

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

grientifir gesmricau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One eopy, one yan. Dostatas included.

The Scientific American Supplement is a distinct paper from the SCIENTIFIC AmFRICAN. THE SUPPLEMENT

 papers toone addressor ordifrerent addresses as desired.
registered leteter.
Address MUNN $\&$ CO., 361 Broadway, corner of Franklin Street, New York.
Scientific American Export Edition.

NEW YORK, SATURDAY, NOVEMBER 20, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 568

For the Week Ending November 20, 1886. Price 10 cents. For sale by all newsdealers.

II. ELECTRICITY.-Eifect of Flectricity on Fine Balances.-An in-

IV. MINING AND METALLEURGY. - Massick \& Crookes, Hot Blast

 medal at the Int rnational Inventions Exhinibition. - The question

I. OHDNANCE.-Recent Improvements in the Manufacture of Rifie

VII PHYSICS.-A Limit to the Height of the Atmosphere.-By

THE GOVERNMENT SUIT FOR THE CANCELLATION O

 THE BELL TELEPHONE PATENTS.A suit for the cancellation of the Bell telephone patents was brought by the United States before an Ohio circuit court, in the city of Columbus. Much was hoped for from this action, but it has received one defeat already. The question of jurisdiction by a circuit court over a company not in its district was raised. It was decided that the Bell Company, being a Massa chusetts corporation, was outside of the jurisdiction of an Olio court. Although a stockholder in the Ohio local companies, this was held not to be sufficient connection to establish a partnership. The opinion was a long one, covering 52 pages of type writing. The decision was given without prejudice, leaving it open for the plaintiffs to bring suit else where. The government is just where it started from, with one exception. It can bring a motion in the Supreme Court for a man damus comperling the hearing of the case by the Ohio tribunal.
The objections to bringing the case in Massachusetts were that, it being the home of the company, a bia favorable to its interests was to be feared. This decision, unless overruled by the higher court, virtually restricts the place of proceeding to the Massachusett circuits. It is in another sense an unfortunate decision It virtually tends to establish the fact that a monopoly, as stockholder, can perpetrate injustice in outside State as a stockholder in local companies, while it is protect ed in its own State by association and business in terests.
On January 24 the united telephone suits come before the U. S. Supreme Court on appeal. Burdened by concessions and incomplete as records of the fut facts, a great deal is not to be hoped for from thes cases. If, as the final outcome, the patent can only have its claims restricted to conform in some sense to the specification, some good will then have been done. At present the patent is held to cover all and every mode of transmitting speech electrically.

the statue of liberty, new york

Now that Liberty has been dedicated to her task of enlightening the world, there are some timorous minds who fear that something will happen to overthrow her Where such a mass towers aloft in an exposed posi tion, there are, of course, dangers; but investigation shows that all that human forethought could do pro bably was done to insure her safety and permanency. There are five dangers to be feared, namely, earth quake, wind, lightning, galvanic action, and man. If we should have an earthquake of such force as to bring down the goddess, the ruin of New York would be so universal and complete that little thought would be wasted on her disappearance from her pedestal.
Man may some day pull down the statue, just as he has built it up-as the Communists overthrew th Colonne Vendome in Paris. Or a hostile fleet may take it for a target-as the Turks bombarded the Acropolis, in sheer wantonness. But such a fate could not be averted by any mechanical devicè in connection with the statue's "setting up." It would hardly be practicable, desirable, or artistic to inclose Liberty in shell-proof armor.
The statue's power to withstand the shocks of the wind may be considered as satisfactorily provided for There are four upright iron posts, which support the whole framework inside. According to the plan de signed by Mr. C. C. Schneider, civil engineer, these posts are bolted to six steel girders set upon the ped estal, having four similar girders let into the masonry at right angles to and below them.

Mr. Schneider found the greatest amount of surface exposed to the wind to be $3,475 \mathrm{sq} . \mathrm{ft}$., and the centra point of the wind's pressure to be 62 ft . above the base. Then, estimating the greatest wind pressure to be looked for in this latitude at 100 pounds to the square foot-a pressure that would be reached only when the wind was blowing at the rate of 140 miles an hour-the pressure of the wind at the foot would be $3,475 \times 100 \times 62=21,545,000$ foot pounds. The center of the main posts rest upon the girders at a distance or one side, of 17.38 ft . from the centers of the bearing of the girders in the masonry, and, on the other side, at a distance of 13.78 ft .; consequently, the utmost pos sible wind strain on the points of support of the statue would be $\frac{21,545,000}{170}=1,239,600$ on one side, and 21,545;000

$13.78-=1 ; 568,100$ on the other side.

The weight of the statue was given to Mr. Schneide as 160,000 pounds by one authority, and as 400,000 pounds by another. The greater weight was taken in calculating the bending moment on the girders, while the lighter weight was used in calculating the wind strains, thus producing in each case the greatest strain to be provided against. It was then found that the greatest moment of resistance required in the supports was 2;083, or for each upper girder $\frac{2083}{3}$
ng an outside resistance of 20,000 pounds to the square nch for the girders, which were made of $5 / 8 \mathrm{in}$. steel, he moment of resistance of each one was found to be 37, or 43 more than required. The steel, moreover, was tested for a breaking pressure of 80,000 pounds o the square inch instead of the 20,000 allowed in the calculation, so that the safety of the girders may be regarded as assured. But there are also backing plates nd rods attached to the main posts and girders, greaty increasing the strength, and there is little doubt that before the statue could be overturned by the wind the pressure on its plates would be sufficient to dear them apart.
Against lightning, provision has been made by soldering four $5 / 8 \mathrm{in}$. copper rods to the inside of the statue against the external copper plates to a height of 15 ft . above the pedestal. These rods pass through the pedstal, each inside of a 4 in . iron pipe tamped with coke dust, extending 5 ft . below low tide level in the earth. In the lower four feet of these pipes the copper rods are closely coiled like springs, thus giving a greater mass of metal in the wet ground connection. While herc are some who insist that the mass of metal in the ground should equal the amount exposed to the lightning, it is probable that in this case the protection is ufficient. The statue itself is the best kind of a conductor as far as her pedestal; hence no outside rods are needed, and the copper rods extending into the ground will doubtless carry off any flashes that Liberty may attract. In any event, no damage would be done to the statue by a stroke of lightning, but only to the pedestal to the extent thal the rods were unable to carry off the current.
Acainst galvanic action, an ingenious insulation of he copper from the iron framework has been employed, the insulating material used being asbestos cloth oaked in shellac; and the device has been managed su cunningly that in no place do the two metals come in contact with each other. It was at first feared that the durability of the statue would be threatened by the great expansion and contraction it would be subjected to under different temperatures, thereby wearing out the copper rivets; or even straining the frame. Experience so far has shown that the mottled or corrugated surface, due to the hammering the copper had received, has prevented much of the expansion that the direct rays of the sun would otherwise have caused. No two contiguous parts received the same amount of heat, and the expansion in midsummer was found to be much less than had been feared. Whether expansion and contraction will eventually produce a serious injury of any kind cannot now be decided; but the indications are not at all alarming.

EFFECT OF THE USE OF WHITE PAPER UPON THE EYES.

Many believe the eyesight is impaired by the use of white instead of colored, or at least tinted, paper, and at times the subject comes up for discussion. So far as we have seen, no positive evidence has yet been secured to prove the injurious effect of white paper on the eyes, and some recent inquiries lead us to doubt if such evidence is to be had.
A company engaged in the sale of tinted paper recently urged us to say a word against the use of white paper for " billing, letterheads, records," etc., for that t does more to keep the oculist and optician busy than ny other cause. Further along they say: "There is no doubt that, in a few years, tinted paper will be used for purpose above named [billing, letterheads, records, etc.], and the white paper now used will be an exception to the rule. In the interests of the clerks and bookkeepers, we appeal to you," etc.
Dr. St. John Roosa, one of the best authorities on the eye hereabout, said, when his attention was called to this: "I have never yet noticed any special ill effects upon the eye from the use of white paper. I have treated many bookkeepers and others who work with the pen, and do not remember to have heard any complaints against white paper, nor any commendations for tinted paper. My investigations show me that a principal injury to the eye comes from improper arrangement of the light when writing."
He says he does not believe that people who use tinted paper for writing are freer from eye troubles than those who use white. As for himself, he has used both, first one and then the other, hoping to be able to note the different effects upon the eyes. None, how ever, were observed. Dr. Roosa might have gone a step farther, and said that instances could be cited where those accustomed to white paper having suddenly changed, and adopted that with a decided tint found a mal-influence exerted on the eye, and were com pelled to go back to white paper.
It is well known that using the eyes too much or in bad lights will serve to hasten the development of myopia, presbyopia, strabismus, and dantonism where there is hereditary inclination; but there is no record of a case, so say the authorities, where the use of white paper hastened or the use of tinted paper retarded such development. It is not likely, therefore that tinted paper will replace white in the business transactions of the future.

THE NEW NORTH

Far to the north, amid the streaming splendors of the aurora, the Scandinavian located the blissful realm of the Walhalla. Nor was it alone the dwellers near the home of these lambent lights that felt the glamor of their fascination. The Hebrew poet speaks of the chambers of the north-the city of the great King. Northward points the faithful steel of the magnetic compass; northward hies the hardy explorer, recking not the perils of the toilsome way.
Thus it comes that we already know the Arctic regions far better than we do the Antarctic, although a new interest appears now to be kindling in the latter, and several royal societies in Great Britain, aided by colonial governments of Victoria and other Australian provinces, propose ere long to set on foot expeditions to explore them.
But the expeditions of our day thus far have been to the northward. The story of De Long, Nordenskiold, Ray, Greely, and others need not be here rehearsed. The sad mortality of the expedition commanded by the latter was due, as he himself says, to preventable causes; and his experience has demonstrated that sanitary precautions are practicable which will render life not merely tolerable, but positively enjoyable, in any clinate, even the severest yet visited. The difficulty is to insure a sufficiency of supplies where nature does not provide them. This is not always necessarily the coldest nor the most northerly region-as witness the recent famine on the coast of Labrador.
The recent ascent of Mount St. Elias by Lieutenant senwarka has been suficiently exploited hy the New York T'imes, under the auspices of which the expedition was organized, and a word in passing may be sufficient mention of Gilder's project for taking with him a colony of Eskimo in furtherance of a several years' task of becoming acclimated in a long tug to reach the pole.
Less notice has been taken by the daily press of the expedition of Lieut. Peary to the east coast of Greenland, the prospectus of which was presented to the National Academy of Sciences at Washington last April.
It seems strange, and yet he asserts it to be true, that no determined effort has been made to reach this coast. Two methods are practicable. The one is by landing on the west coast, thence going down to Cape Farewell, and up along the east coast. This might take two years. The other method, which he prefers, is to land at Whale Sound, and cross to the east coast, reaching it about the 80 th parallel, a distance of less than 400 statute miles. The natives are friendly and game abundant, the abundance of musk ox and reindeer indicating the existence of fertile lands in the interior. His outfit, as exhibited to the Academy, was one of unusual lightness and strength.
A few years ago, the Hudson's Bay Company sold to the Dominion of Canada the jurisdiction of all its posts scattered throughout the northern part of this continent. A few years ago, the government undertook a systematic series of observations of the climate and navigation of Hudson's Bay and the coast of Labrador, with special reference to the practicability of navigation and the construction of a railroad from Winnipeg to Fort Churchill, affording a much shorter route from the Pacific Ocean to Liverpool than any now used. Since her return from the Greely relief expedition, the steamer Alert has been employed in visiting the stations, to leave supplies and to relieve the men after one year of service at a station. On the 15 th of October last, the Alert returned to Charlottestown after her closing voyage in this work, the observing parties having now all been withdrawn. She-reports that the channel is generally open only in August and September, as the ice fields come down in September or early in October and close it up. The walrus, whale, and porpoise fishing is recommended as highly profitable. Only two American whalers are now in Hudson's Bay, and they have established a rendezvous at Marble Island, near parallel 63°, in the northwest part of the bay, and on that island several graves and numerous relics were found. Notwithstanding the shortness of the season of navigation, ground was broken for the proposed railroad at Winnipeg the first week of October.
Among the voyagers on the Alert in her trip just mentioned was James McNaughton, whose paper, read before the Albany Institute last spring, gave a graphic account of adventure in and about Hudson's Bay, and was attended by one of the largest audiences ever gathered at an Institute meeting. Among the trophies exhibited was the skin of an immense polar bear with which Mr. McNaughton had a life and death struggle. He was much impressed with the abundance of game and the inexhaustible supply of valuable fish. Whales and walruses abound. Noticing one day a school of 70 or. 80 walruses swimming away, he feelingly por-
trayed his emotion at the sight of $\$ 10,000$ or $\$ 12,000$ trayed his emotion at the sight of $\$ 10,000$ or $\$ 12,000$ thus gliding away unhindered. The whole region he pronounces a sportsman's paradise, and predicts that it will become a popular pleasure resort when the southern end of the bay shall be connected with
Montreal by rail. Bathing in the bay was not too cold for comfort in August.

The country north of us is not all Arctic, however ; far from it. Those who know best, hardly realize how vast is the new domain of arable land which has just been opened by the completion of the Canadian Pacific Railroad, and how much more remains yet to enter. A new north, vast in resources of all kinds, stands ready for occupation. Wheat is raised 1,500 miles beyond the boundary of the United States.
We have seen something of the immensity of the wheat fields tributary to the Northern Pacific Railroad. The statistical report just issued shows an accumulation of over $32,000,000$ bushels at terminal points. It seems but yesterday that this vast empire
was generally believed to be a frozen waste, and Jay was generally believed to be a frozen waste, and Jay Cooke was ruined by being so far in advance of the people in his knowledge of this region and of its resources, and by investing money in developing it before the public were prepared to follow. Such an-
other region is taped by the Canadian Pacific Railother region is tapped by the Canadian Pacific Railway. It appears that low prices for wheat have come
to stay when the illimitable Northwest and North, to stay when the illimitable Northwest and North,
by the aid of improved machinery, vie with India and labor at five cents a day. Older wheat fields must, in many cases, be abandoned as unprofitable in com parison.

Nor is it wheat alone that flourishes in the new North. The grandeur of the Canadian forests is probably.the one salient feature known to everybody. Lieut. Schwatka, in his book "Along Alaska's Great River," describes the vegetation of the southwest coast of Alaska as rivaling that of the tropics in its luxuriance, forming a tangled jungle, and trees even grow from the tops of the totems of the natives.

The latest discoveries indicate that the greatest surprises may prove to be in regard to the mineral wealth of these northern regions. It was this part of the continent that was first upheaved in the dawn of the archean ages. Gold existed in paying quantities at many places in Alaska. The most stupendous deposit of copper in the world has just been discovered near Sudbury Junction, on the Canadian Pacific Railway, north of Lake Superior. A rough estimate makes the north of Lake Superior. A rough estimate makes
field 4 miles long, 1,500 feet wide, 200 feet deep, mostly sulphuret of copper easily reducible, and containing $50,000,000$ tons of metal, which can be laid down in New York as cheap as 4 cents a pound-duty excepted;
and, when worked, will necessitate the stoppage of all other mines from the inability to compete in price.
The great work of the year has been the completion, many years before the time contracted for, and the opening to traffic of the Canadian Pacific Railway, over the whole length of which trains began running regularly last July. It was indeed substantially completed last fall, and was operated as far west as Canmore, a distance of 2,329 miles from Montreal. This railroad is its easy grades and perfect equipment, very fast time is expected to be made by the schedules of next year, this consummation being deferred one year on account of the imprudence of running too rapidly over a new
roadbed.
A letter from Mr. Van Horne, vice-president of the road, gives the following information: The region traversed has a climate resembling in the east that of northern and central New York, and in the west that of northern Iowa and Illinois. It is remarkable that during all last winter, while snow blockades interfered so seriously with the Central and Union Pacific rail-
ways, the Canadian Pacific was almost entirely unimpeded. This is attributed, not to lack of snow, but to the method of constructing the road, with wide cuts, whieh enable the wind to swaep through them and keep them clean.
The writer was visiting on Canadian soil, though not at Winnipeg, at the time when the railroad for Hudson's Bay was begun. He was at Toronto, at-
tending the fourteenth annual meeting of the Ainerican Public Health Association, the first, however, that was ever held on Canadian soil, and for this reason one of peculiar interest. Among the members was Dr. Rus returned from a trip across the Canadian Pacific Railway, and reported-having of course examined the country with a professional eye-that he found germ diseases prevailing at settlements along the road, new as they were, and this seems to have been the most characteristic feature of his address to the Association. Perhaps, had another gone over the same ground, his attention would have been directed more to other matters. It should seem, however, that the same thoroughness in sanitation which has redeemed Mont real from smallpox might be equally effective through out the Dominion, especially as the severe cold of
Canadian winter is generally inimical to bacteria.
Year by year the Canadian and the American people are becoming more nearly united.
The writer found at Toronto, where it was least to have been expected, expressions of a desire for the union of both countries. Canadian sports have come in upon us like a flood of late. It is not a long time since most of us saw, for the first, the Canadian tuque and toboggan. Last winter all Albany was alive with
them, and so it will ke soon in other Northern cities.

It would be but a tame and unfaithful portrayal of the North that should omit to give a prominent place to the grand and su blime scenery of so many landscapes and waterscapes there. When the prevalence of cholera two years ago in southern Europe turned the tide of travel to the North, Norway ceased to be to many a terra incognita, and it was found that even the Alps paled in glory beside the land of the midnight sun. No less is this true of the Arctic scenery of the New World. Indeed, it is almost expected that southern Greenland will become a summer resort. Rev. Dr. Canfield, of Brooklyn, has already announced his inention of making a trip there next summer.
Last winter the artist William Bradford gave a course of readings, illustrated by stereopticon views, of he scenery of Greenland, which vividly depicted its weird and unique sublimity. Mr. Bradford has expended $\$ 75,000$ in fitting .out these expeditions in the nterest of art alone.
Probably all other regions of the world must yield the palm to Alaska for grandeur and beauty combined in infinite variety. The sail among the islands of the coast, teeming with vegetation as luxuriant as that of the Amazon, yet alongside of snow-capped mountain peaks and stupendous glaciers, combines the beauty of the inland sea of Japan or of Lake George with the grandeur of the Alps, or indeed of the Himalayas; and had the beauty-loving Greeks of classic ages beheld that far off-hand, there doubtless they would have planted Olympus, the abode of Jove, the lofty thunlerer, beside the Norseman's Walhalla and the "city of the great King."

Tinned Springs-A Curious Experience.
Recently, a Birmingham manufacturer had occasion o endeavor to coat the surface of some hardened and tempered steel springs with tin, a bright and non-corrodible article being required. The springs are C shaped and are about half an inch wide, terminating in two points, by which they are held, and on which they wivel. Large quantities of them had been previously galvanized, and it was found perfectly easy to coat them with zinc, and so regulate the temper in the first instance that the springs retained the necessary temper when finished. When, therefore, the attempt to tin them was first made, it was thought that the temper would be lowered and the spring softened; but the contrary of this was the case. The springs were hardened in oil and then tempered to the proper point, after which the tinning was effected. As soon as the springs were tinned, it was found on testing that they were so brittle that the least pressure caused them to break into fragments. A long series of experiments contirmed this remarkable result, and it was eventually found necessary to pursue an entirely different course. The springs are heated to a white heat and hardened in oil, being then set aside for a day, and allowed to dry. In tempering them, they are allowed to reach a dull red heat, and it is found that, when subsequently tipned, the right temper is obtained. The most remarkable feature in the case is that, unless the springs are hardened and tempered, the tinning has no appreciable effect on the hardness or temper of the steel. It would, therefore, appear that the molecular change effected by hardening and tempering the steel leads up to this remarkable action in tinning. At present the cause is not clear, but some of our readers may be able to throw some light on this matter.-Industries.

Paul Bert.

Paul Bert, noted as an extreme radical in the politics of France, and also as a scientist of some merit, died on November 11. He was born in Auxerre, Oct. 19, 1833. In 1868 he was appointed Professor of Physiology in the Faculty of Sciences of Paris. His scientific researches included many experiments on the factors of existence at different altitudes. Balloons were used to secure the conditions for his experiments. In recognition of his scientific work, he was awarded in August, 1875, the biennial prize of the Institute. In April, 1882, he was elected a member of the Academy of Sciences. During the last ten years he has been much interested in political life, having been Minister of Public Instruction under Gambetta. He received the appointment of Minister of France at Hue, the capital of Anam. He was occupant of this position when he died. His published writings include scientific and political treatises.

Jesse H. Lord, for several years connected with this paper, and favorably known as a writer of ability on machine shop topics, committed suicide on the 10 th inst., by shooting himself on the grave of his wife, who died last May.
Mr. Lord was thoroughly at home in the machine shop, and his hints on the proper construction and handling of machinists' tools and the arrangement of machines in the shop made him widely known in mechanical circles. As a writer on mechanical subjects Mr. Lord had few equals, and his loss will be felt by others than those of his friends and aquaintances with whom he came in personal contact. The writer, with many others, laments the death of Jesse H. Lord.

THE ABENDROTH \& ROOT SAFETY BOILER.
The Abendroth \& Root safety boiler is illustrated in the cuts accompanying this article. It is of interest as being a successful safety boiler. It not only is non-explosive, but the same peculiarities which make it so also conduce to economy of working, on account of the sub division of the water into small masses, freedom of circula tion, and large heat ing surface. Cheap ness of construction and facility of repair follow from the use of straight tubing only in itsconstruc tion.
The boiler proper is inclosed in a fire chamber over a grate. This chamber is conveniently made of brick, with iron front and cleaning doors. A rack of small tubes, four inches in diame ter, is supported in an inclined position and constitutes the steamgenerating portion.: The tubes are connected continuously part of the fire chamber, and at the rear have two conthroughout by return bends, held in place by bolts and nections. One is with the rear of the tubes by means nuts. Feed water enters at the lower and rearward

END TUBE CONNECTIONS
end of the boiler into a transverse pipe, connecting with the tubes, that acts as mud drum for the collection of any sediment that may form. The upper and forward end of the rack of tubes connects with larger hrorizontat pipes. These run brack through the upper $\left\lvert\, \begin{aligned} & \text { the series of tubes arranged vertically above each } \\ & \text { other the gases from the fire would have unobstruct- }\end{aligned}\right.$
ed channels through which to pass. As it is, in the actual construction, the currents are continually broken up by meet ing new tubes, so that their heat is most effectually taken from them.
The claims to safe ty in this boiler rest on the strength of tubes and on the fact that under heavy pressure they do not tend to actu ally explode. Little more than a rupture can happen. Even if a tube exploded it could do no harm to life or property, the accident would be so local and slight in amount.
The facility of re pairs is also to be noticed. To replace a tube after the fire is drawn and the boiler is empty, all that is necessary is to removetworeturn bends at the rear and two correspond ing ones at the front, when the injured tube with its com panion can be pushed out of the front door. Then a new pipe can be inserted, the whole being the operation of only few minutes. Even drawing of the fire is not absolutely necessary for this operation. Its heat can be reduced sufficiently by banking. As all the work is done from the outside, the gases from the banked fire will do no injury to the workmen. Thus almost all necessity for specially skilled labor is avoided. The repairs are a matter to be executed by a machinist. The boile maker is never required. The relative sizes of pipes are illustrated in the cuts. The boiler there shown is supposed to have four inch pipes in its rack, with fourteen inch horizontal pipes. These boilers are used in some instances under a steam pressure of 250 lb . to the square inch, thus demonstrating their absolute safety, and are giving most satisfactory results.' They are also in ex tensive use in this and all other countries.
Manufactured and supplied by the Abendroth \& Root Manufacturing Co., No. 28 Cliff St., New York.

car coupling.

The accompanying engraving represents a car coupling which has been patented by Mr. A. H. Boies, of Hudson, Mich. In a central vertical slot in the drawhead is a combined coupling hook and link rigidly connected to a shaft passing through the drawhead.. To the shaft are secured arms, connected by chains with arms on a shaft mounted in proper bearings secured to the under side of the car. By turning this shaft in the

boies' car coupling.

proper direction, by means of crank handles at either end, the links may be elevated. A second shaft is mounted in bearings in the end of the car, and is provided with a forked arm whose fingers press, when thrown upward, upon each side of the hook. To operate this coupling, one of the links is allowed to assume a vertical position, with its link portion resting against a. stop extending across the lower part of the slot in the drawhead. The link of the approaching car is elevated so that its link will drop over the hook of the other coupling. 'To uncouple the cars, the upper shaft is turned so as to throw the fingers of the fork forward and upward, so that they will raise the link from the hook. It will be seen that the cars may be coupled and uncoupled without entering between them.

CAR BRAKE.

This brake is designed for use in connection with passenger cars as an auxiliary brake, adapted to stop

The rods are adapted to be operated upon by a piston in a steam cylinder placed under the tender of the engine, the ends of the piston rods being furnished with buffers similar to those on the brake rods. The return stroke of the piston is made by a spring, which thus obviates the necessity of introducing steam at both ends of the cylinder. When steam is admitted to the cylinder, the piston rod is forced out, and the brake rod upon the first car is moved. This in turn communicates the motion to the next car, and so on throughout the train This rearward movement of one of the rods causes the shoes on the forward trucks to engage with the toothed wheels, and thereby almost instantly stop the train The consequent shock is somewhat relieved by the wheels of the rear trucks, which are left free to revolve By means of simple connections the brake can be ope rated from either the top or platform of a car. Pro vision is made for preventing the bending of the axle under the strain brought upon them.
This invention has been patented by Mr. John Mor row, whose address is P. O. Box 88 , Philadelphia, Pa.

Dne Hundred Years.

At the recent celebration of the hundredth birthday of M. Chevreul, the distinguished French chemist, he was presented with a copy of the number of the $G a$ zette Royale published on the day he was born, in Sep tember, 1786. Commenting on the contrast of "then and now," the Paris Figaro reminds its readers that to realize the width of the gulf which is spanned by the life of this single man, they must remember that on the day of M. Chevreul's birth Marat was veterinary surgeon to the royal mews at Versailles, Danton and Robespierre were obscure provincial lawyers, Murat was preparing to enter a religious order, Ney was eking out a scanty existence as a copyist, and Bonaparte had just received his commission as second lieutenant o bombardiers of Autun, in the Regiment de la Fere Frederick the Great of Prussia had died only a few days before Chevreul was born, Joseph II. was Em peror of Germany, Catherine II. Empress of Russia Gustavus III. King of Sweden. The bare enumera tion of these names tells how completely France and Europe have been transformed. During his century of life M. Chevreul has seen three Kings of France, one King of the French, two Emperors, three Republics, 65 Marshals, 66 .Ministers of Justice, 75 Ministers of Ma rine, 84 Ministers of War, and 92 Ministers of the Inte rior-or one for about every 13 months of his life.

apparatus FOR CLOSING APERTURES IN THE HULL

 OF VESSELS.The invention here illustrated is intended to provide
the train suddenly when necessary. When used in connection with freight cars, it serves all the purposes of an ordinary brake, and yet is capable of instant application, to thoroughly brake the train when moving at a high rate of speed. Fastened to the axles of the car near the inner face of each wheel is a second wheel, formed with a toothed periphery, as shown in the engraving. These wheels are so placed that the vertical faces of the teeth of the wheels on one truck will face in a direction the reverse of the vertical faces of the wheels upon the other truck. Between the axles of each truck is mounted a shaft, carrying blocks formed with oppositely extending arms, held in line with the toothed wheels. These arms are encircled by springs bearing against angular faced brake shoes, adapted to slide a limited distance upon the arms. The springs relieve the shoes and arms from the sudden shock brought to bear upon them when the simultaneous engagement of the shoes at each end of the brake is made with the teeth of the wheels between which the brake is centered. Each set of brakes operates independently, that is, the brakes on the forward truck are operated while those upon the rear.one are idle, and vice versa. Supported at each side beneath the car, and between the car wheels and toothed wheels, is a rod. The ends of these brake rods project beyond the ends of the car, and are provided with buffers. The rods are provided with springs and are suitably connected with the brake blocks, so that the shoes are normally held out of engagement with the toothed wheels.
other suitable material. The frame is lowered over the apertures from the deck by ropes secured to eyes in one edge. The pressure of the water.causes the plate to hug the hull, so that it will prevent all, or nearly all, the inflow of water to the vessel, the cushions forming water tight joints between the hull and frame. The inner surface of the plate is provided with several bolts, to which ropes may be attached, in order to secure the plate in place from the inside of the vessel
In Figs. 2 and 3 the frame is applied from the inside to close an opening in the bottom of the vessel, while in Fig. 4 a side opening is closed from the inside. In these cases a brace bar is arranged to be held across the opening in such a way that a screw passing through its center can be forced against the plate placed over the aperture.
This invention has been patented by Mr. John Speirs, of 92 Zabriskie St., Jersey City, N. J.
'To produce a good gloss on linen, pour a pint of boiling water. upon two ounces of gum arabic; cover it, and let it stand over night. A teaspoonful of this is added to the starch.
practical means whereby a breach in a vessel's hull, from a collision or other cause, may be effectually closed from either the inside or outside of the ves sel. For closing the opening from the outside a frame made of any appropriate size and weighted to sink in the water is used. To the edges of one side of the plate are secured wooden strips, at tached to which are enshions of rubber or

STEAM GENERATOR

Placed centrally within the boiler shell is a closed ylinder, provided with horizontal tubes placed radially. In each of these tubes is placed a horizon tal partition having a curved outer end which establishes communication between the upper and ower chambers. The inner end of each partition projects beyond its tube and is twisted at right angles as represented in the lower figure), and extended close to an annular partition which is placed inside of the cylinder, and is open at the top and bottom. A short distance above the upper edge of this partition is placed a curved annular flange, secured to the inside of the cylinder. The cylinder is supported by pipes opening into the cylinder, and which connect at their lower end's with a circular pipe placed around the grate bars between the latter and the shell. The sup-

STUTSMAN \& COLE'S STEAM GENERATOR.

ply pipe opens into the annular partition a short dis ance below its top. The cylinder is provided with he usual steam outlet pipe, safety valves, etc., and the shell has the usual smoke stack, doors, etc.
The cold water enters the annular partition, decends toward the bottom, and is heated by the fire ; ithen passes into the space between the partition and cylinder. From there it rises either directly upward or into the lower chambers of the lower tubes, passes to the outer ends and then back through the upper hambers; then through the upper tubes, until it eaches the edge of the annular partition, over which it flows. The curved flange prevents the water from splashing against the dome of the cylinder and directs he flow of water from the outside to the inside of the partition. The water is rapidly heated in its passage through the tubes, and the sediment flows from the cylinder into the tubes, and finally settles in the circuar pipe at the bottom.
This invention has been patented by Mr. Henry Stutsman and David Cole. Particulars can be had by addressing the latter at Portland, Oregon

THE Age of Steel understands that $\$ 80,000$ has been ffered for a patent just issued to a Pittsburg gentlean for a rod rolling mill. The mechanism is simle, and combines both the drawing and rolling processes, accomplishing the work in a rapid and most satisfactory manner.

speirs' apparatus for clobing apertures in hulls of vessely.

centerboard for vessels.

The centerboard here illustrated is so arranged that it may be almost instantly set and removed as the sailing conditions and emergencies may require, the ope rations being performed by the helmsman at the stern of the vessel. Where the centerbonard is inserted the keel is made in two parts, as shown in the enlarged sec tional view, between which the side planks of the hull are held. To the lower part is fixed a metal shoe having a longitudinal ranging slot, in which fits the uppe edge of the centerboard. Hollow metal plugs having fixed collars at their lower ends are passed upward through the keel, and are screwthreaded at their upper ends to receive screw collars, which, when screwed

MoFALI'S CENTERBOARD FOR vESSELS.

home, draw the shoulders tightly to the bottom of the keel and clamp the two parts together, the joints being all water tight. The screw collars project above the plugs to receive the ends of tubes, which are only long enough to substantially support rods whose lower ends are screwed into thimbles fixed to the upper edge of the centerboard. These thimbles have shoulders that fit tightly to the lower ends of the plugs when the centerboard is in place. To the tops of the rods are at tached ropes or chains, which are guided over blocks to within easy reach of the helmsman. The tubes are firmly braced by. stay rods fixed to their tops and to the sides of the vessel.
Should the helmsman wish the vessel to drift or make leeway, he will unfasten the chains and let the centerboard fall away some little distance from the keel, and thus become inoperative. By drawing upon the chains, the centerboard may be againbrought into use.
Should the centerboard be run hard aground, the rods will be unscrewed from the thimbles, when the boat will be free. If the centerboard is lost, a new one can be easily set by pulling chains attached to the rods of the new onethrough the tubes, by means of lines. If at any time the centerboard is not needed, the chains are slacked off, and it is pulled on board by chains arranged to pass over either the stem or stern.
This invention has been patented by Mr. David McFall, 213 East 35th Street, New York city.

A MEDICINE CHEST WITH MANY CONVENIENCES.

The illustrations herewith represent a peculiarly parttionet and constructed meaicine chest, of a

HUTTON'S MEDICINE CHEST.

flat shape, which has recently been patented by Mr Terry J. Hutton, of Fergus Falls, Minn. Fig. 1 is a perspective view of a piece of a struck-up metal strip for holding the lower ends of the vials in position and Fig. 2 is a vertical section of the front end part of the chest when closed, illustrating the fastening, Figs. 3 and 4 showing the chest closed and open respectively.

The chest forms a case composed of upper and lower main sections hinged together at one end, the lower section being principally divided into two longitudinal vial-holding compartments, one above the other, with a central compartment which can be used to hold a drop measure, surgical needle, brushes, etc. The vial-holding sections are arranged to hold vials of different sizes, the vials being securely held in pockets, but so that the labels indicating their contents can be easily read. The upper section of the chest is divided by transverse partitions and a longitudinal partition, to give compartments for holding plasters, bandage strips, etc.; but the partitions are shallow, to allow room for a handbook of directions attached to a cover which fits over this compartment. The lock used is a simple one for the purpose, so the chest may be easily closed or opened, and always carries its own key. When the chest is fully thrown open, and the lid set inclining in its open position, all the contents are exposed to view, and there is no necessity to remove some of them to get at the others. The inventor has likewise obtained a copyright on an appropriate trademark for this chest.

Erosion of Gun Barrels by Powder Products.

At a recent meeting of the Iron and Steel Institute, a paper on this subject was read by Sir Frederick Abel, and Colonel Maitland, superintendent of the Royal Gun Factories, Woolwich. The peculiar action of powder products u pon the inner surface or bore of a gun, as they rush from the seat of the charge toward the muzzle, whereby more or less irregular scoring or erosion is produced, is ascribable to the co-operation of three causes, viz., a softening if nob a fusing effeet, exerted upon the surfaces of the metal by the high heat of the explosion; an increase of this softening or fusing effect by the chemical action of the sulphur upon the metal at the high temperature to which the surface of the latter is very rapidly raised; and the mechanical action of the rush of gases, vapors, and liquid products upon the softened or fused urfaces. The great increase which has been taking place during the last twenty years in the power of artillery has brought the subject of the erosion of gun barrels into prominence, and it is not too much to say that it now forms one of the chief difficulties to be encountered by the maker of a heavy gun. As far as can be seen at present, its sufficient mitigation is the one great difficulty which seems likely to impose a limit on the size and power of ordnance in the future. Erosion is of two kinds, technically known as muzzle loading scoring and breech loading scorng, though both kinds occur to some extent in all guns, whether muzzle loading or breech loading. Muzzle loading scoring is produced by the rush of the powder products over the top of the projectile through the clearance, or windage, which has to be allowed for facility of ramming home the shot along the bore in a muzzle loader. Breech loading scoring is produced by the rush of the powder products behind a shot, acting as a gas-tight plug, during and mmediately after its passage through the gun.
Muzzle loading scoring takes place almost entirely in' the upper surface of the bore, and its effect diminishes greatly as the velocity of the advancing projectile increases. Breech loading scoring, on the otheri hand, erodes the bore almost equally all round, and extends toward the muzzle, till the pressure of the expanded gas is so much reduced as to render it infective.
It is evident that, coet. par., erosion will increase with the amount of the powder products, with pressure in the bore, and with the duration of the time of action. Its inconvenience first began to be seriously felt in the 7 inch muzzle loading gun of 7 tons weight, which fired a charge of 30 pounds of powder with a shell of 115 pounds. The great strides which have since been made in the weight of projectile and the amount of powder charge fired from heavy guns have resulted in increased rapidity of the deterioration of guns from this cause ; and now that it is proposed to arm the Benbow with $161 / 4$ inch breech loading guns of 110 tons weight, which will fire a shell of 1,800 pounds weight with a charge of 900 pounds of powder, the question of erosion becomes one of paramount importance. The 7 inch gun above mentioned was able to fire about 600 full charges before the bore had become so badly scored as to require its interior to be fitted with a new tube; this number of rounds was increased to about 1,000 by the introduction of an expanding copper,gas check, fitted on the base of the projectile. The adoption of breech loading further increased the life of the gun by sealing the muzzle loading scoring still more effectually; but on the other hand, it permitted the use of greatly increased charges of slow burning powder; and the extensive erosion now speedily produced in some of the heavier breech loading gans renders it probable that the interior surface of the 110 ton gun will require renewal after only a brief existence. Under these
circumstances, it becomes of very great importance to ascertain what material best resists erosion by powder products, or what treatment of the material is best calculated to increase its powers of resistance to erosion.

UMBRELLA SUPPORT.

By means of this simple device, an umbrella may be attached to the side of a wagon, boat, baby carriage, etc., and held in any desired position. A clamp attached to the side of the boat is arranged to receive a tube held in position by a set screw. This tube may be placed in either of two sets of holes in the clamp, to hold it in a

horizontal or vertical position. Near the upper end of the tube is a set screw, that holds a rod formed at its upper end with a right-angled arm provided with a disk serrated on one side. To this disk is clamped a similar one on an arm whose free extremity is concaved to fit the umbrella handle, which is retained therein by a clamp provided with a screw that presses against the back of the arm and secures the handle. It will be seen that the construction allows the placing of the umbrella in any suitable position for shielding the user from sun or rain
This invention has been patented by Mr. Hippolyte Tosso, of 227 and 229 Decatur St., New Orleans, La.

FLY CATCHER

The accompanying engraving represents a simple device for catching flies, which has been recently patented by Mr. Z. F. Xevers, of 208 Brannan Street, San Francisco, California. An approximately semicylindrical trough is provided with tongues, which are received in clips secured to the lower rail of the win dow sash, as shown in the large view in the annexed engraving. That side of the trough touching the glass is made plain, to fit closely against the glass, so that the flies on the window can readily gain access to the trough. Near the upper edge of this side is se cured a strip, arranged so as to form a barrier, preventing the return of the flies to the glass. The trough is partly filled with a suitable fly-killing liquid. The left hand upper view is a cross section through the

XEVERS' FLY CATCHER.
lower one. The other two views represent different methods of holding the trough to the sash.

The Great Eastern steamship has been converted nto a show vessel, and for the first time since her construction is making money for her owners. The ship, which for several months has been on exhibition at Liverpool, has lately gone to Dublin, where she will stay for the winter, Only her screw propeller is now used.

Improvements in Making Sugar.
The following has been received at the Department of Agriculture:

Fort Scott, Kan., November 8, 1886.
To the Commissioner of Agriculture:
We finished boiling 83 tons of Louisiana cane tonight. Made nearly 19,000 pounds of strike. A weighed portion run into centrifugal gave 54 per cent of dried sugar. This will be more than 120 pounds
first sugar per ton. Cane sugar had 10 per cent of first sugar per ton. Cane sugar had 10 per cent of
sucrose, 1.8 per cent of glucose, and $14 / 2$ per cent of total solids. It wounld have made only 80 pounds by the old process. We have increased the yield fully 40 pounds per ton, sugar of fine quality.

Wiley, Chemist.
This dispatch is regarded by the authorities at the Agricultural Department as the fulfillment of the promises of important results given by the first incomplete experiments in the diffusion process as ap. plied to sugar cane. The process was developed in Europe for application in the manufacture of beet sugar, and has been several times tried in this country upon the sugar cane, but without decided success, owing to imperfect machinery and the necessity
of considerable modifications to meet the difference in of considerable modifications to meet the difference in
the material to be worked. In 1883, experiments in the new process were begun on a small scale in Washington upon sorghum, and after a time such a measure of success was attained that the Commissioner determined to put the process into operation upon a larger scale. To this end, a plant was established in connection with a sorghum sugar making establishment at Ottawa, Kansas, and this season the new process has been carried on under the supervision of Professor
Wiley with marked success. Meanwhile the sugar Wiley with marked success. Meanwhile the sugar cane growers of Louisiana have become deeply in-
terested in the process, and have anxiously desired to terested in the process, and have anxiously desired to learn whether it could be made applicable to their products. To test the matter, the Commissioner has
decided to undertake the experiment in Louisiana decided to undertake the experiment in Louisiana
upon a scale of sufficient magnitude to determine its practicability, but as a preliminary test he caused a train load of sugar cane to be shipped from Louisiana to be worked up in the Kansas sorghum mills. It is the result of this experiment which Professor Wiley announces in his telegram.
The diffusion process above referred to has long been operated in Europe, but from some unexplained cause our sugar makers have been back ward in giv-
ing it a trial. One writer finds a reason in the idea ing it a trial. One writer finds a reason in the idea
that sugar cane men here have more money than brains.
The diffusion process for making sugar is very simple. It consists, in brief, in chopping up the cane into small bits, say slices an eighth of an inch thick, then steeping the mass in tubs for two or three hours with-hot water. This extracts the saccharine matter
much more effectively than the ordinary mode of squeezing the cane between rollers. The warm juice thus obtained is then heated and stirred with the addition of lime, and finally brought to a boil; it is then allowed to stand a while and the clear part is then run into the vacuum pans and boiled into sugar, in the usual manner. The refuse from the tubs may be fed to cattle. Any intelligent farmer may work the process. The cost of apparatus is small. A full ac-
count of the mode of working this process will be found in Scientific american Supplement, Fo. 532.

The National Academy of Sciences.

The fall session of this-qociety mot on No ember 9 , at the Massachusetts Institute of Technology, Boston. Dr. Othnmiel Charles Marsh, its president, in the chair. Professor S. P: Langley read a paper on "The SolarLunar Spectrum." It detailed the last results of his experiments on heat waves in the invisible spectrum, and dealt with his discovery of the lowest form of them in the radiations of the sun-radiations formerly detected only in the moon's emanations. Formerly the moon's radiations were supposed to extend further down the spectrum than the sun's. He concluded that the temperature of the moon when illuminated was about equal to that of melting ice. Professors Lyon Fairchild and Alfred Russel Wallace, of England, were
at this point invited to participate in the proceedings. Professor T. Sterry Hunt read a paper on "A Basis for Chemistry." It is impossible to give any abstract of it here. It is of special interest, because in his remarks he promised a book on the subject under the same title. The general tendency was to extend the domain of chemistry into the physical field. Professor domain of chemistry into the physical field. Professnr and on the "Auricular Anatomy of Tailed Batrachians," and on the same day Professors Morse and Packard spcke on palæontological subjects, the first on "Change in Mya since the Pliocene," the other on "Cave Fauna of North America." On the second day's session, Professor Alpheus Hyatt spnke on the "Primitive Forms of Cephalopoda," giving a history more especially of Ammonites. This he followed by two othor geological papers. Professors Peters of Ham-
ilton College, O. T. Sherman of Yale, and W. S.

Elkin of Yale contributed astronomical papers. On the third day, Professor Wallace, by invitation, ad-
dressed the meeting. His subject was "The Wind dressed the meeting. His subject was "The Wind
as a Seed Carrier in Relation to One of the Difflcult: Problems in Geographical Distribution." The title indicates clearly the scope of the paper, Dr. Wallace is well known as one who has given special attention to the distribution of life and plants on islands. His well known studies in the Malay Archipelago naturally took this direction. The general claim was made that wind could transport seeds from much greater distances than was usually believed possible. Professor Edward C. Pickering then spoke on the "Draper Memorial Photographs," which include the photographic investigation of star spectra, principally at the expense of Mrs. Henry Draper. Professor F. W. Putnam spoke © " "Archæological Explorations in the Little Miami Valley, Ohio," and was followed by Professors Charles A. Young, Raphael Pumpelly, Cleveland Abbey, and T. Sterry Hunt with papers on special subjects.
The meeting adjourned to meet at Washington, D. C., on the third Monday of April, 1887.

Among those present, and not named above, were ton, Henry A. Rowland, and Francis A. Walker.

HIanufacture of Small Arms in Belgium.

In general, piece work is the system adopted, and the earnings of the men range from 50 cents to $\$ 1$ per day, working from ten to twelve hours a day. The following is given by the United States Consul (Mr. G. D. Robertson) as to the details of the cost of double barreled breech loader, costing $\$ 20$ or $4 l$.:
"For the barrels is paid about 7s. or $\$ 1.75$. The barrels received by the manufacturer are at once given to the 'garniseur.' He is instructed in regard to the length, height of band, and for what kind of breech action they are intended. It is also his duty to take the barrels to the proof house, where they are proved before and after being put together. If imperfections are discovered, the barrels are returned to
the barrel maker to be rewelded or replaced. Putting together, proof, portage, etc., costs about 4s. The barrels having been returned, the proof marks are inspected, and the band which holds them together tested as to its firmness and strength. The piece which is intended to hold the barrels to the breech action is subjected to several hard blows of a hammer to test its rigidity before it passes out of the hands of the examiner into those of the borer and polisher, who bores and polishes the interior, at the same time chambering the barrels for the cartridges. Cost, 10d. The barrels are now given to the 'basculeur,' or gun is carefully by whom the breech action of the rial costs about 2s., and the labor about 28s. or 30s. The wood for the stock costs in this case 10d., and is given in the rough to the stock maker, with the barrel, breech action, and locks, which have been carefully fitted. The operation of shaping the stock requires much skill, and only a first class stock maker can be expected to give well finished lines to his
stock-making stock, about 4s. The gun is again inspected, and given to the 'equipeur,' who adjusts the screws, etc. It is then taken apart and given to a screws, etc. It is then taken apart and given to a
number of workmen to finish the various parts, viz., to the 'systemeur,' who files the hammer to shape and receives 1s. ; 'rhabilleur,' who does nothing but put the locks in order, and receives 2s. 9d. ; 'polischeur,' who brings out the design of the damascus The operation requires about two days, but the workman has, of course, a great many on hand at once in different stages of preparation. This costs, say 10d. It is then given to the engraver. This operation may cost from $11 / 2 \mathrm{~d}$., as on very common guns, to almost ny amount. To the 'trempeur,' or casehardener, who hardens one-half of the exposed parts or 'furniture' of the gun is paid 1 s . ; to the bluer, who blues the other half of the 'furniture,' 5d. ; incidental poiishing, cost of screws, pins, triggers, sights, buttuard, name plate, and cost of adjusting same, 6 s . ; cost of locks, 4s. ; refiling of stock, 'relimer,' 5 d . ; heckering stock, 'quadriller,' 7d. ; oiling and finishing of stock, which consists in rubbing down to a
polish with pumice stone and oil, 7 d . The gun is then 'reassembled' by an 'assembler,' who returns it to the factory in working condition, and receives 5 s. The gun is next repassed, that is, is completely taken part, the interior of the locks, action, etc., polished, the springs tried, and everything adjusted to perfection, when several cartridges are fired to test the strength of the mainsprings. It is then oiled to prevent rust, and is ready for packing. This finishing and the various inspections that the piece is subjected to in the course of its construction cost about 4 s . Packing is charged extra, and is, therefore, not included in the cost of the gun. Covers are put on, and twenty-five packed in a case. The total cost is $3 l .17 \mathrm{~s} .4 \mathrm{~d}$. The 'basculeur,' or man who contracts for
the making of the breech actions, probably em-
ploys a number of men, and may make per day 4s.; the 'garniseur,' who puts the barrel together, perhaps 3s. 9d. ; and the 'faiseur de bois,' 3s. 6d.'
The cost of making a good "six shooter," in the rough, is said to be about 30 to 38 cents. The same weapon is retailed in England at half a guinea, and if nickeled at 15 s . or 16 s .
The extremely poor pay here indicated will account for much of the success claimed by the Belgian manufacturers in meeting their English and American competitors, notwithstanding that the latter have the advantage of the most improved machinery as againstmanual labor. In England it is said that the wages earned in Belgium would hardly suffice to keep an English mechanic in beer and tobacco, and there is doubtless a good deal of truth in the remark; but this only serves to illustrate and emphasize the unequal conditions under which the makers on both sides compete with one another.

The Proposed Rocky Mountain Rallwaygranara

A project is on foot for tunneling the "Greavel vide." The Divide is the Rocky Mountains, and the point proposed to be tunneled is under Gray's Peak, which rises no less than $14,441 \mathrm{ft}$. above the level of the sea. At $4,441 \mathrm{ft}$. below the Peak, by tunneling from east to west for $25,000 \mathrm{ft}$. direct, communication would be opened between the valleys on the Atlantic slope and those on the Pacific side. This would shorten the distance between Denver, in Colorado, and Salt Lake City, in Utah, and consequently the distance between the Missouri River, say at St. Louis, and San Francisco, nearly 300 miles ; and there would be little more required in the way of ascending or descending or tunneling mountains. Part of the work has already been accomplished. The country from the Missouri to the foot of the Rockies rises gradually in rolling prairie, till an elevation is reached to $5,200 \mathrm{ft}$. above the sea level. The Rockies themselves rise at various places to a height exceeding $11,000 \mathrm{ft}$. Of the twenty most fanous passes, only seven are below $10,000 \mathrm{ft}$., while five are upward of $12,000 \mathrm{ft}$., and one, the Argentine, is 13,000 ft . Of the 73 important towns in Colorado, only twelve are below $5,000 \mathrm{ft}$., ten are over $10,000 \mathrm{ft}$., and one is $14,000 \mathrm{ft}$. Passes at such a height are of course a barrier to ordinary traffic, and the railways from the Atlantic to the Pacific have in consequence made detours of hundreds of miles, leaving rich plains lying on the western slopes of the great snowy range practically cut offifrom Denver and the markets of the East. The point from which it is proposed to tunnel is 60 miles due west from Denver, and although one of the highest peaks, it is by far the narrowest in the great backbone of the American continent.

Simple Water Tests.

Test for Hard or Soft Water.-Dissolve a small quantity of good soap in alcohol. Lat a few drops fall into a glass of water. If it turns milky, it is hard; if not, it is soft.
Test for Earthy Matters or Alkali-Take litmus paper dipped in vinegar, and if, on immersion, the paper returns to its true shade, the water does not contain earthy matter or alkali. If a few drops of sirup be added to a water containing an earthy matter, it will turn green.
Test for Cxrbonic Acid.-Take equal parts of water and clear lime water. If combined or free carbonic acid is present. a precipitate is seen, to which, if a few drops of muriatic acid be added, an effervescence com-
Test for Magnesia.-Boil the water to a twentieth part of its weight, and then drop a few grains of neutral carbonate of ammonia into a glass of it, and a few drops of phosphate of soda. If magnesia be present, it will fall to the bottom.
Test for Iron.-1. Boil a little nut gall and add to the water. If it turns gray or slate, black iron is present.
2. Dissolve a little prussiate of potash, and, if iron is present, it will turn blue:
Test for Lime.-Into a glass of water put two drops of oxalic acid and blow upon it. If it gets milky, lime is present.
Test for Acid:-Take a piece of litmus paper. If it turns red, there must be acid. If it precipitates on adding lime water, it is carbonic acia. If a blue sugar paper is turned red, it is a mineral acid.

Public Rights in the House Telephone.

We illustrated in our last issue the House Phonetic Receiver of 1868. It would be a matter of much interest to see how the Bell company would treat the extensive introduction of this device. If they tried to obtain a preliminary injunction, it seems doubtful if one would be granted, as it would amount to enjoining the employment of the device of an expired patent. If they failed in preventing the use of a pair of these instruments, it is not easy to see how one could be prevented from introducing an unpatented microphone in the same circuit. This would at once give a perfect telephone system. Were the House patent in force, the Bell company would undoubtedly try to secure it. As it has expired, the deviees shown in it are public property.

HANDLING THE WATER FOR A GREAT CITY. In former articles in the Scientific American we have described and illustrated many of the most prominent features of the water supply of this city, from the reservoir and well erected on the Collect more than a century ago up to and including the aqueduct now building. In the present article, we propose to describe how the water is handled after reaching the city-in other words, to tell how it finds its way into the large mains extending to different quarters. At this time this subject is particularly interesting, since the wate to be admitted through the new aqueduct will have to be distributed by the old methods and appliances, whic are considered are conside red easily controlling the increa sed auantit.v.

- vile whole o the present daily supply crosses the Harlem River over High Bridge being conveyed from the Croton valley through what is generally known as the old Croton aqueduct. All of the water except a smal quantity pumped into a reservoir and high service tower located at the western end of the bridge, and such as is neces sary to supply the district passed through, is then led to a gate house at 92d St. and 9th Ave. Part of this journey is mis journey is made through a
masonry conduit and pait-that crossing the Manhattan valleythrough cast iron pipes. At the gate house the water is divided, the smaller part going to the old reservoir in Central Park, which was built in 1842, and has a capacity of 150 , 000,000 gallons, while the rest enters the new res ervoir, located a short distance north of the oth er, and which was completed in 1862, and has a capacity of $1,000,000$,000 gallons. From the latter by far the larger portion of the supply is sent into the city, and it may therefore be considered the principal distributing center.

The new reser:iso two sections
or ponds by a wall extending across it. The water is admitted through a gate house at the northern extremity of this wall into either of the ponds. At the southern end is the main gate house, the valve chamber of which end is the main gate house, the valve chamber of which
is illustrated in the engraving upon this page. Within the house is a large rectangular chamber or well, into which the water enters through valves, so placed that either side of the reservoir may be drawn from. The water passes from the well into six 48 -inch cast iron pipes, five of which connect with the general distributing system, and one of which communicates with the old reservoir that furnishes the supply for the western portion of the city, through two 48 -inch pipes.
portion of the city, through two 48 -inch pipes.
Each of the pipes is provided with a valve, which is operated by a screw turned by a hand wheel. A scale, graduated to feet and inches, is so arranged that the exact opening of the valve can be seen at a glance.

Owing to the inadequacy of the present supply, these valves are opened but a short distance under ordinary circumstances. The gate house is in telegraphic communication with the fire department, so that whenever required a request can be sent for more water. Until recentlý such a request could not be quickly complied with, as it took at least half an hour to open one of the valves, the great weight of the valve itself and the pressure of the water against it rendering the work very hard and necessarily slow. This defect has been obviated by the introduction of two butterfly valves, which can be opened by one man in ten minutes. These reservoirs also supply the high service statio

IEE YORK CITY WATER SUPPLY.-VALVE CHAMBER IN GATE HOUSE, CENTRAL PARK RESERVOIR.
ered with slate laid in mortar. The top of the tower will be at an elevation of about 170 feet above tide level.
The interior is divided into two main water compartments. The larger one is 12 feet wide by 70 feet long, and receives the water directly from the aqueduct shaft, which is placed in the center of the tower; and rises about 40 feet above the aqueduct line. Alongside of this compartment are eight others, each $61 / 2$ feet wide by 9 feet long, the dividing walls being $21 / 2$ feet thick. In the walls are formed grooves for the reception of screens or stop planks. From these chambers the water passes through a slide gate (which serves to shut off the water in case the stop-cock valves need repairing) in each into eight 48 -inch mains. In a third set of chambers, each of which is 7 feet wide and 12 feet long, the mains are provided with stop-cock valves. The accompanying plan and interior views plainly show the course taken by the water in its passage through the several chambers from the aqueduct to the eight mains. Four of these mains lead the water to the new reservoir in Central Park from whence it will pass through the gate house first described into the distributing mains. The other four will connect with the general system at points along the route of the first four. A circular conduit, 10 ft . in diameter, indicated on the plan view, will connect with the present aqueduct at 135 th Street and 10th Avenue. The depth of water in the entrance chamber to this conduit will be about 20 ft ., while that in the main chamber will be 40 ft .; the water will be controlled by four gates operated, like all the others, by hoisting machinery on the floor above, connected with the gates by rods. The stop cocks will be operated from platforms below, as shown in the large view of the interior.
The estimated cost of the structure, which is to at 97th Street and 9th Avenue and the distributing \mid be completed on or before Sept. 30, 1887, is $\$ 250,000$. reservoir at 42 d Street, which will hold $24,000,000$ gallons.
The gate house for the new aqueduct, which, when running full, will have a daily capacity of $250,000,000$ gallons, will be located on the corner of 135 th Street and Convent Avenue. Its outside measurements will be 100 by 56 feet. The illustrations comprising our frontispiece convey a clear idea of the general appearance of the building and of the arrangement of the interior. The exterior will be built of granite of contrasting shades, with hammer-dressed light granite trimmings. In the interior the water chambers and gateways will be faced with granite, and the stopcock chambers on the south side of the main chamber and the vertical portion of the aqueduct inlet $\begin{aligned} & \text { to Italy by sea. Its ultimate destination is said to be } \\ & \text { Spezia, where it is to be mounted in one of the iron- }\end{aligned}$ will be of brick. The roof will be iron trusses cov- clad ports guarding that harbor.

EFFECT OF THE EARTHQUAKE ON THE SOUTH CAROLINA RAILWAY.
Never before in this country has there been, and it it is to be hoped never again will there be, opportunity to present such a picture of the effect of "the bottom dropping out of everything " as that which we present in this issue in our engraving (an exact reproduction of a photograph) of what was left of what had before been a tangent on the South Carolina Railway, near the point where a bad accident and worse scare occurred on the night of the earthquake of August 31, and where (we presume) the dislocation was exceptionally severe. It hardly seems possible that the sharp curve in the foreground can be wholly due to a permanent dislocation of the surface, but we are informed that it was, as also the quick drop in grade in the "middle distance." The photograph gives obscure evidence of still further dislocations in the background, which has been rather softened than obscured in the engraving.
The Charleston \& Savannah road is said to have suffered on the whole even more severely than the South Carolina or the Northeastern as respects dislocation, although all the serious wrecks occurred on the other lines. Accounts of three of those wrecks, including, the one near the point illustrated, were given in our issue of September 10, as also a description of the accompanying "quakes." In corrrection with this engraving, the nature of the catastrophe, and the fact that the description is probably not exaggerated, can be better appreciated, and we therefore reprobetter appreciated, and
duce the substance of it:
"Near Ten Mile Hill a fatal accident occurred on Tuesday night. The down Columbia train (South Carolina Railroad) jumped the track under the unseen influence of the shock that dismantled the road. It is said that the earth suddenly gave way, and that that the earth suddenly gave way, and that
the engine first plunged down the temporary declivity. It was then raised on the top of declivity. It was then raised on the top of
the succeeding terrestrial undulation, and, having
reached the top of the wave, a sudden swerving of the reached the top of the wave, a sudden swerving of the
force to the right and left hurled the ill-fated train down the embankinent.
"How it was done was plainly indicated. In many places along the track of the South Carolina and the Northeastern railroads; and for spaces of several hundred yards in width, the dreadful energy of the earthquake was expended in two particular ways. First, there were intervals of a hundred yards and more in which the track had the appearance of having been alternately raised and depressed, like a line of waves frozen in their last position. The second indieation was where the force had oscillated from east to west, bending west, bending
the rails in rethe rails in re-
verse curves, verse curves,
most of them taking the shape of a single, and others a double letter S placed longitudinally. tudinally.
These latter accidents occurred almost invariably at trestles and culverts. There were no less were no less
than five of them between the Seven Mile Junction and Jedburg. In other places the track had the appearance of being kinkof being kink-
ed for miles, ed for miles,
but always in these cases in the direc tion of the rails.
"The train at the time of at the time of quake was running along at the usual speed, and when about a mile south of Jedburg itencountereda terrible experience. It was
freighted with hundreds of pleasure seekers returning from the mountains. They were all gay and happy, laughing and talking, when all of a sudden, in the language of one of them, the train appeared to have left the track, and was going up, up, up into the air. This was the rising wave. Suddenly it de-
scended, and as it rapidly fell it was flung

CHASE'S AUTOMATIC ATTACHMENT FOR LOCOMOTIVES.
terrible catastrophe. The train was then taken back in the direction of Jedburg; and on the way back the work of the earthquake was terribly plain. The train had actually passed'over one of those serpentine curves already described."
Two other accidents of the same general nature were likewise described in the same issue. The only pleasant feature in these occurrences, to a railroad man, is that at least it can be said of them, with literal and indisputable truth, that " no one was to blame."-Railroad Gazette.

AUTOMATIC ATTACHMENT FOR LOCOMOTIVES.

The purpose of this attachment is to prevent accidents and collisions by a more effective safeguard than has heretofore been devised. It not only gives warning of the impending danger to the engineer, but itself absolutely stops the train. If, for any reason, the engineer should fail to notice a signal, thanam puts it in the power of every trainthi: man, or watchman at any point along the uain to stop the train in time to prevent accident, even if the engineer had for any reason left his engine.

Attached to one side of the cow-catcher of the locomotive is a three-way cock, the lever for operating which projects at one side, so that an obstruction plared alongside of the track will operate the cock as the locomotive moves past. The movement of this cock admits air, obtained from the usual compressed air reservoir supplying the brakes, to five small cylinders. The shifting of the piston of one of these cylinders admits air to a pipe for applying the brakes, the second piston operates the throttle valve, the third opens the sand valve for sanding the track, the fourth rings a gong bell placed within the cab, and the fifth opens the valve of the steam engine. The mechanism for accomplishing these operations is so simple as to obviate all danger of getting out of order and to render certain the working of the entire system. It will be understood that these devices may be so arranged as to all operate at the same lently over at the east, the side of the car apparently
leaning over at less than an angle of 45 degrees. Then may be so arranged
time or singly, as may be desired.
there was a reflex action, and the train righted and was hurled, with a roar as of a charge of artillery, over to the west, and finally subsided on the tracil and took a plunge downward-evidently the descending wave. The engineer put down the brakes tight, but so great was the original and added momentum that the train kept right ahead. It is said on trustworthy authority that the train actually galloped along the track, the front and rear trucks of the coaches rising and falling alternately. The utmost confusion prevailed, women and children shrieked with dismay, and the bravest hearts quailed in momentary expectation of a

The inventor of this attachment for locomotives, Mr . Norman F. Chase, of Montrose, N. Y., presents the following advantages and reasons why it should be extensively adopted: First, the absolute certainty of preventing accidents and loss of life ; second, preventing destruction of property ; and third, economy in first cost and in use, as all lights can be dispensed with if desired.

The Trials of an Inventor.
M. Juibert, a mechanical engineer of Paris, recently made an invenmade an inven-
tion which is tion which is materially the speed of railway travel. The journals discussed the discussed the length and prelength and pre-
dicted for M . Juibert a great future. However, the other day, as the inventor sat in his workshop, a stranger suddenly rushed toward him and began belaboring him with a cane, exclaiming excitedly : "This will teach you not to \quad npalka such muruel ous inventions that will enable my moth-er-in-law to reach my house in six hours instead of in twelve." M. Juibert caused the arrest of his assailant, who is said to be a well known merchant by the name of Bolivet.

A New Petroleum Engine.

To produce a small engine that can be operated by the combustion of petroleum is a problem that has received the attention of quite a number of our best inventors. That there is a great demand for small power machines there is no question; and the almost unlimited supply of petroleum, and the low price it is sold for, induce the seeker for a cheap, small power to turn his thoughts in the direction of petroleum for the fuel.
The English newspapers make mention of a new petroleum engine just brought out, which they claim has less objectionable features than most other petroleum engines which have been tried.
The trial experiments were made at Messrs. Priestman Brothers, Holderness Foundry, at Hull, England. The petroleum is stored in a small tank containing one to two days' supply, as the case may be. A small pressure of air is put into this tank and the petroleum is forced out of it into a vessel in a vaporized condition, in which it is then drawn into the cylinder by the outstroke of the piston ; and having been compressed on the instroke, the charge is ignited by means of a small electric spark. This immediately explodes the contents in the cylinder, and the piston is driven forward. The engine in which the highly refined petroleum is used is very similar to that in which the common petroleum is employed, the only difference being that in the latter engine the oil is taken into the cylinder in a heated condition. The cost of the oil is estimated at a halfpenny to three farthings per indicated horse power per hour. Four horizontal engines were at work, two with benzoline and two with common petroleum. One of about three and a half indicated horse power, supplied with benzoline, was driving easily four blasts at which chainmakers were at work, besides a punching and a shearing machine. A vertical engine of about four horse power was driving a tram care and doing work with ease. The tests were considered by the invited engineers

GAUGE ATTACHMENT FOR PRINTING PRESSES,

The platen of the press is provided with the usual clamping bars, which are pivoted to its side edges and are swung down over the edges to hold the sheets of paper placed upon the platen. One end of a curved spring is turned at right angles and formed with two sharp points that engage with the tympan sheets. Through a slot in the turned edge projects a tongue, connected to the end of the spring by clips, and which serves to retain the sheets of paper and cards, and prevent their slipping over the gauge. The spring slides adjustably through a slot in a plate bent to such a curvature as to hold the spring in the slot to any desired adjustment. This plate is furnished with a blade so arranged as to pass between the edge of the platen and one of the clamp bars, and thereby hold the plate and it spring in position. The spring, the normal shape of which is curved, lies flat against the tympan sheets, with the points in the sheets just where the edge of the card or blank sheet is designed to come. To change the position of these points, the spring is simply slipped through the slot in the plate. Two positions of the points are indicated by the full and dotted lines of the engraving. The spring lies perfectly flat against the tympan sheet, this result being obtained by making the spring tapered at the end forming the gauge. 'The free ends of the springs curve under the platen and are out of the way. In this gauge there are no prongs to stick through the tympan sheet and card-
 face of the cardboard. It is very easily adjusted in place, and the spring may be drawn out and the gauge

BYINGTON's GAUGE ATTACHMENT FOR PRINTING

 PRESSES.placed exactly where the sheet is to be held. The gauge can be instantly changed to any extent.
This invention has been patented by Mr. F. F. Byington, whose address is care of Pacific, Press, Oakland, Cal.

In dead subjects of yellow fever, the heat has been known to run up as high as $113^{\circ} \mathrm{F}$. three hours after death, when it was only 104° as life passed from the body. The rise of temperature is supposed to be due to a fermentation of the blood.
The beneficial results of quinine in breaking up malarial and other fevers are supposed to be principally due to the power the drug has to arrest fermentation
and putrefaction. Quinine is an anti-ferment. Mal arial fever is supposed to be due to the presence of fermenting spores in the blood.

THE CYCLOID.

One of the laws of descending or falling bodies is illustrated in the cut. An easy method of drawing the curve of quickest descent, the " brachystochrone," or cycloid, is shown. A circle is cut out of stiff pasteboard or wood. It should be two feet in diame ter at least. A batten is nailed or secured to the floor, or the surbase of a room may be utilized in

stead. If the circle is rolled along a straight line, any point on its circumference will describe a cycloid. To trace the curve, a pencil is fixed as near the periphery of the circle as possible. A piece of paper is pinned to the floor, as shown, and the board placed with the pencil at its point of tangency with the batten. Now, on rolling the board along the batten, taking care that a true rolling motion is produced, the pen cil will describe a cycloid. Only half need be traced the full curve is not wanted. Care must be taken that the board does not slip or slide on the strip, or the curve will not be a true one.
This gives the pattern ; a piece of wood about three quarters of an inch thick must be cut to this shape. The wood is best glued up from several pieces, and may then be made quite light and narrow, top and bottom being equidistant, the one forming the half cycloid drawn, and the other a parallel curve, about two inches coming between them. A foot is arranged to support the end corresponding to the initial position of the pencil, at a height from the ground equal to the diameter of the generating circle. Strips of light wood or of paper are fastened along the sides, to form a groove.
In connection with this curve, a straight piece of In connection with this curve, a straight piece of supplied. This must also be grooved. It is not shown in the cut.
If a marble is released from the top of the cycloid, it will roll down in less time than if it followed any other curve or line extending from the point of starting to the end. The straight piece may be arranged to occupy the position of a chord to the cycloid, and held there. If two marbles are simultaneously released, one from the top of the cycloid, the other from the top of its chord, the one following the curve will always reach the bottom first. The steep descent of the first portion of the curve gives such a start to the marble that it distances its competitor always. One curious feature is that the marble traveling the quickest from point to point does not follow the shortest line-the straight one, or chord of the cycloid.

Other curves may be tried with the same result. The cycloid is always the quickest road. Not only is it this. It also has the curious property that from whatever point a marble is started, all will reach the foot at the same time. This illustration is, if anything, more effective than the other. A marble is released from the top simultaneously with one from any intermediate point. Just as the first one reaches the end, the other one will strike it. It is quite immaterial what points are selected. The same period is always required for the transit to the foot. This property of isochronism makes it the proper curve for a pendulum. In practice, as it would involve a clocks. For accurate ones, a pendulum swinging through a very small arc of a circle is used. This does not differ enough from a true cycloid to cause any practical difficulty in securing a good time re gulation.

The Invencion of the sextant.

Dr. J. L. Dreyer points out, in the Astronomische Nachrichten, No. 2,739, an historical error which has crept into several astronomical works, although it was refuted some fifty years ago by Prof. Rigaud in a series of papers communicated to tne Nautical Magazine. In the books referred to, it is stated that the principle of the construction of the sextant was communicated to John Hadley by his brother, a Captain Hadley, who had in his possession a sextant given to him by Capt. Godfrey, brother of Thomas Godfrey, of Philadelphia. the real inventor of the instrument. But it appears there never was such a Captain Hadley. The brothers of John Hadley were, one a barrister, the other a physician; and he himself was not an instrument maker by profession-as has been asserted-but as an amateur occupied himself with mechanical pursuits, and was the first to bring the polishing of reflecting tele scopes to any perfection.
On May 13, 1731, John Hadley communicated to the Royal Society a description of his reflecting octant ; and, after some hesitation, Halley declared himself satisfied that Hadley's ideao was quite different from that of Newton, who had invented an instrument founded on the same principle. It is no doubt true founded on the same principle. It is no doubt true
that Thomas Godfrey, a glazier of Philadelphia, had invented an instrument of this kind about the year 1730 ; but the first intelligence of his invention did not reach England before the month of May, 1732, in a letter from James Logan to Halley. Godfrey's instru ment was made of wood by Emund Woolley, a car penter, about November, 1730, and had been tried on board the ship Truman, of which John Cox was maser. The first model of Hadley's octant had, however been constructed by his brother George about the middle of the summer of 1730 .

Spring vs. Autumn Planting.

From long and extensive experience in planting in different situations and soils, I am in favor of autumn planting of forest trees, and also evergreen shrubs, unless in cold, bleak situations, when the latter are best deferred until spring or early summer. There may be situations where the soil is too wet to admit of early planting, but such is unfit for planting at any season till drained. There is an old saying, which in practice I find to be correct, viz., "Plant a tree in autumn and command it to grow ; but in spring you must coax it." Some are of opinion that severe rost will injure early planted trees. This I have proved to be a fallacy. In order to test it, I left young trees with their roots uncovered during severe frost, and planted them when thawed, and I found that they sustained no injury. There is more risk from drought in spring planting than from frost in autumn or winter planting.-J., in London Garden.

IMPROVED JACQUARD MACHINE.

In the ordinary Jacquard machines, the devices car rying the harness of the loom consist of iron hooks pro vided on their lower ends with twisted cords, to which are attached the collets carrying the respective threads of the harness. It has been found difficult to make these cords the same length, so that they would raise the threads of the harness equaly. The invention herewith illustrated, which has been lately patented by Mr. James Jackson, of 18 and 20 Albion Street, Paterson, N. J., dispenses entirely with the twisted cords, and attaches the collets carrying the threads directly to the hooks.
Each hook consists of a vertical rod formed at its upper end with a. bend, which engages in the well known manner with the cross bar attached to the lifting frame, which raises the hooks and, consequently, the harness of the loom, in the usual way. The lower part of the rod
 is bent upon itself, and in the bend is hooked a collet formed of spring wire bent and twisted, as shown. Each thread of the harness is provided with the usual loop on its upper end, which is hooked to the collet. The parallel parts of the wires, by passing through apertures in the stationary grates, are guided in their up and down motion in such a manner that the hooks retain their relative positions to each other, having no sidewise or endwise motion whatever. On the lower end of the hook is a bend that passes oveer a ridge on the upper grate, in the downward movement of the hook. This prevents the hooks from going further down, and they assume the same position they had before being raised. In transferring the threads from one machine to the other, the upper ends are simply unhooked from the collets, or the latter are removed from the hooks.

FISHES OF THE MALAY ARCHIPELAGO.

Although New Guinea and the Moluccas are the countries of natural wonders, the seas which surround and separate them contain the strangest and most interesting forms. In the lower depths of these coral seas, the most beautiful fishes sport in the blue yet transparent water, and cause their lace-trimmed, diapered robes to shine and sparkle, and their scales to glitter under the ardent rays of the sun.
Among other points in New Guinea, the harbor of Dorey seemed at the time of my first voyage, in 1877, peculiarly favored in this respect. There did not a day pass in which my little squad of youthful fishermen (all the children of the village, excited by the bait of glass trinkets) did not bring me some fish that was new to me; and I soon collected a large number. Being at this time dis:ıbled, through fourteen wounds on my right leg, that condemned me to keep to a forest house for more than six months, while Mr. Raffray was successfully exploring the W. Schonten and Amberbak islands, I found it a diversion to direct this little maritime station. Not satisfied with collecting the fishes, I applied myself to keeping them alive (if only for a few hours), in order to make rough colored models, of-realling those brilliant colors that cannot be preserved after the death of the animal.
Dr. Vaillant, professor at the Museum and custodian of these models, has recently had the goodness to send them to me; and, thanks to him, I have been enabled to have Mr. Clement figure two of the inhabitants of the seas of Papua, one of which is more remarkable than all the others, by reason of its odd form.
In 1767, Commerson founded the genus Zanclus (a word of Greek. origin, meaning pruning knife) for the singular fish shown in the lower part of the engraving, and gave a description and very accurate colored representation of it. Seba had already figured it, and there are few authors who have not reproduced the who have n
image of it.
This fish is none the less remarkable by reason of its color than by that of the round and compressed form of its body, and of the little snout, at whose end the mouth opens, and of the long appendage to the dorsal fin.
The ground of its livery is yellow and white, with three wide black bands. The first of these latter extends from the back to the ventral fin (which also is black), and is provided with a white line over the eye and two parallel white ones near the ventral fin.
The second black band extends from the center of the last ray of the dorsal fin up to the anal, which it almost entirely covers, and is traversed longitudinally behind by a fine white line that continues more or less uninterruptedly up to the external edge of the anal fin. From the tail detaches itself the third of these black bands, and the white extremity of this forms a cres cent, which is externally bordered by gray.
Between these black bands there are large yellow areas. Between the first black band and the yellow there is a long white stripe that covers a portion of the dorsal fin, and that joins or blends with the white tint of the belly. A white band also is to be seen near the last black one; or, more properly, the tail is white and is traversed by a wide black band.
The entire front portion of the fish, the snout included, is white; but the lower jaw is black, and upon the upper one there extends on each side an orangecolored triangle, circumscribed with black-the black border running to the orbital horns. The eye is of a sepia brown, with a black pupil.
Such were the colors of the specimen that I painted at Dorey in April, 1877. The colors as given by Cuvier,
from a painting of Commerson's, and from quite fresh alcoholic specimens collected by Lesson and Garnot, are about the same as those noted above, and show that this fish has always. been well known. Mr. Vailant has had the goodness to send me likewise a model made in the Sandwich Islands in 1874 by Mr. Ballieu, the French consul, and in which may be quite well seen the fundamental tints of this fish. The specimen that I painted in New Guinea wanted the long filament that terminates the dorsal fin. Mr. Ballieu represents this appendage as yellow fringed with black. The scales, which are vertical, narrow, and short, lie very close to each other, and are so small that they give the body a rough appearance, somewhat like that of shagreen.
The little points or horns that project above the
much esteemed, and in taste approaches that of the best pleuronectes. Ruysch even says that in Amboyna no banquet or fine meal is given at which these fish are not served. We have here a sea divinity that is vari ously appreciated.
The Zanclus, without ever reaching a very large size, weighs at times as many as 18 pounds. It is met with from Mascareignes up to the Pacific islands of Tongatabou, Vanicoro, and Sandwich
Two other species of it are known, that inhabit the same regions ; and one fossil form has been described by Agassiz.
The small fish figured at the top of the engraving belongs to the genus Amphiprion. Cuvier and Valenciennes have given it the specific name of tunicatus, and in their great work we find a faithful imare of it teken from specimens collected by Lesson and Garnot at Vani coro. The individual that I painted at Dorey was of a beautiful red-lead color, with black bands circumscribing three areas of light blue. The first blue band formed a half circle on a level with the gims and the second, or central one, was larger and triangular, and ran point-wise toward the pectoral fin. A wide black blotch occupied the back and extended from the first blue band to the first half of the dorsal fin. The third blue band, which also was bordered with black, was situated behind the dorsal and anal fins. These latter as well as the caudal ones, terminated in a rose-colored band.
The genus Amphiprion is represented in New Guinea by numerous species, that vie with each other in brilliancy. In size, they are always small These pretty little fishes live amid corals and in holes in madreporic rocks. Sporting or pursuing each other with vivacity, they are often surprised by the falling tide, and have to continue their frolic in small puddíes of water until the rising tide carries them away.-M. Maindron, in La Nature.

To Tell the Age of Eggs.

We recommend the following process (which has been known for some tirne, but has been forgotten) for finding out the age of eggs and distinguishing those that are fresh from those that are not. This method is based upon the decrease in the density of eggs as they grow old.
Dissolve two ounces of kitchen salt in a pint of water. When a fresh laid egg is placed in this solution it will descend to the bottom of the vessel, while one that has been laid on the day previous will not quite reach the bottom.
If the egg be three days old it will swim in the liquid, and if it is more than three days old it will float on the surface, and project above the latter more and more in -La Natuve.
orbits have given this fish the specific name of cornutus. But in its native country the fish has many other names. The Mafors call it inn acis, "comb fish," on account of the arrangement of its dorsal fin; which is high and narrow, and somewhat resembles the wooden fork with which these Papuans comb their bristling hair. The Dutch colonists of the Moluccas know it under the name of besant, since the discoidal form of its body makes it resemble the piece of arms known under that appellation in the heraldic art : and the same Dutch call it also by names signifying "the pikeman," " trumpet," and " ensign bearer."
Renard calls the Zanclus, Moorse afgodt, "idol of the Moors," and apropos of this says that the Malays have a great fear of the fish, based upon a superstitious veneration. So they make haste to throw into the sea every fish of this species that happens to be taken in their nets, and this, too, with many marks of respect and many genuflexions.
On another hand, the flesh of this fish appears to be

Simple Millinery.

The Audubon Society and individuals interested in the protection of birds have for some time protested against the slaughter that is going on to supply the demand created by the fashion in ladies' hats. It was thought to be an easy matter to at least lessen the practice of shooting singing birds for the market, as it is in clear violation of the statute. But it seems that singing birds are not wanted at all for ladies' hats ; that the many varieties of snipe are most in demand, gray being the fashionable color; and that neither for export nor for home use are song birds now shot. This puts a different aspect on the matter, for snipe being game birds, it is not illegal to shoot them in season; and so far as cruelty is concerned, of which so much has been said, it is not more cruel to shoot birds for decorating hats than it is for the table. There are over fifty varieties of snipe that visit the Long Island shores.

Sources of Power.

In the older treatises on mechanics we find the source of power classified under the heads "Wind, Water, Steam, Animals;" and, broadly speaking, these are still the only sources of power we possess. But when we deal more in detail with the subject, we find that wind, in all probability, owes its capacity for performing work to the sun, while water is absolutely inert save as actuated by gravity, and steam is, of course inerely an agent by which heat is converted into work. Concerning the methods by which animals perform work, we are entirely ignorant, no physiologist having as yet succeeded in tracing the sequence of processes by which food is converted into mechanical energy. Enough is known, however, to show that the process has nothing in common with that by which work is performed by heat engines. So that the analogy some times drawn between a man and a machine must be rejected as far-fetched, permissible to the poet, indeed but not to the philosopher. Furthermore, it is known that the work got out of food by men and animals is much greater, on the whole, than can be obtained from fuel consumed in the best steam engines. That is to say, a man or a horse may be more economical sources of energy, in one sense, than any machine. Be this as it may, it is sufficiently evident that we depend for the performance of all the work done in the world on two main sources of power-heat and vital energy. The action of gravity, it is true, causes the falling of water, and so gives out power; but the water has to be raised before it can fall, and this raising is effected by the heat of the sun, which evaporates moisture, and so indirectly gives us clouds and rain.
It appears to be not unreasonable that men should ask themselves now and then if there are no other sources from which power may be derived--is there no other force of nature that can be made the slave of man? The question has been put in hundreds of ways, and remains unanswered.
In dealing with this question of sources of energy, it seems to be not impossible that a misapprehension of the nature and bearing of the laws of the conservation of energy may do a great deal of harm. It may be said, for example, that it is quite useless to search for a source of energy which can be better or more economical than we have now, and much more to the same effect. But let us ask ourselves what is this law of the conservation of energy, on what is it based, and what would be the consequences to the universe if it did not exist? Such questions are very seldom asked, because the number of men who are at the pains to think for themselves is small. But when they are asked, the answer is remarkable. There is really no reason at all why energy should be conserved, and so far as our senses supply evidence, far from being conserved, it is being profusely wasted every day. Of course, if we go a little behind the evidence of our senses, we find that the waste is only apparent, not real. It is much easier, however, to form an idea of a universe in which the law of the conservation of energy has no existence than it is to realize a fourth dimension in space, or even the life of the inhabitants of Flatland. As a help to the realization of such a universe, we may point to the fact that the sun has been giving out energy for millions of years, and that there is no reason whatever to think that he has lost any portion of his original heat. In other words, it is simply impossible to prove that what we call energy is not created in the sun.
Again, let us take gravity. We have here the most stupendous force in nature. There is no reason to implanets fell into the sun, gravity would If all the have performed an enormous amount of work; but no one can say that after it was done gravity would be any weaker. It may indeed be said that the law of the conservation of energy has only just missed being disproved, if the words "conservation of energy" be used in one sense. So far as can be seen, there is no reason why the line of magnetic force should not behave like lines of electric force or heat force, andadmit of being intercepted or stopped. It would then suffice to put a permanent magnet under one end of a beam, the other end of which should be connected in the usual way with a crank and flywheel. Then by interposing and withdrawing a thin intercepting plate at the proper intervals, we should have a machine which should work steadily until it was worn out, without the expenditure of one farthing for fuel. In the popular sense of the word, we should create power ; and the perpetual motion men would spend their lives in patenting details, while the principle would be public property. Has any one the least idea why magnetic van any istence of the universe would be impossible or even difficult? Can any one assert with certainty that no means will ever be found for intercepting or dissipating magnetic rays, without expending energy in doing so ? Finally, is it not possible to obtain some idea of the cause of magnetic force from this very peculiarity of its behavior? To put an extreme case, it may be urged that the law of the conservation of energy be ing true, it is impossible to intercept a magnetic force
line. What, then, is the nature of the force which will comply with this condition? On the other hand, it is possible to intercept a heat, light, or electrical line, and yet the law of the conservation of energy is not interfered with-ergo, magnetic force must possess feaures which distinguish it from the other forces we have named; from all other forces, indeed, save gravity. One deduction seems to be consistent with facts, namely, that magnetism and gravity are original or primal forces, and that the remaining forces-such as light, heat, and electricity-are derived, built up, or composite forces. That, in a word, gravity and magnetism are elements, while light, heat, and electricity re compounds. We speak of light, heat, and electricity as "forces;" perhaps it would be more strictly correct to speak of them as manifestations of force. But what we have written will serve sufficiently well to convey our meaning.
The sum and substance of what we desire to convey is that there is nothing known which renders it absolutely certaif that mankind may not yet find new sources of energy in nature. No one can assert positively that it must always be impossible to make elec tricity work for us. If a man had shown Socrates lump of coal, and told him that it could be converted into work, he would have laughed at him. Our purpose in writing this article will be served if we make our readers understand that there is as yet, at least, no finality in science. There is no reason, for example, to conclude that it is absolutely and physically impossible that sources of power may yet be discovered which are not now dreamed of. The electricity which now rends the forest oak, or brings down the lofty edifice in a hideous ruin, may yet be taught to light our towns. Chemical science may give us new reactions which will supply large sources of power. The world does not yet know everything; and he who knows most is least likely to assert dogmatically that things which do not exist now never can exist in time to come -The Engineer.

Steel Pipes for Water Mains.

The Works Committee of the Dundee Water Commission recently instructed their engineer, Mr. James Watson, M. Inst. C. E., to test the suitability of steel received from Messrs. Duncan Brothers, London, four pipes, 12 inches diameter, and the following is from his report :
"The pipes are made from plates of mild steel manufactured by the Steel Company of Scotland The plates forming the body of the pipes have a tensile strength of 30 tons per square inch, and those forming the sockets and spigots 26 tons per square inch. The pipes are in lengths of 10 feet $13 / 4$ inches, and $1 / 8$ inch thick, made of two plates, coated outside and inside with black varnish, and weigh 1814 pounds per foot, or 1 cwt. 2 qr. 17 pounds per length. The body plates and junctions with sockets and spigots are lap jointed and riveted with mild steel rivets, the sockets and spigots being welded and turned on a shaping machine to the usual forms. Three lengths were tested, but only one of the four pipes sent to Dundee was operated on. The Dundee length, when filled with water and subjected to less than 100 feet of pressure, leaked at the riveted joints. The pipe was consequently removed and calked on the ground, after which it was again put under pressure up to 700 feet, when the joint leakage was still observable, but trifling in extent or quantity, and might be more fairly described as weeping at three or four parts of the longitudinal seam.
This pipe was subjected to a net compressive strain of $401 / 2$ tons upon the end of the socket, or equal to $81 / 2$ tons per square inch of sectional area, without starting any of the rivets, but with the result of doubling back the steel socket. . The socket so altered in shape was found to be without fracture of any kind. The second pipe tested was sent direct from the maker's works, and was uncoated, but in other respects similar to No. 1, and its behavior in the proving machine was not, so far as the tests were carried out, quite up to No. 1. It is, however, only right to observe that the pipe was hurriedly put together during the night previous to the day on which it was tested. The third pipe was also 12 inches diameter, $1 / 2$ inch thick, 8 feet 7 inches long, made of one steel plate, having a double riveted longitudinal lap joint, $13 / 8$ inches wide, riveted together by $1 / 4$ inch rivets at $11 / 8$ inch pitch, and had angle iron flanges fitted at the ends, each flange being $21 / 2$ inches by $21 / 2$ inches by $1 / 4$ inch. This pipe was subjected to a pressure of 760 pounds per square inch, or 1,775 feet head, when a portion of the calking yielded, and a slight leaking took place at two or three of the rivets.
The intention was to destroy the pipe; but as the machine in which it was placed was not constructed for such high strains, it was thought better not to further increase the pressure. As before noted, the weight of the pipe was $181 / 4$ pounds per foot, and by way of comparison it may be mentioned that our cast iron mains, 12 inches diameter, $5 / 8$ inch thick-tested to proof pressure of 600 feet, or a little over one-third
of the pressure applied to the steel pipe-weigh 88 pounds per foot, or about four and three-quarter times heavier than those made of steel. For works such as we require in crbssing the Tay Bridge, where the railway traffic sets up considerable oscillation and vibration, or in crossing some parts of Strathmore-say Meigle Moss, where cast iron, to be safe, should be laid on an artificial bed of stone or timber-steel has many obvious advantages over cast iron.
But having said this much, two questions still re main, the first and less important being the length of time and the character of labor and tools necessary to repair any accident to the body or riveted joints of the pipes in situ; and the second and allimportant, Will steel withstand the action of soft wa ter and equal or approach the durability or working life of tast iron? Practical experience and time can alone furnish the answer to these questions. That malleable iron cannot be safely or profitably used for such a purpose we know from the experience of actual work. In order so far to anticipate the solution of this question, laboratory experiments have been made by a number of eminent chemists, and very careful observations wëre made last month in London by Dr. Dupre on the action of samples of Monikie and Lintrathen waters on four samples of metal, viz., cast iron, wrought iron, and two samples of steel; and the conclusion at which he arrived was that the loss on cast iron if called 1 , the loss on steel was 1.020 in the first plate and 1.098 in the secondthat steel would lose in about ten years as much as cast iron would in eleven years.
If this be so, and assuming Dr. Dupre's tests to fairly ndicate what would obtain in actual work, then it seems to me that, in the event of your deciding to lay down seven and a half miles of pipes through Strathmore, it might be of advantage-although a departure from the existing practice of this country-to lay down half a mile of this length with pipes made of steel, and also to lay down on the Tay Bridge four or five hundred yards of the two miles required for that work. Twelve or fifteen years hence-probably sooner-the Lintrathen main, twenty miles in length will require a duplication throughout, and the experi ence of the working of a short section of steel pipes, if laid now, would enable the commissioners of that time to satisfactorily ascertain the advantage or dis advantage attaching to steel for water works pur poses."

Afloat in a Crater.

Captain C. E. Dutton, of the U. S. Geological Survey, has been recently engaged in making a study of Crater Lake, in Oregon, and the latest advices re ceived from him show that he has discovered probably the deepest body of fresh water in the country Leaving Ashland, Oregon, on the 7th of July, his party, escorted by ten soldiers, provided through the courtesy of the general commanding the military department of the Columbia, reached the brink of the wall of the lake on the 13th, having brought with them boats so mounted on the running gear of wagons as to bear transportation over a hundred miles of mountain road without injury. The boats bore the transportation without strain or damage, and pre parations were at once begun for lowering them 900 feet to the water. The steepness of the wall was very great, being at the place selected about 41 de grees or 42 degrees, and the descent partly over talus, above covered with snow, and rocky, broken ledges lower down. The boats entered the water quite unharmed. The process of sheathing them, rigging the tackle, and lowering them occupied four days. A couple of days were occupied in making journeys around the walls of the lake by boat-the only pos sible way-and in examining the rocks and structures of the wall in! its various parts. Next followed a series of soundings. The depth of the lake consider ably exceeded the captain's anticipations, though the absence of anything like a talus near the water line already indicated deep water around the entire shore The depths range from 853 feet to 1,996 feet, so far as the soundings show, and it is quite possible and probable that depths both greater and shallower may be found. The average depth is about 1,490 feet. The descent from the water's edge is precipitous; at 400 or 500 yards from shore, depths of 1,500 to 1,800 feet are found all around the margin. The greatest depths will probably exceed 2,000 feet, forit is not pro bable that the lowest point has been touched. The soundings already made indicate it as being the deep est body of fresh water in the country.-Science.

The Hell Gate Light to be Stopped.

Acting Secretary Fairchild has given orders for the xtinguishment of the electric light in the tower at Hell Gate, New York harbor, from and after December next. This action was based on the recommendation of the Lighthouse Board, and because of constant complaints from mariners that the dazzling character of the light made it a detriment, instead of an aid, tonav. igation.

ENGINEERING INVENTIONS.

 A car coupling has been patented byMr. Milton W. Coddington, of Rutherford, N. J. It is Mr. Milton W. Coddington, of Rutherford, N. J. It is designed as an automatic coupler, in which the star cam
is used for retaining the connecting link, the invention is used for retaining the connecting link, the invention
covering a novel construction, arrangement, and comcovering a novel co
bination of parts.
A car coupling has been patented by Mr. George J. Ferguson, of Greenville, Tex. This in vention covers a novel construction and arrangement
of parts of a continuous drawbar, the bars extending to of parts of a continuous drawbar, the bars extending to
the midde of the car, and forming connections between
the ends of the car, with other novel features in autothe ends of the car, with other novel features in auto-
the mind matic car couplings.
A gate valve has been patented by Mr. with a valve casing having guiding recesses, with with a valve casing having guiding recesses, with a
screw stem, is a two-part gate, consisting of two rings having on their inner edges a donble screw-thread-like curve, each having a lug moving in a recess of the valve
casing, with other novel features, whereby, when closing, the valve seats itself automatically and firmly.
A lubricator has been patented by
Messrs. Thomas Davis and Henry H . McDonough, of East Boston, Mass. It is of that class used to supply oil to the valves of locomotiveaor hoisting engines
where the live steam is often shut where the live steam is often shut off from the cylinder,
and providea a simple and inexpensive device whereby and provides a simple and inexpensive device whereby
oil will be fed to the engine valve by exhaust action oil will
only.
An automatic continuous rail frog and ${ }^{\text {switch has been patented by Mr. Casper Buhrer, of }}$ Cambridge City Ind Cambriage City, Ind. A curved wing rail is elevated above the main track, pivoted at one end at ite side of
the track, and connected to a crank rod operated by one or more pressure bars pivoted to the side of a switc of siang ratr, so a train will force the bars down and operate the crank rod, to thb
tion for the siding or switch.
A compound locomotive engine has been patented by Messrs. William B. and John A. John
son, of Wigan, Lancaster Co., Eng. It has two cylin ders on each side, the high pressurecylinder being fed ders on each side, the high pressure cyiliner being fed
directly from the briler, and each high pressure cylinder exhausting into two steam chests made
common to the two low pressure cylinders, which are connected by a cross pipe, the pistons both being on one rod, the valves being operated by a link motion
with a link to each cylinder.

agricoltural inventions.

A hay carrier has been patented by Mr. Edwin Woodward, of stryker, o. The invention consists of a novel construction and combination of various
parts of a transferring mechanism for hay carrier guide pulleys, for transferring hay from one end of the barn to
the other, so that it can be done easily and quickly and the other, so that it ca
without any climbing.
A corn harvesting and husking machine has been patented by Mr. John A. Hilbert, of Carroll Iowa. Combined with a stalk cutting mechanism and
an open endless stalk carrier is a supplemental or ear cutting mechanism for severing the ears from the stalks, with other novel features, the machine being designed to cut the stalks, separate the ears from the stalks an husks, and eeliver the huske
A corn planter has been patented by Mr. Ernest I. Korsmeyer, of Evansville, Ind. In con of construction, the sead dropping tube is coambine with a cutter having a forked rear edge, whereby a chan nel is opened in the ground and the seed conducted thereto, the machine being susceptible of adjustment so that the cutter will enter the ground to any desired
depth, while it can be raised and secured above the depth, while it can be raised and secured above the
ground for convenience in passing obstructions, etc.
A seed planter has likewise been pat ented by the same inventor, with various novel feature of construction and arrangement of parts, in which, by
properly handing the valves, the hills may be made at properly handling the valves, the hills may be made a both for drilling dind planting.

miscellaneous inventions.

A funnel stand has been patented by Messrs. James and John C. Colburn, of Altoona, Pa. is to be placeed upon the counters in groceries, to receive
and hold the funnels, and is so made that it does not and have th the funnels, and is so made that it does not
have pouring the substance to be done up from the scale pan through the funnel into a paper bag or other package.
A hub attaching device has been pat ented by Mr. Walter A. Clark, of Chicago, Ill. It is ap-
plicable to the ordinary form of vehicle wheel axle, with but slight changes to adapt the axles and hubs to the improved attachment, the object being to prevent the accidental displacement of the wheels, and supply means whereby the retaining nuts upoent hee end of of the
axles may be removed when desired, while the axle axles may be removed when desired, while the
will be thoroughly protected from sand and grit.
A pendant stem for watches has been patented by. Mr. Fredrick W. Schimmel, of Murray, Idaho Ter. 'Com bined with an internally threaded pendant is an externally threaded collar, placed movably on
the stem, and fitted to the threaded portion of the penthe stem, and fitted to the threaded portion of the pen-
danti, the collar being notched on opposite sides, and dant, the collar being notched on opposite sides, and
the stem being provided with pins for engaging the the stem being provided with pins for engaging the
notches, the device being durable and intended to prenotches, the device being durable and i.
A camera obscura has been patented by Messrs. Frank Sharpe and Harry E. Blake, of North taking from small pictures correct outlines entarists in any desired extent, or for taking enlarged ontines of flowers, leaves, fruit, etc., and the apparatus has a mirror, a focusing slide, a lens, a dark chamber, an ad just able swiveling lamp, and a curtain, with various nove details of arrangement and combination of parts.

NEW BOOKS AND PUBLICATIONS.
Tables and Formulet for Ratlooad $\underset{\text { New York : E. }}{\text { En }}$ \& F. N. Spon.
This is a convenient pocket-book, furnished in con unction with a transitman's blank note-book, intended topresent formule and tables convenient for the civil
engineer for railroad or field work, embracing also tables and examples relative to running transition curves.
Acciddènts in Mines. By Arthur Robert
Sawyer. New York John Wiley \& Sons.
This book relates especially to accidents arising from ralls of roofs and sides in mines of the North Staffordshire (England) coal field, and gives detailed sections of the workable seams and an account of the system
of timbering. The sectionis and plans have been reof timbering. The sections and plans have been re accidents have been caused, and to point to differen The illustrations are notably numerous and valuable.

PBusiness and Personal.

The charge for Insertion under this head If one Dollar a line for each insertion; about eight words to a line. Alvernisments must be reetivea at pubicarion office

The Railroad Gazeette, handsomely illustrated, pub-
shed weekrly, at 73 Broadway, New York. Specimen shed weekly, at 73 Broadway, New York. Spe
copies free. Send for catalozue of railroad bonks.
Wanted-To sell patent for cigar bundling machine, issued Sept.7. 1886. Address F . Theo. Karsch, 700 Spring
Garden St., Philadelphia, Pa.
Concrete patents for sale. E. L. Ransome, S. F., Cal. For Sale- Patent No. 315,652, cock for house service
and street washer connections. By turning the cock the and street washer connections. By turring the cock the
water from the street main may be opened to house water from the street matin may be opened to house
hlone, or to both house and street washer, or may bee Wanted-Competent draughtsmen, experienced in last furnace and steel works construction. State ex-
perience. Address $\mathrm{G} . \mathrm{S}$. L., P. O. box 7 zi , New York. Small Metal Goods of every description made to order. Die work, ete. E. C. Ivins, 528 N. 10th St., Phila.. Pa. Machinist Foreman wanted who can handle fifty men roved ways of doing work. Address P... care of Wil-

Friction Clutches from $\$ 2.25$ on. J. C. Blevney, New-
Haswell's Engineer's Pocket-Book. By Charles H. Haswen, Civil, Marine, and Mechanical Engineer. Givcs, Mathematics, and Physics, Architecture, Masonry Steam Vessels, Mills, Limes, Mortars, Cements, etc.
pages, leather, pocket-book form, $\$ 4.000$. For sale by papes, leather, pocket-book form, 84.00 . For sale by
Munn $\&$ Co.., 861 Broadway. New York. Woodworking Machinery of all kinds. The Bentel \&
M Catechism on the LIocomotite. By M. N. Forney.
With 19 plates, 227 engravings, and 600 pages. $\$ 2.50$. Sent With 19 plates, 227 engravings, and 600 pages. 2.50. Sent
on reeipt of the price by Munn $\&$ Co., 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, V. Y. Pumps for liquids, air, and gases. New catalogue

The Knowles Steam Pump Works, 44 Washington S.. Boston, and 93 Liberty St., New York, have just isproved forms of Pumping Machinery of the and imduplex, steam and power type. This catalogue will be nailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Nickel Plating.-Sole manufacturers cast nickel anLittle Wonder." A perfect Electro Plating, Machine. ole manufacturers of the new Dip Lacquer Kristaline. Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of Supplement Cataven Ming in pursuit of infor
 tiflic subject, can have catalogue of contents of the ScIantific Ambrican SUPPlement sent to them free.
The Suplement contains lengthy articles embracing the Supherimernt contains lengthy articles embrengineering, mechanics, and physical ecience. Address Munn \& Co.. Publishers. New York. Planing and Matching Machines. All kinds Wood Beach's Improved Pat. Thread Cutting and Diamond
Point Lathe Tool. Billings \& Spencer Co., Hartford, Ct. The Improved Hydraulic Jacks, Punches, and Tube Frict Tight Tight and Slack Barrel Machinery a specialty. John Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 366. Catarrh Cured.
A clergyman, after years of suffering from thatloathsome
disease, catarrh, and vainly trying every known remed t last found a prescription which completely cured and aved him from death. Any sufferer from this dreadful Dr. Lawrence, 212 East 9th St., New York, will receive of charge.
For weak lungs, spitting of blood, shortness of breath, ierce's " G olden sweats, and all lingering coughs, Dr. med. Superior to cod liver oil. By drugkists
Iron and Steel Wire, Wire Rope, Wire Rope TramLick Telescope and all smaller sizes built by Warner nd, Ohio.
Wrinkles and Recipes. Compiled from the Soientrprocesses, and directions, for the Mechanic, Enginee Farmer, and Housekeeper. With a Color Tempertng Scale, and numerous wood engravings. Revised by Prof.
Thurston and Vander Weyde, and Engineers Buel and Rose. 12mo, cloth,
Broadway, New York.

Yadeck maris

HINTS TO CORRESPONDENTS.

(1) G. W. T. asks for a proper formula for making solid blue ink, or marking paste, to be used
with a brush for stenciling. A. Try the following :
Sta
 and shellac in some of the water till they are dis
solved, and withdraw from the fire. When the soluion has become cold, add the rest of the 25 ounce of water, and the ultramarine. When it is to be used
with a stencil, it must be made thicker than when it is to be applied with a marking brush
(2) H. S. McC. asks for a receipt for refining lard. A. The process for purifying lard com mercially requires a complicated apparatus. In an or
dinary way lard may be purified by heating the melied fat with some sulphuric acid of 1.3 to 145 specific grav ity, when the fat will separate itself in a pure conditio
(3) J. W. P. asks how to polish ambe mouth pieces of cigar holders, which have been scraped with a knife blade. A. By rubbing with whiting and
water, and finally with a little olive oil well rubbed th a piece of fiannel.
(4) F. J. K. asks for a short receipt for reducing gold of different degrees of fineness to a mass
of a single carat throughout. A. Melt the gold in a vered crucible and stir or shake well.
(5) A. T. P. asks : 1. What is the best or a good, cement for tableting writing paper? A. Try either of the following: a. The highest grade trans-
parent glue is soaked 10 minutes in water and melted to rent glue is soaked 10 minutes in water and melted b. of glue. It is colored with alcoholic solution aniline or cochineal. b. Comtnon glue, with about 5 per cent glycerine. c. Crude gutta percha dissolve in carbon disulphide to the consistence of mucilage. The materials used in making this glue or cement for pads vary in grade, so that some experiment is neces sary to make a good preparation. 2 . Is there any chemical that will keep clothes from turning yellow that would not also be injurious to the fabric. We in preference to the use of any chemical.
(6) W. J. F. asks for a receipt for clean ing black silk. A. See the "Removal of Stains and Grease S
No. 158.
(7) H. M. G. asks: 1. Where can I get Zincotypes and Other Photographic Printing "Photo Zincotypes and Other Photographic Printing Methods
for the Printing Press," published in the ScIENTIFIC American of July 24, 1886, page 49? What am I to ask for? A. From the receipt as given on page 49 any druggist should be competent to make the prepara tion, otherwise apply to E. \& H. T. Anthony, New
York, giving reference, and they will supply it York, glving reference, and they will supply it. 2. with working drawings, descriptive of a large dynamo working drawings for a large dynamo
(8) J. G. P. asks for a recipe by which he can caunse India ink to remain lignid, keep from spoiling, and be waterproof, in a word, a recipe for
waterproof drawing ink. A. We know of no means by waterproof drawing ink. A. We know of no means by
which, if any material be added to India ink, it can be made waterproof, but would suggest that the drawin Dispolve 30 to 40 parts of dammar in 180 parts of ace one, and then mix 40 parts
of thickly fiuid collodion.
(9) F. K. asks what coloring matter to ix with silicate of soda in order to obtain a white col ored paint? A. Try oxide of zinc. It will mix readily with silicate of soda.
(10) E. S. A. S. asks for a receipt for Try the following : Castor oil $1 / 2$ pint, 95 per cen Try the following: Castor oil $1 / 2$ pint, 95 per cen
alcohol $1 / 2$ pint, tincture cantharides $1 / 2$ ounce, oil o bergamot 2 drachms. Color a pale pink with alkanet (11) E. W. M. writes: I have made a ery good ink as follows: Water $1 / 2$ pint, extract of \log wood 60 grains, yellow chromate of potash 5 grains,
but after standing a few days it gets ropy, so that cannot use it. Can you tell me how to overcome the difificultys A . Itis one of the peculiarities of the ink made with chromate of potash. You will find numer mens other receipts in SoIENTIFIO AmERICAN SUPPLE
MEN: 157 , of which the aniline black ink is probably best suited to your wants.
(12) M. E. W. asks : 1. What kind o oil is best for oiling paper? Oil that is least liable to heat, and which will dry quickest? A. Use a boiled inc sulphate, and burnt umber, one ounce of each pe gallon. 2. What il do makers of those old fashioned yellow colored oil coats use, such as boatmen and cartmen used to weary A. Boiled linseed oil.
(13) E. O. E asks the best method of re The glass can be eses after being roughened by use . The glass can be made smooth by the use of moist or rouge moistened with water, with rubbers of ha felt, finishing with a little moistened putty powder.

TO INVENTORS.

An experience of forty years, and the preparation o ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices,
which are low, in accordance with the times and our exensive facilities for conducting the business. Address
MUNN \& CO., office ScIENTIFIC AMERICAN 361 Broad way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

November 2, 1886,

AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.] Abdominal protector, I. J. Wing.................... 351,893
Alarm. See Burglar alarm. Door alarm. Fire
 Amimal trap, J. Kemp................................. 351,929
Animal trap, J. J. Skinner....... .. 351,007 , 351,808, 351,810 Auger, earth. C. A. F. Peters.......................... 352,001
Axle and hub, vehicle, J. N. Harris.............. 351,66 Axle boxes, dust guard for car, D. S. Stimson..........................944
Axi,765 Axle skeins, making. R. Gracey (r)................... 10,776
Bar. See Folding clothes bar. Bath rubber, J. B. Laughton................................... 351,927
Beading tool, o. . . Hildebrand
Belting, B. L. Stowe (r).............................. 10,777
Bench Bench do, , M. M. Farcher
Bicycle, Gibbons \& Meneely................................. 351,972 Blackboard and map support, combined, H. E.
Hayes..914 Blasting earth. H. H. Bourne..51,951
B51, Board. See Wash board.
\qquad

Boot or shoe, J. J. Snyder..31,81,89
Boots or shoes, half fole for, D. Banks.........353
Boots or shoes, inner sole for. H. Buckingham.... 351,849

Bottle cleaner,
Bottle stopper, L. Atwood
ottle stopper. Hentschke \& Brown................ 351.730 ${ }_{851,769}^{351,798}$
Bottles, alarm for poison, M. Fulda.................. 352,051
Box. See Change and fare box. Fare box.

Brick mould, T. W. Corby 31,780
352,042
Bristle bunching machine, A. C. Estabrook, ${ }^{3} 1,908,851,909$

Brooder, e. s. Packard.. ..8183 351.177 Broom shield, S. Kellogg.................

Brush, commutator, o. J. Van Depoe...............................35,.074
3rush, fountain or hydraulic, T. F. Seery......... 352.009
Bucket, conveyer, H. W. Avery... 352,
Buckles, locking device for, S. L. Waldman..... 352 ,
Buildings, combined land anchor and lightning
conductor for, G. Stites.................... 351.813
conductor for, G. Site....
Burglar alarm, J. W. Hoffman
Button, C. A. Pfenning.
Cable grip, C. A. Howe.
Car brake, automatic, A.
ar coupling, J. A. Brill...
Car coupling, M. W. Codding
Car coupling, P. Frank....
ar coupling, W. V. Reed.
Car seat, G. Harvey.
Car, stock, B. F. Williams.
ars, draw hook for street, A. Rap........................... 351, 351
Carriage, child's, $\mathbf{0}$. Unzicker..................... 351
arrial Carriage top, F. C. Zanetti.
arrier. See Hay carrier.
Cartridge loading machine, W. Hill. 351,981
Dimon .. 351,747
Greenough.........
351,861
351,789
Chair and cot, convertible, W. H. Phillips......... 352,067
hair,

lamp. See Trouser clamp.

Clock, electric alarm, Derrick \& Brott....... 851,746
Clothes line, frame, c. . . Williams................ 851,021
Coffn, Crane \& Jewett....................... 351,42
offin handle, H. W. Morgan.
Color or ink pad, J. B. Laughton
Cotton chopper and cultivator, J. K. P. Shelton... $351,1,945$
otton opener, R. Kitson......... 351,868
Coupling. See Car coupling. Thill coupling.

```
Kornacher......................................... 351,870
Cuff hasp, J. W. Hollingsworth............................73
351,767
```


Cultivator and pulverizer, H. F. Jones............. 35,
Cutter. See Cigar cutter. Heel lift cutter. Meat
Dental engine hand piece, A. Weber................. 851,821
Ditching machine, J. D. McAnlis.................. 351,930
Doll, speaking and singing, W. J. Lynd.... 351,785

k, sliding, C. J. Whitmore.

\%.......			Provertisements.
pht equalizer, C. F. Holck	icator, Davis \& McDonough. 353, 351,967	Stoves, furnaces, etc., grate for, Sugar in boxes, machine for pack	
mur, A. L. Briton...........			
	coine		
	Meat saspending hookk. J. Cairss.................. 3il,38		
		ㄷ.12318,	
enine, H.J. Ennis,	Mirror and brush, hand. w.........................	,	
ator. See Grain elevator. Gravel elevator.			
${ }_{3}^{32} 2.248$	Organ. reed. H. schenesinger..................... 361.1093		,
ne			
Stis			
${ }_{35159}$			
Fire alarm, . H. Earles..........................31.733		Tube.	
Yrame see lothes inet		Ville	
$\underset{\substack{\text { Fruit gatherer, } \\ \text { Funeral } \\ \text { averit }}}{ }$			
			PENMANSHIP CUIDE!
${ }_{5}^{35200}$			
${ }_{\text {Gas }}^{\text {Gas. arbur or muid }}$	Planing matione. metal. L. W. Wornd................31.339		
Gate, zullock δ casce.......................... 32.080			
		Vel	
Giovese separabile button for, E. Princriele...........		velocipedes	
			GODDNOW \& WIGHTMAN
			\& co., meriden,
	tor.	$\left.\right\|_{\mathrm{w}_{\mathrm{Waf}}^{\mathrm{wai}}}$	
	Ruil		
Cuns, cartriage feeder for ma.			- 22 corthand -theet, n. y.
mef			
Hande. See Brake ro			
Hanger.			
R.	lator. See Electric c	Water meter with revolving pistons, J. A. T. Till	
mrness atacan	eexuator. Temperat		
		Wate	
		Windows, tracket for use in the draping or, J.c.	
Harvesting machine, W. N. Whiteley............... 351,891		wre	
		Wires	
Heatina apparatus, water J J. A. Fish.............. 3181898		Wood bending and dryinn machine	
Heel protector. FF.J. Herrice................... 3i,9,95			
des			
	Seam		
Sting			
Pen holder. Rein Watch movement hol		Oil cloth, C. T. \& V. E. M eyer.............................. 1677 to 16,971 Picture or looking glass frame. B. S. Donahue...... 16.965	
	Semin ma		Stoul-Mieadowcrofl Co.,
			agenits of the ED
	s		FULTON
	Schott.	DE	P. O. Box 2411. NEW YORK.
		${ }^{\text {Bu }}$	
	H. Dasto		
	from sinkil		
İee reeper,	${ }_{\text {shir }}^{\text {shir }}$		
M. . Hals			
Hecter			
i. w.			
	sin	La	
			DRILL
	silioin		
		$\begin{aligned} & \text { Pope } \\ & \text { Poul } \end{aligned}$	
			Erri.
		wainer's, W. B. Arnold 13,784	
me.			
See Dod	Sti.1.		
d		Braad way, New York.' Wealsof furnish opoies of patents	

BOOKS

OnMechanical Drawing, Mechanical Engineering, Steam Engines, Boilers, Etc.

Armenkaud, Amoroux and Johnson-The Pracchinist's and Eng ineer's Drawing Companion: A Acom- plete cours of Mechanieal Engnering and A chite- tural Drawing lilus Armstrong. - II he Construction and Managennent of Balser. The Mathematical Theory of the Steam Ennumerous diagrams. 12 mo Practical Treatise on High 75 Pressure 75 senteam Coal, including descriptions of various Mechanical De- vices, for the Hconomic Generation of Heat by the Combustion of Fuel, whether Solid, Liquid or Gaseous. Modern Engines and Boilers for Land And Martions of poses. 1 IPY ne. The Practical Model Calculator: For the Engineer, Mechanic and Manufacturer of Engine Work, Engineer, Mechanic and Manufacturer of Engine Work, Naval Architect, Miner and Millwright. $8 \mathbf{8 v o}$, nearly 600 pages, Cerimp: comprising Metacilurgy, Moulding, Casting, and Methos for preventing Corrosion and the forma- tion or scale. 65 ills. Evo, Ed Waris. Modern American Locomotive Engines. pine: for the use of Engineers, Firemen and Mechan nics. nhoers and Marine Etyriactice of tiders in the the eminent Engi- 30 large plates of the most recent American Marine En- En- Sutionary, Portable and Steam Fire Rngines, Stean postage hat thove publication of prices, to any sent budress in in the world \qquad HENRY CAREY, BAIRD \& CO., INDUSTRIALPUBLISHERS, BOOKSELLERS \& IMPORTERS

The Techno-Chemical Receipt Book

HENRY CAREY BAIRD.\& CO., Industrial Pablishers, Booksellers, and Importer
$\mathbf{8 1 0}$ Walnut St., Philadelphia, Pa., U. S. A. ICE-BOATS - THEIR CONSTRUCTION

 F@R SALE GNEAPA A Tuerk Water Moto
 Bibb's Celebrated Original
BALTTMORE FIRE-PLACE HEATERS,

DEAFNESS

COOSSUMPTION CUBED

AND LUNC AFFECTIONS
Home reatment Alatediscoverybya celebratedqer-

CURE Finili A AF

=- .

ELEATRIGAL Ediow Thompon Solictor

- LEES Metantruelef Fhalararand noter

PIPE COVERINGS
Absolutely Fire Proof. alided pacing, mill board, sheathing, cement, fibre and spicialties,

MACHINE SHOP.
 prices, Mail orders a specialty, $\mathbf{2}$ Cent

RUBBER BELTING, PACKING, HOSE. -

RUBEEP

BUBBER APsecialt
RUBBER' MATTINC
AND STAIR TREADS
NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y.
JoHN H. CHERVER, Treas.,
J. D. CREEVER, Dep'y Treas.
ICE \& REFRIGERATING
$\$ 10.00$ to $\$ 50.00$

MALLEABLE

 BIC OFFER.

 LOVE

MODEL and Sendforcircdars. CXPERIMENTA ${ }_{\text {WOR }}^{\text {C.E.Jones\&Bro. }}$

HOISTING ENGINES ${ }^{20}=$
LIDGERWOOD MANUFACTURING CO., 96 LIBERTY STREET, NEW FORK
HYDRAULIC FLANGED HEADS,
OF IRON or STEEL, FOR BOILER and TANK MAKERS.
Unequaled for Strength and Uniformity. THE DICKSON MANUFACTURING CO.

96 Lake Street, Chicago.

TO THE STEEL MANUFACTURERS

R:AVY NOTICE WEAMENT,

$\frac{\text { New }}{\text { or }}$

 The STATUE OP IIBERTY, NEW YORK.

PIAYS: PIAYS: PIAYS: Plays:

ESSENTIAL ELEMENTS OF PLANTS.

DRY AIR REFRIGERATING MACHINE.

2fdvertisements.
Inide Peace, each ineertion :: Tha aboive are oharges per agato iliotiont eifh

LITTLE WONDERS.

Tools for Emery Wheels.

Carbons furnished for the same. And new
sla-
s, diamond reset. Send number of Tool desired to J. DICKINSON, 64 Nassau St., N. Y

Order from our "'Special List." THE JOHN T. NOYE MFG. CO.,
MILL PROPERTY. LIGHY, POWER and sPA
RENT at a BARGAIN. Situated in a thriving city in N N. J., ,0 miles from N. Y.
City. Abundant skilleded abor at reasonale rates.
pectally suited for woo-working business, for which
 t. WALTER THOMPSON, 39 Park Row, New York City
J. ICE-HOUSE AND COLD ROOM.-BY R

PHOTOGRAPHIC OUTFITS Sorananent SHIELDS \& BROWN

FOR BOILERS and STEEAM PIPES FOR GAS AND W ATTER PIPES:

 SCIENTIFII AMERICAN SSPPLE

1

PATENTS.

MESSSRS. MUNN \& CO., in connection with the publi-
cation of the ScIENTIFIC AMERICAN, continue to ex for Inventors.
In this line of business they have had forty one years
experience, und now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of applications for Patents in the Unite
States, Canada, and Foreign Countries. Messrs Munn \& for Books, Labels, Reissues, Assignments, and Reports on Inifingemen ts of Patents. All business intrusted to them is done wit
A pamphlet sent free of charge, on application, con

 MUNN \& CO., Solicitors of Patents, 361 Broad way, New York. cific Building, near 7th Street, Washington, D. C.

ARTESIAN

INTERNATIONAL INSTITUTE FOR Liquefied Carrbonic Gas.

 95 MILK ST., BOSTON, MASS,

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
THE COPYING PAD.-HOW TO MAKE

6EVERY USER OF MACHINERY How to Use Loose Pulleys,
 seint free to any adares.
VAN DUZEN \& TIFT, Cincinnati,
0

आupud

Ícientific Anmexicam

The Most Popular Scientific Paper in the World.

 Only $\$ 3.00$ a Year, including Postage. Weekly.This widely circulated and splendidly illustrated paper is publisked weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
cepresenting Engineering Works, Steam Machinery epresenting Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography̆, Architectare, Agriculture, Horticulture, Natural History, etc. All Classes of Readers ind in the SCIENTIFIC
American a popular resume of the best scientific inAMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as his journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in very community where it circulates.
TIETC AMERIGAN Will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pu
lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.- One extra copy of the SCIENTIFIC AMERI-CAN will be supplied gratis for every club of flve subscribers
at $\$ 3.00$ each; additional copies at same proportionate
rate. The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay-

MIUINAN \& CO., 361 Broadway, New York. TEX
Scienfific American Supplement. This is a separate and distinct publication from
THi ScIENTIFIO American; but is uniform therewith in size, every number containing sixteen large pages. The Scientific American Supplement is published weekiv, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, A rchæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Econogy, Bography, Medicine, etc. A vast amount of fresh
my
and valuable information pertaining to these and allied and valuable information pertainifg to these and allied
subjects is given, the whole profusely illustrated with engravings.
The most i
most important Ensineering Works, Mechanisms, nd described in the home and abroad are represented Price for the SUPPLEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AMfor one year for $\$.00$. Address and remit by postal order. express money order, or check, MUNN \& Co., 361 B
To Foreign Subscribers.-Under the facilities of the Postal Union, the SCIENTIFTC AMERIOAN is nowsent by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia. and all other
British colonies ; to France, Austria, Belgium, Germany insia and all other Furopean States. Jopan Brazil Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted, 84, goli, for Scientific American, one year; \$9, gold,
for both ScIENTIFIC Ambrican ani Supplement for one year. This includes pcstare, which we pay. Remit one year. This includes pcstage, which we pay. Remit
by postal or express mones order, or draft to order of
MUNN \& Co.. 361 Broad way, New York.
PRINTING INKES,

