

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. $\underset{[\text { NEW }}{\text { Vol. LV.-~NO. }} \underset{\text { SERIEs.] }}{19 .]}$

NEW YORK, NOVEMBER 6, 1886.

THE CONSTRUCTION OF THE CYCLORAMA.-[See page $2996 . j$

grinutific ghmetian.

ESTABLISHED 1845
UNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year. postape included...

 The Scientific American Supplement

 The safest way to remit is by draft, postal order, express money order, or
ep istered 1 tetern. $\&$ Co., 361 Broadway, corner of Franklin Street, New York.

Scientific American Export Edition

NEW YORK, SATURDAY, NOVEMBER 6, 1886.
Contents.

TABLE OF CONTENTS OF
 SCIENTIFIC AMERICAN SUPPLEMENT
 No. 5 ©
 For the Week Ending November 6, 1886.

Price 10 cents. For sale by all newsdealers.
AGRICULTURE.-How to Raise Seedinn Strawberries.-The origin
of the Cumberland seeding deseribed

VI. ENGNEERLNG. Robsin's Improved Gas Hammer.-A new tool

VHi GEOLOGY-Pressure Exerted by Water in the soill-The capir

viII. MILITARX ENGINEERING--Military Ballooning Evolutions

the inadguration of the statue of liberty. About the year 1870, the French sculptor Barthold having conceived the idea of executing a colossa statue, to be presented by his nation to the people of America, consulted with his friends and arranged a scheme for carrying out his ideas. Four years later the plan was made public. By subscriptions from the people of France, it was proposed to raise sufficient money to pay for the expenses of the work. A popular subscription was set on foot, and with the aid of entertainments the necessary sum was raised, and in 1876 the work was well under way. A part of the statue was sent to this country. Visitors to the Centennial in 1876 will remember the hand holding the torch, that was erected in the grounds near the main building. Subsequently it was placed in Madison Square in this city. The design selected was "Liberty enlightening the World," and this was her hand holding aloft the fiaming torch.
In 1877 the necessary Act of Congress was passed accepting the statue and assigning Bedloe's Island, in the harbor of New York, as the place for its erection. In 1883, the statue being completed, the pedestal was commenced. This was erected by subscriptions and by the proceeds of entertainments in this country. The pedestal represents America's contribution to the design. Its situation on Bedloe's, now named Liberty Island, brings it close to the side of every vessel entering or leaving the port, while the isolation of the place prevents it from being interfered with by any other structure. It must always be visible from base to immit
On October 28 the statue was formally preserted to the people of the United States, and the public ceremonies in connection therewith constituted one of the greatest pageants of the day. In the city a grand
parade from the upper streets down to the Battery, at the southerly end of the city, took place, in which the militia, the old volunteer fire department, and many societies were represented. This was a splendid affair.
The naval demonstration was also very fine. A large number of steamers, formed in order of naval parade, came down the Hudson River and gathered around the base of the great statue, which towers above Liberty Island. Near this point, the United States men of war Tennessee, Minnesota, Yantic, Jamestown, and Saratoga were anchored in line. The United States steamer Dispatch carried President Cleveland. As she steamed up and down the line of war vessels to review them, their yards and bowsprits were manned by the sailors, standing hand in hand high in air, and forming a most impressive spectacle. The display of bunting on all sides was profuse.
The ceremonies at the base of the statue included an address in French by Count Senator Ferdinand de Lesseps. His concluding words, which we give here, we may hope are a true prophecy:
'Soon, gentlemen, we will find ourselves reunited again to celebrate a new Pacific conquest. Farewell until we meet at Panama, where the thirty-eight stars of North America will come to fioat by the side of the banners of the independent States of South Amer ica, and will form in the New World for the good of humanity the peaceful and fruitful alliance of the AngloSaxon and the Franco-Latin races."
The presentation address followed; it was given by the Hon. William M. Evarts, as chairman of the American committee, and was addressed to the President. In a short speech the latter accepted the statue
name of the
on the day.
To the spectators on the many steamers, the mat ning of the yards and the naval salutes were the most interesting parts of the ceremony. In addition to the firing, the great fleet of steamers blew their whistles continually during these times. In the grand salute a battery of the Gatling guns joined, and the effect of the artillery fired at rapid intervals, with the continuous roll of the Gatling guns as a background for thei intermittent rounds, was very fine.

THE SCIENCE OF DRINKING.

According to a recent report by the Hon. Geo. C. Tanner, United States Consul at Chemnitz, Germany the citizens of this country have as yet no adequate
idea of the real science of drinking. He gives the total beer production of the German empire for the year 1885 at $1,100,000,000$, or one billion one hundred millions of gallons, and of wines and other alcoholic liquors, nine hundred millions of gallons, making a total of two thousand millions of gallons. This, the consul states, was the actual consumption in the empire, as the importations are equal to the exporta tions. The aggregate production for Germany he gives at forty gallons a year per capita, estimating the
population at fifty millions. He gives the consumption in this country at ten gallons per capita. Consu Tanner further says:
"I have given this subject careful attention, and have stated the entire beer production of Germany
of my figures. One can, then, form some idea of the enormous quantity of beer produced, when it would form a lake more than one mile square and six and a half feet deep, or it would make a running stream as large as some of our rivers.
"This is only taking into account one item in the economy of drinking in Germany. Wines and all kinds of spirituous liquors are freely used; wines to a much greater extent than stronger liquors. It may be safely stated that the consumption of all intoxicant in this empire would reach nearly two billions of gal ons per annum. This being the case, some faint con ception of the enormous drinking capacity of the Germans can be formed. The hops, barley, rye, potatoes, and other ingredients that enter into the manufacture of this enormous quantity of liquors would be more than two billions of pounds, and would form a good sized mountain if placed in one heap. Beer is the national beverage, and is used as such, if not to a greater extent than water, then assuredly equally so.

Wines are used by the wealthier classes at meals, and very extensively used; but beer is never absent from a German table of the rich or poor, and it is a decided favorite with all true Germans.

Since my arrival in Germany, I have to see the first glass of water drunk. Beer must be furnished servant for their repasts. I have seen children hardly weaned given beer without any apparent bad effect.

Science may be carried into everything. The science of drinking has been known and practiced in Europe for ages, and this is a science, simple as it may appear, when compared with the blind, irrational, and suicidal manner of drinking in the United States This science consists simply in the tardiness of drink ing. All drinks are taken sip by sip, a half or three quarters of an hour being consumed for a glass of beer. This is so simple that one is liable to ridicule for lay ing stress upon it, and yet on this one point hinges, in my opinion, a question of vast importance to Ameri cans. By this manner of drinking, the blood is aroused to a greater activity in so gradual a manner that ther is no violent derangement of the animal economy. By slow drinking the German accomplishes the object o drinking, and gives his animal economy a chance to say, 'Hold, enough !' which only slow drinking will do.
'Woman unquestionably carries a purifying influence with her wherever she goes, and her presence in the drinking places of Europe drives from them that class of low vagabonds that hang around American drinking places. Hence, one never sees a drunken man in a cafe, and rarely, even, on the street. Per haps no better possible illustration of the purifying in fluences of woman could be found.

Cafes are open to all classes, but the lower classes seldom visit them; they would be abashed by doing so as much as they would by entering a parlor where they would meet refinement and elegant manners There are some exceptions to this rule in the large cities, but this is confined to cafes that are well known and ladies avoid them; but there are no drinking places in Germany but what a lady may enter with all propriety.

Drunkenness is rare, and if so, it rarely manifests tself in a boisterous or belligerent manner, but more frequently takes the shape of song, fun, and a generia pleasurable feeling of warmth, energy, and self-command, and hence those horrid crimes that sometimes shock us in the United States are rarety treart of Here Then, why should there exist such a difference in the vils of drinking in Europe and in the United States? t is manifestly the result of the manner of drinking in ogue in the two hemispheres."
Some curious inferences might be drawn from Consul Tanner's report. Figuratively regarded, the time wasted by the Germans in swilling beer at half or three-quarters of an hour per glass must be enormous but then it is alleged to save them from intoxication. Can it be true the trouble of the Americans is they do not drink enough, and if they would only follow the German science in the matter, namely, quadruple their drinks and sit longer over their cups, they would, like the Teutons, become a quiet, sober, and happy people?

Economy of Heat.
The steamship Bleville, of Havre, recently built and engined by Messrs. Alex. Stephen \& Sons, of Linthouse, is a steel screw steamer, 300 ft . long, and is fitted with triple expansion engines of 210 N. H. P. The principal novelty is in the design of the boilers. In the uptakes of these-Kemp's patent compound high and ow temperature-tubes are so arranged that the water, before it enters the high temperature boiler, is heated by the gases from the fires, which would otherwise be lost. On her trials, the feed-water, which leaves the engine, and in ordinary cases enters the boilers at about 120°, was raised to about 360° Fah. The temperature of the waste gases on leaving the tubes of the ordinary boiler was shown by pyrometer to be about 630° Fah. This was reduced to about 300°, showing how much of the heat that generally is wasted is abhow much of the heat
sorbed in this design.

To Recover Photo Silver Wrste

 c. Hopkins.In common with most photographers, I have a small dark room, but because there is a sink and waste-pipe in the room, I do my toning there.
At the end of the sink I had, until recently, a large barrel into which I poured the first two or three washings from my prints, and to which I would occasionally add a handful of salt. When the barrel became full (which took a week or ten days), I put in more acid to clear it up, as directed in a circular issued by the refiners. But ${ }^{\prime}$ found that it did not clear well, either because I used too much salt or not enough acid ; and, drawing off the water before it had settled, I knew that I was wasting a great deal of silver. Then, too, a barrel of stagnant water, standing in a small room, is not conducive to health or comfort. So I decided to lowing simple process
After soaking my prints for five minutes in water made slightly acid by acetic acid, I remove them to another dish, and add to the water from which I have just taken them about a teaspoonful of salt, and stir it rapidly for a moment with the hand, when it becomes as white and thick as milk. This solution I then pour into a common wooden pail, which will hold enough water for the first washing of a hundred prints, and the next day, when I am ready to tone again, I find that my solution has become perfectly clear, and in the bottom of the pail I have a clear white sediment -pure chloride of silver. I then pour off the water to within an inch of the bottom, and the pail is then ready to be filled again.
I find that by adding salt to the second water in which I washed the prints, there is hardly a trace of silver, and it is not worth saving. About once a month I pour the settlings from the pail through a fine cloth to filter it, and throw the cloth and contents into the silver paper clippings. In this way I save more than half of the silver used in making the print.-An thony's Bulletin.

Mineral Products of the United States, 1885.

 The following condensed statement of the mineral production of the United States in the calendar year 1885 is from advance proof sheets of a report shortly/ to be issued by the United States Geological Survgf This volume will be the third of the series know as "Mineral Resources" reports, prepared by the Division of Mining Statistics and Technology.Metallic Products of the United States in 1885.

	Quantity.	Value.
Pip iron, spot value..................tons	4,044,525	\$64,772,400
Gold, coining value...t.i، ${ }^{\text {az. }}$	39,910,279	51,600,000
Copper, \%alue at New York city $a \ldots . .1 . . . \mathrm{lb}$.	170,962,607	31,801,000
Lead, value at New York city..........tons	129,412	10,469,431
Zinc, value at New York city "	40.688	3,539,856
Quicksil ver, value at.San Francisco... flasks	32,073	979,189
Nickel, value at Philadelphia...........lb.	277.904	191,753
Platinum, value, crude, New York city ${ }^{\text {A }}$ ($\begin{array}{r}3,400 \\ \hline 20\end{array}$	2,550 187
Total		\$181,589,365

a Including copper from imported pyrites
Non-metallic Mineral Products of the United States in 1885 (spot values)

	Quantity.	Value.
anthracite, mined elsewhere than in Pennsylvania tons a	64,840,668	\$82,347.040
Pennsylvania anthracite............. "b b	34,228,548	${ }^{76,671,948}$
Petroleum..........bbl.	21,842,041	19,193,694
Building stone......................... $\mathrm{b}_{\text {bi }}$	40,000,000	20,000,000
Lime....................................... ${ }^{\text {Salt. }}$	7,038.653	4,827,345
Cement.............. $\ldots \ldots \ldots \ldots$ "	4,150,000	3,492,500
South Carolina phosphate rock.......l. tons	437,856	2,846.064
Limestone for iron flux......................ilid	9,148,401	${ }_{1,312,845}^{1,64,656}$
Natural gas....		4,854,200
Zinc, white........................s. tons	15,000	1,050,000
Concentrated borax...............lb.	,000,000	480,000
New Jersey marls........s. tons	875,000 92,000	-161,000
$\xrightarrow{\text { Mica... }}$	49,000	220,500
Gold quartz souvenirs, jewelry, etc.........		140,000 19028
	23,258 15.000	190.281
Oruce barytes.	15,950	43,575
Precious stones...		69,900
Bromineib.	310,000	89,900
Feldspar...........................1. tons		680,000 40,000
Chrome iron ore.........................s.	${ }^{300}$	9,000
Slate ground as a pigment...............]. "	1,975	24,687
Sulphur...................s. "،	715	17,875
Asphaltum.	3,000 68,723	10,500 6537
Cobalc oxid	68,723	65,373
Total............................		\$239,431,991

a The commercial product that is, the amount marketed, was onl
a The commercial product, that
$63,569,284$ tons, valued at $\$ 80,640,564$.
$63,569,284$ tons, valued at $\$ 80,640,564$.
b The commercial product, that is, the amount marketed, was only
6 The commercial product, that
$32,265,421$ tons, valued at $\$ 72,274,544$.
Resume of the Values of the Metallic and Non-Metallic Mineral Substances produced in the United Stxtes in 1885.

Metals. \$181,589,365 $\stackrel{239,431,991}{\$ 491,021,356}$ | $\$ 441,51,350$ |
| :---: |
| $7,50,000$ |

Ostriches at Los Angeles.
Within six miles of this beautiful place, on what is known as the old Temple street road, Dr. C. J. Sketchley has started an ostrich farm. He was one of the pioneers in ostrich farming in Africa, where he engaged in the business for many years, and is the author of a number of books on the ostrich and the best methods of ostrich farming. A visit to Los Angeles convinced the doctor that ostrich farming could be successfully carried on there, and he resolved to make the experi ment. The result is the Sketchley ostrich farm.
On the sixty acres of land devoted to the ostriches there are thirty pairs of these beautiful birds, besides a number of young ones recently hatched.
Their food consists almost wholly of corn and alfalfa, which is a beautiful plant of the Luzerne family. Long experience has shown that this bill of fare will cause the ostrich to produce more feathers and of a better quality than any other diet. Each male is mated, and the two birds have two acres of ground. The land is fenced off into lots of one acre each. The two birds are kept in one of these lots until they have eaten off all the alfalfa, when they are transferred to the other, being thus alternated between the two. From the observatory tower in the center of the doctor's residence the ostrich grounds look like an immense chessboard, and the gigantic birds like the big "All the full over it.
"All the full grown ostriches you see," said the doctor, "I imported directly from Africa, landing them in this country at Galveston, and bringing with them four Madrasese men and one woman, the people of that tribe being more familiar with the ostrich than any native Africans. Thus far my experience has succeeded beyond my expectations. Not only are the ostriches quite as healthy as in Africa, but they are actually more prolific here than in their native country, both in the number of eggs they lay and the number of young ones they hatch, and also in the quantity of feathers they produce-results due, I believe, to this glorious climate, which seems greatly to increase the fertility of all animals. The feathers are fully equal in phl respects to any grown in Africa.
The height of the birds is from 8 to 12 feet. Their meight varies from 300 to 400 pounds. The male is much the larger, and is black, while the female is gray. Where, then, you will ask, do white ostrich feathers come from? They are found on both the male and female birds among the loose feathers of the wings and tail. It is the fact that they are so much rarer that makes them so much more desired, and, consequently, so much higher in price than black or gray feathers, for in some respects I consider them inferior to the other feathers.
"The female ostrich does not begin to lay eggs until it is four years old, but it produces its first crop of feathers at the end of its first year. Every seven months thereafter its plumage is ready for market, yielding about 25 of the very finest feathers, besides a large number of less valuable ones. The feathers are not plucked, but are cut off, quite close to the skin, with large shears made for the purpose. No pain whatever is inflicted in the operation. Within a few days after the feathers have been cut the stubs dry and shrivel to such an extent that they are easily removed. The longest and finest white feathers are worth at wholesale $\$ 4$ apiece, and good feathers are worth $\$ 200$ a pound. The first clipping of young birds will average $\$ 40$ in value. Of course, it requires a good deal of capital to start a large ostrich farm, as a full $\$ 200$; but after it is once under way, the return from the investment is a large one.
"We very seldom permit the ostriches to do their own hatching, but most of it is performed by incubators. The old idea that ostriches seldom or never require water has long since been proved false. They drink frequently, and even bathe. We keep a water trough in each pen to enable them to do so. No one knows to what age an ostrich may attain, but I believe they are little short of inımortal. In Africa I have seen a pair of birds that were known to be over 80 years of age."

I reminded the doctor of a promise he had made me to show me a foot race between ostriches. We immediately went to a broad open space letween the ostrich pens and the house. One of the keepers opened the door of one of the pens, and in response to the doctor's call, two superb ostriches came running to him. After caressing the gentle creatures for a few moments he showed them a handful of figs, of which they are extremely fond. Two of his men then restrained the birds by placing nooses about their legs, until he and myself had walked away about a quarter of a mile. Then, at a signal from the doctor, the birds were released, and the race began. It was a rare sight. Ornithologists tell us that the stride of the ostrich when feeding is from 20 to 22 inches; when walking, but not feeding, 26 inches; and when terrified, from $113 / 8$ to 14 feet. It seemed to me that in this race for a
handful of figs from their master, these gigantic birds handful of figs from their master, these gigantic birds
covered the last-named distance at every stride. Like
the wind they came, their great necks stretched for ward and upward to their utmost length, and their wings working. ' They kept well abreast for nearly half the distance, and then one began to forge ahead. He increased his lead till within a short distance of us, when he turned his head, and, seeing that his compet itor was considerably in the rear, he slackened his pace, and, jogging up to the doctor, received his reward figs and caresses.
Besides Dr. Sketchley's farm there is another ostrich farm near Anaheim, a thriving town on the Southern Pacific Railroad, twenty-five miles from Los Angeles.N. Y. Sun.

dECISION RELATING TO PATENTS.

U. S. Circuit Court. - Western District of Penn-

 sylvania.THE PENNSYLVANIA DIAMOND DRILL COMPANY v.
Acheśon, J
The patents of Ball and Case, No. 247,872, dated Ocober 4, 1881, and No. 248,982, dated November 1, 1881, are for inventions made by them prior to similar inventions made by Allison, and described in his patent No. 261,978, dated August 1, 1882.
Allison, in 1870, conceived of the invention described in his patent of 1882 , and made rough sketches of the same, one of which is preserved ; but made no model, and did not consider the invention worth putting into a permanent form, and has never since made the machine; he applied for his patent, at the instance of his asoignee, aflet Ball and case nad applied promptly after invention and had obtained patents and had put the patented article on the market. Held that under these circumstances Ball and Case were prior inventors.
A mere conception not seasonably followed by some practical step counts for nothing as against a subsequent independent inventor, who, having complied with the patent laws, has obtained his patent.
One who has conceived of a new device and proceeded so far as to embody it in rough sketches, or even in finished drawings, cannot there stop and yet hold that field of invention against all comers for a period of twelve years.
It was sufficient to raise the question of priority of invention for defendants in their answer to deny that Allison was the original and first inventor, and to justify under the prior patents of Ball and Case without alleging an abandonment by Allison.
In an interference proceeding in 1873, upon a different invention of the same general character, Allison has testified to making the invention here in question ; but this testimony did not constitute invention any more than did the previous sketches.
Leiters patent No. 147,492, granted to G. Frisbee, February 17, 1874, for core lifters, declared valid and infringed by defendants.
Where the claim of the Frisbee patent was for the combination of an annular core lifter and a tube with an inner tapering recess, and the patent described a loose elastic cut ring within a tapering recess in a boring tube, and the defendants used a loose solid unelastic ring in a cylindrical recess in a boring tube, but this ring had four dependent springs with jaws, which engage with inclines at the lower end of the recess, and the purpose and mode of operation of the two devices were similar, the difference in the construction was not material, and the claim was intiringed.
Where the suit fails upon one patent and prevails upon another, the complainant is entitled to a decree ; upon the costs are the subject of equitable consideration

Evil of Indorsing.

I affirm, says Judge Waldo Brown, in the Bostor Traveler, that the system of indorsing is all wrong, and should be utterly abolished. I believe that it has been the financial ruin of more men than, perhaps, all other causes. I think that our young men especially should study the matter carefully in all its bearings, and adopt some settled policy to govern their conduct, so as to be ready to answer the man who asks them to sign his note. What responsibility does one assume when he indorses a note? Simply this: He is held for the payment of the amount in full, principal and interest, if the maker of the [note, through misfortune, mismanagement, or rascality, fails to pay it. Notice, the inagement, or rascality, fails to pay it. Notice, the indorser assumes all this responsibility, with no voice in
the management of the business and no share in the profits of the transaction, if it prove profitable; but with a certainty of loss if, for any of the reasons stated, the principal fails to pay the note.

Mr. T. V. Carpenter, long and favorably known to many readers of this paper, died at his home, Newton, Mass., on October 17. Mr. Carpenter had taken up his residence at Newton quite recently, but had returned to New York on business a few days before his death, where he contracted a cold, which developed into pneumonia, which terminated his life. Mr. Carpenter was a conscientious Christian gentleman, very much respected by a large circle of friends and by all much respected by a large circle of fr

DRAWBRIDGE GATE

This gate is so arranged as to be automaticallymoved to close the roadway when the bridge is opened, this closing being effected irrespective of the direction in which the bridge is moved. On each end of the bridge is a circular rack, engaging with pinions, A B (in the plan view, Fig. 2), mounted on vertical shafts stepped in the bulkhead. These shafts also carry drums, shown in the bulkhead. These shafts also carry drums, shown
in Fig. 4, back of which is a double drum, D, and a

QUATERMASS \& ELLSWORTH'S DRAWBRIDGE GATE.

number of revolutions. The hoisting pinion is fitted on a long steel feather on the crank shaft, and is made to slide out of gear when lowering by the brake. The main hoisting wheel is keyed to the barrel shaft by a sunk steel key, and has cast to it a strong brake ring. This ring is turned and fitted with a powerful wood-lined strap brake, capable of holding the maximum load suspended, and worked by a suitable lever from the foot plate. The chain barrel is 12 in . in di guiding sheave, C, carried by an adjustably mounted |lock nuts. This shaft is bored up, and has passbracket. An endless wire rope or chain passes around these drums, as shown in Fig. 2. The gate slides in slots in two posts mounted upon either side of the roadway. Two ropes, secured to opposite sides of the drum, D, pass under sheaves, EF, at the bottom of the posts, thence over sheaves at the top of the posts, and have their ends attached to the gate, which is provided with suitably arranged counterweights.
It is evident that, no matter in which direction the gate may be moved, the pinions will be rotated so as to carry the rope in the direction indicated by the arrows, so that the drum, D , will move to unwind its chains and permit the gate to move down. Appropriate stops prevent the gate from being lowered beyond a certain point. Fig. 3 represents a modification, yond a certain point. Fig. 3 represents a modification,
in which the barrier closing the road way consists of in which the barrier closing the road way consists of
two swinging arms, G, carried by vertical shafts having drums mounted upon them. The illustration clearly shows the manner of operating these arms.
This invention has been patented by Messrs. R. Quatermass and H. R. Ellsworth, of Moline, Kansas.

SCRAPING TOOL

Secured to a suitable handle is a bar of uniform width throughout its length, but diminishing in thickness from the end next the handle. Fitted to the bar is a clamp, shaped as shown in Fig. 3. The thin end of the bar is inserted between the arms and body of the clamp and a hardened and tempered scraping bit is placed between the clamp and the bir uebbar, the latter causes the clamp to draw tightly against the bit, which is held firmly in position for use. By means of this improvement, the bit may be made of uniform temper throughout its entire length, and may be moved forward as fast as it is worn away by grinding. In addition to the advantages secured by the adjustment of the scraper, this construction gives a peculiar elasticity, which causes the scraper to work smoothly.
This invention has been patented by Mr. James Wright, of Torrington, Conn.

STEAM TRAVELING CRANE.

The steam traveling crane forming the subject of illustration, by Henry J. Coles, of 89 Sumner Street, Southwark, is shown at the Liverpool Exhibition. It is of five tons power at a radius of 16 ft ., lighter loads being raised at proportionately greater radii. The crane has two steam cylinders, each 7 in. in diameter by 10 in . stroke, fitted with an improved form of reversing motion. The lifting gear is single purchase, of the proportions of about 8 to 1 ; and as the steam cylinders are of ample area, a quick speed of lifting is at. tained without running the engines at an excessive
ing through it a spindle fitted at the end with a cotter, this cotter being fitted to the female clutch and held by the spindle. A collar is formed at the outer end of the spindle, which runs in a circular box having phosphor-bronze friction washers on eitber side to take the thrust of the friction cone. The circular box is attached to a screw working in a suitable nut, so that by merely turning the box in either direction the female cone clutch is worked to correspond, and the rotating motion is imparted to the crane. This method of actuating the cones has been in use in these cranes for some years, and was adopted to obviate the great wear and tear which occurs in the case of a ring either wholly or partially encircling the clutch
The radius of the jib is varied at pleasure by means of steam derrick motion worked from the crank shaft by suitable bevel gearing driving a steel worm and tangent wheel. The wheel is fitted to the derrick chain barrel, and securely holds the jib locked in any position.
The crane also has its own propelling power for trav eling on the rails. The center pin is bored up, and a steel shaft passes through it, having bevel gearing fitted at the top driven from the crank shaft, with a pinion at the lower end gearing into a bevel wheel fitted to a shaft running in separate bearings under the traveling carriage. Chain wheels are fitted to this

cal type, $3 \mathrm{ft}$.6 in . in d ameter by 7 ft . high, having cross water tubes. The jib is of wrought iron, secured to lugs on the superstructure by wrought iron pins, the head being fitted with a chain sheave of very large diameter, which is bored and works on a turned pin.
The crane is mounted on substantial wrought iron ramed traveling carriage mounted on wheels and axles for $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. gauge, nd cross girders are pro vided at each end for blockng up when lifting the to each of the axles, by means of forged wrought irga pitch chains.

The chain barrel is 12 in . in di-
ameter, of great width, having ameter, of great width, having
turned flanges; and for any ordinary depth of working it coils the whole of the chain without a lap. The maximum loads are raised at a moderate speed, using the snatch block and return chain. A very quick speed for loads up to about $21 / 2$ tons is obtained by working in single chain only.
The crane revolves completely round in either direction by steam power without stopping or reversing the engines ; and an improved arrangement of loose slewing rack is placed between the upper and lower portions of the crane, which prevents all risk of breakage to the gearing, should the crane be started or stopped too suddenly. The friction cones, which transmit the power from the engines for the revolving motion, are fitted to a revolving motion, are fitted to a shaft running in wide gun metal
bearings having loose caps and
maximum load sideways. The total weight of the crane in working order is 16 tons.-Engineering.

FURNACE FOR STEAM BOILERS.

The object of the invention herewith illustrated is to provide a furnace for steam boilers, in which a complete combustion of the fuel is accomplished by introducing a mixture of steam, hot air, and gases into the fuel. The bridge wall at the inner end of the grate bars is provided with a partition wall, E, which divides the furnace into two main compart ments-the combustion chamber over the grate and the hot air chamber under the rear of the boiler. In the bridge wall are several flues which begin under the grate and open into the combustion chamber, as represented in Fig. 1. In the side walls are other flues, Fig. 3, leading from the ash pit to the combustion chamber ; these are furnished with dampers. Into the bottom of the ash pit opens a fiue which leads to a mixing apparatus placed at the outside of the wall, and connected with the hot air chamber and with the

hasecoster's fornage for steam bollers.
chimney by a transverse channel through the bridge wall. Into the mixing apparatus, consisting of a fan rotated in any convenient way, opens a pipe, A, admitting steam; an opening also provides for the admission of air from the outside. The heating of the journal box is prevented by cold water ad mitted through the pipe, B. The transverse channel is provided at its entrance to the chimney with a damper, D, shown in the plan view, Fig. 2. On the three outer sides of the chinney are doors, one of which leads directly into the central chimney opening, while the others connect with vertical side flues, which communicate with the central openings through apertures, Fig. 1.
The heat of the fire enters the front end of the boiler flues, and, passing through them, enters the hot ai chamber, from which it is drawn up the inclined bottom into the transverse channel by the suction of the fan and the draught of the chimney. The unconsumed products of combustion entering the chimney are drawn by the circulation set up by the fan, consisting in the air current from the fan, into the ash pit, through the passages into the combustion chamber. thence through the boiler and hot air chamber aer. thence through the boiler and hot air chamber
ato thetransverse channel and into the central open-

IMPROVED STEAM TRAVELING CRANE.
ing of the chimney. Other heated products, consist-
IMPROVED STEAM HEATING BOILER.
ing of combustible gases and hot air, pass into the mixing apparatus, where they are mixed with steam and fresh air entering from the chimney. This mixture enters the ash pit, and part passes through the burning fuel and part enters the flues leading to the combustion chamber. Air from the outside enters the chimney by the side doors, and, after passing up the side flues, enters the central opening, down the outside of which it is drawn by the mixer. This furnace takes the combustible gases from the hot air chamber, and, after adding steam and air, forces them into the combustion chamber.
This invention has been patented by Mr. George Hasecoster, of Fifth and Chestnut Streets, St. Louis, Mo.

Good Advice.

The Manufacturers' Gazette relates of a Western railway company which gives the following advice to its employes gratis. It is applicable to employes in all parts of the country : "The servant, man or woman, who begins a negotiation for service by inquiring what privileges are attached to the offered situation, and whose energy is put chiefly in stipulations, reservations, and conditions to 'lessen the burden' of the place, wilt not be found worth the hiring. "The clerk whose last place was 'too hard for him' has a poor introduction to a new sphere of duty. There is only one spirit that ever achieves a great success. The man who seeks only how to make himself most useful, whose aim is to render himself indispensable to his employer, whose whole being is animated with the purpose to fill the largest possible place in the walk aslargest possible place in the walk as-
signed to him, has in the exhibition of that spirit the guarantee of success. He commands the situation, and shall walk in the light of prosperity all his days. On the otherhand, the man who accepts the unwholesome advice of the demagogue, and seeks only how

BRONSON'S MAGAZINE BASE-BURNING STEAM HEATING BOILER.

The Vera Cruz railway, in Mexico, began using steel ies in 1884, and has now some 20,000 of them on its bed. So satisfactory has the experiment been, that 40,000 have been ordered from England for use this year, and it is proposed to put in from 40,000 to 50,000 per year hereafter. The "life" of a steel tie is considered as indefinite, but it may safely be set at from 30 to 50 years, the former being an American

The accompanying engraving represents a steam heater possessing many features deserving attention. In the top of the heater, which is walled in, as clearly shown in the cut, is an annular water chamber, from the top of which leads the steam supply pipe. The fire pot is formed of an annular water chamber, which is connected with the upper one by an nuter circle of tubes. Just above the lower chamber, and directly over the grate, is a third watex-ehanber, which is connected by pipes with both the top and bottom chambers. The tube forming the coal magazine, which is inclined as shown, passes through the center of the middle chamber. This construction insures good steaming qualities, as every part of the pipes and chambers is exposed to the direct action of the heat, which, in its passage from the grate to the chimney at the top, is compelled by the arrangement of the pipes and chambers to take a circuitous route. This construction also provides a very perfect and rapid circulation.

Further particulars regarding this steam heater can be obtained from the inventor, Mr. William C. Bronson, of 676 Broadway, Saratoga Springs, N. Y.

A nother Electric Motor.

A Third Avenue elevated car. hrilliantly lighted with Edison incandescent lamps, recently made trips on the Thirty-fourth Street branch of the elevated railroad in this city. The car was filled with a crowd of interested electricians, for the Sprague electric motor was on trial. Notwithstanding the unfavorable condition of rain and a rusty track, the test was a successful one, and the fact that the car was both lighted, heated, and propelled by electricity, and that the station platforms were similarly illuminated, seems to show that comfort and rapid transit are both to be increased by the use of electricity.
The Sprague motor is carried on the truck of the regular car, and differs little he may do, and how easy he may render his place estimate by a competent metallurgist. The steel tie is from all other systems in the fact that all its parts and and not lose his employment altogether, is unfit for now produced in England-where the manufacture has movements are controllable by electricity. On this service ; as soon as there is a supernumerary on the list he becomes disengaged, as least valuable to his employer. The man who is afraid of doing too much is near of kin to him who seeks to do nothing, and was begot in the same family. They are neither of them in the remotest degree a relation to the man whose willingness to do everything possible to his touch places him at the
head of the active list."

NEW FRENCH CRUISER TONNANT.

The illustration, which we take from our contemporary of Paris, L'Illustra-
tion, represents one of the tion, represents one of the
newest types of French newest types of French
cruisers. It was launched at Rochefort in 1880, and is now qute completed and is ready to undergo its trial trips. Its armament consists of one heavy gun of 14 in . caliber in the turof 14 in . caliber in the tur-
ret and four smaller guns ret and four smaller guns
mounted on its forecastle. This formidable man-ofwar measures 248 ft . at the water line; beam, 58 ft ., with a depth of 18 ft ., and having a draught of 16 ft . 8 in . Its displacement is 8 in . Its displacement is
4,523 tons. Its armor amid4,523 tons. Its armor amid-
ships is $13 \mathrm{in} ., 10 \mathrm{in}$. forward, and $93 / 4 \mathrm{in}$. aft. The turret is also incased in armor, 14 in. in thickness. The Tonnant carries a crew of 197 men .
According to the new classification adopted for the ships of the navy, the fleet comprises 9 new cruisers, of which the Onondaga is the oldest, and dates from 1863. The Tonnant is the newest, and is the most perfect of all.
"In the great fire which burned Murrey's Opera Hall, on Sept. 27 , one large door, which was painted with H. W. Johns' asbestos fireproof paint, was the only wood that was not consumed."-Albany, Wis., Vindicator:

THE TONNANT-NEW FRENCH WAR STEAMER.

Vera Cruz line range in price, according to the quality of wood, from 90 cents to $\$ 1.62$, silver. The latter price is paid for the zapote tie, a very hard and durable wood. The best white oak ties last from five to six years, the red oak about three years. In India the steel tie, sent out from England, is displacing even the teak tie, one of the best woods, and the change is being made on the score of econo that the lime should be thoroughly air-slaked, for if any dry particles be left they will swell and eventually break the joint. It is stated that this mortar is equal in strength to Portland cement, and that the sugar, or perhaps even of treacle. A number of small experiments which have breacle. A number of small experiments and it now been made have proved entirely successful, and it now remains to see whether the material offers advantag in actual work sufficient to pay for its extra cost.

ON THE AIRING AND LIGHTING OF HOUSES. One of the greatest dangers against which man should provide in his dwelling is the confining of the air that he must breathe. It is not enough that the air that surrounds our dwellings be salubrious, but it is especially necessary that the internal air be not contaminated by any mephitic odors, and that we may breathe therein as in the open air. So the fundamental conditions that are necessary in order to have a healthy habitation may be summed up as follows: (1) that of having fresh air to breathe amid walls and furniture kept at a proper temperature; (2) that of receiving the full light of the sun, and of having the objects about ourselves amply lighted ; and (3) that of having no dejections remain in the house.

Figs. 1 and 2.-EFFFECTS OF AIR BLOWN THROUGH CYL INDRICAL AND CONICAL APERTURES.

Such conditions, hygienists have at all times endeavored to realize, but, in measure as human habitations have become more numerous and more closely packed, builders have the more and more neglected them. And yet, the proper sanitation of a house is the best means of warding off epidemics and all con tagious diseases; for the example of all epidemic manifestations shows that it is in unhealthy towns, and in quarters that contain the foulest habitations, that these almost exclusively develop and spread. The great epidemics of past ages obtained their innumeraible victims in those heaps of houses accumulated around the ramparts or under the churches and castles of our old cities. At present, it is under the same conditions that such scourges as cholera, typhoid fever, smallpox, and others make the most ravages; and these ravages they will continue to make until we succeed in ravages they will continue to make until we succeed in Rozsahegyi, after recently examining the houses of Buda-Pesth, from this point of view, have published the following results.
Out of every 100 houses the mortality was found to be

the entrance of air. So, in the various cases where there has been need of introducing air into inhabited rooms in such a way as not to incommode people, methods of all kinds have been tried to obviate the said impermeability. Hence the placing of casements at the upper part of windows, and hence, too, that innumerable variety of Venetian blinds with strips of glass, mica valves, opercula, etc. In England, where much attention has been paid to this subject for a certain number of years, an infinite number of all sorts of processes have been devised; but it was soon found out that these caused currents of air of more or less strength, that struck the heads of those occupying the rooms thus aired. Then the idea occurred to place ventilating bricks, provided with conical apertures, at the top of the walls, near the ceiling. The experiment shown in Figs. 1 and 2 explains the principle of this arrangement. When air is introduced by a bellows into a cylindrical conduit, a rectilinear current is produced which strikes in a direct line the objects placed in front of it, as shown in Fig. 1, where the little banner opposite the conduit is seen to be considerably disturbed. If, on the contrary, the bellows be introduced into a conical conduit having the same external orifice and a flaring internal one, the same quantity of air can be blown without causing the banner to budge the air dispersing in all directions as soon as it emerges from the expanded mouth of the conduit (Fig. 2). The use of such bricks, however, is accompanied with some drawbacks. It is difficult to multiply them much in apartments; and, as it is not convenient to wash them, the conduits get full of dust, which easily contaminates the air as it enters. A few years ago the idea occurred to some one in Leeds to substitute for these bricks a sort of wooden cage placed before the windows, and containing quite a large number of small apertures connected with cylindrical glass conduits ending in small panes. This affair has an ugly appear ance, and possesses the same inconveniences as those just mentioned.
Prof. EmilTrelat, of the Conservatory of Arts and Trades, has for a long time been teaching how advantageous it would be to have at the upper part of windows some panes of glass containing a large number of small apertures of conical section, in order to satisfy these important conditions of airing rooms. Messrs. Geneste \& Herscher, on their side, being struck by these same advantages, endeavored to find some industrial process capable of furnishing glass so arranged. The Messrs. Appert Bros., after numerous experiments, have finally succeeded in manufacturing perforated panes, such as shown in Fig. 5. The manufacture of such glass offers very great difficulties, as may be easily divined. We know, in fact, that, when we want to pierce a piece of glass in order to put finger-plates upon room doors, we have to use a steel rod, and pour turpentine upon the glass in order to renew the surfaces and render the biting of the steel easier. Sometimes we add oxalic acid, and even mashed onions. During this operation the plate is of ten broken.
Messrs. Appert, Geneste \& Herscher's perforated panes contain 5,000 apertures per square meter. These apertures have a circular section of 3 mm . diameter, and are spaced 15 mm . from axis to axis. The glass is 3.5 mm . thick. Other panes, a little thicker, have 4 mm . apertures spaced 20 mm . from axis to axis. By special, patented processes, the Messrs. Appert have succeeded in surmounting all the great ? difficulties that this industrial problem presented, and
On another hand, there has been registered, per 10,00 inhabitants and for 15 years, the following mortality for the same city
 sout cleanness of a house, moreover, con sents?
Among the conditions that we have enumerated above, there are two to which we would now more particularly call the attention of our readers. The Exposition of City Hygiene, now open at the Loban barracks, back of the City Hall, furnishes the occasion to show various processes that have been devised in recent times for the sanitation of towns and dwellings; and the moment seems to be well chosen, then, for making known the principal arrangements
As regards the airing of houses and apartments, it is obvious that an endeavor should be made to continuously introduce into the latter as much air as possible from the exterior, such air, whatever be the situation, being much more wholesome than that confined within doors. As for the evacuation of the air, that is effected through the chimneys and numerous apertures that our apartments are provided with. In a number of connected houses, it is effected through special apertures. Now, in each inhabited room it is the window that puts us most thoroughly in connection with the surrounding atmosphere; but although the panes of glass that close this let in an abundance of light (an indispensable condition for salubrity), their impermeability is such as to prove an obstacle to

Fig. 5.-PERFORATED GLASS.
their perforated glass now stands as a very remarkable解 From the point of view that now specially occupies us, it must be remarked in the first place that these window panes have a surface of three square decimeters per square meter open to the external air. Moreover, as the apertures open out in the interior, the current of air expand upon entering the room. Prof. Trelat, to whom belongs the merit of having brought about the manufacture of this glass and of having shown its
that it be not placed at less than 2.5 m . ($81 / 4 \mathrm{ft}$.) above the ground, in order that the currents of air that enter shäll not incommode the occupants; so that it is especially useful in all high rooms, and chiefly in apartment houses, school rooms, hospitals, dormitories, churches, and so forth. It has the advantage that it never becomes obstructed, since all the panes of the window are necessarily washed, and for this reason the air that traverses them doesnot become charged withany impurities. As the panes are made of translucent, not

Figs. 3 and 4.-EFFECTS OF BLOWING AIR THROUGH A CONICAL APERTURE IN BOTH DIRECTIONS.
transparent, glass, they keep neighbors across the way from peering in. These perforated panes may likewise be profitably employed in rooms not so high and in our apartments, provided that they be so arranged that their open surface can be covered at times-this being easily done by means of a movable frame. Figs. 3 and 4 represent an easily reproduced experiment, by means of which is shown how this glass imperceptibly effects the airing of an inhabited room. If we blow in the direction of the small aperture toward the larger, the air will expand along the sides of the cone, and, on making its exit, will form a back-draught behind the candle opposite; while the candle will be at once extinguished if we blow in the opposite direction, the air in this case proceeding straight ahead and with force. Frof. Trelat does not confine himself to professing that fresh air should be introduced, permanently and as much of it as possible, into living rooms, and that to this end it is well to provide the upper parts of windows with perforated glass; but also insists upon the necessity of introducing into rooms light that comes directly from the sky, at least during such times of the day as they are occupied. In fact, he has for a long time been the resolute partisan of a unilateral lighting of our school rooms, in which one of the sides of the room would contain broad glazed windows for giving light, and the other would contain bays for airing, to be opened only at night and during recess. As well known, artists accord peculiar qualities to
lighting effected in this way. Prof. Trelat prolighting effected in this way. Prof. Trelat pro-
poses to transform our usual internal arrangements, and make the upper part of windows entirely free. In one of the halls of the Exposition may be seen a window draped in this way by means of a rich curtain due to Mr. Penar, a skillful upholsterer. The light in this hall is certainly very agreeable, and of such a character as never to injure the most delicate sight, even after prolonged work in it. It remains to be seen whether fashion will adopt an arrangement for draperies whose elegance can certainly not be denied. However this may be, the question is put, and Prof. Trelat, whose proposed arrangements are shown in Fig. 6, will at least have done the service of pointing it out and solving it. Prof. Trelat, whose models, made in conjunc tion with Mr. Gaston Trelat, are shown in Figs. 8 and 9 , likewise insists upon the necessity of setting houses in different positions in northern and southern countries. It is well known how too much given we are to making everything uniform in our country. For example, we observe the same mode of construction adopted in our barracks at Dunkirk, Bayonne, Brest, and Toulon, just as if the climatic features were everywhere the same. Now, in order that the heating of the structure be equally distributed throughout all the materials, and that the rays of the sun may penetrate the rooms deeply, it is necessary that, in the north, the house shall be directed east and west, while, on the contrary, it should benorth and south if it be desired in southern

good light without view.

higet and view.

neither light.nor view.

Fig. 6.-HOW A ROOM SHOULD BE LIGHTED.
lands to suppress the injurious action of tie solar rays of the morning and evening.-La Nature.

Jarrah Wood.

Jarrah wood (Eucalyptus marginata) is a product of Western Australia, where it is found in considerable abundance. Mr. Thomas Laslett, Timber Inspector to the Admiralty, in his valuable work, "Timber and Timber Trees, Native and Foreign," says of it: "It is of straight growth and very large dimensions, but, unfortunately, is liable to early decay in the center. The sound trees, however, yield solid and useful timber of from 20 feet to 40 feet in length, by 11 inches to 24 inches square, while those with fañity centers rumsir only indifferent squares of smaller sizes or pieces unequally sided, called flitches. The wood is red in color, hard, heavy, close in texture, slightly wavy in grain, and with occasionally enough figure to give. it value for ornamental purposes; it works up quite smoothly, and takes a good polish. Cabinet makers may, therefore, readily employ it for furniture ; but for architectural and other works, where great strength is needed, it should be used with caution, as the experiments prove it to be somewhat brittle in character. Some few years since a small supply of this wood was sent to the Woolwich Dockyard, with the view to test its quality and fitness for employment in shipbuilding; but the sample did not turn out well. owing to the want of proper care in the selection of the wood in the colony."
The clerk of works at Freemantle, in reporting upon the opinions expressed by shipbuilders and others, says: "The sound timber resists the attack of the Teredo navalis and white ant. On analysis by Professor Abel, it was found to contain a pungent acid that was destructive to life. 'l'he principle, however, was not found to be present in the unsound portions. Great care is therefore necessary in preparing the

" Undoubted authority is unanimousin declaring that the timber of the jarrah, under certain conditions, is indestructible."
Professor Vore Mueller, Government Botanical Di rector of Victoria, says: "Its wood is indestructible; is attacked neither by chelura, teredo, nor termites, and is therefore much sought after for jetties and other structures exposed to sea-water. Vessels built with this timber have been enabled to do away with all copper-

good light without view.

Light and view.
found the most enduring of all woods. On this condition it defies decay; time, weather, water, the white ant, and the sea worm have no effect upon it. Specimens have been exhibited of portions of wood which had been nearly thirty years partly under water and partly out. Others had been used as posts, and for the same period buried in sand, where the white ant destroys in a few weeks every other kind of wood. For this peculiar property the jarrah is now much sought after for railway sleepers and telegraph posts in India and the colonies. It is admirably adapted for dock gates, piles, and other purposes, and for keel pieces, keelsons, and other heavy timber in shipbuilding. Vessels of considerable burden are built entirely of this wood, the peculiar properties of which render coppersheathing entirely unnecessary, although the sea worm is most abundant in these waters."
Though in the foregoing there are a diversity of opinions, yet the general tendency is to testify to the usefulness in an extraordinary degree, under stated conditions, of jarrah wood, and the practical mind will quickly see many opportunities for taking advantage of a wood possessing so many valuable qualities as this wood has been found to contain; and it is not saying too much to express a hope that the shipments now in the London docks will be but the prelude to many other, and more important, consignments to

Fig. 7.-HOW A ROOM SHOULD NOT BE LIGHTED.

plating. It is very strong, of a close grain, slightly oily and resinous in its nature, works well, takes a fine finish, and is, by shipbuilders in Melbourne, considered superior to oak, teak or any other wood for their purpose."
The committee of Lloyd's, after the representations of His Excellency Governor Weld, determined to rank this timber with those in line 3, Table A, of the Socie ty's rules; thus ranking it with Cuba sabicu, penci
this country, where intrinsic merit is the only passport necessary to gain public favor and support where commercial interests are concerned.--Building News.

St. Sophia, Constantinople.

St. Sophia at Constantinople, of which at last authentic particulars have been obtained in the work of Salzenburg of Berlin, who, taking advantage of the scaffoldings erected by Fossati for the repair of the building, measured carefully every part of it. From this it appears that the diameter of the drum of the dome is 100 Prussian feet, or 102 feet 11 inches English, but the dome itself is 4 feet more, or 107 feet in diameter. It is constructed of forty ribs, projecting each 2 feet, which die away toward the center, leaving about one-third of the dome perfectly plain. The form is segmental, 45 feet 6 inches in height, and described consequently from a point about 8 feet below the springing. Round the base are forty windows, which throw in a flood of light; and altogether its appearance internally is as beautiful as any I know of. Originally, it was even flatter than it now is; but being in that form beyond the constructive power of its architect, it fell in, and the present form was adopted; chitect, it fell in, and the present form was adopted;
but even then the architect tried to keep it as low as
 floor it covered, and all of the parts arouna tain these internal advantages, however, the architect sacrificed the exterior entirely, and it is on the outside perhaps the ugliest dome ever constructed. But the same remark applies to the whole church. No pains
wood for by aitobing the defective portions of the
Very much has been said about jarrah being subject to split when exported to England in log. It must be borne in mind that its density renders seasoning very slow, and that the inner portions of the larger trees are often in a state of decay, even while the outer portions are infull vigor. A tree under these conditions, the inner portions comparatively dry, and the outer full of sap, shipped at once to such a variable climate as that of England, very naturally bursts from unequal shrinkage, being also exposed to very great changes of temperature. To obviate this peculiarity and apparent defect, let the jarrah be fallen when the sap is at the lowest ebb, and carefully flitched, as previously suggested.
The methods adopted in seasoning jarrah are as follows: The logs are thrown into the sea and left there for a few weeks; they are then drawn up through the sand, and after being covered with seaweed a few inches deep, are left to lie on the beach, care being taken to prevent the sun getting at their ends. The logs are then left many months to season. When taken up they are cut into boards seven inches wide, and stacked so as to admit of a free circulation of air round them for five or six months before using them.

In a communication forwarded to India by H. E. Victor, Esq., C.E., of Perth, in reply to inquiries made by some gentlemen engaged in the carrying out of several large contracts for public works in India, he says:

SHOULD BE SET IN NORTHERN COUNTRIES.
cedar, etc., for the construction and classification of are innumerable, $1 t$ to which jarrah may be applied could not be admitted, as well as where they are used rably less than the timbers named, in the log, and at half their price in scantling, it should be employed where hitherto timber has been considered undesir-able-for instance, in sea-facing, dock-lining, landing-

Fig. 9.-DIRECTION IN WHICH BUILDINGS SHOULD BE SET IN SOUTHERN COUNTRIES.
stages, breakwaters, and beacons; curbs, road-paving block-flooring, weather-boarding, and wainscot par titions, wallings, ceilings, and roof coverings.
A Western Australian almanac says: "None of the eighboring colonies possess timber of a similar chrac er to the jarrah. or endowed with equally properties. If cut at the proper season, when the sap
whatever seem to have been taken with the exterior, though every part of the interior is designed with the greatest care, and ornamented with the most profuse liberality.-J. Fergusson.

Swiss carved work in whitewood affords excellent opportunities for hand-painting, and many pretty articles for home decoration can be made from it.

The Electro-Osteotome.
Dr. Milton J. Roberts, of this city, a distinguished surgeon, is the author of the new mode of examining diseased bones, which consists in boring into and lighting up their interior surfaces with the electric lamp. He describes his devices as follows: My aim has been to make as nearly a universal osteotome as possible; that is, an instrument with which the surgeon can cut bone with ease, safety, and accuracy in any desired direction. The instrument which I have elaborated is called the electro-osteotome.
As it is now constructed, it is provided with two headpieces, one for the carrying of various sizes of circular saws, and the other for the holding of drills and burrs of various shapes and sizes. By means of this instrument, a bone may be perforated with any size drill up to a quarter of an inch in diameter, or a cross or longitudinal section of it made with as much facility as a similar wound could be made in the soft parts by means of a sharp scalpel.
For the early positive diagnosis of the existence of diseased bone, the instrument is provided with very fine drills, from the one sixteenth to the one thirty-second of an inch in diameter. These drills are constructed, not after the form of the ordinary twist drill, but upon the principle of a cheese tester ; that is, they have a longitudinal groove on one side. By means of such a drill, a plug or sample can be removed from any suspected area of bone. No incision through the soft parts is necessary. and readily pive at a very trgir-rw and readily penetrate the soft parts and bone.
Upon removal of the drill, the debris lodged in the groove is placed upon a glass slide and examined under a microscope. If there be commencing ostitis, the characteristic findings will be manifest. Of course, when drilling into the head of a bone, and a cavity or soft spot is reached, the sensation communicated to the hand will be all that is desired to establish the hand will be all that is desired to establish the
fact. The use of the drill in this manner is fact. The use of the drill in this manner is
analogous to the use of the hypodermic needle in the soft parts for diagnostic purposes. If no disease exists, no harm is done by means of the puncture.
Once having thus positively determined the existence, site, and probable extent of disease, an incision is made down to the bone, and a large drill or trephine, from a quarter of an inch to half an inch in diameter, is carried through the bone into the diseased area or cavity. Upon removing this, smaller drills or burrs may be passedin through the opening thus made, and used to excavate the affected bone.
For the thorough inspection of the parts, I have had constructed a miniature incandescent lamp, so small as to readily pass through a quarter inch drill hole. These lamps (half candle) furnish sufficient light to These lamps (half candle) furnish sufficient light to
thoroughly illuminate the interior of any bone cavity.

DOUBLE DREDGER.

The engraving below represents one of Priestman Brothers' double self-contained dredgers, and is taken from a photograph, in South American waters. The dredger is somewhat novel in its construction, being the first of the kind which has been made. A large steam hopper dredger has been fitted with four of Priestman's machines, made to the order of the Mersey. Docks Board, and can be seen working in Liverpool or Birkenhead docks; but this particular dredger,
although suitable for all kinds of dock and harbor work, was specially designed for exportation. It forms part of an order for the Brazilian Government for carrying out harbor improvements in the port of Maranham, where it is required to deepen the channel and deposit the dredgings behind the breakwater for reclamation purposes. The two dredgers shown are each capable of lifting from fifty to eighty tons of material per hour, in accordance with the nature thereof, being fitted with strong interlocking steel-faced grabs-see Figs. 1 and 2-suitable for hard sand, clay, or mud, gravel, etc., each of which, when filled, holds about 40 cwt. of deposit. The steam is taken from a multitubular boiler, 9 feet long by 8 feet diameter, having a heating surface of 386 feet, and is conveyed to the engines through steam passages up the center columns of the respective machines.
 The barge is constructed to facilitate transit and erection abroad, and is made in eight longitudinal sections, being plated, riveted, and calked in the makers' yard in Hull; each end of each severa

Fig. 1.
Fig. 2.
e carried to the shore of the Black Sea at a very low cost:
The Russian government has completed at last the sheme for the petroleum pipe line from Baku to the Black Sea, a distance of nearly 600 miles. The capital required for the scheme is $£ 2,000,000$.
The pipe must be large enough to allow of the passage of $160,000,000$ gallons of oil a year, and the stoppages for repairs must not exceed on an average one a month, or last longer than three days. As soon as the traffic reaches 90 per cent of the full working power of the line, the company must proceed to lay down a second oleoduct, and have it ready for traffic in two years. The time allowed for laying down the first pipe line is three years. The concession will last twenty years, but no guarantee will be given by the state, nor will the company be allowed to own oil wells and refineries. Where the pipe line traverses crown estates, the land will be given the company for nothing, and elsewhere it will enjoy the same privileges as railway corporations. One-third of the pipes must be obtained in Russia, but this clause will not be insisted upon should the supply be inadequate The tariff to be charged for the oil pumped through the line is 10 or 11 copecks the pood, or 12 s . or 13 s . a ton. This will amount to a little more than a halfpenny (1 c .) a gallon. The engineering obstacles to the enterprise are of a very trifling character, with the exception of the passage of the pipe line over the Lesser Caucasus. The ascent to the Suram Pass, 3,200 feet above the sea level, is somewhat sharp, but an extra number of powerful pumping stations will overcome this obstacle, while on the Batoum side of the range fewer stations will be needed, owing to the force with which the oil will flow, by its own gravity, to the Black Sea coast. There is, therefore, no reason for fearing that the pipe line will not be laid down in three years' time, perhaps considerably earlier. As for the distance, it is a mere trifle compared with the American pipe lines, which collectively extend to a length of 9,000 miles. When it is open for traffic, the export of Russian petroleum via the Black Sea will section being supplied with strong angle iron|increase tenfold, and there will be a terrible tumble frames, forming at the same time flanges for bolting or riveting the several sections together. The decks are of timber. 1 The rubbing belt, deck planking, stringer plate, and keelsons are made to cross the joints of the several sections, to increase stability. The dimensions of the barge are 60 feet in length by 22 feet beam, and 6 feet deep, with flat bottom, rounded ends and bilges, to increase buoyancy in the water when the dredgers are at work. The rest of the order comprised four iron barges, constructed in a very similar manner to the above, 48 feet long by 15 feet beam, and 6 feet deep, to carry the deposit raised by the dredgers, and two of Priestman's portable bucket elevators, each capable of lifting about fifty tons per hour, with wheels for running upon the quay for discharging the barges of their dredgings, and placing the same behind the break-water.-The Engineer.

A Russian Petroleum Pipe Line.

In the London Pall Mall Gazette of October 8, Mr Charles Marvin, who has written much concerning the Russian petroleum wells and refineries, has the following concerning the long contemplated project of a
pipe line across the Caucasus, whereby petroleum is to
in the price of American oil in Europe. At present, tens of millions of gallons of refined petroleum can be had at Baku for a penny a gallon. The projected pipe line will run it across to the Black Sea for another halfpenny, and for very little more than that sum it will be possible to bring it to London in tank steamers. In this manner, whether England makes the pipe line or not, she will derive a substantial benefit by its completion.

Comstock Deep Mining.

"Orders have been received from San Francisco to stop all work in the Chollar mine, and to immediately strip all levels below 2,400 feet. The orders also necessitate the immediate suspension of all operations in the lower levels of the Hale \& Norcross mine. This action is the result of the flat refusal on the part of the trustees of the Savage mine to pay their one-third proportion for keeping the pumps in motion at the combination shaft. The lower levels in both mines will be abandoned and flooded as soon as the ponderous pumps are shut down. The stoppage of work in these mines throws several hundred men out of employment and, it is believed, sounds the death knell of deen_mining on is believed, sound
the Comstock."

THE TARSIERS AND LORISES OF THE MALAY ARCHI PELAGO.
The forests of the East Indies are populated by strange animal forms, among which the curious Lemuridæ that are figured herewith, from a drawing by Mr. Clement, are deserving of occupying the front rank. These odd creatures, the analogues of the galagos of Africa and of the indris and cheirogales of Madagascar, are, with the Galeopitheci, or flying lemurs, the representatives, in the Indo-Malaisian region, of the order Lemuridæ, which are inhabitants of the tropical regions of the Old World, and the fossil remains of which confirm their existence at the Tertiary epoch in France and North America.
These animals represent transitory forms between the monkeys and cheiroptera, but are more widely separated from the former than rated from the former. than
from the marsupials, with from the marsupials, with
which they have very great affinity, and from which they appear to have originated. Taking as a basis the present geographical distribution of these creatures, certain English and German naturalists have tried to find the possible ancestors of the monkeys in the Lemuridæ; and, starting from man, have assigned as the home of these ancestral forms an immense and now submerged continent of which Madagascar and the Malaisian Madagascar and the Malaisian islands are the last vestiges.
These views are hazardous at These views are hazardous at
the best, and, while there is nothing to demonstrate the truth of them, a large number of facts can be adduced against them. It can be proved that the various types of Lemuridæ were at the of Lemuridæ were, at the
time of their appearance, distime of their appearance, dis-
tributed throughout distinctly defined regions. The Tertiary epoch shows us forms of them in the temperate parts of the Old and New World. In the phosphorites of Quercy Mr. Fithol has collected the remains of Nacrolemur anremains of Nacrolemur an-
tiquus, a lemur closely allied to the present pottos of West Africa. "Their burial in the phosphatic fissures," says Mr. De Lapparent, " appears to have been immediate, and doubtless under the influence of noxious vapors that asphyxiated such animals ashad come to slake their thirst at the springs; for there are many entire skeletons, and the bones of neither the ruminants nor rodents show any trace of incisions made by the teeth of the carnivora with which they are associated." which they are associated."
Other geologists have exhumed from the lower Eocene of Wyoming Territory the remains of Eintrotivertevenn Lemuraoides of whose natural affinities with the makis there is no question. At the beginning of the Eocene period there existed other period there existed other
animals, whose bones, collected in the Montmartre gypsums, leave scientists in uncertainty as to the exact place to which they ought to assign
the owners of these remains in the mammalogical series. Some regard the Ada pides as ungulate mammals, while others would place pides as ungula the Prosimians, to which a large number of their characters tends to ally them.
If we take the proofs that unite to give us the geological and geographical distribution of the Lemuridæ, our mind is made certain. Far from looking for the probable origin of the primates in these creatures, we must, on the contrary, consider them as a special type that has been clearly characterized from the most cient time, and that is due to modificals. The thumbs opposite the
into certain marsupials. other fingers is not a character that can be called upon to approximate these animals to the monkeys, for this peculiarity is observed in a large number of marsu pials, and, properly speaking, cannot be considered as a mark of superiority. It is even remarked that certain monkeys are destitute of it, such as the catarrhinians, of the African genus Colobus, which lack the nians, of the African genus Colobus, which lack the
thumb on the hands. The hand must not be consid-
ered as a modification of, the foot, but rather as an organ of special and primitive plan. Certain naturalists have considered, and do still consider, the thumb as a continuation of the axis of the arm represented by the radius. It seems more reasonable, along with Carl Vogt, to look at it " rather as a secondary radius independent of the other fingers, and which, for this reason, is generally the first to disappear when the number of the fingers is reduced."
The tarsier, shown at the lower part of the engraving, seems, through its fantastic appearance, to well merit the name spectrum given it by Geoffroy SaintHilaire. To consider but its stature and proportions, its long hind limbs, and its still larger tail, ending in a tuft, this tarsier might be taken for a jerboa, were it
nails of the hand are more convex than those of the foot. The toes end in a disk, and their lower surface is provided with round callouses, by means of which the animal fixes itselfffirmly in position.
The thoracic limbs, which are much shorter, terminate in a hand composed of long, slender fingers, provided with disks. The thumb, which is short, cannot be moved opposite the other fingers.
The head is large and round, the muzzle is short pointed, and the ears are of medium length, naked, and provided with a sort of fold by which they can be closed. The eyes take up more than half the face; and the mouth, which is capable of opening very widely, does not contribute to increase the animal's beauty, and seems to contract into a diabolical grin. not for the inordinately large round eyes with which

TARSIERS AND LORISES.
ts head is provided. These eyes, which are of a yellow brown, are luminous in the dark, and, according to one observer, give the head the appearance of a dark lantern with two bull's eyes that revolve upon a pivot. The accompanying figure shows the tarsier reduced o about one-third of its natural size. The length of he adult's body is about 6 inches, and that of its tail 9 inches. The body is covered with a woolly fur of a grayish brown, lighter upon the belly. The trunk is slim, and the long tail that terminates it is cylindrical, and is provided at the tip with a tuft of hairs. In the abdominal limbs, the first two divisions are nearly of equal length. The thigh is stouter than the leg, and the latter terminates in a very slender tarsus, and a foot whose toes are still more elongated than the fingers, and which is provided with a strong toe that can be placed opposite the others. Of the toes, the second and median end in a claw, while the very long fourth one and the fifth one, like the fingers, are provided with flat_nails. It must be remarked, however, that the $\left.\frac{8}{8} \frac{8}{8}\right)$ is that of an insectivore,
and is nearly identical with and is nearly identical with that of the bats of the genus
Plecotus, and likewise recalls that of the indris of Madagascar. "In the upper jaw," says Vogt, "the incisors, canines, and premolars have nearly the same form of sharp fangs, the median incision is more prominent, the second is smaller, the canine is stronger, the first premolar is very small, the second is larger, and the third has two points. The molars are wider than long. and are nrovidiod with sharp external tubercles. In the lower jaw, the strongest teeth are the canine; the incisors are small and straight; and the premolars increase from in front backward."
The spectral tarsier inhabits the Sunda, Celebes, and Philippine Islands and, according to Brehm, the Moluccas, and principally the island of Amboyna.
It has never been permitted me to see this Prosimian in a living state, and the specimens that I was enabled to see or procure during the course of various voyages among the islands of Malaisia were either preserved in alcohol or stuffed. It is, more over, an always rare animal, that lives in couples in thickly wooded and the least accessible places in the virgin forests. During the day it remains in deep slumber. At the approach of night it is seen running nimbly, making long leaps from branch to branch, and pursuing and greedily devouring insects. It feeds on fruit also, but its most usual diet consists of articulates and simple reptiles.

The female gives birth to one offspring, which fastens itself to her thighs, or which she sometimes carries with of cats.
The Malays seem to have a singular dread of this animal. Owing to its strange physiognomy, they appear to regard it as some supernatural and malevolent creature that takes pleasure in casting a spell over men and their pos-

[^0] sssions. They even carry their simpl shows itself by bance think that it is better to bear the fatigue of clearing the lan to expose themselves to the clearing other land than to expose themselves to the witchcraft of the little devil. Yet there are few crea tures so inoffensive as these little Lemuridæ, and those that have been observed in confinement have never displayed any ill nature-the most that they have done being to make some impatient movement when awakened in the middle of the day. In a wild state they pass the day coiled up asleep in the hollows of trees or in the forks of the branches.
The slender loris (Loris gracilis, Van der Hoeven) has he same habits as the tarsier, and, like it, inhabits the large Sunda Islands. But its geographical range is much wider at the north, and although it is frequent in the forests of India and Indo-China, it does not appear to inhabit the Celebes and the Moluccas. It is re in Malaisia and is replaced by an allied form, the
nicus, Geof., and N. tardigradus, L. Like the tarsiers, the lorises have large eyes which shine in the dark; but they have merely a short rudiment of a tail. At the top of the engraving are represented two of these animals. One of them is preparing for a frolic, while his companion is still in deep slumber. I have observed this animal while it was asleep, and the engraving well shows its usual attitude.
The slender loris is 10 inches in length. Its dental formula ($\frac{2}{5} \frac{1}{1} \frac{8}{8} \frac{8}{8}$) slightly approximates it to the carnivora, whose diet it shares. Its greatest treatis birds, which it seizes in the dark and devours the brain of. It is looked upon with an evil eye by the aborigines of the countries that it inhabits. The Ceylonese catch the poor animal, and torture it most cruelly. "The beautiful, large, bright eyes of the loris," says Tennent, " have attracted the attention of the aborigines, and it is for the possession of these that they hunt the animal. These organsenter into the preparation of certain love potions. In order to extract them, the natives hold the poor beast over a fire until the eyes burst.' The same author adds that the slender loris is so fond of birds' brains that, according to the natives, it will attack the pea fowl while the latter is asleep, quickly crush its skull with its teeth, and then feast upon the contents. Like the tarsier, the loris does not appear to be able to live in Europe, and those that an endeavor has been made to introduce in menageries have died during the trip.-M. Maindron, in La Nature.

THE CYCLORAMA.

Wherengin of thic form of art is fancifully traced o the use of scenery by the Italans, two or three hundred years ago. They arranged, outside of their windows, scenes painted on canvas, that simulated extensive gardens. The American inventor, Robert Fulton, is said to have exhibited a panorama in Paris in the beginning of the present century. This was probably paintings of a series of scenes on a continuous canvas wound on rollers, and caused to pass across the stage: The circular or cylindrica painting, properly called a cyclorama, whose per spective is a matter of special calculation, and which is celebrated for its illusive effects, is more recent. It probably does not date back over fifty years.
A cyclorama has, within a short period, been placed on exhibition in Brooklyn, illustrating the battle of Gettysburg. Irrespective of its artistic merits, which are very great, the technical details of its construc tion and the solution in it by means of photography of the problems of cylindrical perspective alluded to above possess much interest. The painting is contained in a large circular building on the City Hall Square.
The work covers a sheet of canvas four hundred feet long and fifty feet high. This is supported from the sides of the building so as to form a cylinder. A rail or beam of iron and wood combined is carried all around the upper part of the building like a cornice, resting on brackets. The upper edge of the canvas is nailed to this. The cloth is first rolled smoothly on an iron roller surfaced with wood, fifty feet long. This roller is about three feet in diameter. It is held vertically in a heavy framework that runs on tracks around he building From the roll thus carried, the loth is gradually paid out, eight or ten men being required, some on top and some helnw As.fsct.s and held in pinc nd held in pinc rs by one of th operatives, and its edge is tacked to the cornice beam.
This disposes of the upper edge The lower edge is fastened to a circle of gas pipe, that runs com pletely around

loth. At every third foot is carried entirely by the hung hung, to stretch the canvas. The effect of the stretching is that the canvas loses the true cylindrical shape: its sides are no longer parallel, but curve slightly inward, about one foot in amount, at the center. Thus at the horizon line, the most distant part of the scene, the painting is about a foot nearer the vertical line, through the observer's position, than in the foreground. In absolute distance from his eyes the difference is still greater. Owing to obliquity of the line of sight, the foreground, that seems so near at hand, is really much further off than the horizon.
The next operation to be described is the paintin

This was carried out in this particular cyclorama so a to secure almost absolute accuracy. The landscape is really an artistic transcript of photographic views of the field. The artist went personally to the field of Gettysburg. On it he selected a point of view, and a small stage of the height of the proposed audience stage was there erected. Around the stage a line of pickets was driven in a circle whose radius was forty feet-less than one-half the diameter of the cylindrical picture. The distance was measured from the stage as a center. From the top of the scaffold three identical series of ten photographic views each were taken. In

PHOTOGRAPHING THE FIELD.
taking them, the instrument was newly pointed for every view, so that the entire horizon was covered. Each series shows the whole field of view in all directions. The arrangements were such that the line of pickets ampust within the'field. One series of photographs was taken for the foreground, focusing and exposure being djusted for this special portion; two other series, identical in all respects except that by their focusing and exposure they were devoted to middle distance and background respectively, completed the set. The only ifference between the three series was in the focusing and exposure. Each view was divided up into squares. The canvas was marked off by corresponding divisions and the photographs were copied square by square. This blending of the ten views and the aerial perspective was a question of artistic achievement. The out ines were determined, to a great extent, mechanically. The painting was done from scaffolds, of which a umber were used of different heights. These travel on the same track that carries the roller frame. The painting is in oil, tinsel being. occasionally employed with excellent effect. Bayonets or equipments and bursting bombshells afford instances of its use. The artist personally did practically all of the work, the sketching and artistic details, besides attending to the superintendence of his aids.
The circular wall being thus covered, the foreground has next to be attended to. By platforms and earth his is built up irregularly and to a greater or less extent toward the center. Earth and sod cover the boards. Real trees, evergreens and others, with shrub-

The illusion is simply perfect. No one could tell how much was painted or how much was real. Other scenes in the foreground are similarily treated,
The result of the arrangement is that it is impossible to tell where the painting begins, it blends so perfectly into the actual foreground,
The spectators occupy an elevated stage, access to which is by a gallery that runs under the scaffolding of the foreground, being completely concealed thereby By winding stairs the platform is reached, and the re sult.is that the spectator loses all orientation, and can not tell north from south. While looking at the picture, he must live in its scene. Neither can he form any conception of the size of the building. Although it is known that it is of moderate size, no approach to the true dimensions can be reached by any process of estimation.
Over the spectators' stage a circular screen is suspended that shades it from the light that enters through the skylights. The spectators are kept, to a certain degree, in obscurity, while the daylight pours in upon the painting, especially upon its upper parts. The sky is thus lighted up, and a peculiar luminous effect, favoring the aerial perspective, results. At night a number of electric lamps, suspended around the screen and out of sight of the spectators, illuminate the painting. The arrangement is that of footlights reversed. The lights and the dynamos are of the Ball stem.
It would have been easy to have executed the painting by the mathematical rules of cylindrical perspec tive. By the photographic method, the necessity for this was obviated. Had the ten photographs been reproduced without any blending, it is manifest that a ten-sided canvas would be the theoretically perfec surface for their reception. But as it is, the artist has carried out the work so well that the perspective, aerial and linear, is beyond criticism
The canvas is imported from Belgium, none being manufactured in this country that would answer the purpose. It is nine yards wide, and the seams run up and down.
The artist, Paul Philippoteaux, has been identified for many years with this form of art work. He was born in Paris, in 1846, studied under Cogniet and Cabanel, and won great success as a historical painter With his father he painted a cyclorama of the defense of the Fort of Issy, which was exhibited for fourteen years in Paris. Some nine cycloramas have since been painted by him, and the one we are describing is his fourth Gettysburg.
Many of the details of the present picture were obtained by him from eye-witnesses. The uniforms, modes of carrying blankets, and the details of harness and of minor parts of the scenery were studied care fully. In the foreground are scattered some real pieces of harness and similar objects, and they compare perfectly with what is seen on the canvas.
We also show one of the scenes from a sketch by M. Philippoteaux-the death of Lieut. Cushing. This episode occurred when Pickett had nearly reached the Union line. Cushing's battery-the 45th U. S. Artil lery-was all silenced with the exception of one gun and he was mortally wounded and on the point of ollege of the Cit of New York) that he would give them one more shot. Fre freethis gun, cried out "Good by!" and fell dead. This incident appears in the foreground and serves to establish the posi tion of the specta tors. The platform stands in the center of the Union line.

Propagation of

 heir particular ffice appears to be the consumpbery, portions of fences, and the like are set about, and
tufts of grass, wheat, and similar thing, tufts of grass, wheat, and similar things, lend their aid
to fill up the scene. The continuation of a road out of the canvas is colored to match the painting with brick dust and earth mixed. In this way a genuine land scape is produced. Lay figures cut out of board also appear. One curious instance is shown in the illustra tion. Two men are seen carrying a litter on which a wounded man rests. The more distant soldier is painted on the canvas. The litter is real, two of its handles passing through holes in the canvas. The figure resting on it is made of boards in the most curious segments, that seem to bear no relation to the final effect. The nearer bearer is cut out of a flat board
ion of those dead
and minute animals whose decaying myriads would therwise poison the air. It was a remark of Linnæu that three flies would consume a dead horse sooner than a lion could. He, doubtless, included the fami lies of the three flies. A single fly, the Naturalist tells us, will sometimes produce 20,000 larvæ, each of which, in a few days, may be the parent of another 20,000 , and thus the descendants of three flies would soon devour an animal much larger than a horse.

To mix sulphur for making joints under engine beds, melt the sulphur in an iron ladle in the same anner as with lead; only, cover the ladle, while melting, with a piece of iron to prevent fire.

CAPILLARITY AND HYDROSTATICS

T. o'Conor sloane, ph.d.

In the last issue a series of experiments in capillarity were described. The suggestion was made that the amount of vacuum determined by blotting paper could be subjected to a rough measurement by weighing. In the cut we show how this can be done. The wineglass is supported by blotting paper and glass plate on a retort stand, the vacuum having been produced in the manner described already. A loop of string hangs loosely below the body and surrounding the stem of the wineglass. A weight pan is suspended from its foot. Weights are placed on the pan until the joint is broken. Their weight, added to the weight of the glass, water, and scale pan, shows the strength which the joint developed. The loose loop is designed to catch the glass, and prevent it from spilling it contents, or falling and breaking.

A simple construction of the well-known Barker's mill is shown in the next illustration. For base, a small tin pan is used. In the center of this a step is secured, which is shown in section in the right hand corner. It consists of a short piece of brass tubing soldered to the bottom of the pan. A piece of glass rod, of corresponding diameter, has its end heated in a Bunsen burner or blow-pipe flame. While hot, a slight indentation is made in it by pressure with a pointed wire. Then the end is cut off, and dropped into the tube.
The rotating portion of the apparatus is made of two pieces of brass tubing, soldered together so as to be open throughout, and carrying a cup soldered on their upper end, communicating with their interior. Water poured into the cup will pour out from the lower ends. To the center of the cross piece a carpet tack is soldered, as a pivot to work in the glass step. Two pieces of bent glass tube, drawn to a point, are attached to the arms of the mill by India rubber tubing. A brace, shaped like an inverted V, soldered to the rim of the pan, with a hole in its apex, supports the moving part in a vertical position. Unless an opening and closing bearing is used, the vertical arm must be passed through the hole before the cup is soldered on. Water is poured into the cup. It issues in a general tangential direction from the glass tubes, and the mill rotates with great speed in the opposite direction.
The brass tubes should be of rather large bore, $1 / 4$ to $3 / 8$ inch. The glass jets must be adjusted in size by trial. Filing or grinding square across the ends will enlarge them.
This apparatus works by true reaction. It is not the pressure of the water against the air that is the ultimate cause of its rotation ; it is the mechanical energy in a horizontal direction that is imparted to the water. This acting at right angles to the cross arms generates an opposite reaction, that drives them backward. In a vacuum it will work faster than in the open air.

capillary vacuom.

It might, at first sight, seem that such a machine would be of very low efficiency. But some have been constructed that gave very good power, and the turbine is of the same category, working by true reaction, and the best results have been attained with it. Many fireworks act on the same principle, especially wheels and rockets. Hence it is to be supposed that these would work in a vacuum, were such a practical ex periment. The apparatus is named from Dr. Barker, who invented it toward the close of the seventeenth century. It may rank among the standard experi ments in hydraulics, though its chief value for pur poses of demonstration is in its illustration of the

Newtonian law of action and reaction. The centrifugal force, it is said, assists in the rotation by increasing the pressure in the ends of the cross arms.
Another of the classic experiments performed with home-made apparatus is illustrated in the cup of Tantalus. The mythological legend of Tantalus, tortured in beholding food and drink spread before him, but withheld, gives it its name. A bottle is cut off so as to have about the proportions shown. This can be done with a hot poker or a piece of lighted "punk." A crack must first be started. This can be

BARKER'S MILL.

done by heating the bottle at the angle between its bottom and sides, and touching the place with a drop of water. A crack thus started can be led in ans direction by a hot iron or other heated body. In order to have a guide by which to cut it straight, an India rubber band may be sprung around it, and arranged in a true position. The cut must be kept an even distance from this. As a small protuberance will almost certainly be left where the crack meets around the bottle, this may be broken off with the wards of a key, in small fragments like fine sand. A file will remove the cutting edge, or fifteen minutes' grinding on a plate of glass, with sand and turpentine, will bring it to a pretty true line, if the original cut was a traight one.
A piece of glass tubing is bent as shown, is passed hrough an aperture in a tightly fitting cork, and the cup is finished. A foot can be improvised from a corresponding portion of another bottle, or may be turned out of wood.
If water is poured into this vessel, nothing special occurs until the bend of the siphon is reached, when it immediately begins to run out through the bottom and empties the cup. Filling it to the point in question charges the siphon, which immediately begins to work, and continues until its lower opening within the cup is exposed to the air. To make the construction complete, a figure of Tantalus should be arranged to cover the siphon, with his mouth a little above its bend. Then, as the water nearly reaches his mouth, it begins to flow away.
The principle of this apparatus is used to explain the phenomena of intermittent springs. It is applied in sanitary engineering where it is desired to produce sudden or large flushes of water from limited supplies. III the Moulde or so-called Waring system of subsoil by a similar apparatus, a flush tank, so revence entire length of drainage pipes. A small and con-
tinuous stream of water may thus be made to supply tinuous stream of water may thus be made to suppl
a periodical flush of large volume for sewer pipes.

Brotherhood of Locomotive Engineers

The annual convention of the Brotherhood of Locomotive Engineers began in New York, October 20, with a large attendance.
The opening public exercises were held in the Metropolitan Opera House, which was crowded with delegates, invited guests, and spectators.

Chairman William H. Gurney opened the meeting with a speech of greeting to the guests, and then the Rev. Delos Everett, Grand Chaplain of the Brotherhood, offered prayer. Then Mayor Grace was introduced, and made a short speech welcoming them to duced, and made a short speech welcoming from Gov. Abbett, of New Jersey, and Rev. T. De Witt Talmage. Grand Chief Engineer Arthur then made his annual address, in which he said that now that the intellect, and also the ignorance, of the nation was knitting its brow over the solution of the so-called knotty problem of the nineteenth century, it was fitting that the Brotherhood, representing the unknown quantity of that problem, should meet together. In describing it as the unknown quantity, he would say that some had tried to equivocate their position and that of their executive officer, because of the conservative stand taken and his utter refusal to treat with other
labor organizations. They maintained that a good labor organization was a good thing; but that a heterogeneous mass of men engaged in divers occupations could combine interests satisfactorily to form an organization which should serve all, and with equal justice, was very doubtful. Until there was nothing more to be done for the Brotherhood, could they afford to become interested in other things foreign to their order? They had no sympathy and could not co-operate with any class of men who hosed their claim for it on the principles that might is right and that the rich owe the poor a living. No man had a right to anything which he had not acquired honestly.
There was no antagonism between capital and labor, continued Mr. Arthur, but between work and idleness there had never been any other feeling. Most men of frugal habits were capitalists, capital being invested wealth, no matter how small. He urged upon the Brotherhood the desirability of life insurance, and recommended that its system be modified so as to allow members not so well off to take out policies of $\$ 1,500$, instead of $\$ 3,000$, as at present. The Brotherhood's Life Insurance Association now had 4,444 members. Twenty-seven members had died during the year, and two had become disabled. Seventy-eight claims had been paid, amounting to about $\$ 230,000$. He was sure that the labor agitation of the past six months would result in good. What was necessary to settle the questions at issue was for both sides to give them full and fair consideration, which could only be reached by arbitration.
The public would always condemn the willful destruction of private property and the stopping of public business. During the Missouri Pacific and Texas Pacific troubles of last spring, the Brotherhood conducted itself in a way worthy of praise in resisting the threats and persuasions of the Knights of Labor. This loyalty had shown the railroad companies that a contract entered into by the Brotherhood would not be violated, and the companies would not hesitate to make other contracts with it when the occasion called for it. Moderation, conciliation, and arbitraion must rule in dealings between employers and employed. Capital could not afford to be overbearing, and labor could not turn from peaceful channels without injury.

The Law as to Party Walls.
A party wall in law is the wall dividing lands of different proprietors, used in common for the support of structures on both sides. In common law, an owner who erects a wall for his own buildings, which is capable of being used by an adjoining proprietor, cannot compel such proprietor, when he shall build next to it, to pay for any portion of the cost of such wall. On the other hand, the adjoining proprietor has no right to make any use of such wall without consent of the owner, and the consequence may be the erection of two walls side by side, when one would answer all purposes. This convenience is often secured by an agreement to erect a wall for common use, one-half on each ther's land, the parties to divide the expense; if only one is to build at the time, he gets a return from the other party of half what it costs him. Under such an agreement, each has an easement in the land of the

CUP OF TANTALUS.
other while the wall stands, and this accompanies the title and descent. But if the wall is destroyed by decay or accident, the easement is gone, unless by a deed such contingency is provided for. Repairs to party walls are to be borne equally; but if one has occasion to strengthen or improve them for a more extensive building than was at first contemplated, he cannot compel the other to divide the expense with him. In some States there are statutes regulating the rights in party walls, and one may undoubtedly acquire rights by prescription on a wall built by another, which he has long been allowed to use for the support of his own structure.-Building.

ENGINEERING INVENTIONS.

An automatic car coupling has been patented by Mr. Joseph D. Majors, of Bragg's, Ala. In the drawbar is pıvoted a spring-acted catch, having a
rib adapted to engage the coupling link, and combined rib adapted to engage the coupling link, and combined
therewith are chains and levers for disengaging the catch from the link when desirable, this coupling being also readily used in coupling with other cars having the or
dinary link and drawbar.
A steam engine has been patented by Mr. Desire F. A. Decaix, of Paris, France. The invention relates to the valve arrangement, a rotary or rock-
ing plug or cock being employed in combination with a steam jacket surrounding the cylinder, and divided a steam jacket surrouns or chambers by a central parnotches for the admission and exhaust of steam.
A feed water cleaner has been patented by Mr. James T. Bryant, of Richmond, Va. This ined inventions of the same inventor, and provides a construction by which the sieve for stopping sediment may
be cleaned by the steam from the injector when the lat be cleaned by the steam from the injector when the lat
ter is pulled back, and by which both the water inlet ter is pulled back, and by which both the wat
pipe and the injector feed pipe may be drained.
A car coupling has been patented by Mr. Albert H. Boies, of Hudson, Mich. In connection with a vertically slotted drawhead having a bridge is a
combined hook and link mounted pivotally within the combined hook and link mounted pivotally within the
drawhead, a shaft with arms and crank arms, and a flexible connection between the arms and the pivotal shaft,
whereby cars may be coupled or uncoupled without it whereby cars may be coupled or uncoupled without it
being necessary for trainmen to enter the space between being
them.
A device for preventing the explosion of steam boilers has been patented by Mr. Bendix
Mever. of quewitz, Prussia, Germany. It consists in a
plate of suitable yielding miterar ap ing in the boiler, and adapted to be bent or flexed out ward at a certain steam pressure, so the steam will escape
before the bursting pressure is reached, a rubber or before the bursting pressure is reached, a rubber or
other elastic packing being used between the plate and other elastic pac
the boiler shell.

MECHANICAL INVENTION.

A gib and key has been patented by Mr. John H. Robison, of St. Joe, Pa. The key has an eye at one edge of its wider end, and combined there-
with is a gib having a threaded shank received in the with is a gib having a threaded shank received in the
eye of the key, with a nut and jam nut for forcing the key into its place, the object being to obviate the present disadvantages in adjusting connecting rod boxes and other parts of machinery by tappi
direction or the other with a hammer.

AGRICULTURAL INVENTIONS

A cultivator has been patented by Mr James B. Scantlin, of Fairview, Kansas. It is designed for plarts planted in rows in fields, nurseries, and gar
dens, and, while simple in construction, is intended to dens, and, while simple in construction, is intended to leave the
the sun.
A combination plow has been patented by Mr. William H. Stanly, of Quitman, Ga. The construction is such that the plow can be readily adjusted and controlled as easily as an ordinary single plow whether working upon level ground or on ground
planted in ridges, being fitted alike for preparing the planted in ridges, being fitted a
land and cultivating the plants.
A gang hoe has been patented by Mr Franklin T. Gilbert, of Walla Walla, Washington Ter. It is intended especially for use in destroying weeds,
and its construction isIsuch that the hoes may be run below the ground surface at any desired depth, which may be regulated by the mechanism, and that, as the passes over the rear ends of the hoes, and is thus efflpasses over the rear ends of the ho
ciently broken up and pulverized.

MISCELLANEOUS INVENTIONS.

A log bunk for saw miths has been pat ontediky Mr. Philo B. Willianas, of Butler, Ind. It is log may be thereby, at the same time, thrown agains he head blocks of the saw mill carriage.
A bicycle has been patented by Mr. Al bert K. McMurray, of Brooklyn, N. Y. The main driving wheel is mounted in a.peculiar manner, and arranged
to be driven at an accelerated rate of speed by treadles to be driven at an accelerated rate of speed by treadles, arranged in a novel manner, connected to
of the machine by elastic or spring bands.
A rein holder has been patented by Mr. William D. Taber, of Rockville, R. I. It is made of a single piece of wire bentlto form loops by which the dethe reins may be inserted and held to place by the tension of the wire, thus making a double automatic clamping device.
A cloth winder has been patented by Mr . Albert Brown, of Mendocino, Cal. The object of
the invention is to improve the action or working of bolt-supporting devices, the spindle bearings having sliding arrangement, and there being special provisions for measuring the cloth as it passes over thereel, with numerous other novel features.
A composition for tanning has been patented by Mary Sutherland, of Diamond, Mo. It consists of extract of cockle burr, terra japonica, and ex-
tract of hemlock, with commercial sulphuric acid, in water, the mixture being prepared and used in a man-
ner specified, and designed to effect the tanning ner speciffed, and designed to effect the tanning of
all kinds of hides and skins quickly and thoroughly.

A revolving extension table has been patented by Messrs. David and W. H. Harry Fauber, of
Marshfield, Ind. This invention covers a novel con.
struction and combination of parts in a firm and easily adjusted table, in which the extension leaves can be
readily pushed in and drawn out, and will be firmly A
A dauber for blacking brushes has been patented by Mr. Moreland M. Dessau, of South Fram ngham, Mass. It consists of a brush formed of bristle surrounding the body of the dauber or brush and adapt surrounding the body of the dauber or brush and adapt-
ed to sustain the bristles, the improvement being also applicable to stencil and other stiff brushes.
A platform for trucks has been patentd by Mr. Thomas Wright, of Jersey City, N. J. This double iuverted arch bars, for holding and supporting double inverted arch or forward ends of crosspieces_of the platform, whereby the platform is made lighter and cheaper than ordina
to sag.
A scaffold clamp has been patented by Mr. Charles Whittingham, of Toledo, Ohio. It has a roller and crosspin arranged in a slot of the clamp rough so that they are not likely to be damaged by porting the lateral bearers for scaffold fioors on th scaffold posts, and being especially calculated to be e ctive
A boiler for steaming food has been patented by Mr. Le Roy S. Bunker, of Valton, Wis.
This invention provides a simple and convenient form This invention provides a simple and convenient form
of boiler for making steam, which can, by an outlet of boiler for making steam, which can, by an outlet
pipe, be supplied to a vessel containing food to be by a pur water tank for the supply being conect by a pump with a coil which runs through the fire
and into the main water compartment of the boiler.
A car starter and brake has been pat A car starter and brake has been pat
start and stop the car are controlled.by a single lever, and the main object of the invention is to entirely dispense with the use of springs, the parts being so arranged that
the starting mechanism may be employed time afte time in quick succession, should the load upon the car

An sutomatic grain weighing and regis tering apparatus hias been patented by Mr. Curtis Burgess, of Woodhull, Ill. Combined with a cylinde having two compartments and trunnions, with pivoted arms supporting the cylinder, is a weighing beam connocted with the pivoted arms with a sprocket whee
having two pins on its face, and a lever operated by the paving two pins on its face, and a lever operated by the gistering device, with other novel features.
A cable grip has been patented by Mr. Thomas O. Cooper, of Wilmington, Del. This inven tion covers an improved construction, combination, and
arrangement of parts of a grip for street cars moved by an endless cable, the arrangement being such that the clamping jaws, or be as readily picked up thereby, the
jaws being of soft metal, which can be readily removed jaws being of soft metal, which can be readily removed and replaced when they become worn.
A hub attaching device has been patented by Mr. Walter A. Clark, of Chicago, Ill. The apparatus is so arranged that the wheel may be removed be returned to its normal position by the action of spring, so that when the hub is slid upon the axle the parts will be in position to permit the automatic action of the retaining device, the construction being cheap,
efficient, and durable.

A rack collar for the tempering wheels of pug mills has been patented by Messrs. George S. Adams, James Roach, and Elmer A. Sherwood, of Ron-
dout, N. Y. The collar is made in two parts, hinged together and adapted to be held in place upon the bushing or hub of the wheel by a bolt or screw, so that, by and as easily replaced without removing the tempering wheel from its shaft or axle.
A shaking apparatus has been patent ed by Mr. Charles Collins, of Doctor Town, Ga. It is with a frame or plate huving an opening, has a movable plunger rod, and other novel features, whereby a tray may be revolved to hring different reveptacles hölding
sugar, lemon, cracked ice, etc in or use in mixing drinks.
A tanning process has been patented rr. James T. Rhyne, of Durant, Miss. After pre with a min much the usual way, the tanning is effected and saltpeter, then beaming by hand or passing throug pressure rollers, immersing in lye water, and again in fresh water; after the hides are dry, they are treated
with boiling hot fish oil and beeswax on the grain side and a boiling misture of tar, tallow, fish grain side, and a boiling misture
wax on the fiesh side.
A scavenger mechanism for spinning and drawing machines has been patented by Mr. William A. Delmage, of Lowell, Mass. It is a device for collect-
ing the broken ends of the yarn, and the ed by the usual drawing rolls, and conducting them away, so that they do not become entangled with the other threads, a pair of rollers being arranged to receive
the broken ends and a pneumatic tube to the broken ends and a pneumatic tube to receive the waste from the auxiliary rollers, there being also a fric-
tion roller to generate electricity to draw the broken tion roller to gener
threads and waste.
A process of manufacturing colored relief impressions on sheet metal has been patented by
Messrs. Friedmann Priester and Otto Weidemann, of Berlin, Germany. It consists in coating the sheet meta with a specified isolating coat, on which is painted an
elastic background, capable of absorbing colors, on which the desired pattern is placed, whereby the metal
whable on absing plates can be pressed into reliefs without displacing the affected by chemical action of their constituents with the metal.

NEW BOOKS AND PUBLICATIONS

The Theory and Practice of Survey
ing. By J. B. Johnson. New York iNG. By J. B. Johnson. New York John Whey \& Sons.
This work, while practically adapted for the use of surveyors and engineers generally, is especially designed or the use of students in engineering. It treats very ments, of topographical surveying by the transit and ments, of topographical surveying by the transit and
stadia, hydrographic, mining, and city surveying the measurement of volumes, geodetic surveying and pro jection of maps, map lettering, and topographical sym bols. The book is profusely illustrated, and has numer ous valuable tables.
The Surveyor's Giude and Pocket Table Book. By B. F. Dorr. New
York: D. Van Nostrand.
This little hand book quotes very liberally of United States law and the decisions of the Supreme Court on points touching surveying, and gives in very plain style good deal of practical information on matters not usu
ally treated of in books on surveying.
Topographical Drawing and SketchING, INCLUDING APPLICATIONS OF Photography. By Lieutenant Henry
A. Reed, U. S. A. New York: John Wiley \& Sons.
The author of this work is assistant professor of draw ing at the United States Military Academy, West Point and here gives the best methods of drawing and sketching as practiced there and in the principal topographical mentary details. The book' is a handsome the most ele rated with many plates.
The Civil Engineer's Field Book.
By Edward Butts. New York : John By Edward Bu
Wiley \& Sons.
This is a handbook principally of tables, intended to save the time of the engineer in making mathematical
feld calculations. The formula are comparatively arranged in a systematic manner, and it has been sought to make the problems general, so they will cover any case that may arise in ordinary practice.
A Forthcoming Book on Aluminum. Messrs. Henry Carey Baird \& Co., of Philadelphia, have history, occurrence, properties, metallurgy, and applications, including its alloys. The work will be a 12 mo volume of over 300 pages, and is edited by Mr. Jo-
eph W . Richards. The cheapening of the production of this metal that has been already effected, by the us of electricity, and the possibility of still further lessening its cost, cause great public interest to attach to every addition to our knowledge of the subject, and
this book will undoubtedly be welcomed by a large

ßusiness and 3 Personal.

The charge for Insertion under this head is One Dollar
a linefor each insertion; about eight words to a line a line for each insertion; about eight words to a line.
Advertisements must be received at publication office as early as Thursday morning to appear in next issue.

Claremont Colony

frers great inducements. Send for free illustra
Small Metal Goods of every description made to order Die work, etc. E. C. Ivins, 528 N. 10th St., Phila.. Pa.
Wanted-the address of manufacturers of latest imuen, machinery for working American aloe and hene quen, and for. cordages and bags. Please send all infor
ation A. N., 202 Sacramento St., San Francisco, Cal.
Machinist Foreman wanted who can handle fifty men
to advantage and increase their production by latest improved ways of doing work. Address P., care of Wil proved ways of doing work. Address P..c car
kinson \& Co., 352 Atlantic A ve., Boston, Mass.
Friction Clutches from $\$ 2.25$ on. J. C. Blevney, New-
Haswell's Engineer's Pocket-Book. By Charles H. ing Tables, Rules, and Formulas pertaining to Mechan-
ics, Mathematics, and Physics, Architecture, Masonry, css, Mathemaics, and Physics, Architecture, Masonry
Steam Vessels, Mills. Limes, Mortars, Cements. te.
Pa
 Margedant Co., 116 Fourth St., Hamilton, o.
 o., Medina, 0

A Catechism on the Locomotive. By M. N. Forney. With 19 plates, 227 engravings, and 600 pages. 82.50 . Sent on receipt
New York.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Pumps for liquids, air, and gases. New catalogue

The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and imsued a new catalogue. in which are many new and im-
proved forms of Pumping Machinery of the single and proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be uplex, steam and power type. This
nailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
Concrete Apparatus, etc. Ernest Ransome, S. F., Cal. Nickel Plating.-Sole manufacturers cast nickel anLettle Wonder." A perfect Electro Plating Machine Sole manufacturers of the new Dip Lacquer Kristaline. Complete outft for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St.. New York.

Tell me not in mournful numbers
Life is but an empty dream."
nd yet it is, when alt marrow is taken out of it by mea dread disease like consumption, that, neglected,
means certain death; catarrh and bronchitis, both dis tressing, and often leading to consumption, or like liver
complaints or scrofula, which ton ficted feel that life is empty. But these can the those afThe use of Dr. Pierce's "Golden Medical Discovery,"
The the great blood, lung, and liver remedy, does away with
"mournful numbers," brings back lost health "mournful numbers," brings back lost health, and fllls

Iron Planer, Lathe, Drill, and other machine tools of
modern design. NewHaven Mfg. Co, New Haven, Conn. Send for catalogue of Scientific Books for sale by unn \& Co., 361 Broadway, N. y. Free on application. ${ }^{\circ}$ Supplement Catalogue.-Persons in pursuit of infortific subject, can ENTIPIC AMERICAN SUPPLEMENT sent to them free. The SUPPLEMENT contains lengthy articles embracing the whole range of engineering, mechanics, and physical
science. Address Munn \& Co., Publishers, New York.
Curtis Pressure Regulator and Steam Trap. See p. 142. Wrinkles and Recipes. Compiled from the Scientiprocesses, and directions, for the Mechanic, Enginee Farmer, and Housekeeper. With a Color Tempering Scale, and numerous wood engravings. Revised by Prof.
Thurston and Vander Weyde, and Engineers Buel and Rose. 12mo, cloth, ${ }^{\text {\$2.0. }}$
Broadway, New York.
Iron and Steel Wire, Wire Rope, Wire Rope Tram Pat. Geared Scroll Chucks, with 3 pinions, sold at same prices as common chucks by Cushman Chuck Co., Hartprices as con.
ford, Conn.
The Improved Hydraulic Jacks, Punches, and Tube
xpanders. R. Dudgeon, 24 Columbia St., New York. Hoisting Engines, Friction Clutch Pulleys, Cut-off tighings. D. Frisbie \& Co.. 12 Liberty St., New York. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 28 . Engineers, capitalists. Illustrated working models of Catarrh Cured.
A clergyman, after years of suffering from that loathsome
disease, catarrh, and vainly trying every known remedy at last found a prescription which completely cured and saved him from death. Any sufferer from this dreadful disease sending a self-addressed stamped envelope to
Dr. La wrence, 212 East 9th St., New York, will receive Dr. La wrence, 212 East 9
the recipe free of charge.
Lick Telescope and all smaller sizes built by Warner

HINTS TO CORRESPONDENTS.

(1) S. N. M. asks: Would you kindly inform me what would |be the lightest, smallest, and most economical battery which would produce a per-
manent white incandescence in an exceedingly fine manent white incandescence in an exceedingly fine
platinum wire, two to three inches in length? Please say at same time if there is any danger of fusion of the wire. A. Two or three good bichromate cells would answer for heating the wire. There would hardly be the above. It all depends on the thickness of the wire and on its length.
(2) F. F. asks: 1. Is the film of the soap bubble air-tight or full of holes like a sieve? Does
the bubble grow smaller just before breaking? A. It the bubble grow smaller just before breaking? A. It
is air-tight, except as regards its power of dissolving the gases of the air and giving them off again. It does
not grow smaller before bursting. 2. What good does not grow smaller before bursting. 2. What good does
it do to wash osygengas for nse in the lime لliohts a
It washes out any particles of chloride of potassinm that might be carried'over and would tend to deteriorate gasoline vapor for illumination by having it forced through pipes, the [same as house gas? Please tell me how toj carburet the vapor, and give a simple blower. A. We advise you to correspond with L. J. Marcy, 1340 in this direction, and is an authority on lantern work The vapor is the carbureting agent; you do not carburet it. 4. Is there a work agent; you do not
experiments to projected by experiments projected by the magic lantern, such as tank projections, etc.? Would you suggest a list of
themsfor the benefit of lecturers? A. Dalbear's Art of them, for the benefit of lecturers? A. Dalbear's Art of
Projection, which we can supply for $\$ 1.50$. This Projection, which we can supply for $\$ 1.50$. The list of
experiments is endless. Queen \& Co., of 924 Chestnut experiments is endless. Queen \& Co., of 924 Chestnut
Street, Philadelphia, show such apparatus in their illusStreet, Philadelphia, show such apparatus in their illus-
trated catalogue. Correspond with them. 5. How can I condense the oxhydrogen fiame them. 5. How can sible point for the microscope? What condensers pos need, and how shall I arrange them? A. You want strong light, not necessarily the smallest. Use $41 / 2$
inch plano-convex condensers, placed fiat sides out. ward, determining their distance from light by trial.
(3) C. W. M. asks what the coils, I, of watch on, in the apparatus for demagnetization 2, 1886? A. Pasteboard, wood, or any non-metalic ubstance may be used to construct the hollow core.
(4) J. E. Z. asks the best material for a large a mould, and what metal will run the finest fo color, one that will not frost or blister. A. Use steel, copper, or brass for the mould, and type metal for the
button.
(5) G. F. C. asks what effect common brown sugar, mixed in a compound in the proportion steel in boilers. A. It will have noter, will have on the steel in boilers. A. It will have no effect on the steel
of the boilers, but will collect the sediment in cakes

November 6, 1886.]
which are liable to settle upon the fire sheet, and cause
it to burn or bulge from overheating. See Davis' work
it to burn or bulge from overheating. See Davis' work
(6) J. L. D. asks the best method of raising a large quantity of water by windmill a short distance, say 6 or 8 feet, for irrigation. A. A common of the windmill is the most economical.
(7) T. J. T. asks whether the ordinary photograph camera will answer for taking tin types.
A. Yes, but you require a special plate holder. 2. How are tin types made? A. The prepared plate, which may be purchased from dealers in photo materials, is coated with collodion, then immersed in a sensitizing nitrate of silver bath, and while wet exposed in the camera. Development is made by flowing the plate with a solu
tion of sulphate of iron and acetic acid. It proceeds tion of sulphate of iron and acetic acid. It proceeds rapidly. The plate is next washed, and the unacted
upon silver is dissolved off by immersing the plate in a bath of cyanide of potassium. After fixing it is slightly washed, rapidly dried over a spirit lamp, slightly colored with dry colors, varnished by flowing, and
is ready for delivery. Tin types can be made out of is ready for delivery. Tin types can be made out of
doors. The position of the picture is always reversed.
(8) M. W.--There are always openings for persevering, energetic men in every branch of engi-
neering in the United States, as well as in Great Britain. neering in the United States, as well as in Great Britain.
We do not know that there is a choice among the many branches. The name apprentice is now scarcely known in the United States. The English system is not practiced here. Young men enter engineering establishments on a business basis of usefulness. Our technical schools manufacture theoretical engineers by scores, who then have to travel the practical road by business
employment with engineering firms.
(9) J. S. M. asks the cause of a bird gun leading. How does it affect the shooting, and what is the simplest receipt for removing and preventing it,
by one in the country? A. The leading is caused by by one in the country? A. The leading is caused by
the friction of the shot on a dry barrel. A greasy wad the friction of the shot on a dry barrel. A greasy wad
will prevent it. A fine steel scratch brush with oil will remove the lead. Such a brush may be purchased any gunsmith.
(10) W. B. D.-Scouring brick may be made by mixing sand with a small percentage of clay
and baking. The quantity and heat required may be and baking. The quantity and heat required may be
easily ascertainedby trial. Mucilage and gums may easily ascertainedby trial. Mucilage and gums may
be used, but they are not equal to clay as a cement for scouring brick. A very small portion of Portland cement mi
(11) A. H. B. asks how to make a paper mould for stereotyping, and how to make it so that it tific American Supplement, Nos. 310, 191. Also Wilson's book on stereotyping, $\$ 2.00$, which we can furnish.
(12) C. W. B. asks if it is possible to with a diamond cutter ; if not, can it be done by ande other method without drawing the temper? A. It can be done with an emery
(13) R. B. says : I have some ground lass which I wish to bring a very high polsh; what that has been ground on an emery wheel or grindstone. It should have a dead fiuish with the finest washed flour emery on a lap of metal, zinc or lead; or if the
glass is large, use a rubber of metal. Then half polish glass is large, use a rubber of metal. Then half polish
with ground pumicestone on a leather rubber. Then with ground pumicestone on a leather rubber. Then
polish with rouge on a buckskin rubber, moist. 2. Which is the best to use for grinding glass on-emery wheel or grindstone? A. Use either one, wet; the
(14) W. A. R. writes: In conducting the exhaust from a steam engine into a large tank of water for the purpose of warming the same, should the pipe used for that purpose increase or diminish in size,
or remain the same for the entire distance (about 150 feet)? Should the pipe rise, fall, or remain horizontal? And at what point in the exhaust pipe should be in the
the best results? A. Therner form of a coil suited to the size of the tank, with a descent in its course to enable the water to flow off in the same direction of the steam. A decrease in size would be proper if the water should remain cos the water in the tank may become very hot from not being used, when the decreased size of the pipe would throttle the exhaust and make a back pressure in the engine.
(15) G. E. D.-The Great Eastern is comple 3 , heads into compartments for safety. These compart ments can be entered by manholes in the inner shell, which are closed by plates. The interior is also divided into compartments by decks and bulkheads like
ther iron ships. As a ship, the hull is one piece.
(16) T. P. B. asks how zine amalgam is madefor milling purposes; how the zinc is made to unitewith the quicksilver and form a solid amalgam which may be broken when cold and added to quick
silver. A. Melt the zinc, and pour with a small spill from a height of 2 feet fnto a pail of water This will chill it in shot and thin particles. Then dry and mix with the quantity of mercury desired for the
amalgam in an iron ladle. Heat the ladle until the zinc is dissolved. Do not allow the heat to rise to the evaporating point for mercury.
(17) F. F. asks how the sound of the voice is transmitted over the telephone wire. A. In the electric telephone theitransmitter transfers the evibration
of the air caused by the act of speaking, through the of the air caused by the act of speaking, through the
medium of the electro-magnet, into electric transmis sions pulsating in harmony with the diaphragm of the transmitter. The electric transmissions reproduce the same pulsations as were uttered to the transmitter There is no other physical connection of the equivalent pulsations between the terminals.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

October 19, 1886
AND EACH BEARING THAT DATE.
[See noteat end of list about copies of these patents.]

Acids, production of betanaphthol-disulpho, F Alarm. See Temperature alarm. Mabery nnunciator, c. H. Dowden.
Armor and constructing the same, compoun
steel, J. A. Tobin............................ Armpit shield, I. B. Kleinert.
Atmospheric engine, C. W. Weiss. Axle and box for wheels, L . Steinberger Axle, vehicle, W. I. Stillm
Band, box, C. S. Hall..... Bark cutter, B. Holbrool
Barometrical evaporometer, A. Bo
Bed, folding, C. W. Green....
Bet
Bed, invalid, I. D. Johnson
Bed lounges, locking leg for
son...
Bedstead, S. M. Hubbell.......
Bedstead, sofa, Haralson \& A
Bell, door, Bales \& I Leeson....
Belt,
Belt, electric, H. w. Watkins.
Beverages, apparatus for making carbonated, \mathbf{H} Robertson
Bicycle, A. K. McMurry...
Bicycle staddle, I. A. S. Copper.
Bit. See Bridle bit.
Bitters, J. H. Gwings
Blackboards, composition for, A.......................
Blacksmith's shears, J. W. Devero
Blank creasing mechanism, F. H. Richard
Blanket or simmlar article, R. G. Henry. Blasting plug. H. F. Learnar
Block. See Printing block.
Block. See Printing bloc
Blotter, A. S. Johnston
Blowpipe and lamp, combined...................... Board. See Bosom board.
biler.
Boiler for steaming food, L. S. Bunker. Bolt cutter, H. S. Pullman Boot or shoe, W.T. Martin....................351,186,
Boots or shoes, tackpulling and sole trimming machire for, J. N. Moulton
Bosom board, J. F. Gregson

```
Botties, machine for wiring, R. L.
``` Box. See Fare box. Journal box.
Box former, M. M. Wilson.......................
Boxes together, machine for cluing and puttin Boxes together, machine for gluing and pu
G. Richardson........................
Bracket. Bracket. See Roonng
Bracket, A. W. Koch.
Brake. See Car brake.
Brick mould, S. W. Underhill
Bridle bit, A. C. Tickner
Brush, P. P. Audoye.....
Burner. See Gas burner.
Butter mould and stamp,
Button, J. R. Rowlands
Butlon, cuff, J. Costello............
Calendar, breeding. J. W. Snider
Calk plate for horseshoes, J. J. W
Can. See Oil can. Shipping can.
Capstan, Allen \& Grater
Car brake, automatic, H. A. Wahlert.....
Car, convertible street, Smith \& McEvo
Car coupling, A. H. Boies...
Car coupling, Dunn \& Terry...
Car coupling, Gieffels \& Thom
Car coupling, L. Oberlander.
Car couppling, B. F. Sanders
Car coupling, J. J. Throckmorton.....
Car coupling, automatic, J. D. Majo
Car dopr fastener, H. A. Gehret.....................
Lynch...
It
Car starter, C. Percy.
Card, ornamental, H. C. Bainbridge....
Carriage top sttachment. H. J. Derber g
Carriages, rod holding clamp forech ildren's,
M. Gulllow.
ash register, W. C. McGili. Casting machine, stereotype, J. B
Centerboard for vessel, D. McFall. Centerboard for vessel, D. McFall.....
Chronometer escapement, A.. . Mulle Churn, King \& Mills.
lamp. See Clothes line clamp. Scaffold clamp. Cleaner. See Feed wa
Clipping machine, hair, J. K. Priest....
Clocks, pendulum for electric, Abell \& Gifford.....
Closet. See Water closet.
oth, frame for making shade, F. Schwanhaus
Cloth winder, A. Brown.....
clothes drier, H. Waterman
Clothes line clamp, G. Jurick
Clothes line holder, A. Montgomery
Clothes wringer, H. C. Hopkins.
Clutch mechanism, F. M. Waters
Coffee mill, F. Stamm
collars, metallic sweat pad for horse, M. Lasher................................. Converters and furnaces, lining for, W. L. Dudley..................
Corn, machine for gathering, \(\mathbf{G}\). G . Westerfield.... Corset stiffening, machine for making, M. Gard ner... Cot. folding. W. S. seymour..
Cotton scraper, W . H . Basham................ Counters. Se Car coupling. Thill coupling.
Creapling.
Cream tempering vat, J. Wilhelm............. Cream tempering vat, J. Wilhel
Cultivator, J. B. Scantlin Cultivator, J. B. Scantin.
Cultivator, w. J. Tanner.

\section*{. 351,056 \\ 351,184
351,009 \\ 351,009 \\ \section*{\begin{tabular}{l}
351,297 \\
351,269 \\
\hline 051,291
\end{tabular}}}

\section*{51,0950}

\section*{}

Cup. See Tea or coffee cup.
Curtain fixture, Bull \& Vizey
\begin{tabular}{l}
Dent \\
Dent \\
Dent \\
Dent \\
Des \\
Dig \\
Dis \\
Dis \\
\hline
\end{tabular}

178 Electric currents, distribution of E. Thomson. Electric machine regulator, dynamo, N. Tesla....
tor for dynamo, P. Diehl.
Electrical conductors, machine for covering, E. Elevator. See Harvester elevator.
Elevator cars, fan attachment for, F. Sasse....... 350,947
Emery wheel for wet grinding, F. Kampfe et al.... 351,180
 gine. Traction engine.
arolope bla
Richards..

Exercising machine, J. M. Keating.
Extension table, revolving, D. \& W. H. H. Fau-
Extractor......................... See Stump extractor
Face protector, A. L. Britton....
F'are box, Wherry \& Rottaken.....
Feed water cleaner, J. T. Bryant..
eed water heater, J. Kirkaldy..
Fence, J. Baines...
Fence, C. Hanika..
Fence, C. Hanika
Fence machine, C. F. Bartling
Fence post, S. T. McDougall.
Fence, railway, J. A. Cooley....
Fencing machine, G. L. Sutton.
Fertilizer distributer, T. T. Allen (r).
Fertilizer distributer, J..\(\{\) A. Maxwell..
Fifth wheel, vehicle, A. C. Ames
File, bill and letter, S. H. Fish...
iile, paper, Yeiser \& Seybold.
Filter, water, W. D. Cummings.......
Finger exercising device, J. Kaspar.
Fire alarm apparatus, E. L. Slocum.
Firearm lock, J. Goltstein.........
Fire extinguisher, H. A. Mansfield.
Find
Fireplace heater, E. F. Dunaway.
Fluid pressure regulator, M.
Folding gate, R. M. Wilson.
Folding gate, R. M. Wilson
Frame. See Stencil frame.
Furnace linings, repairing,
Game, C. E. Tranchell.....
Garment supporter, S. C. Ch
Gas burner, G. Hathorne...........................
Gas fuel regulator, automatic. F. C. Gilillan..
Gas pressure regulator, w. H. Metcalf
Gas pressure regulator, W. H. Metcalf.............
Gate. See Folding gate. Railway gate. Railway
crossing gate.
Gate, \(M\). C. Meeker.
Gate, ,. W. P. Walters.........
Gate, G.
Gib and key, J. H. Robiso
Glass cutting machine, Smith \& Armbrust........
Glass shoes or slippers, manufacture of, J. E.

\section*{lass slipper, H. J. Smith.}

Governor, steam engine, e. N. Bowen.
Governor, steam engine, R. Matthews..
Grain binder, H. D. W. Bailey.
Grain cleaner, C. R. .Bomboting machine, G. H. Cormack.......

\section*{Grain separator, Smiting Bruce:} Grate, S. W. Alston.
Grate, F. s. Bissell..
 Grating machane,
Grindstones and frames therefor, mechanism for
hanging and centering. Childs \& Smith........ Gun barrel, auxiliary, R. Morris...............351,333. Hammer and planer, combined, Brent \& Lang....
Hanger. See Eaves trough hanger. Pantshanger.
Trouser hanger.
Harrow, J. т. Hamilton.
Harvester cutter, L. Study.
Harvester elevator, L. L. Mayberry....
Harvester, grain, H. N. Kennedy et al.
Harvester rake and reel, F. G. Becker.
Harvester, self-binding, G. W. Blakeslee
Harvesting machine, H. N. \& B. A. Kennedy..
Hasp lock, J. S. Dare....................
Hats, manufacture of felt, c. Vero..
Hats, manufacture of felt
Hay press, E. Gallagher..............................
Heater. See Feed water heater. Fireplace heat
er. Water heater.
Heating and ventil.
Heating and ventilating apparatus, combined
steam, A. Shogren............
steam, A. Shorren............................
Hinges in cast metal plates, forming,
Hoe and rake, combined, Stinson \& Sanders...
Hoe, gang, F. T. Gilbert.................
Hoisting and conveying apparatu,
Hoisting apparatus. A. Betteley.
Hoisting apparatus. A. Bettele
Hoisting device, C. C. Stewart.
Holder. See Clothes line holder. Rein holder.
Stereotype plate holder.
Hose hoist, J. J. Bresnan...
Hot air register, J. Warren...............
Hubbattaching device, W. A. Clark..
Hub'attaching device, W. A. Clark...
Hub, self-lubricating, L. Steinberger.
Index, T. P. Pattison..
Indicator. See Street and station indicator
Induction coil, F. F. Stogermayer...
Injector, P. Schneider et al..........
Injector, P. Schneider et al............

\begin{tabular}{|c|}
\hline \multirow{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

STEAM ENGINES

 The WITERHOTSE STSTE saves power.
as a Perfect Regulator, a

The Waterhouse Electric Mfg. Co., Hartford, Conn. COLD AS A CAUSE OF DEAFNESS.-A short but comprehensive paper by Dr. Theodore Griffin,
answering the two tmportan tuestions: How crn the
injurious effects of cold upon the ears be prevented and

NEWSPAPER FILE

veryone who wishes to preserve the plit. Ne pape.
Address
MUNN \& CO.,

Exclusive Agents and Importers for the United States
PERIN BAND SAW BLADES,

 PLANING AND MATCHING MACHINES.

Special Machinesfor Car Work, and the latest improved
Wood Working Machinery of ail kinds. RALLWAY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. SCREW JACES, STURTEVANT BLOWERS, \&c. SOHN S. URQUHART, 46 Cortlandt St., N. Y.
JOHES

INGERSOLL ROCK DRILL CO.,
10 PARK PLACE, NEW YORE 10 PARK PLACE, NEW YORE. ROCKI DEClipse
For Mining, Tumeling, Shaft
inking

 MINERAL WOOL. A hare-prowe mingutior of heat and sound. Samples and
price ligt free. U. SMNERAL WOON, Co.,
22 CORTLANDT STREET, N. Y.

\section*{OPER'S HAND-BOOK OF LAND} Containing a description and illustrations of every
ind of Land and Marine Engine. \(\$ 3.50\), postpaid. EDWARD MEEKS, Publisher, S. E. Cor. Walnut and Tenth Streets, philadelipia, pa

\section*{}

\section*{IMPORTANT BOOKS
}

ASSA YING.

GAS FNGINFS.

ECONOMIC MOTOR CO.

HARRISON CONVEYOR!
manding Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&c.

\(\$ 10.00\) to \(\$ 50.00\), wat ind DRY AIR REFRIGERA TING MACHINE.

CABARMREME

WITHERBTRUGG \& RICHARDSON. Manufacturers

\(\left.\right|_{\text {Sent on application } t} ^{\text {lilustrate }}\)

RUBBER BELTING, PACKING, HOSE

toba
the cheap and of ear patentees who avall themselves ot
ing.
orce on Jan. ist. 1 The new Engish law whin went into n Great Britain on very moderate terms. ABritish ptent includes England, Scotland, Wales, Ireland and the Gnancial and commercial center of the world. and her invention is likely to realize as much for the patentee in Knaland as his United States patent produces for almost every patentee in this country to secure a patent in Great Britain, where his OTH ER COUNTPIES.
on very reasonable terms in France, Belgium, Germany, Austria, Russia. Italy, Spain (the latter includes Cuba and all the other spanish Colonies), Brazil, Briti ludia Australia, and the other Brish Cors ins publishers of The Sctentific Ameidian to establish competent and trustwor hy agencies in all the principal foreign countries, and it has always been their aim to is done and their interesci faithfully guarded. iy a pamphlet containing a synopsis of the paten of all countries, including the cost for each, and othe information useful to persons contemplating the prothis office.
entipic Amertcan editors and Proprietors of The SCIany information relative to patents, or the registry of offices, s61 Broadway. Examination of inventions, con sultation, and advice free. Inquiries by mail promptly Address, ess, MUNN \& CO., Publishers and Patent Solicitors, Brancer Offices: No. 622 and 624 F Stre

NEW YORK BELTING \& PACKING CO., 15 PARK ROW, N. Y
G \(\underset{\text { : }}{167}\) Lake St., Chicago; \({ }_{308}\) Chestnut St., Phila.. 52 Rummer St., Boston
ICE \& REFRIGERATING

aligroaph
mbin

VULCANIKED RUBBER FABRICS
\(\begin{gathered}\text { For Mechanical Purposes. } \\ \text { RUBBER } \\ \text { Air Mraniae EIOEO }\end{gathered}\)
A Specialty.
R MATS,
AND STAIR TREADS
BUBBER MATS, CE\&REFRIGERATING
 VELOCITY OF ICE BOATS. A COLLEC

Mineral Lands Prospected.

ICE-HOUSE AND REFRIGERATOR.

\section*{MALLEABLE}

\section*{HYDRAULIC FLANGED HEADS,} OF IRON or STEEL, FOR BOILER and TANK MAKERS.
Unequaled for Strengeh and Uniformity. THE DICKSON MANUFACTURING CO.
96 Lake street, Chicngo.

TO THE STEEL MANUFACTURERS
 The attention of all steel manufacturers of the United

\(\qquad\)

 dinds will be compared in two classes.

\section*{MORKSHOP DECEIPTS.}

 IN

ST Send for our complete Catalogue of books, free to
tion the "series" wanted. Sent pospaid by MUNN \(\mathbb{E} \mathbf{C O}\) CO., 361 Broadwav,
New Yorke, on recipt of price.

\section*{
}

\section*{GONSUMPTION RHBED \\ ANDLUNCAFFECTIONS}

\section*{}

QDoertisements.
Inside Page, each insertion :-: 35 cents iline.

 receited at pubication ofice
ing to appear in nextit issue.

 Material, Style, Finish, Durabiity, in \begin{tabular}{l}
all respects this Brace it warranted to be \\
the best in any market. Sent by mail \\
\hline
\end{tabular} \begin{tabular}{l}
the best in any market. Sent by mail. \\
postage paid by us on receipt of \(\$ 3.00\) \\
\hline
\end{tabular} Most Hardware dealers willfurnish it a
he same price. MILLERS FALLS CO the same price. MILLERS FA
270. 74 Chamber St., New York.
 Order from our \({ }^{66}\) Special List." TEE JOHN T. NOYE MFG. CO.
COLTHiciulis RIFLE

\section*{WIRF ROPE}

Address JOHN A. ROEBLING'S SONS. Manufactur Send for circular.
PUMPING MACHINERY.-BY E. D
 ENTFIC AMERICAN SUPPLEMENT, NContained InsCI-
cents. To be had at this oflce and from aili newsiceal-
ers.

BEFOREXOU BUY A BICYCLE

 SHEPARD'S NEW seo Screw-Cutting Foot mathe Froot and Power Lathes, Drill
Presses. Drills, Dogs, chiliners, tets, Twi
paymest. on trial. Lathes o
send for catalogue of Outits
for Amateurs or Artisans. AddressH. L. Shepard, Agent, 134 E. 2 d St., Oincinnati, 0

\section*{STEREOPTICONS}

Our Petroleum Lanterns have the rivaled for powerful white light. Choice collection of views colored and plain.
QUE

924 Chestnut Street
MAOHINERY AND EDUCATION,-A

 H A Original and Only luilder of the atatio HARRIS-CORLISSENGINE

\section*{PATENTS}

MESSRS. MUNN \& CO., in gonnection with the publi-
cation of the ScIENTIFIC amine improv
for Inventors
In this line of business they have had forty ome vears experience, and now have unequaled facilities for the preparation of Patent Drawings, Speciflcations, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& Co. alsoattend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to
them is done with special care and them is done with
reasonable terms
A panphlet sent free of charge, on application, con-
tinnig fullinformation about Patents and how to pro

 MIJNN \& CO., Solicitors of Patents, 361 Broadway, New York. cific Building, near 7th Street, W ashington, D. C.

E. \&K, PATENT.
SEND for Circolar,
MASSEY,

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas.

0

Bibb's Celebrated Original
BALTIMORE
FIRE-PLACE HEATERS FIRE-PLACE HEATERS,
he handsomest, , onot eoonomic
Coal Stovesin the world.

PIPE COVERINGS
Made entirely of asbestos.
Absolutely Fire Proof. ADSOLUEOLY Fire Proof.
BRAIDED PICKING, MLLL BOARD, SHEATANG, CEMENT, FIBRE AND SPECLLTIES.

Use the JENKINS STANDARD PACKING in the worst
joint you have, and if, after following directions, it is not
what we claim, WE WILI, REFUND THE MONEX. Our "Trade Mark" is stamped on every sheet. No
genuine unless so stamped. Send for Price List.

JIINEIINE BIROEn
1 John Street, N. Y. 79 Kilby Street, Bosto
1s So. Fourth Street, Phila.

\section*{AQUA PURA}

 \(\xrightarrow{\text { to }}\)

Sex
 thi
rea
ev
n. \begin{tabular}{l}
nIrt \\
post \\
or C \\
O \\
lishe
\end{tabular}

1PERA GLASSES Ricionepe, Ricomopee
The safest way to remit is by Postal Order Draft, orExpress Money Order. Money carefully placed insideof envelopes, securely sealed, and correctly addressed,seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., pay-dress all letters and make all orders, drafts,
able to

361 Broadway, New York Trixim
Sciantific Amprican Sunnloment. This is a separate and distinct publication from
 weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the principal departments of Science and the
Useful Arts, embracing Biology, Gecloay, Mineralogy, Natural History, Geography, A rchæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining,
Ship Building, Marine Engineering, Photography, Sechnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh
and and valuable information pertaining to these and ullied subjects is given, the whole profusely illiustrated with
engravings. The most
and Manufactures at home and abroad are represented and described in the SUPPIEMENT.
Price for the SuppIEMENT
Price for the Supplement for the United States and Canada, \(\$ 5.00\) a year, or one copy of the SCIENTIFIC AM-
ERIGAN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Address and remit by postal order. express money order, or check,
MUNN \& Co., 361 Broadway, N. Y., Publishers Scientifio american.
To Jareign Subscribers.- Under the facilities of
the Powtal Union, the Scientific Ambrion is now sent by post direct from New York, with regularity, to sub. scribers in Great Britain. India, Australia. and all other British colonies; to France, Austria, Belglum, Germany, Russia, and all other European States; Japan. Brazl, Mexico, and all States of Central and South America. \$4, gola, for SCIENTIFIC AMERICAN, one year for both SCIENTIFIC AMERICAN and SUPPLEMENT for one year. This includes postage, which we pay. Remit by postal or express money order. or draft to order of
MUNN \& CO., 361 Broadway, New York.
PRINTING INKS.
```


[^0]:    Nycticebus, of which two species are known, N. java-

