

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
$\underset{[\text { NEW }}{\text { Vol. LV.-NO. }}$ sERIES.] ${ }^{18 .]}$
NEW YORK, OCTOBER 30, 1886.

H. M. S. BENBOW.

The new armor-clad barbette ship Benbow, built by the Thames Ironworks and Shipbuilding Company, was delivered on the 26th of August into the charge of Captain Buller, at the entrance of the Royal Albert Docks, and proceeded in charge of that officer to Chathain Dockyard, where she will receive her armament, preparatory to being put in commission. The Thames Company, which is contractor to the Government for the supply of both ship and engines, has been working early and late to complete its contract within the specified time, and Messrs. Maudslay, to whom the contract for engines has been sublet by the Thames Company, being also under contract to complete by date, in order that the vessel might steam from the works down the river.
The Benbow is one of the six vessels of the Admiral class, so called from bearing the names of six of our famous admirals-Anson, Collingwood, Camperdown, Howe, Rodney, and Benbow. They are all barbette ships, the guns being mounted inside a fixed circular breastwork of thick armor plating, wherein the gun revolves on a turntable, and fires over the breastwork. The barbettes are placed one at each end of the superstructure, or midship battery, and the guns have each a clear range of 230 deg., viz., from 25 deg. abaft the beam to all round the bow or stern to 25 deg . on the opposite side, and converging upon an object on the broadside at about fifty yards.
The Benbow has been chosen as one of the six vessels of this class to mount two guns of 110 tons each, one being mounted in each barbette; whereas, in the other five vessels, two guns are carried in each barbette, but of 63 tons only instead of 110 tons. These terrible engines of warfare would be most destructive in action, and are, in fact, formidable weapons, but in some quarters such enormously large guns are not viewed with much favor. England, in the matter of adoption of such heavy guns, has been following in the wake of Italy.
In addition to the two 110 ton guns, the Benbow car-
ries a battery of ten 6 in . guns, twelve rapid-firing guns and fourteen machine guns, these latter very conveni ently arranged for use agains.t torpedo boats. She is also fitted with four torpedo ports on the broadside and one through the upper part of the stern, all above water. The Benbow was launched on June 15, 1885, and has since that date been lying near the works for the purpose of receiving her machinery and boilers, and for the completion of the multitudinous fittings of a modern ship of war. It would be impossible to describe on paper the character of such fittings, includ ing the pumping, draining, and ventilating, some 180 separate compartments, each compartment being fitted with an automatic valve, where the ventilating pipe or trunk passes through, so that in the event of the water entering any one compartment, and rising to the height of the trunk-the trunk being assumed to be possibly damaged-the water would close the valv and so be confined to the damaged compartment.
Some idea of the complication of the gearing in a modern war vessel as fitted in England may be obtained when we state that no less than 83 water-tight doors and armor deck shutters are fitted in this vessel, in addition to 85 water-tight doors that open and close by hand without gear. The deck plates, to which indica tors are fitted, showing when each door or valve is open or closed, amount to no less than 250 , in addition to the two automatic valves above named. Then, including the main engines, fan engines, pumping engines, elec tric light engines, steam steering and capstan engines there are no less than forty separate sets, all to be kept in proper going order, requiring all the care Mr . White, the chief engineer, and his able staff are able to bestow upon them. Mr. Yates, of the Royal Nava Corps of Constructors, has had the inspection of the Benbow, aided by a staff of assistants, to see that the company fulfills its contract; and any one comparing the Benbow with any of the sister ships will see that the full "pound of flesh" has been demanded and readily given, the Thames Company, ever since it built the Warrior in 1861, having maintained its reputation as
builders of first-class naval constructions, and to this day retains its oldest connections in almost every nation.
The dimensions of the Benbow are as follows Length, $330 \mathrm{ft} . ;$ breadth, $681 / 2 \mathrm{ft}$. ; and depth, 37 ft . The engines, supplied by the well-known firm, Messrs. Maudslay, Son \& Field, are of the three-cylinder compound type, of 7,500 indicated horse power, and reaching 9,000 with forced draught, giving an estimated speed of 16 knots. The Benbow, like other ships of this class, is of the citadel type; this means that the vital portion of the vessel for about half of her length is protected by being included in an iron box armored with 18 in . plates on the side, the top of which at full draught is $21 / 2 \mathrm{ft}$. above and 5 ft . below water, giving a total depth of $71 / 2 \mathrm{ft}$. The athwartship bulkheads forming the two ends of the citadel are 16 in . thick; before and abaft these there is an armor deck of 3 in steel plating. Except for this steel deck, which is cal culated to shield all below it from the fire of very heavy guns, the ends of the vessel are unprotected, and in a heavy engagement the superstructure would suffer severely. In the case of other types of war vessels, protection is afforded by a belt of armor plating all fore and aft, being thickest amidships and tapering toward the ends. But it is evident that all that could be done on the dimensions and displacement of the Benbow has been done; for in order to provide for the armor deck and additional freeboard of the Nile and Trafalgar, the displacement tonnage has had to be increased by 2,000 tons, making them 12,000 tons displacement instead of 10,000 , as in the Benbow.
Recently, in the presence of Mr. Joshua Field and Mr. Hayward, the manager of the Thames Iron Works, the steam was for the first time admitted into the huge cylinders, when immediately the engines in both engine rooms started almost simultaneously, and continued steaming for three hours, thus showing that all was in perfect order and the vessel capable of making her short cruise to Chatham. The Sans Pareil, a sister vessel to the Renown, building at Newcastle, a vessel

of somewhat similar dimensions to the Benbow, is making rapid progress at these works, and is to be launched in the spring of next year ; some 3,000 tons of material being already worked into place on the slip previously occupied by the Benbow, sixteen of the massive armor plates already in place weighing twenty tons each. The huge wrought iron sternpost for the new Italian armorclad Re Umberto is being forged and machined at these works also, which, considering the dearth of work everywhere, appear to be fairly busy. -The Engineer.

James G. Wakley, M.D

Dr. James Goodchild Wakley, for the last twenty-five years editor of the Lancet, died at his residence, Heath lands Park, Longeross, England, on the 30th of August.
Dr. Wakley was born in Thistle Grove, Brompton, in December, 1825, and was the youngest son of Thomas Wakley, M.P., the founder of the Lancet. He was educated at a private school at Hanwell and at University College School, London. His professional training was obtained at University College. He was graduated as doctor of medicine at King's Colle'ge, Aberdeen, in 1852. He never engaged in medical practice, but, when about thirty years of age, began under his father's guidance a journalistic career. He was soon intrusted with a large share of editorial responsibility, and about the year 1859 became actual, though not nominal, editor of the Lancet. It was not till his father's death, in 1862, that he took this designation, becoming at the same time half proprietor of the journal with his eldest brother.
The editorial life of Dr. Wakley was one of peculiar devotion to his work. He not only maintained, but extended, the reputation that the Lancet had acquired under its founder's direction for earnestness of purpose, strict integrity, and unselfish zeal for the public good and for the welfare of the best and permanent interests of the medical profession.
He was essentially a journalist, and to make the Lancet effective he spared no pains, night or day, summer or winter. His first care was to make his journal the exponent of the views of medical men in every part of the kingdom and of the empire; and so long as such views came out of honest observation and practical experience, they commended themselves to Dr. Wakley, and found a place in the Lancet, notwithstanding they might not always be perfect in form or demonstration.
Dr. Wakley made no pretensions to great learning or a deep acquaintance with science, but he had an ample store of common sense, and a faculty of very quickly and surely gauging professional opinion. He was singularly free from personal or malicious feeling, though strongly tempted thereto occasionally in the conflict raised by the reviews and criticisms of the journal for which he was responsible.

The Store Order Act Invalid.

The Supreme Court of Pennsylvania, sitting at Pittsburg, on Oct. 4, decided the anti-store order system act of June 29, 1881, to be unconstitutional. The proisions of this act we condense as follows

Persons mining or manufacturing, or either, coal, ore, or other mineral shall pay their employes in lawful money, or by order redeemable at its face value in lawful money by the issuer within thirty days. Violation a misdemeanor, punishable by fine up to $\$ 100$, to go to school fund. Employes interested in merchandis ing are not to make a greater profit on goods than outside dealers in like articles. Violation makes the debt uncollectible from employe. Employers refusing for twenty days to pay employes regularly or to redeem orders shall pay one per cent a month, if suit be brought for the amount due."
The court said: "The act is an infringement alike of the rights of the employer and the employe. More than this, it is an insulting attempt to put the laborer under a legislative tutelage which is not only degrading to his manhood, but subversive of his rights as a citizen of the United States. He may sell his labor for what he thinks best, whether money or goods, just as his employer may sell his iron or coal, and any and every law that proposes to prevent him from so doing is an infringement of his constitutional privileges, and consequently vicious and void."

American Gaslight Association.
This association held its fourteenth annual meeting in Philadelphia, October 20 and 21. It was called to order by its president, A. C. Wood, of Syracuse. A paper, followed by a long discussion of State gas commissions, filled the first day, the conclusions being favorable to the creation of these bodies. Various papers on technical points were given. The second day opened with a paper on natural gas, which was read by W. H. Denniston, of Pittsburg, Pa. In that city alone 38,000 ,000 cubic feet are consumed daily. After the reading of other papers the convention adjourned sine die. A:banquet was partaken of in the evening by the mem-

strintifir sammitam.

mstablished 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

> O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. postage included...
One copy, six months, postage included.

Remit by postale or express money order. Address MUNN \& CO., til Broadway, corner of Franklin Street, New York.

The Scientific American Supplement

 prthe safest way to remit is by draft, postal order, express money order, or
reekistered ettel.
Address MUNN $\&$ Co., 361 Broad way, corner of Franklin Street, New York. Scientific American Export Edition. The SCIENTIFIC AMERICAN Export Edition is a large and splendid peri-
odical. issued once a month
larke Hach number contains about one hund
aned

NEW YORK, SATURDAY, OCTOBER 30, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. SO8.

For the Week Ending October 30, 1886 .

Price 10 cents. For sale by all newsdealers.
's
 BOTANY.-The Clammy Columbine. - 1 illastration..

atomic distance or phlogiston. 90 ENGINEERING.-Express Engine. Great Western Railway.-Full
dimensions, partialsetion and elevation of a new tyeo locomo-
tive engine. with inside cylinders and external eecentrics. -2 illus tive engine. with inside cylinders and external eccentrics.-2 illus-
trations... atreet Cabie.. M uiidescription of the manufacture of a
cable for a cable railroad.

 DAWSON.-An exhaustivereview of this s.ibiject.-The president's
address at the 56th annual meeting of the British Association for
the Advancement of Science

 X. MISCELLANEOU\&.-Causes of Conflagrations.

 XI. PHYSICS.-A Mercurial Air Pump.-By JJ. T. BotromLEY.-A
new pump or obtaining hif vacua, in which the mercurs is pro-
tected fron the air.-

THE STATUE OF LIBERTY FINISHED.

As we go to press, the final preparations are being made for publicly dedicating the grandest statue the world has yet seen. The cheerful gift of the people of one great nation to those of another, and yet re sulting from the united effort of both, it symbolizes the deep, friendly feeling which, for more than a century, has existed between the two. On the 28th inst., eminent citizens of the French Republic wil meet on Bedloe's Island the President and most honored citizens of the United States, and together they will perform the ceremonies celebrating the com pletion of the Statue of Liberty. The work as now seen leaves no room for criticism-the statue itself is grand, imposing, and dignified ; while the pedestal is rich and ornate, yet so quiet as to enhance, rathe than detract from, the beautiful features of the figure it upholds. The hope of all is that the principle here typified and the frendship of the two peoples may continue for all time.

In the Hold or an Ocean Steamer.

"How long do stokers live?" asked a Tribune reporter of an engineer of one of the swiftest ocean racers that ply between this country and England.
"As long as anybody," was the unexpected reply.
"How do they like their work?"
"If they don't like their work, they get out; there are plenty willing to take their places," was the answer. But it is hard to persuade the average lands man that the stoker's life is not shortened by con stant exposure to the extremes of temperature. Trans atlantic passengers who have braved the intense heat of the furnaces and visited the fire room wonder how men can endure such a life even for a voyage. The stokers work four hours at a stretch, hemmed in be tween two long lines of furnaces that keep the temperature ordinarily at 120 degrees, sometimes sending it as high as 160. The space between the furnaces is so narrow that when the men throw in coal they must take care when they swing back their shovels, lest they should burn their arms on the furnaces behind them. The only means of ventilation is one large air pipe that reaches down into the center of the stokers' quarters, and on a big steamer the men have to take the air in batches. On a great ocean steamer like the Umbria, the men come on in gangs of eighteen stokers and twelve coal passers, and the "watch" lasts four hours. The Umbria has 72 furnaces, which require nearly 350 tons of coal a day, at a cost of almost $\$ 20,000$ per voyage. One hundred and four men are employed to man the furnaces, and they have enough to do. They include the chief engineer, his three assistants, and ninety stokers and coal passers. The stoker comes on to work wearing only a thin undershirt, light trousers, and wooden shoes. On the Umbria each stoker tends four furnaces. He first rakes open the furnaces, tosses in the coal, and then cleans the fire, that is, pries the coal apart with a heavy iron bar, in order that the fire may burn freely. He rushes from one furnace to another, spending perhaps two or three minutes at each. Then he dashes to the air pipe, takes his turn at cooling off, and waits for another call to his furnace, which comes speedily. When the " watch" is over, the men shuffle off, dripping with sweat from head to foot, through long, cold galleries to the forecastle, where they turn in for eight hours. Four hours of scorching and eight hours' sleep make up the routine of a stoker's life on a voy-

The reporter ran across a group of stokers in West Street, and had a chat with one of them. "I went to sea as a coal passer when I was fourteen years old," he said. "Then I got to be a stoker, and I am now twenty-eight." The speaker was about six feet in height, and weighed 180 pounds or more. His face was ruddy with health, and his eyes beamed with good nature. His robust appearance was in strong contrast to that of some of his mates who had just landed from a voyage, a pale, streaked out, listless looking set of men.
"How do we stand the work? Well enough if we get plenty to eat. But the work is terribly hard all the same. It comes hardest, of course, on those who don't follow it regularly. They are the fellows who get played out so badly. I heard once of a young English doctor who came over here on a visit. He got out of money, and was that proud that he wouldn't send home for some. So he worked his way back as a stoker, and got a sickness that he could never get rid of. But if we get plenty to eat, and take care of ourse]ves, we are all right. Here's a mate of mine nearly seventy years old, who has been a stoker all his life, and can do as good work as I can. Stokers never have the consumption, and rarely catch cold."
'Why do you appear more healthy than the other men here?" asked the reporter.
"Well, I have been on land now about two weeks, and these men just came off the ship. You see, when we finish our watch at the furnaces, we are just covered with sweat, dirt, and oil, and we have to wash the stuff off with warm water. Washing so much with warm water gives us that streaked out look
that makes people think we are being killed with consumption. But after we have been on land three or four days that look disappears, and the men look natural again. We get more ventilation than the old timers used to get, but we don't have any too much. I tell you, when I used to go down into the tropics, I wanted to keep under the air pipe all I could. Now I go to England and back, and have four furnaces to tend. Four hours is just about as much as we can stand before the fires. It uses some of the men up stand before the fires. It uses some of the men up
so badly that when the watch is over they can just crawl to the forecastle, and throw themselves on their bunks without washing a bit. But others of us don't mind it so much. We heat our water, take a wash, and then have a pipe or two before turning in."
"What do we eat and drink?"
"We have hash, all the oatmeal we want, coffee, and other good things."
"How about the grog?"
"Well, the fact is that the grog was knocked off about eight years ago on the English and American lines. The truth is the men got drunk too much, and grog did them much harm. When I used to take my grog, I'd work just like a lion while the effects lasted. I'd throw in coal like a giant, and not mind the heat a bit; but when it worked off, as it did in a very few minutes, I was that weak that a child could upset me. Take a man dead drunk before the fires, and the heat would sober him off in half an hour or give him a stroke of apoplexy. The French lines still give their men grog. I have seen big tanks on their ships filled with brandy, rum, and wine, all for the stokers. The French are great fellows for that. Their men look strong, but I think it must hurt them. We get grog occasionally now when we are having a We get grog occasionally now when we are having a
race, and then we 'play it.' I remember one race we race, and then we 'play it.' I remember one race we
had about a year ago with a Dominion mail steamer. She got ahead, and our captain was mighty anxious to beat her. So he sent down grog to us, and told us to fire up like mad. Well, we did until we learned that we were ahead. Then we took a rest. Down comes the captain with another lot of grog. 'Fire her up, boys,' yells he, and we did fire her up like lions, until we were ahead again. We kept that up for three days, and got all the grog we wanted. But finally we let her beat us, as the grog played us out too much. But we don't often have such fun as that," the stoker added, as he strolled aboard ship.

German Doctors and Naturalists.

The fifty-ninth meeting of the Society of German Naturalists and Physicians has recently been held at Berlin. Its field of work is very large, the meeting this year having been divided into thirty sections, of which twenty-one were more or less medical, and some of the sections had as many as 400 members. Professor Virchow gave the introductory address, in which he alluded to the scientitic activity of the German race as a guarantee for the growth of the German nation. He spoke of the connection of the natural sciences with medicine, and of the new method, the mechanical method, of research. which, by replacing so called natural and speculative philosophy, remodeled the whole of biology and gave the basis to all scientific inquiry. Darwin tried to solve the question of descent, not in the sense of the old natural philosophy : he did not discuss general probabilities, but looked for the several practical cases; he did not search for special organic powers, but tried to find the mechauical effect of natural causes. The same method has been pursued ever since; and if in recent years rapid advances have been made, especially in the study of infectious diseases, the aim and the method have remained the same-the scope only of our investigations has been altered. "Our modern transactions are characterized by the spirit of empirical but methodical investigation, the spirit of practical synthesis, the spirit of brotherly co-operation in the several branches of the wide scientific field.'
Dr. W. Siemens gave an able address on our scientific age. and was followed by Professor Bardeleben, of Jena, with a paper on "Hand and Foot," in which he compared the hand with the foot on the basis of comparative anatomical and palæontological data. Professor Cohn (Breslau) read a paper on "Questions of Life" (Lebens fragen), which showed that the great problem is not yet solved, and that in the living organism there are forces which, though they must be mechanical, as they put bodies in motion, yet cannot be split up into components of atomic molecular forces. "The gulf which separates life from death, organic from inorganic bodies, is not closed, and none of our hypotheses will help us to bridge this gulf." He was followed by Dr. Schweinfurth with a paper on a geographical subject, and by Professor His on the "Development of the Zoological Station at Naples and the Growing Necessity for Scientific Central Stations." Professor Stricker (Vienna) gave a demonstration with his powerful electric microscope, and showed how useful the instrument is for lecture purposes. Professor Bergmann, of Berlin, spoke of the relations of modern surgery to internal medicine, the triumph of modern surgery to internal medicine, the triumph
of surgery due to the antiseptic method of Lister,
and the scientific development of surgery. Wounds can now be made to heal so readily that surgery has invaded the territory of medicine, and serious operations on internal organs are performed, and often, also, operations merely for the purpose of diagnosis. Internal medicine, occupying itself largely with those disease germs which are brought to the organism from without, tries to wage war against these germs in their native elements-the air, water, and soil-and is becoming more and more preventive.

Professor Barff.
Frederick Settle Barff, M.A., died at Buckingham on August 11, in the sixty-third year of his age. Mr. Barff delivered before the Society of Arts, in 1870, a series of Cantor lectures on "Artistic Colors and Pigments." As this time he held the office of Assist ant Professor of Chemistry at University College, Lon don. It was owing to the attention drawn to the subject of these lectures that the chair of chemistry was founded at the Royal Academy, and that Mr Barff was appointed the first professor. Professor Barff delivered a course of Cantor lectures in 1872, on "Silicates, Silicides, Glass, and Glass Painting;" and another, in 1874, on "Carbon and Certain Compounds of Carbon, treated principally in Reference to Heating and Illuminating Purposes." He also gave the Ju venile lectures for 1878, on "Coal and its Compounds." For his paper on "Zinc Whiteas Paint, and the Treatment of Iron for the Prevention of Corro sion," read in 1877, Mr. Barff received the Society's medal. In this paper he announced the discovery of his method of protecting iron from rust by producing a film of magnetic or black oxide of iron on the sur face of the metal. In March, 1879, he read a second paper on his process for "The Treatment of Iron to Prevent Corrosion." In 1882, he obtained another medal for a paper on a "New Antiseptic Compound and its Application to the Preservation of Food." Mr Barff served as examiner in chemistry for the Natural Science Tripos at Cambridge, and held the office of Professor of Chemistry to the Catholic University at Kensington and in the Jesuits' College, Beaumont. He was elected a member of the Society Beaumont. He was elected a member of
of Arts in 1870.-Journal Society of Arts.

Remarkable Railway Speed.

The following is the time made by newspaper special train No. 11 on the New York Central \& Hudson River Railroad between Syracuse and Buffalo, on August 8, 1886. The train was drawn by engine No. 541, John W. Cool engineer.

Stations.	Depart-ure.	Distance.		$\begin{array}{\|c\|c} \text { Time } \\ \text { between } \\ \text { Stations. } \end{array}$	Rate of spa pehour.
		Total.	$\left\lvert\, \begin{aligned} & \text { Inter- } \\ & \text { mediate. } \end{aligned}\right.$		
	н. M.	$\frac{\text { Miles and }}{\text { Munt }}$	Milesand Hun'ths.	$\xrightarrow{\text { Minutes }}$ and Sec.	$\begin{array}{\|c} \substack{\text { Milies } \\ \text { Hun'ths }} \end{array}$
Syracuse	${ }_{10}^{10} 0 \mathrm{~A}_{3} \mathrm{M} 30$				
Warner's...	100930	${ }^{9} 34$	-834	6	
Weeasport.:	102020	${ }_{21} 39$	434	350	${ }_{74}^{60}$
Port Byron.	102320 102935	${ }_{31}^{24} 76$	${ }_{7}^{337}$	${ }^{3} 15$	析 678
Clyde....	${ }^{10} 35$	${ }_{37}^{37} 96$	${ }_{6}^{620}$	515 5 5 65	808 6803
Palmsra.	105235	${ }^{45} 83$	${ }_{12}{ }^{6} 1$	650 1045	${ }_{70} 68$
Fairport.:	[11 $\begin{aligned} & 11 \\ & 11\end{aligned}$	70 80 80 78	1280 10 10	${ }_{9}^{10} 9$	7493 67 67
Rochester*.	1120				
Cold water	1125 35	${ }_{96}^{86} 89$	${ }^{6} 16$		${ }^{69} 88$
${ }^{\text {Byran. }}$	114110	10616	${ }_{7} 78$	6 65	${ }_{70} 78$
	71150 ${ }^{11}$	1128 72	+659	$\begin{array}{r}750 \\ 13 \\ \hline 80\end{array}$	
Grimesvilie........:	${ }_{12}^{12} 12$		1599 9 1059 1059	1850 183 120	
Buffalo E st..					

pped for water. \uparrow slowed ap.
 Rochester to Buffalo.
 per hour 67 27
 ${ }^{63} 72$

The train consisted of a baggage car and coach. The engine had $17 \times 24 \mathrm{in}$. cylinders ; wheels, 5 ft .6 in . dia neter ; fire box, 72 in . long. The boiler had $1,353 \mathrm{sq}$. ft. of heating surface. The valves had a maximum travel of $5 \mathrm{in} ., 7 / 8 \mathrm{in}$. outside lap and ${ }_{32}^{1} \mathrm{in}$. inside. The steam ports were $151 / 2 \mathrm{in} . \times 11 / 8 \mathrm{in}$.

The Human Jaw not Evolved.

Dr. W. G. A. Bonwill, of Philadelphia, believes he has only to demonstrate that life has not been evolved by means of "infinite variations," and he has proved the theory of evolution to be false. In other words,
he needs only to find an arch type, and this is exactly the nature of the Doctor's claim. It has been thought impossible so to fathom the mysteries of a single human organ as to arrive at such a definite conclu sion: It may seem unwise to disclose a discovery ike this, but it will set some jaws wagging to lear
that the Doctor's dixit is simply this, in a nutshell: That the Doctor's dixit is simply this, in a nutshell:
the center of motion of each condyloid process of the lower jaw to the symphysis, or where the lower central incisors meet at their cutting edges, is an equilateral triangle, and has always existed in the human being. The measurement of 3,000 skulls and observation of phenomena presenting the same or twenty-eight years attest it. Given, then, the point of the problem and the shape of any first su-
mechanical law alone can fathom, There can be but one form of jaw and teeth, and that the arch type. Any change from this is retrograde, and not "progess."
He has made a machine which develops to perfecion these laws, and it artificially performsthe divine process, which could be done in but one way, and is unalterably perfect, save to become less perfect from environment, and is in no way at all approached by any other animal. Here then, briefly, is something for the scientist, and evolutionist in particular, to put in his pipe and smoke.-Phil. Press.

New Thermo-Electric Materials.

M. G. Chaperon, a French physicist, has made a set of researches on the thermo-electric properties of a number of substances which promise to become useful as new materials for the construction of thermo-electric generators. The method consists in taking a small ragment of the substance and bringing one end into contact with a source of heat in the shape of an iron crucible containing some fused alloy, a thin layer of silver being interposed if the substance attacks the alloy; while the other end of the substance is cooled by water circulating in a small silver tube. A thermometer in the alloy gives the temperature of the heated junction. In cases of higher temperature, a bar of copper kept hot takes the place of the crucible. The electromotive force is that of the substance and the couple formed by the substance and the silver; and it is measured by the Lippmann electrometer and a potentiometer giving $\frac{1}{6} \sigma$ volt values. The following results have been obtained

Electromotive Forces.

Positive Bodies.	Electromotive Forces. Temperature.	
	From 20 deg. to 12 deg C.	From 20 deg. to 400 deg .
	Volts.	Volts.
	$0 \cdot 115$	${ }^{0} \cdot 192$
Phosphide of zinc.........	$0 \cdot 107$	$0 \cdot 362$
Sulphide of tin...........	0.052	0.227
Crystallized galena.... ...	0.034	
Oxide of cop., thin plates..	0.03	
Arsenide of zinc...........	0.014	
Antimonide of zinc........	0.018	
Sulphide of silver..........	0.091	$0 \cdot 108$
Specular iron.............	$0 \cdot 063$	0.25
Crystallized galena (another specimen) \qquad	0.029	

Other substances, such as sulphide of antimony, odide of lead, oxide of tin, crystallized silicium, etc., ive thermo-electric results. The curves representing the electromotive force in terms of fall of temperature show in general a uniform progress from a certain point. For sulphide of silver and iodide of silver, the law, however, of variation suddenly changes, and does not appear to be representable by a continuous function. The sulphide of silver exhibits the property of reduction to the metallic state locally in a great number of circumstances, when it is traversed by a flow of heat between two conducting surfaces. This effect is easily produced by placing a plate of sulphide between heated plate of silver and a cooled tube of silver. The whole being isolated, there forms itself in a few moments a deposit of silver on certain points of the cold contact. This deposit argues a current going from the sulphide to the cold silver.

Detecting Barytes in White Lead

The most common attendant of white lead is permanent white, or sulphate of baryta. This admixture may be recognized by boiling a small quantity of the pigment in a glass test tube or flask, with n tric acid diluted with an equal measure of water. The white lead dissolves, but any sulphate of baryta remains as a white residue. To prevent any chance of error, the residue should be allowed to settle, the clear iquid poured off, and the deposit again treated with nitric acid and then boiled with water.-London Coach Builder.

To Relieve the Itching in Ivy Poisoning.

Dr. J. W. Little, of Washington, D. C., writes to the Medical Record: "Having tried everything I could think of for the intense itching caused by poison ivy, I was at a great loss to know what to do for a patient who was becoming dissatisfied. I concluded to try the following original prescription : Bromo-chloralum, $\xi \mathrm{iv}$; vinum opii, $\bar{z} \mathrm{ij}$; aquæ, $\bar{z} \mathrm{vj}$. My patient was ordered to bathe the parts freely with this, and informed me that it 'acted like magic,' and relieved the itching at once. I have tried the same in other cases, and also in urticaria, with relief."

AN intelligent physician says: "It is a good rule always to ride up in an elevator, and when coming down to take the stairs. Like going up hill, walking up stairs is hard work, and sometimes risky, especially for people with weak lungs, defective respiratory organs, or heart disease. But going down stairs hurts nobody, but is good exercise; going down on a brisk run is really a good thing-it shakes up the anatomy, withont incurring the danger of physical verexertion. This shaking up is good for one's internal mechanism, which it accelerates, especially the nal mechanism, which it accelerates, especia
liver, the kidneys, and the blood circulation."

barrel cover.

The barrel cover herewith illustrated is the invention of Mr. W. Wirt Hodsden, of Smithfield, Va. The stationary part of the cover is formed with a straight edge extending beyond the center of the barrel cover. To this board is secured a wide hoop adapted to receive the end of the barrel. Pivoted to this part is the movable cover. Projecting from the upper surface of the stationary part near its straight edge is a pin, and in the movable part are formed two notches at opposite sides of the pivot, which receive the stop pin. By grasping the handle secured to the movable part, the cover may be opened more or less as required. The two notches limit the movement of the cover, so that

hodsden's barrel cover.
the straight edges of the two parts will be parallel both when the cover is open and when it is closed.

An Electric Sword.

According to the Electrical Review, an inventor at Shanghai, China, has contrived an electric sword, which, when the point touches the party attacked, sends a powerful shock through him, and if not immediately killing, will at least put him hors de combat. The sword is an ordinary military saber ; but along its whole length is let in a fine platinum wire, which ends at the point of the weapon. A small j but very powerful storage battery is carried strapped about the waist, much the same as a cartridge box. Insulated wires connect this battery with the sword, and by pressing the button, the holder can complete the circuit at pleasure.

CONSTRUCTION CARS FOR TRACK LAYING

This form of car-the invention of Mr. E. N. Emmons, of Washington, Kansas-is designed more especially for use as a construction car, that is, a car employed for transporting small quantities of iron, ties, and other supplies used in the building of railroads. One of two similar cars is left close by the large car from which the supplies are taken, while the other is employed to carry the material to the front. Each car is provided with grooved rollers, upon which ride rails fixed to the under side of auxiliary platforms, formed with openings so located that when the platform is in position upon a car, the openings will be directly over box-like pockets of the platform. At each end of the platform is a roller that provides for the easy loading or unloading of rails. Each car is provided with coupling hooks, as shown in Fig. 2. The platforms are held to the cars by hooks. The cars, being exactly alike, may be used interchangeably with two or more platforms. After the car has been brought in from the front, the unloaded platform is lifted from

EMMONS' CONSTRUCTION CARS FOR TRACK LAYING.
it by hand, when the loaded platform carried by the stationary car is moved forward on to the unloaded car, this movement being accomplished by means of a horse hitched to an eye so placed that he can travel upon the right of the track. As the loaded platform reaches its proper position, it uncouples the coupling between the two cars, and thereby releases them. It will be understood that the rear car can be moved forward, and the transfer made at the point where the track is being laid.

Fear in Animalf.

Probably, ever since the second man came into the world, the question of reason or instinct in animals has been debated, and until animals are endowed with the organ of speech, it will continue a debatable question with many. At the present time, we have two pets-a bird and a dog-that come as near to reasoning beings as any animals we ever knew ; and yet, through the organ of fear, they both show an entire lack of reason. The bird, a "rose-breasted grosbeak," in its ninth year, which shows no ordinary fear of anything ; for, on one occasion, we brought home a tiger cat, that, on seeing the bird, made a wild bound for it, and yet the bird merely threw its wings wide open, and, opening its mouth, placed itself in an attitude of defense. At the same time, when a pair of oxen pass the house fifty feet away, with the blinds closed and slats open, the bird loses all control of itself with fright.
The dog is a Scotch terrier, with courage enough to tackle the biggest dog that comes into the yard; and yet, on one occasion, in the evening, coming home late, I distorted myself and made a queer noise. The dog barked, retreating around the house, and I after him, making a great noise. He jumped down off the piazza and down a very high bank wall, and left the house, apparently forever. As he did not return, I went in search of him, an hour later, and found him wandering aimlessly about, and it was with difficulty I could persuade him to return. It is fair to state, however, that Teddy had hardly arrived at the age of maturity.

Jos. M. Wade.

COTTON PLANTER.

The engraving represents a machine of simple construction for planting cotton uniformly. To the middle part of the frame is attached a hopper having a slotted bottom for the passage of radial fingers fixed to the axle. The rear part of the slot is only wide enough for the passage of the fingers, while the forward part is widened to allow the fingers to carry the seed with them as they pass out through the slot. The width of this forward part of the slot is regulated by

LOWRY'S COTTON PLANTER.

plates, which can be readily adjusted wider apart or closer together, according as more or less seed is to be planted. In the hopper is a vertically mounted shaft, provided at its lower end with radial arms made wide enough to push the seed over the forward part of the slot, so that it will be pushed through by the fingers. These arms are struck and revolved by the radial fingers as the machine is drawn forward. A tapered spout on the lower side of the middle part of the frame guides the seed into a channel opened by a plow so arranged the seed into a channel opened by a plow so arranged
that it may be adjusted to enter the ground to any desired depth. The seed is covered and the top of the ridge is smoothed off by a board attached to spring hangers secured to the rear ends of the side bars of the frame.

This invention has been patented by Mr. T. P. Lowry, of Bryan, Texas.

Rewards to Inventors by the British Government.
The sums paid to inventors, in connection with ordnance and small arms, between the years 1878 and 1886 range from $£ 10,000$, paid to Mr . Nordenfelt for manufacture in government factories of ammunition for 1 inch Nordenfelt guns, a similar sum to Mr. Vavasseur for driving rings for breech-loading projectiles, £5,000 to Mr. R. S. Fraser for the plan of making guns, and $£ 2,000$ to the Rev. F. Bashforth for the advancement of the science of gunnery by the application of mathematics to ballistics, down to $£ 50$ to Mr . Armstrong (in December, 1878) for the plan of steeling the trail eyes of gun carriages and $£ 100$ to Mrs. Padwick for a suggestion by her late husband respecting studded projectiles. The grants also included $£ 750$ to Mr . Owen Jones, $£ 650$ to Mr. Thornton, and $£ 100$ to Mr. Stanton, described as inventors of revolver pistol, and $£ 1,500$ to Mr. Henry for ammunition for small arms.
The above foots up a trifle over $£ 30,000$, or $\$ 150,000$; and if this is the gross amount paid to inventors during eight years, it is not much to brag of.

EGG BEATER.
The object of the invention herewith illustrated is to provide an improved egg beater, which will beat the eggs thoroughly and quickly. It is simple in construction, and not liable to get out of order. Near the bottom of the receptacle is placed the beater,

VICKERS' EGG BEATER.

consisting of a stationary and a revolving frame. The stationary frame consists of two hubs provided with spokes united at their outer ends by cross bars. The revolving frame consists of two sets of spokes and cross bars which are arranged to revolve, one inside and one outside of the stationary frame. Mounted upon the side of the receptacle, in suitable bearings, is a shaft having a crank and a cog wheel which meshes with a pinion on a shaft having a square end that fits in the end of the hollow spindle carrying the four hubs of the revolving frames. The pinion is kept in engagement with the cog wheel by a spring arranged as shown. The outer end of the pinion shaft is provided with a plate which, when pulled outward, disengages the wheels and withdraws the square end of the shaft from the hollow spindle, so that the beater can be lifted out of the receptacle. It will be seen that by turning the crank a rotary motion is imparted to the spindle and its frames.
This invention has been patented by Mr. William Vickers, of 107 Palisade Avenue, Jersey City Heights, N. J.

WASHING MACHINE.

The bottom and end surfaces of the inside of the tank are provided with horizontal strips, while the sides have vertical ones. The hinged cover of the tank is formed with two apertures through which pass the two lever arms of the pounder, being pivotally mounted in blocks placed alongside of the apertures. The pounder or rubber consists of a block of wood having a number of pins projecting from it; there is having a number of pins projecting from at each corner, one at the center of each side, one pin at each corner, one at the center of each side,
and four projecting from the lower surface. In the upper face of one of the cross strips is a soap box having holes in its bottom through which the water drains off. At one end of the machine is arranged a folding

KRAMER'S WASHING MACHINE.
platform, as shown in the engraving. After the clothes have been thoroughly washed, they are passed through a wringer secured to the end wall of the tub, when they drop directly into a basket placed upon the platform.
This invention has been patented by Mr. Henry Kramer, of Grant Park, Ill.

Every timber limit of any value in the Ottawa District that has recently been offered for sale has found ready purchasers.

APPARATUS FOR CARRYING VESSELS OVER OBSTRUCTIONS.

This apparatus is designed for carrying vessels over obstructions, such as rapids and falls in rivers, that would otherwise not be navigable, so that a continuous transport upon such rivers is rendered possible. The steamboat is provided with wheels mounted upon a truck placed near the bow. These wheels are arranged within a guard rail, that prevents them from being

GRONDAHL'S APPARATUS FOR CARRYING VESSELS OVER OBSTRUCTIONS.

Yellow Light for the Dark Room.

For the covering of glass for dark rooms and developng lamps, Dr. Stolze, in the Wochenblatt, proposes an emulsion made by dissolving 10 parts of nitrate of lead in 100 parts of water. To this solution is added, constantly stirring, either 6 parts of neutral chromate of potash or 4 parts of the bichromate. This emulsion is cooled, chilled, reduced into nodules, and washed is cooled, chilled, reduced into nodules, and washed. it in the same manner as ordinary emulsion plates. Such a light acts exceedingly well, and can be used with great safety for the handling and developing of plates. The color is of a pure yellow, and appears very light to the eye. By giving a thinner or thicker coating, the color and opacity can be easily regulated. To protect these plates from moisture, it is advisable to coat with a crude collodion to harden them, or a chrome alum bath will do as well ; and to prevent cracking or tearing when exposed to the heat of a gas or lamp flame, a little grape sugar is added to the emulsion; this wili make the coating pliable. Another method for making red glass for the dark room was lately given by M. Cassau in the Photographisches Archiv. Five grammes of carmine are dissolved in 40 c. c. of ammonia
injured when the boat is lying against a wharf, and are designed to run upon rails carried by a suitable trestle. As here illustrated, the stern is supported by wheels carried upon the extended paddle-wheel axle; the necessary power to move the vessel along the track is here applied. Barges that are to be towed by the steamboat are furnished with suitable trucks and wheels to run upon the rails. In certain cases the barges might be towed over the obstruction by means of a stationary engine, which could, if needed be employed to assist the steamboat.
This invention has been patented by Mr. W. A. Grondahl, of Portland, Oregon.

SWINGING CENTERBOARD FOR VESSELS

The construction of this centerboard is clearly shown by the accompanying engraving. It is preferably made of metal, several tons in weight, and is hinged to the lower ends of rods, so that when lowered it is free to maintain a vertical position in the water, no matter to what extent the vessel may heel over. This prevents leeway of the vessel, while the weight tends

[DEERING'S SWINGING CENTERBOARD FOR VESSELS,
to right it; and as the centerboard always presents a vertical surface in the water, it causes the vessel to more readily answer the rudder. The upper parts of the rods are screw-threaded, and are provided with suitable gearing by which they may be raised or lowered. In the construction shown in the sectional view, Fig. 2, the side of the keel is provided with two bars, that stand out from the keel. On the lower ends of the lifting rods are eyes that run upon these bars. Provision is made for holding the lower edge of the centerboard against the side of the keel when it is raised.
The lifting rods are inclosed in tubes, which may be fastened by screwing them into the wood of the vessel or into a screw cap below, fitted for that purpose. This method saves the cutting of floor and timber and the cost of building walls, while additional space is obtained for the carrying of cargo. There is no danger of the cargo being shifted against the sides of the centerboard well and causing a leak. This swingboard may be used the whole length of a vessel's bottom. When a vessel is rolling, the great resistance offered by the common centerboard sometimes causes trouble by breaking the board or opening the vessel. This centerboard obviates this danger, as the vessel simply swings each side of it, like a buoy riding to an anchor.
This invention has been patented by Mr. James A. Deering, of 44 Wharf Street, Gloucester, Mass.
solution. Two grammes of picric acid are dissolved in 450 cubic centimeters of water, to which 7 grammes of glycerine are added. In this last solution 50 grammes of hard gelatine are allowed to soak one hour, and afterward dissolved in the water bath. When the gelatine is thoroughly dissolved, the carmine is added to the mixture. While warm, it is applied to an ordinary sheet of glass or window pane with a wide brush. As soon as the first coat is thoroughly dry, a second or third can be applied until the desired density is arrived at.

A SIMPLE METHOD OF INSULATING UNDERGROUND

 AND OTHER WIRES.The illustration herewith shows an easily applied form of electrical insulation, whereby a great many wires may be placed in a small space, and all will be readily accessible at any point of the line. The insu lation is formed of sheet material, such as rubber bent into reverse pockets, as shown in Fig. 2, and supported in form for use by spring clasps, preferably made of wood, such as hickory, these clasps being light and thin enough to be easily bent to the desired shape. In combination with such insulation a covering of waterproof canvas is used, as shown in Fig. 3, inclos ing the insulator and wires, strengthening the insula tion and excluding moisture and dirt from contact with the conductors. The whole is carefully insulated, and constructed without the use of metal. The alternating loops or spring clasps of wood are secured to the insulating sheet at short intervals, say at a distance of about six inches from each other, and six conductors are preferably arranged in each insulating covering, as being about the number which can be most conveniently handled in manufacture and in placing in position for use. A cable composed of ordinary main line wires for aerial and underground purposes is thu quickly formed by hand. When applied aerially, it may be secured to the poles without cross arms and glass insulators. This cable may also be emptied, for repeated use.
This method of insulation will permit the easy tapping of any line, and making an outlet with connecting wire to any building or office where groups of wires pass. Compactly grouped, with canvas covering, the wires cannot be mixed and twisted; and the wires can be placed within the insulating covering when they are not absolutely straight, the clasps making them all parallel with each other The illustration shows how this form of insulation can be used beneath a stree pavement, by inserting a wooden box near the surface, which would hold, if one foot square, over 1,200 wires insulated according to this plan. The construction of this continuous insulation is simple and inexpensive, and it is designed for aerial and underground electric conduct ors, for telegraph, telephone, and electric light circuits.
This invention has been patented by Mr. Samuel F. McGill, of Keene, N. H.

IF the manger or feed box be so foul as to emit a sour smell from any cause, it should be carefully cleansed and washed with a solution of soda or potash unti perfectly sweet again.-Lewiston Jour.

A Model Cholera Hospital at Rome.

The London Globe gives an interesting account of a new cholera hospital at Rome, which the Pope has caused to be built. Contact with the outer world is carefully guarded against by grated windows, telephones, and by a revolving barrel, with half its cir cumference open, by which provisions are taken into the hospital. The water supply is drawn from a well, and is quite separate from the city supply. The drain is formed of an iron tube, sixteen inches in diameter, the joints being hermetically sealed with lead. There is a disinfecting boiler in which corrosive sublimate is placed. There is a room called the "chamber of observation," which has a staircase leading up to the first floor. In this room dead bodies are placed for a given time, as it is well known that cholera patients often show signs of being dead when really only apparently so. The room is, by means of an electric apparatus, in communication with the director's office. The body being laid on a bed, both hands are put into a sort of copper muff ; between the hands is put an instrument so sensitive that, should there be the slightest movement of the hands or any other part of the body, this instrument would instantly close the electric circuit, and the bell in the director's office would be set ringing; at the same moment another instrument registers the number corresponding to the bed upon which the body is lying. The chamber is warmed by steam, so as to facilitate resuscitation. The laboratory is provided with a gasometer for the storage of oxygen,

A UNIQUE SYSTEM OF WATER WORKS.

 by e. o. hovey.As everybody knows, water is frequently raised to a desired height by means of a hydraulic ram set in a stream at the foot of a hill, or at the bottom of dam, or at some other place where there is a natural fall of water; but at Elk River, Minn., there is a peculiar arrangement, a description of which may prove to be of interest.
The town is situated at the junction of the Elk and Mississippi Rivers, thirty miles northwest of Minneapolis. The geological formation is the area of modified glacial drift of central Minnesota. About half a mile northeast of the station the railroad passes within a few yards of the southwestern edge of a tamarack swamp, in which water is found on or near the surface. For a long time it has been known that, within a limited area southwest of the railroad at this point, good water could be had at a depth of eight feet, while just outside of this area water could not be found short of eighteen feet. The idea occurred to Mr. T. S. Nickerson, who lives at Elk River, and is water supervisor of the Breckenridge division of the St. Paul, Minneapolis, and Manitoba Railroad, that a hydraulic ram might be set so as to utilize this difference of water level. Test holes twelve feet deep were sunk with an elongated post hole auger, at the points marked A, Fig. 1, to determine the location of the edge of the basin of water standing at eight feet. Water failed to come into these holes, but at the point, B, Fig. 1, water was struck at the required depth. The operations which pertained directly to the setting of the ram are of especial interest. On a line supposed to be perpendicular to the rim of the basin a ditch sixteen feet long, two and a half feet wide, and about twelve feet deep was dug to allow the water to flow off while the "supply " well was in process of construction. This well is twelve feet in circumference and twelve feet deep, The first six inches of the well and ditch were cut through the light and sandy but fertile soil char acteristic of this region the next six and a hal feet through loose gray sand. Then, on the line between the well and the ditch, the diggers struck a dike two feet wide at the top, but soon increasing in width to four feet, composed of coarse sand so firmly cemented by infiltrated oxide of iron and carbonate of lime as to render the use of the pick necessary in removing it. This dike is impervious to water, and, as shown in Fig. 2, has an inclination at this point of about 75°
which is taken to the wards for administration in gas bags. On the ground floor are four wards for doubtful cases. Should they get worse, they are sent up in the lift to the cholera wards above, their clothes and bed linen being immediately burned. Another room is set apart for women in childbirth, and there are two more for undressing patients, so that the infected clothes may be destroyed, the Pope furnishing new clothing for all recovered cases. The cubic space allowed for each bed is thirty-six cubic meters. The ventilation is carried on by means of funnels with gas jets helow. The chapel is in communication with the sacristy of St. Peter's, so as to form an easy access for the Pope, should he wish to visit the hospital; but before returning into the sacristy, his Holiness and suite would have to go into a room near it for disinfection.

Detection of Leaks in Water Mains.

The microphone is now being used in Germany for the purpose of detectiug loss of water through leakage in town mains. The apparatus consists of a steel rod, which is placed upon the cock in the neighborhood of which the leak is suspected, and a microphone attached o the upper end of the rod. A dry battery and a telephone complete the equipment. No sound is heard in the telephone if the cocks are closed and no leak occurs; but a leak of even a few drops through a badly fitting cock causes sufficient vibration in the pipe to affect the microphone, and to give audible sounds in the telephone. At the recent meeting of gas and water engineers in Eisenach, it was stated that the apparatus is so simple to handle that, with a little practice, ordinary workmen are able to detect and localize any leak.
south of west. Northeast of the dike the well passed through coarse gravel containing many large stones, while southwest of it nothing but the loose gray sand was found. In the coarse gravel a copious supply of water was met with, which flowed off freely through the loose sand of the ditch.

A two and a half inch iron pipe was laid in the bottom of the well and ditch, the well was bricked up in the usual way, and the trench in the dike outside of the well was filled in with cement to make a water tight joint about the pipe and to prevent the washing away of the dike. Fifty feet southwest of this well another one, called the "waste" well, eight feet square, was sunk to the depth of twenty feet, and cairned to prevent caving. Water was met with at this depth, or the well would have been made deeper. A No. 6 hy draulic ram was then placed in the waste well at a depth of 16 feet, and was connected with the two and a half inch iron pipe mentioned above. The ram there has a head of water of eight feet, and it furnishes three houses and their dooryards with an abundance of water. The arrangement of the pipes leading from the ram is illustrated in Fig. 1. Each pipe, after making the circuit of the house and dooryard which it supplies, is connected with a 250 bbl tank, the bottom of whic is 16 feet above the ground, which connection greatly increases the force of the stream at each faucet. In each pipe, after it passes through the house, there is a check valve to keep the water from flowing back from the tank through the house.
For about a year, i. e., until the present summer, the waste water from the ram found free discharge through the loose sand surrounding the well; but lately the sand has seemed to be saturated with water, and drainage has not been sufficiently rapid. Therefore, three
months ago Mr. Nickerson laid a two inch iron drain pipe from a depth of 18 feet in the waste well to a point 1,200 feet distant on the terrace of the Elk River, and the waste water is easily disposed of through his outlet.
The water within the basin is strongly impregnated with iron and has but little lime in its composition, while that from wells without the basin contains much lime and but little iron. The water from the amarack swamp is like that found in the basin. The dike of coarse sand has been cut into at one other place, and found to trend in such a direction as to warrant the supposition that it forms a retaining wall on at least the southern and southwestern sides of the basin and tamarack swamp, thus preventing their waters from flowing off into the loose gray sand and descending to the general water level.

Mine Drainage.

In mining an ${ }^{+}$hracite coal, it is necessary to keep the mines clear of water, which accumulates in large quan tities, and which must be removed either by gravity or by powerful engines and pumps, and must find its escape through the natural water courses. This water is acidulated with sulphuric acid, and consequently is destructive to iron pipes, kills fish, and cattle refuse to drink it. The Pennsylvania Coal Company owns a arge colliery in Scranton, called the Gipsy Grove Works, and the water from this mine is pumped and discharged into a small stream called Meadow Brook, tributary of the Lackawanna River. In 1868, J. Gardner Sanderson built a handsome residence on Meadow Brook, below the colliery, on which he made a fish pona anc provided machinery to force the water of the brook into tanks in his house for domestic use. As the operations of the colliery grew and the discharge of mine water increased, the water of th.e brook became so contaminated as to destroy Mr. Sanderson's pipes, kill his fish, and, indeed, the water became

Fig. 2.
otally unfit for use. He then sued the coal company or damages.
The Supreme Court of Pennsylvania has given judg ment against the Sandersons, and the matter is finally ettled.
In the decision, the court says :
"If damages may from time to time be recovered either in the present form or as for a nuisance, punitive sums may be resorted to to prevent repetition or to compel the abatement of the nuisance; indeed, if the right to damages in such case is admitted, equity may, and under the decisions of this court undoubtedly would, at the suit of any riparian owner, take jurisdic tion, and, upon the ground of a continuous and irrep arable injury, enjoin the operation of the mine altogether.

The defendants have done nothing to change the water or diminish its purity, save what re sults from the natural use of their own property. The water, as it is poured into Meadow Brook, is the wate that the mine naturally discharges; its impurity arise from natural, not artificial, causes. The mine cannot, of course, be operated elsewhere than where the coal is naturally found, and the discharge is a necessary inci dent to the mining of it. . . The right to mine coal is not a nuisance in itself; it is a right incident to the ownership of coal property, and the owner cannot be held for permitting the natural flow of inine wate over his own land into the water course. . . . The defendants were engaged in a perfectly lawful business in which they had made large expenditures, and in which the entire interests of the community were con erned ; they were at liberty to carry on that busines in the ordinary way, and were not, while so doing, ac countable for consequences which they could not con trol."

©orrespondence.

The Recent Earthquake. of the Scientific American

To the Editor of the Ncientific American
Since forwarding you my reply to P. M. F.'s criticism in your issue of Oct. 9 of my article relative to the earthquake, I have to supplement the same with the following clipping from the Washington Star of October 13 :

BENEFITED BY THE EARTHQUAKE.

" A strange result of the recent earthquake has been discovered by Prof. John Collett, the Indiana geologist, who states in an interview that a number of wells bored in Indiana and Ohio for gas or oil yielded nothing before the earthquake, but since that occurence gas in good paying volume and oil in
le quantity has come into many of them.'
This seems to substantiate in a measure the theory originally advanced by me. My previous reply shows the insufficiency of P. M. F.'s reasoning, and the quoted article above proves that his averment as a fact that no such effect of the earthquake had been observed was premature.

Edward W. Byrn.
Washington, D. C., Oct. 13, 1886.

Home-made Indian Clubs.

To the Editor of the Scientific American:
Possibly I can suggest a cheaper, more easily obtainable, and more durable home-made Indian club than your issue of August 14 presents.
Between twenty and twenty-five years ago, when the rage for Indian clubs was coming on, and when those who wanted them had to get them turned to order at an expense of a couple of dollars or more, and when my new domestic alliance absorbed such change to keep the pot boiling, I drew from our pile of fire wood, obtained from torn-down buildings, a couple of pieces of old three inch joist. and with hatchet and saw made a pair of clubs that I have used almost daily ever since, and although flattened <rather than entirely round), in order to secure sufficient weight, they fully " fill the bill."
Philadelphia, October, 1886.

Great Rise of the Sea at Sabine Pass.

Sabine Pass is an inlet from the sea which forms the dividing line between the States of Texas and Louisiann. The town of Sabine Pass, near the sea coast, had 400 inhabitants. It is connected with the mainland by a railway. The adjoining town of Johnson's Bayou had a population of 1,200 , Radford and other towns still more. The whole region for many miles in all directions is low ground. The settlements were mostly built on ridges, rising ten or twelve feet above sea level. On Tuesday, October 12, a great storm prevailed, during which the sea rose to an unprecedented height and swept everything away-human beings, dwellings, live stock, all were hurried to destruction.
A dispatch to the Times-Democrat says: "The village of Johnson's Bayou is a high ridge on the sea coast, and the bayou, from which it takes its name, runs through the inhabitable parts of that section of the settlement, in which is also situated the post office station known as Radford. They are in Cameron Parish, on the Louisiana shore, six miles east of Sabine Pass. The bayou is nineteen miles in length, and varies from one to four miles in width. Ridges face the Gulf 12 feet above the sea level, and in the rear is a dense and impenetrable marsh. The population on Monday, Oct. 13, numbered 1,200 souls; to-day 85 of
that number are counted with the dead. Forty of their bodies have been recovered and consigned to graves in the shell reefs, while the decomposing corpses of the remaining 45 lie festering in the marshes. Radford was very thickly settled and populous. It boasted its cotton gin, and cotton and cane plantations. It was the head of navigation, and its stores were many, principally those run by J. Paveto, who also operated the gin and turned out annually 800 bales of cotton pro-
duced in that section. The other stores were owned duced in that section. The other stores were owned
by A. B. Smith Co. and J. Griffith, general merchandise dealers, and other small merchants constituted the commercial community. Cotton and sugar are the chief products of the ridges, which are composed of the richest and most fertile grazing country, and the parish had 8,000 head of cattle and horses, owned by a parish had 8,000 head of cattle and horses, owned by a
thriving community. Communication with the outer world was through two steam vessels, both owned in Johnson's Bayou and Radford, while a fleet of trading vessels plied the waters of the bayou.
"At 4 o'clock on Tuesday afternoon the storm descended upon the people, and everybody took to their homes and waited with bated breath the fate which they foresaw as doomed to be theirs. The waters, rising with the wind, swept through the lower stories of the buildings, driving the affrighted people into the attics and upon the roofs. By 10 o'clock at night the first ridge, 12 feet above sea level, was 10 feet under water. House after house fell in, or was swept away, either burying the poor people in the debris or hurling them into the hissing waters. The cotton and the stores nextsuccumbed, arid Radford and Johnson's Bay-
ous were destroyed as completely as if an invading
army had done the work. The people could only cling to each other and pray for mercy and for the souls of
those whose despairing shrieks rang in their ears. For those whose despairing shrieks rang in their ears. For
twelve hours the storm raged over the devastated settwelve hours the storm raged over the devastated set-
tlements, and then came a lull. Hope revived as the water receded and the storm passed away, and the survivors gathered on elevated points, viewing the scene of desolation around them."

The keeper of the lighthouse at Sabine Pass, who lived with his family in a small brick house near the lighthouse tower, succeeded in getting all the members of the family into the tower before his dwelling was submerged. All were saved. He says :
"By noon the wind, still holding north and east, be gan to shake our house. The water came up and things were floating around. It was time for us to leave, and with the women and children we took to the lighthouse; the house was going then, and we did not get in the tower too soon, for shortly thereafter the house went to pieces. It was hard work getting to the tower, but we got there. We had no food, no covering, and only three gallons of oil. Everything went with the building. Then the storm increased in fury. The water rose above the top of the lighthouse door, 10 feet from the ground. It entered the tower, and the draught ascending upward kept lifting the trap door leading to the lamp. The trap door was held down by a hundred pound weight, yetit came up so that one of us with the oil had to add our weight to keep it down. If that trap door had given way, the light would have gone out, and who knows how those would have fared also ? The spray from the seas, which with the winds caused
the lighthouse to tremble to its very foundation, dashthe lighthouse to tremble to its very foundation, dash ed up thro
ground."
Captain F. A. Hyatt and William Guy report that they had a singular experience as members of the relief committee, on their way to the Pass. The train in which they were traveling stopped on a dump five miles from the town. The water all round this neck of land, on which was placed the track, was fully 8 feet deep. The hands of Messrs. Hyatt and Guy are blistered from fighting snakes which literally covered the dump for a distance of five miles. There were thou sands of water moccasins from the overflowed district taking refuge on the narrow stretch of land, and every step across it had to be fought through the twisting serpents, many of them the deadly stump-tailed moc casins, larger than a man's arm. Wild cats, also, frenzied at the water's fury, rushed pell-mell upon pedestrians, while raccoons and every variety of animal snapped at passers-by with hydrophobic rage. Many times the pedestrians left the dump and swam around the angry reptiles rather than try to pass them. Captain Hyatt alone killed over 150 snakes during his walk of five miles, which consumed about ten hours. Mr. Guy says that no money could tempt him to make his trip over again. In stepping about in the dark he was tripped five feet long.

Earthquakes

What is known and believed about earthquakes by geologists was condensed into an hour's talk by Professor John S. Newberry, in Hamilton Hall, Columbia College, at a recent meeting of the New York Academy of Sciences. In the course of the lecture, which took an extended range, the character and causes of the recent disturbances on this continent were referred to as likely to be better understood hereafter than at present. The speaker said that although the Charleston earthquake had produced startling effects and killed some people, as an earthquake it was not a very great
affair. There was nothing remarkable in its phenom ena. There had been earthquakes that had carried off 10,000 and 20,000 and 60,000 persons at once, and 250,000 lives were reported to have been lost in the island of Java in what might be regarded as a single earth quake
An exhaustive inquiry in regard to the seatand depth of the Charleston earthquake had not yet been made he continued. From all quarters, inquiries had come to him about the Charleston earthquake. Because he was a geologist he was naturally appealed to for infor mation in regard to the most striking of earthly phe nomena, and while he did not assume the title of "Pro fessor of Earthquakes," he felt that he ought to answer
the questions as far as he was able. The peculiar terror inspired by these shocks was not lessened by familiar ity with them. It was not surprising that a profound sensation had been caused by the Charleston disturbance, and that the statements with regard to it were widely contradictory.
An earthquake is neither a novel nor a mysterious occurrence. It is among the most common of terres trial phenomena. Not an hour, perhaps not a minute, passes in which some portions of the earth are not vi-
brating from this cause. An earthquake is a movement caused by the shrinking, from the loss of heat, of the interior of the earth, and a falling in of portions of the crust in consequence. That the interior of the earth in allparty hot is indicated by wells and mines sunk
gree Fahrenheit for every 50 feet below the earth's surface. Dr. Newberry gave the temperature of different wells in this country and Europe as demonstrating this, instancing particularly a well in Europe sunk 3,390 feet, at which depth the thermometer indicated 115°, and another a little over a mile in depth, where the temperature was shown to be 131°. There were some exceptions to this rule, but the statement that below 3,000 feet in certain wells it had been found that the temperature declined was a fraud. At the rate that he had indicated, the heat would be so fervent that all substances would be melted. It was believed that the earth's crust was thicker than this would indicate, because the increase of heat might be slower at a great distance from the surface. The heat of the interior was constantly escaping to the surface. Since the outer rust had lost its heat, it no longer contracted.
Mountain chains resulted from readjustments of the arth's surface caused by earthquakes. The folds and ractures seen in every mountain belt could not have taken place without great disturbances, and in every mountain range are evidences of many earthquakes. In the highest mountain ranges, like the Himalayas, the work of elevation is constantly going on. Displacements are constantly taking place all over the world. They occur in paroxysms, and the pressure being relieved, earthquakes follow. As the population of the earth increases, the number of observers increases, and earth inereases, the number of observers
the loss of life is correspondingly greater.
In New England, during the last century, there have been a great many earthquakes. In 1727 the country about Newburyport was shaken up in the same way that it had been at Charleston recently, but the damage was small in comparison. Chimneys and stone walls were thrown down, there were ruptures of the surface, and jets of sand were thrown up. In 1638 there was a great revolution in the topography of the coun try, and as shown by Brigham in his work on volcanic eruptions in New England from 1638 to 1869, there were 231 earthquakes worth chronicling during that period, besides many smaller ones.
At the time of the shock felt in this city on August 10, two years ago, the Professor was alone in his room in the college. He heard a sound like the rumbling of a heavy wagon in the street, and the buildings shook. In the geological cabinet the marbles were thrown down in the case. In Japan, where there are incessant earthquakes, an extensive system of taking observations has been instituted. It will doubtless be found that the line of disturbance in the Charleston earthquake was parallel with the Alleghanies, and its depth from 10,000 to 20,000 feet. It is not likely that the center of the disturbance was under the ocean, as some supposed, or if it had been it would have caused a great wave An earthquake wave coming from below often exerted its greatest force on the surface, as in the game played by boys, called "snapping the whip," the last boy felt the effect the most.
The place of disturbance causing the earthquake in Charleston was, in the speaker's opinion, to the westward of that city, and not underneath it. The earthquake was in the old crystalline rocks that underlie Charleston, stretching from the westward. It was reported that there was a slight change in the depth of the water at that place. The area of vibration was probably an ellipse, with the longest line running north and south. It has been estimated that the maximum depth of earthquake disturbances was $81 / 2$ miles, and the minimum $21 / 2$ miles. The pressure of subterranean eservoirs of water are among the causes of earthquakes. The twisting of chimneys and monuments did not necessarily indicate a gyratory motion in the earthquake. An adhesion of a portion of the base might account for it. Explosive earthquakes were probably caused by large quantities of water being brought in contact with molten lava, and steam had played a large, though generally a secondary, part in producing them. Earthquakes are merely incidents in the process of mountain building.
The theories of Sir William Thomson and others as to the great thickness of the earth's crust are now gene-
rally considered untenable, and it was believed that it rally considered untenable, and it was believed that it
was only about 50 miles in depth. It was probable was only about 50 miles in depth. It was probable iquid interior and the solid crust. The flexibility of the crust showed that it was not of great thickness. The lecturer dwelt upon the proximate causes of earthquakes, such as atmospheric pressure, and said it was not so absurd as some thought to believe that atmospheric conditions had something to do with them.

Why the Compass went Wrong.

The Orizaba is a new steamer. The compasses are Sir William Thomson's patent. When swinging the hip, the reading of the bearings by one of the officers was always differént from that by other officers. This led to a wordy contention, the officer maintaining that his reading was correct. The difference was at last discovered to be due to that officer having on a steel truss. These compasses are so sensitive that they re affected by such very minute disturbing influences. The officer had to go on shore and provide himself with a truss constructed free of iron.

A Cliff of Glass.

Among the scientific papers that will appear in the appendix of one of the forthcoming reports of the Geological Survey is one by Professor Joseph P. Iddings upon the obsidian cliff of Yellowstone Park. This cliff is an elevation half a mile long by from 150 to 200 feet high, the material of which, Professor Iddings says, "is as good a glass as any artificially manufactured." Its colors and structure not only make it highly interesting to the visitor, but furnish to the scientific investigator phenomena of importance. The cliff presents a partial section of a surface flow of obsidian that poured down an ancient slope from the plateau lying east. It is impossible to determine what the original thickness of this flow may have been. The dense glass that now forms its lower portion is from 75 to 100 feet thick, while the porous and pumiceous upper portion has suffered from ages of erosion and glacial action. A remarkable feature of the cliff is the development of prismatic columns, which form its southern extremity. These are of shining black obsidian, rising from the talus slope, and are from 50 to 60 feet in height, with diameters varying from two to four feet. The color of the material of this cliff is for the most part jet black, but much of it is mottled and streaked with bright brownish red and various shades of brown, from dark to light yellowish, purplish, and olive green. The brilliant luster of the rock and the strong contrasts of color with the black are very striking. In places, the glass in the process of cooling has been broken into small angular pieces, which have been again cemented by the later flow, producing many-colored and beautiful breccia. In some places, the material shows a fine satin luster, while in others a deep golden sheen is noticeable, which under the lens resolves itself into thin beams of red and yellow light. Through the black and red glass are scattered dull bluish gray patches and bands, and round gray and pink masses, the effect of which is still further to vary the appearance and beauty of the rock, and make it the most conspicuous and characteristic variety of volcanic lava known.

The Propesed French Tower.

The Eiffel tower, 1,000 feet high, which is to be erected in Paris for the exposition of 1889 , is likely to afford plenty of excitement to Parisians before it is completed. The first step is about to be taken in ascertaining what curve is to be given to the sides. A chain or cord suspended between two points forms a catenary curve corresponding with the weight. Now it is supposed that something of the kind also occurs when the

DOUBLE PARABOLIC BRIDGE, SUBMITTED IN COMPE TITION, FOR CROSSING THE HARLEM RIVER AT 181st STREET, CITY OF NEW YORK.
by aeo. ed. harding, civil engineer and architect, n. y.
The main span is to have one clear span of 450 ft ., with two end spans of 225 ft . each, composed of low Bessemer steel rectangular braced tube parabola arch, with Bessemer steel linked catenary, braced with the necessary struts and bracing.
The two end spans, where the thrusts and pull of the principal members unite and equalize each other, are anchored down at their respective connections, and so arranged that the necessary lateral movements for expansion and contraction are allowed for.
The iron framed supports which receive the thrust

of the arch and support the catenary are in longitudi nal section that of an isosceles triangle, and have lateral play allowed by resting on bed plates having steel rollers.
The ultimate strength of the steel used is as called for, viz., 60,000 pounds tensile and 190,000 compression. Elastic limit, 36,000 pounds, with 10 per cent extension. All rock to be leveled off in horizontal steps when used as foundation.
All piers to be faced with granite, 20 to 30 in . thick, averaging 6 and 8 ft . long, with suitable headers binding to the interior stone of limestone, uniform with facing courses.
Piers for the approaches not to be solid work, but
vations, are to be of best quality cast iron, carefully painted with one coat of metallic paint before delivery, and to have two additional coats of best Atlantic Mills lead before the final coat of Sienna lead, with tints as desired.
The entire metal work of the bridge to have four coats of best paint, as directed by the chief engineer. Ornamental railings on the out and inner sides of sidewalk over the three central spans and on the inside of the walk on the approaches (the stone parapet there being on the outside), with posts, to be of best cast iron, selected pattern.
The roadway to be as called for, of corrugated steel plates, concreted with a cover of Trinidad asphalt, with Belgian block granite paving. Sidewalks similarly arranged with bluestone tiles and marble borders.
The designated weight of 200 pounds per square foot distributed load above the full weight of the superstructure, with the live load of 100 pounds and the wind pressure of 400 , has been allowed for in the sections.
The entire strutting of the superstructure is also to be of Bessemer steel, and also the main floor girders. Bracing, wind ties, and anchorage links to be of best quality Swedish wrought iron.
The four ornamental groups of figures at the beginning of the approaches to be of bronze, are alike, and consequently have been estimated at $\$ 10,000$ each.

Characteristics of Good Timber

There are certain appearances which are characteristic of strong and durable timber, to what class soever it belongs. 1. In the same species of timber, that specimen will, in general, be the strongest and the most durable which has grown the slowest, as shown by the narrowness of the annual rings. 2. The cellular tissue, as seen in the medullary rays (when visible), should be hard and compact. 3. The vascular or fibrous tissue should adhere firmly together, and should show no wooliness at a freshly cut surface, nor should it clog the teeth of the saw with loose fibers. 4. If the wood is colored, darkness of color is in general a sign of strength and durability. 5. The freshly cut surface of the wood should be firm and shining, and should have somewhat of a translucent appearance. A dull, chalky appearance is a sign of bad timber. 6. In wood of a given species, the heaviest specimens are in general the stronger and the more lasting. 7. Among resinous woods, those which have least resin in their pores, and among non-resinous woods, those which have least sap or gum in them, are in general the strongest and most
lightened by interior arches, as explained by details if required.
Foundation for northern piers to be of concrete ma sonry or beton nearly to surface of ground. lasting. 8. It is stated by some authors that in fir wood that which has most sap wood, and in hard wood that which has the least, is the most durable; but the universality of this law is doubtful. Timber should be

heating water rapidly.

In the Scientific American of August 21 appear ed an article copied from the British Journal of Pho tography, headed "Heating Water Rapidly." Mr. Fletcher has done himself credit in his "heating" inventions, but in the idea advanced in the item referred to, he has been fully anticipated by at least thirteen years, if he puts forth the idea as an invention. With this exception: he advises copper studs, while iron was my own medium.
With this please find sketch of an arrangement which was used in 1873 upon two steam boilers, and in 1876 upon a greenhouse boiler of 30 inches diameter, 54 inches long, which displaced two large and one small cast iron greenhouse boilers, and heated nine

thousand feet of glass far better than the three did, the previous winter, and with far less coal.

The first experiment was made by rivets $1 \frac{1}{4}$ inches diameter, next the shell 1 inch diameter at small end, and set the whole length of both fire sheets and for nearly half the circumference of the boiler, $31 / 2$ inches from center to center in alternate rows and spacing. Fig. 1 shows first experiment, Fig. 2 the second.

All sorts of trouble was promised by boiler makers, but no trouble or expense of any kind ever came from the arrangement or boilers. The record of evaporation was high, no leakage occurred, and not a cent was called for in repairs; and so far as my own experience goes, no other application has been made of the idea in this country. Thos. Pray, Jr.
Hartford, Conn., October, 1886.

The Pilgrim Ship Mayflower.

Amid the many mythical stories which have been afloat as to what ultimately became of the Pilgrim ship Mayflower, it will be interesting to our readers to peruse the following, which from so eminent a writer may be accepted as the true sequel of her voyaging. With regard to this famous ship, Mr. Edwin Arnold, in his delightful book on "India Revisited," says :
Among the curious treasures of the Madras Museum, which the governor has greatly developed, is a golden which the governor has greatly developed, is a golden
coin of Claudius the emperor, struck to commemorate coin of Claudius the emperor, struck to commemorate
the conquest of Britain, and discovered in excavating a foundation near Madras. What chapters of fancy

A Remarkable Quarry Accident.

On the 25th of September last a dreadful accident, nvolving the loss of eight lives, occurred at a quarry on Lake Fyne, near Glasgow, Scotland. It has been the custom, at these quarries, to have one great blast in the year. This year 14,000 pounds of gunpowder were fired in a single blast by electricity, displacing between 60,000 and 70,000 tons of rock. A steamer had brought an exeursion party to the scene to witness the event, and lay about a mile off shore, with the party or board, and by agreement gave the signal for the blast with her steam whistle. About a minute after the signal the explosion took place, after which the steamer ran in, and landed passengers to visit the quarry and inspect the result. So far all had gone well. The visitors, or many of them, went up into the quarry, and were in the midst of animated conversation, when some members began to fall fainting to the ground, and the managers suddenly realized that they were immersed in an atmosphere contaminated with carbonic acid gas, or choke damp. They called out to the people to run, and in the midst of the general consternation, more and more succumbed, until 80 to 100 persons were prostrated. For some minutes people kept falling senseless, in most cases without uttering a sound. Besides eight men who were killed, a number of the visitors were injured. The weight of powder employed would set free about 66,000 cubic feet_of carbonic acid gas. This, mixing with a large volume of air, would render it irrespirable. The sulphureted hydrogen and other products would lend their aid to make the air more poisonous. The accident will probably recall to many of our readers one of the closing scenes in Wilkie Collins' novel killing Midwinter, by generating a gas that, entering the room in which he slept, would have destroyed him. The gas was carbonic acid gas, although the novelist does not name it, made by the amiable lady out of limestone and presumably crude hydrochloric acid. Eventually, she drags out the prostrated body of her victim, who recovers, while she, entering the room and closing the door, dies under the influence, a suicide.
The high specific gravity of the gas, as in the famous Grotto del Cane, in Italy, caused it to remain in the bottom of the quarry. Usually, a quarry after a blast is considered safe to enter. So unprecedented was this accident, that no blame seems attachable to any one concerned.

EGYPTIAN PETROLEUM WELLS.

The working of the petroleum wells at Gebel Zeit and Gemsah, in the Red Sea, has been temporarily suspend ed, but will shortly be resumed under the superintend ence of Mr . Tweddle, who is sending out proper boring instruments, with which it is expected oilwill be found in large quantities. The present borings, which extend only to a depth of 180 feet, have yielded a comparatively small quantity of oil; but when it is considered that many borings in America are 2,000 feet in depth, this can hardly be wondered at. A careful survey of the surrounding country has been made by Mr. Mitchell, who has found indications of petroleum extending over a distance of one hundred miles. A pile of misildings for the workmen is to be constructed, and every preparation is being made for recommencing work in the autumn.
Our engravings are from sketches made during a flying visit a few weeks ago by Mr. Arthur Middlemass, Inspector in Chief of Egyptian Coastguard.-London Graphic.

The New English Gun.

The new 13.5 inch 68 -ton naval gun has been subjected to further and final trial at the government proof butts at Woolwich. After some preliminary rounds, the gun was fired with 580 pounds of black powder, with the service weight of shot. An examination of the crusher gauge, indicating the pressure in the chamber, showed that the gun had passed proof within the terms of the specification. One of the results of the recent Woolwich trials is that in future all large ordnance will have their "liners" expanded by means of special four banded proof cylinders before the completion of the rifling, so as to neutralize any possible twisting of the liners.

Mr. Juan Brown, of Valparaiso, Chili, is at work on a balloon resembling in principle that described by Mr. Maccaffrey in the Scientific American of July 24,1886 . Mr. Brown's balloon is, however, an entirely independent invention.

A BOILER EXPLOSION AT CHARLOTTE, N. C.

At Charlotte, N. C., on October 4, an explosion occurred in the boiler room of the cotton compress, by which the compress building was partially destroyed and the fireman, Moses White, was killed. The compress started up business for the season on Friday, October 1, after having remained idle through the summer months, and the third day's business was just being finished up when the explosion occurred.

the compress building.
The steam to operate the huge machinery of the compress was generated by Abendoff \& Roots patent tubular boiler. The boiler was provided with two dry steam drums, which were located on top of the boiler. The drums were 3 feet in diameter by $81 / 2$ feet long, and it was the explosion of one of these drums that caused the mischief. At the time of the explosion the steam gauge registered only 100 pounds, and the fireman was at work trying to get the steam up to 150 pounds, the usual pressure required for the opera-
 THE EXPLOSION.
tion of the compress machinery. The force of the explosion was directly upward, the exploding drum rising straight in the air, and in falling landing within a few feet of its original position. The roof of the boiler room was blown away and the brick walls were demolshed. The twin drum was blown from its position but was uninjured. The boiler was mashed badly, but can be repaired. Our photo engravings, prepared from photos taken by Mr. J. H. Van Ness, specially for the Scientific American, give a view of the compress

THE EXPLODED DRUM.

building, together with a sketch of the explosion and an illustration of the exploded drum, showing the extent of the rent. The iron at the opening caused by the explosion was scarcely thicker than ordinary cardboard, but the interior of the drum showed no signs of corrosion. The drum had been in use three years. Two days previous to the explosion it was subjected to a test pressure of 200 pounds, which it successfully resisted.

THE AQUATIC ARENA AT PARIS.

We have already given the details of the new arrangement that Mr . Oller proposed to introduce into his nautical arena in order to convert it, in summer, into a swimming bath of constant temperature. These changes have now been made, and we are thus enabled to complete the description hitherto published.
The swimming bath is formed by the central 82 foot tank, and consists of two parts of unequal depth. The flooring that supported the ring for equestrian performances has been lowered but 5 feet, and rests, as we have before said, upon hinged supports, which are themselves affixed to the posts of the metallic guard that circumscribes the ring. The intervals between the posts are occupied by an iron latticework for preventing accidents. This surface, which constitutes the shallow bath reserved for childen and persons who do not know how to swim, begins at the entrance stairway with a depth of 3 feet, and gradually slopes to the center, where the depth from there on is 5 feet. The peripheric portion forms the large bath and preserves the depth of the tank, say about 10 feet, with a width of $183 / 4$ feet. This arrangement utilizes the surface in a more agreeable manner than a square or rectangular form would for persons who know how to swim, since it affords a longer stretch.
The bath room arrangements are very complete. On the ground floor, adjacent to the swimming baths, are located the hydrotherapic, sudatory, and massage rooms, along with the one containing the steam baths and showering apparatus of all sorts. A peculiar ar rangement, as simple as it is ingenious, has been adopted by Mr. Solignac for furnishing water to the shower baths and for all other purposes. The feed system is based upon the principle of the Giffard injector with this difference, how ever, that the object of condensing the steam is to produce a heating solely, and not a suction of the cold water, which enters under pressure through a conduit. The steam pipe which terminates in a conical nozzle, enters a cylin der into which runs the extremity of the cold water conduit.
Upon properly regulating the cocks of these two pipes, one can regulate the temperature at will, so as to give either a cold show er bath or a steam bath. This system presents the advantage that but one apparatus is employed instead of two, and that there is an entire suppres sion of hot water piping with an elevated reservoir and of all the annoyances and repairs that result therefrom.
One of the most usefu
of the rooms, and one that it costs no additional fee to enter, is the lavatory, wherein bathers have every facility for cleansing themselves that is found in the hot baths. This addition, moreover, helps to preserve the water of the swimming bath in its original clean state.
The upper gallery of the old establishment is now used as a resting place, and is provided with a buffet. The stable vestibule has been converted into a gymnasium; and the stables themselves are repositories for rubbish. The water is kept at a mean temperature of 24° C. by a constant flow of water heated to 56°. We shall do nothing more thin mention the mode of feeding, which permits of a complete renewal of the 42,000 cubic feet of water of the baths in two days, and at the rate of 1,750 cubic feet per hour; the freeing of the water from oily matter; the two modes of emptying the baths-one of them by means of a siphon, in which the upper, hot stratum of water forces the lower forward under the action of density, and the other by means of the feed pumps of the steam boilers; and, finally, the thorough ventilation obtained by currents of hot air, so as to prevent condensation upon the walls and ceiling. : Let us state, moreover, that this ventilation has been notably increased, and carried to 210,000 cubic feet per hour, by reason of the wider evaporating surface exposed since the removal of the various tiers of seats.
The current of hot air, likewise, keeps the entire hall at a uniform temperature, so that the bather, on coming out of the water, does not experience that sensation of cold (which is often very disagreeable and even daugerous) that he does in open air bathing.-La Nature.

Cinchona trees growing in hothouses in Europe develop no quinine in their bark.

general view of the swimming baths at the aquatic arena.
legitimate business, and generally ends in lass and disappointment. The lawsuit is seldom worth its cost, even to the one who obtains the verdict. Avoid it whenever possible to do so without prejudice to your property or character.

Sugar as an Anti-Incrustator in Steam Boilers.

The last number of the Rivista di Artigliera e Genio contains a brief but important article by Colonel Agostino Polto, of the Italian engineers, giving the result of certain experiments carried out by him with common sugar as a remedy for preventing incrustation in boilers. The boiler made use of by Colonel Polto was a 20 horse Field tubular boiler containing 126 tubes. This boiler was ordinarily scraped and cleaned out every forty-five days" (i. e., after 380 working hours), when the average weight of scale removed, after making use of the best methods known for preventing incrustation, amounted to 12 kilogrammes. Before becrustation, amounted to
ginning the experiments with sugar, one-third of the ginning the experiments with sugar, one-third of the
tubes were purposely left uncleaned. The boiler was tubes were purposely left uncleaned. The boiler was
then filled with water and 2 kilogrammes of sugar added to it; a further supply of 1 or 2 kilogrammes, alternately, being added every seven days.
After working the boiler for the usual forty-five days, it was found that it could be cleaned easily without the necessity for scraping it, and that the tubes which had been left uncleaned were considerably more free from scale than before, while the other tubes remained clean and bright. About 8 kilogrammes of old incrustations were found lying at the bottom of the boiler, having become detached by the beneficial action of the saccharine solution. A similar result was obtained after repeating the experiment for a further period of forty-five days; the tubes originally left uncleaned being in still better condition, and only 3 kilogrammes of old incrustation being found at the bottom of the boiler The success of these experiments proved conclusively that the boiler could be used with advantage continuously for a longer peri od than forty-five days, and that it could then be easily cleaned by simply injecting water.
The advantages claimed by Colonel Polto for this method, if borne out by prolonged experience under varied conditions, are self-evident, and we shall be glad to hear and record the results of fur ther trials. The sugar employed was a kind of raw sugar known in Italy by the name of muscovade which possesses a large amount of saccharine matter. With water of medium hardness, the best re-
wyer, an accident, a confused witness, the appearance or occupation of the parties to the suit, politics, eligion, are all incidental factors in shaping a verdict in the minds of ignorant, untrained, weak-minded jurymen. Justice and equity do not always prevail in the appeal to twelve men.
Business lawsuits are too frequently born of heated passion, misunderstanding, ignorance of all the facts of the law governing the case, false pride in maintaining an opinion or a threat, an overbearing disposition, or perhaps a disinclination to look calmly at both sides of a question. There are cases in the lives of many men when a lawsuit cannot be avoided, but they are few.
Fifty per cent of all disputes could better be settled by reference to experts or those versed in matters similar to those in dispute. Many a suit would be dropped were the plaintiff able to count the cost at the commencement. Many a suit would be avoided were the parties in interest willing to weigh calmly both sides of the question, and to do unto their fellow men as they would be done by.
Think of a business man, whose time is almost invaluable to him in his regular round of duties, hanging around a courthouse day after day, awaiting the coming up of his case, witnesses under pay, costs accumulating, patience being exhausted, and all perhaps to settle the point whether his neighbor owes him $\$ 50$ more or less.
An appeal to the courts of law is akin to buying a ottery ticket, though the result is not known so speedily. The victim's sufferings are longer drawn out, his money is taken in smaller but more frequent installments. A suit at law destroys a man's equilibfrom, makes him nervous, irritable, ugly, prevents him from giving the needed thought and attention to his
sults were obtained by using 10 grammes of sugar per horse power when working the boiler ten or twelve hours a day; but the exact proportion weuld, of course, vary under different conditions. This saccharine solution was found to have no corrosive effect on the boiler, but Colonel Polto admits that too large a proportion of saccharine, or the use of impure water, might possibly lead to corrosive action, which, however, would probably be easily obviated by adding a small quantity of soda in the proportion of one-tenth to sugar.

The Brennan Torpedo.

Some further experiments have in made at Sheerness with the Brennan torpedo, the results being described as exceedingly satisfactory. The experiments were carried on in conjunction with the electric search light at the Garrison Point Fort, and the weapon was steered about the harbor in different directions at the will of the operator in the torpedo room at the fort, and was finally directed at a target moored about a mile up the Medway, the mark being rendered discernible by means of the electric light. The torpedo is kept under control and steered by means of a wire attached to the machinery in the fort. When the experiments at the fort have concluded, it is proposed to test the adaptability of the torpedo for use as part of armament of ships of war.

Saccharine.

The authors put on record the facts that this com pound traverses the organism without any alteration and that it has an antiseptic property. Its sweetness is not similar to cane sugar, as it has been asserted. Its flavor is slightly saline and raw.-E. Ferrand and L. Rouques, Journ. de Pharm.

capillary vacua.
 Capillary vacua.

The work done by the advancing concave surfaces of columns of liquid by force of multiplication often assumes startling dimensions. The single elements producing the force are very small, and are easiest represented as tubes. If a tube of small diameter is partially immersed in water, the fluid rises within it above the level of the water in the outer vessel. This is due to capillary attraction, and is a true force. The force is exerted by the reaction between the walls of the glass tube, the air, and the downwardly curving surface of the column of fluid. The rest of the column is inert in the matter, except as it operates against and opposes the force. Capillary action is essentially surface action, and cannot exist without the co-existence of a surface. The blood in the capillaries of the extremities of the arterial and venous system is not and cannot be urged by this force, because they are completely full, proscribing the possibility of surface action. In.a lamp wick the capillary work is all done at the top, the multitude of minute surfaces being maintained or renewed by the continual burning of the excess of oil.
The practical uses of this force are somewhat limited in variety. The wicks of lamps and candles present, perhaps, the most frequent source of its employment. Stones are split by the insertion of dry wooden wedges that are afterward moistened. As the water is drawn into them by capillarity, they swell up with such force as to split the stone. Towels and cloths used for drying anything work by the same force. Blotting paper absorbs the excess of ink from a freshly written page by the same film or surface action. In all these instances, the imbibing substance is essentially a series of tubes, and myriads of little concave films creeping through them draw water after themselves by atmo spheric pressure, and the substance becomes wet.
Availing ourselves of the water-absorbing power of blotting paper, we may perform some very elegant experiments in capillary force with the simplest materials. Little more than a small plate of glass, a wineglass, and some pieces of blotting paper are required. At mospheric pressure is so made to demonstrate the action of capillarity.
The wineglass is three-quarters filled with water, a piece of thick blotting paper is laid over its mouth, and over that the glass plate is placed. It is important that the mouth of the glass should be even and that the plate should be flat. Then, holding the three together in both hands, the whole is turned over so that the water comes in contact with the blotting paper. The latter inmediately absorbs some of the water. Starting from the wineglass as a center, the moisture spreads outward, and the paper becomes quite wet. But in effecting this absorption a considerable amount of water is withdrawn from the glass. This creates a partial vacuum. The glass and plate adhere strongly to each other, under the effect of atmospheric pressure, so that they can be held safely in the position shown in the cut. It seems so extraordinary a thing to attempt that confidence is apt to be wanting, but after a few trials, if all conditions are complied with, it will be found infallible. The glass can be supported as shown, it can be hung downward, or it can be made to sustain the plate. To pull the plate and glass apart, considerable force will be required.

capillary vacuum.

To obtain some idea of the force of attachment, a bottle may, by a couple of pieces of bent wire, be suspended from the plate as it adheres to the inverted wineglass. Water may now be poured into the bottle. The operation should be done over a basin in which some towels or papers are placed to break the fall in case of an accident. If the bottle is not too large for the wineglass, a weight of several pounds can thus be sustained. A wineglass one and three-quarter inches in diameter will thus support a plate, bottle, and water weighing between two and three pounds. By careful manipulation a still greater weight could probably be sustained.

It is not absolutely necessary to invert the glass to wet the paper. The glass may be filled until it begins to run over. The blotting paper is then applied to the plate, and this is quickly placed on the glass, so as to cause some of the water to overflow. The paper absorbs water and makes a vacuum as before. Under ordinary circumstances, the first is the best method of working. The latter method is employed in the next experiment, in which the vacuum is made to support a column of mercury.
A glass funnel has a glass tube fitted to its stem. This tube should be of small internal diameter, about

weight sustained by vacuom.

one-sixteenth inch. It dips at its bottom into a bottle of mercury. The funnel is supported in a perfectly level position. Its mouth must be very true. If not. a few minutes' grinding on a plate of glass with sand and turpentine will render it even. Water is now poured into the funnel until it is full. If the water does not run down into the tube at first, it must be forced to do so by the experimenter suddenly, and for an instant only, raising the funnel, and with it the tube, out of the mercury. Water again is added until the funnel is brimming over. The mercury, if half an inch deep, will be enough to sustain six inches of water. The lower end of the tube must be free, and not closed by resting against the bottom of the mercury bottle. The glass plate and blotting paper are now placed over the funnel. As the water is absorbed the mercury rises, until it stands an inch and a half above that in the bottle. This measures the pressure, if to it be added the height of mercury equivalent to that of the water in the tube and funnel.

The glass plate may be omitted, and a piese of blotting paper be used alone. It is placed over the mouth of a partially filled glass, the latter, with the paper held over it, is inverted, and placed upon a china plate. As the vacuum grows greater, the paper is pressed by atmospheric pressure into the wineglass, rising perhaps a quarter of an inch, like a flattened dome. After standing an hour, the wineglass is righted. If a pin or sharp knife blade is thrust through the paper, it will slightly contract, showing the stress it has been subjected to.
A piece of paper that has been thus acted on, but not perforated, and that has afterward been allowed to dry, preserves an even, cup-shaped depression, forming quite a curious object. Such a piece is shown in the first cut accompanying this article. Many other to those interested

The Jute Goods Industry.

American wheat is now sent abroad packed in burlaps of Dundee manufacture. The Scotch manufacturers continue to supply us with the bulk of the burlaps used for floor oilcloth foundations, few of them being made in this country, and they control all the trade in burlaps for bags, excepting that portion of it which has been secured by the factories of India. The latter have developed of recent years into formidable competitors with the Scotch manufacturers, and it is possible that a few years from now most of the jute goods consumed in Europe will be manufactured in the East Indian factories.
For several years there has been held before the eyes of ambitious inventors an offer of a prize of $\$ 10,000$ for the first ten bales of jute grown and prepared for market in the United States at a cost which will admit of successful competition with the Indian article, but the prize is still unearned.

The principal and apparently insurmountable obtacle which confronts all efforts in this direction is the lack of a machine which will prepare the jute fiber for the market at a cost low enough to offset the cheap hand labor of India. In the jute plant, the fiber lies between the pith and the bark. It is necessary to remove the latter and separate the jute from the pith, and this must be done without injuring a fiber which is one of the most delicate known. In India, the natives who do this work are paid from seven to ten cents a day; and if a machine could be devised which would perform the task as perfectly as it is done by Indian fingers, the immense difference between the cost of labor here and in India would continue to be a potent factor in favor of the Indian in this as in other stages of the work to be done before the fiber was ready to enter the factory. Machinery may assist the American manufacturer in his struggle with European competition, but in India flesh and blood are even cheaper than iron and steam In view of these facts, it would seem the manifest duty of our government to open the way as far as possible to a cheap and sufficient supply of the raw jute required by our own manufacturers of jute goods, but instead of doing this our legislators have imposed a duty of 20 per cent on the raw jute, thus discriminating against a native industry which is already at enough disadvantage without this additional and uncalled for burden
If raw jute were placed on the free list, it is probable that the jute fabrics now imported into this country under the head of burlaps and like manufactures of jute, to the amount of about $\$ 12,000,000$ annually, would all be made in the United States. The removal of the duty would also give a m.uch needed impetus to the jute carpet manufacture by enabling the manufacturers to reduce the prices of carpeting. and so broaden the demand for it by bringing it within the reach of many who are now obliged to dispense with floor coverings, while the present consumers would be stimulated by its cheapness to a more liberal use of $i t$.
These facts have been repeatedly brought to the attention of our legislators at Washington, but so far without the slightest effect; and while such indifference continues to characterize our tariff makers in this respect, there is no promise of any material improvement in the present condition of the jute goods industry.
The export of jute from India amounts now to about $3,000,000$ bales annually, and of this quantity not more than 60,000 bales come to the United States in the raw state, and yet this country consumes in various ways one-third of the entire jute crop of India. There is imported annually sufficient manufactured jute cloth to make the $130,000,000$ bags used in moving our crops of wheat, oats, corn, flour, and other farim and manufactured products. With free raw jute all this cloth could be made here, to say nothing of the

MERCURY COLUMN SUSTAINED BY VACUUM.
thousand and one other uses which would doubtless be found for the jute fiber, if, as has been said, a cheap and abundant supply of it were at hand.-Carpet Trade Review.

All sediment cocks in kitchen boilers should be left open at least once a week for the space of fifteen minutes, so as to clean and wash out all foul sediment. Oftentimes when complaint is made that the water smells, or that it don't heat properly, the real cause will be found to arise from this neglect alone.

ENGINEERING INVENTIONS.

A frogless switch has been patented by Mr. Abraham Culp, of Mount Carmel, Pa. It is so
made that the strain incident to the shifting of the made that the strain incident to the shifting of the
switching rail is distributed throughout the length of the rail, instead of falling, as usual, upon one point, and thereby causing a bending of the rail.
A combined steel tie, rail fastening, and lock joint has been patented by Messrs. Theodore L.
Mumford and Hugh Moore, of Mauch Chunk, Pa. Mumford and Hugh Moore, of Mauch Chunk, Pa. tures, and the ranls, are lever clamps Inserted in the
apertures, and held on the rail flanges sy nuts, holding apertures, and held on the rail flanges by nuts, holding
the rails securely in place, and permitting the making of the middle parts of the tles narrower than the end parts.

A railway signal has been patented by Mr. Pierson J. Wicks, of Greenpoint, N. Y. It con-
sists of a contact wheel attached to the locomotive, an sists of a contact wheel attached to the locomotive, an
alarm in the cab electrically connected with the tires of the contact wheel, and a switch between the electrical
connections of the alarm and the contact wheel, with other novel features, for automatically sounding a bell
in the cab of a locomotive as soon as two or more trains in the cab of a locomotive as soon ar
are on adjoining sections or at a crossing.
A railroad rail joint has been patented by Mr. Thomas A. Davies, of New York city. This in. vention provides rail joints constructed in such manner
that the amount of bearing surface in contact will be that the amount of bearing surface in conter
unaffected by the setting of of the fish plates, the upper
bearing surfaces of which will always rest tightly beaingt the corre
A fish plate for railroad rails has likewise been patented by the same inventor. Fish plates
are to be made, by this invention, with flanges upon are to be made, by this invention, with flanges apon
their lower edges projecting outward farther than the their lower edges projecing outward farther than the
base flanges of railroad rails, with recesses in their
outer edges outer edges to receive the heads of the fastening spikes
driven into the ties at the outeredges of the base flanges of the rails, the object of the invention being to provide fish plates that will hold the rails from longitudinal movement with
as fish plates.

agricoltoral inventions.

A combined harrow and cultivator has been patented by Mr. David Kessler, of Willis, Kan,
This invention covers a combination of various nove This invention covers a combination of variouns novel
features in a machine that can be readily adjusted for cultivating listed corn or surface corn, or for ordinary harrowing, and which shall be reliable and effectiv
A horse hay rake has been patented by Mr. George K. Schauer, of Osborn, O. A frame car-
rying roller is fixed on one wheel of the axle, and rying roller is is ixed on one wheel of the axle, and a
lever is pivoted on a fixed piece on the axxle, and has a cam projection, with operating mechanism, whereb,
the cam is thrown into and out of the path of the rollers the cam is thrown into and out of the path of the rollers,
to facilitate the reversiug of the rake for discharging trass, etc.
A planter has been patented by Mr. William Lewis, of Dawn, Mo. Its construction is such that the main frame of the machine and the parts car-
ried thereby may be raised above the normal position when the machine is to be taken from one place to an hinging the main frame to arms rigidily connected to
and extending to the rear from the axle of the planter.

miscellaneous inventions.

A candle attachment has been patented by Mr. George Whyte, of Northview, Elgin, Scot-
land. It consists of a dome-shaped cap, with weightcasing. standards for supporting a shade, and other novel features, the device preventing the overflow of
melted grease, as well as making a shade holder.
An insecticide has been patented by Mrs. Rebecca McKee, of New York city. The composition
embraces a number of materials easily obtained of any druggist, and which can be readily mixed and prepared for use in places infected with insects or vern.
thorough and efficient destroyer of such pests.
A uterine supporter has been patented
M $\mathbf{r s}$, Martha F. Haynes, of Athol Center, Mass. It by Mrs. Martha F. Haynes, of Athol Center, Mass. It is a device for affording relief and promoting cure in
cases of prolapsus turi or reversions, it being simple and inexpensive in character, and which may be easily A sast lock has been patented by Mr. Charles E. Nicholas, of Toledo, OLio. A tongue with a spar and notch is pivoted in a a asing in such
way that it can be attached to the stile of the upper sash of a window, for engagement with the top rail lock without the use of springs.
A turntable for hay carriers has been patented by Mr. Edwin Woodward, of Stryker, O. It is constructed in such a manner that with it an ordinary
hay carrier can be readily reversed, when fit it desired
to deposit the hay or grain in the other end of the barn, hay carrier can be readiy reversea, when in of the barn,
to deposit the hay or grain in the othe end
the device being simple to make and reliable in operation.

A fireproof shutter for stairways has is mate of corrugated iron, and housed or bored. be-
neath the stairs, so that it can be readily withdrawn neath the stairs, so that it can be readily withdrawn
from its housing and drawn to a position to cover the well or opening formed for the stairway leading to the
floor beneath.
A paint has been patented by Mr. John H. Palmer, of West New rrighton, N. Y. It is made by combining the residuum of linseed oil, resulting from
purification, with a certain amount of linseed oill the matter remaining after the usual process for purifying
oil from flaxseed having heretofore been generally a

A spring roller has been patented by Mr. Charles E. Brooks, of Brooklyn, N. Y. It is a
window shade roller, made in such manner that the when the shade has been rolled up to a fixed limit, to prevent disarrangement or breakage of the roller or it

A photographic camera has been pat ented by Mr. John S. Johnston, of New York city. It is a plate reservoir camera, in which the sensitive receiving their impressions are automatically deposited a receiving reservoir, especially adapted for use
detective and instantaneous photographic purposes.
A tube expander has been patented by Messrs. William Schoendelen, William Klein, and August Schoendelen, of Davenport, Iowa. This invention provides a simple and easily operated hand tool or $e x$,
panding bushesin the bung holes of barrels and kegg, or retain the bushes in their place, and to tighten them

A freight handling mechanism has been patented by Mr. Drew Stretch, of Liverpool, Eng. It
embraces a boom jointed to swing vertically and laterally, a pulley wheel and devices for its longitudinal adof facilitate the vertical raising and lowering of the reight, and to bring the freight into position to be dumpen into the chutes.
A filling apparatus has been patented by Mr. Thomas H. Hathaway, of New Bedford, Mass. movable plate in connection with a a eries of apertures
and funnels, so arranged that when a number of bottes and funnels, so arranged that when a number of bottles of the same size are placed beneath the funnels, they
may all be filled at the same time, by the moving of an
ened and closed.
A harness has been patented by Mr. John H. Whitaker, of Davenport, Iowa. This invennventor, of harneess for training invention ond covers am an mprovement whereby the bearing surfaces of lines extending beneath the horse's belly and between his hind legg have but a slight
leg without rasping it.
A bicycle shoe has been patented by Mr. Thomas J. Strickland, of Randolph, Mass. The insole has an intermediate or shank portion of greater
flexibility than the end portions, and the outer sole is composed of an inner and an outer layer of greater flexibility than the inner layer, making the shoes more flexithe machine.
A printing plate holder has been patented by Mr. Marshall J. Hughes, of Jerseg City, N. J. This invention covers clamping plates with opposite
edges bent or angled to form lips to embrace the beveled edges of stereotype or other printing plates, one of
he bent lips having an adjusting screw, and the clamping plates being held by the furniture employed by bcking the block in the chase.
A necktie fastener has been patented by Mr. Frederick Standish, of Shelton, Conn. It consists of a clasp held to the tie and having opposite yieldng hooks, with a stud having holes to which the clasp device which will allow the necktie to be put on and emoved very quickly and conveniently, and will hold securely in its place when adjusted.
A calf weaner has been patented by Mr. William H. Tyler, of David City, Neb. It consists of a
wire frame with loops adapted to be received in the nose wire frame with loops adapted to be received in the nose
of the animal, the combination with a metallic apron of the animal, the combination with a metallic apron
arranged to hang over the mouth, the wire frame having wo projecting points for preventing the apron from viceable for keeping cows from sucking themselves.
A calf weaner has been patented by Mr. Cyrus J. Fox, of Falls City, Neb. This improvement is embodied in a r rbber headstall which is capabie of adfor attachment to the animal's head, but so as to offer no obstruction in feeding on grass or out of a trough, as
he muzze will slide readily up the head when it rests down against anything.
A neck yoke coupling has been patenter. It is for attachment to a vehicle pole or tongue ard is so made that with it neck yokes having a ring of any size may be connected securely to the pole or
tongue of a vehicle, and as the horses hold back the ring will draw, so as to have less tendency to bend or
A packer for oil wells has been patented by Mr. John D. Brooder, of Kane, Pa. It consists
of a conical expander placed between two rubber pack. of a conical expander placed between two rubber pack-
ing rings, with a device for forcing the rubber packing rings upon the conical expander, the packer to be secured to the lower end of the tubing of the well, and
lowered with the tubing in an unexpanded condition, and when in place the pipe to be turned to force rings on the expander and cause the elastic rings to entirely fil the well.
The making of gelatine printing rolls, patents issued to Mr. Edwin P. Benjamin, of Minetto, N. Y. The rolls are for use fn printing continuous patN. Y. The roils are for use in prining continuous patsired length, and are moulded in gelatine on a flexible
heet, to form a plate thereon, the sheet being then sheet, to form a plate thereon, the sheet being then
drawn tightly around a tubular shell or core until the edges of the plate are brought together and connected, he core being of especial design to adapt it for such
work. The matrices used in casting the patterns in the Work. The matrices ssed in casting the patterns in the
gelatine are made of guttu percha, into which plumbago elatine are made of gutta perchat, into which plambago
has been well worked, pressed in thin sheets between eated metallic plates, upon the face of one of which is he desirea pattern, the gutta percha plate thus formed bent in the form of a hollow cylinder, the patents likewise covering numerous practical details intended to
facilitate the making of rolls for printing continuous facilitate the making of rolls for printing continuous

Special.

a NEW PHASE OF DARWINISM.

Development of HRedity; the Power of FAIti; ASEARCH for Purity; FAITH; A SEARCH FOR PURITY; A REGENERA TION OF BLOOD ; TEE SAVING PowEr OF PURTTY.

 Erasmus Darwin. the man of science. the poet, and land, fresh from the University of Edinburgh, about the year 1760, when he was not thirty years of age. He took silvery Trent, and at once entered upon practice, which in a remarkably short time became extensive and lucra-tive. With professional popularity he gained social distive. With professional popularity he gained social dis-
tinction among the young people of the town. In the tinction among the young people of the town. In the
shadow of the noble Cathedral he found friendship and association such as had been denied the other rreat
Lichfield man, Samuel Johnson, and such as had been given Lichffeldiars like Gilbert Walmsley and Henry
Herves. Hervey. There were young ladies of rank and wealth
who smiled on him, and were willing to kive their mones and titles in exchange for his love, but he cared not Marriage was far from his thoughts. His professio
was his all. He had no time for love or pleasure. was his all. He had no time for love or pleasure.
In 1 Tr88 he was called upon one day by Thomas chafree his stomach. The doctor had been doing a great deal to stas the tide of intemperance that was cursing the
borough, but his words had not weighed against the proborough, but his words had not weighed against the pro-
duct of Chaffee's malt. Now a chance for an effective duct of Chaffe's malt. Now a ch
temperance lecture was at hand.
liguor caused it. 1 cannot cure you. You have com mitted suicide. but for God's sake stop your brewing before you commit unnumbered homicides
Quite naturally, such plain language displeased the
brewer, and he went home enraged. His daughter Sinai
 forth with called on Dr. Darwin to show her resentment. The outcome of the call was that the lady admired the cuted by admiring her championship of her father an his vocation.
The result was mutual love and a marriage engage-
ment. In a few months Thomas Charfee was dead of
castric cancer Dr. Darwin by selling the brewery, and by in hand with him to diminish drunkenness. She would do anything for him, and she loved himenes. with most beautiful strength and depth of affection.
But the doctor was too scientific
But the doctor was too scientifc to be a true lover.
He was too much like his crandson. The girl pleased him well, but aftera protracted engagement he heart lessly broke it by arguing to himself and his flancee that
it mas probale it was probable that she would inherit her fathers ter-
rible malady, and that sucha probability would entaiia
burden of unhappoiness on them both. Such coll ind was a dreadful blow to the orphan girl, and as nothing was left to bind her to her native town, she soon em-
igrated to America. Dr. Darwin removed
from Lichfleld to Derby, a. little. later, and won reat fame as an
author and a scientist, and had a home that might been happy.
Sinai Charfee could not forget her frrst love. Finding a
home with relatyes near home wit hrelatives near Albany, she lived a quiet maiden
life for many years, and never entered society. Amasa Converse went frequently from, Hudson, there was a b boom of oranke blossoms at the Van
Hess mansion house and Chancellor John Lansing kave Ness mansion house, and Chancellor John Lansing gave
was the bride, the fair and gentle Sinai. Mr. Converse was a farmer, but he gave his wife a pleasant home amon they told her it was a son, she said, "His name shal be Erasmus Darwin Converse.,
The years passed happily.
The years passed happily. Afterward there were born
wo daughters, and then the wwo daughters, and then the mother died. On
bed she old her sister-in-law of her early love.
"There is no cancer in my blood," "she said, when th
fury of fever had inflamed her veins; " but, Polly, I fear that $m y$ boy may some time suffer from the disease." Polly only smiled at such an idea, but she did not for lad, but he had his mother's gentle and retiring man-
ner. His father married arain and sent the boy away t echol, where for a chum he had George Dana Eustis and where he made the close e acquaintance of Willian
Cullen Bryant. The poet was soon away to the city, but
 quarter of century they met every summer and kept
their friendship warm. Converse was a farmer, but he was a scholar and a a philosospher, wnd his secluded ife was never other than nappy. Marrying a wife, and a suc
cessful life, he passed midale age and never knew a day of sickness. One autumn daye in 1873 he drove from
cummington to Pittsfid, and, as was his custom, took dammer wion to opitssifle, and, as was
"Why do you wear a mumfer,", she asked him.
". $M y$ throat pains me some," he said " and so
The old lady asked to see his ailing throat, and no "Cacd on one of the tonsiss s amall scarretspot.
"Can it be-cancer ?" she thought rememb
\qquad
The inext time the father went to Pitsffleld it was three
months later, and it was to consult a physician about his hroat. Dr. C. D. Mills examined him, and finding his system in prime condition,
"Doctor", said the sage old aunt, "'
and she told of the hereditary liability.
The ext time that the doctor looked at the circumscribed, angryfredness, he recognized the antecedent
heredity, and knew the particular direction that the morbid action had taken. "Cancer," he said; and id his opinion coincided Dr. William Warren Greene, Dr
Thomas Hun, Dr. A. N. Allen, and several othereminen surgeons. It was cancer, at the best:terribe, but
case.made more terrible by its inaccessibility.
case, made more terrible by itsinacesssibitity.
The prophecy, born of outraged love, was fulliled; and while Charles Darwin was surprising wae world with
his brilliant theories, the son of his grandfather his brililiant theories, the son of his grandfather's
wronged afrst love was feeling deathly pain as he wronged frst love was feeling deathly pain as he
breathed the keen Massachusetts air. One day, as the farmer read his paper, he chanced
see an item which told of a Philadelphia physician wh was treating diseases with a compound form of oxygen The farmer liked the idea, and in the summer he went to Philadelphia. Dreading lest hel wastlo fall into the hands
of a charlatan, he gave Dr. G. R. Starkey an assumed name, and showed hime his throat. Atter an axamination
 "will do just this if you winl give it time. It will render your system able to throwloffthe matter that causes the
disense." " 1 am a believer. Begin your treatment,"
"A was all the man could say.
Advantages were reanized at once., The system that
had began to toter under the burden of the terre
disease was speedils vitalized, and gracually the throat
lesion began to assume the appearance of healthy heall lesion began to assume the appearance of healthy heal-
ing. "M vthroat is well, "e was soon able to say. and
with the exceotion of a cieatricial spot in place of the with the exception of a cicatricial spot in place of the
uicer, he nerer suffered furcher inconvenience. of
Course the physicians had to though Dr. Mills was inclined to doubt.
 a cousin or mr. Monerse, and had a cancer at the inner
cantus of his. left eye. He was induced to try the riea not, and was curea, as hundreds of reputable
citizens of Vineland, and Dalton, Mass.. can testify. Said Mr. Morse to a reporter, " That Philadelphia doctor saved my life and I am positive that there is no other This is but one of a hundred.
This is but one of a hundred singular, cluronic cases
whose relief and final cure has made their friends view Th as alm ost a m miracle.
The above testimonial is published-not to claim for the Compound Oxy gen a cure of any specifed disease,
but, as a marked illustration of the way it cures all afficut, as a marked illustration of the way it cures as al amilic
tions. The process is that of revitalizing the physical organism, so that it it restored to a state of natural health.
Now, it is to be well noted that this revitalization is not n artiffial supply of a a given amount of vitalitit, which s to be soon exhausted, thus leaving the ssstem in the ame condition in which it was; but it puts the orkans whose functions is to generate vitalty, in a state of
funl health. This testimon was writen by we well
known writer, "rev. M. C. Cogswell,' without our sug-
 wo years, and have taken pains to entaws its whenticitr. Being satissied on that poont, we allow Tt to go
forth, not for the purpose of soliciting cases of cancer for treatment. We have never seen a case of cancer
horoughly cured by Compound Oxygen, but we have thoroughly yured by Compound Oxygen, but we have
seen enounh of its effects in cancorous cuses to be con-
vinced that many of them might be cured if th en vince.
ing account of a case sent to us by the patient, an estinable lady of Millersburg, ohio:
"I think you have said in some of you didid not claim that that in e compound your circulars that
perform perform surgical operations or cure cancer.' I think I can now say that it has cured what would have been n
cancer two years ugo had it not been treated according to your diriections. While using the oxygen by inhala-
ion, 1 also bathed the sore, or rather covered it with a loth saturated with inhaler water, at morning and at night, as directed, since it became worse through neglect
of the treatment last spring, and am hapoy to say that I regard it as cured, although 1 still apply the water. The itching and gnawing sensation is gone, the last ves-
tige of scab has disappeared and there is only a small tige of scab has disappeared and there is only a small
discolored depression (very slight) left to toll of the iscolored depression (vers slight) left to tell of the
trouble now. I have used nothing for it whatever except your r
nothing else
The Compound Oxygen has now received a world-wide repution for efficiency in curing chronic diseases. The
afficted will find facts and testimonials greatly to their nerest in the Treatise on Compound Oxygen, and their pubications on various diseases, which are all sent free
upon application addressed to Doss. Starkey \& Palen, No.
teng A

Business and Personal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line.
Advertisements must be received at publication office as early as Thursday morning to appear in next issye.

Metallic Pattern Letters and Figures to put on pat-
Kerns of castings. Knight \& Son, Seneca Falls, N. Y.
Great Oaks from Little Acorns Grow,
nd great benefts ensue from the use of Dr. Pierce's "Pleasant Purgative Pellets"-tiny, sugar-coated graning" in the attempt to swallow some huge bolus of uninviting aspect and disagreeable effect. Their cathartic
action is thorough, yet perfectly gentle and unlike other pills, they never react toward constipation. In cases of pills, they never react toward constipation. In cases of
sick headache, and as a promoter of digestion, they are
Send for free Catalogue of Books of Anusements, Speakers, Dialogues, Card Games, Fortune Tellers,
Dream Books, Debates, Letter Writers, Etiquette, etc. Dream Books, Debates, Letter Writers,
Dick \& Fitzgerald, 18 Ann St., New York.
Wanted-The general agency for a good novelty. G. Method for improving draught of steam boi
Circulars. T. Sharts, 184 E . 98 d St.. New York
Machinist Foreman wanted who can handle fifty men advantage and increase their production by latest improved ways of doing work. Address P., care of Wil-
inson \& Co., 352 Atlantic Ave.., Boston, Mass. Friction Clutches from $\$ 2.25$ on. J. C. Blevney, Newark, N.J.

號

 more, Ma.-One planing machine, will plane $35 \prime$ wide,$27^{\prime \prime}$ high, and $16^{\prime \prime} 6^{\prime \prime}$ long; one planing machine, will
 one double geared chasing latue. will swing $24^{\prime \prime}$ dia.., $8^{\prime \prime}$
$6^{\prime \prime}$ long; onedrill grinding machine; one small punching and shearing n
arrangement.
Haswell's Engineer's Pocket-Book. By Charles H. ing Tables, Rules, and Formutas pertaining to Mechan-
ics, Mathematics, and Physics, Architecture, Masonry, Steam Vessels, Mills. Limes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, $\$ 4.00$. For sale by Mages, leather, pocket-book form, $\$ 4.00$. For sale by
Mund $\mathbf{3}$.. 361 Broadway. New York. Woodworking Machinery of all kinds. The Bentel \&
Margedant Co., 116 Fourth St., Hamilton, o. Foreman for machine tool department of a large staionary and portable engine an and familiar with valve movements and high speed
utomatic engine work; must understand handling men. o the right person there is an opportunity to secure the osition of superintendent of the establishment.
dress, stating age, T. E. J., P. O. box 773, New York.
Engines and boilers, $1 / 2$ to 4 H. P. Washburn Engine
A Catechism
Ath 19 plates, 22 the Locomotive. By M. N. Forney, on receipt of the price by Munn \& Co., 361 Broadway,

Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Pumps for liquids, air, and gases. New catalogue

The Knowles Steam Pump Works, 44 Washington
St., Boston, and 93 Liberty St., New York, have just issueda aid catalogue, it which are many new and improved forms of Pumping Machinery of the single and
duviex steam and power type. This catalogue will be mailed free of charge on application.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J.

Concrete Apparatus, etc. Ernest Ransome, S. F., Ca Nickel Plating.-Sole manufacturers cast nickel an "Little Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline Complete outflt for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mfg. Co., New Haven, Conn Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broadway, N. Y. Free on application.有 Timber Gaining Machine. All kinds Wood Work-
ing Machinery. C. B. Rogers \& Co., Norwich, Conn. Iron, Steel, and Copper Drop Forgings of every d seription. Billings \& Spencer Co., Hartford, Conn. Rubber Belting, all sizes, $7731 / 2$ per cent regular list All kinds of Rubber Goods at low
Buckley, 156 South Street, New York.
We are sole manufacturers of the Fibrous Asbesto asbestos goods of all kinds. The Chalmers-Spence $\mathbf{C o}$ 419 East 8th Street, New York.
Supplement Catalogue.-Persons in pursuit of infor-
macion of any special engineering, mechanical, or sotenmation of any special engineering, mechanical, or sofien-
titlc subject, can have catalogue of contents of the ScItiilc subject, can have catalogue of contents of the Sci-
ENTIFIC AMERICAN SUPLEMENT sent to them free. ENTIFIC AMERICAN SUPPLEMENT sent to them free
The SUPPLEMENT contains lengthy articles embracin the whole range of engineering, mechanics, and physical
science. Address Munn \& Co.. Publishers, New York. Curtis Pressure Regulator and Steam Trap. See p. 142 Cushman's Chucks can be found in stock in all larg
cities. Send for catalogue. Cushman Chuck Co., Hart cities. Send
ford, Conn.
Steam Hammers, Improved Hydraulic Jacks, and Tuh Expanders. R. Dudgeon, 24 Columbia St., New York. 60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen
Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U.S. A.
Wrinkles and Recipes. Compiled from the ScientiFIC American. A collection of practical suggestions,
processes, and directions, for the Mechanic, Engineer, Farmer, and Housekeeper. With a Color Tempering Scale, and numerous wood engravings. Revised by Prof Rose. 12mo, cloth, $\$ 2.00$. For sale by Munn \& Co., 36 Roseadway, New York.
HoistingEngines. D. Frisbie \& Co., New York city. Equatorial Mountings, Reflecting Telescopes, etc
"How to Keep Boilers Clean." Send your addres for free 88 page book. Jas. C. Hotchkiss, 93 John St., N. Y. Pays well on Small Investment.-Stereopticons, Magic
Lanterns, and Views illustrating every subject for public exh ibitions. Lanterns for colleges, Sunday schools, and
home amusements home amusements. $136{ }^{\circ}$ page illustrated catalogue free
McAllister, Manufacturing Optician, 49 Nassau St., N. Y Stewart's Anti-Incrustation Solution. See next issue Iron and Steel Wire, Wire Rope, Wire Rope Tramwass Trenton Iron Co

Astronomical Telescopes, from $6^{\prime \prime}$ ' to largest size. Ob
servatory Domes, all sizes. Warner \& Swasey, Cleve servator
land, 0.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication.
References to former articles or answers should
give date of paper and page or number of
give date of paper and page or number of question.
Inquiries not answereen reasonable time should
be repeated; correspondents will bear in mind that
some answers require not a little research, and
though we endeavor to reply to all, either by lette
or in this department, each must take his turn. or in this department, each must take his turn.
Special Writen Information on matters of
personal rather than general interest zannot be expected without remuneration.
Scientific A merican
to may be had at the office. Pricenents referred
Boks cents each.
Pofered

Mrice. marals sent for examination should be distinctly marked or labeled.

(1) M. R. T. as ${ }^{\text {lus (1) a recipe for black }}$ paint for iron smokesvacks. A. Use coal tar if it can
be had; next, lampblack and boiled linseed oil, o plumbago paint. 2. For preventing boiler scale. A crustation. It treats of various kinds of water and scale. We can furnish it for $\$ 2.00$. 3. What causes the roaring or humming noise produced by acoustic tele phones, and why is it at intervalsinstead of being constant? A. The humming noise of the telephone is
mostly caused by wind, or an induction from some

her sour

(2) F. C. asks (1) for a receipt for mak ing an indelible marking ink using aniline black a
coloring matter. A. An indelible aniline ink may be made thus: One hundred gr. of hydrochlorate of ani line and sixty gr. of chlorate of sodium are dissolved in vanadate of ammonia added to the liquid, when it vanadate of ammonia added to the liquid, when it dant precipitate of aniline black. This may be dried. made into a paste with powdered gum arabic water, and glycerine, and used with a stencil. 2. A good receipt to make inks for stylographic pen. A. Use simple solu make inks for stylographic pen. A. Use sigrosine or aniline black in water.
(3) C. M. asks: What are the chemicals used, or the process necessary. in order to repair arti-
cles made from tortoise shell? A. Use the following cles made from tortoise shell? A. Use the following
cement: Mastic thirty parts, shellac ninety parts, tur-
pentine six parts, spirit of wine ninety per cent strong,
three hundred and fifty parts.
(4) C. S. M. asks how to prepare a polish (or dressing) for furniture, whereby old furnince. A. Melt three or ame a bright and new appearofe. A. Melt three or four pieces of sandarac, each
of the size of a walnut, add one pint of boiled oil, and boil together for one hour. While cooling add one
drachm of Venice turpentine, and if too thick a little drachm of Venice turpentine, and if too thick a little
il of turpentine also. Apply this, and after some oil of turpentine also. Apply this, and
(5) A. H. C. asks how to make a hard transparent soap. A. It is made by dissolving hard white soap, previously reduced to meal and thoroughly dried, in alcohol. A steam bath, fitted with a still-head, makes a good containing vessel. The alcohol and olution proceeds, any spirit which may distill ove must be allowed to condense in a worm and be col lected in a receiver. The heat should not exceed 212°. After solution, allow time for settling. Then draw off or globular moulds, after which color and perfume the same as other soaps.
$f^{\prime}(6)$ A. E. H. asks: What is the best material for polishing brass, especially hot brasss A. Mix together 1 ounce oxalicacid, 6 ounces rottenstone,
and a half ounce gum arabic ; all these are to be finely powdered. Then add one ounce sweet oil and suff. cient water to form the mixture into a paste. Apply small portion to the article to be cleaned, and rub dry with a flannel or wash leather. See "Spons' Workhop Receipts," second series, which we can send you
(7) E. M. R. wants a No. 1 cement for ementing hot air furnace and stoves. A. The following cement, used for steam pipes, will probably be
found satisfactory: Litharge 2 parts, powdered slaked found satisfactory: Litharge 2 parts, powdered slaked
lime 1 part, sand 1 part. Mix the mass with a sufficient lime 1 part, sand 1 part. Mix the mass with a sufficient
quantity of hot linseed oil varnish to form a stiff paste. quantity of hot linseed oil varnish to form a stiff pate
(8) J. \& B. ask for a receipt to make a good stove polish which can be moulded into bars. A.
It is made from graphite or black lead purified in the It is made from graphite or black lead purified in the
ssual manner, and then mixing the powder with sual manner, and then mixing the powder turpentine has been added to make it adhesive, after which the whole is subjected to strong pressure in
(9) J. K. asks how to get out the white tain which alcohol makes on varnish, without which you need only to rub over it to take the stain out and polish it at the same time. A. As the alcohol dissolves the varnish, the spot cannot be removed, except by renewing the varnish. The article to which you refer is probably some simple alcoholic solution of
(10) W. C. P. asks for a mineral that, when moistened, will ignite, and that can be worked into very small lozenge-like pieces. A. The article referred to may be the metal potassium or phosphide
of calcium ; as they are all dangerous, we would not of calcium ; as they a
recommend their use.
(11) J. G. M. asks if there are any chemi cals that will destroy lampblack. A. Boiling solution f chromic acid in sulphuric acid or
(12) D. B. K. asks how to oxidize brass and German silver ferrules. Would like to give them a dark appearance without being shining or polished. A. You may oxidize brass or German silver by a vapor
bath of sulphur made by burning a small piece of sulbath of sulphur made by burning a small piece of sul-
phur in a box in which the ferrules are hung. Another phur in a box in which the ferrules are hung. Another
method is to dip the ferrules in a solution of water to about 180° Fah. The strength must be found by
(13) A. B. asks (1) how to make a comosition to resilver brass. A. Prepare a solutiontof 1 part cyanide of potassium in 6 parts water: add to it a concen cid) until the precipitate is redissolved. Mix this solation with fine chalk, and apply after previous cleang of the objects. 2. And also how to silverize iron. . Unless the iron is first coated with copper, the proess is somewhat difficult. See the receipts given for
his purpose in the " Techno-Chemical Receipt Book," this purpose in the "Techno-Che
which we can send you for $\$ 2.00$.
(14) E. A. M. asks the best lubricating il to use on very light machinery, such as dental enines and lathes. Sperm, lard oil and kerosene all gum p in time. A. There is no oil that will not gum in me. Use good sperm oil that has been treated with few days. Decant the clear oil. The lead and sunlight the oil
(15) G. F. asks a way to color castings of Babbitt metal or type metal so as to give them the The castings can be colored by a deposition of a thin file castings can be colored by a deposition of a thin copper and water.
(16) B. C. H.-Low temperature ther mometers are made with colo
(17) T. V. L. F.-The pressure that lead or any other soft metal or alloy will standdepends upon nd the interior area of the thickness of the wall metals is fit for a steam cylinder for an engine if that is what you mean. Use iron or hard brass. Use the ordinary yellow brass for hard soldering or brazing copper.
(18) C. S. R.-Coke at 8 cents per bushel has nearly the same value in carbon as anthracite at $\$ 4.50$ per 2,000 , lb., but is not as good for firing under
small boilers. It is light and spongy, occupying nearly twice the space of anthracite, and requires more attention to keep up the intensity of fire required in boilers
constructedfor anthracite fires. With fire chambers of
larger dimensions, coke is nearly equal to anthracite fo
(19) J. S. W. asks (1) why a cutter yach carries a shifting bowsprit. A. For convenience of housing in rough weather. 2. Why is the cutter or sloop rig faster than the schooner rig? A. With the same area of sail, the single sail
wind better than when divided.
(20) P. A. F. writes : In plating small articles with tin, I find that the metal becomes foul and makes the work rough. How shall I remedy this Would it be advisable to mix antimony with the tin A. You can improve the tin bath by thoroughly stirring with a stick. of green wood, which boils the tin by liberat you can pour off the tin slowly leaving the alloys in the pot. You may use a little sal ammoniac (pulverized) on the tin surface to clear it, and occasionally skim of the dross. You will not be able to use up all the tin of the bath in tinning. It does not pay. Better sell or make it into coarse solder. Use no antimony.
(21) T. S. asks the process by which quicksilver is applied to glass to make a mirror? What coating can be applied to the quicksilver to protect it from dampness or moisture? A. The quicksivering oi upon a cushioned table with mercury; then, sliding the cleanglass on the mercury to prevent air bubbles and pressing the glass down upon the foil, slightly tip up the table ito allow the surplus of mercury to run off Leave the glass under pressure for several hours, to the back to protect it. See Scientific American Supplement, No. 105, for the wet process, which allow of lacquering the back.

TO INVENTORS

An experience of forty years, and the preparation o tents at home and abroad, enable us to understand th laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exwhich are low. in accordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO., office ScIENTIFIC AMERICAN, 661 Broadway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted, October 12, 1886,

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]
Air with natural gas, a
pheric
Armatures, machine for winding. L. B. Jones.
Ash pan, S. J. Byers.........................

Aspirator, etc, surgica

Auger handle, W. H. F. Raifsnyder.:
Awning frame, Toulouse \& Delorieux.
Awning frame, Toulouse
Axle box, car, J. Timms.
Axle lubricator, carriage. J. Sladdi
Bag or satchel frame, W. Romer Baking or fring compounds of plastic material etc., process of and apparatus for, stewart
Hastings.. 350.56
Balusters, machine for dovetaing, B. T. Bell.. 5 s50.57
Banjo, F. R. Mustill............................... 350,69
Banjo, F. R. Mustill..........
Bar. See Window shade bat
Barrels, machine for cutting head linings for, L .
Reed......................
Bathing apparatus, ,........................

350,697
350,490

Battery cell, galvanic, L. Dr
Bench. See Work
Bench. See Work ben
Bicycle, C. E. Duryea..
Bicycles, saddle spring for, L............................
Blast ovens,
Strobel.
Blast ovens, valve for hot, v. o. Strobel............... 350,56
Block. See Tackle block.
Blotter case for copying presses, J. W. Callard...
Board. See Bosom board.
Boiler. See Steam boiler.
Boiler. See Steam boiler.
Boiler, E. v. Hutchens...
Boilers, circulating water in, W.............
Book cover protector, Stiff \& Watrous
Boot [or shoes, uniting the sole and heel of, E. J.

Boot lor shoe Le Gay... Bosom board,

Bosom board, I. Funk...
Bottle holder. S. Erost..
Bottle stopper, C. W. Buffum..

Brake. See Car brake.

Bricks, etc.. composition of matter to be used for
Neuer..
Bridge, turntable. etc........................
Braw, T. Cooper.
Brom b holder. A. M. Bodley....
Brush. shaving. G. D. Pushee..
Buckle, trace, H. T. Simons........................
Buggy tops, folding section for, G. W. Crozier.
Buggy tops, folding section for, G. W. Crozier.
Burner. See Gas burner. Laboratory burner.
Button, M. D. Shipman..
Button or
ferys...
Cabinet for prints..............
Cable gripping device, J. A. Goldste.........
Calcimine connpound, H. F. Bemen
Caliper, inside, W. E. Pettengill...
Calipers, micrometer, A. J. Washburn
all bors, micrometer, w. H. Wilkinso
Camera. See Photographic camera

Handle. See A uger handil....
Hanker. See Door hanger.
Hanness, J. H. Whitaker.
Harrow, J. A. Kern
Harrow and cultivator, combined, D. Kessler. Harrow and cultivator tooth, T
Harrow, reversible. W. S. Pates calzo and thrasher, combined, J. P. Des
Harvester, grain binding. o. Coole
Hat and coat hook, W. . Clark...
Hat holder, C. Higbee..
Hat ventilator. J. Basch
Hay carriers, turntable for, E. Woodwar Hay press, B. J. Curry
Hay rack, A. L. Bingham.
Hay rake, horse. G. K. Sc
Hay tedder, P. A. Spicer.
Heel stiffener machine, w. J. Young Hinge, lock, O. H. Taylor
Holder. See Bottle holder. Broom holder. Cuff
holder. Hat holder. Printing plate holder Hook. See Hat and coat hook. Whiffetree
$\xrightarrow{\text { Horseshoe, }}$ P. Pitton....
Hot air furnace, C. S. Hood.
Hotel call, fre alarm, and indicator, Hess \& Stol-
Hydrocarbons. apparatus for the combustion of
udicator. See Station indicator
Inhaler, E. W. B. A. Messinger
Insulator pins for telegraphic
for manufacturing, C. Roger
ron. See Smoothing and polishing iron.
Jack. See Lifting jack.
oint. See Railway rail joint.
Key fastener. D. TI. Phillips.
Kife cleaning and scouring apparatus, T. B
Knitting machine, F. Wilcomb........
Kinting machine, straight, F. Wilcom
the needles and transfer points in latch nee-
nitting nachines, movable cam for straight, F .
Znitting mac
Wilcomb
nob attachment, J. Bardsley
Knob spindles. fastening for, C. E. Whittlesey. Laboratory burner, Allender \& Henderson.
J. D. Griswoldd.............................. Lamps, etc., suspending device for, C. H. Lyman.. Leather skiving machine, E. A. Latham. ixivi Jack, M. C. Meeker
products of, Endlich \& Muhlenberg.....
Lock. See Nut lock. Sash lock. Seal lock. ock. E. Hambujer

Looms, let-off motion for, K .
Lounge, Holland \& Dohan.
Lubricator. See Axle lubricator.
Malting and drying apparatus, J. F. Baldwin.. Measure, liguid, J. S. Co

 ceter. See Water meter.
Mines, shutter or door for, G. W. Nation

 Musical instruments, key board for, W. T. Weir. Navigating in foggy weather, F. D. Torre.

Necktie fastener, J. French.
Numbering machine, consecutive, J. H. Reinhardt
Nut lock, W. S. Harris
for, C. Driscoll,
il cup. J. Sladden.

Wainwright
ing, A. M. Rouse.............................
Ores, machinge for reducing, A. M. Rouse
,
Packer for oil wells, J. D. Brood
aper calendering machines, sh set feeding devic
Paper making machine. R. Smith
per abes, machine for makin, M.D. Knowl

Piano key board support, F. L. Wing

MODERN PALEONTOLOGY, ITS PRE.

PERFUMES.-A PAPER BY JACOB

PHONOCRAP PH Or Phonetic MINERAL WOOL,

BIT

$$
\begin{aligned}
& \text { Canned fruits } \\
& \text { Fischer.. } \\
& \text { Cider, fruits, }
\end{aligned}
$$

Cider, fruits, and other fermentable $\%$ substances
preservatives of, w. D. Hernist olic cure, condition powders, linim ointment, C. U. Saunders
Gloves, kid, M. R. Trueftit...
Lard, W. J. Wilcox \& Co.......
Medicine chests, T. J. Hutton. Medicine chests, T. J. Hutton............................
Medicine for the cure of neuralgia, rheumatis. and malaria, J. A. Myers................. Medical remedies, ce
Ointment, C. Bond
Ointment. C. Bond......
Petroleum for illumi
Ocean Oil Company
Pianos, square and upright. J. Church Company.............73,718 Preparation for beautifying the skin, J. J. Mack \&
Co............................. Remedy for indigestion, C. H. Graves \& Sons....
Soap, toilet, J. W. Campion \& Co............................. Wateches, watch cases, and all the parts...............
and watch movesents, American Waltham Watch Company

A printed copy of the specifcation and drawing of any patent in the foregoing list, also of any patent
issued since 1866 , will be furnished from this office for 25
cens. cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361 broadway, rew to 1866; but at increased cost, as the
granted pror
speciflcations, not being printed, must be. copied by hand.
Canadian Patents may now be obtained by the inventors for any of the inventions named in the fore-
going list, at a cost of $\$ \$ 40$ each. For full instruction
address Mun $\&$ © 0 ., 361 Broadway, New York. Oiner foreign patents may also be obtained.

Provertisements.
 The above are charreg per agate ineazout eifht

THE RESOURCES OF ALASKA.-AN

ELECTRICITY APPLIED TO THE

 THE CONTAGION OF CONSUMPTIONV.

PERFECT

NEWSPAPER FILE

LEADING BOOKS

Chemical Technology.

HENRY CAREY BAIRD \& CO.
810 Walnut street, Philadelphia, Pa., U. S. A. Priction puluefs, CluTches and ELEVATORS

FOREIGN PATENTS 'Their Cost Reduced.

[^0]-

 Standard ELTLING, PACKIN, HOEE, and WHEELS. Adaress for new circular, NEW YORK BELTING \& PACKING CO.,

LIGHTNING GRIP WOODWORKERS' VISE E. \&K. PATENT
massex, sole Maker, 15 South Jefferson St eet, Chicago, II

ABIC OFFER. TTo intod te then, wion

AERIAL NAVIGATION.- DESCRIP

THE IMPROVED PAPYROGRAPH.

Mineral Lands Prospected

GAS ENGINE.

every Revolution in man
Chicaso A ABent, itMMonroe stran
Williams \& Orton Mfg. Co., TERLING, ILL
ICE \& REFRIGERATING ROCK BREAKERS AND ORE CRUSHERS.

 OTTO GAS ENGINE.

digraph Minwex

WREATHS OF IMMORTELLES. DE scription of apparatus used in France for making
wregths of immortelles for funeral purposes. With t wo
eneran engravings. Contained in sciEs
PIEMENT.
office and from all newsice 10 ce
OUR falkier prisidetirs
 and
scriptions for 1887 whll h are immediately received are
entitled to all of the engravings for next year and those

for balance of this year. The November Number, with
1 1ro illustrations and articles by fifty well-known witers

AcGAALLDAmAEALALASA

 MICRO-ORGANISMS OF POTABLE

 MALLEABLE:
Knitting Machines

A. ZABRISKIE,

PATENTEES and others desining specialies
PROGRESSS IN ASTRONOMICAL

SLATEROOF COVERINGS.--BY JOHM

¿ New Catalogue of Valuable Papers

HYDRAULIC FLANGED HEADS,
OF IRON or STEEL, for boiler and TANK makers. Unequaled for Strength and Uniformity. THE DICKSON MANUFACTURING $\mathbf{C O}$.
96 nate stree, Chicar BORANTON, PA.

To the steel mandeactulers

All the esorgings must be delivered within the follow-

WORKSHOP RECEIPTS.

\section*{| riv Send |
| :--- |
| ny adaress |}

th. In oriering single eolumes, be particular to menSeent postapia by MUNN \& co., 361 Broadwar.

CONSUMPTION OURED
 AND LUNC AFFECTIONS Home Treatment. Alatedisisovery by a celebratedGer. man Physician. Is a POSITIVE remedy m Every Stage.
 CURE Firis DEAF

 ELECTRICAL. Hadmor. Thampon, Soliditor +1

 MODERN BRONZE ALLOYS．－A PA

 （ 8 OLARS＇NOISELESS RUBBER WHEELS
 WIRE APPARATUS FOR LABABORA－LAR

Winc．A．RGARETETE，
HARRRIS－CORLISSSENGINE With Harris＇Pat．Improvements，from 10 to $1,000 \mathrm{H}$ ． P

PATENTS．

MESSRS．MUNN \＆CO．，in connection with the publi－
cation of the SCIENTIFIC American，continue to ex－ aming iuprove
for Inventors．
In thisline of business they have had forty one years＇
experience，und now have unequaled facilities for the expereparation of Patent Drawings，Specifcations for the preparation of Pateni Prions for Patents in the United
prosecution of Applita
States，Canada，and Foreign Countries．Messrs Munn \＆ Co．also attend to the preparation of Caveats，Copyrights
for Books，Labels，Reissues．Assignments，and Reports them is done with special care and promptness，on vers taining full information about fatenten application，con cure them，directions concerning Latelis，Copyrights
Designs，Patents，Appeals，Reissues，Infringements，As
signments，Rejected Cases，Hints on the Sale of Pa We also send，free of charge，a Synopsis of Foreign Pa
tent Letaws showing the ocost and method of securing
patents in all the principal countries of the worla． MUNN \＆CO．，Solicitors of Patents， 361 Broadway，New York． BRANCH OFFICES．－No． 622 and 624 F Street，P
ciff Building，near 7th Street，Washington，D．C．

$\overline{\text { GLUCOSE－A } \mathrm{A}} \mathrm{COLLECTION}$ OF VAL

BLAKE＇S IMPROVED PIPE HANGER．

 JENTKI
 71 JOHN ST，NEW YOTR．
 GOLD MEDAL，PABIS， 1878.
BAKER＇S Brodkfast Cociud． Cocoa，from which the excess of Oocha，has been removed．It has three times the strength of Cocoa mixed
with Starch，A rrowroot or Sugar， with Starch，A rrowroot or Sugar，
and is therefore far more economi． cal，costing less than one cent a
cup．It is delicious，nourishing， strengthening，easily digested，and admirably adapted for invalids as
well as for persons ：n health． well as for persons in health．
T．BaERE \＆CO，Donclesedr，Lass，
ON THE LIQUEFACTION OF GASES

Barnes＇Foot－Power Machinery． Complete outftrs for Actual Worksnop
Business．Read what a customer says：

RUBBER BELTING，PACKING，HOSE，

MECHANICAL AND MANUFACTURING PURPOSES THE GUTTA PERCHA AND RUBBER MFG．CO．，

95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

BARREL，KEG， Hogshead，

 STAVE MACHINERT． Truss Hoop Driving．E． $\begin{gathered}\text { \＆Bacture by } \\ \text { BUFFALO，N．} \mathbf{Y} \text { ．}\end{gathered}$ THE STABBILTY AND SPEED OF

M6『

ฐ́rientific Ammericam

The Most Popalar Scientific Paper in the World．

 Onls \＄3．00 a Year，includi ng Postage．Weekiy．This widely circulated and splendidly illustrated
paper is published weekly．Every number contains six－ een pages of useful information and a large number of original engravings of new inventions and discoveries；
representing Engineering Works，Steam Machinery representing Engineering Works，Steam Machinery
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity Telegraphy．Pbotography，Archi－ tecture，Agriculture，Horticulture，Natural History，etc．
All Classes of Readers find in the ScIENTIFIC All Classes of Readers find in the Sciennipic American a popular resume of the best scientiflc in－
formation of the day；and it is the aim of the publishers to present it in an attractive form，avoiding as much as possible abstruse terms．To every intelligent mind， this journal affords a constant supply of instructive reading．It is promotive of knowledge and progress in
every community where it circulates． Terms of Subscription．－One copy of the ScIen－
TIFIC AMERICAN will be sent for one year－ 52 numbers－ postage prepaid，to any subscriber in the United States or Canada，on receipt of three dollars by the pub－
lishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－One extra copy of the Scientific Ameri－ CAN will be supplied gratis for every club of flve subscribers at $\$ 3.00$ each；additional copies at same proportionate
rate． The safest way to remit is by Postal Order，Draft，or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly adaressed，
seldom goes astray，but is at the sender＇s risk．Ad－ dress all letters and make all orders，drafts，etc．，pay－ MIU்NIN \＆CO．， 361 Broadway，New．York．

T포표

Scientifis Americansupploment

This is a separate and distinct pubication from THE SCIENTIFIO AMERICAN，but is uniform therewith THE SCIENTIFIC American Supplemient is published weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in all the prinsipal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy Useful Arts，embracing Biology，Geclogy，Mineralogy，
Natural History，Geography，Archæology，Astronomy， Chemistry，Electricity，Light，${ }^{-}$Heat，Mechanical Engi－ neering，Steam and Railway Engineering，Mining， Ship Building，Marine Engineering，Photography， Technology，Manufacturing Industries，Sanitary En－ my，Biography，Medicine，atc．A vastamont of fresh and valuable information pertaining to these and allied subjects is given，the whole profusely illustrated with engravings．
The most $i m$
and Manufactures at home and abroad are represented and described in the SUPPLEMENT．
and
Price for the SUPPIEMENT for the United States and Canada． 85.00 a year，or one copy of the SCIENTIFIC AM－ ERICAN and one COPy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Address and remit by postal order．express mones order，or check，

MUNN \＆Co．， 361 Broadway，N．Y． Publishers Scientific american．
To Joreign Subscribers．－Under the facilities of the Postal Union，the Scientific american is now sent scribers in Great Britain．India，Australia and，to sub－ British colonies ；to France，Austria，Belgium，Germany Russia，and all other European States；Japan，Brazil， Mexico，and all States．of Central and South America． \＄4，gola，for ScIENTIFIC AMERICAN，one year；；9，gold，
forboth SIENTTFIC AMFRTCAN and forboth ScIENTIFIC AMERICAN and SUPPLEMENT for
one year．This includes pcstage，which we pay．Remit by postal or express mones order，or draft to order of
MUNN \＆CO．， 361 Broadway，New York．

PRINTING INKES．

ENEU JOHNNON \＆CO．＇S SNK，Tenth and Lom
Dard Sts．，Phila．，and 47 Rose St．，opp，Duane St，，No．Y．

[^0]:
 duced the obstacle of cost is no longer in the way of a large proport

 CANA DA. -The cost of a patent in Canada is even former 10cludes the Provinces of Ontaric. Quebec, New toba. the cheap and easy method now offered for obtaining | patenten |
 | :---: |
 | ing. |
 | EN |

 force on Jan. Ist. 1880 , enab es parties to secure patent tent Includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowiedged goods are sent to every quarter of the globe. A good
 invention is like y to realize as much for the patentee In Englund as bis United States patent produces for him at hrmae. and the small cost now renders it possible for almost every patentee in this country to secure a pa
 tent in Great Britaiu, where his rights are as well pro tected as in the United States.
 O'NHER COU NTRIES.
 on very reasonable terms in France, Belgium, Germany Austria, Russ1a. Italy. Spalif (the latter includes Cuba
 and all theother Spanish Cofonies), Brazll, British ludia Australia, זna the other British Colonies. An experience of Forty years inas enabled th
 publishers of THe SCIENTIFIC AMEIICAN to establish competent and trustworthy agencies in all the principal have the business of the'r clients promptly and proper iy done and their interescs faithfully guarded. A pamphlet containing a synopsls of the patent" laws
 of all countries. including the cost for each, and othe information useful to persons contemplating the pro this office.
 MCNN\&CO. Editors and Proprietors of The Sci any information reative to patents, or the registry of trade-marks, in this country or abroad. to call at thei
 offices. 361 broadway. Examination of inventions, con suitation, and advice free. Inquiries by mail promptly
 Brance Ofrices: No. 622 and 624 F Ftradway, New York. Pacitio

 DILES.

