is obtained, resembling that of the lest gas lights, but much more brilbling that of the lest gas lights, but much more bril-
liant, and with a saving of gas of from 50 to 75 jper cent, liant, and with a saving of gas of from 50 to 75 ,per cent,
and, being perfectly smokeless, it is incapable of blackand, being perfectly smokeless, it is incapable of black-
ening ceilings and internal decorations. The illuminating power of the lights is about ten candles per cubic foot of gas consumed, and the mantles last from 800 to 1,500 hours.

Tercentenary of the Introdiction of the Potato into England.

It is proposed, says Nature, to hold a tercentenary potato exhibition at the St. Stephen's Hall, Westminster, from Wednesday, December 1, to Saturday. December 4, and to appoint one of those days for a conference, when some of the unsettled questions re-
lative to the history, etc., of the potato may be discussed. The exhibition will consist of four sections : 1. A historic and scientific collection, to include early works on botany in which the potato is figured ; maps showing the European knowledge of the New World three hundred years ago, and the proximity of potato-growing districts to the ports most frequented ; early books on travels and voyages in which reference to the potato occurs; works and napers in which attempts to define the different species are made; illustrations of the species and varieties; contemporary references to the voyages of Hawkins, Drake, Grenville, and Raleigh. 2. Illustrations of potato disease, and works on the subject. (Sections 1 and 2 will be arworks on the subject. (Sections 1 and 2 will be ar-
ranged under the advice of a committee of scientific gentlemen who have consented to give their co-operation.) 3. Methods for storing, preserving, and using partly diseased potatoes, etc. 4. A display of tubers of all the various varieties grown. (In this section,
gold, silver, and bronze medals will be a warded. Eacth exhibit must be accompanied by a statement of date of planting, locality, nature of soil, etc.) - The
Progress of Naval Torpedo Boats.
Progress of Naval Torpedo Boats.
The competition for the supply of new torpedo boats
to Turkey, which has been carried on for some time to Turkey, which has been carried on for some time contract has been signed for three torpedo cruisers and nine torpedo boats. The cruisers, are to be 70 meters, 60 meters, and 45 meters long respectively, with a speed of 25 knots, 23 knots, and 20 knots. The torpedo boats are to be 37 meters long, with a speed of 22 knots. All will be armed with Hotchkiss guns, in addition to Swartzkopf torpedoes. The whole will be delivered within eighteen months.
The French Admiralty has ordered of the Society des Forges et Chantiers twenty-six first-class torpedo boats, of which sixteen are to be constructed, at a cost of 175,000 . (7,000 l.) each, at the company's yards at Marseilles and La Seyne, and ten, at a cost of 173,000f. (6,520l.) each, at Havre. The former boats are to be delivered at Toulon, the latter at Cherbourg. The dimensions of the new torpedo boats are as follows: Length over all, 35 meters (115 ft .); breadth, extreme, 3.35 meters (11 ft .); depth of hold, 2.5 meters ($81 / 4 \mathrm{ft}$.) draught aft, 2 meters ($61 / 2 \mathrm{ft}$.); displacement, fully equipped, $533 / 4$ tons; minimum speed, 18 knots. Each boat is to have two torpedo launching tubes and to
carry four torpedoes. The boats are to be constructed carry four torpedoes. The boats are to be constructed
in seven watertight compartments. The coal bunkers, placed each side of the boilers, form for the latter a sufficient protection against light projectiles. All the material used in the construction of the boats must be of French manufacture. The trials include a forced and a continuous run. In case the maximum speed is less than 20 knots, 500 francs are to be deducted from the contract price for each tenth or each fraction of tenth of a knot below that speed. Should the maxi mum speed, however, of any boat be under 18 knots, the boat in question will be rejected. During a continuous run of eight hours, the a verage speed must not fall below 12 miles an hour. The keels of two twin screw cruisers, the Surcouf and Torbin, have been laid down at Cherbourg and Rochefort respectively. The vessels will have the following dimensions: Length over all, 95 meters (312 ft .); breadth, extreme, 93 meters ($301 / 2 \mathrm{ft}$.); depth of hold, 7.05 meters (26 ft .); draught amidships, $4: 24$ meters (14 ft .); displacement, 1,844 tons. The speed of the cruisers is to be $191 / 2$ knots, and their engines are to develop 6,000 horse power. Their armament is to consist of two 14 centimeter ($51 / 2 \mathrm{in}$.) guns on the forecastle, three 47 millimeter (1.83 in .) quick firing guns, and four mitrailleuses, besides five torpedo launching tubes-two forward, one aft, and one at each side.

Smoking and Heart Disease

In a report by Dr. Frantzel, of Berlin, on immoder ate smoking and its effects upon the heart, it is stated that the latter show themselves chiefly by rapid, irregular palpitation of the heart, disturbances in the region of the heart, short breath, languor, sleeplessness, etc Dr. Frantzel says that, if the causes of these com plaints are inquired into, it is generally found that the patients are great smokers. They may not smoke cigars rich in nicotine, but full flavored cigars imported from the Havanas. Smoking, as a rule, agrees with persons for many years, perhaps for twenty years and longer, although by degrecs cigars of a finer flavor are chosen. But all at once, without any assignable cause troubles are experienced with the heart, which rapidly
increase, and compel the sufferer to call in the help of the medical man. It is strange that persons consuming cigars of ordinary quality, even if they smoke them very largely, rarely are attacked in that way. The excessive use of cigarettes has not been known to give rise to similar troubles, although it is the cause of complaints of a different nature. The age at which dis turbances of the heart become pronounced varies very much. It is but rare that patients are under thirty years of age; they are mostly between forty and sixty years old. Persons who are able to smoke full flavored Havanas continue to do so up to their death. If we look round among the better classes of society, who, it is well known, are the principal consumers of such cigars, it is astonishing to find how many persons with advancing years discontinue smoking. As a rule, affection of the heart has caused them to abjure the weed. In such cases the patient has found the best cure with out consulting the medical man. If he makes up his mind to discontinue smoking at once, the complaint frequently ceases at once; in other instances it takes some time before the action of the heart is restored to its normal state. In such cases, besides discontinuing smoking, relief must be sought also by regulating the diet, taking only easily digestible food, light beer and wine in moderate quantities, abjuring coffee, as well as
by short walks, residence among mountains of moderate elevation, and suitable interior treatment. By taking this course, all symptoms disappear in the does not recommence smoking. In a third category of
cases, the more acute disturbances leave the patient; he feels well and hearty, but an irregularity of the heart, more or less pronounced, is left behind. It has not yet been determined what it is that makes smok ing injurious; but this much appears certain, that it does not depend upon the amount of nicotine which cigars may contain.

old Spanish Mineral Specimens.

According to Die Natur, a remarkable collection of minerals exists in the cellars of the Academia San Fernando, at Madrid. It is contained in a number of boxes, which have filled the cellars for about 200 years, and which may remain there as long again unless some better fortune befalls them than that which has at tended them in the past. They come down from the golden age of Spanish domination in South America and in Mexico, when the mines of these regions made them the El Dorado of the globe. No one knows exactly the contents of the boxes, but they are believed to contain the rarest objects, although the scientific mportance of collections was but little appreciated in the days when this one was made. It appears also that collections made by Humboldt during his travels in America, and handed over by him as a kind of scientific tribute to the Spanish Government, are in the same academy, "locked up since 1804, in a press, untouched." With respect to the famous skeleton of the Megatherium americanum, Cuv., found by the Marquis de Loreto on the banks of the Rio Luxon, near Buenos Ayres, in 1778, which is in the Museum of the Academy, its present state is described by the Brothers Fraas, of Stuttgart, in their letters from the south of France and Spain, just published under the title of "Aus dem Suden," as being one of the utmost confusion. The bones are bored for mounting, but they are "completed and restored" to the verge of the impassible. The bones are placed in absurd positions, and parts which bones are placed in absurd positions, and parts which
were inconvenient to the mounter are put aside altowere inconvenient to the mounter are put aside alto-
gether. The writers ask what the state of instruction in natural history must be in an academy where such things are possible.

The Australian Frozen Meat Trade.

In a letter written last month, the Melbourne correspondent of a Scotch paper gives some interesting data regarding the frozen meat trade of that city. He says that though the frozen meat companies have not been very successful, the Melbourne one having been wound up some months ago, yet since the works passed into other hands there is promise of success. Instead of purchasing sheep, as did the original company, the present owners of the works only kill, freeze, and ship the sheep for private owners at specific rates, the owners themselves taking all risks of sales in London. This new system, which has for some time been in vogue in New Zealand, came into operation in Melbourne last April, and up till the dispatch of the correspondent's etter, as many as 50,000 sheep had been frozen at the works at Williamstown.
The graziers who consigned on their own account to London agents were pleased with the returns, as they found, after paying all expenses of freezing, freight, and commission, they had got more per head for their sheep than the prices realized for similar animals sold live in the Melbourne market. Such strippers actur ally realized from 15 s . to 17 s . 6 d . per frozen sheep, when the market rates in Melbourne for iive sheep were only 2s. a head. Bui even had they realized only 12 s . for the frozen carcass, they would continue to take all the trouble and risk of sending the meat to London, because one of the main objects of doing so is to reduce the surplus stock in Australia, which without an outside market to resort to, sheep become a glut in the colony, and probably without such outlet would have to be sold for 5s. or less per head, or be got quit of by being boiled down for tallow.

Steel Pipe.

It is reported by the Berlin Eisenzeitung that the new process for making steel pipes employed at Burbach is very successful. A syndicate has been formed to build works at Burbach, the capital being $1,200,000$ marks, of which 500,000 marks are issued to the patenee, A. Mannesmann, of Remscheid. It is stated that Funke \& Ebers, of Hagen, Germany, have also purchased patent rights, and a large firm in Paris propose to apply the method to the manufacture of copper tubing. As to the process : As soon as the steel is cast into the round mould, a core is thrust into the steel, so that a tube is formed between it and the walls of the mould. In order to prevent cracking of this annular casting during cooling, the core is so made that it follows up the shrinkage of the steel. The steel cup thus obtained may then be rolled in an ordinary train.

A big gopher snake was killed recently at Dayton, Fla., in whose stomach was found a three foot rattle snake, still alive. The gopher was over sir feet in length.
improved balanced steam engine.
Of the moving parts of a steam engine, the piston, piston rod, and crosshead have only a reciprocating motion, while the connecting rod has both a reciprocating and rotary motion, the rotary motion being almost nil at the connection with the crosshead,

LOUQUE'S BALANCED RECIPROCATING COUNTERWEIGHT ENGINE.
and being almost perfectly rotary at its connection with the crank, which has, of course, only a rotary movement. To perfectly balance these motions, it is necessary to counteract the effects of the one by the other. In the engine represented in the accompanying engraving, this end is reached by a simple and admirable arrangement of counterbalancing parts. The engine has a three-crank shaft. The connecting rod being weighed, its weight is divided in two equal parts, and a rod is connected to each of the crank pins opposite the main crank. These rods always move in opposition to the connecting rod. The piston, piston rod, and crosshead are also weighed and the weight divided in two equal parts, are placed at the end of the balanced rods, and are made to move in slides running parallel with the crosshead. The engine is thus perfectly balanced. The inventor did not deem it necessary or useful to counterbalance the slide valves. The effect of such counterbalancing has been so extraordinary in its practical results that these engines have been run without bolting to the floor and without flywheel, at either slow or high speed. The counterweights can be applied to any engine.
Further particulars can be obtained from the patentee, Mr. Charles Louque, 31 Carondelet Street, New Orleans, La., and from our Business and Personal column.

IMPROVED WHEEL HUB.
The hub is adapted to give a staggering arrange-

GRASBERGER'S IMPROVED WHEEL HUB.
ment to the spokes, while it secures the greatest possible strength without destroying the symmetry and beauty of the plain wooden hub. The body of the hub is composed of two wooden end sections, which are bored to receive the axle, and are fitted within a metal shell, which is constructed with recesses form-
ing pockets for the spokes. In the construction here illustrated, the spokes are held in place by being made to spread out laterally by a locking wedge, as shown in the sectional view. The outer and inner wooden end blocks, which form the core of the hub, are turned to shape, then cut in five pieces, one of which is wedge shaped, to form a key for the whole or they can be steamed and forced into the hub.
This hub receives the full size of the spokes the whole length of the tenon, and repairs are easily made, as the spokes are independent of each other. It is impossible for the grease to get in around the spokes, in case of a loose box.
This invention has been patented by Mr. Boniface A. Grasberger, of 1448 East Franklin Street, Richmond, Va.

How Plaster Casts are Made-Col. Pat. Gilmore's Plaster Cast.

The St. Louis Globe gives the following amusing account of Col. Pat. Gilmore's experience in the hands of a couple of youthful modelers: "I went to the studio at the hour fixed, and was to be met there by a well known sculptor, who had courteously undertaken to do the modeling himself. By some unfortunate mischance, he failed to put in an appearance. Two apprentices were vigorously stirring the liquid plaster of Paris or whatever villainous compound is used for the Paris or whatever villainous compound is used for the
purpose. After about half an hour's waiting, it was purpose. After about half an hour's waiting, it was
decided to proceed in the great man's absence, and I was invited to disrobe. A much-beplastered white sheet was wrapped around my neck and shoulders tightly, and my face and hair were liberally greased to prevent the plaster sticking to the flesn. Pleces or paper were stuffed into my mouth, nose, and ears, and I was told to shut my eyes. No sooner had I done so than my persecutors commenced pouring the liquid on my head. One poured while the other pressed the rapidly hardening compound so as to fill every recess and get a cast of every feature. They poured a great deal too much on, and soon my head was incased in a mask as hard as iron. The heat was insufferable. I could not move my head, for the awful weight threatened to dislocate my neck if I did; my eyes seemed being pressed into my brain, and the paper circlets not proving adequate for their purpose, I began to feel the first symptoms of suffocation. I could not call out, and believed myself to be dying. But my troubles had barely commenced. The apprentices had not fixed the centerboard, or slit, properly, and when they mercifully decided to release me, they found the cast would not come in half as it usually does. In a successful operation the two halves are joined together after removal, and a perfectreproduction of the face and head easily produced; but in my case both dividing board and grease had been overlooked, and the only course left was to smash the mask off. Mallet and chisel were used, producing an effect like concussion of the brain. Finally my face was freed, and I was able to breathe, and make a few remarks to the boys on their careless ness. Then it transpired that they had omitted to grease behind my ears, and the plaster adhered to the skin like glue. To remove the former, the latter had to be torn a way, and when at last I got away I was a mass of blood and sores. After two weeks' medical attention I got about right, but the memory is still fresh."

How to Collect Mosses.
At the meeting of the Royal Society of Tasmania on July 13, Mr. R. A. Bastow, F.L.S., read a paper on the collection, observation, and identification of mosses, from which we take some practical hints. The collector should provide himself with a good pocket lens, a table knife, a piece of carpet 12 by 8 to kneel upon, very capacious pockets, two or three old newspapers, a small billy, and refreshment. The latter is an absolute requisite, for it is wonderful how voracious one becomes by the time that the furthest point of the collecting ground is reached.
Mr. Bastow makes it a rule never to collectanything on the journey outward, no matter how tempting a tuft of capsules may be. It is better just to mentally note them and pass them by in going; they may just as easily be secured on the return. Every tuft of moss that is gathered should be carefully folded in paper, so that the species may be keptseparate. However beautiful a medley tuft of moss may be, it is better left behind; tufts of one species only should be looked for. Mosses thus gathered will keep a long time, but it is better to wash them and lay them tastefully between blotting paper under pressur for a few days. They are then both dry and rigid, and may be packeted and labeled at once, or placed in an album, or mounted on glass slips as slides for the microscope. The author has prepared a key to the study of Tasmanian mosses, which is a new feature in the introductory portion of bryology. The Tasmanian mosses are the first in the botanical world to be diagrammatically arranged, so that the student may have all the genera before him on one sheet, so bracketed and arranged that he

One species of each genus is represented, in its natu ral size and as it appears under the microscope with a $11 / 2$ inch objective. The key also contains short gen eric descriptions; these, in conjunction with the list of Tasmanian genera, their authors, the English meanings of the generic names, and the habit of each genus, in the body of the paper, will afford great assistance.

IMPROVED VEHICLE SEAT.

The object of this invention, which has been patented by Mr. James Steele, of Guelph, Ontario, Canada is to so construct a vehicle seat and body that it may be arranged as a single or double seated vehicle. The body of the vehicle is provided with a hinged back, to which is connected a tilting seat, by rods jointed to the seat and back of the body. An auxiliary seatis hinged to.an extension of the back of the main seat, and pro vided with rollers running upon guides placed in the body below the main seat. When only a single seat is required, the back is raised to a vertical position, thereby bringing the main seat into a horizontal position, where it is supported by the frame of the vehicle. At

Surn. NX

steele's improved vehicle seat.

the same time the auxiliary seat is folded under the main seat, its rollers riding along the guides, and the end board is brought against the rear ends of the side pieces of the body. When two seats are desired, the back is lowered to a horizontal position, to form the rear seat, while the main seat is brought into a vertical posit on, so as to serve as a back to both seats. The auxiliary seat is carried upward, and forms the front seat. The end board is lowered, and becomes the foot board for the rear seat. The engraving represents the seat arranged in this manner.

DRAUGHT EQUALIZER.

The simple and efficient draught equalizer here illustrated is designed to be used with four horses abreast. To the tongue are secured two bars united at their outer ends, and one of which is at right angles to the tongue. Upon the bolt connecting the ends is pivoted one end of an equalizing bar extending beneath the tongue, and to the under surface of which, at the free end, is pivoted an equal armed evener, having single trees at each end. To the tongue, a short distance in front of the bar, placed at right angles, are pivotally connected two bars, between whose rear ends is pivoted one end of a second equalizing bar. The centers of the two equalizing bars are connected by a chain passing around a sheave in a frame secured to the under side of the tongue, near its rear end. To the outer end of the second equalizing bar is pivoted an evener, provided with two single trees. Upon each of the bolts holding the bars connected with the inner end of the second equalizer is placed a clevis. These are connected with a rod secured to a ring encircling the forward end of the tongue. This arrangement limits the rearward swing of the two bars, and fixes the inner end of the

HOLCK'S DRAUGHT EQUALIZER.

second equalizing bar. By means of this arrangement of equalizing bars and chains, a thorough equalization of the pull of the four horses is obtained, and, to a great xtent, side draught is avoided.
This invention has been patented by Mr. Charles F. Holck, of Laporte City, Iowa.

Seth Wilmarth.

Seth Wilmarth, one of the greatest of American machinists, died at his home in Malden, Mass., Nov. 5, aged 76, of heart disease. In navy yard circles, for the past quarter of a century, Mr. Wilmarth occupied a distinguished place, and made many and important mechanical improvements. His advice was sought by the most prominent machinists of the world. Over twenty patents were taken out by him, among them the hydraulic lift for revolving turrets, for which alone the United States Government paid him $\$ 50,000$. He invented a planer and the great lathe at the Charlestown Navy Yard, at the time of their construction the largest machines of their kind in the world. He was a farmer's son, and was born in Brattleborough, Vt., in 1810. Evincing a predilection for mechanical work, he was apprenticed at a machine shop in Pawtucket, R. I. He rose rapidly until he was recognized as a master of every branch of mechanical knowledge, and in 1855 he was appointed Master Mechanic and Superintendent of the Charlestown Navy Yard by Rear-Admiral Joseph Smith. Every building of importance in the yard was erected under his supervision, and he was the guiding mind in every mechanical improvement projected.

Dangers of Sewer Gas.

The amount of sickness caused by sewer gas, the world over, is little known. Defective plumbing is one form of murder. Death is almost sure to result unless the victim has a strong constitution to withstand the shock he receives from this source. It was defective plumbing, the American Builder claims, which caused the late severe illness of Secretary Manning. Workmen engaged in tearing the plumbing out of Secretary Manning's private office found in a little closet in the corner a pipe four inches in diameter, besides several smaller pipes, leading directly to the sewer without any trap or contrivance to prevent sewer gas from coming into the room. These pipes strike the sewer just at its head, where the greatest amount of gas is formed. In the winter, when the doors and windows were shut, the air was most oppressive, and sometimes in the coldest weather Mr. Manning was forced to open the windows. His physicians pronounce his disease blood poison from sewer gas, and say that it was brought on, beyond doubt, by his sitting in that little room.

THE AFRICAN DIAMOND INDUSTRY.

At the diamond mines, South Africa, an immense amount of machinery is now employed in the work of elevating the earth containing the diamonds, crushing and separating the same. The earth is raised from the mine pits by me mine pits by means of ubs that run on wire cables, the loads being car ried and dumped on inclined boxes thence distributed into small cars, to be distributed up be distributed up on the depositing

Ourillustration, which is from $E n$ gineering, shows one of the Com pagnie Generale's depositing boxes, with blue ground in the box in the box and trucks loaded o be drawn away to the depositing floor. An empty tipping tub is shown on the tanding wire over the box ready to be lowered down again into the claims. The Kafir sitting on the box has to hook an anchored wire on to the hanging $b a r$ of the tub as it pass es over him, by which means the tipping effected, the tub itself being so balanced that it quicky rights itself again after tipping. The bottom of the depositing box is formed of iron grating, whereby the coarse lumps of blue ground are sifted from the finer ground, which passes into the lower recentacle of the depositing box and is trucked away separately, thus facilitating the process of pulverization.

IMPROVED CAR COUPLING.

This coupling may be used on any form of car, but is especially applicable for use on freight cars. It may be used in connection with the ordinary pin and link coupling. The drawhead is formed with the usual opening, and in the upper portion are two recesses, within which are pivotally mounted tumblers, whose forward faces are recessed. The tumblersare connected

by a cross rod so located that, when in the position shown in the upper sectional view, the rod will be beneath the coupling-pin hole, the pin being provided at its lower end with a cotter which prevents it from being entirely withdrawn. The tumblers serve to hold the extended end of the coupling link elevated when arranged as shown in the left of the lower figure, the lower wall of the main opening being inclined so that the link will be raised to a position to couple automatically with the adjacent car. In the drawhead into which the link enters, the pin is supported by the cross rod uniting the tumblers, which are swung down. The entering link strikes and throws the tumblers back o as to permit the pin to drop into the link.
This invention has been patented by Mr. Mark M Requa; ;particulars can be obtained from Mr. B. A. Mann, of Lanesborough, Minn.

Electrical Resistance of Carbon
Electrical Resistance of Carbon.
The principle of the carbon telephonic transmitters
the better contact of the carbon and the metal caused by thus squeezing them together. This view has been opposed by Mendenhall (American Journal of Science and Arts), and his later experiments make good his position. He finds, using soft carbon or compressed ampblack, that the resistance of this material varies greatly with pressure, and that the greater part of this change is due to a real change in the resistance of the carbon itself, and only a small portion of the variation is due to the surface contact. He found that a com paratively great pressure would sometimes result in a permanent reduction of the resistance of the carbon; and that this resistance is so uncertain and fluctuating, that it is extremely doubtful whether this phenomenon could be applied so as to give a measure of the pressure exerted.

Chinese Straw Shoes.

We understand that Dr. Macgowan has sent to the Agricultural Bureau, through Consul-General Kennedy, of Shanghai, a collection of shoes made of rice straw, and worn by laboring people in the south of China. Dr. Macgowan sends them, suggesting the introduction of rice-straw shoe making into the rice-producing regions of the South. They are made by women and others who are too feeble for more active employ ment, which circumstance, and the abundance of the material, render them very cheap-from one to twelve cents per pair !
Dr. Macgowan suggests also the introduction into nurseries for children's wear of these straw shoes, that more freedom be allowed to the feet of our children.
The highest priced shoes- 12 cents-are made of mat grass (Arundo mites), which Dr. Macgowan says should be acclimated in the South, and that mat making woute prove a proftable inaustry.

The Electrical Railway in Minneapolis

The Electrical Review contains an interesting acount of the successful operation of the electrical railway in Minneapolis, in which it says: "The trains consist of three or four passenger cars, each weighing 11 tons empty. The number of passengers carried is of ten as high as 600 at one time, so that the weight of the train is as follows : Four cars, each 11 tons, 44 tons; 600 passengers, at 130 pounds, 39 tons; motor car, 8 tons total, 91 tons. The steam dummy now brings the train to as far as the steam is allowed, and then the electric motor relieves it and takes the train down town with its passengers. The distance over which the electric motor travels is at present somewhat near a mile, the speed being about seven miles an hour, this being the regu lation speed within the city limits. Considering the constant stopping and starting at each block, the rades in the road, and the heavy trains, the electric motor而 credit of doing at least as good work ao oould bo ox pected or obtain ed from any steam engine. During he seventeen or eighteen hours of service, not a sin gle minute of stoppage is made except to let off and take on passengers. This lectric road has been in operation or several weeks without a hitch or a breakage. The motor, which is about 40 horsepower, works as perfectly under a heavy as under a light load. From the permanency and the character of the work done by th is electric railway, it will be is briefly this: A button of carbon is placed between / seen that electric railways on elevated as well a two metal conductors, one of which, being in contact on ordinary roads must become facts in the immediate with the vibrating membrane, is made, when the telephone is used, to bear with varying pressure on the button of carbon, thus changing the resistance of the circuit, and so varying the current flowing therein. Previously, the diminution of resistance corresponding to the increased pressure has been held to be due to
uture. They are indeed now with us, and there is no more trouble to build 200 or 300 horse-power gene rators than to build machines of fifty horse-power The public is losing its skepticism, and what was proclaimed as an impossibility yesterday has become a fact to-day."

THE GYROSCOPE.

(Continued from first page.)
While this phenomenon can be perfectly shown only by means of an instrument in which the power is practically constant and the velocity uniform, the tendency of the gyroscope to act in this way may be exhibited by means of an ordinary one revolving at a higǹ velocity. The difficulty of securing a high speed in a large gyroscope has led to the application of a friction driving device, as shown in Figs. 1 and 2, by means of which an initial velocity of from 4,500 to 5,000 revolutions per minute may readily be attained.
The instrument, after being set in motion, behaves like other gyroscopes not provided with means for maintaining the rotary motion of the wheel, but the size of the instrument and the facility with which it may be operated render it very satisfactory.
The gyroscope wheel is 6 inches in diameter, $5 / 8$ inch thick, and, together with its shaft, weighs $31 / 2$ pounds. The annular frame weighs $13 / 4$ pounds. So that $51 / 4$ pounds must be sustained by gyroscopic action when the counterbalance is not applied.
The driving wheel is $73 / 4$ inches in diameter. Its face is $3 / 4$ inch wide. Its shaft is journaled in an arm pivoted to the base, with its free end adapted to enter a recess in the edge of the annular frame, for supporting the gyroscopic wheel while motion is being imparted to it. Upon the shaft of the gyroscope wheel is secured a soft rubber tube having anexternal diameter of nine-sixteenths inch. This shaft makes 13.84 revolutions to one turn of the drive wheel, so that when the drive wheel is turned six times per second the gyroscope wheel will make very nearly 5,000 turns per minute $(4,982)$.
This gyroscope may be arranged as a Bohnenberger apparatus by remuving the tall standard and attaching the shorter one to the center of the base by means of a bolt. The annular frame of the instrument is suspended on pivotal screws in the extremities of the semicircular support, which is capable of turning on the upper end of the short standard. In the engraving the short standard, together with the semicircular sup port, is shown lying on the table. The usual counterbalance is also shown lying on the table. Fig. 1 shows the drive wheel in position for imparting motion to the gyroscopic wheel, and Fig. 2 shows the driving wheel withdrawn and the gyroscope in action.
As this instrument does not differ from the ordinary one, except in the application of the driving mechanism, it will be unnecessary to go into particula regarding its performance.
In Figs. 3, 4, and 5 are shown pneumatic gyroscopes, and Fig. 6 represents a steam gyroscope.
The pneumatic gyroscope shown in Fig. 3 consists of a heavy wheel provided with flat arms arranged diagonally, like the vanes of a windmill. The wheel is pivoted on delicate points in an annular frame having an arm pivoted in a fork at the top of the vertical support. The arm of the annular frame carries a tube, which terminates near the vanes of the wheel in an air nozzle which is directed toward the vanes at the proper angle for securing the highest velocity. The opposite end of the tube is prolonged beyond the pivot of the frame.
The support of the annular frame, shown in vertical section in Fig. 4, consists of an inner and outer tube, the inner tube having a closed upper end terminating
municates with the horizontal tube, through which air is supplied to the machine.
A sleeve, closed at its upper end and carrying the fork in which the arm of the annular frame is pivoted, is inserted in the space between the inner and outer tubes, and turns on the pointed end of the inner tube. The inner tube is perforated near its pointed end, to permit of the escape of air to the interior of the sleeve, and the lower end of the sleeve is sealed by a quantity of mercury contained by the space between the inner and outer tubes. The air pipe carried by the annular frame communicates with the upper end of the sleeve by a flexible tube. When air under pressure passes through the inner pointed tube, through the sleeve, and through the air nozzle, and is projected against the vanes of the wheel, the wheel rotates with great rapidity, and the gyroscope behaves in all re pects like the electrical gyroscope above referred to.
The gyroscope shown in Fig. 5 is adapted to the stand The gyroscope shown in Fig. 5 is adapted to the stand
ard just described, but the heavy wheel is replaced by ard just described, but the heavy wheel is replaced by
a very light paper ball, whose rotation is maintained by two tangential air jets, which play upon it on diametrically opposite sides, and nearly oppose each other, so far as their action on the surrounding air is concerned. The rotary motion is produced solely by the friction of the air on the surface of the ball. The upwardly turned nozzle is arranged to deliver an air blast which is a little stronger than that of the lower nozzle, so that a slight reactionary force is secured, which assists the gyroscope in its movement around the vertical pivot sufficiently to cause the ball to maintain its horizontal plane of rotation continuously. In fact, this gyroscope will start from the position of rest, raise itself in a spiral course into a horizontal plane,
and afterward continue to rotate in the same plane and afterward continue to rotate in the
so long as air under pressure is supplied.

It may be questioned whether this machine is a true gyroscope. However this may be, it is certain that the reactionary power of the stronger air jet is of itself insufficient to produce the motion about the vertical pivot; neither is there a sufficient vacuum at the top of the ball to produce any appreciable lifting effect.

The steam gyroscope shown in Fig. 6 hardly needs explanation. It differs from all of the others in generating its own power within its moving parts. The boiler is supported by trunuions resting in a fork arranged to turn on a fine vertical pivot. The engine is attached to the boiler, so that both engine and boiler swing on the trunnions in a vertical plane. The wheel of the engine is made disproportionately large and heavy, to secure the best gyroscopic action.
The performance of the steam gyroscope, is like that of the other power-propelled gyroscopes, and needs only a reactionary jet of steam or some other slight force to keep up the rotation around the vertical pivot, and thus render the action of the instrument continuous.
It has been suggested that, as the engine makes from 1,000 to 2,000 revolutions per minute, the exhaust steam might be turned to account in producing the reactionary effect necessary to maintain the action continuously.

A NOVEL FLOWER POT.

The flower pot shown in theaccompanying engraving is the invention of Mrs. S. L. Hunter, of Little Rock, Ark. The pot is made with two walls forming a space between them that serves as a water reservoir. In the inner wall near the bottom are holes through which the water flows to moisten the earth. Fixed to the side of the outer wall, and communicating with the reservoir by a hole, is a spout through which the hrough which the d or quired. By thus admitting the supply of water at the bottom, the plants are made to send down deep roots in the earth to seek the moisture, and they will not be so liable o send out roots nea the surface, as in the case of pots supplied by pouring water on op of the packed and hardened earth. Plants set in these pots may be transported a long distance, as the reservoir holds water sufficient for many days.

A Mighty Petroleum Fountain.

Mr. Charles Marvin, writing to the Pall Mall Gazette,
The Russian newspapers just received contain a telegram from Baku announcing the greatest outburst of oil ever known. It runs thus : "Baku, October 5.Thagicffo weths a fourrtain has commenced playing at the rate of 30,050 poods of petroleum an hour. Its
height is 224 ft . In spite of its being five versts from the town, the petroleum sand is pouring upon the buildings and streets." It is astonishing that the St. Petersburg correspondents of the London papers should not have telegraphed this remarkable phenomenon, and I can only account for their remissness on the grounds that they have either been too preoccupied with Bulgarian matters or have grown so accustomed to fresh ril fountains at Baku lately as to be blunted to the significance of the present one. Yet record in the oil regions of the two hemispheres. The champion petroleum fountain up to now has been the "Droojba," which in 1883 spouted to the height of 200 ft . or 300 ft ., at the rate of nearly 3,300 tons of oil a day. "This single well," I wrote from the spot in that year, "is spouting more oil than all the 25,000 wells in America yield together."
Such an outflow was looked upon as almost incredible, and häd there not been other Englishmen at Baku at the time, I should have probably fared as badly as Bruce and other travelers. But the Droojba is now nowhere. Tagieff's well is spouting nearly 500 tons an hour, or more than 11,000 tons of oil a day. If it were in London, it would top the Monument by 20 ft ., and the mansions of far off Belgravia would be covered with its greasy dust. During the birth throes of a Baku oil fountain, stones are hurled a terrific distance,
and a high wind will carry the fine sand spouting up and a high wind will carry the fine sand spouting up
with the oil miles away. The roar of the gas preceding the oil flow is terrific, and the atmosphere for a time is rendered almost unbearable. Compared with time is rendered almost unbearable. Compared with
such fountains as the Droojba and Tagieff, the Great

Geyser of Iceland is a pygmy. Luckily the gas soon clears off, the stones cease to rattle about the surrounding buildings, and then the fountain becomes as orderly as those in Trafalgar Square, pouring upward sky high with a prodigious roar, and forming round about the 13 in . or 14 in . orifice vast shoals of sand, beyond which the petroleum gathers in lakes large enough sometimes to sail a ya.cht in.
How long Tagieff's "spouter" will last, and what its ultimate yield will be, will depend upon circumstances. The Droojba lasted 115 days, flowing for 43 days at the average rate of nearly 3,400 tons a day, 31 days at 1,600 tons, 30 days at about 900 tons, and 11 days at 600 tons. The owners then managed to fix a "cap" over the orifice, and placed the well under control. The total amount of oil spouted, at the very lowest estimate, was $2: 0,000$ tons, or $55,000,000$ gallons; the highest estimate put it at 500,000 tons. At a rough estimate, had the il spouted in America, it would have realized about a million sterling, and made its owner a millionaire, instead of which the fate of the fountain at Baku was to render its master a bankrupt; for the shoals of sand engulfing neighboring buildings led to claims of damage surpassing what he got for the small quantity of oil he was able to catch and store, while the rest, fowing beyond on to other people's property, was in most cases "annexed" and not paid for. lt is to be hoped that Tagieff \& Co. will not be so unlucky ; but in any case most of it is sure to be wasted.

Lechesne.

"Lechesne" is an alloy of nickel, copper, and aluminum for the production of a muprior kind of maillechort, or German silver. It is recommended as combining absolute malleability with an exceptional degree of homogeneity, tenacity, and ductility. The inventor, M. Thirion, claims also for the new metal less liability to oxidize and to act as a heat conductor than other alloys heretofore in use. These latter advantages, he holds, are conspicuous on a comparison of the new alloy with those of nickel and copper for coinage, and with the old fashioned descriptions of German sil ver (nickel, copper, and zinc), or, again, with the best kind of latten. Like gold, silver, and platina, the "lechesne" alloy satisfies the conditions of the most difficult processes that could be applied, such as hammering, drawing, and deep chasing or punching, especially in ornamental work. The distinctive feature of this metal consists in the addition to the binary alloy (nickel and copper) of a quantity of aluminum, calculated according to the proportion of the nickel. The aluminum is introduced a few moments before the casting process, care being taken moments before the casting process, care being taken
to send it to the bottom of the fusion, and to insure thorough distribution throughout the mass by vigor ous mixing. Its combination is facilitated by its natural affinity to both copper and nickel. The pro portion of the aluminum entering into the alloy is as follows: One gramme 65 centigrammes per kilo of alloy containing 10 per cent of nickel. Any attempt to deoxidize an alloy of nickel and copper in which the aluminum was not carefully introduced toward the close of the fusion would lead to carbureting. If it were sought, for instance, to expel the surplus carbon by superheating, the inadequate quantity of free oxygen present would prevent the combustion of the carbon, so that the metal would in reality become even more deteriorated by the process by an increased oxidization. The aluminum both deoxidizes and decarburets the metal, but the following precautions should be observed: The nickel is first placed in the crucible, and as soon as it melts, the copper is gradually introduced, the vessel, of course, being closed. When the two metals are in a state of fusion, they are pud dled together. Then the alloy is reheated and the aluminum thrown in, the temperature being rapidly raised almost to boiling point. In the next place the alloy is cast very hot, this operation being effected promptly and with the utmost regularity. The chief malleableness of the article is derived from the copper which imparts a property and a tone in that respect found lacking in the nickel. The aluminum suddenly, but surely, oxidizes the alloy, burning away every trace of the carbon introduced into the crucible by the raw material ; it considerably augments the tenacity of the alloy, and, above all, insures its compaction. The new metal is regarded in industrial circles as likely to effect considerable changes in many branches of trade, and has already been experimentally tested, with the most gratifying results.

Piston Valves for Locomotives.

According to M. Ricour, piston valves in locomotives wear at the rate of one twenty-fifth inch for 125,000 miles, while with the slide valve the same extent of wear takes place with one-sixtieth of the mileage. The wear of the valve gear is reduced in the same propor tion. The effect in the consumption of fuel is shown by the returns made at Saintes Station for the year 1882, where on all engines worked with slide valves the coal consumed per 1,000 tons conveyed one mile was 226 lb., against 234 lb . in the year 1884, when 30 out of 40 locomotives had been fitted with cylindrical valves.

©orrespondence.

Large Railway Maps.

To the Editor of the scientiflc American:
I notice that a correspondent, in your issue of Nov. 13 , calls attention to the use of railway maps on the walls of railway stations, and observes that they are only used by foreign railways. At least one American road adopted the practice some years ago; and if your correspondent has ever entered the Broad Street station of the Pennsylvania Railroad in Philadelphia, he could not fail to have noticed the excellent map of that road's lines and connections painted over the entire surface of the western wall of the main saloon.
Such maps are very effective as educators of the traveler, and well deserve a more general adoption.
F. N. Barksdale.

To the Editor of the Scientific American

When John James Audubon, the great American naturalist, had finished his remarkable double elephant folio work on the "Birds of America," he turned his attention to our quadrupeds. In 1841, while living at 86 White St., New York, he asked permission of the Mayor to shoot rats on the Bowery to get specimens for study and illustration, and received permission to do so. The following is a copy of the order handed to him in person by the Mayor :

Mayor's Office, New York, Aug. 20, 1841.
Permission is hereby given to Mr. [John James] Au dubon or his son to shoot rats at the Bowery early in the morning, so as not to expose the inhabitants to danger.

Robert H. Morris, Mayor.
This was two years before Audubon undertook his remarkable expedition to the Upper Mississippi and Yellowstone River, to obtain material for his great work on quadrupeds.

Jos. M. Wade.

The Hygiene of Cycling.

According to Dr. Kunze, of Halle, cycling is a health stimulating exercise, which ought to be commended by medical men. It is a powerful means of strengthening the human body, and may even be considered an exercise acting as a preventive and curative, of no mean order, of certain bodily ailments. Looked upon in the latter light, cycling is a kind of gymnastic exercise, possessing specific effects which are absent in ordinary gymnastics. The velocipedist (especially the bicyclist) learns, first of all, the art of balancing himself, by practicing it on an instrument as sensitive as it is easily overturned. To acquire it, it is necessary to call into precise action certain muscles, every individual muscle being trained to do its particular work. Those who are thrown from a bicycle, as a rule-cer-
tain eventualities, against which even the most skilled velocipedist cannot guard, excepted-do not yet possess the required ability to balance themselves. This latter aquirement is of great use also in practical life. Those who possess it will be able to jump ditches with greater precision and safety, pass along narrow paths, mount more difficult staircases, climb up and descend precipitous mountains, and will also carry themselves more erect, than those who do not possess this power of preserving an equilibrium. A further effect of veof the lower extremities, but also those of the abdomen, the chest, and the arms, which are constantly being excited to contract. The muscles of the lower extremities contract and relax in the action of propelling the velocipede, and there is no other movement which requires such rapid and energetic contractions. We frequently find that the muscles of the thigh and lower leg of cyclists increase in size, and, consequently, cyclists are able to bear without fatigue long walking tours. As, however, every organ which becomes stronger is less liable to disease, strengthened muscles predispose velocipedists less to ailments than the relaxed muscles of non-velocipedists. It would be highly interesting if reliable statistics could be obtained from the various cycling clubs, showing whether and how frequently muscular rheumatism of the thigh, for instance, is met with among velocipedists. The effect of cycling exercise upon the abdomen is of very special importance. With the contractions and relaxations of the muscles of the thigh those of the abdomen stand in close relation, and it is evident that the latter must be equally benefited. Upon the chest, cycling exercise acts in two ways. In the first place, by the contraction of the muscles of the abdomen, the stagnant air in the lungs is more thoroughly expelled, and, in the second place, the apparatus of breathing is more powerfully acted upon by the greater difficulty of respiration and aspiration experienced in quickly propelling the velocipede. The more effectual expulsion of the stagnant air from the lungs must be of favorable influence upon the change of matt:-r in the human body, in so far as the entry of oxygenated air into the lungs is thereby increased, oxygen forming one of our most important ineans of nourishment. Those who wish to expand their chests, Dr. Kunze says, should mount a velocipede.

The Navies of Britain and France.

Under this heading the Engineer, in a lengthy article, discusses the pros and cons of a possible war between England and France. We make a few extracts A portion of the French press has latterly adopted a threatening tone toward England. Our occupation of Egypt has lasted too long, and has excited the jealousy of our neighbors. Hence we are told a war with England would be popular, seeing that " no general mobilization would be necessary "-we quote from the Standard-"as an invasion of France was not to be apprehended, and any landing of a French army in England need not be contemplated. The object of the war would be to vindicate the rights and position of France as a Mediterranean power, and to effect this only the navy, and perhaps a corps d'armee, certainly not more, would be needed. The landing of twenty or thirty thousand men in Egypt would not be a work of insuperable difficulty, and this would entail the capitu lation of the small British force engaged there. That once effected; England would probably be glad to sue for peace, especially as her navy was not now in a posion to cope with that of France." Taking this as a sample, it is interesting to examine the data on which the soundness of this statement can be tested; that is to say, to look briefly at the relative strength of the French and British navies, and at our general position the Mediterranean
We submit lists of British armor-clad ships, which may, we think, be as fairly representative of their strength at the present moment as any we have seen. From this the British coast defenders of the Glatton class are omitted. The French are included as being vailable for European war generally.
Assuming, then, that the British fleet of regular fighting ships is about 20 per cent stronger than that of France, we may pass on to torpedo boats, and lastly transport and troop ships. In the former we fear-the
French are considerably in advance of us, though we know of no recent statistics published on the subject, and progress is rapid in this branch of building. In transports, on the other hand, France is very weak.
To place troops in Egypt, the French navy would have to force its way past our Mediterranean fleet, and make good a landing, which would constitute a se rious operation of war. In seems to be thought in
France that because their troops muster in hundreds of thousands, where our thousands are reckoned in tens and twenties, they would compare with us equally well in sending an expedition consisting of thirty thousand men across the seas. This is a great error. We believe that our blows would be found far reaching and quick, if not very heavy; and that no power could carry out this class of undertaking with the ease and speed of England. Abyssinia, Ashanti, Egypt, and the Zula war have all called into play the neces sary machinery for this class of operation, while such machinery is habitually working in India. At the present moment we have about thirty thousand men in Burmah. The state of the country, no doubt, has been the object of a considerable measure of public attention; but who has heard of any trouble or effort in sending the troops there, or supplying them? The French, who come next to ourselves, make more fuss about the transport of ten thousand men from Mar seilles to Algiers than we do if we send double the number to the remotest habitable quarter of the globe.
To land thirty thousand men in Egypt, then, France would have to muster her fleet unperceived in the Mediterranean, to make war without a wcols's notico and then, without any delay, to destroy the British Mediterranean fleet entirely.
If our power of supplying Egypt from India, without disturbance or trouble, be compared with the project of the French crushing our fleet and landing and supplying an expedition from the Mediterranean, it would be concluded that France could hardly devise an operation more calculated to fail than this attempt to drive us out of Egypt.
We must, however, look at war with France in a general aspect. It does not at all follow because Egypt is the provoking cause, that the fighting need take place in Egypt. What if France declares war, and at once strikes us, where she of all powers can hit hardest, in our soft place, our commerce? This, we confess, is a much more serious matter. This is the danger to which we and many in this country have long called attention. It is to meet this that we have latterly been so much more in earnest in building swift cruisers Undoubtedly this is the question of the day as to England's defense, and in the case of France as the enemy, raised in its most serious shape. Suffering and los would be entailed on England.
Then, again, other nations would suffer as well as ourselves. When we find that seven-eighths of the carrying trade of the world is in British vessels, it exposes a very vulnerable object to attack undoubtedly, but at the same time in object that concerns the world generally, and not England only.
France herself would feel the stoppage of her trade sufficiently to prevent such a war being popular for long, in spite of the light hearted way in which some French writers speak of it.

We have little doubt that there is too much good feeling and good sense in France to provoke such a catastrophe; but the bare possibility ought to spur us on to the construction of the classes of vessels specially suited to protect our commerce.
BRITISH ARMOR-CLADS AVAILABLE IN THE IMMEDIATE FUTURE.

Name.	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { of } \end{gathered}$	Displacement.	Speed.		Armament. Primary guns.
Hercules	1868	Tons.	Knots.	In.	
Monarch.............	1868	${ }_{8,320}$	14.9	10	${ }_{2-24}^{8-18-t o n}{ }^{\text {a M.L. }}$
Audacious..........	1869	8,010	18.8	8	10-12
Invincible..........	1869 1870	6,010	${ }_{14}^{14.1}$	8	- $10-12$
Iron Dilike...........	1870	6,010	13.6	8	10-12
Hotspur.	1870	4,010	12.7	11	2-25
Swiftsure	1870	6,910	13.8	8	10-12
Triumph	1870	6,640	12.0	8	10-12
Devastation	1871	9,330	13.8	14	${ }_{2-35}^{4-35}$
Thunderer.	1872	9,330	13.4	14	${ }_{2}^{2-38}$
Rupert.	1872	5,440	13.6	14	2-18
Alexandra..........	1875	9,490	15.0	12	2-25
Dreadnought	1875	10,820	14.2	14	4-38
Shanuon............	1875 1876	5.390 11880	12.4 13.8 1	${ }_{24}^{9}$	${ }_{4-18}^{2-18}$
Temeraire..	1876	8,540	14.5	11	4-25
Belleisle	1876	4.870	12.2	12	4-25
Nelson..	1876	7,630	14.4	9	4-18
Northampton.......	1876	7,630	$13 \cdot 2$	9	4-18
Neptune......	1878	$\stackrel{9,310}{ }$	14.2 13.8	${ }_{12}^{13}$	4-38
Superb \ldots.............	1888	9,170 8,510	13.8 13	12 18 18	${ }_{16-18}^{16}$
Orion	${ }_{1879}$	4,810	${ }_{13}{ }^{13}$	12	4-25
${ }^{\text {A jax. }}$	1880	8.510	133	18	4-38
Conqueror..........	1881	6,200	15.5	12	2-43-ton B. L.
Collingwood	1882	9,150	${ }_{15}^{16.4}$	18	4-43
Colos8us........... Edinburgh...	1882 1882	9,150 9,150	$15 \cdot 5$ 155	18 18	${ }_{4}^{4-43}$
Imperieuse..........	1883	7,390	17.0	10	4-18
Rodney ${ }_{\text {Warspite.......... }}$	1884	9,700	17.0	18	4-68
Warspite............	1884	7,390	17.0	10	4-18
	-	250,640	-	-	-

Name.	FUTURE.				
	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { lannch. } \end{gathered}$	Displacement.	Speed.		Armament. Primary guns.
Ocean	1868	Tons.		In.	
Marengo...	1869	7,187	12.0	889484	4-23:4.
Suffren.	1870	7,600	$14 \cdot 3$	884	${ }^{4-23}$ "،
Richelieu Friedland.....	1873	9,100	14.0	884	${ }^{6-23}$ "。
Friedland........	1873 1875	8, 8,450	13.4 14.4	884	8-23 8
Tonnerre	1875	5,574	$12 \cdot 3$	134	2-28
Redoutable ...	1876	9,200	14.7	14	4-28
Trident...	1876	8,800	14.3	$83 / 4$	8-23
$\underset{\text { Amiral Duperre..... }}{\text { Funinant }}$	1877 1879	5,574 11,100	12.0 14.5	${ }_{121 / 8}^{13}$	${ }_{4-48}^{2-28}$
Devastation	1879	10,100	15.2	${ }_{15}$	$4-48$
Turenne	1879	6.400	14.1	10	4-152 "
Bayard..	1880	5,881	14.5	10	4-152 "
Terrible.	1881	7,200	14.5	1934	2-75 "
Vourbet.	1882 1882	9.700 5.900	15.00	15 10	
Amiral Baudin......	1883	11,380	15.0	211/6	${ }_{3-75}^{4-19}{ }^{\text {a }}$
Furieux	1883	5.560	12.0	1734	2-47
Indomptable..	1883 1883	7,168	14.5 14	193 10	2-75 "
Duguesclin.........	1883	5,869	14.0	10	4-181 ${ }^{\text {] }}$
	-	163,790	-	-	-

Note.-French ships are generally better furnished with secondary rmaments of gans than the British.

Slipping of Leather Belts.

The slipping of belts is a great annoyance, not always remedied by tightening. The writer hownown a slipping belt to be so shortened as to spring the shaft without preventing the slipping. The radical remedy is to keep the belt plfalle, su as to hug the faces of tho
pulleys; but this is not always feasible. The belt may pulleys; but this is not always feasible. The belt may tive oil, like linseed oil, is unfit for a leather belt, as it has an affinity for the oxygen of the atmosphere and everts to its acid base, which is injurious to the eather.
When a ready remedy is demanded for a slipping belt, the powder known as whiting, sprinkled sparingly on the inside of the belt, is least harmful of any similar application. Powdered resin is bad, as it soon dries the leather and cracks the belt, while it is difficult to get it out of the leather; whereas whiting may be wiped off or washed out with water. The use of water on belts, preliminary to oiling, is good. The belt should be washed on shutting down at night-or Saturday, after the close of work, is better-and then the oil applied when the belt is partially dry. Never oil or wash a belt while stretched on the pulleys. If iron-faced pulleys were always lagged with leather, there would be little complaint of the slipping of belts. But often this slipping is due to too much strain on the belt ; there is economy in running wide belts-wider than is the usual practice. Many a three inch belt has to do duty for a four inch belt, to the annoyance of athe operator and the ruin of the belt.

Neuralgic Ointment.

To be applied to the painful part (Galezowski).—Jnl.

BRICK MAKING

Perhaps there is no process so easy to describe and yet so hard to execute as the making of brick. The clay is dug, kneaded, moulded, and burned, and each detail appears so simple that it would seem any one ought to be able to transform a little clay into a good brick ; but between the pit and kiln stand two characteristies which must be present in order to insure good results-these are experience and skill. No rulecan be laid down for the handling of the clay; the routine which in one yard produces first quality would, if transferred without change to another, only cause miserable failure. The method of burning and the degree of heat which in one locality will turn the clay there found into good, hard brick would, in the next yard perhaps, yield only a kiln of spoiled and useless clay. So that it is safe to say that a brickmaker who had only worked one clay in one yard would be compelled to begin anew his apprenticeship if he were thrown in to begin anew his apprenticesh
The quality of a brick can only be ascertained after we know the exact conditions under which it is to be used, for the simple reason that a brick may do well in one place and yet be useless in another. Of course, a first-class hard-burned brick-in this neighborhood, those of a dull, dark red are preferred-will do in any locality; but in some circumstances the work is not harmed, and the cost is reduced, by the judicious use of other kinds. A hard brick which may be saturated
is mixed from one to a little over one bushel of coal dust or screenings. Until recent years, wood alone dust or screenings. Uning recent years, wood alone
was urning of brick, which was a slow and, as wood became scarce, an expensive operation. The mixing of fine coal with the clay reduces the time of burning to from three to four days, lessens the cost, and insures a more equal and thorough burning of the entire kiln.
From the tempering pit the clay passes to the grinder, placed just at the edge of the yard. There is a vertically placed box, in which revolves a shaft carrying blades which force the wet clay down and through an opening in the bottom of one of the sides. The mould, which is a frame having spaces the size of the brick, is first sanded and then placed on a platform beneath the opening, when the clay is forced into each space by a descending plunger operated by a short crank on a shaft driven by the main shaft of the grinder. A for ward movement of a lever by the moulder draws the filled mould forward, when it is placed on a platform barrow. When full, the barrow is rapidly run to the yard and the moulds emptied, the brick lying flat upon the ground. When partially dried by the sun, they are turned on edge by an edging machine, which resembles the mould in shape, but is not quite so deep. As the bricks leave the mould, their edges are apt to be rough and slightly drawn out or feathered. This is removed by spatting with a light board, of such size as to cover a mould of bricks, attached to the center of one surface of which is a long handie. Where there is plenty of room, the bricks are left in the yard until ready for the kiln. In smaller yards
these cells. The bricks from the center are the most valuable, and are most sought after by builders, although the others, especially the salmon, have their uses, as was explained in the beginning.
Before the clay can become a brick, it passes, in the most common method of brick making, through the following steps : Digging the clay, shoveling in carts, dumping in the pit, and tempering; shoveling on barrows and wheeling to the grinder; moulding, putting on tracks, carrying to yard and dumping; spatting, turning up, and hacking in the yard; putting on trucks, tossing up in the kiln, setting, tossing out of the kiln, and dumping from the wagon at the place of building. It seems strange that each of a thousand articles can be handled separately so many times and then delivered at a cost of only from six to eight dollars. As one of the oldest and most experienced brickmakers in the country said to the writer: "It is doubtfulif any other manufactured article, weighing from four to five pounds, can be handled seventeen different times, moved considerable distances, be subjected to a high temperature for a long time, and be finally delivered, sometimes many miles from the clay bank, at a cost of only a little more than half a penny."

THE SOUTH KENSINGTON MUSEUM.

The great and beautiful building, completed in 1881, for the reception of the overflowing treasures which the British Museum could not convenently accommodate, has received high commendation for its architectural merits and for its special fitness for the purposes for which it was designed, and is now one of the places which most strangers visit ing London make it a point to visit. It contains the

PRINCIPAL ENTRANCE, NATURAL HISTORY MUSEUM, SOUTH KENSINGTON, ENGLAND.
with water, then frozen, and fnally thawed, wthoùt showing any signs of being injured may be used almost anywhere. But a softer brick may stand exposure to the weather and yet be disintegrated if exposed to constant moisture underground. Another brick may not be able to endure either moisture or exposure to the weather, and yet may be well suited for inside work, where it will be kept dry. The adaptability of a brick of a certain quality for a certain location can best be determined by the maker, provided he thoroughly understands his business.
A brick yard, as usually laid out, consists of a large and perfectly level piece of ground called the yard, along one side of which are the rough sheds covering the kilns, and along the opposite side of which are the moulding machines, back of and near which are the tempering pits and clay banks.
The clay is first brought to the tempering pit, which is a circular hole sunk three or four feet below the surface of the ground, and from twenty-five to thirty feet in diameter. In the center is a column, pivoted upon the top of which is a long horizontal arm carrying the wheel. This arm is revolved either by horses traveling around the edge of the θ_{3} pit or by steam. The wheel is large enough to rest-upon the bottom, and as it rolls around it is gnadually moved from the hub to the outside and then back again, so that in its passage the contents of the pit are surely and thoroughly commingled. The clay brought to the pit is mixed with sand, and sometimes with a different clay, this being governed by the quality of the principal clay. In each quantity of clay sufficient to make a thousand bricks
they are put in hack, that is, they are piled up in a long row six or eight bricks high. When there are indications of rain, two boards nailed together along their edges to form a right-angled trough are placed on top, while other boards are rested against the sides of the bricks, which are thus protected from the water.
From here the bricks pass to the kiln, in which they are placed on edge, with the longest dimensions of every alternate row running in the same direction. Between every two bricks there' is a small space left for the passage of the heat, which, owing to the alternating arrangement of the rows, is obliged to take a most roundabout road from the arch to the top. The arches extend through the kiln, and in them at each end the wood for the fire is fed. After the bricks have all been set, the outside is covered with a plaster of clay that prevents the escape of heat. The fire in the arches is started gradually and increased in intensity, and continued as long as the experience of the burner dictates. The small particles of coal distributed through the clay assist most materially in producing heat, and render more sure the even burning. of the whole kiln.
For convenience, the bricks from a kiln may be placed in three divisions: those subjected to the greatest heat, near the arch, those subjected to the least heat; near the sides and top, and those in between In the upper bricks-sometimes known as salmonsmall particles of unburned coal may be detected; in the middle bricks, only the small cell formed by the coal remains; while the bricks which have been unduly heated are shrunken and glazed sufficiently to close
departments of zoology, geology, mineralogy, and botany of the British Museum, under the style of a Museum of Natural History, and is open to the public free on three days of the week, there being a charge of sixpence on other days.
.Some idea of the character of the building may be obtained from the accompanying illustrations, one showing the main entrance and the other a portion of one of the galleries. The principal materials of the building are red brick, buff and gray terra cotta, with greenish gray Cumberland slates and bands of Welsh slate repeating the banding of the terra cotta. The interior, as may be inferred from the portion represented, consists of courts and corridors of graceful proportions, the numerous columns and arches being richly ornamented, a distinctive feature of such ornamentation in panels and arches consisting of representations of many of the varied forms of the organic kingdom. There are many boldly designed animal forms in silhouette along the lines of crestings, while in panels under the windows are reptiles and other allied forms in high relief. One of the panels in the entrance hall represents a pair of herons, one of which has just captured a lizard; and a panel on the balustrade has a pair of grouse, with young ones resting in the herbage. The idea of representing, in the decorations, the object for which the struebure was erected has been carried out so far as possible in all the details, one enthusiastic critic going so far as to say of the building that " the facade is an open book whereon are recorded, in a language which all can read and understand, the inexhaustible beauty and
the repairing of tanks and reservoirs.
We illustrate in the cuts accompanying this article an excellent method of repairing reservoirs in general and tanks, such as are used for the reception of gas holders. It involves the applic tion of a coffer dam, which may be made of any appropriate shape. One is shown as applied to the treatment of a crack in one of

BOTTOM SECTION OF COFFER DAM AGAINST tank wall.
the gas holder tanks of the Consolidated Gas Company of this city. The apparatus was constructed and used at the suggestion and under the superintendence of the engineer of the company, Mr. William T. Lees. To the gas engineer this process offers the complete solu tion of one of his most vexatious problems.
When such a tank wall breaks, the rupture, as a rule, is vertical, and runs down nearly to the bottom, a distance of 20 to 35 feet. It is usually of sufficient ex-
partially closing the break. Then, after repairing when water is readmitted, the hydraulic pressure, re-establishing the .balance, makes the walls assume their old position, and the crack opens as before. It was with a view of avoiding the shrinkage under compression and subsequent expansion of the walls that the coffer dam was applied. The course of reasoning was this The water, while present in quantity to fill the tank, was assumed to keep the crack open to its widest ex tent. This seemed to offer the proper conditions for repairing it. If well stopped under these circumstances, there seemed little or no possibility of its opening again.
The tank in question was about 170 feet in diamete and 70 feet deep. A cast iron coffer dam, of U-shaped section, was constructed in sections, 6 ft . long and 4 ft 9 in . in width. Flanges, faced off and perforated for bolts, were provided at the top of the lower section and at the top and bottom of the others, for attaching them together. The bottom section was closed at the base, and had a small downward extension or well to facilitate pumping. Studs or lugs were provided by which to lift the whole. A semi-circular groove was carried around the edge designed to come against the sides of the tank. A 2 in . India rubber hose, with $3 / 4 \mathrm{in}$. aperture, was provided to act as packing. The dam was applied as described below.
The sections were all screwed together, while lying on the ground, with bolts and nuts, so as to secure watertight joints between them. The hose was placed in the groove, and by blocks and falls the united sections were raised to a vertical position and lowered into the tank. Several of the lugs were used for attachment of the slings, so as to provide aganst accident. When the dam was in place, having the crack within its open ing, the water was pumped out by a large pump. As soon as adhesion to the tank wall was thus secured, a small steam siphon sufficed to keep it dry. Thus a space was obtained nearly 5 ft . long and $\cdot 15 \mathrm{in}$. wide, ex tending some 30 ft . down. A man was sent into the dam, who, with hammer and chisel, calked the crack, driving oakum into it until it seemed perfectly filled The adhesion between the tank and dam under the in fuence of the pressure was so great that the weight of the structure (several tons) could be sustained perfectly without tackle.
It was applied in a somewhat contracted space, between the outer section of a gas holder and the tank Where the corresponding space in other gas holder tanks is insufficient, more room can be procured by hoisting up the outer section.
The mending worked excellently. The anticipated results followed, and the tank is in use to-day.
An incidental advantage of the method is that there is no necessity of stopping the operations of the gas holder, at least as regards its inner section. The flange on the bottom of the outer section, it may be assumed, would in most cases interfere with the use of that section The face of the dam was flat. The radius of curvature of the tank wa so large that no corresponding shape of the face of the dam was necessary, the elastic hose accommodating itself perfectly to the slight bend requisite. The application of this method to reservoirs in general is so obvious as to need no mention.

Gas.

There are, says President A. C. Wood, Amer. G. L. A., about 1,080 gas light companies in the United States and Canada, and of this number 153 are set down, in a recently published list, as water gas plants. The tota number includes small and isolated plants erected for lighting factories, mills, summer residences, and hotels, well as those erected as ausilis, to established coal gas works, and exclusive plants for lighting towns, cities, and districts.
During the past twenty or more years, the projectors of various wate gas schemes have been indefatigable in their exertions to induce the established companies to adopt their pro cesses; and, either by force or through threats of competition, demands for large sums of money, or by purchase they have only succeeded in establish ing this small number of plants.
When a man or company of men pro jects and establishes an enterprise that is for the accommodation and benefit haust the tank in spite of all efforts. The general way of the public, they are to be commended and en of mending such is to pump out the water, cut the brick away for a foot or two in width, and rebuild the space. Then the tank is filled again. In many cases, after all this has been done, the crack reopens in about the same place. When the water is pumped out, the walls tend to contract under the external pressure, thus
of the public, they are to be commended and en
couraged in such an undertaking. But I will defy couraged in. such an undertaking. But I will defy
the projectors of any water gas scheme to prove that, in a single instance, their operations have been for the public good or for the benefit of the gas consumer. Therefore it is not surprising that so few of the gas companies of the country have been induced to take
bold of these schemes ; and, in fact, the only wonde is that the numbers mentioned above have allowe themselves to be inveigled or forced into it.

THE CAPILLARY SIPHON.

t. o'conor sLoane, ph.d.

The experiment illustrative of the mechanics of a drop of water given in a recent issue of this paper ex emplifies very well the action of films, or capillary force It is a magnified illustration of a force that usually is only seen exercised on the smallest objects. In the pores of blotting paper or of a lamp wick, where the liquid columns are of almost infinitesimal area, it be coines visible. In larger tubes its action is almost null If a dry and tubular substance, one that water can wet has one end immersed in a vessel of water, the fluid will rise to a considerable height. If the object is bent into the shape of a siphon, and its free end is carried below the level of the water, hanging down outside o the vessel in question, it becomes a true siphon By capillary force its pores are filled with water. Drops begin to form at its free end, and capillary action ceases as far as the porous substance is concerned. The action was dependent on the existence of surfaces of wate concave toward their direction of motion. As soon as these disappear, capillary action with reference to the tubes is impossible. The porous substance now repreents a mass of narrow tubes, and the water in the longer arm by true siphon action pulls over the fluid from the vessel, and delivers it drop by drop from its end.
A simple method of constructing a capillary siphon is shown in the cut. A piece of wire is doubled and bent into the proper shape. This serves as a frame work, and around it strips of muslin are wrapped. Placed in a pitcher as shown, it soon becomes charged with water, and if time is given, it will empty the ves sel. A towel placed in a pail of water and hanging over its side will empty it if the end falls below the bottom of the vessel. Otherwise it will draw the fluid down to the level of its own outside dependent end.
The reason for illustrating this very simple experi ment is its practical value. In the treatment of inflammation of glands, notably of the mammillary glands, irrigation is often prescribed. At home this is usually effected by hand, wet cloths being applied to the place and continually renewed. This involves incessant at tention. If, however, a cloth is spread over the seat of inflammation and a slow dripping of water upon it is maintained, the same result is reached, only in a more perfect manner. To this end the arrangement just described lends itself admirably. The wire frame can be made as long as necessary, so as to lead the drop

CAPILLARY SIPHON
wherever desired, and a slow drip can be maintained by the hour on any place. An early use of this application for a period varying from several hours to one or two days may prevent many weeks of sickness. For personal attendance, always more or less uncertain, it substitutes definite mechanical action.
The same siphon may work to the detriment of health. A plumber's trap depends for its efficacy on its filling of water. If some threads get into it and are carried over the bend, as shown in the next cut, they may form a capillary siphon, and in time empty the trap and admit sewer gas.
The pressure producible by this form of siphon depends, as in any siphon, on its effective height. The measure of its force may be determined by experiment. A.test tube, six or eight inches long, has a doubly perforated cork fitted to it. A little colored water is placed in the bottom of the test tube. A few drops of ink will answer as the coloring agent. A glass tube of sinall bore is arranged to pass through one of the holes in the cork tightly. A lamp wick is rolled up longitudinally and is passed through the other. It must also fit tightly; and should reach down
nearly to the bottom of the test tube when the cork is in place. It is well, before putting the cork finally in place, to thoroughly wet the wick.
The cork, with the tube and wick passing through it, is placed in the neck of the tube. The wet wick, if of proper size, will fill so perfectly the aperture in the cork, through which it extends that air will not be able to pass. The outer end of the wick is placed in a ves sel of water supported well above the test tube, and the whole allowed to stand. In a few minutes the

CAPILLARY SIPHON EMPTYING TRAP.

siphon will begin to work, and water will be carried by it intof the tube. As the cork is supposed to fit tightly, and must do so for the success of the experiment, and as the small tube and wick both pass tightly through it, air cannot escape. Hence as water is siphoned into it, the pressure of the air increases, and the water rjses in the small tube. This is the indicator or gauge of pressure. The smaller the bore of the gauge tube the quicker the water will rise in it. If all is rightly proportioned, the pressure will show in five minutes and in an hour the water in the gauge tube will ris up four or five inches.
It is well, before showing this experiment, to caus the lamp wick to act as a siphon for a few minutes, delivering water into some other receptacle. This acts as a trial of its efficiency, and if it operates well, then the success of the definite experiment may be safely relied on. The preliminary trial should be made with the wick passing through the cork. It is essential that it should tightly fit the aperture in the cork but, at the same time, it must not be so squeezed that the passage of water will be interfered with.
As it delivers water very slowly, the water entering the test tube forms a layer on the surface of the water already present. If the outside vessel for supplying water is filled with clear water, the appearance of the layer of transparent fluid on the colored layer below is of interest. The pressure tuke should dip well into the colored fluid, as the object in coloring the water is principally to cause the slender column to show well. If only slightly immersed, the uncolored water delivered by the siphon may enter it, making its column hard to discern.

The New York Elevated Railroad Structure.
The patrons of the elevated railways are, no doubt, deeply interested to know that the structure on which they ride daily is sufficiently strong to endure the strain to which it is subjected, and to that end I beg you to insert this comnfunication, eurbodying a few facts, in reply to your editorial of Octaber 14, headed facts, in reply to your edit
"The Elevated Railways."
The "L "lines consist of
The " L " lines consist of thirty-two miles of structure, all of which is double track. They are divided into spans about forty feet long, each span being independent, and the ends of the girders resting upon transverse girders supported by wrought iron columns in one type of construction, the girders resting upon the columns.
The material is the best refined iron for bridge purposes, and has a tensile strength of not less than 50,000 pounds per square inch, the rapid transit act requiring that the strains on the compression and tension members be limited to 9,000 pounds per square inch, the shearing strain on the rivets to be not more than 7,000 pounds per square inch, a maximum deflection of the girders to be not greater than 1-1.500 of its length, the columns so proportioned as to have a factor of safety of five, and the foundations not to have a greater weight come upon them than 2,000 pounds to the square foot.
With the increased weight of the engines now in use, necessary to draw five loaded cars, in no case is any portion of the structure strained anywhere near the limit above referred to.

In a series of experiments made by the eminent English engineer Fairbairn, he concluded that a light plate girder of 20 feet span, if subjected to 100 daily deflections equal to one-quarter of its breaking load, would last 300 years. Now, our structure having a factor of safety from six to ten, the latter on Second Avenue, what may we expect as to the life of the " L " roads ? Surely, not so serious a condition of things as set forth in your editorial.
We have during the past four years re-enforced the

Sixth Avenue pin-connected structure so as to keep up the high factor of safety required by our charter, and fit it for the type of engines now in use. The Third Avenue line is undergoing the same additions, three-fourths of the work being completed. The Second A venue line is designed for engines much heavier than those we are now using.
The elevated structures cannot consistently be com pared with iron bridges of surface roads :

1. The spans of our structure are small in compari-
2. The trains are much lighter.
3. The engines less than one-half as heavy.
4. The speed is from one-half to one-third less than on surface bridges.
5. A long train causes no greater strain than a short one, because one car only, or an engine and part of a car, can be upon a pair of girders or bridge at a time, no matter how long the train.
Pieces of iron taken out of the structure recently and carefully tested show that no deterioration has taken place.
A board of eminent engineering experts and builders of iron bridges made a thorough investigation, March, 1885, and reported that the structure was in better condition at the time than when first opened for business. Associated with these gentlemen was Professor Thurs ton, of the Stevens Institute of Technology, now con nected with the scientific department of Cornell Uni versity, who made tests of the iron, and reported that there were no signs of crystallization, and was sur prised at the uniform good quality of the iron submitted to him for testing
A large and efficient force of men is employed by the company night and day to inspect the track and structure. Constant improvements are being made to relieve the structure from undue shocks, such as replacing lifty and fifty-six pound rail with steel rail weighing seventy pounds per yard, and the best de vices for rail joints are being tested.-F.K. Hain in New Yorli Sun.

A Gigantic Gas Holder.

Messrs. Ashmore, Benson, Pease \& Co., Limited, of Stockton, have had for eighteen months in course of construstion the largest gas holder in the world. It is designed by Messrs. George \& Frank Livesey, engineers to the South Metropolitan Gas Company, and is being erected at their new works at East Greenwich London. This gas holder, when completed, will considerably exceed in cubical capacity any other gas holder

PRESSURE PRODUCED BY CAPILLARY SIPHON.
n existence. The height of it, when inflated, will be 174 ft ., and the diameter of it 250 ft ., and it is calcu lated to contain $8,250,000$ cubic feet of gas. It is constructed in four tiers, which telescope into one another, so that when not in use they lie flysh with the ground in the concrete tank, which is excavated to receive them. The area covered by the holder is rather more than one acre in extent; its roof is without internal support, except when lowered, when it is supported by a wooden framing fixed in the tank, and on which it rests. To keep the holder in its proper position, there are 28 wrought iron standards, at equal distances round t, rising to the height of 178 ft , up which the guide collers work. The total weight is approximately 1,700 tons, included in which is a considerable amount of steel. This holder will be the only one in the world exceeding in.size either of the Birmingham corporation gas holders, illustrated in the Scientific American, vol. 1v., No. 10.

Flowers.-It is estimated that about 100,000 species flowering plants are now known to botanists.

ENGLNEERING INVENTIONS.

A feed water heater has been patented by Mr. George Green, of Corpus Christi, Tex. It is composed of a series of pipes attached to half cylindrical heads, placed diagonally in the fire box of the boil er, and connected with its water space, being designed
also to serve as a spark arrester and increase the fire also to se
surface.
A method of heating water in steam generators has been patented by Mr. Frederick G. Wheeler, of New York city. This invention covers an
improvement on a former patented invention of the same inventor, and consists in first charging the generator with initial heating by injecting superteated stenm
A spark arrester has been patented by Mr. Orlando T. Owings, of Le Mars, Iowa. The smoke stack projects into a cap, a deflector being supported
from the upper end of the smoke stack, and having central aperture, with a lid or cover, and other novel central aperture, with a aid or cover, and other novel
features, the device being simple in construction, and calculated to prevent sparks from passing out of the calcolated to
smoke stack.
A reversing gear for engines has been patented by Messrs. Robert Rutherford, of Reutchler,
and Thomas Moore, of O'Fallon, Ill. An eccentric and Thomas Moore, of O Pallon, II. An eccentric
with a forked pin is adjustable on a disk attached to the crank shaft, a cam plate sliding in the disk, with
 and othernovel features, whereby a positive motion is
given to the slide valve at all times, and the link com. given to the slide valve at all times, and th
monly used for reversing is dispensed with.

- An automatic danger signal has been patented by Mr. Errett E. Phillips, of New Castle, Pa. mounted on sheaves and carrying a bar, a spring, and lever, with stem, and means for operating the slid
from the chain, with other novel features so that from the chain, with other novel features, so that an
approaching train will trip the parts and cause the sip nal to be displayed, the invention being more particularly applicable to points upon the track not visib from each other.

agricultural inventions.

A harrow has been patented by Mr. Mathias C. Theisen, of Diana, Dakota Ter. This invention covers a novel construction of a harrow designed to be readily adjusted for use as a rigid or a flexible har--
row, or as !a smoothing harrow, or a straight toothed harro
ble.
A combined drill and planter has been patented by Mr. William H. Halfaker, of Acton, Ind. This invention covers a novel construction and combination of parts for a machine that can be readily ad-
justed to drill or plant the seed, and todrill the seed at a greater or less distance apart, and which can be readia greater or less distance apart, and which can be readiadjusted.
A corn and cotton planter combined has be patented by Mr. Joseph G. Davis, of Hunts tion, in which the various partsare so arranged that the
tile number of grains planted in a hill may be reguiated as
desired, while the depth of the furrow may likewise be desired, while the depth of the furrow may likewise be
regulated as desired, the planter being calculated for regulated as desired, the planter bein
planting cotton or other small seeds.

miscellaneous inventions.

A rein holder has been patented by Mr. Frank J. Gibbs, of Yhilipsburg, Pa. It consists of novel construction of buckle adaptect to be clamped on
the rein, and having a loop for receiving the hand of the rein, and having loop rocelving the hand thedriver, making a simple
A fabric turfing or rug making imple-
 of a rug, the device being one which can
Iy held in the hands in making the rug.
A barrel vent has been patented by Mr. nse on beer barrels and similer In. It is especialy for ns to admit air, to permit the withdrawal of the contents at the top, and yet prevent the passage of gases from
the barrol
A laundering machine has been patented by Mr. Robert H. Cornett, of LLivingston, Kan. It is for washing and wringing clothes, and has a washer passed between a main roller and bed rollers, some with corrugated and some with plain faces, while a wringer
is held in convenient attachment to the tub by brackets.
A process of extracting tannin from wood has been patented by Mr. Edouard Tavernier, of
Paris, France. The process $i=1$ imolves the use of a specially devised centrifugal machine, by the use of which from the lighter and purer portion, the latter liquid being drawn off from a point near the center of rotation.
Wall paper forms the subject of a patent issued to Mr. William Campbell, of New York city.
It has a design or figure, with a continuous surface of flock of a single color, through which the design ap. pears, the design being first printed, the paper then entirely coated with glue, and the flock applied to the en tire glue coated surface.
 It consists in boring a hole of proper depth, inserting tube, and exploding a small cartridge at the bottom of the tube, then filling the chamber caused by this explo-
sion with the desired explosive, withdrawing the tube, and fring the larger charge.
A vehicle has been patented by Mr . Charles Dinsmoor, of Warren, Pa. It is made with a
series of wheels journaled in connecting links, with a
track consisting of hinged links, to make endless tracks, is designed to have a smooth and easy motion, without t, strain, or friction.
A half sole for boots has been patented by Mr. Darius Banks, of Morrisville, Pa. It is formed fastening plate is inserted, with apertures for nails or other fastening devices, for securing the half sole to the instep sole, the main body of the half sole being securd to the boot or shoe by nails in the ordinary way.
A sewing machine improvement has city. It is for machines that sew with a single thread used for making a cross or binding stitch, and has its throat plate made movable with the other parts, the invention being an improvemen
invention of the same inventor.
A conveyer has been patented by Messrs. ob C. Co Mo. It is designed to convey grain, flour, in such way that the material will notbeinjured in han dling, and has a reversible flight, with a stop, whereby
the flight is held in a positive vertical position or althe flight is held in a posi
lowed to slant as desired.
A chin rest for violins has been patentd by Mr. William V. Arthur, of Oakland, Cal It is made of hard wood or other suitable material, and has its top surface hollowed out to adapt it to receive that part of the jaw usually rested on the top, the rest when
in place being above the belly of the violin, and not in in place being above the belly of the viol
A picture hanger has been patented by Dora Mitchell, of Ottumwa, Iowa. It consists of a pole made in sections hinged together and provided with a fixed to one end and a spring clamp fixed to the other end, making a light, strong, and efficient tool for hanging and taking down pictures.
A spark arrester has been patented by Mr. John H. Optenberg, of Oshkosh, Wis. This invent tion covers an improvement on a former patented in-
vention of the same inventor, in a novel arrangement mal [position to one that will allow a free draught hrough the smoke stack, with other novel features.
A hand mirror and brush has been patented by Mr. William Booth, of Leominster, Mass. This handle front plate on the handle extension of the back
hand plate, and a grooved band frame surrounding the whole, in such way that these articles can be made at less ex-
pense and with greater facility than when made in the pense and with gr
A stock car has been patented by Mr. Benjamin F. Williams, of Springville, N. Y. The car
is divided by four partitions, which are pivoted so their ower ends may be swung up against the roof of the car here being movable feed troughs, a slide rod for securfeatures, whereby the stock may be kept fed, and wa red.
A hydrocarbon burner has been patentd by Mr. William Barraclough, of Balmain, near Sydburner connected by intermediate pipes, one being filled wither class, and there being heaters and mixing tubes
, whereby heated air can be mixed with kerosene vapor, with other novel features, for burning the vapor without the aid of a wick.
An opera chair has been patented by nob or button on the top of the chair back, a hook or support pivoted to the side of the chair back, and a hook or support pivoted to the chair near its lower end, a drip cup being fastened to one of the rear legs for receiving the lower end of an umbrella stick

A combined hlackboard and mapory Brooklyn, N. Y. It consists of rods, three in a set, of
which two sets are used, the upper ends of each three which two sets are used, the upper ends of each three
rods being inserted in the angles of a triangular case, with other novel features, making a readily adjustable upport for maps, charts, etc., a

An apparatus for cutting circular woodn plates has been patented by Mr. Isaac M. Rhodes, of Hancock, Mich. In the base plate is a screw, to secure an upwardly extending hub, which forms a central bearing for an operating handle that carries adjustable cutters, which
desired.
A tricycle has been patented by Mr. William N. Smith, of Bad Axe, Mich. The invention consists of an interchangeable train of gear wheels
otating the driving wheels, and operated by treadles, with a steering device and an adjustable seat, making machine especially adapted for regulating the speed
as required for racing, traveling on rough roads, or in as required for
A wheeled vehicle has been patented by Mr. William B. Kelly, of St. Louis, Mo. It has a series of independent whecls arranged between oppo-
site sides of the platform, springs sustaining the load on the wheels, and wheel guards so arranged as to strike it, the springs afterward forcing the wheeels back to the ground.
A gate has been patented by Messrs. Henry P. Builock and Henry P. Cayce, of Jonesboropened automatically by the depression of a platform in the gateway or by the pulling of cords pendentfrom a support at or near the gateway, being designed espe-
cially for a farm gate which shall be simple, inexpensive, cially for a farm
and self-closing.
A shutter for photographic cameras has

A pair of apertured shutters are pivoted in a case intersecting the camera tube, and arranged to swing past actuated lever operating both shutters simultaneously, the device being
time exposures.
A vegetable and root cutter has been The frame has two hoppers divided by a partition, a screen, troughs, a reciprocating cutter frame provided with horizontal and vertical knives, and other nove features, the whole so arranged as to work efficiently and rapidly without danger of the machine becoming clogged.
A lock-up for printers' forms has been patented by Mr. Walter Lloyd, of Chicago, Ill. It con fitted thereto, all fitting into a tongue on the inner edg of the chase, the bars having ratchet teeth on thei suter faces, and there being corner blocks to engag they may be closed up on the type forms.
A former for sheet metal vessels has been patented by Mr. Charles A. Wilbraham, of Poquo nock, Conn. It has a bed plate to which a forme block and over each other, and a clamp adapted to hold the blank to the band or bands prior to bending the blank, with other novel featunds prior to bending th sheet metal vessels can be bent or shaped truly with economy of time and labor.
A valve attachment for hydrants has been patented by Mr. Lyman G. Keyes, of Armstrong, to the lower water chamber by means of a bushing, th exterior thread of which is a left hand thread, and the valve and its chamber are so inserted that they may be
disconnected from and liftcd out of the hydrant case saving the digging down around the hydrants for repairs from freezing etc.
A middlings purifier has been patented by Mr. Ora L. Anderson, of Pleasantville, Ind.
It has a vertical series of shaker frames, two vertical series of sieves mounted therein, intermediate conveyor landing from the conveyors below this series to th upper sieve of the opposite series, the machine bein designed to thoroughly purify and grade middlings passed through it.
A stem winding device for watches forms the subject of two patents issued to Mr. Olof in a key constructed with a ring and a U-shaped loop bent three times at right angles laterally, to adapt it to
receive and engage with the crown of a stem winding receive and engage with the crown of a stem winding ring is attached to the rotary crown of the stem, to facilitate the easy and quick winding of stem winding

A take-up and let-off mechanism for looms for weaving broad silk has been patented by Mr.
James Nightingale, Jr., of New York city. Its construction is such that the tension on the fabrics and warps is obtained from weighted levers, and not direct $1 y$ from the cloth beam, as in other looms, the adjust
ment of the fabric to the reed being entirely independ ent of the cloth beam, the only function of which is to carry the completed fabric, but not to give the same any tension.
An incased pile has been patented by Mr. John W. Crary, of Bluff Springs, Fla. The pile is driven in the usual way, and around it is built a plat
form suspended from cross bars on the top of the pile. Upon the platform and around the pile is built a brick casing, leaving a small space next the pile to be
filled in with cement, the platform and its casing being filled in with cement, the platform and its casing being
sunk, as the casing is built, to or below the general level of the bottom, the space next the pile being finally

NEW BOOKS AND PUBLICATIONS

Microscopic Fungi. By M. C. Cooke
LL.D. Illustrated with 269 colored figures by J. E. Sowerby. London
W. H. Allen \& Co. $1886 . \quad$ Pp. 262.
This work is of much interest at the presentday, when the need for specializing microscopic studies is so ap parent. The first impulse of the possessor of a microscope is to apply it to all objects, using it really as a
scientific toy. In Mr. Cooke's manual there is pre sented a special field for its use; and it is hy following precisely such lines of work as here suggested that the best discipline is secured and most real work is to be done with the instrument. The subjects of rust, smut,
mildew, and mould are treated of and, as is evident mildew, and mould are treated of, and, as is evident
even from the title page, are most liberally illustrated. even from the title page, are most liberally illustrated.
The cuts are beautifully colored, and are selected so that one quite ignorant of the subject would be guided along the road to a full knowledge of it as far as it has been
developed. The recent origin of the study is animad verted on by the anthor, and the great relative impor tance of the cryptogams is insisted on. The main part of the work is in popular language, but an appendix of some fifty pages gives the botanical classification and de scriptions of the fungi treated of in the book. An in-
dex closes the work. The Gas Engine. By Dugald Clerk The author has in this work endeavored to represen
the different steps by which the gas engine has, from a comparatively insignificant use in 1860, obtained the large employment it now has wherever small powers are required. The book also explains the science and prac tice of the gas engine, treating of the different types and the chemical and physical phenomena of combustion machines. The author, although himself the builder of a very successful gas engine, generously adds
while "many inventors have contributed to? its prowhile "many inventors have contributed to its pro
gress, its present position is in the main due to the patience, energy, and commanding ability of one man,
ciency of the gas engine will probably be attained, and direction in which to look for such improvementis

Manual of Assaying Gold, Silver,
Copper, and Lead Ores. By WalCopper, AND LEAD Ores. By Walter Lee Br
gent \& Co.
This is a second edition, revised and enlarged, of a hand-hook especially designed for the use of those
who have not had previous technical experience or sci. ho have not had previous technical experience or sci-
ntific training. It is simple and practical throughout, all the methods and apparatus employed being expla7ned in great detail, in what might be styled such a ommon sense way that beginners can readily follow common sense way that beginners can rea
the directions without the need of a teacher.

Special.

the experience of an eminent

 JURIST.The attention of social scientists has long been called ors.
rise dangers, their souls stir within them an ardent desire or help and relief. The tendency ofttimes is to grasp at anytning that promises restoration, and a thousand
and one things are offered, but all seemed doomed to and one things are off ered, but all seemed doomed to
disappoint. for medicine can offer no cure. A change of life and habits oft affords nature opportunity to recupe-
rate. and the individual may go on for a time; but with he aid of a true restorer to the nervous system, if there e a good foundation. it may be agatn built up, some-
imes even where habits and life appear against them. times even where habits and life appear ag
The following is peculiarly accase in point:

Revitalized."

June 8, 1886.
ment. The third day after beginning to use it, to my sinkwin curse, the dull pain above the eyes, both of which constituted Ithe burden of my complaint when I consulted you, had disappeared, and I have
troubled with either since. It is wonderful!
"I experienced no particular sensation in using the rar, and since I bome blunders, was somewhat irreguentally and physically, notably in the trial of a $\$ 200,000$ ill case, which lasted eight days, and yet with it all I郎 least. I have smoked the usual number of cigars and punished the usual amount of tobacco, besides indulging in offee in the morning and tea in the evening,
and eating Iwhat I liked. I repeat it, itf is wonderful! The benefits I have received will be worth many hunTred times their cost. I.feel ' revitalized;' indeed, I can
hardly realize.'the change has been so sudden, that I who hardly realize.fthe change has been so sudden, that I who rble creature who called upon you less than a month
"July 19, 1886.-It is now two months since I began the use of your Home Treatment. I still have on hand a
mall quantity of the Oxyen aqua, and the blue bottle is bout one-eighth full, which shows probably that I have not strictly followed directions; and yet without the
 Arecent writer in the Independent says :' There is a wn diseases and curese'. I may melong to this class, but
fear of being so labeled will not deter me from civing ear of being so labeled will not deter me from giving
his unsolicited testimonial. I am sincerely grateful for what you have done for me, and take this method of estifying my gratitude.
" When two months ago I called at your office, an en-
ire stranger, I was suffering from two causes-a dull tre stranger, I was suffering from two causes-a dull,
heavy feeling over and about the eyes, and a sinking eavy feeling over and about the eyes, and a sinking
ensation in the pit of the stomach. I had suffered from these causes. it is safe to say. for twenty years, and they were the $t w i n$ curses of my existence. It is impossible to
convey to any one who has never been thus afficted the ightest conception of what I suffered. I do not refer to the physical pain, for that was very slight. but to the
mental agony. You did not tell me that I was the victim of dyspepsia, but \mathbf{l} suspect I was. At least, what
Henry Ward Beecher says.of dyspepsia is equally applierly impossible for such a person to be a true Christian,
"It may be that my suffering was purely imaginary, if there can be such a thing as distinguished from the real
article:; but if it was, then my mind was diseased, and all the mor
dition.
and
As before reported. the trouble about the eyes in my
case disappeared the third day. Ithivk, after I began the ase disappeared the third day. I thisk, after I began the
use of your Treatment, and the stomach trouble not er four days later. You gave me no assurance of such when they came. Indeed, it was with considerable difculty that I brought myself to a full realization of the acts. I have only to add that since the first disappear-
ance of my troubles they have not reappeared. What the effect of a discontinuance of the Treatment may be emains to be seen, but 1 have the utmost faith in your printed statements that the re
" August 25, 1886.-It is now more than a month since I topped the Home Treatment. and I am happy to say
hat I have had no return of my old trouble. It is won-derful-I had almost said miraculous. Scientific chemsts and professors of colleges may talk as they please
bout Compound Oxygen being a ${ }^{\text {a }}$ perfectly inert sub" You ask about the constipation and the nervous remulousness. Well, I think they are both somewhat etter, although they are by no means cured. It would he troubles which I consulted you about; besides, I think the constipation is inherited; and as for the nervousness, that is no doubt due to the use of tobacco, tea. and coffee, and to past indiscretions. Indeed, the most emarkable thing to me about the cure in my case is that
was effected without the slightest change in habits or
Any person desiring to know more of this jurist's ex-
erience will be cheerfully gratified by him, and his perience will be cheerfully gratifed by him, and his
name and address will be given to any upon application name and address will be gi
o Drs. STAREEY \& PALEN.
If you are suffering from any chronic disease, about Which you are growing discouraged. such as Pulmonary
rouble, Catarrh, Bronchitis, Neuralgia. Rheumatism, ervous Prostration, etc.. send a statement of your conition to Drs. STARKEY \& Palen, 1529 Arch Street, compound Oxygen in your case. It will cost you noth-
ßusiness and ゆersonal.
The charge for Insertion under this head is one Dollar a line for each insertion; about tight wordst to a line. Advertisements must be received at publication office

The right to manufacture the balanced reciprocating counterweight engine, illustrated on page 338, is for sale
Perfectiy balancea, and needs no tywheel nor founda tion. They areentirely free from vibrations. For further particulars apply to Chass.
let St, New Orleans, La.
John Kennedy \& Co. build high and low pressure steamships and launches with. the latest improved from vibration. High speed guaranteed. Photographs
of the Leader, 46^{\prime} length by $8^{\prime} 6^{\prime \prime}$ beam. sent on receipt of 25c. Address John Kennedy \& Co., 31 Carondelet St New Orleans, La.
Walrus Leather, Emery, Glue, and Manufacturers Supplies kenera
St., New York.
Wanted-Patented novelties to manufacture on royalty, or would purchase patent outright. Household o
articles in general use preferred. Address, with ful articles, in general use preferred. Add
particulars, Hardware, Plantsville, Conn.
Montaigne speaks of "reposing upon the:pillow of a doubt.", Better repose upon the certainty that Dr
Pierce's "Favorite Prescription" will cure all chronic female diseases with their attendant pains and weaknesses.

ers in my case. "Favorite Prescription" h

 Mrs. M. GLEASON, Nunica, Ottawa Co., Mich. Complete-Practical Machinist, embracing lathe work vise work, drills and drilling, , taps and dies, hardeningand tempering, the making and use of tools, tool grinding, marking out work, etc. By Joshua Roose. Illustrated
by 356 engravings. Thirteenth edition, thoroughly re vised and in great part rewritten. In one volume, 12mo, 439 pages.
Blake's Improved Belt Studs are the best fastening ${ }^{\text {tor }}$ New York.
Apparatus for replacing broken pump chains withou disturbing the pump or cistern cover. Individual, city
and State rights for sale by J.B. Brown, patentee, Hannibal, Mo.
The Railroad Gazette, handsomely illustrated, pub lished weekly, at 73 Broadway, New York. Spec
copies free. Send for catalogue of railroad bonks.
Concrete patents for sale. E. L. Ransome, S. F., Cal. Wanted-Competent draughtsmen, experienced in blast furnace and steel works construction. State ex-
perience. Address G. S. L., P. O. box 773, New York. Small Metal Goods of every description made to order Die work, etc. E. C. Ivins, 528 N. 10th St., Phila.. Pa. Machinist Foreman wanted who can handle fifty men to advantage and increase their production by latest imFriction Clutches from $\$ 2.25$ on. J. C. Blevney, New

Haswell's Engineer's Pocket-Book. By Charles H
Haswell, Civil, Marine, and Mechanical Engineer. Giving Tables, Rules, and Formulas pertaining to Mechan Ies, Mathematics, and Physics, Architecture, Masonry, Steam Vessels, Mills. Limes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, $\$ 4.00$. For sale by pages, leather, pocket-book form, $\$ 4.01$
Munn \& Co., 361 Broadway. New York.
Woodworking Machinery of all kinds. The Bentel A Catechism on the Locomotive. By M. N. Forney. With 19 plates, 227 engravings, and 600 pages. $\$ 2.50$. Sent
on receipt of the price by Munn \& Co., 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pumps for liquids, air, and gases. New catalogue
now ready.

The Knowles Steam Pump Works, 44 Washington st.. Boston, atalogue, in which are many new and imsued a new catalogue. in which are many new and im-
proved forms of Pumping Machinery of the single and duplex, steam and power type. This
mailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Nickel Plating.-Sole manufacturers cast nickel an
 Sole manufacturers of the new Dip Lacquer Kristaline
Complete outft for plating, etc. Hanson, Van Winkle Complete outft for plating, etc. Hanson,
Co., Newark, $\mathrm{N} . \mathrm{J}$., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven, Conn. Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical. or scienThe SUPPLEMENT Containg lengt sent to them free The SUPPLEMENT contains lengthy articles embracing science. Adaress Munn \& Ma.. Pubishers, New York. Working Machine Iron and Steel Wire, Wire Rope, Wire Rope Tram
ways. Trenton Irys. Mrenton Ion Comph, Trent, N. J. Iron, Steel, and Copper Drop Forgings of every de
scription. Billings \& Spencer Co., Hartford, Conn. scription. Billings \& Spencer Co., Hartford, Conn.
Rubber Belting, all sizes, $77 / 2 / 2$ per cent regular All kinds of Rubber Goods at low prices. John W. We are sole manufacturers of the
Removable Pipe and Boiler Coverings Wibrous Asbesto Removable Pipe and Boiler Coverings. We make pur
asbestos goods of all kinds. The Chalmers-Spence $\mathbf{C o}$. 419 East 8th Street, New York.
Wrinkles and Fiecipes. Compiled from the ScientiFIC AMERICAN. A collection of practical suggestions, processes, and directions, for the Mechanic, Engineer,
Farmer, and Housekeeper. With a Color Tempering Thurston and Vander Wood engravings. Revised by Prof Thurston and Vander Weyde, and Engineers Buel and
Rose. 12mo, elóth, $\begin{aligned} & \text { \&2.00. For sale by Munn \& Co.. } 361 \\ & \text { Broadway, New York. }\end{aligned}$ Broadway, New York
Chucks-over 100 different kinds and sizes in stock. Specialsmadeto order. Cushman ChuckCo.,Hart ford.Ct
Steam Hammers, Improved Hydraulic Jacks, and Tube

Curtis Pressure Regulator and Steam Trap. See p. 142. Send for free Catalogue of Books of Amusements, Speakers. Dialogues, Card Games, Fortune Tellers, bock \& Fitzgerald, 18 Ann St., New York.
60,000 Emerson's 1886 Book of superior saws, with Address Emerson, Smith \& Co., Limited, Beaver Falls, A., U. S. A.

Hoisting Engines, Friction Clutch Pulleys, Cut-off Houplings. D. Frisbie \& Co., 112 Liberty St., New York "How to Keep Boilers Clean." Send your address Pays well on Small Investment.-Stereopticons, Magic Lanterns, and Views illustrating every subject for public
exhibitions. Lantern for colleges, Sunday schools, and xhibitions. Lanterns for colleges, Sunday schools, and
ome amusements. 136 page illustrated catalogue, free. home amusements. 136 page illustrated catalogue free.
McAllister, Manufacturing Optician, 49 Nassau St., N. Y. Astronomical Telescopes, from $6^{\prime \prime}$ to largest size. Observatory
and, 0.
Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information, and not for publication.
eeferences to former articles or answers should
References to former articles or answers should
give date of paper and pagee renumber of question.
Iniries not answered In reasonable time shound
be repeated; correspondents will bear in mind that some answers require not a little research, and,
though we endeavor to reply to all, either by letter
or in this department, each must take his turn.
or in this department, each must take his turn.
Special
personal ritten rather than formation on manteral interest cannot be
personal rather than general interest zannot be
expected without remuneration.
Sciemtificents imerican Super
to may be had ut the office Price 10 cents each
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
price.
price.
Minerals sent for examination should be distinctly
marked or labeled.
(1) C. D. asks: What metal or compound of metals can I use to make small castings as
hard (or nearly as hard) as brass. Suid metal must melt ard (or nearly as hard) as brass. Said metal must melt can procure at a stereotype or type foundry, or canobtain by melting old type.
(2) W. E. S. asks : Is there any kind of liquid that can be obtained at a drug store that will not evaporate, and which has no sediment, or very little,
and will not freeze above 5 or 10 degrees below zero A. We recommend you to try glycerine, or it is possible that kerosene or coal oil might answer the pur-
pose. The temperature you give is so extremely low pose. The temperature you give is so extremely low
that all ordinary liquids will congeal at it. A mixture flycerine and water might answer your purpose.
(3) W. B. asks how to make sodium malgam. When heated, the explosions are so violent hat some is lost. Also how to make zinc amalgam, cold it will not amalgamate, and hot it explodes. A. he formation of an amalgam of sodium is apt cury is in large excess. Make a strong amalgam in small quantities by heating in a covered vessel, and mix with more mercury. Zinc and mercury will amalgamate without the least difficulty if a little dilute sur
(4) J. W. K. asks what size an electro magnet would need to be to lift or attract a weight of 10 pounds through a space of $3 / 4 \mathrm{inch}$, and how many Leclanche cells? A. There is no rule for cal-
culating the precise size for given strength of an culating the precise size for given strength of an
lectro-magnet. Leclanche cells are not good, except or intermittent work. Your magnet should be ten or welve inches long, with $3 /$ inch cores, and 5 to 10 Le
clanche cells would work it. 2. What effect cury have on lead if the lead be immersed in it a vice $v \epsilon_{\text {. ... } i . e ., \text { wilt the mereary be affected? A. The lead }}$ and mercury will amalgamate, and the mercury will he injured for ordinary uses.
(5) Waco asks:1. Can you tell me of any combination of minerals or chemicals that on heat? Can such a thing be done? A. Theoretically if the proper junction of a thermo-electric battery/ were cooled, an electric current will be generated, which engine using oil for fuel, and requiring only 30 lb . "at its best," be of any market value? A. We cannot pronounce upon the value of such an engine without further and fuller details. It is all a question of conomy of fuel.
(6) W. F. H. asks: 1. In an electro dyamo machine of the Gramme and Weston and other types, the commutator consists of as many segments
as there are wires leading from the armature. Will a commutator consisting of 2 or 4 segments answer just as well, provided opposite ends of the armature wires are connected to opposite segments of commutator or
will there be a diminution in strength of the current? A. Any reduction of commutator leaves will impair A. Any working of the machine, or may even stop it. The wire in the armature must form a full and complete circuit. 2. Have you working plans for a larger ma-
chine than the Siemens in Supalement No. 161? A. chine than the Siemens in Supplement No. 1619 A.
We have not, but expect soon to publish a description a
(7) F. M. C asks : How many pounds of wire is required to make a spark coil to light one gas light? Also how many and what kind of batteries it
would be best to use? A. Two or three pounds of No. would be best to use? A. Two or three pounds
(8) E. M. L. asks for directions for manfacturing a liquid shoe dressing. A. Take of shellac one-haff pound, alcohol three quarts. Dissolve, and
add of camphor one and a half ounces, lampblack two
(9) T. P. E. writes : If in fitting a crank nou shofould have it to drive, and you heat the shaft you should have it tod and allow it to cool, repeating the opera tion until the shaft is permanently large enough to make a driving fit, will the quality of the iron be injured thereby? A. The heating and coaling of the end of a shaft many times for the purpose of enlargemen
to receive a driven-on crank causes considerable chang to receive a driven-on crank causes considerable change in its molecular structure, and is not considered safe
where severe work is required from the crank. For ordinary use or for small shafts, there is no objection, except that it is bad practice
(10) W. M. R.-For computing the safe working pressure for cylindrical shells of boilers: D of the boiler plate by 4 for safety, and this quotient again by one-half the diameter of the boiler shell or cylinder in inches. Then multiply the last quotient by again this product py 0.60 in decimals of an inch, a a for double rivet seams. For example, assuming 50,000 pounds as the ultimate tensile strength of your
iron, and a 50 inch boiler, the figures will be for $2 / 4$
inch iron, single riveted seams

or asfe working strength of 75 pounds per square inch The heads should be 50 per cent thicker than the shell or flat stayed arfaces. Divid by 4. Multiply quotient by the least area of stay in decimals of an inch. Divide last product, the numbe ply last quotient by the thicknguous stays. Mnlti mals of an inch, for the safe working pressure. Fo example : The leg sheets of a locomotive type, with 4) $\frac{50,000}{120} \mathrm{lb} . \mathrm{t}. \mathrm{s}$.

Areaof stay.
Area of stay.
Area between stays $25 \mathrm{sq} . \mathrm{ft}$.)
7500.0
Thickness of plate......... $\underset{.31}{300}$
The crown sheet stays are more complex, as also the head sheet stays, in this class of boiler. They would require the inspection of a practical engineer in boiler
work to make a safer computation. We refer you for urther rules and illustrations for strength of boiler work, to Courtney's "Boiler Maker's Ready Reckoner, hich we can furnish for $\$ 3.60$
(11) L. S. B. asks a receipt for making good fire brick for ordinary stoves, one that can be mixed the same as mortar and put in place to set. A A good lining for stoves may be made by pulverizing
the old brick, or any fire brick, and mizing with a little the old brick, or any fire brick, and mixing with a little
fresh clay, just enough to make it plastic, with which line the fire plates. Dry out the water before making fre brick lining of your plastic back.
(12) G. F. writes: I have an iron tank in which I wish to keep water for drinking and cooking rom rusting that will A. Paint the inside' of the tank with Prince's metallic paint and boiled linseed oil 2 coats. Allow first coa dry thoroughly before putting the second on.
(13) W. E. S. asks how to regild gas fixtures that have been soiled by fly specks. A. The cleaning of the lacquer from gas fixtures and redipping experience, too much for the occasional work of plumber. If you wish to make a trial, we can recom mend Spons' "Workshop Receipts," which describe tures, price $\$ 2.00$. There is a cheap way of varnishin and bronzing with bronze dust as practiced by the painters, the material for which you may obtain through the paint trade. It is possible that washing with warm soap and water will improve them.
(14) Hiorrisiana says : Will you kindly inform me how I can make the cellar of my house
diy? The floor is concreted and there are windows back and front. Still it is damp, and everything in it gets mouldy. A. The most thorough way to secure a
dry cellar is to plaster the exterior of the cellar walls dry cellar is to plaster the exterior of the cellar walls
with the best Portland cement. But this in:your case with the best Portland cement. But this inyour case,
the wall being already built; would be inconvenient The next best plau is carefully to point up the joint of the wall upon the inside, with Portland cement mad the old mortar between the joints and substitute ce ment. Then you may plaster the walls a quarter of an inch thick with same. Use thorough ventilation. Suc-
cess will depend upon the care and thoroughness with which the job is done.
(15) G. A. asks a receipt for preparing milk to keep a long time. A. Add bicarbonate of soda ad then place in sealed bottles
(16) D. R. D. asks a recipe for making prepared kindling wood. such as is sold in the grocery in melted resin. The following comp A. Dip the wood times used: 60 parts melted resin and 40 parts tar, in which the wood is dipped for a moment. quart the cool, mix as much sawdust with a little charcoal added s can be worked in. Spread out on a board, and when cold break up into lumps the size of a hickory nut
and you will have enough kindling to last a good while.
(17) J. H. asks how to remove the paper pasted on the inside of the cover of an old book. There is a book plate under it and the cover is calf pasted on. A. The only way in which the paper can
be removed is by covering it with a damp cloth, until it is sufficiently moist, when it can be easily taken off

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

November 9, 1886,

AND EACH BEARING THAT DATE.

[See note at end of list_about copies of these patents.]

Abacus, Bolton \& Tillmeyer.
 cetine blue colors, production of, C. Schr.................35,218
 Anchor for anchoring vessels, F. D. Montague.

 nimals, blanket for, W. B. Logan.Anvil, farrierns, C. H. Perkins.
uger, post hole, Devitt \& Sise.......................... 352,261 35230 utomatic danger signal, E. E. Phillips............. 352,263 Axle arms, making, c.............
Axle box, car, H. A. Wendelt.
Axle box, car, H. A. Wendell.
Axle, car, D. C. James
xile, car, D. C. James.. 352.411 352,41
Baking and roasting pan, J. B. Leach
Baking and roasting pan, J. B. Leach............... 352,
Bag catcher, mail, Mack \& Ward................ 852,
Bag cord case and lock, combined mail, O. B.
Young.. 352,

Meeks..

Bench. See Wash bench.
Bib or apron, W. B. Logan..42,190
Bicycle, T. B. Jeffery
Bicycles, lantern hanger for, T. B. Jeffery.............. 352,191
Blanket fastening, W. B. Pritchard........................87
Blotting pad, s. Wales....................... 852,170
Blotting pad, s. Wales................................ 852,170
Board. See Game board. Ironing board.
Boat. See Torpede boat.
Boab. See Torpedo boat.
thread, twine, and cord from, J. Good.........
Soiler. See Locomotive boiler. Range boiler. Steam boiler.
Boiler cleaner, Far
Boiler cleaner, Faries \& Wilcox..................... 352,235
Bolting reels, brushing mechanism for, J. W

Bosom pads, making, T. P. Taylor......................... $352,5012,28$
Bottle wrapper, Hine \& Reed................ 352,188
Bottles, machine for wiring the corked necks of,
W. C. Van Vliet.......................... 352,168
Thatcher....................................... 352,166
Bracket. See Scaffolding bracket
Brake. See Car brake. Vehicle.
Brake adjuster, automatic, J. B. Burns............... 852.444

Bustle, Rice \& Landaker................................ 852,4277
Button, M. D. Shipman..................................252,
Cabinet, J. Longenecke
Cable grip, Samuel \& Angerer...352,569
Can. See Coffee or tea can.
Cannon, revolving pneumatic. w. A. Bartlett:.... 352,110

Car brake, J. S. Connelly.....
Car coupling. J. W. Harreth.
Car coupling, M. M. Requa...
Car coupling link., F. W. Parso...
Car doors, Iaten ock ror, ci. B.

Car starter, G. B. Haines..

$.352,126,35,2,127$
.....
52,416

Carriage, wheeled, A. Dickinso
320
Caster, Terrill \& Simonson........................... 352,209
Casting compound ingots, mould for, A. J. Lustig 352,476
Casting machine, stereotype, J. E. Caps........... 352,447
Cattle from koring, device for preventing, J. M.

Chair. See Barber's chair.
Chute, coal distributing, C. M. o'Donovan.............. 352, 34241
Cigar box, D. E. Powers............................... 352,200
A. Shepard.. 352,491
Cigar seller, automatic, C. o. Cole.. 352,397

Clamp. See Floor clamp
Cleaner. See Boiler cleaner Gun cleaner.
Clock, L. Feuerstein.......................... 352,00
Clock, L. Feuerstein..352,3090
Clock, secondary electric, J. F. Hedge, Jr.......
Clock striking mechanism, G. W. Burgess........ 350,180
loset. See Dry closet.
Coffee or teu can, W. A. Krac......................... 352
B. Cornish and neck button................... 38
J.
commode, P. Bardon
Cooking vessel, steam, C C. Danner , Dowkontt.....
Corset and skirt supporter, combined, J. Stone. Cotton picker, S. H. Frist. 52,400
52,230
52,163
D. J. 352,285
upling. See Car coupling. Harnéss toupling
Tate, folding. D. E. Evans.......................... 352
Cuff retainer. A. Bond................................ 352,294
Cultivator, P. . Kinsworthy............... 352,413
Cultivator, listed corn, D. sommer............. 852,274

Cutter. See Band cutter. Meat cutter. Vegeta-
ble and root cutter. Washer or gasket cutter. ble and root cutter. Washe
Dentel plugger, C. Forester.....
Derrick, J. Le, Duke
Derrick, J. Le , Duke............
Die. See Roller swuging die.
Dish basin, D. Lombert.
Dis. See Roller swaging die.
Dish wasin, D. Lombert......
D. B. Saunders.
Dish washer, C. B. Saunders
Doll supporter, A. Staples..
Door opener, electrical, D. Rousseau..................
Doors, etc., pneumatic check for. J. B. Edson. Dredge, salt or pepper, R.
Drill. See Ratchet drill.
Drill. See Ratchet drill.
Drill and planter, combined,
Drill and planter, combined, W.
Dry clcset, I. D. Smead..........
Drying apparatus, M. Reuland
Drying brick, earthenware, etc.., kiln for, J. R
Egg paoherer and egg frier, w. H. Silver.
Electric device, A. Lungen.
Electric device, A.
Mines and
Mingle \& Brown.
Electric wires or cables, composition for the
manufacture of blocks for containing. J. W

Engine. See Road engine. Steam engine.
Engine reversing gear, Rutherford \& Moore
Engine reversing gear. Rutherford \& Moore.......
Engines, operating the valves of hydraulic pump
Ing. J. Moore............
Extractor. See Stump extracto
Eyeglass frame, J. H. Gilbert.....................
Fabrics, machine for pressing. G. W. Miller
Faucet, beer, C. B. Locke
Fence, W. H. Dungan
Fence, W. H. Dungan....
Fence, barbed, J. L. Riter
Fence binder, wire, If. C. Go
Fence machine. J. H. Beaver
Fence machine, wire, G. W. Homsher Fence making machine, B. A. Welds.
Fence, metallic picket, E. F. McCarro

Fence, wire. J. H. Doughert
Fender. See Fire fender.
Fertilizer distributer, J. J. Snyder, J Filter. W. Piercy
Firearm, breech-loading. T. G. Bennett
Fire escape, S. I. Trask
Fire extinguishing apparatus, 1
Hexible material. forming articles of........... Fioor clamp, C. F. Dearth
Flour sifter safe, S. E. Norton
border for, W. M. Oungst
Flower pot machine, E. Weisne
Forging plant, w. Hainsworth
Forging plant, W. Hainsworth..........................
Frame. See Eyeglass frame
Fumigator, J. Watson.................................
Furnace. See Locomotive furnace. Steam boiler
Furnace grate, W. Haslam
Furnaces by compressed air, workink, c........................
Gauge. See Level, plumb, and angle gauge.
Gauge. See Level, pluc
Garment supporter, Jensen \& Johnson
Garment, under. F. B. Brown...
Gas engine:speeder, C. E. Skinner.
Gas lighter, electrical, A. Lungen......
Gas regulator, volumetric, M. G. Wild
Gas to gas burners, device for cutting off the flow Gate. See Railway gate. Wagon end gate. Gate, I. Lantz............. Robinson..........................$~$ Gloves and other articles, fastening for. S. W.
Grading machine, road. R. Long
Grain cradle. W. B. Smith..
Grate, J. Christie...
Grinding mill, J. R. Kinley
Gun cleaner. H. W. Gia
Hame attachment, ,................
Harness coupling. F. M. Boring...
Harrow, M. C. Theisen.
Harrow. .i. . Wervurn.
Harrow, A. M. Word....
Harrow and pulverizer, Brewer
Harrow, disk, G. R. Thompson.
Hasp lock, J. H. Speed
Hay rack, horse, A. E. Roberts
Head rest. adjustable, W. H. R
Heater. See Water heater.
hoolder. See Whifetree hool
Hook, W. Webster.
Hoop shaving machine. W. A. Stone
Hopper. feed, C.
Hopper. feed, C. I. Butterfield.............
Horses, device for stopping, C. C. Harris
Hydrant, Bardo \& Ford
Hydraulic motor, A. B.
Inking pad. B. B. Hill.
Insulator, electric, H. D. Winton................................36, roning board, J. Matthias
Jars, cover for, A. W. Brightwell.
Journal and bearing, C. H. ${ }^{\text {Fisher }}$
Key. See Watch pendant key.
Knife. See Cheese knife.
Knitting machines, needle cylinder for circular
ace and embroidery stand, M. C. Cohen
amp, E. J. McKow
amp, car, M. Hicks, candle, S. Clarke
Lead. manuf acturing white, W.
Learis..
Ler, uniting pieces ot, P. J. Fitzgerald.
Leather while being scalloped, apparatus for ho ing, A. Schmied...
Lever button, E. B. Crocker
Liniment. O. W. Storer..
Young .-
lock. Wagon seat lock.
ocomotive o. Conlon...............
ocomotive boiler. J. E. Wootten

Loom for cross weaving, oldham \& Dixon.......
Loom shuttle box operating mechanism,

ooms, stop motion for, Meyer \& Kohler. Masher, vegetable. N. Johnson
Match machine; B. T. Steber.. Match machine; B. T. Steber.
Meat cutter. H. J. Landolt...

```
edicine, manufacturing a confection to contain,
```

G. C. Huttemeyer.................................
compound, A. J. Lustic
compound, A. J. Lustig...................
Metal, soldering tubes of plated, A. J. Lustig...
Metals, prepar
A. Arndt..
Metallle shank machine, c.T...................... 352,438
Moulding, J. \& L. Schram.
Monument, A. H. Miller....
Mordanting, B. Finkelstein
Motor. See Hydraulic motor.
Nail machine, wire, W. Taylor
Necktie fastener, J. Ballou.
Numbering device, H. Lee............
Obstetrical instrument, F . Hullhors
il, etc., upon fibrous substances, apparatus
distributing, Benn \& Firth........
iler, telelain or shaft, O. H. Warre
Ier. telelain or shaft, O. H. Warre
Orange sizer and bin, J. \mathbf{S}. McKenzie
Orane sizer ad bin,
Organ, cabinet, J. Hessler............
Organ pedal, adjustable, J. T. Rowe
Organs, socket board for reed, J. Hess
Packing, piston, T. Tripp..............
Pad. See Blotting pad. Inking pad.
Painting and whitewashing machine, c. P. Lar-
Pan. See Baking and roasting pan.
Paper bags, appar
J. N. Chadsey.
Paper box machine, W s. Davis.
Paper making, dandy roll for use in, c. Smith.
Pencil sharpener, E. B. Dunn
Pendulum, compensation, J. Gerhardt.
Permutation padlock. N. Speiche
Riano case, upright, H. Toaspern
Pianos, tuning pin for, J. W.
Picker. See Cotton picker.
Pipe joints, cement for, c. w. Collins
Pre.
Planing machine, W. H. Doane
Planter and chopper. cotton, L. P. Pitts...........
Planter, combined corn and cotton, J. G. Davis.
Planter, corn, J. Locher................

Plow, sulky, J. s. Trimble.
Polishing machines, roll for, F. W. Coy........................352,1227
352,318
352,423
Press. See Printing press.
Pressure regulator and cut-orf, Westinghouse, Jr
\& Moore.................................
Printing machine
G. P. Fenner..
Pring one..................
chinting press. M. Gally
Projectiles, accelerating, J. W. Graydon.
Propelling wheel, M. S. Cole.............
Pulverizing machine. Fuller \& Hayes.
Rail braces, manufacture of, C. Alkins
J. Van Depoele....
Railway curves, etc.. Rail for,
Railway, electric. . . E. Ries.
Railway kate, , F. Marble, Jr
Railway signal, D. C. James
Rake. See Hay rake.
Range boiler, J. Tucker
Ratchet drill, M. Rothfuss............................ 352,
Regulator. See Gas regulator. Pressure regu-
later.
Revolver, H. Goodman.
Road engines, axle joint for, H. Bushnel
Rock, machine for raising phosphate, D. J. Gi
Roll, dandy, J. R. Opden
Roller swaging die, G. F. Simonds
Rooflg retainer. Ow
Rowlock, E. J. Kerns
Solt
alt or condiment, compound table, J. M. Hughe
Sush fastener, R. M. Hutchins
Sash fastener. F. I. Rosentreter.
Saw flling implement. P. A. Potter
Saw, fire wood drag. B. F. Shinn.
Saw setting device, J. B. Sylveste
Scafolding bracket S. Murtin
Scraper, corn and cotton, W. H. Adams
Scraper, road, J. M. Orput.
Screw, jack, o. Seely.
Seat. See Car
Seed and fertilizerdistributer.
Selecting device, J. E. Munson
Sewing wachines, feed mechanism for, De Bea
aft holder, G. J. Spenneberg
Shearing table, sheep, C. B. \& J.
Shears, die for making. I. Harris.
Shirt and lacing, combined, A
Shoe. rubber. W. A. Macleod
Shoe. rubber. W. A. Macleod.
Shovel. See Wooden shovel.
Shovel. See Woole
Shovel. H. C. Cole
atter fastener and shutter bower, combine
Barnes \& Cunningham...........................
Signal. See Automatic danger signal. Railwa
signal.
Slates, etc., machine for making muffing strip
for, c . Nelson.............................
Sleigh and car iage, combined, w. H. Crane.
Spark arrester. O. T. Owings.
Spark arrester, w. T. Reed
Spark arrester. W. T. Reed ..
Spindle support. E. J. Carroll
Spinning machines, band tightenerfor, w. 'r. Ca
352.398 roll..
352.215 Stand. See Lace and embroidering stand. 352,258

352,419 | 352,425 |
| :--- |
| 352.340 | 132 2.286 2.450

\section*{| . 352.450 |
| :--- |
| .352 .485 |}

... 352,22

僉
密

Steam boiler furnace, A. R. Jones..................
team boilers, electric safety attachment for, R . Reichling..
steam boilers, Steam engine, G. E. Rider Steam generator, Huyes \& Bonnell.....................
Steam generators, heating water in, F. G. Wheeler.. Steam muffer, R. Solano
Steam trap, J. II. Banks.
Steering ships, apparatus for, J.
Stirrup, safety, A. R. Parkison.
Stoves, cooking attachment for
Stores, cooking attachment for heating, M. Rug
gles.....................................

Street sweeper, E. G. Rock...
Stump extractor, F. R. Smith.
Supporter. See Corset and skirt sup
supporter. Garment supporter.
Surface condenser, H. Warden
Suspenders, F. M. Pipe
Swing, O. L. praque...
Switch. See Three-thr
Table. See Shearing table switch.
Table leg fastening. H. A. Kaufhold
Tag attaching device, M. L. Howell.
Tags, machine for manufacturing pin, s.
Mower
Tap, beer, H. Nadorff.
Telegraph sounder, C. D. Haskins.......
elegraph system, printing, J. C. Wilson..........
Telephone transmitter, J. W. Bonta..... 352,176 to
Telephone transmitter, w. H. Collins
Telephone transmitter, W. H. Collirs. Thermostat. G. IT. Bulen.....
Thill coupling, J. A. Kranz.
Thill coupling. J. A. Kranz..
Thrashing machine, G. I. Pittman.
Three-throw switch, E. J. Remillon Three-throw switch, E. J. Remillo
Tile making machine, drain, R. J. Timber, preserving, H. Aitken..............
Timepieces, electric alarm for, F. Glasgow. Tire, J. G. Hess..
Tire upsetter, N. D. Stanley.................
Tongue support. W. I. Landon
Torpedo boat, submarine, C. D. Goubet................
Toy, J. Fallows................................. Traction ongines pinion wheel for
Traction wheel, R. R. Moore.......
See Ant trap. Steam trap.
Trousers or overalls, w. Cohlman.
Tubes, roller for forming tapered. E. Wiesner...
Type writing machine, c. Spiro......
Valve gear, automatic, F. A. Gardner
Valve gear, automatic, , . A. Gardner.
Vegetable and root cutter, I. P. Cribb.
Vebicle brake
Vehicle brake, C. A. Burr...
Venicle wheel. J. Macphail
Veaicle wheel. J. Macpha
Veiocipede, T. Zanger....
Velocipedes, luggage carrier for, J. A.
Veneering machine, A. C. Johnson....
Vessels, centerboard for, A. L. Shears
Vessels, centerboard for, A. op. Shears.................
vessels. device for closing oper:ags in the hulls
of, J. Speirs................................. Wagon end gate, J. A. Reed.....
Wagon seat lock, D. D. Whitney.................
Wagon train, self-propelling, J. B. Osborne. Wagon train, self-propelling, J. B. Osborne.
Warming apparatus, portable, A. E. Bailes.
S. Lee...........................

Wash bench, folding, Sly \& Wood.........
Washer. See Dish washer.
Washer or gasket cutter, J. Leuenberger
Washer or gasket cutter, J. Leu
Washing machine, P. Bulger... Washing machine, P. Bulger........ Watch, stop, A. O. Jennings....
Watces, safety attachment for Watches, safety attachment for, D. N
Water conductor, rain, w. D. Bates.. Water distribution. systena orph. Water heater, feed, G. Green...
Water heater, feed, A. F. Ward. Water heater, feed, A. F. Ward
Water heater, feed, H. Warden Weaner, calf, J. M. Markham...........................
Wheel. See Propelling wheel. Traction wheel. Vehicle wheel.
Whifferree hook, A. A. Brackbill.... Whip rack, L. D. Jones...
Windmill, F. A. Baker Windmill, F. A. Baker
Window, M. B. Burk. Wire box f
Hunt...
Hire strapping, faste.....................................
Wires, apparatus for moulding perforated blocks Wooden shovinel, II. Middletoton... Wrench, J. M, \& W. H.

DESIGNS
Broom holder. whisk. J. H. Flinn..
Fruit, inside wrapper for dried, F.

Mat, A. Spadone........ Match box. A. H. Wirz

Rug, E. J. Lawrence..
Saddle tree, J. Bevan.
Sash pulleys, housing for, G. Kuhn............................
TRADE MARKS.
Colors for glass painting, and a powder in the na-

Flour. whent, Columbia Mill Company
Hog products, G. Fowler
Hosiery, M. Posnansky...
Liquid veterinary lotion, R. Ord.....................
Lotion for the face and hands, Stewart Healing
Medicinal invigorating tonic, H. M. Rowell Medicines, kidney and liver cure, O. Peck.......
Razors, scissors, and pocket knives, McCoy \&
\qquad Stoves, ranges, and furnaces, cooking, Co-opera tive Foundry Company.. Violin, banjo, and guitar strings, H. C. Barnes.... 13,795

A printed copy of the speciffcation and drawing of
any patent in the foregoing list, also of any patent issued since 1866 , will be furnished from this offlce for 25 of the patent desired, and remit to Munn \& Co., 361

Pfdvertisements.

 ICE-BOATS - THEIR CONSTRUCTION
 ,

A fre-proof insulator of heat and sound. Samples and
price list free. U.S. MINERAL WOOL Co
2\& CORTLANDT STKEET, N. Y. ARTESIAN WELLS.-BY T. C. CHAM-

 ONCRETE.-BY JOHN SLATER, B.A.

FUNGI INDUCING DECAY IN TIMBER.

DIETETIC DELUSIONS - A PAPER

มunnawin :ivex
$\underset{\text { Heizhts. -dn interesting aceount of an important series }}{\mathrm{CLO}}$

PERFEC'
NEWSPAPER FIIE

MUNN \& CO.,

PHOSPHATE MINES OF CANADA.-

\qquad
49]

The Techno-Chemical Receipt Book.

HENRY CAREY BAIRD \& CO.,

F YoU NEED a good work on Mechan Engineering, ask your Bookseller for Rapew, Engineers' Handy Book, The Young Engineer' \boldsymbol{O} Own Bnok, $\quad \mathbf{8 3 . 5}$ By Stephen Roper, Engineer, author of Roper's tical Handi-Boobsfor Enininers and Firemen. Sent by mail postage paid on receipt of price by
 Eatwaica MEOOlKE, PUBLISHER
 S. E. cor. Walnat \& Tenth Sts., Philadelphia, Pa
 ORKSHOP RECEIPTS.

For the use of Manufacturers, Mechanics, and Scien
tific Amateers. Mhe bett late, collection published of
such a wide rariety of information.

any Saddress.
RTV In ordering single volumes, be particular to men
tion the "series" wanted.
Sent postpaid by MUNN \& CO., 361 Broadwav

 Warehouses 15 Park Row, opp. Astor House, New York.
Branches: 308 Chestnut St., Phlla.,

 The attention of alas Itsel mana facaturers of the U United
States is hereby invited tol the reauirements of the Nuvy

 NAVY NETICEETMETM,

 SINKINGMINE SHAFTS.-DE-

FOREIGN PATENTS. Iheir Cost Reduced.
The expenses attending the procuring of patents in
nost foreign countries having been considerably reduced the obstacle of cost is no longer in the way of a

The cost of हpatemt less than the cost of a United Srates patent. and the former ivcludes the Provinces of Ontaric. Quebec, New
Rrinswick. Nova Scotia. British Columbia.and Mani-

The number of our patentees who avall themselves of
the cheap and eusy method now offered for obtaining patents in and is steadils increasing. torce on Jan. 1st. 1885, enab es parties to secure patents in Great Britain on very moderate terms. A British pa-
tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the a.cknow edged goods are sent to every quarter of the globe. A good Invention is like y to realize as much for the patentee
in Enalund as his United States patent produces for in Knaland as his United States patent produces for
him at hrrue. and the small cost now renders it possible tont in Great Britain. where his rights are as well protected as in the United States.
OTHEIR COUNTRIES.- Patents are a'soobtained on very reasonable terms in France, Belgium, Germany,
Austria, Russi2, Italy, Spain (the latter includes Cuba Austria, Russi2, Italy, Spuin (the latter includes Cuba
and all the other spanish Colonies), Brazil, British Iudia Australia, and the other British Co'onies. An experience of Forty years inas enabled the
publishers of The Scientific Ambuican to establish mpetentrast worthy agencies in all the principal Coreign countries, and it has always been their aim to
have the business of the'r clients promptly and properIV done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
of all countries. including the cost for each. and othe of all countries, including the cost for each. and othe
information useful to persons contemplating the pro-
curing of patents abroad, may be had on appication to thls office.
MUNN E CCO.. Editors and Proprietors of THE SCI-
ENTIFIC AMEITCAT, cordially invite all persons entific Ameitcar, cordially invite all persons desiring
any information re ative to patents, or the registry of trade-marks. in this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly. sultation, an
answered.

Address, muNN \& CO..
361 Broadway, New York.
Branct Offices: No. 622 and 624 F Street, Paoildo

Whocerisements.

 STEREOPTICONS.

Our Petroleum Lanterns have the rivaled fors and he tamps are ue Choice collection of views olored and plain
QUEEN\&CO.
velocity of ice boats. a collec

 Rarnes' Foot-Power Machinery
Complete outtats for Actual worksno

TUNNEL FOR FOOT PASSENGERS IN
 INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas the invention of machines.

THE USE OF TORPEDOES IN WAR.

PUTMITYB Order from our "Special List." the John t. Noye mpg. Co., ICE-HOUSS AND COLD ROOM-BYR

PATENTEES and others desiring spociatities TEWEI MANUACCTURING sCientific american supple
 litectisith

 $S_{\text {end }}$ Greer Stamp dor Merstrae Specimens:

[^0]
 mamanail By

PATENTS

MESSRS. MUNN \& CO., in connection with the publi-
cation of the SCIENTIFIC AMERICAN, continue to e amine eimproverements, and to act as solicitors of Patents
for Inventors.

for Inventors.

experience, und now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& States, Canada, and Foreign Countries. Messrs Munn \&
Co. also attend to the preparation of Caveats. Copyright Co. also attend to the preparation of Caveats, Copyrights
for Books, Labels, Reissues. Assignments, and Reports on Intringements of Patents. All business intrusted to them is done with
A pampheret sent free of charge, on application, con-
taining full indormation about Patents and how to pro
 tents, etc.
We also send, free of charge, a Synopsss of Foreign Pa-
tont Laws, showing the ocost and method of securing
patents in all the principal countries of the worid
MUNN \& CO., Solicitors of Patents, 361 Broadway, New York.
BRANCH OFFICESS.-No. 622 and 624 F Street,

吉
A FAAER OETETER If you will put a JENKINS BROS. VALVE on the worst place you can find, where you
cannot keep other Valves tight, and if it is not perfectly tight or does not hold Steam, Oils, Acids cannot keep other Valves tight, and if it is not perfectly tight or does not hold Steam, Oils, Acids, To avoid imposition, see that valves are stamped "Jenkins Bros."

JENKINS BROS.,

g1 John St., New York
13 So. Fourth St., Phila.
79 Kilby St., Boston.
 JACKETT KEETTLES,
 HOW TO GRAFT.-A VALUABLE PA

 W. BAKER \& CO 1, Dorchester, Mass. JAPANESE HOUSE BUILDING. - BY

ARTESIAN

Be THE STANDARD

ASBESTOS CEMENT FELTING, ASBESTOS LOCONOTIVE LAGGING, ASBESTOS LINING FELT, ETC.

Samples and Illustrated Pam?h let "Steam Saving and.Fire-Proof Materials" Free by Mail-

"ACME"

 Rochester Machine Tool Works,

Mineral Lands Prospected.

TRANSMISSION OF S'EAMM-A LEC

BARREL, KEG,

Hogshead,
 STAVE MACHINERY. Over 50 fricietles manu-
factured by
Trass Hoop Driving. E. \& B, Holmes,

RUBBER BELTING, PACKING, HOSE

MECHANICAL AND MANUFACTURING PURPOSES THE GUTTA PERCHA AND RUBBER MFG. CO.,

THE AMERGCAN BELLH TRHPHONECO. 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
THE COPYING PAD.-HOW TO MAKE

Machine Knives, L. \& I. J. WHITE, Paning, Moulding. Shingle and
Stave, Hoop and Veneer. Plated

 OROSDe

ฐ́rientific Anmericum

The Most Popalar Scientific Paper in the World. Only 83.00 a Year, including Pestage. Weekly.
This widely circulated and splendidly illustrated paper is publisked weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scientific AMERICAN a popular resume of the best scientiff in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, avolding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive every community where it circulates. every cons of Subscurtion.
TIFIC AMERIGAN will be sent for one year- 62 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt or Canada, on receipt of three dollars by the pub-
lishers; six months, $\$ 1.50$; three months $\$ 1.00$. Clubs.-One extra copy of the ScIENTIFIO AMERTCAN will be supplied gratisfor every club of five subscribers at $\$ 3.00$ each ; additional copies at same proportionate
rate.
The safest way to remit is by Postal Order, Draft, or xpress Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly adaressed,
seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., paydress all MIUMVIN \& CO., 36 I Broadway, New York.

TEIT
Scientific American Supplement. This Scientifio American, but is uniform therewith in size, every number containing sixteen large pages.
The Sctentific Amicrican Surplement is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the prinsipal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, Archæology. Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Enechnology, Manufacturing Industries, Sanitary Enmy , Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied engravings. engravings.
The most important Ensineering Works, Mechanisms, nd Manufactures at home and abr
and
Price for the SUPPIEMENT for the United States and Canada, 85.00 a year, or one copy of the ScIENTIFIC AMerican and one copy of the SUPPLEMENT, both mailed
for one year for $\$$ t.00. Address and remit by postal order. express money order, or check,

MUNN \& Co., 361 Broadway, N. Y., Publishers Scientific american.
To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AmLRICAN is now sent post direct from New York, with regularity, to subscribers in Great Britain. India, Australia, and all other Russia, and all other European States; Japan. Brazil, Mexico, and all States of Central and South America. Terms, when sent to forelgn countries, Canada excepted, for both Scientipic Amprican and Sup year; $\$ 9$, gold, one year. This includes postage, which we pay. Remit by postal or express money order, or draft to order of
MUNN \& CO., 361 Broadway, New York.
PRINTING INKS:

[^0]:

